WO2023276864A1 - Silsesquioxane compound and method for producing same - Google Patents

Silsesquioxane compound and method for producing same Download PDF

Info

Publication number
WO2023276864A1
WO2023276864A1 PCT/JP2022/025227 JP2022025227W WO2023276864A1 WO 2023276864 A1 WO2023276864 A1 WO 2023276864A1 JP 2022025227 W JP2022025227 W JP 2022025227W WO 2023276864 A1 WO2023276864 A1 WO 2023276864A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
hydrocarbon group
acid
thiol
Prior art date
Application number
PCT/JP2022/025227
Other languages
French (fr)
Japanese (ja)
Inventor
正幸 横山
哲雄 奥山
郷司 前田
洋行 涌井
直樹 渡辺
公洋 松川
建介 中
Original Assignee
東洋紡株式会社
国立大学法人京都工芸繊維大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社, 国立大学法人京都工芸繊維大学 filed Critical 東洋紡株式会社
Priority to JP2023531889A priority Critical patent/JPWO2023276864A1/ja
Publication of WO2023276864A1 publication Critical patent/WO2023276864A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/392Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing sulfur

Definitions

  • the present invention relates to a novel silsesquioxane compound having a dicarboxylic anhydride group and a method for producing the same, and is useful as a raw material for producing polyimide films.
  • Polyimide film has excellent heat resistance and good mechanical properties, and is widely used in the electrical and electronic fields as a flexible material. However, since a general polyimide film is colored yellowish brown, it cannot be applied to parts such as display devices that require light transmission.
  • the colored polyimide film cannot be used as a substrate material for a liquid crystal display that displays images by turning light transmission on and off. , the rear side of a reflective display system or a self-luminous display device.
  • Patent Documents 1 to 3 there are attempts to develop colorless and transparent polyimide films using fluorinated polyimide resins, semi-alicyclic or fully alicyclic polyimide resins, etc.
  • Patent Documents 1 to 3 These films are less colored and have transparency, but their mechanical strength is not as high as that of colored polyimide films. Colorlessness and transparency cannot always be maintained due to thermal decomposition or oxidation reaction.
  • Patent Document 4 a method of heat treatment while blowing a gas with a specified oxygen content has been proposed (Patent Document 4), but the production cost is high in an environment where the oxygen concentration is less than 18%, and industrial production is not possible. Extremely difficult.
  • composites of organic and inorganic materials are used to impart the properties of inorganic materials, such as high heat resistance, chemical resistance, and high surface hardness.
  • organic-inorganic hybridization techniques For example, it is known that CTE, Rth, and Tg can be improved while maintaining transparency by combining transparent polyimide and silica nanoparticles.
  • CTE, Rth, and Tg can be improved while maintaining transparency by combining transparent polyimide and silica nanoparticles.
  • the film becomes more rigid and brittle, resulting in a decrease in mechanical strength.
  • silsesquioxane represented by RSiO 3/2 can easily provide an organic-inorganic hybrid cured product by giving R a substituent that can react with an organic material.
  • Patent Document 5 Attempts have been made to improve heat resistance and workability by combining flexible silsesquioxane with polyimide. It is known that the charge transfer interaction between the imide portion of polyimide and silsesquioxane increases the thermal decomposition temperature (Non-Patent Document 1).
  • silsesquioxane composite polyimides since the flexible silsesquioxane structure reduces the rigidity of the polyimide, silsesquioxane composite polyimides usually exhibit relatively low elastic modulus and low Tg (Non-Patent Document 2). .
  • an object of the present invention is to provide a novel silsesquioxane compound and a method for producing the same, which are useful as a raw material for producing a polyimide film having improved toughness while maintaining other main properties. That's what it is.
  • the present invention includes the following contents.
  • R 2 is each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, Or represents an aromatic hydrocarbon group having 6 to 8 carbon atoms.
  • trialkoxysilanes a2 having no thiol group
  • a thiol group of the condensate B of said reactive group of dicarboxylic anhydride C having at least one reactive group selected from vinyl group, alkenyl group, cycloalkenyl group, alkynyl group, and acid chloride group
  • a silsesquioxane compound having a dicarboxylic anhydride group which has structural units represented by the following general formulas (1) and (2).
  • Q 1 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms
  • Q 2 is a single bond, a hydrocarbon group having 1 to 8 carbon atoms, an organic group in which one or more carbon atoms of the hydrocarbon group having 1 to 8 carbon atoms are substituted with oxygen, or a carbonyl group
  • X is carbon- a carbon bond, or an aliphatic ring having 4 to 10 carbon atoms, an aromatic ring having 6 to 10 carbon atoms, or a heterocyclic ring in which some of the carbon atoms constituting these are substituted with oxygen or sulfur;
  • One or more of the hydrogens bonded to may be substituted with a hydrocarbon group, and 1.0 ⁇ m ⁇ 2.0 and 1.4 ⁇ n ⁇ 1.6.
  • Q 3 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms, and 1.4 ⁇ n ⁇ 1.6.
  • the molar ratio of the trialkoxysilanes a2 [moles of a2]/[moles of a1+moles of a2]), or the molar ratio of the structural units represented by the general formula (2) ([structural The silsesquioxane compound according to [1] or [2], wherein unit (2)]/[structural unit (1)+structural unit (2)]) is 0.1 or more and 0.7 or less.
  • Rx represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms.
  • R 1 Si(OR 2 ) 3 thiol group-containing trialkoxysilanes a1 represented by the general formula: R 1 Si(OR 2 ) 3 ; (Wherein, R 1 is an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms.
  • FIG. 1 is a 1 H NMR (CDCl 3 ) spectrum of SQ109 (PGMEA solution) used in Example 1.
  • 1 is a 1 H NMR (CDCl 3 ) spectrum of norbornenic anhydride used in Example 1.
  • FIG. Note that ⁇ 2.2 is a peak derived from acetone for washing instruments.
  • 1 is a 1 H NMR (CDCl 3 ) spectrum of a reaction mixture after reaction in Example 1.
  • FIG. 1 is a 1 H NMR (CDCl 3 ) spectrum of silsesquioxane SQ2 having an acid anhydride group obtained in Example 2.
  • FIG. 1 is a 1 H NMR (DMSO-d 6 ) spectrum of silsesquioxane SQ3 having an acid anhydride group obtained in Example 3.
  • FIG. 1 is a 1 H NMR (DMSO-d 6 ) spectrum of silsesquioxane SQ4 having an acid anhydride group obtained in Example 4.
  • FIG. 1 is a 1 H NMR (DMSO-d 6 ) spectrum of silsesquioxane SQ5 having an acid anhydride group obtained in Example 5.
  • FIG. 1 is a 1 H NMR (DMSO-d 6 ) spectrum of silsesquioxane SQ6 having an acid anhydride group obtained in Example 6.
  • FIG. 1 is a 1 H NMR (DMSO-d 6 ) spectrum of silsesquioxane SQ7 having an acid anhydride group obtained in Example 7.
  • FIG. 1 is a 1 H NMR (DMSO-d 6 ) spectrum of silsesquioxane SQ8 having an acid anhydride group obtained in Example 8.
  • FIG. 1 is a 1 H NMR (DMSO-d 6 ) spectrum of silsesquioxane SQ8 having an acid anhydride group obtained in Example 8.
  • the novel silsesquioxane compound A is a silsesquioxane compound having a dicarboxylic anhydride group (hereinafter sometimes simply referred to as an "acid anhydride group") and a thiol group-containing silsesquioxane compound.
  • a thiol group of condensate B and said reactive group of dicarboxylic anhydride C having at least one reactive group selected from vinyl groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, and acid chloride groups; is a silsesquioxane compound formed by the reaction of
  • the condensate B is a thiol group-containing trialkoxysilane a1 represented by the general formula: R 1 Si(OR 2 ) 3 , (Wherein, R 1 is an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms.
  • R 2 is each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, Or represents an aromatic hydrocarbon group having 6 to 8 carbon atoms.) It is a condensate B of trialkoxysilanes a2 having no thiol group.
  • the thiol group-containing trialkoxysilanes a1 and the trialkoxysilanes a2 both have three reactive alkoxy groups, so the structure of the resulting product has a three-dimensionally complicated structure. , it is not realistic to specify the entire structure by a chemical formula. For this reason, the product invention was specified in the form of manufacturing method limitation (product-by-process).
  • novel silsesquioxane compound A preferably has structural units represented by the following general formulas (1) and (2).
  • Q 1 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms
  • Q 2 is a single bond, a hydrocarbon group having 1 to 8 carbon atoms, an organic group in which one or more carbon atoms of the hydrocarbon group having 1 to 8 carbon atoms are substituted with oxygen, or a carbonyl group
  • X is carbon- a carbon bond, or an aliphatic ring having 4 to 10 carbon atoms, an aromatic ring having 6 to 10 carbon atoms, or a heterocyclic ring in which some of the carbon atoms constituting these are substituted with oxygen or sulfur;
  • One or more of the hydrogens bonded to may be substituted with a hydrocarbon group, and 1.0 ⁇ m ⁇ 2.0 and 1.4 ⁇ n ⁇ 1.6.
  • novel silsesquioxane compound A is not limited to the product specified by the above manufacturing method limitation, and as two repeating units, structural units represented by the following general formulas (1) and (2) can be identified as having
  • the novel silsesquioxane compound A can be suitably produced, for example, by the production method of the present invention. That is, the production method of the present invention is a method for producing a silsesquioxane compound having a dicarboxylic anhydride group, comprising the following steps in order.
  • R 1 Si(OR 2 ) 3 thiol group-containing trialkoxysilanes a1 represented by the general formula: R 1 Si(OR 2 ) 3 ; (Wherein, R 1 is an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms.
  • thiol group-containing silsesquioxane compound (condensate B) and at least one reactive group selected from a vinyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, and an acid chloride group It can also be obtained by reacting with a dicarboxylic anhydride C having
  • Condensate B is a condensate of thiol group-containing trialkoxysilanes a1 and trialkoxysilanes a2 having no thiol group.
  • Condensate B for example, an organic/inorganic hybrid resin Compoceran SQ (product name: SQ107 or SQ109, Arakawa Chemical Industries, Ltd.) can be used.
  • the condensate B synthesized by a method including the above 1st to 3rd steps can be used.
  • thiol group-containing trialkoxysilanes a1 represented by the general formula: R 1 Si(OR 2 ) 3 , trialkoxysilanes a2 having no thiol group, and water are combined with an acidic catalyst. It is a step of obtaining a reaction mixture x by hydrolyzing with
  • R 1 is an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms. represents an organic group substituted with a thiol group
  • R 2 is each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, Or represents an aromatic hydrocarbon group having 6 to 8 carbon atoms.
  • the limitation on the number of carbon atoms such as "1 to 8 carbon atoms" means the number of carbon atoms in the entire organic group including substituents.
  • R 1 has at least one thiol group and is a hydrocarbon group having 1 to 8 carbon atoms having a straight chain, branched chain, or aliphatic ring, or a hydrocarbon group. represents an aromatic hydrocarbon group having 6 to 8 carbon atoms which may be present.
  • R 1 is preferably a linear hydrocarbon group from the viewpoint of imparting flexibility to the polymer chain, and preferably an alicyclic hydrocarbon group or an aromatic hydrocarbon group from the viewpoint of enhancing heat resistance.
  • R 2 independently of each other may have a hydrogen atom, a linear or branched chain, or an aliphatic ring-containing hydrocarbon group having 1 to 8 carbon atoms, or a hydrocarbon group; Represents 6-8 aromatic hydrocarbon groups.
  • R 2 is preferably an alkyl group having 1 to 4 carbon atoms. A methyl group or an ethyl group is particularly preferred.
  • component (a1)) Specific examples include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltripropoxysilane, 3-mercapto propyltributoxysilane, 1,4-dimercapto-2-(trimethoxysilyl)butane, 1,4-dimercapto-2-(triethoxysilyl)butane, 1,4-dimercapto-2-(tripropoxysilyl)butane, 1,4-dimercapto-2-(tributoxysilyl)butane, 2-mercaptomethyl-3-mercaptopropyltrimethoxysilane, 2-mercaptomethyl-3-mercaptopropyltriethoxysilane, 2-mercaptomethyl-3-mercaptopropyl tripropoxysilane, 2-mercaptomethyl-3-mercapto
  • Examples of trialkoxysilanes a2 having no thiol group include compounds represented by the general formula: R 3 Si(OR 2 ) 3 .
  • R 3 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms
  • R 2 is , each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms.
  • R 3 is a hydrocarbon group having 1 to 8 carbon atoms having a linear or branched chain or an aliphatic ring, or a hydrocarbon group having 6 to 8 carbon atoms which may have a hydrocarbon group. represents an aromatic hydrocarbon group.
  • R 2 is as described for component (a1), and may be the same as or different from R 2 in component (a1).
  • component (a2) examples include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane.
  • Component (a2) can be used either singly or in combination of two or more. By using these, the amount of thiol groups can be adjusted, so that the degree of cross-linking of the finally obtained polyimide can be adjusted and the proportion of the inorganic component in the polyimide can be increased.
  • the molar ratio of the trialkoxysilanes a2 in the alkoxysilanes is preferably 0.1 or more and 0.7 or less. It is more preferably 2 or more and 0.7 or less.
  • the larger the molar ratio the smaller the amount of thiol groups contained per molecule, and the smaller the molar ratio, the larger the amount of thiol groups.
  • the resulting polyimide chain is appropriately crosslinked, and the effect of improving physical properties is sufficient.
  • Condensate B which is a thiol group-containing silsesquioxane, can be obtained by using component (a1) and component (a2), hydrolyzing them, and then condensing them.
  • the alkoxy groups contained in the component (a1) and the component (a2) are converted into silanol groups by the hydrolysis reaction, and alcohol is produced as a by-product.
  • the amount of water required for the hydrolysis reaction is expressed as a molar ratio ([number of moles of water used for hydrolysis reaction]/[total number of moles of each alkoxy group contained in component (a1) and component (a2)]).
  • 0.4 to 10 are preferred. When this molar ratio is 0.4 or more and less than 0.5, some alkoxy groups will remain in the resulting thiol group-containing silsesquioxane, but adhesion to inorganic materials can be improved. Moreover, in the case of 0.5 to 10, substantially no alkoxy group remains in the thiol group-containing silsesquioxane to be obtained, and a thick film cured product can be easily produced.
  • dialkoxysilanes and/or tetraalkoxysilanes may be further used within a range that does not impair the effects of the present invention (for example, 50 mol % or less). It is possible.
  • any conventionally known acidic catalyst that can function as a hydrolysis catalyst can be used. However, since it is necessary to substantially remove the acid catalyst after the hydrolysis reaction, it is preferably one that can be easily removed. These include formic acid, which has a low boiling point and can be removed by vacuum, and solid acid catalysts, which can be easily removed by methods such as filtration.
  • solid acid catalysts examples include cation exchange resins, activated clay, and carbon-based solid acids.
  • cation exchange resins are preferable because they have high catalytic activity and are easily available.
  • As the cation exchange resin a strong acid type cation exchange resin and a weak acid type cation exchange resin can be used.
  • Diaion SK series, Diaion UBK series, Diaion PK series, Diaion HPK25/PCP series all product names of Mitsubishi Chemical Corporation
  • the type of ion-exchange resin to be used can be arbitrarily selected depending on the reaction rate, suppression of side reactions, etc., strongly acidic ion-exchange resins are particularly preferred from the viewpoint of reactivity.
  • the amount of the acid catalyst to be added is preferably 0.1 to 25 parts by mass, more preferably 1 to 10 parts by mass, with respect to 100 parts by mass in total of the components (a1) and (a2).
  • it is 25 parts by mass or less, it tends to be easy to remove in a later step, which tends to be economically advantageous.
  • the amount is 0.1 parts by mass or more, the reaction can proceed appropriately, and there is a tendency that the reaction time does not become too long.
  • the reaction temperature and time can be arbitrarily set according to the reactivity of component (a1) and component (a2), but are usually about 0 to 100°C, preferably about 20 to 60°C for about 1 minute to 2 hours.
  • the hydrolysis reaction can be carried out in the presence or absence of a solvent, preferably without solvent.
  • a solvent the type of solvent is not particularly limited, and one or more arbitrary solvents can be selected and used, but it is preferable to use the same solvent as used in the condensation reaction described below.
  • the second step is to remove the acidic catalyst from the reaction mixture x to obtain a reaction mixture y. That is, it is necessary to substantially remove the acid catalyst from the system after the hydrolysis reaction in the first step is completed. If not removed, the reaction does not proceed in the condensation reaction described later, the silanol group is not completely consumed, or the system gels due to an abnormal increase in the molecular weight. Oxane (condensate B) cannot be obtained.
  • the method for removing the acidic catalyst can be appropriately selected from various known methods depending on the catalyst used. For example, as described above, when formic acid is used, it can be easily removed by reducing pressure, and when a solid acid catalyst is used, it can be easily removed by a method such as filtration after completion of the condensation reaction.
  • by-product alcohol and excess water may be removed by a method such as decompression. Further, by diluting with the solvent used for the condensation reaction after removal, it is possible to facilitate the addition of the hydrolyzate in the subsequent condensation reaction.
  • the third step is a step of obtaining a condensate B having a thiol group by mixing and condensing a polar solvent containing a basic catalyst and the reaction mixture y.
  • a condensation reaction water is by-produced between the silanol groups, and alcohol is by-produced between the silanol groups and the alkoxy groups, forming siloxane bonds.
  • a conventionally known basic catalyst capable of functioning as a dehydration condensation catalyst can be arbitrarily used in the condensation reaction.
  • the basic catalyst preferably has a high basicity, and specific examples thereof include alkali salts such as sodium hydroxide (NaOH), potassium hydroxide (KOH) and calcium hydroxide (Ca(OH) 2 ); Organic amines such as 8-diazabicyclo[5.4.0]undec-7-ene, 1,5-diazabicyclo[4.3.0]non-5-ene, tetramethylammonium hydroxide, tetrabutylammonium hydroxide and ammonium hydroxides such as Any one of the exemplified compounds can be used alone or in combination as appropriate. Among the exemplified compounds, tetramethylammonium hydroxide is particularly preferred because of its high catalytic activity and easy availability. In addition, when these basic catalysts are used as an aqueous solution, the hydrolysis reaction proceeds even in the condensation reaction step. , should be adjusted accordingly.
  • alkali salts such as sodium hydroxide (NaOH), potassium hydroxide (KOH)
  • the amount of the basic catalyst to be added is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 2 parts by mass, with respect to 100 parts by mass in total of component (a1) and component (a2). more preferred. If the amount of the basic catalyst added is 5 parts by mass or less, the cured product prepared using the obtained thiol group-containing silsesquioxane (condensate B) is difficult to color, and when removing the catalyst, it is removed. This tends to make the process of On the other hand, when the amount is 0.01 part by mass or more, the reaction can proceed appropriately, and there is a tendency that the reaction time does not become too long.
  • the reaction temperature can be arbitrarily set according to the reactivity of component (a1) and component (a2), but is usually about 40 to 150°C, preferably about 60 to 100°C.
  • the condensation reaction is preferably carried out in the presence of a polar solvent, and from the viewpoint of the stability of the obtained silsesquioxane compound A and its copolymer amic acid solution and the quality of the resulting film, a solvent such as toluene is used. It is more preferable not to contain a non-polar solvent.
  • polar solvent a polar solvent that exhibits compatibility with water is preferable, and glycol ethers are particularly preferable.
  • glycol ethers dialkyl glycol ether solvents are particularly preferred.
  • dialkyl glycol ether-based solvents compatible with water include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, and diethylene glycol diethyl ether.
  • Glycol ether acetate solvents such as propylene glycol monomethyl ether acetate (PGMEA), dipropylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate can also be used.
  • the condensation reaction can also be carried out by setting the reaction temperature to a polar solvent containing a dehydration condensation catalyst and sequentially adding a solution containing the hydrolyzate obtained in the hydrolysis reaction.
  • the method of addition can be appropriately selected from various known methods.
  • the time required for addition can be arbitrarily set depending on the reactivity of component (a1) and component (a2), but is usually about 30 minutes to 12 hours.
  • the total molar ratio of unreacted alkoxy groups ([total number of moles of unreacted alkoxy groups]/[total number of moles of each alkoxy group contained in component (a1) and component (a2)]) is 0.5. It is preferable to proceed so that it becomes 2 or less, and it is more preferable to make it substantially 0. When this molar ratio is more than 0 and 0.2 or less, some alkoxy groups will remain in the resulting thiol group-containing silsesquioxane (condensate B), but adhesion to inorganic materials is preferable in terms of improvement.
  • the condensation reaction is preferably carried out by diluting with a solvent so that the total concentration of component (a1) and component (a2) is about 2 to 80% by mass, more preferably 15 to 75% by mass. It is preferable to use a solvent having a boiling point higher than that of water and alcohol produced by the condensation reaction, because these can be distilled off from the reaction system. A concentration of 2% by mass or more is preferable because the thiol group-containing silsesquioxane (condensate B) contained in the obtained curable composition is sufficient. When it is 80% by mass or less, it becomes difficult to gel during the reaction, and the resulting condensate B tends to have an appropriate molecular weight.
  • the removal method can be appropriately selected from various known methods according to the catalyst used. For example, when tetramethylammonium hydroxide is used, it can be removed by adsorption and removal with a cation exchange resin after completion of the condensation reaction.
  • ⁇ Fourth step> the condensate B and a dicarboxylic anhydride C having at least one reactive group selected from a vinyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, and an acid chloride group. This is the step of reacting.
  • a dicarboxylic anhydride having a functional group capable of reacting with a thiol group is used as the dicarboxylic anhydride C (hereinafter referred to as component (C)).
  • component (C) dicarboxylic anhydrides having vinyl groups, acryl groups, methacryl groups, allyl groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, or acid chloride groups
  • a dicarboxylic anhydride having a vinyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, or an acid chloride group can be used.
  • the dicarboxylic anhydride C preferably has the following structure.
  • the following compounds and compounds having an acid chloride group are particularly preferred due to their high reactivity.
  • dicarboxylic anhydride C which has low reactivity, it is difficult to proceed the reaction completely with only UV light, so it is preferable to use an oxidation catalyst such as oxygen or iron chloride together.
  • phthalic anhydride compounds having an aromatic ring structure are desirable from the viewpoint of improving the heat resistance of the resulting polyimide and suppressing yellowing under high-temperature conditions.
  • Maleic anhydride and cyclohexanedicarboxylic anhydride having a cyclic structure are desirable in terms of enhancing colorless transparency.
  • thiol group-containing silsesquioxane (condensate B) and the dicarboxylic anhydride C
  • a thiol-ene reaction or a reaction between a thiol group and an acid chloride group can be used.
  • the reaction mechanism differs depending on the type of carbon-carbon double bond and the presence or absence of a radical polymerization initiator. That is, when a compound having a vinyl group or an allyl group with low radical polymerizability is used as component (C), only the en-thiol reaction proceeds, and the thiol group in condensate B and component (C) Carbon-carbon double bonds react at approximately 1:1 (molar ratio) and are preferred. On the other hand, when a compound having a highly radically polymerizable acrylic group or methacrylic group is used as the component (C), the carbon-carbon double bond in the component (C) is particularly affected when a radical polymerization initiator is used in combination.
  • the polymerization reaction also proceeds in parallel, and the thiol group in the condensate B and the carbon-carbon double bond in the component (C) react at a ratio of about 1: 1 to 100 (molar ratio), so the effect of the invention is You may not get enough.
  • the molar ratio [number of moles of thiol groups contained in condensate B]/[component (C) The number of moles of carbon-carbon double bonds contained in]) is preferably 0.9 to 2.5, more preferably 1.0.
  • this molar ratio is 0.9 or more, the carbon-carbon double bond is less likely to remain after UV curing, and the weather resistance tends to be improved. Moreover, when it is 2.5 or less, the crosslink density of the cured product becomes sufficient, and there is a tendency to improve the heat resistance.
  • an ultraviolet light source As a thiol-ene reaction initiator, an ultraviolet light source, an organic material, an inorganic material, or oxygen can be used.
  • an ultraviolet light source for example, a high-pressure mercury lamp, a halogen lamp, a xenon lamp, or an ultraviolet LED can be used.
  • Usable initiators are not particularly limited, and conventionally known photo cationic initiators, photo radical initiators, oxidizing agents, etc. can be arbitrarily selected.
  • photocationic initiators include sulfonium salts, iodonium salts, metallocene compounds, benzoin tosylate, etc., which are compounds that generate acid upon irradiation with ultraviolet rays. -6974, UVI-6990 (all trade names of Union Carbide Co., USA), Irgacure 264 (manufactured by BASF), CIT-1682 (manufactured by Nippon Soda Co., Ltd.), and the like.
  • the amount of the cationic photopolymerization initiator to be used is usually about 10 parts by weight or less, preferably 1 to 5 parts by weight, per 100 parts by weight of the composition.
  • the photoradical initiator examples include Darocure 1173, Irgacure 651, Irgacure 184, Irgacure 907 (all trade names manufactured by BASF), benzophenone, and the like, preferably about 5 parts by weight or less per 100 parts by weight of the composition. is 0.1 to 2 parts by mass.
  • the reaction can be accelerated by adding an oxidizing agent such as iron oxide or iron chloride.
  • an ultraviolet light source or oxygen for the reaction without using a photoreaction initiator or photosensitizer.
  • condensation B silanol group amount of the silsesquioxane
  • unreacted acid chloride groups may be copolymerized with polyamic acid to form polyamidoimide.
  • organic bases are N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, N,N-diethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2- Imidazolidinone, imidazole, N-methylcaprolactam, imidazole, N,N-dimethylaniline and N,N-diethylaniline.
  • tertiary amines include pyridine, collidine, lutidine and triethylamine.
  • inorganic bases include potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogen carbonate and sodium hydrogen carbonate.
  • a volatile base for substrate film applications that require high heat resistance and transparency, it is desirable to use a volatile base for the reaction. By removing hydrochloric acid by adding a base or heating the solution, gelation due to excessive reaction of silsesquioxane can be suppressed.
  • solvents used for the reaction Benzene, toluene, xylene, mesitylene, pentane, hexane, heptane, octane, nonane, decane, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, N,N-diethylformamide, N- Methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, imidazole, N-methylcaprolactam, dimethylsulfoxide, diethylsulfoxide, dimethylsulfone, diethylsulfone, hexamethylsulfolamide, cresol, pheno xylenol, diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), tetraglyme, propylene glycol monomethyl ether acetate (
  • N,N-dimethylacetamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone as the main component of the organic solvent.
  • a poor solvent such as toluene or xylene may be used to the extent that the polyimide resin or its precursor does not precipitate.
  • the silsesquioxane compound A having an acid anhydride group obtained in the fourth step can be used as it is after the reaction. It can also be used as a powder.
  • silsesquioxane compound A Having an Acid Anhydride Group
  • the silsesquioxane compound A that can be obtained as described above preferably has structural units represented by the following general formulas (1) and (2). It is more preferred to have only the structural units represented.
  • Q 1 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms
  • Q 2 is a single bond, a hydrocarbon group having 1 to 8 carbon atoms, an organic group in which one or more carbon atoms of the hydrocarbon group having 1 to 8 carbon atoms are substituted with oxygen, or a carbonyl group
  • X is carbon- a carbon bond, or an aliphatic ring having 4 to 10 carbon atoms, an aromatic ring having 6 to 10 carbon atoms, or a heterocyclic ring in which some of the carbon atoms constituting these are substituted with oxygen or sulfur;
  • One or more of the hydrogens bonded to may be substituted with a hydrocarbon group, and 1.0 ⁇ m ⁇ 2.0 and 1.4 ⁇ n ⁇ 1.6.
  • Q 3 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms, and 1.4 ⁇ n ⁇ 1.6.
  • Q 1 in general formula (1) may have a hydrocarbon group having 1 to 8 carbon atoms having a straight chain, a branched chain, or an aliphatic ring, or a hydrocarbon group, It represents an aromatic hydrocarbon group having 6 to 8 carbon atoms.
  • Q1 is preferably a linear hydrocarbon group from the viewpoint of imparting flexibility to the polymer chain, and preferably an alicyclic hydrocarbon group or an aromatic hydrocarbon group from the viewpoint of enhancing heat resistance.
  • Q 1 examples include a hydrocarbon group in which the Si atom and the S atom of the compound exemplified as the thiol group-containing trialkoxysilanes a1 are bonded, or an aromatic hydrocarbon group.
  • Q 2 is a hydrocarbon group having 1 to 8 carbon atoms having a single bond, a straight chain, or a branched chain, an oxygen-containing hydrocarbon group in which one or more of the carbon atoms is substituted with oxygen, or a carbonyl group .
  • Q2 is preferably a straight-chain hydrocarbon group from the viewpoint of imparting flexibility to the polymer chain, and is preferably a single bond, an alicyclic hydrocarbon group, or an aromatic hydrocarbon group from the viewpoint of improving heat resistance.
  • X is a carbon-carbon bond, or an aliphatic ring having 4 to 10 carbon atoms, an aromatic ring having 6 to 10 carbon atoms, or a heterocyclic ring in which some of the carbon atoms constituting these are substituted with oxygen or sulfur It is a ring, and one or more of the hydrogen atoms attached thereto may be substituted with a hydrocarbon group.
  • X is preferably a carbon-carbon bond from the viewpoint of imparting flexibility to the polymer chain, and preferably a single bond, an alicyclic hydrocarbon group, or an aromatic hydrocarbon group from the viewpoint of improving heat resistance.
  • X is an aromatic hydrocarbon group, it is preferable from the viewpoint of being able to improve heat resistance and suppress discoloration under high temperature conditions.
  • Q2 and X include reactive residues of compounds exemplified as dicarboxylic anhydride C, excluding dicarboxylic anhydride groups.
  • the following chemical formulas show examples in which X is a heterocyclic ring in which a part of carbon atoms constituting an aliphatic or aromatic ring is substituted with oxygen or sulfur.
  • n is 1.0 ⁇ m ⁇ 2.0, and m is preferably 1 from the viewpoint of small steric hindrance and high reactivity of the dicarboxylic anhydride group.
  • m is 1.0 ⁇ m ⁇ 2.0 (that is, other than an integer)
  • a component (a1) having one thiol group and a component having two thiol groups are used in combination.
  • n is 1.4 ⁇ n ⁇ 1.6, and from the viewpoint of forming a more uniform three-dimensional structure, n is preferably 1.5.
  • the reason why n is assumed to be other than 1.5 is to allow a small amount of not only trialkoxysilane but also dialkoxysilane and tetraalkoxysilane to be mixed in the raw material.
  • Q 3 in the general formula (2) may have a hydrocarbon group with 1 to 8 carbon atoms having a straight chain, a branched chain, or an aliphatic ring, or a hydrocarbon group with 6 carbon atoms. represents an aromatic hydrocarbon group of ⁇ 8.
  • Q3 is preferably a short-chain or branched-chain hydrocarbon group or an aromatic hydrocarbon group from the viewpoint of suppressing crystallization and improving heat resistance.
  • Specific examples of Q3 include a hydrocarbon group or an aromatic hydrocarbon group that bonds to the Si atom of the compounds exemplified as the trialkoxysilanes a2.
  • the molar ratio of the structural units represented by the general formula (2) is preferably 0.1 or more and 0.7 or less, more preferably 0.2 or more and 0.7 or less.
  • the resulting polyimide chain is appropriately crosslinked, and the effect of improving physical properties is sufficient.
  • the number of acid anhydride groups (number of functional groups) per molecule of the silsesquioxane compound A is preferably 2-10, more preferably 2.5-6. When the number of functional groups is within this range, the resulting polyimide chain is moderately crosslinked, so that the effect of improving physical properties is sufficient.
  • the molecular weight of the silsesquioxane compound A is preferably 400-5000, more preferably 600-3000. When the molecular weight is within this range, the resulting polyimide is less likely to become non-uniform, and a uniform crosslinked structure is likely to be obtained.
  • silsesquioxane compound A having an acid anhydride group Since the silsesquioxane compound A has an acid anhydride group, it can be directly reacted with a compound having an amino group or a hydroxyl group, and since it produces a carboxyl group by reaction with water, it can be used with a wider variety of compounds. can be reacted.
  • a silsesquioxane compound having two or more acid anhydride groups serves as a monomer component of polyimide
  • a silsesquioxane compound having more than two acid anhydride groups serves as a copolymerization component to form a crosslinked structure in polyimide.
  • polyimide in general, there is a trade-off relationship between practical properties such as heat resistance and mechanical properties, and colorlessness (transparency or whiteness). In particular, toughness was improved while maintaining other properties. It would be desirable to have a method for making polyimide films.
  • a polyimide film can be obtained, for example, by including a step of synthesizing a polyamic acid solution, a step of forming a film from the polyamic acid solution, and a step of imidating the polyamic acid.
  • Carboxylic acids and diamines can be used as the polyamic acid monomer component to be combined with the silsesquioxane compound A having an acid anhydride group.
  • the carboxylic acids are not particularly limited, and include alicyclic tetracarboxylic anhydrides and aromatic tetracarboxylic anhydrides, tricarboxylic acids, and dicarboxylic acids that are commonly used in polyimide synthesis, polyamideimide synthesis, and polyamide synthesis. can be used.
  • Aromatics are preferred from the viewpoint of heat resistance, and alicyclics are preferred from the viewpoint of transparency. These may be used alone or in combination of two or more.
  • the alicyclic tetracarboxylic anhydrides used in the present invention include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, and 1,2,3,4-cyclohexane.
  • Tetracarboxylic acid 1,2,4,5-cyclohexanetetracarboxylic acid, 3,3′,4,4′-bicyclohexyltetracarboxylic acid, bicyclo[2,2,1]heptane-2,3,5,6 -tetracarboxylic acid, bicyclo[2,2,2]octane-2,3,5,6-tetracarboxylic acid, bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetra carboxylic acids, tetrahydroanthracene-2,3,6,7-tetracarboxylic acid, tetradecahydro-1,4:5,8:9,10-trimethanoanthracene-2,3,6,7-tetracarboxylic acid, Decahydronaphthalene-2,3,6,7-tetracarboxylic acid, Decahydro-1,4:5,8-dimethanonaphthalene-2,3,6,7-tetracar
  • dianhydrides having two acid anhydride structures are preferred, particularly 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclohexanetetracarboxylic acid Acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride is preferred, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic An acid dianhydride is more preferred, and 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride is even more preferred. In addition, these may be used independently and may use 2 or more types together.
  • aromatic tetracarboxylic anhydrides used in the present invention include 4,4′-(2,2-hexafluoroisopropylidene)diphthalic acid, 4,4′-oxydiphthalic acid, bis(1,3-dioxo-1,3 -dihydro-2-benzofuran-5-carboxylic acid) 1,4-phenylene, bis(1,3-dioxo-1,3-dihydro-2-benzofuran-5-yl)benzene-1,4-dicarboxylate, 4,4′-[4,4′-(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl)bis(benzene-1,4-diyloxy)]dibenzene-1,2-dicarbon acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, 4,4′-[(3-oxo-1,3-dihydro-2-benzofuran-1,1-
  • Tricarboxylic acids include aromatic tricarboxylic acids such as trimellitic acid, 1,2,5-naphthalenetricarboxylic acid, diphenylether-3,3′,4′-tricarboxylic acid, and diphenylsulfone-3,3′,4′-tricarboxylic acid.
  • acids or hydrogenated products of the above aromatic tricarboxylic acids such as hexahydrotrimellitic acid; Glycol bistrimellitate, and their monoanhydrides and esters.
  • monoanhydrides having one acid anhydride structure are preferred, and trimellitic anhydride and hexahydrotrimellitic anhydride are particularly preferred. In addition, these may be used individually and may be used in combination.
  • Dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid, or the above aromatic dicarboxylic acids such as 1,6-cyclohexanedicarboxylic acid.
  • aromatic dicarboxylic acids and hydrogenated products thereof are preferred, and terephthalic acid, 1,6-cyclohexanedicarboxylic acid, and 4,4'-oxydibenzenecarboxylic acid are particularly preferred.
  • dicarboxylic acids may be used alone or in combination.
  • the diamines in the present invention are not particularly limited, and aromatic diamines, aliphatic diamines, and alicyclic diamines that are commonly used in polyimide synthesis, polyamideimide synthesis, and polyamide synthesis can be used. From the viewpoint of heat resistance, aromatic diamines are preferred, and from the viewpoint of transparency, alicyclic diamines are preferred. Diamines may be used alone or in combination of two or more.
  • aromatic diamines examples include 2,2′-dimethyl-4,4′-diaminobiphenyl, 1,4-bis[2-(4-aminophenyl)-2-propyl]benzene, 1,4-bis (4-amino-2-trifluoromethylphenoxy)benzene, 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl, 4,4′-bis(4-aminophenoxy)biphenyl, 4,4′- Bis(3-aminophenoxy)biphenyl, bis[4-(3-aminophenoxy)phenyl]ketone, bis[4-(3-aminophenoxy)phenyl]sulfide, bis[4-(3-aminophenoxy)phenyl]sulfone , 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,
  • some or all of the hydrogen atoms on the aromatic ring of the aromatic diamine may be substituted with a halogen atom, an alkyl or alkoxyl group having 1 to 3 carbon atoms, or a cyano group, and Some or all of the hydrogen atoms in the alkyl or alkoxyl groups of 1 to 3 may be substituted with halogen atoms.
  • Alicyclic diamines include, for example, 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, 1,4-diamino-2-n-propyl cyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, 1,4-diamino-2-tert-butylcyclohexane, 4,4′-methylenebis(2,6-dimethylcyclohexylamine), 9,10-bis(4-aminophenyl)adenine, 2,4-bis(4- aminophenyl)cyclobut
  • the molar content of the silsesquioxane compound A is 0.01 mol% or more, the effect of complexing is obtained, and when the molar content is 10.0 mol% or less, the gel of the polyamic acid solution This makes it difficult to cause quenching, and it is easy to obtain stability over time. Therefore, more preferably, the molar content is 0.1 to 5.0 mol %.
  • the polyamic acid solution may further contain optional components such as adhesion imparting agents, surfactants, leveling agents, antioxidants, UV absorbers, chemical imidizing agents, and colorants. In addition, it may further contain a filler or the like that can be contained in the polyimide film.
  • a uniform green film with a thickness of 1 to 100 ⁇ m can be obtained by casting a polyamic acid solution on a substrate and heating to volatilize the solvent.
  • Substrates used for forming a film by such a casting method include polymer films, glass plates, silicon rubber plates, metal plates, and the like.
  • polyethylene terephthalate film A4100 manufactured by Toyobo Co., Ltd.
  • a method of adjusting the concentration of the polyamic acid solution, a method of adjusting the gap between the coaters, and a method of repeatedly casting to obtain the desired film thickness are adopted.
  • a substrate having a desired film thickness can be produced.
  • the obtained green film is thermally imidized to obtain a polyimide film.
  • the polyimide film may have a single layer structure, or may have a laminated structure of two or more layers. From the viewpoint of the physical strength of the polyimide film and the ease of peeling from the inorganic substrate, it preferably has a lamination structure of two or more layers, and may have a lamination structure of three or more layers.
  • the physical properties (yellowness index, total light transmittance, haze, etc.) in the case where the polyimide film has a laminate structure of two or more layers refer to the values of the entire polyimide film unless otherwise specified.
  • the thickness of the polyimide film is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more.
  • the upper limit of the thickness of the polyimide film is not particularly limited, it is preferably 200 ⁇ m or less, more preferably 90 ⁇ m or less, and still more preferably 50 ⁇ m or less for use as a flexible electronic device. If it is too thin, it will be difficult to produce a film and transport it, and if it is too thick, it will be difficult to transport it with a roll.
  • the total light transmittance of the polyimide film in the present invention is preferably 75% or more, more preferably 85% or more, even more preferably 87% or more, and still more preferably 88% or more.
  • the upper limit of the total light transmittance of the polyimide film is not particularly limited, it is preferably 98% or less, more preferably 97% or less for use as a flexible electronic device.
  • the haze of the polyimide film in the present invention is preferably 1.0 or less, more preferably 0.8 or less, even more preferably 0.5 or less, and still more preferably 0.3 or less.
  • the yellowness index of the polyimide film in the present invention (hereinafter also referred to as "yellow index" or “YI”) is preferably 20 or less, more preferably 15 or less, still more preferably 10 or less, still more preferably 5 or less.
  • the lower limit of the yellowness index of the polyimide film is not particularly limited, but in order to use it as a flexible electronic device, it is preferably 0.1 or more, more preferably 0.2 or more, and still more preferably 0.3 or more. is.
  • the thickness direction retardation (Rth) of the polyimide film in the present invention is preferably 500 nm or less, more preferably 300 nm or less, still more preferably 200 nm or less, and still more preferably 100 nm or less.
  • the lower limit of Rth of the polyimide film is not particularly limited, it is preferably 0.1 nm or more, more preferably 0.5 nm or more for use as a flexible electronic device.
  • the highly colorless and transparent polyimide film exhibiting the coefficient of linear expansion (CTE) of the present invention can also be realized by stretching in the process of forming the polyimide film.
  • a polyimide solution is applied to a polyimide film-producing support, dried to form a polyimide film containing a solvent of 1 to 50% by mass, and further on a polyimide film-producing support or peeled off from the support.
  • 1.5 to 4.0 times in the MD direction and 1.4 to 3.0 times in the TD direction in the process of drying the polyimide film containing 1 to 50% by mass of solvent at a high temperature.
  • thermoplastic polymer film is used as a support for producing a polyimide film, and after stretching the thermoplastic polymer film and the polyimide film at the same time, the stretched polyimide film is peeled off from the thermoplastic polymer film.
  • the average coefficient of linear expansion (CTE) between 50°C and 200°C of the polyimide film is preferably 40 ppm/K or less. More preferably, it is 35 ppm/K or less. Moreover, it is preferably -10 ppm/K or more, more preferably -5 ppm/K or more.
  • CTE is within the above range, the difference in coefficient of linear expansion with a general support (inorganic substrate) can be kept small, and the polyimide film and the inorganic substrate are peeled off even when subjected to a process of applying heat. You can avoid warping the whole body.
  • CTE is a factor representing reversible expansion and contraction with respect to temperature.
  • the method for measuring the CTE of the polyimide film is according to the method described in Examples.
  • the polyimide film may contain a filler.
  • the filler is not particularly limited, and includes silica, carbon, ceramics, etc. Among them, silica is preferable. These fillers may be used alone or in combination of two or more. Addition of the filler imparts projections to the surface of the polyimide film, thereby increasing the slipperiness of the polyimide film surface. Also, by adding a filler, the CTE and Rth of the polyimide film can be kept low.
  • the average particle size of the filler is preferably 1 nm or more, more preferably 5 nm or more. Also, it is preferably 1 ⁇ m or less, more preferably 500 nm or less, and still more preferably 100 nm or less.
  • the content of the filler in the polyimide film is preferably adjusted according to the average particle size of the filler.
  • the particle size of the filler is 30 nm or more, it is preferably 0.01 to 5% by mass, more preferably 0.01 to 3% by mass, still more preferably 0.01 to 2% by mass, and particularly It is preferably 0.01 to 1% by mass.
  • the average particle diameter is less than 30 nm, it is preferably 0.01 to 50% by mass, more preferably 0.01 to 40% by mass, still more preferably 0.01 to 30% by mass, Particularly preferably, it is 0.01 to 20% by mass.
  • the method of adding a filler in a polyimide film is not particularly limited, but when preparing the above-mentioned polyamic acid (polyimide precursor) solution, or after preparation, a method of adding powder, a form of filler / solvent (slurry ), and the method of adding in the form of a slurry is particularly preferred.
  • the slurry is not particularly limited, but a slurry in which silica having an average particle size of 10 nm is dispersed in N,N-dimethylacetamide (DMAC) at a concentration of 20% by mass (for example, "Snowtex (registered trademark) DMAC manufactured by Nissan Chemical Industries, Ltd.
  • DMAC N,N-dimethylacetamide
  • the polyimide film may contain a coloring agent.
  • the YI of the film can be reduced.
  • the coloring agent include organic pigments, inorganic pigments, and dyes. Organic pigments and inorganic pigments are preferred in order to improve the heat resistance, reliability, and light resistance of the colored film.
  • organic pigments include diketopyrrolopyrrole pigments; azo pigments such as azo, disazo and polyazo; phthalocyanine pigments such as copper phthalocyanine, halogenated copper phthalocyanine, and metal-free phthalocyanine; Anthraquinone pigments such as pyrimidine, flavanthrone, anthanthrone, indanthrone, pyranthrone, and violanthrone; quinacridone pigments; dioxazine pigments; perinone pigments; perylene pigments; quinophthalone-based pigments; threne-based pigments; and metal complex-based pigments.
  • diketopyrrolopyrrole pigments such as azo, disazo and polyazo
  • phthalocyanine pigments such as copper phthalocyanine, halogenated copper phthalocyanine, and metal-free phthalocyanine
  • Anthraquinone pigments such as pyrimidine, flavan
  • inorganic pigments include titanium oxide, zinc white, zinc sulfide, lead white, calcium carbonate, precipitated barium sulfate, white carbon, alumina white, kaolin clay, talc, bentonite, black iron oxide, cadmium red, red iron oxide, molybdenum.
  • Dyes include, for example, azo dyes, anthraquinone dyes, condensed polycyclic aromatic carbonyl dyes, indigoid dyes, carbonium dyes, phthalocyanine dyes, methine dyes, and polymethine dyes.
  • the tensile breaking strength of the polyimide film is preferably 60 MPa or more, more preferably 120 MPa or more, and still more preferably 160 MPa or more. Although the upper limit of the tensile strength at break is not particularly limited, it is practically less than about 1000 MPa. When the tensile strength at break is 60 MPa or more, it is possible to prevent the polyimide film from breaking when it is peeled off from the inorganic substrate.
  • the method for measuring the tensile strength at break of the polyimide film is according to the method described in Examples.
  • the tensile elongation at break of the polyimide film is preferably 1% or more, more preferably 5% or more, and still more preferably 10% or more. When the tensile elongation at break is 5% or more, the handleability is excellent.
  • the method for measuring the tensile elongation at break of the polyimide film is according to the method described in Examples.
  • the tensile modulus of the polyimide film is preferably 2 GPa or more, more preferably 3 GPa or more, and still more preferably 4 GPa or more.
  • the tensile modulus is preferably 20 GPa or less, more preferably 12 GPa or less, and even more preferably 10 GPa or less.
  • the polyimide film can be used as a flexible film.
  • the method for measuring the tensile modulus of the polyimide film is according to the method described in Examples.
  • the polyimide film is preferably obtained in the form of being wound as a long polyimide film having a width of 300 mm or more and a length of 10 m or more at the time of its production. Morphology is more preferred. When the polyimide film is wound into a roll, the polyimide film wound into a roll can be easily transported.
  • a lubricant particles having a particle diameter of about 10 to 1000 nm is added and contained in the polyimide film in an amount of about 0.03 to 3% by mass. It is preferable to provide the surface of the polyimide film with fine irregularities to ensure slipperiness.
  • the CTE difference between the first polyimide film layer in contact with the inorganic substrate and the second polyimide film layer adjacent to the first polyimide film without contacting the inorganic substrate is preferably 40 ppm/K or less. , more preferably 30 ppm/K or less, and still more preferably 15 ppm/K or less.
  • the thickest layer of the second polyimide film has a thickness within the above range.
  • the polyimide film has a symmetrical structure in the film thickness direction because warping is less likely to occur.
  • the first polyimide film layer in contact with the inorganic substrate and the second polyimide film layer adjacent to the first polyimide film layer (hereinafter simply referred to as "second The thickness of the mixture at the interface with the second polyimide film layer)) is less than the sum of the thickness of one layer of the first polyimide film layer and the thickness of one layer of the second polyimide film layer.
  • second The thickness of the mixture at the interface with the second polyimide film layer is less than the sum of the thickness of one layer of the first polyimide film layer and the thickness of one layer of the second polyimide film layer.
  • the lower limit is not particularly limited, but industrially, there is no problem if it is 10 nm or more, and it may be 20 nm or more.
  • Means for forming a layer with less mixing is not particularly limited, but rather than simultaneously producing two layers of the first polyimide film layer and the second polyimide film layer by solution casting, the first polyimide film layer or It is preferable to fabricate any one layer of the second polyimide film layer and fabricate the next layer after passing through the heating step. It includes both the intermediate stage and the completed heating process. It is better to make the next layer after the heating process is completed, but the finished film surface often has already lost reactivity, and since there are few functional groups on the surface, it is difficult to separate the two layers. Poor adhesive strength may cause problems in practical use. Therefore, even if there is little mixing, it is desirable to have an interface where the mixing occurs at a thickness of 10 nm or more.
  • simultaneous coating with a T-die capable of simultaneous ejection of two layers, sequential coating in which one layer is coated and then the next layer is coated, and one layer is coated and then dried.
  • various existing coating methods and multi-layering techniques can be appropriately incorporated.
  • ⁇ Thickness measurement of polyimide film> The thickness of the film was measured using a micrometer (Millitron 1245D manufactured by Fineruff Co.). In addition, the same measurement was performed 3 times and the arithmetic mean value was adopted.
  • Total light transmittance The total light transmittance (TT) of the film was measured using a Hazemeter (NDH5000, manufactured by Nippon Denshoku Co., Ltd.). A D65 lamp was used as the light source. In addition, the same measurement was performed 3 times and the arithmetic mean value was adopted.
  • ⁇ Haze> The haze of the film was measured using a Hazemeter (NDH5000, manufactured by Nippon Denshoku Co., Ltd.). A D65 lamp was used as the light source. In addition, the same measurement was performed 3 times and the arithmetic mean value was adopted.
  • YI 100 ⁇ (1.28X ⁇ 1.06Z)/Y ⁇ Glass transition temperature (Tg), coefficient of linear expansion (CTE)> It was measured using a TMA (TMA4000S, BRUKER AXIS). The film was cut into strips of width 15 mm ⁇ length 2 mm, and set in the device with a chuck distance of 10 mm and a load of 5 gf. In an argon atmosphere, the temperature was raised to 250°C at a rate of 20°C/min, and then lowered to 30°C at a rate of 5°C/min. After that, the temperature was raised at a rate of 10° C./min up to a temperature (Td1-20° C.) at which thermal decomposition does not occur. The CTE was calculated from the slope in the 200° C. to 50° C. interval during the temperature decrease, and the inflection point during the second temperature increase was defined as Tg.
  • Example 1 Synthesis of silsesquioxane SQ1 having an acid anhydride group
  • thiol group-containing silsesquioxane solution manufactured by Arakawa Chemical Industries, Ltd., Compoceran SQ-109
  • 10 g thiol group amount 16.7 mmol
  • norbornenic anhydride 2.74 g (16.7 mmol) were placed in a reaction vessel.
  • ultraviolet light spot Cure SP-11, manufactured by USHIO
  • NMR and IR measurements confirmed that the thiol group and norbornene were reacting.
  • the resulting solution was filtered through a PTFE filter (pore size 10 ⁇ m) and then used for synthesizing a polyamic acid solution described later (the same applies to SQ3 to SQ9).
  • the molar ratio and the average number of thiol groups per molecule were calculated as follows.
  • the molar ratio of methyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane was calculated from the integral ratio of .
  • FIGS. 1 HNMR CDCl 3
  • SQ-109 PGMEA solution in FIG. 2, PGMEA in FIG. 2, norbornenic anhydride in FIG. 3, and reaction mixture after reaction in FIG. 4
  • the peaks ( ⁇ 6.3, etc.) derived from the double bond of norbornenic anhydride disappeared, suggesting that the reaction between the thiol group and the double bond proceeded.
  • Example 2 Synthesis of silsesquioxane SQ2 having an acid anhydride group
  • Thiol group-containing silsesquioxane solution manufactured by Arakawa Chemical Industries, Ltd., Compoceran SQ-109
  • 10 g thiol group amount 16.7 mmol
  • norbornenic anhydride 2.74 g (16.7 mmol)
  • iron (III) chloride 1 mg was put into a reaction vessel and stirred for 10 minutes to obtain silsesquioxane SQ2 having an acid anhydride group as a pale yellow solution (yellow coloration is considered to be derived from iron chloride).
  • NMR and IR measurements confirmed that the thiol group and norbornene were reacting.
  • FIG. 5 shows the 1 HNMR (CDCl 3 ) spectrum of the reaction mixture after the reaction as a result of NMR measurement.
  • the peaks ( ⁇ 6.3, etc.) derived from the double bond of norbornenic anhydride disappeared, suggesting that the reaction between the thiol group and the double bond proceeded.
  • Example 3 Synthesis of silsesquioxane SQ3 having an acid anhydride group
  • 20 g of the solution of the thiol group-containing silsesquioxane compound 1 obtained in Synthesis Example 1 (thiol group amount 97.0 mmol), 15.9 g (97.0 mmol) of norbornenic anhydride, and 10.0 g of PGMEA were placed in a reaction vessel.
  • ultraviolet light spot Cure SP-11, manufactured by USHIO
  • NMR and IR measurements confirmed that the thiol group and norbornene were reacting.
  • Example 4 Synthesis of silsesquioxane SQ4 having an acid anhydride group
  • 20 g of the solution of the thiol group-containing silsesquioxane compound 2 obtained in Synthesis Example 2 (thiol group amount 77.9 mmol), norbornenic anhydride 12.8 g (77.9 mmol), and PGMEA 10.0 g were placed in a reaction vessel.
  • ultraviolet light spot Cure SP-11, manufactured by USHIO
  • NMR and IR measurements confirmed that the thiol group and norbornene were reacting.
  • Example 5 Synthesis of silsesquioxane SQ5 having an acid anhydride group
  • 20 g of the solution of the thiol group-containing silsesquioxane compound 3 obtained in Synthesis Example 3 (thiol group amount 54.5 mmol), 8.95 g (54.5 mmol) of 5-norbornene-2,3-dicarboxylic anhydride, 10.0 g of PGMEA was placed in a reaction vessel and irradiated with ultraviolet light (Spot Cure SP-11, manufactured by USHIO) for 20 minutes while stirring to obtain silsesquioxane SQ5 having an acid anhydride group as a colorless transparent solution.
  • Spot Cure SP-11 manufactured by USHIO
  • Example 6 Synthesis of silsesquioxane SQ6 having an acid anhydride group
  • a thiol group-containing trialkoxysilane solution manufactured by Arakawa Chemical Industries, Ltd., Compoceran SQ-109
  • 6 g thiol group amount 10.0 mmol
  • allylsuccinic anhydride 1.40 g (10.0 mmol) were placed in a reaction vessel,
  • UV light MAX-303, manufactured by Asahi Spectrosco Co., Ltd.
  • Example 7 Synthesis of silsesquioxane SQ7 having an acid anhydride group
  • Thiol group-containing trialkoxysilane solution manufactured by Arakawa Chemical Industries, Ltd., Compoceran SQ-109
  • 6 g thiol group amount 10.0 mmol
  • exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic acid 1.66 g (10.0 mmol) of the anhydride is placed in a reaction vessel and irradiated with ultraviolet light (MAX-303, manufactured by Asahi Spectrosco Co., Ltd.) for 20 minutes while stirring to form a colorless and transparent solution having an acid anhydride group.
  • Sesquioxane SQ7 was obtained.
  • NMR and IR measurements confirmed that the thiol group and exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride were reacted.
  • Example 8 Synthesis of silsesquioxane SQ8 having an acid anhydride group
  • Thiol group-containing trialkoxysilane solution Compoceran SQ-109, manufactured by Arakawa Chemical Industries, Ltd.
  • 3 g thiol group amount 5.0 mmol
  • 5,6-dihydro-1,4-dithiin-2,3-dicarboxylic anhydride 0.94 g (5.0 mmol) of the compound and ⁇ -butyrolactone (5 mL) were placed in a reaction vessel and irradiated with ultraviolet light (MAX-303, manufactured by Asahi Spectrosco Co., Ltd.) for 20 minutes while stirring to give an acid as a yellow transparent solution.
  • MAX-303 ultraviolet light
  • Example 9 Synthesis of silsesquioxane SQ9 having an acid anhydride group
  • a thiol group-containing trialkoxysilane solution (Compoceran SQ-109, manufactured by Arakawa Chemical Industries, Ltd.) 6 g (thiol group amount 10.0 mmol) was placed in a reaction vessel, and 2.10 g of trimellitic anhydride chloride (10.0 mmol) was added with stirring. 0 mmol) was added slowly.
  • silsesquioxane SQ9 having an acid anhydride group was obtained as a colorless transparent solution. NMR and IR measurements confirmed that the thiol group and the acid chloride group were reacting.
  • the molar ratio of SQ1 is a value calculated based on the divalent acid anhydride group. Specifically, the total number of moles of the unit structure derived from the silsesquioxane compound A is It is calculated as a number divided by the total number of groups and doubled (the same applies to the following molar ratios).
  • the polyamic acid solutions obtained in the above production examples and comparative production examples were made into films by the following methods, and their optical properties, thermal properties, and mechanical properties were measured.
  • Polyamic acid solution A was applied onto a polyester film (A4100, Toyobo product) using a casting applicator and heated at 100° C. for 18 minutes in a nitrogen atmosphere.
  • the resulting green film was cut with a cutter, peeled off from the polyester film, and fixed to a metal frame.
  • the temperature was increased stepwise at a rate of 10°C/min, and the temperature was increased by heating sequentially at 200°C x 10 minutes, 250°C x 10 minutes, 300°C x 10 minutes, and 350°C x 10 minutes. imidization was performed. After standing to cool, the polyimide film was obtained by removing from the metal frame.
  • a polyimide film was obtained in the same manner as in Production Example 1 except that polyamic acid solutions A1, B1, B4, B5, B6, C1, C2, C3, and D1 were used instead of polyamic acid solution A in Production Example 1. rice field. Table 1 shows the components used at that time and the evaluation results.
  • the polyimide films containing 1 mol % of SQ1 in the structure have the same composition except that they do not contain SQ1 (Comparative Production Example 1 , 2, 6, and 9), the total light transmittance, haze, yellow index, Tg, and CTE are substantially the same, and the tensile product is increased.
  • Production Examples 3a to 3e, Comparative Production Example 6, Comparative Production Example 7, and Comparative Production Example 8 have an improved tensile product compared to Comparative Production Example 6, but the Comparative Production Example 7.
  • Comparative Production Example 8 had a tensile product comparable to that of Comparative Production Example 6.
  • Production Example 3a, Comparative Production Example 7, and Comparative Production Example 8 are all polyimides containing silsesquioxane having the same acid anhydride group (norbornenic anhydride) in the structure, but were used in Production Example 3a.
  • SQ1 contains a thioether group between the acid anhydride group and the silsesquioxane structure
  • SQN1 and SQN2 used in Comparative Production Examples 7 and 8 do not contain a thioether group. It was suggested that copolymerization of silsesquioxanes containing thioether groups in the structure is useful for improving the tensile product.
  • Application example 1 First, the polyimide film obtained in Production Example 3a (PMDA/TFMB/SQ1) was cut into a rectangle of 360 mm ⁇ 460 mm.
  • UV/O 3 irradiation was performed for 3 minutes using a UV/O 3 irradiator (SKR1102N-03 manufactured by LAN Technical Co., Ltd.) for film surface treatment. At this time, the distance between the UV/O3 lamp and the film was 30 mm.
  • the glass substrate coated with the silane coupling agent is set on a roll laminator equipped with a silicone rubber roller. got wet.
  • the surface-treated surface of the polyimide film subjected to the surface treatment is superimposed so as to face the silane coupling agent-coated surface of the glass substrate, that is, the surface wetted with pure water, and the polyimide is sequentially applied from one side of the glass substrate with a rotating roll.
  • a temporary laminate was obtained by laminating the glass substrate and the polyimide film by applying pressure while extruding pure water between the film and the glass substrate.
  • the laminator used was a laminator with an effective roll width of 650 mm manufactured by MCK. It was 55% RH.
  • the resulting temporary laminate was heat-treated in a clean oven at 200°C for 10 minutes to obtain a laminate consisting of a polyimide film and a glass substrate.
  • a tungsten film (thickness: 75 nm) was formed on the polyimide film surface of the obtained laminate by the following steps, and a silicon oxide film (thickness: 150 nm) was laminated as an insulating film without being exposed to the atmosphere.
  • a silicon oxynitride film (thickness: 100 nm) serving as a base insulating film was formed by plasma CVD, and an amorphous silicon film (thickness: 54 nm) was laminated without being exposed to the atmosphere.
  • a TFT element was fabricated using the obtained amorphous silicon film.
  • an amorphous silicon thin film is patterned to form a silicon region of a predetermined shape, and then a gate insulating film is formed, a gate electrode is formed, an active region is doped to form a source region or a drain region, and an interlayer insulating film is formed.
  • formation of a source electrode and a drain electrode, and activation treatment were performed to fabricate an array of P-channel TFTs.
  • a UV-YAG laser is used to burn off the polyimide film part along the inside of the outer circumference of the TFT array by about 0.5 mm. got an array. The peeling was possible with very little force, and the peeling was possible without damaging the TFT. The resulting flexible TFT array was wound around a round bar of 5 mm in diameter without deterioration in performance and maintained good characteristics.
  • the polyimide film of the present invention has good mechanical properties while maintaining the same level of optical properties and thermal properties as compared to the case where the silsesquioxane compound is not contained. .
  • the polyimide film of the present invention has excellent optical properties, colorless transparency, excellent mechanical properties, and exhibits a relatively low CTE. After that, various electronic device processing is performed on the film, and finally the film is separated from the inorganic substrate, whereby a flexible electronic device can be produced.

Abstract

Provided is a silsesquioxane compound having a dicarboxylic anhydride group, the silsesquioxane compound being produced by reacting a thiol group in a condensation product B, which is a product of the condensation of a thiol-group-containing trialkoxysilane compound a1 represented by the general formula: R1Si(OR2)3 (wherein R1 represents an organic group having such a structure that at least one hydrogen atom in an aliphatic hydrocarbon group having 1 to 8 carbon atoms or the like is substituted by a thiol group; and R2's independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 8 carbon atoms or the like) with a trialkoxysilane compound a2 having no thiol group, with a reactive group comprising a vinyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group or an acid chloride group in a dicarboxylic anhydride C having the reactive group.

Description

シルセスキオキサン化合物及びその製造方法Silsesquioxane compound and method for producing the same
 本発明は、ジカルボン酸無水物基を有する、新規なシルセスキオキサン化合物及びその製造方法に関し、ポリイミドフィルムを製造するための原料等として有用である。 The present invention relates to a novel silsesquioxane compound having a dicarboxylic anhydride group and a method for producing the same, and is useful as a raw material for producing polyimide films.
 ポリイミドフィルムは優れた耐熱性、良好な機械特性を有し、なおかつフレキシブルな素材として電気および電子分野にて広く使用されている。しかしながら、一般のポリイミドフィルムは黄褐色に着色しているため、表示装置などの光透過が必要な部分に適用することはできない。  Polyimide film has excellent heat resistance and good mechanical properties, and is widely used in the electrical and electronic fields as a flexible material. However, since a general polyimide film is colored yellowish brown, it cannot be applied to parts such as display devices that require light transmission.
 一方で表示装置は薄型化、軽量化が進み、さらにフレキシブル化が求められてきている。そのため基板材料をガラス基板からフレキシブルな高分子フィルム基板に代えようという試みが進められている。しかし、着色しているポリイミドフィルムは、光線透過をON/OFFすることによって表示を行う液晶ディスプレイの基板材料としては使用できず、表示装置の駆動回路が搭載されるTAB,COFなどの周辺回路や、反射型表示方式ないし自発光型表示装置における背面側など、ごく一部にしか適用することができなかった。 On the other hand, display devices are becoming thinner and lighter, and there is a demand for greater flexibility. Therefore, attempts are being made to replace the substrate material from the glass substrate with a flexible polymer film substrate. However, the colored polyimide film cannot be used as a substrate material for a liquid crystal display that displays images by turning light transmission on and off. , the rear side of a reflective display system or a self-luminous display device.
 かかる背景から、無色透明のポリイミドフィルムの開発が進められている。ポリイミドフィルムをフレキシブル電子回路基板として用いる場合、無色透明性、低線膨張率(CTE)、低レタデーション(Rth)に加えて、折り曲げに対する耐性や回路形成時の高温条件下で機械強度を保持する必要があるため、高い弾性率、機械強度、および高いガラス転移温度(Tg)が求められる。 Against this background, the development of colorless and transparent polyimide films is underway. When polyimide film is used as a flexible electronic circuit board, in addition to colorless transparency, low linear expansion coefficient (CTE) and low retardation (Rth), it is necessary to maintain mechanical strength under bending resistance and high temperature conditions during circuit formation. Therefore, high elastic modulus, mechanical strength, and high glass transition temperature (Tg) are required.
 代表的な例として、フッ素化ポリイミド樹脂や半脂環式もしくは全脂環式ポリイミド樹脂などを用いた無色透明ポリイミドフィルムを開発する試みがある(特許文献1~3)。これらのフィルムは着色が少なく、かつ透明性を有しているが、着色しているポリイミドフィルムほどには機械強度があがらず、また工業的生産、ならびに高温に暴露される用途を想定した場合、熱分解ないし酸化反応などが生じるため必ずしも無色性、透明性を保持できるとは限らない。 As a representative example, there are attempts to develop colorless and transparent polyimide films using fluorinated polyimide resins, semi-alicyclic or fully alicyclic polyimide resins, etc. (Patent Documents 1 to 3). These films are less colored and have transparency, but their mechanical strength is not as high as that of colored polyimide films. Colorlessness and transparency cannot always be maintained due to thermal decomposition or oxidation reaction.
 この観点より、酸素含有量を規定した気体を噴きつけながら加熱処理する方法が提案されているが(特許文献4)、酸素濃度18%未満となる環境ではその製造コストが高く、工業的生産は極めて困難である。 From this point of view, a method of heat treatment while blowing a gas with a specified oxygen content has been proposed (Patent Document 4), but the production cost is high in an environment where the oxygen concentration is less than 18%, and industrial production is not possible. Extremely difficult.
 また、有機材料の特性を一層向上させる手段として、有機材料と無機材料とを複合化させることにより、無機材料の特性である高い耐熱性、耐薬品性、高い表面硬度などを付与させた、いわゆる有機-無機ハイブリッド化技術がある。例えば、透明ポリイミドとシリカナノ粒子を複合化することで、透明性を維持しつつCTEやRth、Tgを改善できることが知られている。しかし、シリカナノ粒子の混合量を増やすにつれてフィルムは堅脆くなり、機械強度が低下する課題がある。 In addition, as a means of further improving the properties of organic materials, composites of organic and inorganic materials are used to impart the properties of inorganic materials, such as high heat resistance, chemical resistance, and high surface hardness. There are organic-inorganic hybridization techniques. For example, it is known that CTE, Rth, and Tg can be improved while maintaining transparency by combining transparent polyimide and silica nanoparticles. However, there is a problem that as the amount of silica nanoparticles mixed increases, the film becomes more rigid and brittle, resulting in a decrease in mechanical strength.
 一方、RSiO3/2で表されるシルセスキオキサンは、Rに有機材料と反応しうる置換基を持たせることで、容易に有機-無機ハイブリッド硬化物を提供できるため、実用化検討が進められている(たとえば、特許文献5)。柔軟性のあるシルセスキオキサンをポリイミドと複合化することで耐熱性や加工性を高める試みがなされている。ポリイミドのイミド部とシルセスキオキサンの電荷移動相互作用により熱分解温度が向上することが知られている(非特許文献1)。 On the other hand, silsesquioxane represented by RSiO 3/2 can easily provide an organic-inorganic hybrid cured product by giving R a substituent that can react with an organic material. (For example, Patent Document 5). Attempts have been made to improve heat resistance and workability by combining flexible silsesquioxane with polyimide. It is known that the charge transfer interaction between the imide portion of polyimide and silsesquioxane increases the thermal decomposition temperature (Non-Patent Document 1).
特開平11-106508号公報JP-A-11-106508 特開2002-146021号公報Japanese Patent Application Laid-Open No. 2002-146021 特開2002-348374号公報JP-A-2002-348374 WO2008/146637号公報WO2008/146637 特許第3653976号公報Japanese Patent No. 3653976
 しかし、柔軟性のあるシルセスキオキサン構造がポリイミドの剛性を低下させるため、シルセスキオキサン複合ポリイミドは通常、比較的低い弾性率や低いTgを示すといった問題があった(非特許文献2)。 However, since the flexible silsesquioxane structure reduces the rigidity of the polyimide, silsesquioxane composite polyimides usually exhibit relatively low elastic modulus and low Tg (Non-Patent Document 2). .
 以上のように、低い線膨張係数と高い耐熱性を有し、かつ機械強度の高い無色透明のポリイミドフィルムの製造は非常に困難である。半脂環式もしくは全脂環式のポリイミドは、脂環式構造を有する単量体成分を増やすと、無色透明性は向上するが、機械強度が低下しフィルムとしての生産は難しくなる。一方、芳香族の単量体を導入すれば、靭性が上がり、フィルムの機械特性は改善されるが着色しやすくなり無色透明性は低下する。樹脂成分と屈折率が近いフィラー(無機成分)を導入することで耐熱性と無色透明性は改善され、さらに線膨張係数は下がり、加工適性は改善されるが、樹脂物性としては硬脆くなり、機械特性は低下する。 As described above, it is extremely difficult to produce a colorless and transparent polyimide film that has a low linear expansion coefficient, high heat resistance, and high mechanical strength. Semi-alicyclic or fully alicyclic polyimides are improved in colorless transparency by increasing the monomer component having an alicyclic structure, but the mechanical strength is lowered and production as a film becomes difficult. On the other hand, if an aromatic monomer is introduced, the toughness is increased and the mechanical properties of the film are improved, but the film tends to be colored and the colorless transparency is lowered. By introducing a filler (inorganic component) with a refractive index close to that of the resin component, heat resistance and colorless transparency are improved, and the linear expansion coefficient is lowered, improving workability, but the physical properties of the resin become hard and brittle. Mechanical properties are degraded.
 従って、耐熱性、機械特性などの実用特性と、無色性(透明性ないし白色性)はトレードオフの関係にあり、特に、他の主な特性を維持しながら靱性が改善されたポリイミドフィルムを製造する方法の出現が望まれていた。 Therefore, practical properties such as heat resistance, mechanical properties, and colorlessness (transparency or whiteness) are in a trade-off relationship. The emergence of a method to do so has been desired.
 そこで、本発明の目的は、他の主な特性を維持しながら靱性が改善されたポリイミドフィルムを製造するための原料等として有用である、新規なシルセスキオキサン化合物及びその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a novel silsesquioxane compound and a method for producing the same, which are useful as a raw material for producing a polyimide film having improved toughness while maintaining other main properties. That's what it is.
 本発明者らは上記課題を解決すべく鋭意研究した結果、チオール基との反応によりジカルボン酸無水物基を導入した、新規なシルセスキオキサン化合物により、上記目的が達成できることを見出し、本発明を完成するに至った。 As a result of intensive research to solve the above problems, the present inventors found that the above objects can be achieved by a novel silsesquioxane compound in which a dicarboxylic anhydride group is introduced by reaction with a thiol group. was completed.
 即ち、本発明には以下の内容が含まれる。 That is, the present invention includes the following contents.
 [1] ジカルボン酸無水物基を有するシルセスキオキサン化合物であって、
 一般式:RSi(ORで表されるチオール基含有トリアルコキシシラン類a1と、
 (式中、Rは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基の少なくとも1つの水素がチオール基に置換されている有機基を表し、Rは、相互に独立して、水素原子、炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表す。)
 チオール基を有しないトリアルコキシシラン類a2と、
の縮合物Bのチオール基と、
 ビニル基、アルケニル基、シクロアルケニル基、アルキニル基、および酸塩化物基から選択される少なくとも1種の反応性基を有するジカルボン酸無水物Cの前記反応性基と、
が反応してなるシルセスキオキサン化合物。
[1] A silsesquioxane compound having a dicarboxylic anhydride group,
thiol group-containing trialkoxysilanes a1 represented by the general formula: R 1 Si(OR 2 ) 3 ;
(Wherein, R 1 is an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms. represents an organic group substituted with a thiol group, R 2 is each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, Or represents an aromatic hydrocarbon group having 6 to 8 carbon atoms.)
trialkoxysilanes a2 having no thiol group;
a thiol group of the condensate B of
said reactive group of dicarboxylic anhydride C having at least one reactive group selected from vinyl group, alkenyl group, cycloalkenyl group, alkynyl group, and acid chloride group;
A silsesquioxane compound formed by the reaction of
 [2]下記の一般式(1)及び(2)で表される構造単位を有する、ジカルボン酸無水物基を有するシルセスキオキサン化合物。 [2] A silsesquioxane compound having a dicarboxylic anhydride group, which has structural units represented by the following general formulas (1) and (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (式中、Qは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表し、Qは単結合、炭素数1~8の炭化水素基、炭素数1~8の炭化水素基の炭素原子の1つ以上が酸素で置換されている有機基、またはカルボニル基であり、Xは、炭素-炭素結合であるか、又は炭素数4~10の脂肪族環、炭素数6~10の芳香族環、若しくはこれらを構成する炭素の一部が酸素又はイオウで置換された複素環であり、これらに結合する水素の1つ以上が炭化水素基で置換されていてもよく、1.0≦m≦2.0であり、1.4≦n≦1.6である。)
Figure JPOXMLDOC01-appb-C000005
(In the formula, Q 1 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms, and Q 2 is a single bond, a hydrocarbon group having 1 to 8 carbon atoms, an organic group in which one or more carbon atoms of the hydrocarbon group having 1 to 8 carbon atoms are substituted with oxygen, or a carbonyl group, and X is carbon- a carbon bond, or an aliphatic ring having 4 to 10 carbon atoms, an aromatic ring having 6 to 10 carbon atoms, or a heterocyclic ring in which some of the carbon atoms constituting these are substituted with oxygen or sulfur; One or more of the hydrogens bonded to may be substituted with a hydrocarbon group, and 1.0 ≤ m ≤ 2.0 and 1.4 ≤ n ≤ 1.6.)
Figure JPOXMLDOC01-appb-C000005
 (式中、Qは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表し、1.4≦n≦1.6である。)
 [3]前記トリアルコキシシラン類a2のモル比([a2のモル数]/[a1のモル数+a2のモル数])、又は一般式(2)で表される構造単位のモル比([構造単位(2)]/[構造単位(1)+構造単位(2)])が、0.1以上0.7以下である、[1]又は[2]に記載のシルセスキオキサン化合物。
(Wherein, Q 3 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms, and 1.4 ≤ n ≤ 1.6.)
[3] The molar ratio of the trialkoxysilanes a2 ([moles of a2]/[moles of a1+moles of a2]), or the molar ratio of the structural units represented by the general formula (2) ([structural The silsesquioxane compound according to [1] or [2], wherein unit (2)]/[structural unit (1)+structural unit (2)]) is 0.1 or more and 0.7 or less.
 [4]前記ジカルボン酸無水物Cが、下記から選択される化学式で表される化合物である、[1]又は[3]に記載のシルセスキオキサン化合物。 [4] The silsesquioxane compound according to [1] or [3], wherein the dicarboxylic anhydride C is a compound represented by a chemical formula selected from the following.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 (式中、Rxは、炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表す。)
 [5]以下の工程を順に含む、ジカルボン酸無水物基を有するシルセスキオキサン化合物の製造方法。
(Wherein, Rx represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms.)
[5] A method for producing a silsesquioxane compound having a dicarboxylic anhydride group, comprising the following steps in order.
 一般式:RSi(ORで表されるチオール基含有トリアルコキシシラン類a1と、
 (式中、Rは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基の少なくとも1つの水素がチオール基に置換されている有機基を表し、Rは、相互に独立して、水素原子、炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表す。)
チオール基を有しないトリアルコキシシラン類a2と、水とを、酸性触媒を用いて加水分解反応させ反応混合物xを得る第1工程、
 前記反応混合物xから前記酸性触媒を除去し、反応混合物yを得る第2工程、
 塩基性触媒を含む極性溶剤と前記反応混合物yを混合して縮合させることによりチオール基を有する縮合物Bを得る第3工程、及び
 前記縮合物Bと、ビニル基、アルケニル基、シクロアルケニル基、アルキニル基、および酸塩化物基から選択される少なくとも1種の反応性基を有するジカルボン酸無水物Cと、を反応させる第4工程。
thiol group-containing trialkoxysilanes a1 represented by the general formula: R 1 Si(OR 2 ) 3 ;
(Wherein, R 1 is an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms. represents an organic group substituted with a thiol group, R 2 is each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, Or represents an aromatic hydrocarbon group having 6 to 8 carbon atoms.)
A first step of hydrolyzing a trialkoxysilane a2 having no thiol group and water using an acidic catalyst to obtain a reaction mixture x;
a second step of removing the acidic catalyst from the reaction mixture x to obtain a reaction mixture y;
A third step of obtaining a condensate B having a thiol group by mixing and condensing a polar solvent containing a basic catalyst and the reaction mixture y, and the condensate B, a vinyl group, an alkenyl group, a cycloalkenyl group, A fourth step of reacting with a dicarboxylic anhydride C having at least one reactive group selected from an alkynyl group and an acid chloride group.
 本発明によると、他の主な特性を維持しながら靱性が改善されたポリイミドフィルムを製造するための原料等として有用である、新規なシルセスキオキサン化合物及びその製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a novel silsesquioxane compound and a method for producing the same, which are useful as a raw material for producing a polyimide film having improved toughness while maintaining other main properties. .
実施例1で使用したSQ109(PGMEA溶液)のH NMR(CDCl)スペクトルを示す図である。1 is a 1 H NMR (CDCl 3 ) spectrum of SQ109 (PGMEA solution) used in Example 1. FIG. PGMEAのH NMR(CDCl)スペクトルを示す図である。なお、δ=2.2は器具洗浄用アセトン由来のピークである。FIG. 1 shows a 1 H NMR (CDCl 3 ) spectrum of PGMEA; Note that δ=2.2 is a peak derived from acetone for washing instruments. 実施例1で使用したノルボルネン酸無水物のH NMR(CDCl)スペクトルを示す図である。なお、δ=2.2は器具洗浄用アセトン由来のピークである。1 is a 1 H NMR (CDCl 3 ) spectrum of norbornenic anhydride used in Example 1. FIG. Note that δ=2.2 is a peak derived from acetone for washing instruments. 実施例1における反応後の反応混合物のH NMR(CDCl)スペクトルを示す図である。1 is a 1 H NMR (CDCl 3 ) spectrum of a reaction mixture after reaction in Example 1. FIG. 実施例2で得られた酸無水物基を有するシルセスキオキサンSQ2のH NMR(CDCl)スペクトルを示す図である。1 is a 1 H NMR (CDCl 3 ) spectrum of silsesquioxane SQ2 having an acid anhydride group obtained in Example 2. FIG. 実施例3で得られた酸無水物基を有するシルセスキオキサンSQ3のH NMR(DMSO-d)スペクトルを示す図である。1 is a 1 H NMR (DMSO-d 6 ) spectrum of silsesquioxane SQ3 having an acid anhydride group obtained in Example 3. FIG. 実施例4で得られた酸無水物基を有するシルセスキオキサンSQ4のH NMR(DMSO-d)スペクトルを示す図である。1 is a 1 H NMR (DMSO-d 6 ) spectrum of silsesquioxane SQ4 having an acid anhydride group obtained in Example 4. FIG. 実施例5で得られた酸無水物基を有するシルセスキオキサンSQ5のH NMR(DMSO-d)スペクトルを示す図である。1 is a 1 H NMR (DMSO-d 6 ) spectrum of silsesquioxane SQ5 having an acid anhydride group obtained in Example 5. FIG. 実施例6で得られた酸無水物基を有するシルセスキオキサンSQ6のH NMR(DMSO-d)スペクトルを示す図である。1 is a 1 H NMR (DMSO-d 6 ) spectrum of silsesquioxane SQ6 having an acid anhydride group obtained in Example 6. FIG. 実施例7で得られた酸無水物基を有するシルセスキオキサンSQ7のH NMR(DMSO-d)スペクトルを示す図である。1 is a 1 H NMR (DMSO-d 6 ) spectrum of silsesquioxane SQ7 having an acid anhydride group obtained in Example 7. FIG. 実施例8で得られた酸無水物基を有するシルセスキオキサンSQ8のH NMR(DMSO-d)スペクトルを示す図である。1 is a 1 H NMR (DMSO-d 6 ) spectrum of silsesquioxane SQ8 having an acid anhydride group obtained in Example 8. FIG.
 以下に本発明について詳細に説明するが、これらは本発明の一態様であり、本発明はこれらの内容に限定されない。 Although the present invention will be described in detail below, these are aspects of the present invention, and the present invention is not limited to these contents.
 <ジカルボン酸無水物基を有するシルセスキオキサン化合物A>
 新規なシルセスキオキサン化合物Aは、ジカルボン酸無水物基(以下、単に「酸無水物基」という場合がある)を有するシルセスキオキサン化合物であり、チオール基含有シルセスキオキサン化合物である縮合物Bのチオール基と、ビニル基、アルケニル基、シクロアルケニル基、アルキニル基、および酸塩化物基から選択される少なくとも1種の反応性基を有するジカルボン酸無水物Cの前記反応性基と、が反応してなるシルセスキオキサン化合物である。
<Silsesquioxane compound A having a dicarboxylic anhydride group>
The novel silsesquioxane compound A is a silsesquioxane compound having a dicarboxylic anhydride group (hereinafter sometimes simply referred to as an "acid anhydride group") and a thiol group-containing silsesquioxane compound. a thiol group of condensate B and said reactive group of dicarboxylic anhydride C having at least one reactive group selected from vinyl groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, and acid chloride groups; is a silsesquioxane compound formed by the reaction of
 縮合物Bは、一般式:RSi(ORで表されるチオール基含有トリアルコキシシラン類a1と、
 (式中、Rは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基の少なくとも1つの水素がチオール基に置換されている有機基を表し、Rは、相互に独立して、水素原子、炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表す。)
 チオール基を有しないトリアルコキシシラン類a2と、の縮合物Bである。
The condensate B is a thiol group-containing trialkoxysilane a1 represented by the general formula: R 1 Si(OR 2 ) 3 ,
(Wherein, R 1 is an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms. represents an organic group substituted with a thiol group, R 2 is each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, Or represents an aromatic hydrocarbon group having 6 to 8 carbon atoms.)
It is a condensate B of trialkoxysilanes a2 having no thiol group.
 ここで、チオール基含有トリアルコキシシラン類a1と、トリアルコキシシラン類a2とは、共に反応性のアルコキシ基が3つ存在するため、得られる物の構造が3次元的に複雑な構造となるので、その構造の全体を化学式で特定するのは現実的でない。このため、製法限定(プロダクトバイプロセス)の形式で物の発明を特定した。 Here, the thiol group-containing trialkoxysilanes a1 and the trialkoxysilanes a2 both have three reactive alkoxy groups, so the structure of the resulting product has a three-dimensionally complicated structure. , it is not realistic to specify the entire structure by a chemical formula. For this reason, the product invention was specified in the form of manufacturing method limitation (product-by-process).
 但し、2つの繰り返し単位として、部分的に構造を特定することが可能である。つまり、新規なシルセスキオキサン化合物Aは、下記の一般式(1)及び(2)で表される構造単位を有することが好ましい。 However, it is possible to partially specify the structure as two repeating units. That is, the novel silsesquioxane compound A preferably has structural units represented by the following general formulas (1) and (2).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (式中、Qは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表し、Qは単結合、炭素数1~8の炭化水素基、炭素数1~8の炭化水素基の炭素原子の1つ以上が酸素で置換されている有機基、またはカルボニル基であり、Xは、炭素-炭素結合であるか、又は炭素数4~10の脂肪族環、炭素数6~10の芳香族環、若しくはこれらを構成する炭素の一部が酸素又はイオウで置換された複素環であり、これらに結合する水素の1つ以上が炭化水素基で置換されていてもよく、1.0≦m≦2.0であり、1.4≦n≦1.6である。)
Figure JPOXMLDOC01-appb-C000008
(In the formula, Q 1 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms, and Q 2 is a single bond, a hydrocarbon group having 1 to 8 carbon atoms, an organic group in which one or more carbon atoms of the hydrocarbon group having 1 to 8 carbon atoms are substituted with oxygen, or a carbonyl group, and X is carbon- a carbon bond, or an aliphatic ring having 4 to 10 carbon atoms, an aromatic ring having 6 to 10 carbon atoms, or a heterocyclic ring in which some of the carbon atoms constituting these are substituted with oxygen or sulfur; One or more of the hydrogens bonded to may be substituted with a hydrocarbon group, and 1.0 ≤ m ≤ 2.0 and 1.4 ≤ n ≤ 1.6.)
Figure JPOXMLDOC01-appb-C000008
 (式中、Qは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表し、1.4≦n≦1.6である。)
 別の側面では、新規なシルセスキオキサン化合物Aは、上記の製法限定による物の特定に限られず、2つの繰り返し単位として、下記の一般式(1)及び(2)で表される構造単位を有するものとして特定することができる。
(Wherein, Q 3 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms, and 1.4 ≤ n ≤ 1.6.)
In another aspect, the novel silsesquioxane compound A is not limited to the product specified by the above manufacturing method limitation, and as two repeating units, structural units represented by the following general formulas (1) and (2) can be identified as having
 新規なシルセスキオキサン化合物Aは、例えば本発明の製造方法により好適に製造することができる。即ち、本発明の製造方法は、以下の工程を順に含む、ジカルボン酸無水物基を有するシルセスキオキサン化合物の製造方法である。 The novel silsesquioxane compound A can be suitably produced, for example, by the production method of the present invention. That is, the production method of the present invention is a method for producing a silsesquioxane compound having a dicarboxylic anhydride group, comprising the following steps in order.
 一般式:RSi(ORで表されるチオール基含有トリアルコキシシラン類a1と、
 (式中、Rは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基の少なくとも1つの水素がチオール基に置換されている有機基を表し、Rは、相互に独立して、水素原子、炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表す。)
チオール基を有しないトリアルコキシシラン類a2と、水とを、酸性触媒を用いて加水分解反応させ反応混合物xを得る第1工程、
 前記反応混合物xから前記酸性触媒を除去し、反応混合物yを得る第2工程、
 塩基性触媒を含む極性溶剤と前記反応混合物yを混合して縮合させることによりチオール基を有する縮合物Bを得る第3工程、及び
 前記縮合物Bと、ビニル基、アルケニル基、シクロアルケニル基、アルキニル基、および酸塩化物基から選択される少なくとも1種の反応性基を有するジカルボン酸無水物Cと、を反応させる第4工程。
thiol group-containing trialkoxysilanes a1 represented by the general formula: R 1 Si(OR 2 ) 3 ;
(Wherein, R 1 is an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms. represents an organic group substituted with a thiol group, R 2 is each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, Or represents an aromatic hydrocarbon group having 6 to 8 carbon atoms.)
A first step of hydrolyzing a trialkoxysilane a2 having no thiol group and water using an acidic catalyst to obtain a reaction mixture x;
a second step of removing the acidic catalyst from the reaction mixture x to obtain a reaction mixture y;
A third step of obtaining a condensate B having a thiol group by mixing and condensing a polar solvent containing a basic catalyst and the reaction mixture y, and the condensate B, a vinyl group, an alkenyl group, a cycloalkenyl group, A fourth step of reacting with a dicarboxylic anhydride C having at least one reactive group selected from an alkynyl group and an acid chloride group.
 また、市販されているチオール基含有シルセスキオキサン化合物(縮合物B)と、ビニル基、アルケニル基、シクロアルケニル基、アルキニル基、および酸塩化物基から選択される少なくとも1種の反応性基を有するジカルボン酸無水物Cと、を反応させることによっても得ることができる。 In addition, a commercially available thiol group-containing silsesquioxane compound (condensate B) and at least one reactive group selected from a vinyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, and an acid chloride group It can also be obtained by reacting with a dicarboxylic anhydride C having
 <縮合物B(チオール基含有シルセスキオキサン化合物)>
 縮合物Bは、チオール基含有トリアルコキシシラン類a1と、チオール基を有しないトリアルコキシシラン類a2と、の縮合物である。縮合物Bとしては、例えば有機・無機ハイブリッド樹脂コンポセランSQ(品名:SQ107もしくはSQ109、荒川化学工業株式会社)を使用することができる。もしくは、上記第1工程~第3工程を含む方法で合成した縮合物Bを使用することができる。
<Condensate B (thiol group-containing silsesquioxane compound)>
Condensate B is a condensate of thiol group-containing trialkoxysilanes a1 and trialkoxysilanes a2 having no thiol group. As the condensate B, for example, an organic/inorganic hybrid resin Compoceran SQ (product name: SQ107 or SQ109, Arakawa Chemical Industries, Ltd.) can be used. Alternatively, the condensate B synthesized by a method including the above 1st to 3rd steps can be used.
 <第1工程>
 第1工程は、一般式:RSi(ORで表されるチオール基含有トリアルコキシシラン類a1と、チオール基を有しないトリアルコキシシラン類a2と、水とを、酸性触媒を用いて加水分解反応させ反応混合物xを得る工程である。
<First step>
In the first step, thiol group-containing trialkoxysilanes a1 represented by the general formula: R 1 Si(OR 2 ) 3 , trialkoxysilanes a2 having no thiol group, and water are combined with an acidic catalyst. It is a step of obtaining a reaction mixture x by hydrolyzing with
 (式中、Rは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基の少なくとも1つの水素がチオール基に置換されている有機基を表し、Rは、相互に独立して、水素原子、炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表す。)
 ここで、「炭素数1~8」等の炭素数の限定は、置換基を含む有機基全体の炭素数を意味する。
 より詳細には、上記一般式において、Rは少なくとも1つのチオール基を有し、直鎖、又は分岐鎖、若しくは脂肪族環を有する炭素数1~8の炭化水素基、または炭化水素基を有していてもよい、炭素数6~8の芳香族炭化水素基を表す。Rとしては、ポリマー鎖に柔軟性を付与できる観点から直鎖炭化水素基が好ましく、耐熱性を高められる観点から脂環式炭化水素基や芳香族炭化水素基が好ましい。
(Wherein, R 1 is an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms. represents an organic group substituted with a thiol group, R 2 is each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, Or represents an aromatic hydrocarbon group having 6 to 8 carbon atoms.)
Here, the limitation on the number of carbon atoms such as "1 to 8 carbon atoms" means the number of carbon atoms in the entire organic group including substituents.
More specifically, in the above general formula, R 1 has at least one thiol group and is a hydrocarbon group having 1 to 8 carbon atoms having a straight chain, branched chain, or aliphatic ring, or a hydrocarbon group. represents an aromatic hydrocarbon group having 6 to 8 carbon atoms which may be present. R 1 is preferably a linear hydrocarbon group from the viewpoint of imparting flexibility to the polymer chain, and preferably an alicyclic hydrocarbon group or an aromatic hydrocarbon group from the viewpoint of enhancing heat resistance.
 Rは、相互に独立して、水素原子、直鎖、又は分岐鎖、若しくは脂肪族環を有する炭素数1~8の炭化水素基、または炭化水素基を有していてもよい、炭素数6~8の芳香族炭化水素基を表す。Rとしては、加水分解反応の反応性の観点から、炭素数1~4のアルキル基が好ましい。特にメチル基又はエチル基が好ましい。 R 2 independently of each other may have a hydrogen atom, a linear or branched chain, or an aliphatic ring-containing hydrocarbon group having 1 to 8 carbon atoms, or a hydrocarbon group; Represents 6-8 aromatic hydrocarbon groups. From the viewpoint of hydrolysis reaction reactivity, R 2 is preferably an alkyl group having 1 to 4 carbon atoms. A methyl group or an ethyl group is particularly preferred.
 チオール基含有トリアルコキシシラン類a1(以下、成分(a1)という)の具体例としては、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリプロポキシシラン、3-メルカプトプロピルトリブトキシシラン、1,4-ジメルカプト-2-(トリメトキシシリル)ブタン、1,4-ジメルカプト-2-(トリエトキシシリル)ブタン、1,4-ジメルカプト-2-(トリプロポキシシリル)ブタン、1,4-ジメルカプト-2-(トリブトキシシリル)ブタン、2-メルカプトメチル-3-メルカプトプロピルトリメトキシシラン、2-メルカプトメチル-3-メルカプトプロピルトリエトキシシラン、2-メルカプトメチル-3-メルカプトプロピルトリプロポキシシラン、2-メルカプトメチル-3-メルカプトプロピルトリブトキシシラン、1,2-ジメルカプトエチルトリメトキシシラン、1,2-ジメルカプトエチルトリエトキシシラン、1,2-ジメルカプトエチルトリプロポキシシラン、1,2-ジメルカプトエチルトリブトキシシランなどがあげられ、該例示化合物はいずれか単独で、または適宜に組み合わせて使用できる。該例示化合物のうち、3-メルカプトプロピルトリメトキシシランは、加水分解反応の反応性が高く、かつ入手が容易であるため特に好ましい。 Specific examples of the thiol group-containing trialkoxysilanes a1 (hereinafter referred to as component (a1)) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltripropoxysilane, 3-mercapto propyltributoxysilane, 1,4-dimercapto-2-(trimethoxysilyl)butane, 1,4-dimercapto-2-(triethoxysilyl)butane, 1,4-dimercapto-2-(tripropoxysilyl)butane, 1,4-dimercapto-2-(tributoxysilyl)butane, 2-mercaptomethyl-3-mercaptopropyltrimethoxysilane, 2-mercaptomethyl-3-mercaptopropyltriethoxysilane, 2-mercaptomethyl-3-mercaptopropyl tripropoxysilane, 2-mercaptomethyl-3-mercaptopropyltributoxysilane, 1,2-dimercaptoethyltrimethoxysilane, 1,2-dimercaptoethyltriethoxysilane, 1,2-dimercaptoethyltripropoxysilane, 1,2-dimercaptoethyltributoxysilane and the like can be mentioned, and any one of the exemplified compounds can be used alone or in combination as appropriate. Among the exemplified compounds, 3-mercaptopropyltrimethoxysilane is particularly preferred because of its high hydrolytic reactivity and easy availability.
 チオール基を有しないトリアルコキシシラン類a2(以下、成分(a2)という)としては、一般式:RSi(ORで表される化合物が挙げられる。(式中、Rは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表し、Rは、相互に独立して、水素原子、炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表す。)
 より詳細には、Rは、直鎖、又は分岐鎖、若しくは脂肪族環を有する炭素数1~8の炭化水素基、または炭化水素基を有していてもよい、炭素数6~8の芳香族炭化水素基を表す。Rは、成分(a1)について説明した通りであるが、成分(a1)におけるRと同一でも異なっていてもよい。
Examples of trialkoxysilanes a2 having no thiol group (hereinafter referred to as component (a2)) include compounds represented by the general formula: R 3 Si(OR 2 ) 3 . (In the formula, R 3 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms, and R 2 is , each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms. )
More specifically, R 3 is a hydrocarbon group having 1 to 8 carbon atoms having a linear or branched chain or an aliphatic ring, or a hydrocarbon group having 6 to 8 carbon atoms which may have a hydrocarbon group. represents an aromatic hydrocarbon group. R 2 is as described for component (a1), and may be the same as or different from R 2 in component (a1).
 成分(a2)の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランなどを使用しうる。成分(a2)は、いずれか単独で、または2種以上を組み合わせて用いることができる。これらを用いることでチオール基の量を調整することができるため、最終的に得られるポリイミドの架橋度を調整したり、ポリイミド中の無機成分の割合を高くしたりすることができる。 Specific examples of component (a2) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane. Component (a2) can be used either singly or in combination of two or more. By using these, the amount of thiol groups can be adjusted, so that the degree of cross-linking of the finally obtained polyimide can be adjusted and the proportion of the inorganic component in the polyimide can be increased.
 アルコキシシラン類中におけるトリアルコキシシラン類a2のモル比([a2のモル数]/[a1のモル数+a2のモル数])は、0.1以上0.7以下であることが好ましく、0.2以上0.7以下であることがより好ましい。このモル比が大きい程、1分子あたりに含まれるチオール基量は減少し、値が小さい程、チオール基量は増加する。この範囲内にあることで、得られるポリイミド鎖が適度に架橋されるため、物性についての改善効果も十分となる。 The molar ratio of the trialkoxysilanes a2 in the alkoxysilanes ([moles of a2]/[moles of a1+moles of a2]) is preferably 0.1 or more and 0.7 or less. It is more preferably 2 or more and 0.7 or less. The larger the molar ratio, the smaller the amount of thiol groups contained per molecule, and the smaller the molar ratio, the larger the amount of thiol groups. Within this range, the resulting polyimide chain is appropriately crosslinked, and the effect of improving physical properties is sufficient.
 チオール基含有シルセスキオキサンである縮合物Bは、成分(a1)と成分(a2)を用いて、それらを加水分解後、縮合させて得ることができる。第1工程では、加水分解反応によって、成分(a1)や成分(a2)に含まれるアルコキシ基がシラノール基となり、アルコールが副生する。 Condensate B, which is a thiol group-containing silsesquioxane, can be obtained by using component (a1) and component (a2), hydrolyzing them, and then condensing them. In the first step, the alkoxy groups contained in the component (a1) and the component (a2) are converted into silanol groups by the hydrolysis reaction, and alcohol is produced as a by-product.
 加水分解反応に必要な水の量は、モル比([加水分解反応に用いる水のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数])として、0.4~10が好ましい。このモル比が0.4以上0.5未満の場合、得られるチオール基含有シルセスキオキサン中にアルコキシ基が一部残存することになるが、無機材料に対する密着性を向上させることができる。また、0.5~10の場合には、得られるチオール基含有シルセスキオキサン中に実質的にアルコキシ基が残存せず、厚膜硬化物が作製しやすい。 The amount of water required for the hydrolysis reaction is expressed as a molar ratio ([number of moles of water used for hydrolysis reaction]/[total number of moles of each alkoxy group contained in component (a1) and component (a2)]). 0.4 to 10 are preferred. When this molar ratio is 0.4 or more and less than 0.5, some alkoxy groups will remain in the resulting thiol group-containing silsesquioxane, but adhesion to inorganic materials can be improved. Moreover, in the case of 0.5 to 10, substantially no alkoxy group remains in the thiol group-containing silsesquioxane to be obtained, and a thick film cured product can be easily produced.
 なお、成分(a1)と成分(a2)以外に、本発明の効果を損なわない範囲(例えば50モル%以下)で、ジアルコキシシラン類、及び/又は、テトラアルコキシシラン類を更に使用することも可能である。 In addition to the component (a1) and the component (a2), dialkoxysilanes and/or tetraalkoxysilanes may be further used within a range that does not impair the effects of the present invention (for example, 50 mol % or less). It is possible.
 加水分解反応に用いる触媒としては、従来公知の加水分解触媒として機能しうる酸性触媒を任意に用いることができる。但し、加水分解反応後に酸触媒を実質的に除去しておく必要があるため、除去が容易なものであることが好ましい。このようなものとして、沸点が低いため減圧によって除去することが可能なギ酸や、ろ過などの方法によって容易に除去することが可能な、固体酸触媒が挙げられる。 As the catalyst used for the hydrolysis reaction, any conventionally known acidic catalyst that can function as a hydrolysis catalyst can be used. However, since it is necessary to substantially remove the acid catalyst after the hydrolysis reaction, it is preferably one that can be easily removed. These include formic acid, which has a low boiling point and can be removed by vacuum, and solid acid catalysts, which can be easily removed by methods such as filtration.
 固体酸触媒としては、陽イオン交換樹脂、活性白土、カーボン系固体酸等が挙げられる。中でも、陽イオン交換樹脂は触媒活性が高く、かつ入手が容易であるため好ましい。陽イオン交換樹脂としては、強酸型陽イオン交換樹脂、弱酸型陽イオン交換樹脂を使用できる。強酸型イオン交換樹脂としては、ダイヤイオン SKシリーズ、同UBKシリーズ、同PKシリーズ、同HPK25・PCPシリーズ(いずれも三菱化学(株)製商品名)、アンバーライト IR120B、同IR124、同200CT、同252、アンバージェット 1020、同1024、同1060、同1220、アンバーリスト 15DRY、同15JWET、同16WET、同31WET、同35WET(いずれもオルガノ(株)製商品名)など、弱酸型イオン交換樹脂としては、ダイヤイオン WKシリーズ、同WK40(いずれも三菱化学(株)製商品名)、アンバーライト FPC3500、同IRC76(いずれもオルガノ(株)製商品名)などがあげられる。反応速度や副反応の抑制などにより使用するイオン交換樹脂のタイプを任意に選択できるが、反応性から強酸性イオン交換樹脂が特に好ましい。 Examples of solid acid catalysts include cation exchange resins, activated clay, and carbon-based solid acids. Among them, cation exchange resins are preferable because they have high catalytic activity and are easily available. As the cation exchange resin, a strong acid type cation exchange resin and a weak acid type cation exchange resin can be used. As strong acid type ion exchange resins, Diaion SK series, Diaion UBK series, Diaion PK series, Diaion HPK25/PCP series (all product names of Mitsubishi Chemical Corporation), Amberlite IR120B, Diaion IR124, Diaion 200CT, Diaion 252, Amberjet 1020, 1024, 1060, 1220, Amberlyst 15DRY, 15JWET, 16WET, 31WET, 35WET (all product names of Organo Co., Ltd.) as weakly acidic ion exchange resins , DIAION WK series, DIAION WK40 (both product names of Mitsubishi Chemical Corporation), Amberlite FPC3500, DIAION IRC76 (both product names of Organo Corporation), and the like. Although the type of ion-exchange resin to be used can be arbitrarily selected depending on the reaction rate, suppression of side reactions, etc., strongly acidic ion-exchange resins are particularly preferred from the viewpoint of reactivity.
 酸触媒の添加量は、成分(a1)および成分(a2)の合計100質量部に対して、0.1~25質量部であることが好ましく、1~10質量部であることがより好ましい。25質量部以下であると、後の工程で除去することが容易となり、経済的に有利になる傾向がある。一方、0.1質量部以上であると、反応を適度に進行させることができ、反応時間が長くなり過ぎない傾向がある。 The amount of the acid catalyst to be added is preferably 0.1 to 25 parts by mass, more preferably 1 to 10 parts by mass, with respect to 100 parts by mass in total of the components (a1) and (a2). When it is 25 parts by mass or less, it tends to be easy to remove in a later step, which tends to be economically advantageous. On the other hand, when the amount is 0.1 parts by mass or more, the reaction can proceed appropriately, and there is a tendency that the reaction time does not become too long.
 反応温度、時間は、成分(a1)や成分(a2)の反応性に応じて任意に設定できるが、通常0~100℃程度、好ましくは20~60℃、1分~2時間程度である。該加水分解反応は、溶剤の存在下または不存在下に行うことができるが、溶剤を用いないことが好ましい。溶剤を用いる場合、溶剤の種類は特に限定されず、任意の溶剤を1種類以上選択して用いることができるが、後述の縮合反応に用いる溶剤と同一のものを用いることが好ましい。 The reaction temperature and time can be arbitrarily set according to the reactivity of component (a1) and component (a2), but are usually about 0 to 100°C, preferably about 20 to 60°C for about 1 minute to 2 hours. The hydrolysis reaction can be carried out in the presence or absence of a solvent, preferably without solvent. When a solvent is used, the type of solvent is not particularly limited, and one or more arbitrary solvents can be selected and used, but it is preferable to use the same solvent as used in the condensation reaction described below.
 <第2工程>
 第2工程は、前記反応混合物xから前記酸性触媒を除去し、反応混合物yを得る工程である。即ち、第1工程における加水分解反応終了後、系内から酸触媒を実質的に除去しておく必要がある。除去しない場合、後述の縮合反応において反応が進行しなかったり、シラノール基が完全に消費されなかったり、異常な高分子量化のため系がゲル化してしまったりするため、目的のチオール基含有シルセスキオキサン(縮合物B)を得ることができない。
<Second step>
The second step is to remove the acidic catalyst from the reaction mixture x to obtain a reaction mixture y. That is, it is necessary to substantially remove the acid catalyst from the system after the hydrolysis reaction in the first step is completed. If not removed, the reaction does not proceed in the condensation reaction described later, the silanol group is not completely consumed, or the system gels due to an abnormal increase in the molecular weight. Oxane (condensate B) cannot be obtained.
 酸性触媒を除去する方法は、用いた触媒に応じて公知各種の方法から適宜に選択できる。例えば、前述の通り、ギ酸を用いた場合には減圧によって、固体酸触媒を用いた場合は、縮合反応の終了後ろ過などの方法によって容易に除去できる。 The method for removing the acidic catalyst can be appropriately selected from various known methods depending on the catalyst used. For example, as described above, when formic acid is used, it can be easily removed by reducing pressure, and when a solid acid catalyst is used, it can be easily removed by a method such as filtration after completion of the condensation reaction.
 また、加水分解反応が終了し、系内から酸触媒を除去した後や、酸触媒の除去と同時に、減圧などの方法によって副生したアルコールや、余分な水を除去してもよい。また、除去後に縮合反応に用いる溶剤によって希釈することで、後の縮合反応に置いて加水分解反応物を添加しやすくすることもできる。 In addition, after the hydrolysis reaction is completed and the acid catalyst is removed from the system, or at the same time as the removal of the acid catalyst, by-product alcohol and excess water may be removed by a method such as decompression. Further, by diluting with the solvent used for the condensation reaction after removal, it is possible to facilitate the addition of the hydrolyzate in the subsequent condensation reaction.
 <第3工程>
 第3工程は、塩基性触媒を含む極性溶剤と前記反応混合物yを混合して縮合させることによりチオール基を有する縮合物Bを得る工程である。縮合反応においては、前記のシラノール基間で水が副生し、またシラノール基とアルコキシ基間ではアルコールが副生して、シロキサン結合を形成する。縮合反応には、従来公知の脱水縮合触媒として機能しうる塩基性触媒を任意に用いることができる。
<Third step>
The third step is a step of obtaining a condensate B having a thiol group by mixing and condensing a polar solvent containing a basic catalyst and the reaction mixture y. In the condensation reaction, water is by-produced between the silanol groups, and alcohol is by-produced between the silanol groups and the alkoxy groups, forming siloxane bonds. A conventionally known basic catalyst capable of functioning as a dehydration condensation catalyst can be arbitrarily used in the condensation reaction.
 塩基性触媒としては、塩基性の高いものが好ましく、具体例としては、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化カルシウム(Ca(OH))などのアルカリ塩類、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エンなどの有機アミン類、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドなどのアンモニウムヒドロキシド類などがあげられる。該例示化合物はいずれか単独で、または適宜に組み合わせて使用できる。該例示化合物のうち、テトラメチルアンモニウムヒロドキシドは、触媒活性が高く、かつ入手が容易であるため特に好ましい。また、これら塩基性触媒を水溶液として用いる場合には、縮合反応の工程においても加水分解反応が進行するため、加水分解時に用いる水の量を塩基性触媒が含む水の量だけあらかじめ減らしておくなど、適宜調整する必要がある。 The basic catalyst preferably has a high basicity, and specific examples thereof include alkali salts such as sodium hydroxide (NaOH), potassium hydroxide (KOH) and calcium hydroxide (Ca(OH) 2 ); Organic amines such as 8-diazabicyclo[5.4.0]undec-7-ene, 1,5-diazabicyclo[4.3.0]non-5-ene, tetramethylammonium hydroxide, tetrabutylammonium hydroxide and ammonium hydroxides such as Any one of the exemplified compounds can be used alone or in combination as appropriate. Among the exemplified compounds, tetramethylammonium hydroxide is particularly preferred because of its high catalytic activity and easy availability. In addition, when these basic catalysts are used as an aqueous solution, the hydrolysis reaction proceeds even in the condensation reaction step. , should be adjusted accordingly.
 塩基性触媒の添加量は、成分(a1)および成分(a2)の合計100質量部に対して、0.01~5質量部であることが好ましく、0.1~2質量部であることがより好ましい。塩基性触媒の添加量が5質量部以下であると、得られたチオール基含有シルセスキオキサン(縮合物B)を用いて作製した硬化物が着色し難くなり、触媒を除去する場合、除去を行う工程が容易になる傾向がある。一方、0.01質量部以上であると、反応を適度に進行させることができ、反応時間が長くなり過ぎない傾向がある。 The amount of the basic catalyst to be added is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 2 parts by mass, with respect to 100 parts by mass in total of component (a1) and component (a2). more preferred. If the amount of the basic catalyst added is 5 parts by mass or less, the cured product prepared using the obtained thiol group-containing silsesquioxane (condensate B) is difficult to color, and when removing the catalyst, it is removed. This tends to make the process of On the other hand, when the amount is 0.01 part by mass or more, the reaction can proceed appropriately, and there is a tendency that the reaction time does not become too long.
 反応温度は成分(a1)や成分(a2)の反応性に応じてそれぞれ任意に設定できるが、通常は40~150℃程度、好ましくは60~100℃程度である。縮合反応は、極性溶剤の存在下で行うのが好ましく、得られるシルセスキオキサン化合物Aおよびその共重物であるアミド酸溶液の安定性、および得られるフィルムの品質の観点から、トルエン等の非極性溶媒は含まない方がより好ましい。 The reaction temperature can be arbitrarily set according to the reactivity of component (a1) and component (a2), but is usually about 40 to 150°C, preferably about 60 to 100°C. The condensation reaction is preferably carried out in the presence of a polar solvent, and from the viewpoint of the stability of the obtained silsesquioxane compound A and its copolymer amic acid solution and the quality of the resulting film, a solvent such as toluene is used. It is more preferable not to contain a non-polar solvent.
 極性溶剤としては、水と相溶性を示す極性溶剤が好ましく、特にグリコールエーテル類が好ましい。また、グリコールエーテル類の中でも、ジアルキルグリコールエーテル系の溶剤が特に好ましい。水と相溶性を示すジアルキルグリコールエーテル系溶剤としては、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテルなどがあげられる。また、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、ジプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート系溶剤を用いることも可能である。 As the polar solvent, a polar solvent that exhibits compatibility with water is preferable, and glycol ethers are particularly preferable. Among glycol ethers, dialkyl glycol ether solvents are particularly preferred. Examples of dialkyl glycol ether-based solvents compatible with water include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, and diethylene glycol diethyl ether. Glycol ether acetate solvents such as propylene glycol monomethyl ether acetate (PGMEA), dipropylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate can also be used.
 また縮合反応は、反応温度に設定し、脱水縮合触媒を添加した極性溶剤に対し、加水分解反応で得た加水分解物を含む溶液を順次添加する方法によって行うことができる。添加の方法は、公知各種の方法から適宜に選択できる。添加に要する時間は成分(a1)や成分(a2)の反応性に応じてそれぞれ任意に設定できるが、通常は30分~12時間程度である。 The condensation reaction can also be carried out by setting the reaction temperature to a polar solvent containing a dehydration condensation catalyst and sequentially adding a solution containing the hydrolyzate obtained in the hydrolysis reaction. The method of addition can be appropriately selected from various known methods. The time required for addition can be arbitrarily set depending on the reactivity of component (a1) and component (a2), but is usually about 30 minutes to 12 hours.
 上記方法で縮合反応を行う際には、未反応のシラノール基が実質的になくなるまで反応を行うことが好ましい。未反応のシラノール基が残存する場合、得られるチオール基含有シルセスキオキサン(縮合物B)や縮合物Bを含む組成物の保管安定性が低下したり、耐熱性が低下したりするため好ましくない。 When carrying out the condensation reaction by the above method, it is preferable to carry out the reaction until there are substantially no unreacted silanol groups. When unreacted silanol groups remain, storage stability of the obtained thiol group-containing silsesquioxane (condensate B) or composition containing the condensate B is lowered, and heat resistance is lowered, which is preferable. No.
 また、未反応のアルコキシ基の合計のモル比([未反応のアルコキシ基の合計モル数]/[成分(a1)や成分(a2)に含まれる各アルコキシ基の合計モル数])が0.2以下になるように進行させることが好ましく、実質的に0にすることがさらに好ましい。このモル比が0を超え0.2以下である場合には、得られるチオール基含有シルセスキオキサン(縮合物B)中にアルコキシ基が一部残存することになるが、無機材料に対する密着性が向上する点から好ましい。モル比を0にすることで実質的にアルコキシ基が残存せず、厚膜硬化物が作製しやすい点や、得られるチオール基含有シルセスキオキサン(縮合物B)中に含まれるかご型構造が最大になるため、硬化物の耐熱性が向上する点から特に好ましい。また0でない場合には、得られる縮合物B中に含まれるランダム型シルセスキオキサンの量が多くなり、縮合物Bの分子量(Mw)が大きくなる傾向がある。 In addition, the total molar ratio of unreacted alkoxy groups ([total number of moles of unreacted alkoxy groups]/[total number of moles of each alkoxy group contained in component (a1) and component (a2)]) is 0.5. It is preferable to proceed so that it becomes 2 or less, and it is more preferable to make it substantially 0. When this molar ratio is more than 0 and 0.2 or less, some alkoxy groups will remain in the resulting thiol group-containing silsesquioxane (condensate B), but adhesion to inorganic materials is preferable in terms of improvement. By setting the molar ratio to 0, substantially no alkoxy groups remain, making it easy to produce a thick film cured product, and the cage structure contained in the resulting thiol group-containing silsesquioxane (condensate B). is maximized, which is particularly preferable from the viewpoint of improving the heat resistance of the cured product. If it is not 0, the amount of random silsesquioxane contained in the obtained condensate B tends to increase, and the molecular weight (Mw) of the condensate B tends to increase.
 当該縮合反応は、成分(a1)と成分(a2)の合計濃度が2~80質量%程度になるように溶剤希釈して行うことが好ましく、15~75質量%であることがより好ましい。縮合反応によって生成する水およびアルコールの沸点より高い沸点を有する溶剤を用いると、反応系中よりこれらを留去することができるため好ましい。該濃度が2質量%以上である場合は、得られる硬化性組成物に含まれるチオール基含有シルセスキオキサン(縮合物B)が十分な量となるため好ましい。80質量%以下である場合は、反応中にゲル化しにくくなり、生成する縮合物Bの分子量が適度になる傾向がある。 The condensation reaction is preferably carried out by diluting with a solvent so that the total concentration of component (a1) and component (a2) is about 2 to 80% by mass, more preferably 15 to 75% by mass. It is preferable to use a solvent having a boiling point higher than that of water and alcohol produced by the condensation reaction, because these can be distilled off from the reaction system. A concentration of 2% by mass or more is preferable because the thiol group-containing silsesquioxane (condensate B) contained in the obtained curable composition is sufficient. When it is 80% by mass or less, it becomes difficult to gel during the reaction, and the resulting condensate B tends to have an appropriate molecular weight.
 当該縮合反応の終了後、用いた触媒を除去すると、チオール基含有シルセスキオキサン(縮合物B)や、縮合物Bを含んでなるポリイミドの安定性が向上するため好ましい。除去方法は、用いた触媒に応じて公知各種の方法から適宜に選択できる。例えば、テトラメチルアンモニウムヒドロキシドを用いた場合は、縮合反応の終了後、陽イオン交換樹脂で吸着、除去するなどの方法により除去できる。
 <第4工程>
 第4工程は、前記縮合物Bと、ビニル基、アルケニル基、シクロアルケニル基、アルキニル基、および酸塩化物基から選択される少なくとも1種の反応性基を有するジカルボン酸無水物Cと、を反応させる工程である。
It is preferable to remove the used catalyst after completion of the condensation reaction because the stability of the thiol group-containing silsesquioxane (condensate B) and the polyimide containing the condensate B is improved. The removal method can be appropriately selected from various known methods according to the catalyst used. For example, when tetramethylammonium hydroxide is used, it can be removed by adsorption and removal with a cation exchange resin after completion of the condensation reaction.
<Fourth step>
In the fourth step, the condensate B and a dicarboxylic anhydride C having at least one reactive group selected from a vinyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, and an acid chloride group. This is the step of reacting.
 ジカルボン酸無水物C(以下、成分(C)という)としては、チオール基と反応可能な官能基を有するジカルボン酸無水物が用いられる。例えば、ビニル基、アクリル基、メタクリル基、アリル基、アルケニル基、シクロアルケニル基、アルキニル基、もしくは酸塩化物基を有するジカルボン酸無水物を用いることができる。さらに好ましくは、ビニル基、アルケニル基、シクロアルケニル基、アルキニル基、又は酸塩化物基を有するジカルボン酸無水物を用いることができる。特に、ジカルボン酸無水物Cとしては、下記の構造が望ましい。 A dicarboxylic anhydride having a functional group capable of reacting with a thiol group is used as the dicarboxylic anhydride C (hereinafter referred to as component (C)). For example, dicarboxylic acid anhydrides having vinyl groups, acryl groups, methacryl groups, allyl groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, or acid chloride groups can be used. More preferably, a dicarboxylic anhydride having a vinyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, or an acid chloride group can be used. In particular, the dicarboxylic anhydride C preferably has the following structure.
Figure JPOXMLDOC01-appb-C000009
 これらの内、下記の化合物と、酸塩化物基を有する化合物は、反応性が高いため、特に好ましい。なお、反応性の低いジカルボン酸無水物Cを用いる場合、UV光だけでは完全に反応を進行させることが難しいので、酸素や塩化鉄などの酸化触媒を併用した方が好ましい。
Figure JPOXMLDOC01-appb-C000009
Among these, the following compounds and compounds having an acid chloride group are particularly preferred due to their high reactivity. In the case of using dicarboxylic anhydride C, which has low reactivity, it is difficult to proceed the reaction completely with only UV light, so it is preferable to use an oxidation catalyst such as oxygen or iron chloride together.
Figure JPOXMLDOC01-appb-C000010
 また、ジカルボン酸無水物Cの内、芳香環構造を有する無水フタル酸化合物は、得られるポリイミドの耐熱性を高められる観点および高温条件下での黄変を抑制できる点で望ましく、構造中に脂環式構造を有する無水マレイン酸およびシクロヘキサンジカルボン酸無水物は無色透明性を高められる点で望ましい。
Figure JPOXMLDOC01-appb-C000010
Among the dicarboxylic acid anhydrides C, phthalic anhydride compounds having an aromatic ring structure are desirable from the viewpoint of improving the heat resistance of the resulting polyimide and suppressing yellowing under high-temperature conditions. Maleic anhydride and cyclohexanedicarboxylic anhydride having a cyclic structure are desirable in terms of enhancing colorless transparency.
 チオール基含有シルセスキオキサン(縮合物B)とジカルボン酸無水物Cの反応には、チオール・エン反応、もしくはチオール基と酸塩化物基との間の反応を利用することができる。 For the reaction between the thiol group-containing silsesquioxane (condensate B) and the dicarboxylic anhydride C, a thiol-ene reaction or a reaction between a thiol group and an acid chloride group can be used.
 チオール・エン反応の場合、炭素-炭素2重結合の種類や、ラジカル重合開始剤の有無により、反応機構が異なることが知られている。即ち、ラジカル重合性の低いビニル基、アリル基をもつ化合物を成分(C)として用いた場合には、エン‐チオール反応のみが進行し、縮合物B中のチオール基と成分(C)中の炭素-炭素2重結合がほぼ1:1(モル比)で反応し、好ましい。一方、ラジカル重合性の高いアクリル基、メタクリル基をもつ化合物を成分(C)として用いた場合には、ラジカル重合開始剤を併用した場合は特に、成分(C)中の炭素-炭素2重結合の重合反応も並行して進行し、縮合物B中のチオール基と成分(C)中の炭素-炭素2重結合が1:1~100(モル比)程度で反応するため、発明の効果が十分に得られない場合がある。上記の観点から、ラジカル重合性の低いビニル基、アリル基をもつ成分(C)を用いた場合には、モル比([縮合物Bに含まれるチオール基のモル数]/[成分(C)に含まれる炭素-炭素2重結合のモル数])が、0.9~2.5となるよう配合することが好ましく、より好ましくは1.0である。このモル比が0.9以上である場合は、紫外線硬化後に炭素-炭素2重結合が残存しにくく、耐候性が向上する傾向がある。また、2.5以下である場合は、硬化物の架橋密度が十分となり、耐熱性を向上させる傾向がある。 In the case of the thiol-ene reaction, it is known that the reaction mechanism differs depending on the type of carbon-carbon double bond and the presence or absence of a radical polymerization initiator. That is, when a compound having a vinyl group or an allyl group with low radical polymerizability is used as component (C), only the en-thiol reaction proceeds, and the thiol group in condensate B and component (C) Carbon-carbon double bonds react at approximately 1:1 (molar ratio) and are preferred. On the other hand, when a compound having a highly radically polymerizable acrylic group or methacrylic group is used as the component (C), the carbon-carbon double bond in the component (C) is particularly affected when a radical polymerization initiator is used in combination. The polymerization reaction also proceeds in parallel, and the thiol group in the condensate B and the carbon-carbon double bond in the component (C) react at a ratio of about 1: 1 to 100 (molar ratio), so the effect of the invention is You may not get enough. From the above point of view, when the component (C) having a low radically polymerizable vinyl group or allyl group is used, the molar ratio ([number of moles of thiol groups contained in condensate B]/[component (C) The number of moles of carbon-carbon double bonds contained in]) is preferably 0.9 to 2.5, more preferably 1.0. When this molar ratio is 0.9 or more, the carbon-carbon double bond is less likely to remain after UV curing, and the weather resistance tends to be improved. Moreover, when it is 2.5 or less, the crosslink density of the cured product becomes sufficient, and there is a tendency to improve the heat resistance.
 チオール・エン反応の開始剤としては、紫外光源や有機材料、無機材料、酸素を用いることができる。紫外光源としては、例えば高圧水銀ランプ、もしくはハロゲンランプ、もしくはキセノンランプ、もしくは紫外LEDを用いることができる。 As a thiol-ene reaction initiator, an ultraviolet light source, an organic material, an inorganic material, or oxygen can be used. As an ultraviolet light source, for example, a high-pressure mercury lamp, a halogen lamp, a xenon lamp, or an ultraviolet LED can be used.
 使用可能な開始剤としては、特に限定されず、従来公知の光カチオン開始剤、光ラジカル開始剤、酸化剤などを任意に選択できる。光カチオン開始剤としては、紫外線の照射により酸を発生する化合物であるスルホニウム塩、ヨードニウム塩、メタロセン化合物、ベンゾイントシレート等があげられ、それらの市販品としては、たとえばサイラキュアUVI-6970、同UVI-6974、同UVI-6990(いずれも米国ユニオンカーバイド社製商品名)、イルガキュア264(BASF社製)、CIT-1682(日本曹達(株)製)などがある。光カチオン重合開始剤の使用量は、該組成物100質量部に対し、通常10質量部程度以下、好ましくは1~5質量部とされる。 Usable initiators are not particularly limited, and conventionally known photo cationic initiators, photo radical initiators, oxidizing agents, etc. can be arbitrarily selected. Examples of photocationic initiators include sulfonium salts, iodonium salts, metallocene compounds, benzoin tosylate, etc., which are compounds that generate acid upon irradiation with ultraviolet rays. -6974, UVI-6990 (all trade names of Union Carbide Co., USA), Irgacure 264 (manufactured by BASF), CIT-1682 (manufactured by Nippon Soda Co., Ltd.), and the like. The amount of the cationic photopolymerization initiator to be used is usually about 10 parts by weight or less, preferably 1 to 5 parts by weight, per 100 parts by weight of the composition.
 光ラジカル開始剤としては、ダロキュア1173、イルガキュア651、イルガキュア184、イルガキュア907(いずれもBASF社製商品名)、ベンゾフェノン等があげられ、該組成物100質量部に対して5質量部程度以下、好ましくは0.1~2質量部とされる。また、酸化鉄や塩化鉄などの酸化剤を添加することで反応を促進できる。ただし、高い耐熱性、透明性が求められる基材フィルム用途では、光反応開始剤や光増感剤を使用せず、紫外光源や酸素を用いて反応させることが望ましい。 Examples of the photoradical initiator include Darocure 1173, Irgacure 651, Irgacure 184, Irgacure 907 (all trade names manufactured by BASF), benzophenone, and the like, preferably about 5 parts by weight or less per 100 parts by weight of the composition. is 0.1 to 2 parts by mass. Moreover, the reaction can be accelerated by adding an oxidizing agent such as iron oxide or iron chloride. However, for substrate film applications that require high heat resistance and transparency, it is desirable to use an ultraviolet light source or oxygen for the reaction without using a photoreaction initiator or photosensitizer.
 チオール基と酸塩化物基との間の反応の場合、シルセスキオキサン(縮合物B)のチオール基量とシラノール基量の和に等しい当量以上の酸塩化物基を有するジカルボン酸無水物を添加することが好ましい。酸塩化物基を有するジカルボン酸無水物の添加量が少ないと、副生する塩酸が触媒となり、シラノール基同士で縮合が起こるために、ゲル化しやすくなる傾向があり、ジカルボン酸無水物の添加量が多い分には、その弊害を減少させ易くなる。なお、その場合、未反応の酸塩化物基がポリアミド酸に共重合され、ポリアミドイミドが生成する場合がある。 In the case of a reaction between a thiol group and an acid chloride group, a dicarboxylic acid anhydride having an acid chloride group equivalent to or greater than the sum of the thiol group amount and the silanol group amount of the silsesquioxane (condensate B). addition is preferred. If the amount of the dicarboxylic anhydride having an acid chloride group added is small, the by-product hydrochloric acid acts as a catalyst, causing condensation between silanol groups, which tends to cause gelation. The greater the amount, the easier it is to reduce the harmful effects. In this case, unreacted acid chloride groups may be copolymerized with polyamic acid to form polyamidoimide.
 また、チオール基と酸塩化物基との間の反応の場合、副生成物として塩酸が発生することから、pH調整剤として塩基を添加してもよい。塩基として、有機塩基、三級アミンおよび無機塩基を用いることができる。有機塩基の例は、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、イミダゾ-ル、N-メチルカプロラクタム、イミダゾール、N,N-ジメチルアニリンおよびN,N-ジエチルアニリンが挙げられる。三級アミンの例は、ピリジン、コリジン、ルチジンおよびトリエチルアミンが挙げられる。無機塩基の例は、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウムおよび炭酸水素ナトリウムが挙げられる。ただし、高い耐熱性、透明性が求められる基材フィルム用途では、揮発性の塩基を用いて反応させることが望ましい。塩基の添加や溶液加熱により塩酸を除去することで、シルセスキオキサンの過剰反応によるゲル化を抑制できる。 In addition, in the case of the reaction between the thiol group and the acid chloride group, hydrochloric acid is generated as a by-product, so a base may be added as a pH adjuster. Organic bases, tertiary amines and inorganic bases can be used as bases. Examples of organic bases are N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, N,N-diethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2- Imidazolidinone, imidazole, N-methylcaprolactam, imidazole, N,N-dimethylaniline and N,N-diethylaniline. Examples of tertiary amines include pyridine, collidine, lutidine and triethylamine. Examples of inorganic bases include potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogen carbonate and sodium hydrogen carbonate. However, for substrate film applications that require high heat resistance and transparency, it is desirable to use a volatile base for the reaction. By removing hydrochloric acid by adding a base or heating the solution, gelation due to excessive reaction of silsesquioxane can be suppressed.
 反応に用いる溶媒として、次の物が挙げられる。ベンゼン、トルエン、キシレン、メシチレン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、イミダゾ-ル、N-メチルカプロラクタム、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルスルホン、ジエチルスルホン、ヘキサメチルスルホルアミド、クレゾ-ル、フェノ-ル、キシレノ-ル、ジエチレングリコ-ルジメチルエ-テル(ジグライム)、トリエチレングリコ-ルジメチルエ-テル(トリグライム)、テトラグライム、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、ジオキサン、テトラヒドロフラン、およびγ-ブチロラクトン。これらの少なくとも2つを混合して用いてもよい。特に生産性やフィルムの光学特性を考慮すると有機溶剤の主成分としてN,N-ジメチルアセトアミド、もしくはN-メチル-2-ピロリドン、もしくはγ-ブチロラクトンを用いることが好ましい。またこれらの有機溶媒と併せて、トルエン、キシレンなどの貧溶媒をポリイミド系樹脂またはその前駆体が析出しない程度に使用してもよい。 The following are examples of solvents used for the reaction. Benzene, toluene, xylene, mesitylene, pentane, hexane, heptane, octane, nonane, decane, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, N,N-diethylformamide, N- Methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, imidazole, N-methylcaprolactam, dimethylsulfoxide, diethylsulfoxide, dimethylsulfone, diethylsulfone, hexamethylsulfolamide, cresol, pheno xylenol, diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), tetraglyme, propylene glycol monomethyl ether acetate (PGMEA), dioxane, tetrahydrofuran, and gamma-butyrolactone. At least two of these may be mixed and used. In particular, considering the productivity and the optical properties of the film, it is preferable to use N,N-dimethylacetamide, N-methyl-2-pyrrolidone, or γ-butyrolactone as the main component of the organic solvent. In addition to these organic solvents, a poor solvent such as toluene or xylene may be used to the extent that the polyimide resin or its precursor does not precipitate.
 第4工程で得られる酸無水物基を有するシルセスキオキサン化合物Aは、反応後の溶液をそのまま使用することも可能であるが、異物、ゲル状物をろ別したり、溶媒を留去し粉末として使用することも可能である。 The silsesquioxane compound A having an acid anhydride group obtained in the fourth step can be used as it is after the reaction. It can also be used as a powder.
 <酸無水物基を有するシルセスキオキサン化合物Aの構造>
 以上のようにして得ることができるシルセスキオキサン化合物Aは、下記の一般式(1)及び(2)で表される構造単位を有することが好ましく、一般式(1)及び(2)で表される構造単位のみを有することがより好ましい。
<Structure of Silsesquioxane Compound A Having an Acid Anhydride Group>
The silsesquioxane compound A that can be obtained as described above preferably has structural units represented by the following general formulas (1) and (2). It is more preferred to have only the structural units represented.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 (式中、Qは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表し、Qは単結合、炭素数1~8の炭化水素基、炭素数1~8の炭化水素基の炭素原子の1つ以上が酸素で置換されている有機基、またはカルボニル基であり、Xは、炭素-炭素結合であるか、又は炭素数4~10の脂肪族環、炭素数6~10の芳香族環、若しくはこれらを構成する炭素の一部が酸素又はイオウで置換された複素環であり、これらに結合する水素の1つ以上が炭化水素基で置換されていてもよく、1.0≦m≦2.0であり、1.4≦n≦1.6である。)
Figure JPOXMLDOC01-appb-C000012
(In the formula, Q 1 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms, and Q 2 is a single bond, a hydrocarbon group having 1 to 8 carbon atoms, an organic group in which one or more carbon atoms of the hydrocarbon group having 1 to 8 carbon atoms are substituted with oxygen, or a carbonyl group, and X is carbon- a carbon bond, or an aliphatic ring having 4 to 10 carbon atoms, an aromatic ring having 6 to 10 carbon atoms, or a heterocyclic ring in which some of the carbon atoms constituting these are substituted with oxygen or sulfur; One or more of the hydrogens bonded to may be substituted with a hydrocarbon group, and 1.0 ≤ m ≤ 2.0 and 1.4 ≤ n ≤ 1.6.)
Figure JPOXMLDOC01-appb-C000012
 (式中、Qは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表し、1.4≦n≦1.6である。)
 より詳細には、一般式(1)におけるQは、直鎖、又は分岐鎖、若しくは脂肪族環を有する炭素数1~8の炭化水素基、または炭化水素基を有していてもよい、炭素数6~8の芳香族炭化水素基を表す。Qとしてはポリマー鎖に柔軟性を付与できる観点から直鎖炭化水素基が好ましく、耐熱性を高められる観点から脂環式炭化水素基や芳香族炭化水素基が好ましい。
(Wherein, Q 3 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms, and 1.4 ≤ n ≤ 1.6.)
More specifically, Q 1 in general formula (1) may have a hydrocarbon group having 1 to 8 carbon atoms having a straight chain, a branched chain, or an aliphatic ring, or a hydrocarbon group, It represents an aromatic hydrocarbon group having 6 to 8 carbon atoms. Q1 is preferably a linear hydrocarbon group from the viewpoint of imparting flexibility to the polymer chain, and preferably an alicyclic hydrocarbon group or an aromatic hydrocarbon group from the viewpoint of enhancing heat resistance.
 Qの具体例としては、チオール基含有トリアルコキシシラン類a1として例示した化合物のSi原子とS原子とが結合する炭化水素基、または芳香族炭化水素基が挙げられる。 Specific examples of Q 1 include a hydrocarbon group in which the Si atom and the S atom of the compound exemplified as the thiol group-containing trialkoxysilanes a1 are bonded, or an aromatic hydrocarbon group.
 Qは、単結合、直鎖、又は分岐鎖を有する炭素数1~8の炭化水素基、その炭素原子の1つ以上が酸素で置換されている酸素含有炭化水素基、またはカルボニル基である。Qとしては、ポリマー鎖に柔軟性を付与できる観点から直鎖炭化水素基が好ましく、耐熱性を高められる観点から単結合や脂環式炭化水素基、芳香族炭化水素基が好ましい。 Q 2 is a hydrocarbon group having 1 to 8 carbon atoms having a single bond, a straight chain, or a branched chain, an oxygen-containing hydrocarbon group in which one or more of the carbon atoms is substituted with oxygen, or a carbonyl group . Q2 is preferably a straight-chain hydrocarbon group from the viewpoint of imparting flexibility to the polymer chain, and is preferably a single bond, an alicyclic hydrocarbon group, or an aromatic hydrocarbon group from the viewpoint of improving heat resistance.
 Xは、炭素-炭素結合であるか、又は炭素数4~10の脂肪族環、炭素数6~10の芳香族環、若しくはこれらを構成する炭素の一部が酸素又はイオウで置換された複素環であり、これらに結合する水素の1つ以上が炭化水素基で置換されていてもよい。Xとしては、ポリマー鎖に柔軟性を付与できる観点から炭素-炭素結合が好ましく、耐熱性を高められる観点から単結合や脂環式炭化水素基、芳香族炭化水素基が好ましい。特にXが芳香族炭化水素基である場合、耐熱性が高くなると共に、高温条件下の変色を抑制できる観点で好ましい。 X is a carbon-carbon bond, or an aliphatic ring having 4 to 10 carbon atoms, an aromatic ring having 6 to 10 carbon atoms, or a heterocyclic ring in which some of the carbon atoms constituting these are substituted with oxygen or sulfur It is a ring, and one or more of the hydrogen atoms attached thereto may be substituted with a hydrocarbon group. X is preferably a carbon-carbon bond from the viewpoint of imparting flexibility to the polymer chain, and preferably a single bond, an alicyclic hydrocarbon group, or an aromatic hydrocarbon group from the viewpoint of improving heat resistance. In particular, when X is an aromatic hydrocarbon group, it is preferable from the viewpoint of being able to improve heat resistance and suppress discoloration under high temperature conditions.
 Q及びXの具体例としては、ジカルボン酸無水物Cとして例示した化合物の反応残基のうち、ジカルボン酸無水物基を除く部分が挙げられる。なお、Xが脂肪族環又は芳香族環を構成する炭素の一部が酸素又はイオウで置換された複素環である場合の例を下記化学式に示す。
Figure JPOXMLDOC01-appb-C000013
Specific examples of Q2 and X include reactive residues of compounds exemplified as dicarboxylic anhydride C, excluding dicarboxylic anhydride groups. In addition, the following chemical formulas show examples in which X is a heterocyclic ring in which a part of carbon atoms constituting an aliphatic or aromatic ring is substituted with oxygen or sulfur.
Figure JPOXMLDOC01-appb-C000013
 mについては、1.0≦m≦2.0であり、立体障害が小さくジカルボン酸無水物基の反応性が高まる観点より、mは1であることが好ましい。mが1.0<m<2.0(即ち、整数以外)の場合、成分(a1)として、1つのチオール基を有するものと2つのチオール基を有するものとが併用される。 m is 1.0≦m≦2.0, and m is preferably 1 from the viewpoint of small steric hindrance and high reactivity of the dicarboxylic anhydride group. When m is 1.0<m<2.0 (that is, other than an integer), a component (a1) having one thiol group and a component having two thiol groups are used in combination.
 nについては、1.4≦n≦1.6であり、より均一な3次元構造を形成する観点より、nは1.5であることが好ましい。nが1.5以外の場合を想定しているのは、原料中にトリアルコキシシランだけでなく、ジアルコキシシランやテトラアルコキシシランが少量混在することを許容する趣旨である。 n is 1.4≦n≦1.6, and from the viewpoint of forming a more uniform three-dimensional structure, n is preferably 1.5. The reason why n is assumed to be other than 1.5 is to allow a small amount of not only trialkoxysilane but also dialkoxysilane and tetraalkoxysilane to be mixed in the raw material.
 また、一般式(2)におけるQは、直鎖、又は分岐鎖、若しくは脂肪族環を有する炭素数1~8の炭化水素基、または炭化水素基を有していてもよい、炭素数6~8の芳香族炭化水素基を表す。Qとしては、結晶化抑制、耐熱性向上の観点から短鎖および分岐鎖炭化水素基、または芳香族炭化水素基が好ましい。Qの具体例としては、トリアルコキシシラン類a2として例示した化合物のSi原子に結合する炭化水素基、または芳香族炭化水素基が挙げられる。 In addition, Q 3 in the general formula (2) may have a hydrocarbon group with 1 to 8 carbon atoms having a straight chain, a branched chain, or an aliphatic ring, or a hydrocarbon group with 6 carbon atoms. represents an aromatic hydrocarbon group of ∼8. Q3 is preferably a short-chain or branched-chain hydrocarbon group or an aromatic hydrocarbon group from the viewpoint of suppressing crystallization and improving heat resistance. Specific examples of Q3 include a hydrocarbon group or an aromatic hydrocarbon group that bonds to the Si atom of the compounds exemplified as the trialkoxysilanes a2.
 一般式(1)及び(2)で表される構造単位を有するシルセスキオキサン化合物Aにおいて、一般式(2)で表される構造単位のモル比([構造単位(2)]/[構造単位(1)+構造単位(2)])が、0.1以上0.7以下であることが好ましく、0.2以上0.7以下であることがより好ましい。このモル比が大きい程、1分子あたりに含まれるチオエーテル基もしくはチオエステル基量は減少し、値が小さい程、チオエーテル基もしくはチオエステル基量は増加する。この範囲内にあることで、得られるポリイミド鎖が適度に架橋されるため、物性についての改善効果も十分となる。 In the silsesquioxane compound A having the structural units represented by the general formulas (1) and (2), the molar ratio of the structural units represented by the general formula (2) ([structural unit (2)]/[structure Unit (1)+Structural Unit (2)]) is preferably 0.1 or more and 0.7 or less, more preferably 0.2 or more and 0.7 or less. The larger the molar ratio, the smaller the amount of thioether groups or thioester groups contained per molecule, and the smaller the molar ratio, the larger the amount of thioether groups or thioester groups. Within this range, the resulting polyimide chain is appropriately crosslinked, and the effect of improving physical properties is sufficient.
 シルセスキオキサン化合物Aの1分子当たりの酸無水物基の数(官能基数)は、2~10が好ましく、2.5~6がより好ましい。官能基数がこの範囲内であると、得られるポリイミド鎖が適度に架橋されるため、物性についての改善効果も十分となる。 The number of acid anhydride groups (number of functional groups) per molecule of the silsesquioxane compound A is preferably 2-10, more preferably 2.5-6. When the number of functional groups is within this range, the resulting polyimide chain is moderately crosslinked, so that the effect of improving physical properties is sufficient.
 シルセスキオキサン化合物Aの分子量は、400~5000が好ましく、600~3000がより好ましい。分子量がこの範囲内であると、得られるポリイミドの不均一化が生じにくく、均一な架橋構造が得られやすい。 The molecular weight of the silsesquioxane compound A is preferably 400-5000, more preferably 600-3000. When the molecular weight is within this range, the resulting polyimide is less likely to become non-uniform, and a uniform crosslinked structure is likely to be obtained.
 一般式(1)及び(2)は、ランダムに結合しているものが得られ易いが、両者が規則的に結合することで、籠型又は一部が開放した籠型、梯子型、ダブルデッカー型のシルセスキオキサン化合物とすることができる。 In the general formulas (1) and (2), it is easy to obtain those that are randomly bonded. can be a silsesquioxane compound of the type
 <酸無水物基を有するシルセスキオキサン化合物Aの用途>
 シルセスキオキサン化合物Aは、酸無水物基を有するため、アミノ基や水酸基を有する化合物と直接反応させることができ、また、水との反応によりカルボキシ基を生成するため、更に多種の化合物と反応させることができる。
<Use of silsesquioxane compound A having an acid anhydride group>
Since the silsesquioxane compound A has an acid anhydride group, it can be directly reacted with a compound having an amino group or a hydroxyl group, and since it produces a carboxyl group by reaction with water, it can be used with a wider variety of compounds. can be reacted.
 特に、2つ以上の酸無水物基を有するシルセスキオキサン化合物は、ポリイミドのモノマー成分となり、2を超える酸無水物基を有するシルセスキオキサン化合物は、共重合成分として、ポリイミドに架橋構造を形成することができる。 In particular, a silsesquioxane compound having two or more acid anhydride groups serves as a monomer component of polyimide, and a silsesquioxane compound having more than two acid anhydride groups serves as a copolymerization component to form a crosslinked structure in polyimide. can be formed.
 ポリイミドについては、一般的に、耐熱性、機械特性などの実用特性と、無色性(透明性ないし白色性)はトレードオフの関係にあり、特に、他の特性を維持しながら靱性が改善されたポリイミドフィルムを製造する方法の出現が望まれていた。 For polyimide, in general, there is a trade-off relationship between practical properties such as heat resistance and mechanical properties, and colorlessness (transparency or whiteness). In particular, toughness was improved while maintaining other properties. It would be desirable to have a method for making polyimide films.
 シルセスキオキサン化合物Aを共重合成分として用いることにより、他の主な特性を維持しながら靱性が改善されたポリイミドフィルムを製造することができるため、その原料等として、シルセスキオキサン化合物Aは特に有用である。ポリイミドフィルムは、例えば、ポリアミド酸溶液を合成する工程と、ポリアミド酸溶液をフィルム化する工程と、ポリアミド酸をイミド化する工程とを含むことで得ることができる。 By using the silsesquioxane compound A as a copolymerization component, it is possible to produce a polyimide film having improved toughness while maintaining other main properties. is particularly useful. A polyimide film can be obtained, for example, by including a step of synthesizing a polyamic acid solution, a step of forming a film from the polyamic acid solution, and a step of imidating the polyamic acid.
 <ポリアミド酸溶液の合成>
 酸無水物基を有するシルセスキオキサン化合物Aと複合化させるポリアミド酸のモノマー成分として、カルボン酸類とジアミン類を用いることができる。
<Synthesis of polyamic acid solution>
Carboxylic acids and diamines can be used as the polyamic acid monomer component to be combined with the silsesquioxane compound A having an acid anhydride group.
 カルボン酸類としては、特に制限はなく、ポリイミド合成、ポリアミドイミド合成、ポリアミド合成に通常用いられる脂環式テトラカルボン酸無水物、および芳香族テトラカルボン酸無水物、およびトリカルボン酸類、およびジカルボン酸類等を用いることができる。耐熱性の観点からは、芳香族類が好ましく、透明性の観点からは脂環式類が好ましい。これらは、単独で用いてもよいし二種以上を併用してもよい。 The carboxylic acids are not particularly limited, and include alicyclic tetracarboxylic anhydrides and aromatic tetracarboxylic anhydrides, tricarboxylic acids, and dicarboxylic acids that are commonly used in polyimide synthesis, polyamideimide synthesis, and polyamide synthesis. can be used. Aromatics are preferred from the viewpoint of heat resistance, and alicyclics are preferred from the viewpoint of transparency. These may be used alone or in combination of two or more.
 本発明における脂環式テトラカルボン酸無水物としては、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,3,4-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸、ビシクロ[2,2,1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸、テトラヒドロアントラセン-2,3,6,7-テトラカルボン酸、テトラデカヒドロ-1,4:5,8:9,10-トリメタノアントラセン-2,3,6,7-テトラカルボン酸、デカヒドロナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4:5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4-エタノ-5,8-メタノナフタレン-2,3,6,7-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロヘキサノン-6’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロプロパノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロブタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘプタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロオクタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロノナノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロウンデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロドデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロトリデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロテトラデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロペンタノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロヘキサノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。これらの中でも、2個の酸無水物構造を有する二無水物が好適であり、特に、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物が好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物がより好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物がさらに好ましい。なお、これらは単独で用いてもよいし、二種以上を併用してもよい。 The alicyclic tetracarboxylic anhydrides used in the present invention include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, and 1,2,3,4-cyclohexane. Tetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 3,3′,4,4′-bicyclohexyltetracarboxylic acid, bicyclo[2,2,1]heptane-2,3,5,6 -tetracarboxylic acid, bicyclo[2,2,2]octane-2,3,5,6-tetracarboxylic acid, bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetra carboxylic acids, tetrahydroanthracene-2,3,6,7-tetracarboxylic acid, tetradecahydro-1,4:5,8:9,10-trimethanoanthracene-2,3,6,7-tetracarboxylic acid, Decahydronaphthalene-2,3,6,7-tetracarboxylic acid, Decahydro-1,4:5,8-dimethanonaphthalene-2,3,6,7-tetracarboxylic acid, Decahydro-1,4-ethano- 5,8-methanonaphthalene-2,3,6,7-tetracarboxylic acid, norbornane-2-spiro-α-cyclopentanone-α′-spiro-2″-norbornane-5,5″,6, 6''-tetracarboxylic acid (also known as "norbornane-2-spiro-2'-cyclopentanone-5'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid" ), methylnorbornane-2-spiro-α-cyclopentanone-α′-spiro-2″-(methylnorbornane)-5,5″,6,6″-tetracarboxylic acid, norbornane-2-spiro - α-cyclohexanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid (also known as "norbornane-2-spiro-2'-cyclohexanone-6'-spiro- 2″-norbornane-5,5″,6,6″-tetracarboxylic acid”), methylnorbornane-2-spiro-α-cyclohexanone-α′-spiro-2″-(methylnorbornane)-5 ,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclopropanone-α'-spiro-2''-norbornane-5,5'',6,6''- Tetracarboxylic acid, norbornane-2-spiro-α-cyclobutanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclo Heptanone -α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclooctanone-α'-spiro-2''-norbornane -5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclononanone-α'-spiro-2''-norbornane-5,5'',6,6''- Tetracarboxylic acid, norbornane-2-spiro-α-cyclodecanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic acid, norbornane-2-spiro-α-cyclo Undecanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclododecanone-α'-spiro-2'' - norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclotridecanone-α'-spiro-2''-norbornane-5,5'',6, 6″-tetracarboxylic acid, norbornane-2-spiro-α-cyclotetradecanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic acid, norbornane- 2-spiro-α-cyclopentadecanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic acid, norbornane-2-spiro-α-(methylcyclopenta non)-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-(methylcyclohexanone)-α'-spiro-2' Tetracarboxylic acids such as '-norbornane-5,5'', 6,6''-tetracarboxylic acid and acid anhydrides thereof can be mentioned. Among these, dianhydrides having two acid anhydride structures are preferred, particularly 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclohexanetetracarboxylic acid Acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride is preferred, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic An acid dianhydride is more preferred, and 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride is even more preferred. In addition, these may be used independently and may use 2 or more types together.
 本発明における芳香族テトラカルボン酸無水物としては、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸、4,4’-オキシジフタル酸、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-カルボン酸)1,4-フェニレン、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-イル)ベンゼン-1,4-ジカルボキシレート、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ピロメリット酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ジフタル酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ジフタル酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。なお、芳香族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。 The aromatic tetracarboxylic anhydrides used in the present invention include 4,4′-(2,2-hexafluoroisopropylidene)diphthalic acid, 4,4′-oxydiphthalic acid, bis(1,3-dioxo-1,3 -dihydro-2-benzofuran-5-carboxylic acid) 1,4-phenylene, bis(1,3-dioxo-1,3-dihydro-2-benzofuran-5-yl)benzene-1,4-dicarboxylate, 4,4′-[4,4′-(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl)bis(benzene-1,4-diyloxy)]dibenzene-1,2-dicarbon acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, 4,4′-[(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl)bis(toluene-2, 5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4′-[(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl)bis(1,4-xylene-2 ,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4′-[4,4′-(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl)bis(4 -isopropyl-toluene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4′-[4,4′-(3-oxo-1,3-dihydro-2-benzofuran-1,1 -diyl)bis(naphthalene-1,4-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4′-[4,4′-(3H-2,1-benzoxathiol-1,1-dioxide -3,3-diyl)bis(benzene-1,4-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4′-benzophenonetetracarboxylic acid, 4,4′-[(3H-2,1- Benzoxathiol-1,1-dioxide-3,3-diyl)bis(toluene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4′-[(3H-2,1-benz oxathiol-1,1-dioxide-3,3-diyl)bis(1,4-xylene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4′-[4,4′- (3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl)bis(4-isopropyl-toluene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4 '-[4,4'-(3H-2,1-benzoxathi ol-1,1-dioxide-3,3-diyl)bis(naphthalene-1,4-diyloxy)]dibenzene-1,2-dicarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, 3 ,3′,4,4′-benzophenonetetracarboxylic acid, 3,3′,4,4′-diphenylsulfonetetracarboxylic acid, 3,3′,4,4′-biphenyltetracarboxylic acid, 2,3,3 ',4'-biphenyltetracarboxylic acid, pyromellitic acid, 4,4'-[spiro(xanthene-9,9'-fluorene)-2,6-diylbis(oxycarbonyl)]diphthalic acid, 4,4'- tetracarboxylic acids such as [spiro(xanthene-9,9'-fluorene)-3,6-diylbis(oxycarbonyl)]diphthalic acid and acid anhydrides thereof. Aromatic tetracarboxylic acids may be used alone, or two or more of them may be used in combination.
 トリカルボン酸類としては、トリメリット酸、1,2,5-ナフタレントリカルボン酸、ジフェニルエーテル-3,3’,4’-トリカルボン酸、ジフェニルスルホン-3,3’,4’-トリカルボン酸などの芳香族トリカルボン酸、或いはヘキサヒドロトリメリット酸などの上記芳香族トリカルボン酸の水素添加物、エチレングリコールビストリメリテート、プロピレングリコールビストリメリテート、1,4-ブタンジオールビストリメリテート、ポリエチレングリコールビストリメリテートなどのアルキレングリコールビストリメリテート、及びこれらの一無水物、エステル化物が挙げられる。これらの中でも、1個の酸無水物構造を有する一無水物が好適であり、特に、トリメリット酸無水物、ヘキサヒドロトリメリット酸無水物が好ましい。尚、これらは単独で使用してもよいし複数を組み合わせて使用してもよい。 Tricarboxylic acids include aromatic tricarboxylic acids such as trimellitic acid, 1,2,5-naphthalenetricarboxylic acid, diphenylether-3,3′,4′-tricarboxylic acid, and diphenylsulfone-3,3′,4′-tricarboxylic acid. acids or hydrogenated products of the above aromatic tricarboxylic acids such as hexahydrotrimellitic acid; Glycol bistrimellitate, and their monoanhydrides and esters. Among these, monoanhydrides having one acid anhydride structure are preferred, and trimellitic anhydride and hexahydrotrimellitic anhydride are particularly preferred. In addition, these may be used individually and may be used in combination.
 ジカルボン酸類としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、4、4’-オキシジベンゼンカルボン酸などの芳香族ジカルボン酸、或いは1,6-シクロヘキサンジカルボン酸などの上記芳香族ジカルボン酸の水素添加物、シュウ酸、コハク酸、グルタル酸、アジピン酸、ヘプタン二酸、オクタン二酸、アゼライン酸、セバシン酸、ウンデカ二酸、ドデカン二酸、2-メチルコハク酸、及びこれらの酸塩化物或いはエステル化物などが挙げられる。これらの中で芳香族ジカルボン酸及びその水素添加物が好適であり、特に、テレフタル酸、1,6-シクロヘキサンジカルボン酸、4、4’-オキシジベンゼンカルボン酸が好ましい。尚、ジカルボン酸類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid, or the above aromatic dicarboxylic acids such as 1,6-cyclohexanedicarboxylic acid. Hydrogenates of oxalic acid, succinic acid, glutaric acid, adipic acid, heptanedioic acid, octanedioic acid, azelaic acid, sebacic acid, undecadeic acid, dodecanedioic acid, 2-methylsuccinic acid, and their acid chlorides Alternatively, an esterified product and the like can be mentioned. Among these, aromatic dicarboxylic acids and hydrogenated products thereof are preferred, and terephthalic acid, 1,6-cyclohexanedicarboxylic acid, and 4,4'-oxydibenzenecarboxylic acid are particularly preferred. In addition, dicarboxylic acids may be used alone or in combination.
 カルボン酸類としては、特に下記の構造が好ましい。 As carboxylic acids, the following structures are particularly preferred.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 本発明におけるジアミン類としては、特に制限はなく、ポリイミド合成、ポリアミドイミド合成、ポリアミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましく、透明性の観点からは脂環式ジアミンが好ましい。ジアミン類は、単独で用いてもよいし二種以上を併用してもよい。 The diamines in the present invention are not particularly limited, and aromatic diamines, aliphatic diamines, and alicyclic diamines that are commonly used in polyimide synthesis, polyamideimide synthesis, and polyamide synthesis can be used. From the viewpoint of heat resistance, aromatic diamines are preferred, and from the viewpoint of transparency, alicyclic diamines are preferred. Diamines may be used alone or in combination of two or more.
 芳香族ジアミン類としては、例えば、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、4-アミノ-N-(4-アミノフェニル)ベンズアミド、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、2,2’-トリフルオロメチル-4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,4-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4’-ビス[(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、3,4’-ジアミノジフェニルスルフィド、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、4,4’-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-フルオロフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-メチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-シアノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、4,4’-ジアミノ-5-フェノキシベンゾフェノン、3,4’-ジアミノ-4-フェノキシベンゾフェノン、3,4’-ジアミノ-5’-フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジビフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、4,4’-ジアミノ-5-ビフェノキシベンゾフェノン、3,4’-ジアミノ-4-ビフェノキシベンゾフェノン、3,4’-ジアミノ-5’-ビフェノキシベンゾフェノン、1,3-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,3-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、2,6-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾニトリル、4,4’-[9H-フルオレン-9,9-ジイル]ビスアニリン(別名「9,9-ビス(4-アミノフェニル)フルオレン」)、スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ビスアニリン、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、5-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、2,2’-p-フェニレンビス(5-アミノベンゾオキサゾール)、2,2’-p-フェニレンビス(6-アミノベンゾオキサゾール)、1-(5-アミノベンゾオキサゾロ)-4-(6-アミノベンゾオキサゾロ)ベンゼン、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール等が挙げられる。また、上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1~3のアルキル基もしくはアルコキシル基、またはシアノ基で置換されても良く、さらに前記炭素数1~3のアルキル基もしくはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換されても良い。 Examples of aromatic diamines include 2,2′-dimethyl-4,4′-diaminobiphenyl, 1,4-bis[2-(4-aminophenyl)-2-propyl]benzene, 1,4-bis (4-amino-2-trifluoromethylphenoxy)benzene, 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl, 4,4′-bis(4-aminophenoxy)biphenyl, 4,4′- Bis(3-aminophenoxy)biphenyl, bis[4-(3-aminophenoxy)phenyl]ketone, bis[4-(3-aminophenoxy)phenyl]sulfide, bis[4-(3-aminophenoxy)phenyl]sulfone , 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoro Propane, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p-aminobenzylamine, 4-amino-N-(4-aminophenyl)benzamide, 3,3'-diaminodiphenyl ether , 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 2,2′-trifluoromethyl-4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl sulfide, 3,4′-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfoxide, 3,4'-diaminodiphenyl sulfoxide, 4,4'-diaminodiphenyl sulfoxide, 3,3'-diaminodiphenyl sulfone, 3,4 '-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 3,4 '-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, bis[4-(4-aminophenoxy)phenyl]methane, 1,1-bis[4-(4-aminophenoxy)phenyl]ethane, 1,2-bis [4-(4-aminophenoxy)phenyl]ethane, 1,1-bis[4-(4-aminophenoxy)phenyl]propane, 1,2-bis[4-(4-aminophenoxy)phenyl]propane, 1 , 3-bis[4-(4-aminophenoxy)phenyl]propane, 2, 2-bis[4-(4-aminophenoxy)phenyl]propane, 1,1-bis[4-(4-aminophenoxy)phenyl]butane, 1,3-bis[4-(4-aminophenoxy)phenyl] Butane, 1,4-bis[4-(4-aminophenoxy)phenyl]butane, 2,2-bis[4-(4-aminophenoxy)phenyl]butane, 2,3-bis[4-(4-amino phenoxy)phenyl]butane, 2-[4-(4-aminophenoxy)phenyl]-2-[4-(4-aminophenoxy)-3-methylphenyl]propane, 2,2-bis[4-(4- aminophenoxy)-3-methylphenyl]propane, 2-[4-(4-aminophenoxy)phenyl]-2-[4-(4-aminophenoxy)-3,5-dimethylphenyl]propane, 2,2- Bis[4-(4-aminophenoxy)-3,5-dimethylphenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexa Fluoropropane, 1,4-bis(3-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 4,4'-bis(4 -aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl]ketone, bis[4-(4-aminophenoxy)phenyl]sulfide, bis[4-(4-aminophenoxy)phenyl]sulfoxide, bis[ 4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-(4-aminophenoxy)phenyl]ether, 1,3-bis[4-(4 -aminophenoxy)benzoyl]benzene, 1,3-bis[4-(3-aminophenoxy)benzoyl]benzene, 1,4-bis[4-(3-aminophenoxy)benzoyl]benzene, 4,4'-bis [(3-aminophenoxy)benzoyl]benzene, 1,1-bis[4-(3-aminophenoxy)phenyl]propane, 1,3-bis[4-(3-aminophenoxy)phenyl]propane, 3,4 '-diaminodiphenyl sulfide, 2,2-bis[3-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, bis[4-(3-aminophenoxy)phenyl ]methane, 1,1-bis[4-(3-aminophenoxy)phenyl]ethane, 1,2- bis[4-(3-aminophenoxy)phenyl]ethane, bis[4-(3-aminophenoxy)phenyl]sulfoxide, 4,4′-bis[3-(4-aminophenoxy)benzoyl]diphenyl ether, 4,4 '-bis[3-(3-aminophenoxy)benzoyl]diphenyl ether, 4,4'-bis[4-(4-amino-α,α-dimethylbenzyl)phenoxy]benzophenone, 4,4'-bis[4- (4-amino-α,α-dimethylbenzyl)phenoxy]diphenylsulfone, bis[4-{4-(4-aminophenoxy)phenoxy}phenyl]sulfone, 1,4-bis[4-(4-aminophenoxy) Phenoxy-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-aminophenoxy)phenoxy-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6 -trifluoromethylphenoxy)-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6-fluorophenoxy)-α,α-dimethylbenzyl]benzene, 1,3-bis[ 4-(4-amino-6-methylphenoxy)-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6-cyanophenoxy)-α,α-dimethylbenzyl]benzene, 3,3′-diamino-4,4′-diphenoxybenzophenone, 4,4′-diamino-5,5′-diphenoxybenzophenone, 3,4′-diamino-4,5′-diphenoxybenzophenone, 3, 3'-diamino-4-phenoxybenzophenone, 4,4'-diamino-5-phenoxybenzophenone, 3,4'-diamino-4-phenoxybenzophenone, 3,4'-diamino-5'-phenoxybenzophenone, 3,3 '-diamino-4,4'-dibiphenoxybenzophenone, 4,4'-diamino-5,5'-dibiphenoxybenzophenone, 3,4'-diamino-4,5'-dibiphenoxybenzophenone, 3,3'- diamino-4-biphenoxybenzophenone, 4,4'-diamino-5-biphenoxybenzophenone, 3,4'-diamino-4-biphenoxybenzophenone, 3,4'-diamino-5'-biphenoxybenzophenone, 1, 3-bis(3-amino-4-phenoxybenzoyl)benzene, 1,4-bis(3-amino-4-phenoxybenzoyl)benzene, 1,3-bis(4-amino-5-phenoxybenzoyl) noxybenzoyl)benzene, 1,4-bis(4-amino-5-phenoxybenzoyl)benzene, 1,3-bis(3-amino-4-biphenoxybenzoyl)benzene, 1,4-bis(3-amino -4-biphenoxybenzoyl)benzene, 1,3-bis(4-amino-5-biphenoxybenzoyl)benzene, 1,4-bis(4-amino-5-biphenoxybenzoyl)benzene, 2,6-bis [4-(4-amino-α,α-dimethylbenzyl)phenoxy]benzonitrile, 4,4′-[9H-fluorene-9,9-diyl]bisaniline (also known as “9,9-bis(4-aminophenyl ) fluorene”), spiro(xanthene-9,9′-fluorene)-2,6-diylbis(oxycarbonyl)]bisaniline, 4,4′-[spiro(xanthene-9,9′-fluorene)-2,6 -diylbis(oxycarbonyl)]bisaniline, 4,4'-[spiro(xanthene-9,9'-fluorene)-3,6-diylbis(oxycarbonyl)]bisaniline, 5-amino-2-(p-aminophenyl ) benzoxazole, 6-amino-2-(p-aminophenyl)benzoxazole, 5-amino-2-(m-aminophenyl)benzoxazole, 6-amino-2-(m-aminophenyl)benzoxazole, 2 , 2′-p-phenylenebis(5-aminobenzoxazole), 2,2′-p-phenylenebis(6-aminobenzoxazole), 1-(5-aminobenzoxazolo)-4-(6-amino benzoxazolo)benzene, 2,6-(4,4'-diaminodiphenyl)benzo[1,2-d:5,4-d']bisoxazole, 2,6-(4,4'-diaminodiphenyl) benzo[1,2-d:4,5-d']bisoxazole, 2,6-(3,4'-diaminodiphenyl)benzo[1,2-d:5,4-d']bisoxazole, 2 ,6-(3,4′-diaminodiphenyl)benzo[1,2-d:4,5-d′]bisoxazole, 2,6-(3,3′-diaminodiphenyl)benzo[1,2-d :5,4-d']bisoxazole, 2,6-(3,3'-diaminodiphenyl)benzo[1,2-d:4,5-d']bisoxazole and the like. In addition, some or all of the hydrogen atoms on the aromatic ring of the aromatic diamine may be substituted with a halogen atom, an alkyl or alkoxyl group having 1 to 3 carbon atoms, or a cyano group, and Some or all of the hydrogen atoms in the alkyl or alkoxyl groups of 1 to 3 may be substituted with halogen atoms.
 脂環式ジアミン類としては、例えば、1,4-ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)、9,10-ビス(4-アミノフェニル)アデニン、2,4-ビス(4-アミノフェニル)シクロブタン-1,3-ジカルボン酸ジメチル、等が挙げられる。ジアミン類としては特に4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB)もしくは4,4′-ジアミノベンズアニリド(DABA)が好ましい。 Alicyclic diamines include, for example, 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, 1,4-diamino-2-n-propyl cyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, 1,4-diamino-2-tert-butylcyclohexane, 4,4′-methylenebis(2,6-dimethylcyclohexylamine), 9,10-bis(4-aminophenyl)adenine, 2,4-bis(4- aminophenyl)cyclobutane-dimethyl-1,3-dicarboxylate, and the like. As diamines, 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl (TFMB) or 4,4'-diaminobenzanilide (DABA) is particularly preferred.
 シルセスキオキサン化合物Aに由来する単位構造の2価の単量体を基準とするモル含有率:(nA/(nA+nD))×100(ここで、nAは前記シルセスキオキサン化合物Aに由来する単位構造の総モル数を前記ジカルボン酸無水物基の総数で除して2倍した数であり、nDは前記カルボン酸類に由来する単位構造のモル数である)が、0.01~10.0モル%であることが好ましい。シルセスキオキサン化合物Aの上記モル含有率が0.01モル%以上であると、複合化の効果が得られ、上記モル含有率が10.0モル%以下であると、ポリアミド酸溶液のゲル化が生じ難く、経時安定性が得られやすい。このため、さらに好ましくは、上記モル含有率は、0.1~5.0モル%である。
 ポリアミド酸溶液には、更に、接着性付与剤、界面活性剤、レベリング剤、酸化防止剤、UV吸収剤、化学イミド化剤、着色剤等の任意成分を含んでもよい。また、ポリイミドフィルムに含み得る、フィラー等を更に含んでもよい。
Molar content based on the divalent monomer of the unit structure derived from silsesquioxane compound A: (nA / (nA + nD)) × 100 (where nA is derived from the silsesquioxane compound A is a number obtained by dividing the total number of moles of the unit structure by the total number of the dicarboxylic acid anhydride groups and multiplying it by 2, and nD is the number of moles of the unit structure derived from the carboxylic acid) is 0.01 to 10 0 mol % is preferred. When the molar content of the silsesquioxane compound A is 0.01 mol% or more, the effect of complexing is obtained, and when the molar content is 10.0 mol% or less, the gel of the polyamic acid solution This makes it difficult to cause quenching, and it is easy to obtain stability over time. Therefore, more preferably, the molar content is 0.1 to 5.0 mol %.
The polyamic acid solution may further contain optional components such as adhesion imparting agents, surfactants, leveling agents, antioxidants, UV absorbers, chemical imidizing agents, and colorants. In addition, it may further contain a filler or the like that can be contained in the polyimide film.
 <ポリイミドフィルムの作製>
 ポリアミド酸溶液を基板上にキャストし、加熱して溶剤を揮発させることで厚み1~100μmの均一なグリーンフィルムを得ることができる。このようなキャスティング法でフィルムを形成する場合に用いる基板としては、高分子フィルム、ガラス板、シリコンゴム板、金属板などを挙げることができる。
<Preparation of polyimide film>
A uniform green film with a thickness of 1 to 100 μm can be obtained by casting a polyamic acid solution on a substrate and heating to volatilize the solvent. Substrates used for forming a film by such a casting method include polymer films, glass plates, silicon rubber plates, metal plates, and the like.
 高分子フィルムとして、例えばポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製)を用いることができる。また、所定の厚みのグリーンフィルムを得るときは、ポリアミド酸溶液の濃度を調整する方法や、コーターのギャップ間を調整する方法、キャストを繰り返して目的の膜厚になるように積層する方法を採用でき、これにより目的の膜厚の基板を作成することができる。さらに得られたグリーンフィルムを熱処理することで熱イミド化し、ポリイミドフィルムを得ることができる。 As the polymer film, for example, polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) can be used. In addition, when obtaining a green film with a predetermined thickness, a method of adjusting the concentration of the polyamic acid solution, a method of adjusting the gap between the coaters, and a method of repeatedly casting to obtain the desired film thickness are adopted. Thus, a substrate having a desired film thickness can be produced. Further, the obtained green film is thermally imidized to obtain a polyimide film.
 ポリイミドフィルムは、単層構成であっても構わないし、2層以上の積層構成であっても構わない。ポリイミドフィルムの物理的強度や無機基板との易剥離性から、2層以上の積層構成であることが好ましく、3層以上の積層構成でも差し支えない。なお、本明細書では、ポリイミドフィルムが2層以上の積層構成の場合の物性(黄色度指数、全光線透過率、ヘイズ等)は、特に断りのない限り、ポリイミドフィルム全体の値をいう。 The polyimide film may have a single layer structure, or may have a laminated structure of two or more layers. From the viewpoint of the physical strength of the polyimide film and the ease of peeling from the inorganic substrate, it preferably has a lamination structure of two or more layers, and may have a lamination structure of three or more layers. In this specification, the physical properties (yellowness index, total light transmittance, haze, etc.) in the case where the polyimide film has a laminate structure of two or more layers refer to the values of the entire polyimide film unless otherwise specified.
 ポリイミドフィルムの厚さは5μm以上が好ましく、より好ましくは7μm以上である。前記ポリイミドフィルムの厚さの上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには200μm以下であることが好ましく、より好ましくは90μm以下であり、さらに好ましくは50μm以下である。薄すぎるとフィルム作製、搬送が困難であり、厚すぎるとロール搬送などが困難となってくる。 The thickness of the polyimide film is preferably 5 μm or more, more preferably 7 μm or more. Although the upper limit of the thickness of the polyimide film is not particularly limited, it is preferably 200 μm or less, more preferably 90 μm or less, and still more preferably 50 μm or less for use as a flexible electronic device. If it is too thin, it will be difficult to produce a film and transport it, and if it is too thick, it will be difficult to transport it with a roll.
 本発明におけるポリイミドフィルムの全光線透過率は75%以上が好ましく、より好ましくは85%以上であり、さらに好ましくは87%以上であり、より一層好ましくは88%以上である。前記ポリイミドフィルムの全光線透過率の上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには98%以下であることが好ましく、より好ましくは97%以下である。 The total light transmittance of the polyimide film in the present invention is preferably 75% or more, more preferably 85% or more, even more preferably 87% or more, and still more preferably 88% or more. Although the upper limit of the total light transmittance of the polyimide film is not particularly limited, it is preferably 98% or less, more preferably 97% or less for use as a flexible electronic device.
 本発明におけるポリイミドフィルムのヘイズは1.0以下が好ましく、より好ましくは0.8以下であり、さらに好ましくは0.5以下であり、より一層好ましくは0.3以下である。 The haze of the polyimide film in the present invention is preferably 1.0 or less, more preferably 0.8 or less, even more preferably 0.5 or less, and still more preferably 0.3 or less.
 本発明におけるポリイミドフィルムの黄色度指数(以下、「イエローインデックス」または「YI」ともいう。)は20以下が好ましく、より好ましくは15以下であり、さらに好ましくは10以下であり、より一層好ましくは5以下である。前記ポリイミドフィルムの黄色度指数の下限は特に制限されないが、フレキシブル電子デバイスとして用いるためには0.1以上であることが好ましく、より好ましくは0.2以上であり、さらに好ましくは0.3以上である。 The yellowness index of the polyimide film in the present invention (hereinafter also referred to as "yellow index" or "YI") is preferably 20 or less, more preferably 15 or less, still more preferably 10 or less, still more preferably 5 or less. The lower limit of the yellowness index of the polyimide film is not particularly limited, but in order to use it as a flexible electronic device, it is preferably 0.1 or more, more preferably 0.2 or more, and still more preferably 0.3 or more. is.
 本発明におけるポリイミドフィルムの厚さ方向位相差(Rth)は500nm以下が好ましく、より好ましくは300nm以下であり、さらに好ましくは200nm以下であり、より一層好ましくは100nm以下である。前記ポリイミドフィルムのRthの下限は特に制限されないが、フレキシブル電子デバイスとして用いるためには0.1nm以上であることが好ましく、より好ましくは0.5nm以上である。 The thickness direction retardation (Rth) of the polyimide film in the present invention is preferably 500 nm or less, more preferably 300 nm or less, still more preferably 200 nm or less, and still more preferably 100 nm or less. Although the lower limit of Rth of the polyimide film is not particularly limited, it is preferably 0.1 nm or more, more preferably 0.5 nm or more for use as a flexible electronic device.
 なお、本発明の線膨張係数(CTE)を示す無色透明性の高いポリイミドフィルムは、ポリイミドフィルムの成膜過程において、延伸を行うことでも実現することができる。かかる延伸操作は、ポリイミド溶液をポリイミドフィルム作製用支持体に塗布、乾燥して1~50質量%の溶媒を含むポリイミドフィルムとなし、さらにポリイミドフィルム作製用支持体上で、もしくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリイミドフィルムを高温処理して乾燥させる過程において、MD方向に1.5倍から4.0倍に、TD方向に1.4倍から3.0倍に延伸することによって実現できる。この際にポリイミドフィルム作製用支持体に未延伸の熱可塑性高分子フィルムを用い、熱可塑性高分子フィルムとポリイミドフィルムを同時に延伸した後に熱可塑性高分子フィルムから延伸後のポリイミドフィルムを剥離することにより、特にMD方向の延伸時にポリイミドフィルムに入る傷を防止することができ、より高品位な無色透明性の高いポリイミドフィルムを得ることができる。 The highly colorless and transparent polyimide film exhibiting the coefficient of linear expansion (CTE) of the present invention can also be realized by stretching in the process of forming the polyimide film. In such a stretching operation, a polyimide solution is applied to a polyimide film-producing support, dried to form a polyimide film containing a solvent of 1 to 50% by mass, and further on a polyimide film-producing support or peeled off from the support. 1.5 to 4.0 times in the MD direction and 1.4 to 3.0 times in the TD direction in the process of drying the polyimide film containing 1 to 50% by mass of solvent at a high temperature. It can be realized by stretching to In this case, an unstretched thermoplastic polymer film is used as a support for producing a polyimide film, and after stretching the thermoplastic polymer film and the polyimide film at the same time, the stretched polyimide film is peeled off from the thermoplastic polymer film. In particular, it is possible to prevent scratches from entering the polyimide film during stretching in the MD direction, and it is possible to obtain a polyimide film of higher quality and colorless transparency.
 前記ポリイミドフィルムの50℃から200℃の間の平均の線膨張係数(CTE)は、40ppm/K以下であることが好ましい。さらに好ましくは35ppm/K以下である。また-10ppm/K以上であることが好ましく、さらに好ましくは-5ppm/K以上である。CTEが前記範囲であると、一般的な支持体(無機基板)との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供してもポリイミドフィルムと無機基板とが剥がれるあるいは、支持体ごと反ることを回避できる。ここにCTEとは温度に対して可逆的な伸縮を表すファクターである。なお、前記ポリイミドフィルムのCTEの測定方法は、実施例に記載の方法による。 The average coefficient of linear expansion (CTE) between 50°C and 200°C of the polyimide film is preferably 40 ppm/K or less. More preferably, it is 35 ppm/K or less. Moreover, it is preferably -10 ppm/K or more, more preferably -5 ppm/K or more. When the CTE is within the above range, the difference in coefficient of linear expansion with a general support (inorganic substrate) can be kept small, and the polyimide film and the inorganic substrate are peeled off even when subjected to a process of applying heat. You can avoid warping the whole body. Here, CTE is a factor representing reversible expansion and contraction with respect to temperature. The method for measuring the CTE of the polyimide film is according to the method described in Examples.
 前記ポリイミドフィルムには、フィラーを含有することができる。フィラーとしては、特に限定されず、シリカ、カーボン、セラミック等が挙げられ、中でもシリカであることが好ましい。これらフィラーを単独で使用しても良いし、2種類以上を併用してもよい。フィラーを添加することで、ポリイミドフィルム表面に突起が付与され、これによってポリイミドフィルム表面の滑り性が高くなる。また、フィラーを添加することで、ポリイミドフィルムのCTE及びRthを低く抑えることもできる。フィラーの平均粒子径は1nm以上であることが好ましく、より好ましくは5nm以上である。また、1μm以下であることが好ましく、より好ましくは500nm以下であり、さらに好ましくは100nm以下である。 The polyimide film may contain a filler. The filler is not particularly limited, and includes silica, carbon, ceramics, etc. Among them, silica is preferable. These fillers may be used alone or in combination of two or more. Addition of the filler imparts projections to the surface of the polyimide film, thereby increasing the slipperiness of the polyimide film surface. Also, by adding a filler, the CTE and Rth of the polyimide film can be kept low. The average particle size of the filler is preferably 1 nm or more, more preferably 5 nm or more. Also, it is preferably 1 μm or less, more preferably 500 nm or less, and still more preferably 100 nm or less.
 ポリイミドフィルムにおけるフィラーの含有量は、フィラーの平均粒子径に応じて調整することが好ましい。フィラーの粒子径が30nm以上の場合は、好ましくは0.01~5質量%であり、より好ましくは0.01~3質量%であり、さらに好ましくは0.01~2質量%であり、特に好ましくは0.01~1質量%である。一方、平均粒子径が30nm未満の場合は、好ましくは0.01~50質量%であり、より好ましくは0.01~40質量%であり、さらに好ましくは0.01~30質量%であり、特に好ましくは0.01~20質量%である。含有量を上記範囲で調整することで、ポリイミドフィルムの透明性を損ねることなく、ポリイミドフィルム表面の滑り性を高く保つことができ、さらにポリイミドフィルムのCTE及びRthを低く抑えることができる。 The content of the filler in the polyimide film is preferably adjusted according to the average particle size of the filler. When the particle size of the filler is 30 nm or more, it is preferably 0.01 to 5% by mass, more preferably 0.01 to 3% by mass, still more preferably 0.01 to 2% by mass, and particularly It is preferably 0.01 to 1% by mass. On the other hand, when the average particle diameter is less than 30 nm, it is preferably 0.01 to 50% by mass, more preferably 0.01 to 40% by mass, still more preferably 0.01 to 30% by mass, Particularly preferably, it is 0.01 to 20% by mass. By adjusting the content within the above range, it is possible to keep the polyimide film surface highly slippery without impairing the transparency of the polyimide film, and further to keep the CTE and Rth of the polyimide film low.
 ポリイミドフィルムにおけるフィラーを添加する方法としては、特に限定されないが、前述のポリアミド酸(ポリイミド前駆体)溶液を作製する際、或いは作製した後に、粉体で添加する方法、フィラー/溶媒の形態(スラリー)で添加する方法などが挙げられ、中でも特に、スラリーで添加する方法が好ましい。スラリーとしては特に限定されないが、平均粒子径10nmのシリカが20質量%の濃度でN,N-ジメチルアセトアミド(DMAC)に分散されたスラリー(例えば、日産化学工業製「スノーテックス(登録商標)DMAC-ST」や、平均粒子径80nmのシリカが20質量%の濃度でN,N-ジメチルアセトアミド(DMAC)に分散されたスラリー(例えば、日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)、平均粒子径10nmのシリカが20質量%の濃度でN-メチルピロリドン(NMP)に分散されたスラリー(例えば、日産化学工業製「スノーテックス(登録商標)NMP-ST」などが挙げられる。
 前記ポリイミドフィルムには、着色剤を含有することができる。例えば、薄黄色のポリイミドフィルムに青色の着色剤を混合することで、フィルムのY.I.を低減することができる。
 着色剤としては、例えば、有機顔料、無機顔料又は染料が挙げられるが、着色膜の耐熱性、信頼性および耐光性を向上させるためには、有機顔料、無機顔料が好ましい。
 有機顔料としては、例えば、ジケトピロロピロール系顔料;アゾ、ジスアゾ、ポリアゾ等のアゾ系顔料;銅フタロシアニン、ハロゲン化銅フタロシアニン、無金属フタロシアニン等のフタロシアニン系顔料;アミノアントラキノン、ジアミノジアントラキノン、アントラピリミジン、フラバントロン、アントアントロン、インダントロン、ピラントロン、ビオラントロン等のアントラキノン系顔料;キナクリドン系顔料;ジオキサジン系顔料;ペリノン系顔料;ペリレン系顔料;チオインジゴ系顔料;イソインドリン系顔料;イソインドリノン系顔料;キノフタロン系顔料;スレン系顔料;金属錯体系顔料などが挙げられる。
 無機顔料としては、例えば、酸化チタン、亜鉛華、硫化亜鉛、鉛白、炭酸カルシウム、沈降性硫酸バリウム、ホワイトカーボン、アルミナホワイト、カオリンクレー、タルク、ベントナイト、黒色酸化鉄、カドミウムレッド、べんがら、モリブデンレッド、モリブデートオレンジ、クロムバーミリオン、黄鉛、カドミウムイエロー、黄色酸化鉄、チタンイエロー、酸化クロム、ビリジアン、チタンコバルトグリーン、コバルトグリーン、コバルトクロムグリーン、ビクトリアグリーン、群青、紺青、コバルトブルー、セルリアンブルー、コバルトシリカブルー、コバルト亜鉛シリカブルー、マンガンバイオレット、コバルトバイオレットなどが挙げられる。
 染料としては、例えば、アゾ染料、アントラキノン染料、縮合多環芳香族カルボニル染料、インジゴイド染料、カルボニウム染料、フタロシアニン染料、メチン染料、ポリメチン染料などが挙げられる。
The method of adding a filler in a polyimide film is not particularly limited, but when preparing the above-mentioned polyamic acid (polyimide precursor) solution, or after preparation, a method of adding powder, a form of filler / solvent (slurry ), and the method of adding in the form of a slurry is particularly preferred. The slurry is not particularly limited, but a slurry in which silica having an average particle size of 10 nm is dispersed in N,N-dimethylacetamide (DMAC) at a concentration of 20% by mass (for example, "Snowtex (registered trademark) DMAC manufactured by Nissan Chemical Industries, Ltd. -ST" and a slurry in which silica having an average particle size of 80 nm is dispersed in N,N-dimethylacetamide (DMAC) at a concentration of 20% by mass (for example, Nissan Chemical Industries, Ltd. "Snowtex (registered trademark) DMAC-ST- ZL”), a slurry in which silica having an average particle size of 10 nm is dispersed in N-methylpyrrolidone (NMP) at a concentration of 20% by mass (for example, “Snowtex (registered trademark) NMP-ST” manufactured by Nissan Chemical Industries, Ltd.). be done.
The polyimide film may contain a coloring agent. For example, by mixing a pale yellow polyimide film with a blue colorant, the YI of the film can be reduced.
Examples of the coloring agent include organic pigments, inorganic pigments, and dyes. Organic pigments and inorganic pigments are preferred in order to improve the heat resistance, reliability, and light resistance of the colored film.
Examples of organic pigments include diketopyrrolopyrrole pigments; azo pigments such as azo, disazo and polyazo; phthalocyanine pigments such as copper phthalocyanine, halogenated copper phthalocyanine, and metal-free phthalocyanine; Anthraquinone pigments such as pyrimidine, flavanthrone, anthanthrone, indanthrone, pyranthrone, and violanthrone; quinacridone pigments; dioxazine pigments; perinone pigments; perylene pigments; quinophthalone-based pigments; threne-based pigments; and metal complex-based pigments.
Examples of inorganic pigments include titanium oxide, zinc white, zinc sulfide, lead white, calcium carbonate, precipitated barium sulfate, white carbon, alumina white, kaolin clay, talc, bentonite, black iron oxide, cadmium red, red iron oxide, molybdenum. Red, molybdate orange, chrome vermilion, yellow lead, cadmium yellow, yellow iron oxide, titanium yellow, chromium oxide, Viridian, titanium cobalt green, cobalt green, cobalt chrome green, victoria green, ultramarine blue, dark blue, cobalt blue, cerulean blue, cobalt silica blue, cobalt zinc silica blue, manganese violet, cobalt violet, and the like.
Dyes include, for example, azo dyes, anthraquinone dyes, condensed polycyclic aromatic carbonyl dyes, indigoid dyes, carbonium dyes, phthalocyanine dyes, methine dyes, and polymethine dyes.
 前記ポリイミドフィルムの引張破断強度は、60MPa以上が好ましく、より好ましくは120MPa以上であり、さらに好ましくは160MPa以上である。引張破断強度の上限は特に制限されないが、事実上1000MPa程度未満である。前記引張破断強度が60MPa以上であると、無機基板から剥離する際に前記ポリイミドフィルムが破断してしまうことを防止することができる。なお、前記ポリイミドフィルムの引張破断強度の測定方法は、実施例に記載の方法による。なおキャスティングアプリケーターを用いてガラス基板上に塗布してから作製した場合にもキャスティングアプリケーター塗布に平行方向と垂直方向の直交する2方向をそれぞれ(MD方向)、(TD方向)とした。以下引張破断伸度、引張弾性率も同様である。 The tensile breaking strength of the polyimide film is preferably 60 MPa or more, more preferably 120 MPa or more, and still more preferably 160 MPa or more. Although the upper limit of the tensile strength at break is not particularly limited, it is practically less than about 1000 MPa. When the tensile strength at break is 60 MPa or more, it is possible to prevent the polyimide film from breaking when it is peeled off from the inorganic substrate. The method for measuring the tensile strength at break of the polyimide film is according to the method described in Examples. In addition, when the composition was coated on a glass substrate using a casting applicator, the two directions perpendicular to and parallel to the application of the casting applicator were defined as (MD direction) and (TD direction), respectively. The same applies to the following tensile elongation at break and tensile modulus.
 前記ポリイミドフィルムの引張破断伸度は、1%以上が好ましく、より好ましくは5%以上であり、さらに好ましくは10%以上である。前記引張破断伸度が、5%以上であると、取り扱い性に優れる。なお、前記ポリイミドフィルムの引張破断伸度の測定方法は、実施例に記載の方法による。 The tensile elongation at break of the polyimide film is preferably 1% or more, more preferably 5% or more, and still more preferably 10% or more. When the tensile elongation at break is 5% or more, the handleability is excellent. The method for measuring the tensile elongation at break of the polyimide film is according to the method described in Examples.
 前記ポリイミドフィルムの引張弾性率は、2GPa以上が好ましく、より好ましくは3GPa以上であり、さらに好ましくは4GPa以上である。前記引張弾性率が、3GPa以上であると、無機基板から剥離する際の前記ポリイミドフィルムの伸び変形が少なく、取り扱い性に優れる。前記引張弾性率は、20GPa以下が好ましく、より好ましくは12GPa以下であり、さらに好ましくは10GPa以下である。前記引張弾性率が、20GPa以下であると、前記ポリイミドフィルムをフレキシブルなフィルムとして使用できる。なお、前記ポリイミドフィルムの引張弾性率の測定方法は、実施例に記載の方法による。 The tensile modulus of the polyimide film is preferably 2 GPa or more, more preferably 3 GPa or more, and still more preferably 4 GPa or more. When the tensile elastic modulus is 3 GPa or more, the polyimide film undergoes little elongation deformation when peeled from the inorganic substrate, and is excellent in handleability. The tensile modulus is preferably 20 GPa or less, more preferably 12 GPa or less, and even more preferably 10 GPa or less. When the tensile modulus is 20 GPa or less, the polyimide film can be used as a flexible film. The method for measuring the tensile modulus of the polyimide film is according to the method described in Examples.
 前記ポリイミドフィルムは、その製造時において幅が300mm以上、長さが10m以上の長尺ポリイミドフィルムとして巻き取られた形態で得られるものが好ましく、巻取りコアに巻き取られたロール状ポリイミドフィルムの形態のものがより好ましい。前記ポリイミドフィルムがロール状に巻かれていると、ロール状に巻かれたポリイミドフィルムという形態での輸送が容易となる。 The polyimide film is preferably obtained in the form of being wound as a long polyimide film having a width of 300 mm or more and a length of 10 m or more at the time of its production. Morphology is more preferred. When the polyimide film is wound into a roll, the polyimide film wound into a roll can be easily transported.
 前記ポリイミドフィルムにおいては、ハンドリング性および生産性を確保する為、ポリイミドフィルム中に粒子径が10~1000nm程度の滑材(粒子)を、0.03~3質量%程度、添加・含有させて、ポリイミドフィルム表面に微細な凹凸を付与して滑り性を確保することが好ましい。 In the polyimide film, in order to ensure handleability and productivity, a lubricant (particles) having a particle diameter of about 10 to 1000 nm is added and contained in the polyimide film in an amount of about 0.03 to 3% by mass. It is preferable to provide the surface of the polyimide film with fine irregularities to ensure slipperiness.
 また、ポリイミドフィルムが2層以上の積層構成を有する場合、各層単独のCTEの差が異なると反りの原因となるため、好ましくない。そのため無機基板と接触する第1のポリイミドフィルム層と、前記無機基板と接触せずに前記第1のポリイミドフィルムと隣接する第2のポリイミドフィルム層のCTE差は好ましくは、40ppm/K以下であり、より好ましくは、30ppm/K以下であり、さらに好ましくは、15ppm/K以下である。特に、前記第2のポリイミドフィルムのうち、最も膜厚の厚い層が前記範囲内であることが好ましい。また、ポリイミドフィルムは膜厚方向に対称構造になっていると、反りが発生しにくく好ましい。 In addition, when the polyimide film has a laminated structure of two or more layers, if the CTE of each layer differs, it causes warping, which is not preferable. Therefore, the CTE difference between the first polyimide film layer in contact with the inorganic substrate and the second polyimide film layer adjacent to the first polyimide film without contacting the inorganic substrate is preferably 40 ppm/K or less. , more preferably 30 ppm/K or less, and still more preferably 15 ppm/K or less. In particular, it is preferable that the thickest layer of the second polyimide film has a thickness within the above range. Moreover, it is preferable that the polyimide film has a symmetrical structure in the film thickness direction because warping is less likely to occur.
 前記2層以上の積層構成のポリイミドフィルムにおいては、特に前記無機基板と接触する第1のポリイミドフィルム層と、前記第1のポリイミドフィルム層と隣接する第2のポリイミドフィルム層(以下、単に「第2のポリイミドフィルム層)ともいう。)との界面での混じり合いの厚みは、第1のポリイミドフィルム層の1層分の厚みと第2のポリイミドフィルム層の1層分の厚みの和より少なければ特に限定されるものではないが、第1のポリイミドフィルム層の1層分の厚みと第2のポリイミドフィルム層の1層分の厚みの和の99%以下であること好ましく、80%以下であることがより好ましく、50%以下であることが更に好ましい。また、下限についても特に限定されないが、工業的には、10nm以上であれば問題なく、20nm以上であっても差し支えない。尚、各層の機能に顕著な違いがあり、各々の機能を相殺させずに十分に発揮させることが必要な場合は、各層に占める混じり合いの領域を50%以下に抑えることが好ましく、30%以下に抑えることがより好ましく、10%以下に抑えることが更に好ましい。 In the polyimide film having a laminated structure of two or more layers, particularly, the first polyimide film layer in contact with the inorganic substrate and the second polyimide film layer adjacent to the first polyimide film layer (hereinafter simply referred to as "second The thickness of the mixture at the interface with the second polyimide film layer)) is less than the sum of the thickness of one layer of the first polyimide film layer and the thickness of one layer of the second polyimide film layer. Although it is not particularly limited, it is preferably 99% or less of the sum of the thickness of one layer of the first polyimide film layer and the thickness of one layer of the second polyimide film layer, and 80% or less. It is more preferably 50% or less, and the lower limit is not particularly limited, but industrially, there is no problem if it is 10 nm or more, and it may be 20 nm or more. When there is a significant difference in the function of each layer and it is necessary to fully demonstrate each function without canceling each other, it is preferable to keep the mixed area in each layer to 50% or less, and 30% or less. It is more preferable to suppress it, and it is further preferable to suppress it to 10% or less.
 混じり合いの少ない層を形成する手段は特に限定されないが、第1のポリイミドフィルム層と、第2のポリイミドフィルム層との2層を同時に溶液製膜で作製するより、第1のポリイミドフィルム層または第2のポリイミドフィルム層のいずれか1層を作製し、加熱工程を経たのちに次の層を作製することが好ましい。加熱工程が途中段階、完了する場合の両方を含む。加熱工程が完了してから次の層を作るほうが、まじりあいの少ないものができるが、完成したフィルム表面はすでに反応性を失っている場合が多く、表面に官能基が少ないため、2つの層の接着力が弱く実用上問題が起きることもある。このため、まじりあいが少ない場合も、10nm以上はまじりあいの起きる界面が望ましい。 Means for forming a layer with less mixing is not particularly limited, but rather than simultaneously producing two layers of the first polyimide film layer and the second polyimide film layer by solution casting, the first polyimide film layer or It is preferable to fabricate any one layer of the second polyimide film layer and fabricate the next layer after passing through the heating step. It includes both the intermediate stage and the completed heating process. It is better to make the next layer after the heating process is completed, but the finished film surface often has already lost reactivity, and since there are few functional groups on the surface, it is difficult to separate the two layers. Poor adhesive strength may cause problems in practical use. Therefore, even if there is little mixing, it is desirable to have an interface where the mixing occurs at a thickness of 10 nm or more.
 物性の異なる材料(樹脂)を2層構成のフィルムとすることで、さまざまな特性を併せ持つフィルムを作製することもできる。さらに、厚み方向に対称構造に積層(例えば、第1のポリイミドフィルム層/第2のポリイミドフィルム層/第1のポリイミドフィルム層)させることで、フィルム全体のCTEのバランスが良好となり、反りの発生しにくいフィルムとすることができる。また、いずれか一層を紫外や赤外に吸収を持つ層とすることで、分光特性に特徴を持たせることや、屈折率の異なる層によって光の入射出射を制御することなどが考えられる。 By forming a two-layered film of materials (resins) with different physical properties, it is possible to produce films with various properties. Furthermore, by laminating in a symmetrical structure in the thickness direction (for example, first polyimide film layer / second polyimide film layer / first polyimide film layer), the CTE of the entire film is well balanced, and warping occurs. It can be a film that is difficult to peel off. In addition, it is conceivable to give characteristics to the spectral characteristics by making any one layer a layer that absorbs ultraviolet rays or infrared rays, or to control the incidence and emission of light by layers with different refractive indexes.
 2層以上の層構成のフィルムを作製する手段として、2層同時吐出可能なTダイによる同時塗工、1層塗布したのちに次の層を塗布する逐次塗工、1層塗布したのちに乾燥を進めてから次の層を塗工する方法、1層のフィルム化を終えてから次の層を塗工する方法、あるいは熱可塑性の層を入れることによる、加熱ラミネートでの多層化など様々な方法が考えられるが、本特許では、既存の様々な塗布方法、多層化手法を適宜取り入れることができる。 As a means for producing a film with a layer structure of two or more layers, simultaneous coating with a T-die capable of simultaneous ejection of two layers, sequential coating in which one layer is coated and then the next layer is coated, and one layer is coated and then dried. A method of coating the next layer after proceeding, a method of coating the next layer after finishing the film formation of one layer, or multilayering by heat lamination by inserting a thermoplastic layer. In this patent, various existing coating methods and multi-layering techniques can be appropriately incorporated.
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、製造例、実施例中の各物性値などは以下の方法で測定した。 Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to the following examples as long as it does not exceed the gist thereof. In addition, each physical property value in the production examples and examples was measured by the following methods.
 <ポリイミドフィルムの厚さ測定>
 フィルムの厚さを、マイクロメーター(ファインリューフ社製、ミリトロン1245D)を用いて測定した。尚、同様の測定を3回行い、その算術平均値を採用した。
<Thickness measurement of polyimide film>
The thickness of the film was measured using a micrometer (Millitron 1245D manufactured by Fineruff Co.). In addition, the same measurement was performed 3 times and the arithmetic mean value was adopted.
 <全光線透過率>
 HAZEMETER(NDH5000、日本電色社製)を用いてフィルムの全光線透過率(TT)を測定した。光源としてはD65ランプを使用した。尚、同様の測定を3回行い、その算術平均値を採用した。
<Total light transmittance>
The total light transmittance (TT) of the film was measured using a Hazemeter (NDH5000, manufactured by Nippon Denshoku Co., Ltd.). A D65 lamp was used as the light source. In addition, the same measurement was performed 3 times and the arithmetic mean value was adopted.
 <ヘイズ>
 HAZEMETER(NDH5000、日本電色社製)を用いてフィルムのヘイズを測定した。光源としてはD65ランプを使用した。尚、同様の測定を3回行い、その算術平均値を採用した。
<Haze>
The haze of the film was measured using a Hazemeter (NDH5000, manufactured by Nippon Denshoku Co., Ltd.). A D65 lamp was used as the light source. In addition, the same measurement was performed 3 times and the arithmetic mean value was adopted.
 <イエローインデックス>
 カラーメーター(ZE6000、日本電色社製)およびC2光源を使用して、ASTM D1925に準じてフィルムの三刺激値XYZ値を測定し、下記式により黄色度指数(YI)を算出した。尚、同様の測定を3回行い、その算術平均値を採用した。
<Yellow index>
Using a color meter (ZE6000, manufactured by Nippon Denshoku Co., Ltd.) and a C2 light source, the tristimulus values XYZ values of the film were measured according to ASTM D1925, and the yellowness index (YI) was calculated according to the following formula. In addition, the same measurement was performed 3 times and the arithmetic mean value was adopted.
 YI=100×(1.28X-1.06Z)/Y
 <ガラス転移温度(Tg)、線膨張係数(CTE)>
 TMA(TMA4000S、BRUKER AXIS)を用いて測定した。フィルムを幅15mm×長さ2mmの短冊にカットし、チャック間10mm、荷重5gfで装置にセットした。アルゴン雰囲気下、20℃/分の昇温速度で250℃まで昇温後、5℃/分の速度で30℃まで降温。その後、熱分解が生じない温度(Td1-20℃)まで10℃/分で昇温した。降温時の200℃~50℃区間の傾きからCTEを算出し、2回目の昇温時の変曲点をTgとした。
YI=100×(1.28X−1.06Z)/Y
<Glass transition temperature (Tg), coefficient of linear expansion (CTE)>
It was measured using a TMA (TMA4000S, BRUKER AXIS). The film was cut into strips of width 15 mm×length 2 mm, and set in the device with a chuck distance of 10 mm and a load of 5 gf. In an argon atmosphere, the temperature was raised to 250°C at a rate of 20°C/min, and then lowered to 30°C at a rate of 5°C/min. After that, the temperature was raised at a rate of 10° C./min up to a temperature (Td1-20° C.) at which thermal decomposition does not occur. The CTE was calculated from the slope in the 200° C. to 50° C. interval during the temperature decrease, and the inflection point during the second temperature increase was defined as Tg.
 <引張弾性率、引張強度、伸度、抗張積>
 テンシロン(オートグラフAG-IS、島津製作所)を用い、次の通りに試験を行った。フィルムを、塗布時の流れ方向(MD方向)に5mm×長さ50mmの短冊状に切り出したものを試験片とした。短冊の両端30mmをエアジョウのチャックで把持し、室温下、引張速度50mm/分の条件にてMD方向の引張弾性率、破断引張強度及び破断伸度を求めた。引張弾性率はひずみ-応力曲線の初期の弾性勾配から求めた。測定は各水準N=5で行い、最大値及び最小値を除く3点の平均値をデータとして扱った。破断引張強度と破断伸度の積を抗張積とした。
<Tensile modulus, tensile strength, elongation, tensile product>
Using Tensilon (Autograph AG-IS, Shimadzu Corporation), the test was carried out as follows. A strip of 5 mm×50 mm in length was cut from the film in the flow direction (MD direction) at the time of coating to obtain a test piece. 30 mm of both ends of the strip were gripped with an air jaw chuck, and the tensile modulus, tensile strength at break and elongation at break in the MD direction were determined at room temperature at a tensile speed of 50 mm/min. The tensile modulus was determined from the initial elastic slope of the strain-stress curve. Measurement was performed at each level N=5, and the average value of 3 points excluding the maximum and minimum values was treated as data. The product of tensile strength at break and elongation at break was taken as the tensile product.
 <酸無水物基を有するシルセスキオキサン化合物のHNMR測定>
 各試料を用いて、下記の条件でHNMR測定を行なった。
装置:ブルカー・バイオスピン社製DPX400(実施例1~2)もしくはAgilent製 400MR(実施例3~9)
溶媒:重クロロホルム(CDCl)(実施例1~2)もしくは重DMSO(DMSO-d)(実施例3~9)
試料濃度:3mg/1mL
測定温度:室温(24℃)
共鳴周波数:400MHz
積算回数:32回
<1H NMR Measurement of Silsesquioxane Compound Having Acid Anhydride Group>
Using each sample, 1 HNMR measurement was performed under the following conditions.
Apparatus: Bruker Biospin DPX400 (Examples 1-2) or Agilent 400MR (Examples 3-9)
Solvent: deuterated chloroform (CDCl 3 ) (Examples 1-2) or deuterated DMSO (DMSO-d 6 ) (Examples 3-9)
Sample concentration: 3 mg/1 mL
Measurement temperature: room temperature (24°C)
Resonance frequency: 400MHz
Accumulated times: 32 times
 [合成例1:チオール基含有シルセスキオキサン化合物1の合成]
 攪拌機、冷却管、分水器、温度計、滴下ロート、窒素吹き込み口を備えた反応装置に、3-メルカプトプロピルトリメトキシシラン11.8g(60.0mmol)、メチルトリメトキシシラン2.72g(20.0mmol)([成分(a2)のモル数]/[成分(a1)と成分(a2)の合計モル数]=0.25)、イオン交換水1.9g([加水分解反応に用いる水のモル数]/[成分(a1)、(a2)に含まれるアルコキシ基のモル数の合計](モル比)=0.45)、陽イオン交換樹脂1.0gを仕込み、室温で30分間加水分解反応させた。反応後、陽イオン交換樹脂をろ別した後、これをエチレングリコールジメチルエーテル(DMG)5gで希釈し、加水分解物溶液を得た。
[Synthesis Example 1: Synthesis of thiol group-containing silsesquioxane compound 1]
11.8 g (60.0 mmol) of 3-mercaptopropyltrimethoxysilane, 2.72 g of methyltrimethoxysilane (20 .0 mmol) ([number of moles of component (a2)]/[total number of moles of component (a1) and component (a2)] = 0.25), ion-exchanged water 1.9 g ([water used for hydrolysis reaction number of moles]/[total number of moles of alkoxy groups contained in components (a1) and (a2)] (molar ratio) = 0.45), charged with 1.0 g of cation exchange resin, and hydrolyzed at room temperature for 30 minutes. reacted. After the reaction, the cation exchange resin was filtered off and diluted with 5 g of ethylene glycol dimethyl ether (DMG) to obtain a hydrolyzate solution.
 続いて別の反応容器にDMGを9g、テトラメチルアンモニウムヒドロキシドの25%水溶液を0.05g仕込み、80℃に加熱した。ここに先の加水分解物溶液を、2時間30分かけて滴下した。滴下中にテトラメチルアンモニウムヒドロキシドが溶解し、反応液はクリアになった。滴下後さらに15分間80℃で反応させた後、25℃に冷却した。ここに陽イオン交換樹脂0.5gを仕込み、室温で4時間撹拌した。撹拌中にテトラメチルアンモニウムヒドロキシドが吸着され、反応液はクリアになった。陽イオン交換樹脂をろ別することで、チオール基含有シルセスキオキサン(1分子当たりの平均チオール基数=6個)の溶液を得た。トルエンを添加し、減圧下70℃に加熱することで加水分解によって発生したメタノールと水、トルエンの一部を留去した。適宜トルエンを追加し、最終固形分濃度が72質量%になるように調整した。 Subsequently, 9 g of DMG and 0.05 g of a 25% aqueous solution of tetramethylammonium hydroxide were charged in another reaction vessel and heated to 80°C. The previous hydrolyzate solution was added dropwise thereto over 2 hours and 30 minutes. Tetramethylammonium hydroxide dissolved during the dropwise addition, and the reaction liquid became clear. After dropping, the mixture was allowed to react at 80°C for 15 minutes, and then cooled to 25°C. 0.5 g of a cation exchange resin was added thereto and stirred at room temperature for 4 hours. Tetramethylammonium hydroxide was adsorbed during stirring and the reaction became clear. By filtering off the cation exchange resin, a solution of thiol group-containing silsesquioxane (average number of thiol groups per molecule = 6) was obtained. Toluene was added, and the mixture was heated to 70° C. under reduced pressure to distill off the methanol and water generated by hydrolysis and part of the toluene. Toluene was added appropriately to adjust the final solid content concentration to 72% by mass.
 [合成例2:チオール基含有シルセスキオキサン化合物2の合成]
3-メルカプトプロピルトリメトキシシラン8.83g(45.0mmol)、メチルトリメトキシシラン5.44g(40.0mmol)([成分(a2)のモル数]/[成分(a1)と成分(a2)の合計モル数]=0.47)、イオン交換水2.0g([加水分解反応に用いる水のモル数]/[成分(a1)、(a2)に含まれるアルコキシ基のモル数の合計](モル比)=0.45)としたこと以外は合成例1と同様に合成した。得られたチオール基含有シルセスキオキサンの1分子当たりの平均チオール基数は4.5個であり、最終固形分濃度は72質量%であった。
[Synthesis Example 2: Synthesis of thiol group-containing silsesquioxane compound 2]
8.83 g (45.0 mmol) of 3-mercaptopropyltrimethoxysilane, 5.44 g (40.0 mmol) of methyltrimethoxysilane ([number of moles of component (a2)]/[of component (a1) and component (a2) total number of moles]=0.47), 2.0 g of ion-exchanged water ([number of moles of water used in hydrolysis reaction]/[total number of moles of alkoxy groups contained in components (a1) and (a2)] ( Synthesis was carried out in the same manner as in Synthesis Example 1 except that the molar ratio) was set to 0.45). The obtained thiol group-containing silsesquioxane had an average number of thiol groups per molecule of 4.5, and a final solid content concentration of 72% by mass.
 [合成例3:チオール基含有シルセスキオキサン化合物3の合成]
3-メルカプトプロピルトリメトキシシラン4.91g(25.0mmol)、メチルトリメトキシシラン6.81g(50.0mmol)([成分(a2)のモル数]/[成分(a1)と成分(a2)の合計モル数]=0.67)イオン交換水1.8g([加水分解反応に用いる水のモル数]/[成分(a1)、(a2)に含まれるアルコキシ基のモル数の合計](モル比)=0.45)としたこと以外は合成例1と同様に合成した。得られたチオール基含有シルセスキオキサンの1分子当たりの平均チオール基数は2.5個であり、最終固形分濃度は72質量%であった。
[Synthesis Example 3: Synthesis of thiol group-containing silsesquioxane compound 3]
4.91 g (25.0 mmol) of 3-mercaptopropyltrimethoxysilane, 6.81 g (50.0 mmol) of methyltrimethoxysilane ([number of moles of component (a2)]/[of component (a1) and component (a2) total number of moles]=0.67) 1.8 g of ion-exchanged water ([number of moles of water used in hydrolysis reaction]/[total number of moles of alkoxy groups contained in components (a1) and (a2)] (mol Synthesis was carried out in the same manner as in Synthesis Example 1 except that the ratio) was set to 0.45). The obtained thiol group-containing silsesquioxane had an average number of thiol groups per molecule of 2.5, and a final solid content concentration of 72% by mass.
 [実施例1:酸無水物基を有するシルセスキオキサンSQ1の合成]
 下記のチオール基含有シルセスキオキサン溶液(荒川化学工業(株)製、コンポセランSQ-109)10g(チオール基量16.7mmol)、ノルボルネン酸無水物2.74g(16.7mmol)を反応容器に入れ、撹拌しながら紫外光(スポットキュアSP-11、USHIO社製)を20分間照射することで、無色透明溶液として酸無水物基を有するシルセスキオキサンSQ1を得た。NMRおよびIR測定により、チオール基とノルボルネンが反応していることを確認した。得られた溶液をPTFEフィルター(細孔径10μm)でろ過後に、後述のポリアミド酸溶液の合成に使用した(SQ3~SQ9についても同様である)。
[Example 1: Synthesis of silsesquioxane SQ1 having an acid anhydride group]
The following thiol group-containing silsesquioxane solution (manufactured by Arakawa Chemical Industries, Ltd., Compoceran SQ-109) 10 g (thiol group amount 16.7 mmol) and norbornenic anhydride 2.74 g (16.7 mmol) were placed in a reaction vessel. Then, while stirring, ultraviolet light (Spot Cure SP-11, manufactured by USHIO) was irradiated for 20 minutes to obtain silsesquioxane SQ1 having an acid anhydride group as a colorless transparent solution. NMR and IR measurements confirmed that the thiol group and norbornene were reacting. The resulting solution was filtered through a PTFE filter (pore size 10 μm) and then used for synthesizing a polyamic acid solution described later (the same applies to SQ3 to SQ9).
 コンポセランSQ-109:メチルトリメトキシシランと3-メルカプトプロピルトリメトキシシランとの縮合物、モル比(前者/(前者+後者))=2/8、1分子当たりの平均チオール基数=6個、溶剤PGMEA、固形分濃度25質量%。 Compoceran SQ-109: condensate of methyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane, molar ratio (former/(former + latter)) = 2/8, average number of thiol groups per molecule = 6, solvent PGMEA, solid content concentration 25% by mass.
 なお、上記モル比や1分子当たりの平均チオール基数は、次のように算出した。コンポセランSQ-109のHNMR測定において、メチル基由来のプロトン(δ=0.0~0.2付近、3H)とプロピルチオール基由来のプロトン(δ=0.2~0.8付近、2H)の積分比から、メチルトリメトキシシランと3-メルカプトプロピルトリメトキシシランのモル比を算出した。1分子当たりの平均チオール基数は、上記チオール基とメチル基の比率、構造単位当たりの分子量(SiO1.5Me=67.1、SiO1.5SH=127.2)、溶液のチオール基当量(600g/eq.)、固形分濃度25質量%から算出した。 The molar ratio and the average number of thiol groups per molecule were calculated as follows. In the 1 H NMR measurement of Compoceran SQ-109, protons derived from methyl groups (δ = around 0.0 to 0.2, 3H) and protons derived from propylthiol groups (δ = around 0.2 to 0.8, 2H) The molar ratio of methyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane was calculated from the integral ratio of . The average number of thiol groups per molecule is determined by the ratio of the thiol group to the methyl group, the molecular weight per structural unit (SiO 1.5 Me = 67.1, SiO 1.5 C 3 H 6 SH = 127.2), the solution was calculated from the thiol group equivalent (600 g/eq.) and the solid content concentration of 25% by mass.
 参考のために、NMR測定の結果を図1~4に示す。図1にはSQ―109(PGMEA溶液、図2にはPGMEA、図3にはノルボルネン酸無水物、図4には反応後の反応混合物、についての各HNMR(CDCl)スペクトルが示されている。図4では、ノルボルネン酸無水物の二重結合に由来するピーク(δ=6.3等)が消失しており、チオール基と二重結合の反応が進行したと考えられる。 For reference, the results of NMR measurements are shown in FIGS. 1 HNMR (CDCl 3 ) spectra of SQ-109 (PGMEA solution in FIG. 2, PGMEA in FIG. 2, norbornenic anhydride in FIG. 3, and reaction mixture after reaction in FIG. 4) are shown. 4, the peaks (δ=6.3, etc.) derived from the double bond of norbornenic anhydride disappeared, suggesting that the reaction between the thiol group and the double bond proceeded.
 [実施例2:酸無水物基を有するシルセスキオキサンSQ2の合成]
 チオール基含有シルセスキオキサン溶液(荒川化学工業(株)製、コンポセランSQ-109)10g(チオール基量16.7mmol)、ノルボルネン酸無水物2.74g(16.7mmol)、塩化鉄(III)1mgを反応容器に入れ、10分間撹拌することで、薄黄色溶液(黄色着色は塩化鉄由来と考えられる)として酸無水物基を有するシルセスキオキサンSQ2を得た。NMRおよびIR測定により、チオール基とノルボルネンが反応していることを確認した。
[Example 2: Synthesis of silsesquioxane SQ2 having an acid anhydride group]
Thiol group-containing silsesquioxane solution (manufactured by Arakawa Chemical Industries, Ltd., Compoceran SQ-109) 10 g (thiol group amount 16.7 mmol), norbornenic anhydride 2.74 g (16.7 mmol), iron (III) chloride 1 mg was put into a reaction vessel and stirred for 10 minutes to obtain silsesquioxane SQ2 having an acid anhydride group as a pale yellow solution (yellow coloration is considered to be derived from iron chloride). NMR and IR measurements confirmed that the thiol group and norbornene were reacting.
 参考のために、NMR測定の結果として、図5には反応後の反応混合物のHNMR(CDCl)スペクトルが示す。図5では、ノルボルネン酸無水物の二重結合に由来するピーク(δ=6.3等)が消失しており、チオール基と二重結合の反応が進行したと考えられる。 For reference, FIG. 5 shows the 1 HNMR (CDCl 3 ) spectrum of the reaction mixture after the reaction as a result of NMR measurement. In FIG. 5, the peaks (δ=6.3, etc.) derived from the double bond of norbornenic anhydride disappeared, suggesting that the reaction between the thiol group and the double bond proceeded.
 [実施例3:酸無水物基を有するシルセスキオキサンSQ3の合成]
 合成例1で得られたチオール基含有シルセスキオキサン化合物1の溶液を20g(チオール基量97.0mmol)、ノルボルネン酸無水物15.9g(97.0mmol)、PGMEA10.0gを反応容器に入れ、撹拌しながら紫外光(スポットキュアSP-11、USHIO社製)を20分間照射することで、無色透明溶液として酸無水物基を有するシルセスキオキサンSQ3を得た。NMRおよびIR測定により、チオール基とノルボルネンが反応していることを確認した。
[Example 3: Synthesis of silsesquioxane SQ3 having an acid anhydride group]
20 g of the solution of the thiol group-containing silsesquioxane compound 1 obtained in Synthesis Example 1 (thiol group amount 97.0 mmol), 15.9 g (97.0 mmol) of norbornenic anhydride, and 10.0 g of PGMEA were placed in a reaction vessel. , while stirring, ultraviolet light (Spot Cure SP-11, manufactured by USHIO) was irradiated for 20 minutes to obtain silsesquioxane SQ3 having an acid anhydride group as a colorless transparent solution. NMR and IR measurements confirmed that the thiol group and norbornene were reacting.
 [実施例4:酸無水物基を有するシルセスキオキサンSQ4の合成]
 合成例2で得られたチオール基含有シルセスキオキサン化合物2の溶液を20g(チオール基量77.9mmol)、ノルボルネン酸無水物12.8g(77.9mmol)、PGMEA10.0gを反応容器に入れ、撹拌しながら紫外光(スポットキュアSP-11、USHIO社製)を20分間照射することで、無色透明溶液として酸無水物基を有するシルセスキオキサンSQ4を得た。NMRおよびIR測定により、チオール基とノルボルネンが反応していることを確認した。
[Example 4: Synthesis of silsesquioxane SQ4 having an acid anhydride group]
20 g of the solution of the thiol group-containing silsesquioxane compound 2 obtained in Synthesis Example 2 (thiol group amount 77.9 mmol), norbornenic anhydride 12.8 g (77.9 mmol), and PGMEA 10.0 g were placed in a reaction vessel. , while stirring, ultraviolet light (Spot Cure SP-11, manufactured by USHIO) was irradiated for 20 minutes to obtain silsesquioxane SQ4 having an acid anhydride group as a colorless transparent solution. NMR and IR measurements confirmed that the thiol group and norbornene were reacting.
 [実施例5:酸無水物基を有するシルセスキオキサンSQ5の合成]
 合成例3で得られたチオール基含有シルセスキオキサン化合物3の溶液を20g(チオール基量54.5mmol)、5-ノルボルネン-2,3-ジカルボン酸無水物8.95g(54.5mmol)、PGMEA10.0gを反応容器に入れ、撹拌しながら紫外光(スポットキュアSP-11、USHIO社製)を20分間照射することで、無色透明溶液として酸無水物基を有するシルセスキオキサンSQ5を得た。NMRおよびIR測定により、チオール基と5-ノルボルネン-2,3-ジカルボン酸無水物が反応していることを確認した。
[Example 5: Synthesis of silsesquioxane SQ5 having an acid anhydride group]
20 g of the solution of the thiol group-containing silsesquioxane compound 3 obtained in Synthesis Example 3 (thiol group amount 54.5 mmol), 8.95 g (54.5 mmol) of 5-norbornene-2,3-dicarboxylic anhydride, 10.0 g of PGMEA was placed in a reaction vessel and irradiated with ultraviolet light (Spot Cure SP-11, manufactured by USHIO) for 20 minutes while stirring to obtain silsesquioxane SQ5 having an acid anhydride group as a colorless transparent solution. rice field. NMR and IR measurements confirmed that the thiol group and 5-norbornene-2,3-dicarboxylic anhydride reacted.
 [実施例6:酸無水物基を有するシルセスキオキサンSQ6の合成]
 チオール基含有トリアルコキシシラン溶液(荒川化学工業(株)製、コンポセランSQ-109)6g(チオール基量10.0mmol)、アリルこはく酸無水物1.40g(10.0mmol)を反応容器に入れ、撹拌しながら紫外光(MAX-303、朝日分光社製)を20分間照射することで、無色透明溶液として酸無水物基を有するシルセスキオキサンSQ6を得た。NMRおよびIR測定により、チオール基とアリルこはく酸無水物が反応していることを確認した。
[Example 6: Synthesis of silsesquioxane SQ6 having an acid anhydride group]
A thiol group-containing trialkoxysilane solution (manufactured by Arakawa Chemical Industries, Ltd., Compoceran SQ-109) 6 g (thiol group amount 10.0 mmol) and allylsuccinic anhydride 1.40 g (10.0 mmol) were placed in a reaction vessel, By irradiating with ultraviolet light (MAX-303, manufactured by Asahi Spectrosco Co., Ltd.) for 20 minutes while stirring, silsesquioxane SQ6 having an acid anhydride group was obtained as a colorless transparent solution. NMR and IR measurements confirmed that the thiol group and allylsuccinic anhydride were reacting.
 [実施例7:酸無水物基を有するシルセスキオキサンSQ7の合成]
 チオール基含有トリアルコキシシラン溶液(荒川化学工業(株)製、コンポセランSQ-109)6g(チオール基量10.0mmol)、exo-3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸無水物1.66g(10.0mmol)を反応容器に入れ、撹拌しながら紫外光(MAX-303、朝日分光社製)を20分間照射することで、無色透明溶液として酸無水物基を有するシルセスキオキサンSQ7を得た。NMRおよびIR測定により、チオール基とexo-3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸無水物が反応していることを確認した。
[Example 7: Synthesis of silsesquioxane SQ7 having an acid anhydride group]
Thiol group-containing trialkoxysilane solution (manufactured by Arakawa Chemical Industries, Ltd., Compoceran SQ-109) 6 g (thiol group amount 10.0 mmol), exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic acid 1.66 g (10.0 mmol) of the anhydride is placed in a reaction vessel and irradiated with ultraviolet light (MAX-303, manufactured by Asahi Spectrosco Co., Ltd.) for 20 minutes while stirring to form a colorless and transparent solution having an acid anhydride group. Sesquioxane SQ7 was obtained. NMR and IR measurements confirmed that the thiol group and exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride were reacted.
 [実施例8:酸無水物基を有するシルセスキオキサンSQ8の合成]
 チオール基含有トリアルコキシシラン溶液(荒川化学工業(株)製、コンポセランSQ-109)3g(チオール基量5.0mmol)、5,6-ジヒドロ-1,4-ジチイン-2,3-ジカルボン酸無水物0.94g(5.0mmol)、γ-ブチロラクトン(5mL)を反応容器に入れ、撹拌しながら紫外光(MAX-303、朝日分光社製)を20分間照射することで、黄色透明溶液として酸無水物基を有するシルセスキオキサンSQ8を得た。NMRおよびIR測定により、チオール基と5,6-ジヒドロ-1,4-ジチイン-2,3-ジカルボン酸無水物が反応していることを確認した。
[Example 8: Synthesis of silsesquioxane SQ8 having an acid anhydride group]
Thiol group-containing trialkoxysilane solution (Compoceran SQ-109, manufactured by Arakawa Chemical Industries, Ltd.) 3 g (thiol group amount 5.0 mmol), 5,6-dihydro-1,4-dithiin-2,3-dicarboxylic anhydride 0.94 g (5.0 mmol) of the compound and γ-butyrolactone (5 mL) were placed in a reaction vessel and irradiated with ultraviolet light (MAX-303, manufactured by Asahi Spectrosco Co., Ltd.) for 20 minutes while stirring to give an acid as a yellow transparent solution. Silsesquioxane SQ8 with anhydride groups was obtained. It was confirmed by NMR and IR measurements that the thiol group and 5,6-dihydro-1,4-dithiin-2,3-dicarboxylic anhydride were reacted.
 [実施例9:酸無水物基を有するシルセスキオキサンSQ9の合成]
 チオール基含有トリアルコキシシラン溶液(荒川化学工業(株)製、コンポセランSQ-109)6g(チオール基量10.0mmol)を反応容器に入れ、撹拌しながら無水トリメリット酸クロリド2.10g(10.0mmol)をゆっくりと添加した。室温下24時間撹拌することで、無色透明溶液として酸無水物基を有するシルセスキオキサンSQ9を得た。NMRおよびIR測定により、チオール基と酸塩化物基が反応していることを確認した。
[Example 9: Synthesis of silsesquioxane SQ9 having an acid anhydride group]
A thiol group-containing trialkoxysilane solution (Compoceran SQ-109, manufactured by Arakawa Chemical Industries, Ltd.) 6 g (thiol group amount 10.0 mmol) was placed in a reaction vessel, and 2.10 g of trimellitic anhydride chloride (10.0 mmol) was added with stirring. 0 mmol) was added slowly. By stirring at room temperature for 24 hours, silsesquioxane SQ9 having an acid anhydride group was obtained as a colorless transparent solution. NMR and IR measurements confirmed that the thiol group and the acid chloride group were reacting.
 [比較例1:末端ジカルボン酸無水物シルセスキオキサンSQN1(チオエーテル部非含有)の合成]
 国際公開WO2010/095329A1号公報の実施例1に記載の方法により、下記化学式で表される構造を有する、チオエーテル部非含有のシルセスキオキサンSQN1を合成した。
[Comparative Example 1: Synthesis of terminal dicarboxylic anhydride silsesquioxane SQN1 (containing no thioether moiety)]
A thioether moiety-free silsesquioxane SQN1 having a structure represented by the following chemical formula was synthesized by the method described in Example 1 of International Publication WO2010/095329A1.
Figure JPOXMLDOC01-appb-C000015
 [比較例2:末端ジカルボン酸無水物シルセスキオキサンSQN2(チオエーテル部非含有)の合成]
 国際公開WO2010/095329A1号公報の実施例2に記載の方法により、下記化学式で表される構造を有する、チオエーテル部非含有のシルセスキオキサンSQN2を合成した。
Figure JPOXMLDOC01-appb-C000015
[Comparative Example 2: Synthesis of terminal dicarboxylic acid anhydride silsesquioxane SQN2 (containing no thioether moiety)]
By the method described in Example 2 of International Publication WO2010/095329A1, a silsesquioxane SQN2 containing no thioether moiety and having a structure represented by the following chemical formula was synthesized.
Figure JPOXMLDOC01-appb-C000016
 [製造例A:ポリアミド酸溶液Aの合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながら1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA、5.88g)、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB、9.74g)、SQ1溶液(0.655g)を入れ、N,N-ジメチルアセトアミド(DMAc、125.0g)に溶解した後、25℃下24時間撹拌することでポリアミド酸溶液Aを得た(CBDA/SQ1/TFMBのモル比=0.985/0.015/1.00)。ここで、SQ1のモル比は、酸無水物基2価当たりを基準として計算した値であり、具体的には、シルセスキオキサン化合物Aに由来する単位構造の総モル数を前記ジカルボン酸無水物基の総数で除して2倍した数として計算される(以下のモル比についても同様)。
Figure JPOXMLDOC01-appb-C000016
[Production Example A: Synthesis of polyamic acid solution A]
1,2,3,4-Cyclobutanetetracarboxylic dianhydride (CBDA, 5.88 g) and 4,4'-diamino-2,2 were introduced while passing nitrogen through a reactor equipped with a nitrogen inlet tube and a stirring blade. '-Bis (trifluoromethyl) biphenyl (TFMB, 9.74 g), SQ1 solution (0.655 g) was added, dissolved in N,N-dimethylacetamide (DMAc, 125.0 g), and then at 25 ° C. for 24 hours. Polyamic acid solution A was obtained by stirring (molar ratio of CBDA/SQ1/TFMB=0.985/0.015/1.00). Here, the molar ratio of SQ1 is a value calculated based on the divalent acid anhydride group. Specifically, the total number of moles of the unit structure derived from the silsesquioxane compound A is It is calculated as a number divided by the total number of groups and doubled (the same applies to the following molar ratios).
 [製造例B:ポリアミド酸溶液Bの合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながら1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA、5.88g)、4,4′-ジアミノベンズアニリド(DABA、6.92g)、SQ1溶液(0.655g)を入れ、N,N-ジメチルアセトアミド(DMAc、133.7g)に溶解した後、25℃下24時間撹拌することでポリアミド酸溶液Bを得た(CBDA/SQ1/DABAのモル比=0.985/0.015/1.00)。
[Production Example B: Synthesis of polyamic acid solution B]
1,2,3,4-Cyclobutanetetracarboxylic dianhydride (CBDA, 5.88 g), 4,4′-diaminobenzanilide (DABA , 6.92 g) and SQ1 solution (0.655 g) were added and dissolved in N,N-dimethylacetamide (DMAc, 133.7 g), and then stirred for 24 hours at 25 ° C. Polyamic acid solution B was obtained. (molar ratio of CBDA/SQ1/DABA=0.985/0.015/1.00).
 [製造例Ca:ポリアミド酸溶液Caの合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながらピロメリット酸二無水物(PMDA、3.27g)、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB、4.88g)、SQ1溶液(0.328g)を入れ、N,N-ジメチルアセトアミド(DMAc、67.0g)に溶解した後、25℃下24時間撹拌することでポリアミド酸溶液Caを得た(PMDA/SQ1/TFMBのモル比=0.985/0.015/1.00)。
[Production Example Ca: Synthesis of polyamic acid solution Ca]
Pyromellitic dianhydride (PMDA, 3.27 g) and 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl were added while passing nitrogen through a reactor equipped with a nitrogen inlet tube and a stirring blade. (TFMB, 4.88 g), add SQ1 solution (0.328 g), dissolve in N,N-dimethylacetamide (DMAc, 67.0 g), and then stir at 25 ° C. for 24 hours to remove polyamic acid solution Ca. (molar ratio of PMDA/SQ1/TFMB=0.985/0.015/1.00).
 [製造例Cb:ポリアミド酸溶液Cbの合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながらピロメリット酸二無水物(PMDA、3.27g)、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB、4.90g)、SQ3溶液(0.227g)を入れ、N-メチル-2-ピロリドン(NMP、66.0g)に溶解した後、25℃下24時間撹拌することでポリアミド酸溶液Cbを得た(PMDA/SQ3/TFMBのモル比=0.98/0.02/1.00)。
[Production Example Cb: Synthesis of polyamic acid solution Cb]
Pyromellitic dianhydride (PMDA, 3.27 g) and 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl were added while passing nitrogen through a reactor equipped with a nitrogen inlet tube and a stirring blade. (TFMB, 4.90 g), add SQ3 solution (0.227 g), dissolve in N-methyl-2-pyrrolidone (NMP, 66.0 g), and then stir at 25 ° C. for 24 hours to obtain polyamic acid solution Cb. (molar ratio of PMDA/SQ3/TFMB=0.98/0.02/1.00).
 [製造例Cc:ポリアミド酸溶液Ccの合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながらピロメリット酸二無水物(PMDA、3.27g)、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB、4.90g)、SQ4溶液(0.258g)を入れ、N-メチル-2-ピロリドン(NMP、66.0g)に溶解した後、25℃下24時間撹拌することでポリアミド酸溶液Ccを得た(PMDA/SQ4/TFMBのモル比=0.98/0.02/1.00)。
[Production Example Cc: Synthesis of polyamic acid solution Cc]
Pyromellitic dianhydride (PMDA, 3.27 g) and 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl were added while passing nitrogen through a reactor equipped with a nitrogen inlet tube and a stirring blade. (TFMB, 4.90 g), add SQ4 solution (0.258 g), dissolve in N-methyl-2-pyrrolidone (NMP, 66.0 g), and then stir at 25 ° C. for 24 hours to obtain polyamic acid solution Cc. (molar ratio of PMDA/SQ4/TFMB=0.98/0.02/1.00).
 [製造例Cd:ポリアミド酸溶液Cdの合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながらピロメリット酸二無水物(PMDA、3.27g)、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB、4.90g)、SQ5溶液(0.325g)を入れ、N-メチル-2-ピロリドン(NMP、66.0g)に溶解した後、25℃下24時間撹拌することでポリアミド酸溶液Cdを得た(PMDA/SQ5/TFMBのモル比=0.98/0.02/1.00)。
[Production Example Cd: Synthesis of polyamic acid solution Cd]
Pyromellitic dianhydride (PMDA, 3.27 g) and 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl were added while passing nitrogen through a reactor equipped with a nitrogen inlet tube and a stirring blade. (TFMB, 4.90 g), add SQ5 solution (0.325 g), dissolve in N-methyl-2-pyrrolidone (NMP, 66.0 g), and then stir at 25 ° C. for 24 hours to obtain polyamic acid solution Cd. (molar ratio of PMDA/SQ5/TFMB=0.98/0.02/1.00).
 [製造例Ce:ポリアミド酸溶液Ceの合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながらピロメリット酸二無水物(PMDA、3.27g)、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB、4.90g)、SQ9溶液(0.354g)を入れ、N-メチル-2-ピロリドン(NMP、66.0g)に溶解した後、25℃下24時間撹拌することでポリアミド酸溶液Ceを得た(PMDA/SQ9/TFMBのモル比=0.985/0.015/1.00)。
[Production Example Ce: Synthesis of polyamic acid solution Ce]
Pyromellitic dianhydride (PMDA, 3.27 g) and 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl were added while passing nitrogen through a reactor equipped with a nitrogen inlet tube and a stirring blade. (TFMB, 4.90 g), add SQ9 solution (0.354 g), dissolve in N-methyl-2-pyrrolidone (NMP, 66.0 g), and then stir at 25 ° C. for 24 hours to obtain polyamic acid solution Ce. (molar ratio of PMDA/SQ9/TFMB=0.985/0.015/1.00).
 [製造例D:ポリアミド酸溶液Dの合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながらピロメリット酸二無水物(PMDA、3.27g)、4,4′-ジアミノベンズアニリド(DABA、3.47g)、SQ1溶液(0.328g)を入れ、N,N-ジメチルアセトアミド(DMAc、63.0g)に溶解した後、25℃下24時間撹拌することでポリアミド酸溶液Dを得た(PMDA/SQ1/DABAのモル比=0.985/0.015/1.00)。
[Production Example D: Synthesis of polyamic acid solution D]
Pyromellitic dianhydride (PMDA, 3.27 g), 4,4'-diaminobenzanilide (DABA, 3.47 g), SQ1 solution ( 0.328 g) was added, dissolved in N,N-dimethylacetamide (DMAc, 63.0 g), and stirred at 25 ° C. for 24 hours to obtain a polyamic acid solution D (molar ratio of PMDA/SQ1/DABA = 0.985/0.015/1.00).
 [比較製造例A1:ポリアミド酸溶液A1の合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながら1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA、19.6g)、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB、32.3g)を入れ、N,N-ジメチルアセトアミド(DMAc、279.0g)に溶解した後、25℃下24時間撹拌することでポリアミド酸溶液A1を得た(CBDA/TFMBのモル比=1.00/1.00)。
[Comparative Production Example A1: Synthesis of polyamic acid solution A1]
1,2,3,4-Cyclobutanetetracarboxylic dianhydride (CBDA, 19.6 g) and 4,4'-diamino-2,2 were introduced while passing nitrogen through a reactor equipped with a nitrogen inlet tube and a stirring blade. '-bis (trifluoromethyl) biphenyl (TFMB, 32.3 g) was added, dissolved in N,N-dimethylacetamide (DMAc, 279.0 g), and then stirred at 25 ° C. for 24 hours to obtain a polyamic acid solution A1. (molar ratio of CBDA/TFMB=1.00/1.00).
 [比較製造例B1:ポリアミド酸溶液B1の合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながら1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA、3.98g)、4,4′-ジアミノベンズアニリド(DABA、4.58g)を入れ、N,N-ジメチルアセトアミド(DMAc、76.0g)に溶解した後、25℃下24時間撹拌することでポリアミド酸溶液B1を得た(CBDA/DABAのモル比=1.00/1.00)。
[Comparative Production Example B1: Synthesis of polyamic acid solution B1]
1,2,3,4-Cyclobutanetetracarboxylic dianhydride (CBDA, 3.98 g), 4,4'-diaminobenzanilide (DABA , 4.58 g) was added and dissolved in N,N-dimethylacetamide (DMAc, 76.0 g), and then stirred at 25 ° C. for 24 hours to obtain a polyamic acid solution B1 (molar ratio of CBDA / DABA = 1.00/1.00).
 [製造例B2:ポリアミド酸溶液B2の合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながら1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA、2.94g)、4,4′-ジアミノベンズアニリド(DABA、3.54g)、SQ1溶液(1.00g)を入れ、N,N-ジメチルアセトアミド(DMAc、90g)に溶解した後、25℃下24時間撹拌することでポリアミド酸溶液B2を得た(CBDA/SQ1/DABAのモル比=0.955/0.045/1.00)。
[Production Example B2: Synthesis of polyamic acid solution B2]
1,2,3,4-Cyclobutanetetracarboxylic dianhydride (CBDA, 2.94 g), 4,4'-diaminobenzanilide (DABA , 3.54 g), SQ1 solution (1.00 g) was added, dissolved in N,N-dimethylacetamide (DMAc, 90 g), and then stirred at 25 ° C. for 24 hours to obtain a polyamic acid solution B2 (CBDA /SQ1/DABA molar ratio = 0.955/0.045/1.00).
 [比較製造例B4:ポリアミド酸溶液B4の合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながら1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA、3.98g)、4,4′-ジアミノベンズアニリド(DABA、4.55g)を入れ、N,N-ジメチルアセトアミド(DMAc、76.0g)に溶解した後、25℃下24時間撹拌した。その後、SQ-109(0.546g)を添加し、さらに24時間撹拌することでポリアミド酸溶液B4を得た(CBDA/DABA/SQ-109のモル比=1.00/1.00/0.01)。
[Comparative Production Example B4: Synthesis of polyamic acid solution B4]
1,2,3,4-Cyclobutanetetracarboxylic dianhydride (CBDA, 3.98 g), 4,4'-diaminobenzanilide (DABA , 4.55 g) was added, dissolved in N,N-dimethylacetamide (DMAc, 76.0 g), and stirred at 25° C. for 24 hours. Then, SQ-109 (0.546 g) was added and stirred for 24 hours to obtain polyamic acid solution B4 (molar ratio of CBDA/DABA/SQ-109=1.00/1.00/0. 01).
 [比較製造例B5:ポリアミド酸溶液B5の合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながら1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA、3.98g)、4,4′-ジアミノベンズアニリド(DABA、4.55g)を入れ、N,N-ジメチルアセトアミド(DMAc、76.0g)に溶解した後、25℃下24時間撹拌した。その後、SQ-109(8.19g)を添加し、さらに24時間撹拌することでポリアミド酸溶液B5を得た(CBDA/DABA/SQ-109のモル比=1.00/1.00/0.15)。
[Comparative Production Example B5: Synthesis of polyamic acid solution B5]
1,2,3,4-Cyclobutanetetracarboxylic dianhydride (CBDA, 3.98 g), 4,4'-diaminobenzanilide (DABA , 4.55 g) was added, dissolved in N,N-dimethylacetamide (DMAc, 76.0 g), and stirred at 25° C. for 24 hours. Then, SQ-109 (8.19 g) was added and stirred for 24 hours to obtain polyamic acid solution B5 (molar ratio of CBDA/DABA/SQ-109=1.00/1.00/0. 15).
 [比較製造例B6:ポリアミド酸溶液B6の合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながら1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA、3.98g)、4,4′-ジアミノベンズアニリド(DABA、4.55g)を入れ、N,N-ジメチルアセトアミド(DMAc、76.0g)に溶解した後、25℃下24時間撹拌した。その後、SQ-109(27.3g)を添加し、さらに24時間撹拌することでポリアミド酸溶液B6を得た(CBDA/DABA/SQ-109のモル比=1.00/1.00/0.50)。
[Comparative Production Example B6: Synthesis of polyamic acid solution B6]
1,2,3,4-Cyclobutanetetracarboxylic dianhydride (CBDA, 3.98 g), 4,4'-diaminobenzanilide (DABA , 4.55 g) was added, dissolved in N,N-dimethylacetamide (DMAc, 76.0 g), and stirred at 25° C. for 24 hours. Then, SQ-109 (27.3 g) was added and stirred for 24 hours to obtain polyamic acid solution B6 (molar ratio of CBDA/DABA/SQ-109=1.00/1.00/0. 50).
 [比較製造例C1:ポリアミド酸溶液C1の合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながらピロメリット酸二無水物(PMDA、6.54g)、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB、9.61g)を入れ、N,N-ジメチルアセトアミド(DMAc、164.0g)に溶解した後、25℃下24時間撹拌することでポリアミド酸溶液C1を得た(PMDA/TFMBのモル比=1.00/1.00)。
[Comparative Production Example C1: Synthesis of polyamic acid solution C1]
Pyromellitic dianhydride (PMDA, 6.54 g) and 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl were added while passing nitrogen through a reactor equipped with a nitrogen inlet tube and a stirring blade. (TFMB, 9.61 g) was added, dissolved in N,N-dimethylacetamide (DMAc, 164.0 g), and stirred at 25° C. for 24 hours to obtain a polyamic acid solution C1 (PMDA/TFMB moles ratio=1.00/1.00).
 [比較製造例C2:ポリアミド酸溶液C2の合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながらピロメリット酸二無水物(PMDA、3.27g)、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB、4.85g)、SQN1(0.070g)を入れ、N,N-ジメチルアセトアミド(DMAc、67.0g)に溶解した後、25℃下24時間撹拌することでポリアミド酸溶液C2を得た(PMDA/SQN1/TFMBのモル比=0.99/0.01/1.00)。
[Comparative Production Example C2: Synthesis of polyamic acid solution C2]
Pyromellitic dianhydride (PMDA, 3.27 g) and 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl were added while passing nitrogen through a reactor equipped with a nitrogen inlet tube and a stirring blade. (TFMB, 4.85 g) and SQN1 (0.070 g) were added and dissolved in N,N-dimethylacetamide (DMAc, 67.0 g), followed by stirring at 25°C for 24 hours to obtain polyamic acid solution C2. (molar ratio of PMDA/SQN1/TFMB=0.99/0.01/1.00).
 [比較製造例C3:ポリアミド酸溶液C3の合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながらピロメリット酸二無水物(PMDA、3.27g)、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB、4.85g)、SQN2(0.081g)を入れ、N,N-ジメチルアセトアミド(DMAc、67.0g)に溶解した後、25℃下24時間撹拌することでポリアミド酸溶液C3を得た(PMDA/SQN2/TFMBのモル比=0.99/0.01/1.00)。
[Comparative Production Example C3: Synthesis of polyamic acid solution C3]
Pyromellitic dianhydride (PMDA, 3.27 g) and 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl were added while passing nitrogen through a reactor equipped with a nitrogen inlet tube and a stirring blade. (TFMB, 4.85 g) and SQN2 (0.081 g) were added and dissolved in N,N-dimethylacetamide (DMAc, 67.0 g), followed by stirring at 25°C for 24 hours to obtain polyamic acid solution C3. (molar ratio of PMDA/SQN2/TFMB=0.99/0.01/1.00).
 [比較製造例D1:ポリアミド酸溶液D1の合成]
 窒素導入管、撹拌翼を備えた反応器に窒素を通過させながらピロメリット酸二無水物(PMDA、3.27g)、4,4′-ジアミノベンズアニリド(DABA、3.41g)を入れ、N,N-ジメチルアセトアミド(DMAc、63.0g)に溶解した後、25℃下24時間撹拌することでポリアミド酸溶液D1を得た(PMDA/DABAのモル比=1.00/1.00)。
[Comparative Production Example D1: Synthesis of polyamic acid solution D1]
Pyromellitic dianhydride (PMDA, 3.27 g) and 4,4′-diaminobenzanilide (DABA, 3.41 g) are introduced into a reactor equipped with a nitrogen inlet tube and a stirring blade while nitrogen is passed through. , N-dimethylacetamide (DMAc, 63.0 g) and stirred at 25° C. for 24 hours to obtain a polyamic acid solution D1 (molar ratio of PMDA/DABA=1.00/1.00).
 以上の製造例および比較製造例にて得られたポリアミド酸溶液を以下の方法でフィルム化し、光学特性、熱特性、機械特性を測定した。 The polyamic acid solutions obtained in the above production examples and comparative production examples were made into films by the following methods, and their optical properties, thermal properties, and mechanical properties were measured.
 [製造例1]
 ポリアミド酸溶液Aを、キャスティングアプリケーターを用いてポリエステルフィルム(A4100、東洋紡製品)上に塗布し、窒素雰囲気下100℃×18分加熱した。得られたグリーンフィルムをカッターで切断した後ポリエステルフィルムから剥がし、金枠に固定した。窒素雰囲気下、10℃/分の速度で段階的に昇温しながら、200℃×10分、250℃×10分、300℃×10分、350℃×10分順次加熱することで熱的にイミド化を行った。放冷後、金枠から取り外すことでポリイミドフィルムを得た。
[Production Example 1]
Polyamic acid solution A was applied onto a polyester film (A4100, Toyobo product) using a casting applicator and heated at 100° C. for 18 minutes in a nitrogen atmosphere. The resulting green film was cut with a cutter, peeled off from the polyester film, and fixed to a metal frame. In a nitrogen atmosphere, the temperature was increased stepwise at a rate of 10°C/min, and the temperature was increased by heating sequentially at 200°C x 10 minutes, 250°C x 10 minutes, 300°C x 10 minutes, and 350°C x 10 minutes. imidization was performed. After standing to cool, the polyimide film was obtained by removing from the metal frame.
 [製造例2~5]
 製造例1において、ポリアミド酸溶液Aの代わりにポリアミド酸溶液B、Ca~Ce、D、B2、を使ったこと以外は製造例1と同様に行い、ポリイミドフィルムを得た。その際に使用した成分と評価結果を表1に示す。
[Production Examples 2 to 5]
A polyimide film was obtained in the same manner as in Production Example 1, except that polyamic acid solution B, Ca-Ce, D, and B2 were used instead of polyamic acid solution A in Production Example 1. Table 1 shows the components used at that time and the evaluation results.
 [比較製造例1~9]
 製造例1において、ポリアミド酸溶液Aの代わりにポリアミド酸溶液A1、B1、B4、B5、B6、C1、C2、C3、D1を使ったこと以外は製造例1と同様に行い、ポリイミドフィルムを得た。その際に使用した成分と評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000017
[Comparative Production Examples 1 to 9]
A polyimide film was obtained in the same manner as in Production Example 1 except that polyamic acid solutions A1, B1, B4, B5, B6, C1, C2, C3, and D1 were used instead of polyamic acid solution A in Production Example 1. rice field. Table 1 shows the components used at that time and the evaluation results.
Figure JPOXMLDOC01-appb-T000017
 表1に示すように、構造中に1モル%のSQ1を含むポリイミドフィルム(製造例1、2、3a、4)は、SQ1を含まない以外は同様の組成からなるポリイミドフィルム(比較製造例1、2、6、9)と比べて、ほぼ同等の全光線透過率、ヘイズ、イエローインデックス、Tg、CTEを示し、かつ、抗張積が増大していることが分かる。 As shown in Table 1, the polyimide films containing 1 mol % of SQ1 in the structure (Production Examples 1, 2, 3a and 4) have the same composition except that they do not contain SQ1 (Comparative Production Example 1 , 2, 6, and 9), the total light transmittance, haze, yellow index, Tg, and CTE are substantially the same, and the tensile product is increased.
 製造例2、比較製造例3、比較製造例4、比較製造例5を比べると、末端に酸無水物基を有するSQ1の代わりに酸無水物基を有さないSQ-109を混合した場合、添加量を1%、15%、50%と増やすにつれてポリアミド酸溶液およびポリイミドフィルムの白濁がみられた。また、SQ-109を混合した場合は抗張積の増大は見られず、添加量を増やすにつれて脆い膜となった。 Comparing Production Example 2, Comparative Production Example 3, Comparative Production Example 4, and Comparative Production Example 5, when SQ-109 having no acid anhydride group was mixed instead of SQ1 having an acid anhydride group at the end, As the addition amount was increased to 1%, 15%, and 50%, the polyamic acid solution and the polyimide film became cloudy. Further, when SQ-109 was added, no increase in tensile product was observed, and the film became brittle as the amount added increased.
 製造例3a~3e、比較製造例6、比較製造例7、比較製造例8を比べると、製造例3a~3eは比較製造例6と比べて抗張積が向上しているが、比較製造例7、比較製造例8は比較製造例6と同程度の抗張積であった。製造例3a、比較製造例7、比較製造例8はいずれも同一の酸無水物基(ノルボルネン酸無水物)を有するシルセスキオキサンを構造中に含むポリイミドであるが、製造例3aに用いたSQ1は酸無水物基とシルセスキオキサン構造の間にチオエーテル基を含み、比較製造例7や比較製造例8に用いたSQN1およびSQN2はチオエーテル基を含まない。抗張積の向上には構造中にチオエーテル基を含むシルセスキオキサンの共重合が有用であることが示唆された。
(応用例1)
 まず、製造例3a(PMDA/TFMB/SQ1)で得たポリイミドフィルムを360mm×460mmの長方形に切り出した。次に、フィルム表面処理としてUV/O照射器(LANテクニカル製SKR1102N-03)を用い、UV/Oの照射を3分間行った。この時UV/Oランプとフィルムとの距離は30mmとした。
Comparing Production Examples 3a to 3e, Comparative Production Example 6, Comparative Production Example 7, and Comparative Production Example 8, Production Examples 3a to 3e have an improved tensile product compared to Comparative Production Example 6, but the Comparative Production Example 7. Comparative Production Example 8 had a tensile product comparable to that of Comparative Production Example 6. Production Example 3a, Comparative Production Example 7, and Comparative Production Example 8 are all polyimides containing silsesquioxane having the same acid anhydride group (norbornenic anhydride) in the structure, but were used in Production Example 3a. SQ1 contains a thioether group between the acid anhydride group and the silsesquioxane structure, and SQN1 and SQN2 used in Comparative Production Examples 7 and 8 do not contain a thioether group. It was suggested that copolymerization of silsesquioxanes containing thioether groups in the structure is useful for improving the tensile product.
(Application example 1)
First, the polyimide film obtained in Production Example 3a (PMDA/TFMB/SQ1) was cut into a rectangle of 360 mm×460 mm. Next, UV/O 3 irradiation was performed for 3 minutes using a UV/O 3 irradiator (SKR1102N-03 manufactured by LAN Technical Co., Ltd.) for film surface treatment. At this time, the distance between the UV/O3 lamp and the film was 30 mm.
 ディスプレイ用ガラス(370mm×470mm、厚さ0.7mmのガラス基板:日本電気硝子社製OA10G)にシランカップリング剤として3-アミノプロピルトリメトキシシラン(信越化学工業社製、KBM-903)をスプレーコーターにて塗布した。なおガラス基板は、純水洗浄、乾燥後にUV/O照射器(LANテクニカル製SKR1102N-03)で1分間照射してドライ洗浄したものを用いた。 Spray 3-aminopropyltrimethoxysilane (KBM-903, manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent on display glass (370 mm × 470 mm, 0.7 mm thick glass substrate: OA10G manufactured by Nippon Electric Glass Co., Ltd.) It was applied with a coater. The glass substrate used was washed with pure water, dried, irradiated with a UV/O 3 irradiator (SKR1102N-03 manufactured by LAN Technical Co., Ltd.) for 1 minute, and dried.
 次いで、シランカップリング剤を塗布したガラス基板を、シリコーンゴムローラーを装備したロールラミネータにセットし、まずシランカップリング剤塗布面にスポイトで500mlの純水を基板全体に広がるように滴下し、基板を濡らした。 Next, the glass substrate coated with the silane coupling agent is set on a roll laminator equipped with a silicone rubber roller. got wet.
 前記表面処理を行ったポリイミドフィルムの表面処理面を、ガラス基板のシランカップリング剤塗布面、すなわち純水で濡らした面に対向するように重ね、ガラス基板の一方の一辺から順次回転ロールでポリイミドフィルムとガラス基板間の純水を押し出しながら加圧して、ガラス基板とポリイミドフィルムをラミネートして仮積層体を得た。使用したラミネータは、MCK社製の有効ロール幅650mmのラミネータであり、貼合条件は、エアー元圧力:0.5MPa、ラミネート速度:50mm/秒、ロール温度:22℃、環境温度22度、湿度55%RHであった。 The surface-treated surface of the polyimide film subjected to the surface treatment is superimposed so as to face the silane coupling agent-coated surface of the glass substrate, that is, the surface wetted with pure water, and the polyimide is sequentially applied from one side of the glass substrate with a rotating roll. A temporary laminate was obtained by laminating the glass substrate and the polyimide film by applying pressure while extruding pure water between the film and the glass substrate. The laminator used was a laminator with an effective roll width of 650 mm manufactured by MCK. It was 55% RH.
 得られた仮積層体を、クリーンオーブンにて200℃10分間加熱処理し、ポリイミドフィルムとガラス基板からなる積層体を得た。 The resulting temporary laminate was heat-treated in a clean oven at 200°C for 10 minutes to obtain a laminate consisting of a polyimide film and a glass substrate.
 得られた積層体のポリイミドフィルム面に、以下の工程によりタングステン膜(膜厚75nm)を形成し、さらに大気にふれることなく、絶縁膜として酸化シリコン膜(膜厚150nm)を積層形成した。次いで、プラズマCVD法で下地絶縁膜となる酸化窒化シリコン膜(膜厚100nm)を形成し、さらに大気にふれることなく、アモルファスシリコン膜(膜厚54nm)を積層形成した。 A tungsten film (thickness: 75 nm) was formed on the polyimide film surface of the obtained laminate by the following steps, and a silicon oxide film (thickness: 150 nm) was laminated as an insulating film without being exposed to the atmosphere. Next, a silicon oxynitride film (thickness: 100 nm) serving as a base insulating film was formed by plasma CVD, and an amorphous silicon film (thickness: 54 nm) was laminated without being exposed to the atmosphere.
 得られたアモルファスシリコン膜を用いてTFT素子を作製した。まず、アモルファスシリコン薄膜をパターニングを行って所定の形状のシリコン領域を形成し、適宜、ゲート絶縁膜の形成、ゲート電極の形成、活性領域へのドーピングによるソース領域またはドレイン領域の形成、層間絶縁膜の形成、ソース電極およびドレイン電極の形成、活性化処理を行い、PチャンネルTFTのアレイを作製した。 A TFT element was fabricated using the obtained amorphous silicon film. First, an amorphous silicon thin film is patterned to form a silicon region of a predetermined shape, and then a gate insulating film is formed, a gate electrode is formed, an active region is doped to form a source region or a drain region, and an interlayer insulating film is formed. , formation of a source electrode and a drain electrode, and activation treatment were performed to fabricate an array of P-channel TFTs.
 TFTアレイ外周の0.5mm程度内側に沿ってUV-YAGレーザーにてポリイミドフィルム部を焼き切り、切れ目の端部から薄いカミソリ状の刃を用いてすくい上げるように剥離を行い、フレキシブルなA3サイズのTFTアレイを得た。剥離は極微力で可能であり、TFTにダメージを与えること無く剥離することが可能であった。得られたフレキシブルTFTアレイは5mmφの丸棒に巻き付けても性能劣化は見られず、良好な特性を維持した。 A UV-YAG laser is used to burn off the polyimide film part along the inside of the outer circumference of the TFT array by about 0.5 mm. got an array. The peeling was possible with very little force, and the peeling was possible without damaging the TFT. The resulting flexible TFT array was wound around a round bar of 5 mm in diameter without deterioration in performance and maintained good characteristics.
 以上のように、本発明のポリイミドフィルムは、シルセスキオキサン化合物を含まない場合と比較して、同等レベルの光学特性、熱特性を維持しつつ、良好な機械特性を有することが示された。本発明のポリイミドフィルムは優れた光学特性、無色透明性を有し、かつ機械特性にすぐれ、比較的低いCTEを示すため、該フィルムをガラスなどの平面上でかつ剛性のある無機基板に貼り合わせたのちにフィルム上に各種電子デバイス加工を行い、最終的に無機基板から剥離することで、フレキシブルな電子デバイスを作製することができる。
 
As described above, the polyimide film of the present invention has good mechanical properties while maintaining the same level of optical properties and thermal properties as compared to the case where the silsesquioxane compound is not contained. . The polyimide film of the present invention has excellent optical properties, colorless transparency, excellent mechanical properties, and exhibits a relatively low CTE. After that, various electronic device processing is performed on the film, and finally the film is separated from the inorganic substrate, whereby a flexible electronic device can be produced.

Claims (5)

  1.  ジカルボン酸無水物基を有するシルセスキオキサン化合物であって、
     一般式:RSi(ORで表されるチオール基含有トリアルコキシシラン類a1と、
     (式中、Rは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基の少なくとも1つの水素がチオール基に置換されている有機基を表し、Rは、相互に独立して、水素原子、炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表す。)
     チオール基を有しないトリアルコキシシラン類a2と、
    の縮合物Bのチオール基と、
     ビニル基、アルケニル基、シクロアルケニル基、アルキニル基、および酸塩化物基から選択される少なくとも1種の反応性基を有するジカルボン酸無水物Cの前記反応性基と、
    が反応してなるシルセスキオキサン化合物。
    A silsesquioxane compound having a dicarboxylic anhydride group,
    thiol group-containing trialkoxysilanes a1 represented by the general formula: R 1 Si(OR 2 ) 3 ;
    (Wherein, R 1 is an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms. represents an organic group substituted with a thiol group, R 2 is each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, Or represents an aromatic hydrocarbon group having 6 to 8 carbon atoms.)
    trialkoxysilanes a2 having no thiol group;
    a thiol group of the condensate B of
    said reactive group of dicarboxylic anhydride C having at least one reactive group selected from vinyl group, alkenyl group, cycloalkenyl group, alkynyl group, and acid chloride group;
    A silsesquioxane compound formed by the reaction of
  2.  下記の一般式(1)及び(2)で表される構造単位を有する、ジカルボン酸無水物基を有するシルセスキオキサン化合物。
    Figure JPOXMLDOC01-appb-C000001
     (式中、Qは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表し、Qは単結合、炭素数1~8の炭化水素基、炭素数1~8の炭化水素基の炭素原子の1つ以上が酸素で置換されている有機基、またはカルボニル基であり、Xは、炭素-炭素結合であるか、又は炭素数4~10の脂肪族環、炭素数6~10の芳香族環、若しくはこれらを構成する炭素の一部が酸素又はイオウで置換された複素環であり、これらに結合する水素の1つ以上が炭化水素基で置換されていてもよく、1.0≦m≦2.0であり、1.4≦n≦1.6である。)
    Figure JPOXMLDOC01-appb-C000002
     (式中、Qは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表し、1.4≦n≦1.6である。)
    A silsesquioxane compound having a dicarboxylic anhydride group and having structural units represented by the following general formulas (1) and (2).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, Q 1 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms, and Q 2 is a single bond, a hydrocarbon group having 1 to 8 carbon atoms, an organic group in which one or more carbon atoms of the hydrocarbon group having 1 to 8 carbon atoms are substituted with oxygen, or a carbonyl group, and X is carbon- a carbon bond, or an aliphatic ring having 4 to 10 carbon atoms, an aromatic ring having 6 to 10 carbon atoms, or a heterocyclic ring in which some of the carbon atoms constituting these are substituted with oxygen or sulfur; One or more of the hydrogens bonded to may be substituted with a hydrocarbon group, and 1.0 ≤ m ≤ 2.0 and 1.4 ≤ n ≤ 1.6.)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, Q 3 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms, and 1.4 ≤ n ≤ 1.6.)
  3.  前記トリアルコキシシラン類a2のモル比([a2のモル数]/[a1のモル数+a2のモル数])、又は一般式(2)で表される構造単位のモル比([構造単位(2)]/[構造単位(1)+構造単位(2)])が、0.1以上0.7以下である、請求項1又は2に記載のシルセスキオキサン化合物。 The molar ratio of the trialkoxysilanes a2 ([moles of a2]/[moles of a1+moles of a2]), or the molar ratio of the structural units represented by the general formula (2) ([structural unit (2 )]/[Structural unit (1)+Structural unit (2)]) is 0.1 or more and 0.7 or less, The silsesquioxane compound according to claim 1 or 2.
  4.  前記ジカルボン酸無水物Cが、下記から選択される化学式で表される化合物である、請求項1又は3に記載のシルセスキオキサン化合物。
    Figure JPOXMLDOC01-appb-C000003
     (式中、Rxは、炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表す。)
    The silsesquioxane compound according to claim 1 or 3, wherein the dicarboxylic anhydride C is a compound represented by a chemical formula selected from the following.
    Figure JPOXMLDOC01-appb-C000003
    (Wherein, Rx represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms.)
  5.  以下の工程を順に含む、ジカルボン酸無水物基を有するシルセスキオキサン化合物の製造方法。 
     一般式:RSi(ORで表されるチオール基含有トリアルコキシシラン類a1と、
     (式中、Rは炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基の少なくとも1つの水素がチオール基に置換されている有機基を表し、Rは、相互に独立して、水素原子、炭素数1~8の脂肪族炭化水素基、炭素数4~8の脂環式炭化水素基、または炭素数6~8の芳香族炭化水素基を表す。)
    チオール基を有しないトリアルコキシシラン類a2と、水とを、酸性触媒を用いて加水分解反応させ反応混合物xを得る第1工程、
     前記反応混合物xから前記酸性触媒を除去し、反応混合物yを得る第2工程、
     塩基性触媒を含む極性溶剤と前記反応混合物yを混合して縮合させることによりチオール基を有する縮合物Bを得る第3工程、及び
     前記縮合物Bと、ビニル基、アルケニル基、シクロアルケニル基、アルキニル基、および酸塩化物基から選択される少なくとも1種の反応性基を有するジカルボン酸無水物Cと、を反応させる第4工程。
     
    A method for producing a silsesquioxane compound having a dicarboxylic anhydride group, comprising the following steps in order.
    thiol group-containing trialkoxysilanes a1 represented by the general formula: R 1 Si(OR 2 ) 3 ;
    (Wherein, R 1 is an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 8 carbon atoms. represents an organic group substituted with a thiol group, R 2 is each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 4 to 8 carbon atoms, Or represents an aromatic hydrocarbon group having 6 to 8 carbon atoms.)
    A first step of hydrolyzing a trialkoxysilane a2 having no thiol group and water using an acidic catalyst to obtain a reaction mixture x;
    a second step of removing the acidic catalyst from the reaction mixture x to obtain a reaction mixture y;
    A third step of obtaining a condensate B having a thiol group by mixing and condensing a polar solvent containing a basic catalyst and the reaction mixture y, and the condensate B, a vinyl group, an alkenyl group, a cycloalkenyl group, A fourth step of reacting with a dicarboxylic anhydride C having at least one reactive group selected from an alkynyl group and an acid chloride group.
PCT/JP2022/025227 2021-06-29 2022-06-24 Silsesquioxane compound and method for producing same WO2023276864A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023531889A JPWO2023276864A1 (en) 2021-06-29 2022-06-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021107655 2021-06-29
JP2021-107655 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023276864A1 true WO2023276864A1 (en) 2023-01-05

Family

ID=84691284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025227 WO2023276864A1 (en) 2021-06-29 2022-06-24 Silsesquioxane compound and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2023276864A1 (en)
WO (1) WO2023276864A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116285863A (en) * 2023-02-17 2023-06-23 深圳市聚芯源新材料技术有限公司 Composite engineering plastic with low dielectric constant and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114663A (en) * 1973-02-16 1974-11-01
JPH07196797A (en) * 1993-12-28 1995-08-01 Toyobo Co Ltd Polyamide-imide resin and its production
JP2005537318A (en) * 2002-08-30 2005-12-08 ユニヴァーシティ オブ ピッツバーグ Synthesis of N-vinylformamide
JP2007001174A (en) * 2005-06-24 2007-01-11 Toyobo Co Ltd Multilayer polyimide film
WO2008146637A1 (en) * 2007-05-24 2008-12-04 Mitsubishi Gas Chemical Company, Inc. Process and apparatus for production of colorless transparent resin film
WO2010140551A1 (en) * 2009-06-02 2010-12-09 日産化学工業株式会社 Composition for forming silicon-containing resist underlayer film having sulfide bond
WO2020175337A1 (en) * 2019-02-27 2020-09-03 富士フイルム株式会社 Laminated body, article provided with laminated body, and image display device
JP2020184010A (en) * 2019-05-07 2020-11-12 Jsr株式会社 Radiation-sensitive composition, insulation film for display device, display device, method of forming insulation film for display device, and silsesquioxane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114663A (en) * 1973-02-16 1974-11-01
JPH07196797A (en) * 1993-12-28 1995-08-01 Toyobo Co Ltd Polyamide-imide resin and its production
JP2005537318A (en) * 2002-08-30 2005-12-08 ユニヴァーシティ オブ ピッツバーグ Synthesis of N-vinylformamide
JP2007001174A (en) * 2005-06-24 2007-01-11 Toyobo Co Ltd Multilayer polyimide film
WO2008146637A1 (en) * 2007-05-24 2008-12-04 Mitsubishi Gas Chemical Company, Inc. Process and apparatus for production of colorless transparent resin film
WO2010140551A1 (en) * 2009-06-02 2010-12-09 日産化学工業株式会社 Composition for forming silicon-containing resist underlayer film having sulfide bond
WO2020175337A1 (en) * 2019-02-27 2020-09-03 富士フイルム株式会社 Laminated body, article provided with laminated body, and image display device
JP2020184010A (en) * 2019-05-07 2020-11-12 Jsr株式会社 Radiation-sensitive composition, insulation film for display device, display device, method of forming insulation film for display device, and silsesquioxane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116285863A (en) * 2023-02-17 2023-06-23 深圳市聚芯源新材料技术有限公司 Composite engineering plastic with low dielectric constant and preparation method thereof
CN116285863B (en) * 2023-02-17 2024-01-23 深圳市聚芯源新材料技术有限公司 Composite engineering plastic with low dielectric constant and preparation method thereof

Also Published As

Publication number Publication date
JPWO2023276864A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
JP6274109B2 (en) Polyimide resin composition
JP2020125485A (en) Polyimide film
KR102062421B1 (en) Polyimide precursor, polyimide, varnish, polyimide film, and substrate
TWI772260B (en) Polyimide precursor composition and polyimide composition
KR102145141B1 (en) Polyamic acid solution composition and polyimide
WO2015002273A1 (en) Polyimide resin
KR20190082281A (en) A laminate comprising a polyimide film and a hard coat layer
JP7047852B2 (en) Polyimide precursors, polyimides, polyimide films, varnishes, and substrates
JPWO2012124664A1 (en) Polyimide precursor and polyimide
WO2016063988A1 (en) Polyimide precursor, polyimide, and polyimide film
WO2014038714A1 (en) Polyimide precursor, polyimide, varnish, polyimide film, and substrate
WO2023276864A1 (en) Silsesquioxane compound and method for producing same
JP2015129201A (en) Polyamic acid solution composition and polyimide
KR20230066346A (en) Polymer composition, varnish, and polyimide film
JP7069478B2 (en) Polyimide, polyimide solution composition, polyimide film, and substrate
WO2018016526A1 (en) Polyimide resin film and method for producing polyimide resin film
WO2017051783A1 (en) Polyimide resin and polyimide film
WO2023276880A1 (en) Polyamic acid, polyimide, and use thereof
WO2020141614A2 (en) Polyimide, polyamic acid, resin solution, coating agent, and polyimide film
WO2023276887A1 (en) Poly(amic acid), polyimide, and uses thereof
WO2021054476A1 (en) Method for manufacturing flexible electronic device
WO2023013453A1 (en) Electronic display apparatus
WO2021193978A1 (en) Polyimide precursor composition and polyimide film/substrate laminate
WO2022114136A1 (en) Polyimide precursor composition, polyimide film, and polyimide film/substrate laminate
WO2023085041A1 (en) Polyimide resin, varnish, and polyimide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023531889

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE