WO2023276699A1 - Liquid-crystal polymer composition and molded liquid-crystal polymer - Google Patents

Liquid-crystal polymer composition and molded liquid-crystal polymer Download PDF

Info

Publication number
WO2023276699A1
WO2023276699A1 PCT/JP2022/024120 JP2022024120W WO2023276699A1 WO 2023276699 A1 WO2023276699 A1 WO 2023276699A1 JP 2022024120 W JP2022024120 W JP 2022024120W WO 2023276699 A1 WO2023276699 A1 WO 2023276699A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polymer
polymer composition
mass
group
Prior art date
Application number
PCT/JP2022/024120
Other languages
French (fr)
Japanese (ja)
Inventor
洋 八木
Original Assignee
大塚化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学株式会社 filed Critical 大塚化学株式会社
Priority to CN202280038059.2A priority Critical patent/CN117396557A/en
Priority to JP2023531787A priority patent/JPWO2023276699A1/ja
Publication of WO2023276699A1 publication Critical patent/WO2023276699A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a liquid crystal polymer composition and a liquid crystal polymer molded article using the liquid crystal polymer composition.
  • Liquid crystal polymers are used in various parts due to their excellent mechanical strength, moldability, dimensional accuracy, chemical resistance, moisture resistance, and electrical properties.
  • its use in electronic components such as precision equipment is being studied, and its use in camera modules, for example, is being studied.
  • the optical characteristics deteriorate when small particles of dirt, dust, dust, etc. adhere to the lens or image sensor. Therefore, in order to prevent such degradation of optical characteristics, camera module parts are usually ultrasonically cleaned before assembly to remove small dirt, dust, dust, etc. adhering to the surface.
  • a molded body made of a liquid crystal polymer liquid crystal polymer molded body
  • the surface of the molded body tends to peel off due to the high crystal orientation of the liquid crystal polymer. is known to occur. It is known that small particles are likely to be generated from this fibrillated part, and with the increase in the number of pixels that accompanies the high performance of camera modules, even minute foreign matter of less than 1 ⁇ m can cause defects. may become
  • Patent Document 1 discloses a composition containing a thermotropic liquid crystal polymer and inorganic particles having a Mohs hardness of 2.5 or more. disclosed.
  • the adhesive that bonds the parts to each other lacks the adhesive strength between the parts, causing the parts to peel off.
  • detachment of parts due to dropping directly affects product performance, such as affecting the operation of camera modules. Improving the adhesive force between the adhesive and the part is a major issue.
  • the liquid crystal polymer molded body that constitutes the parts of these mechanisms is required to have improved adhesiveness to adhesives such as epoxy resin.
  • Patent Document 1 there is no description or suggestion of problems related to the improvement of adhesiveness with an adhesive. There was a problem that the sex was not enough.
  • the present invention provides a liquid crystal polymer composition and a liquid crystal which is a molded product of the liquid crystal polymer composition, which can improve the adhesion between parts used therein. It was completed for the purpose of providing a polymer molding.
  • an object of the present invention is to solve such problems, and it is possible to obtain a molded article having excellent adhesiveness to an adhesive such as an epoxy resin, and to improve the adhesiveness between parts made of the molded article, or to improve the adhesion from the molded article.
  • An object of the present invention is to provide a liquid crystal polymer composition and a liquid crystal polymer molded product which is a molded product of the liquid crystal polymer composition, which is capable of improving adhesion between a part and other parts.
  • the present inventors have found that a liquid crystal polymer (A), an epoxy compound (B) having less than 3 epoxy groups in the molecule, and barium sulfate (C)
  • a liquid crystal polymer composition obtained by blending (1) and (2) can obtain an excellent effect in terms of adhesion to an adhesive agent such as an epoxy resin when formed into a molded article, and have completed the present invention. That is, the gist of the present invention is as follows.
  • Item 1 A liquid crystal polymer composition characterized by blending a liquid crystal polymer (A), an epoxy compound (B) having less than 3 epoxy groups in the molecule, and barium sulfate (C) .
  • Item 2 The liquid crystal polymer composition according to Item 1, wherein the epoxy compound (B) is a biphenyl-type epoxy monomer represented by the following general formula (I).
  • n and m each represent an arbitrary integer selected from 0 to 2 (except when both n and m are 0).
  • R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms and may have a substituent; R 1 and R 2 may be the same or different; good.
  • a and b each represent an arbitrary integer selected from 0 to 2;
  • the phenyl structures on the left and right sides of the biphenyl skeleton may be the same or different.
  • Item 3 The liquid crystal polymer composition according to item 1 or 2, wherein in the general formula (I), n and m are each 1, and R 1 and R 2 each represent a methyl group.
  • Item 4 Items 1 to 3, characterized in that the content of the epoxy compound (B) is 0.1% by mass to 5.0% by mass in the total amount of 100% by mass of the liquid crystal polymer composition.
  • Item 5 The liquid crystal polymer composition according to any one of Items 1 to 4, wherein the liquid crystal polymer (A) is a wholly aromatic liquid crystal polymer.
  • Item 6 The liquid crystal polymer composition according to any one of Items 1 to 5, further comprising a reinforcing material (D).
  • Item 7 The liquid crystal polymer composition according to Item 6, wherein the reinforcing material (D) is treated with a hydrophobic surface treatment agent.
  • Item 8 The liquid crystal polymer composition according to Item 7, wherein the hydrophobic surface treating agent is an alkoxysilane represented by the following general formula (II).
  • n represents an arbitrary integer selected from 1 to 3
  • R 1 represents an alkyl group, alkenyl group or aryl group
  • R 2 represents an alkyl group.
  • Item 9 The liquid crystal polymer composition according to any one of Items 6 to 8, wherein the reinforcing material (D) has an average fiber length of 1 ⁇ m to less than 300 ⁇ m.
  • Item 10 The liquid crystal polymer composition according to any one of Items 6 to 9, wherein the reinforcing material (D) is at least one of potassium titanate fiber and wollastonite fiber.
  • Item 11 Any one of Items 6 to 10, wherein the content of the reinforcing material (D) is 0.1% by mass to 40% by mass in the total amount of 100% by mass of the liquid crystal polymer composition. 1. The liquid crystal polymer composition according to item 1.
  • Item 12 The liquid crystal polymer composition according to any one of Items 1 to 11, characterized by being used in a camera module.
  • Item 13 A liquid crystal polymer molded article, characterized by being a molded article of the liquid crystal polymer composition according to any one of items 1 to 12.
  • a molded article having excellent adhesion to an adhesive such as an epoxy resin, and the adhesion between parts made of the molded article, or the adhesion between parts made of the molded article and other parts. It is possible to provide a liquid crystal polymer composition and a liquid crystal polymer molded article that is a molded article of the liquid crystal polymer composition, which can improve the properties.
  • the liquid crystal polymer composition of the present invention comprises a liquid crystal polymer (A), an epoxy compound (B) having less than 3 epoxy groups in the molecule, and barium sulfate (C).
  • the liquid crystal polymer composition of the present invention may further contain reinforcing material (D), particulate carbon material (E), fluororesin (F), solid lubricant, and other additives as required. good too.
  • the liquid crystal polymer composition of the present invention has the above structure, it is possible to obtain a molded article having excellent adhesion to an adhesive such as an epoxy resin, and the adhesion between parts made of the molded article, or the adhesion of the molded article to each other. It is possible to improve the adhesion between the part made of and other parts.
  • the liquid crystal polymer composition of the present invention contains a liquid crystal polymer (A) (hereinafter sometimes referred to as "component (A)").
  • the liquid crystal polymer (A) is a melt-processable polymer having properties capable of forming an optically anisotropic melt phase, and is not particularly limited as long as it is called a thermotropic liquid crystal polymer in the technical field.
  • Optically anisotropic melt phases can be identified by conventional polarimetry using crossed polarizers.
  • the liquid crystal polymer (A) has an elongated and flat molecular shape and a highly rigid molecular chain (referred to as a "mesogenic group") along the long molecular chain.
  • the liquid crystal polymer (A) may have mesogenic groups in either or both of its main chain and side chains. It is preferable to have a mesogenic group in the molecular main chain.
  • component (A) examples include liquid crystalline polyesters, liquid crystalline polyester amides, liquid crystalline polyester ethers, liquid crystalline polyester carbonates, liquid crystalline polyester imides, and liquid crystalline polyamides.
  • liquid crystal polyesters, liquid crystal polyesteramides, and liquid crystal polyamides are preferred as the component (A) from the viewpoint of obtaining a liquid crystal polymer molded article having superior strength.
  • the component (A) is preferably a liquid crystal polyester or a liquid crystal polyesteramide, more preferably a liquid crystal polyester.
  • liquid crystal polymers (A1) to (A6) can be mentioned, preferably a wholly aromatic liquid crystal polymer using only an aromatic compound as a raw material monomer.
  • a liquid crystal polymer selected from these may be used alone as component (A), or two or more of them may be used in combination as component (A).
  • a liquid crystal polymer such as a liquid crystal polyester amide can be mentioned, and
  • Ar 1 and Ar 4 each independently represent a 1,4-phenylene group, a 2,6-naphthalenediyl group or a 4,4-biphenylylene group
  • Ar 2 , Ar 3 , Ar 5 and Ar 6 are Each independently represents a 1,4-phenylene group, a 2,6-naphthalenediyl group, a 1,3-phenylene group or a 4,4-biphenylylene group
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar Part or all of the hydrogen atoms on the aromatic ring of 5 and Ar 6 may be substituted with a halogen atom, an alkyl group, or an aryl group.
  • the repeating unit represented by formula (1) is a repeating unit derived from an aromatic hydroxycarboxylic acid
  • the aromatic hydroxycarboxylic acid include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy -2-naphthoic acid, 7-hydroxy-2-naphthoic acid, 6-hydroxy-1-naphthoic acid, 4-hydroxybiphenyl-4-carboxylic acid, or one of the hydrogens on the aromatic ring in these aromatic hydroxycarboxylic acids
  • Aromatic hydroxycarboxylic acids partially or wholly substituted with an alkyl group, an aryl group, or a halogen atom can be mentioned.
  • the repeating unit represented by formula (2) is a repeating unit derived from an aromatic dicarboxylic acid.
  • aromatic dicarboxylic acid examples include terephthalic acid, phthalic acid, 4,4-diphenyldicarboxylic acid, 2,6 -Naphthalenedicarboxylic acid, isophthalic acid, or aromatic dicarboxylic acids in which some or all of the hydrogen atoms on the aromatic rings of these aromatic dicarboxylic acids are substituted with alkyl groups, aryl groups, or halogen atoms.
  • the repeating unit represented by formula (3) is a repeating unit derived from an aromatic diol.
  • the aromatic diol include hydroquinone, resorcinol, naphthalene-2,6-diol, 4,4-biphenylenediol, 3,3-biphenylenediol, 4,4-dihydroxydiphenyl ether, 4,4-dihydroxydiphenyl sulfone, or aromatic diols in which some or all of the hydrogen atoms on the aromatic ring are substituted with an alkyl group, an aryl group, or a halogen atom. and aromatic diols.
  • the repeating unit represented by formula (4) is a repeating unit derived from an aromatic aminocarboxylic acid.
  • aromatic aminocarboxylic acid examples include 4-aminobenzoic acid, 3-aminobenzoic acid, 6-amino -2-naphthoic acid, and aromatic aminocarboxylic acids in which some or all of the hydrogen atoms on the aromatic rings of these aromatic aminocarboxylic acids are substituted with alkyl groups, aryl groups, or halogen atoms.
  • the repeating unit represented by formula (5) is a repeating unit derived from an aromatic amine having a hydroxy group, such as 4-aminophenol, 3-aminophenol, 4-amino-1-naphthol, 4-amino- Examples include 4-hydroxydiphenyl, and aromatic hydroxyamines in which some or all of the hydrogen atoms on the aromatic rings of these aromatic amines having hydroxy groups are substituted with alkyl groups, aryl groups, or halogen atoms.
  • the repeating unit represented by formula (6) is a structural unit derived from an aromatic diamine, and is 1,4-phenylenediamine, 1,3-phenylenediamine, or hydrogen atoms on the aromatic rings of these aromatic diamines.
  • Aromatic diamines partially or wholly substituted with an alkyl group, an aryl group, or a halogen atom can be mentioned.
  • Alkyl groups exemplified as substituents in the above structural units include methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, hexyl, cyclohexyl, octyl, and decyl groups. , linear, branched or alicyclic alkyl groups having 1 to 10 carbon atoms.
  • the aryl group includes aryl groups having 6 to 10 carbon atoms such as phenyl group and naphthyl group.
  • Halogen atoms include fluorine, chlorine, bromine and iodine atoms.
  • At least one liquid crystalline polyester selected from the group consisting of (A1) to (A3) is preferable in terms of obtaining a liquid crystalline polymer molded article having excellent heat resistance and dimensional stability. Liquid crystalline polyesters A1) or (A3) are particularly preferred.
  • the liquid crystal polymer (A) used in the present invention preferably has a melting point of 150°C or higher from the viewpoint of further suppressing deformation, discoloration, etc. and further increasing the heat resistance of the resulting molded product.
  • the melting point is preferably 350° C. or lower, more preferably 330° C. or lower, in order to further suppress thermal decomposition of the liquid crystal polymer (A) during melt processing such as extrusion, molding, and spinning.
  • the melting point can be measured according to JIS-K7121.
  • a liquid crystal polymer having a melt viscosity of 1.0 ⁇ 10 3 mPa ⁇ s to 1.0 ⁇ 10 5 mPa ⁇ s measured at a temperature 20° C. to 40° C. higher than the melting point is preferred.
  • a liquid crystal polymer having a deflection temperature under load of 260° C. or more is called type I
  • a liquid crystal polymer having a deflection temperature under load of 210° C. or more and less than 260° C. is called type II, depending on the difference in heat distortion temperature.
  • Type I liquid crystal polymers are measured at 30° C. above the melting point
  • type II liquid crystal polymers are measured at 40° C. above the melting point.
  • the melt viscosity can be obtained by measuring the viscosity when passing through an orifice with a diameter of 1 mm and a length of 10 mm at a shear rate of 1.0 ⁇ 10 3 sec ⁇ 1 using a capillary rheometer. .
  • component (A) is not particularly limited as long as melt-kneading is possible, and for example, any of powder, granules, and pellets can be used.
  • the content of component (A) in the liquid crystal polymer composition of the present invention is preferably 40% by mass to 98% by mass, more preferably 50% by mass to 94% by mass, based on the total amount of 100% by mass of the liquid crystal polymer composition. is more preferable, and 60% by mass to 90% by mass is even more preferable.
  • Epoxy compound (B) having less than 3 epoxy groups in the molecule contains an epoxy compound (B) having less than 3 epoxy groups in the molecule (hereinafter sometimes referred to as "component (B)").
  • the epoxy compound (B) having less than 3 epoxy groups in the molecule preferably contains 2 or less, more preferably 1 or 2, and still more preferably 2 epoxy functional groups in the same molecule.
  • Epoxy compounds that The skeleton of the epoxy compound (B) is not particularly limited, but is preferably a biphenyl-type epoxy monomer represented by the following general formula (I).
  • n and m each represent an arbitrary integer selected from 0 to 2 (except when both n and m are 0).
  • R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms and may have a substituent; R 1 and R 2 may be the same or different; good.
  • a and b each represent an arbitrary integer selected from 0 to 2;
  • the phenyl structures on the left and right sides of the biphenyl skeleton may be the same or different.
  • the mechanism by which the adhesiveness of the liquid crystal polymer molded body to an adhesive such as an epoxy resin is further enhanced is not clear, but it is possible to bond parts made of the liquid crystal polymer molded body via an adhesive such as an epoxy resin.
  • the epoxy group or glycidyl group in the component (B) and the adhesive When bonding the same parts to each other or to other parts, by containing the component (B) in the liquid crystal polymer composition constituting the molded product, the epoxy group or glycidyl group in the component (B) and the adhesive The chemical reaction with the terminal groups (amide group, amino group, carboxyl group, aminocarboxyl group, etc.) of the curing agent contained in is promoted, and the adhesiveness between the molded parts and the adhesive is improved, and the equipment and parts This is thought to be due to the fact that it is possible to suppress the adhesion peeling of the parts at the time of collision or drop. It is preferable that the other parts have excellent adhesiveness with the epoxy adhesive.
  • the types of hydrocarbon groups for R 1 and R 2 in the above general formula (I) of component (B) are determined by the glycidyl ether group of component (B) in the liquid crystal polymer composition of the present invention and the adhesive agent such as epoxy resin. From the standpoint of promoting the curing reaction of and further improving the adhesiveness between parts, when it has a substituent, it is preferably a methyl group (--CH 3 group) with little steric hindrance.
  • the position of the glycidyl ether group of the above general formula (I) of component (B) is not particularly limited, but the position of the glycidyl ether group of component (B) in the liquid crystal polymer composition of the present invention and an adhesive such as an epoxy resin From the viewpoint of promoting the curing reaction and further improving the adhesion between parts, when two glycidyl ether groups are contained in the component (B), the chemical reaction within the molecule of the component (B) is further enhanced.
  • glycidyl ether groups are 3,3′, 3,4′, 3,5′, 4,3′, 4,4′, 4,5′, 3,4′. , or preferably at the 5,4′ positions, more preferably at the 4,4′ positions.
  • R 1 and R 2 are, for example, 2,2′-position, 2,6′-position or 6,2′-position, 2,3′-position or 3,2′-position when the glycidyl ether group is in 4,4′-position. 2,5′ or 5,2′, 6,6′, 6,3′ or 3,6′, 6,5′ or 5,6′, 3,3′, It may be provided at any one of the 3,5′ positions or the 5,3′ and 5,5′ positions. However, R 1 and R 2 are preferably provided at any one of 3,3′-position, 3,5′-position or 5,3′-position and 5,5′-position, and 3,3 It is particularly preferred to be provided at both the '-position and the 5,5'-position.
  • Examples of the epoxy compound (B) having glycidyl ether groups at the 4,4' positions include biphenyl-type epoxy monomers represented by the following formula (III).
  • both R 1 and R 2 are methyl groups. Also, R 1 and R 2 are provided at the 3,3′ and 5,5′ positions.
  • the epoxy compound (B) is contained from the viewpoint of further lowering the coefficient of dynamic friction and/or the coefficient of static friction while enhancing the adhesiveness of the epoxy compound (B) having less than 3 epoxy groups in the molecule.
  • the amount is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and preferably 0.8% by mass or more based on the total amount of 100% by mass of the liquid crystal polymer composition. It is more preferably 0.95% by mass or more, particularly preferably 1.2% by mass or more, and most preferably 1.2% by mass or more.
  • the content of the epoxy compound (B) is , preferably 5.0% by mass or less, more preferably 4.5% by mass or less, and even more preferably 3.8% by mass or less with respect to 100% by mass of the total amount of the liquid crystal polymer composition , is particularly preferably 3.5% by mass or less, and most preferably 3.2% by mass or less.
  • the epoxy equivalent of component (B) is preferably from 140 g/eq to 210 g/eq from the viewpoint of further improving adhesiveness while further suppressing deterioration in mechanical strength due to component (B). , more preferably 145 g/eq to 205 g/eq, and particularly preferably 150 g/eq to 200 g/eq.
  • the melting point of component (B) is preferably 100°C or higher and preferably 200°C or lower.
  • the method for producing component (B) is not particularly limited, and it can be produced using a conventionally known method.
  • polyvalent hydroxybiphenyl containing less than 3 hydroxyl groups in the molecule is reacted with epihalohydrin to obtain the biphenyl-type epoxy of general formula (I).
  • polyhydric hydroxybiphenyl as a raw material can be produced by carrying out a cross-coupling reaction.
  • the selectivity of the cross-coupling reaction is not particularly limited. It is preferable from the viewpoint of production efficiency and purity.
  • the method for producing the biphenyl-type epoxy monomer of general formula (I) by reacting polyvalent hydroxybiphenyl containing less than 3 hydroxyl groups in the molecule with epihalohydrin is not particularly limited as long as it is a conventionally known method. However, for example, a method of reacting highly pure polyvalent hydroxybiphenyl synthesized by a regioselective coupling reaction of a phenol derivative with epihalohydrin as described above may be used.
  • the biphenyl-type epoxy monomer represented by the above general formula (I) may be added to a high-purity polyhydroxybiphenyl synthesized by a regioselective coupling reaction of a phenol derivative, to the extent that it does not impair the effects of the present invention.
  • the polyhydric phenol obtained by the method may be used in combination and reacted with epihalohydrin to obtain a biphenyl-type epoxy monomer.
  • component (B) a commercially available product may be used as the component (B).
  • barium sulfate (C) The liquid crystal polymer composition of the present invention contains barium sulfate (C) (hereinafter sometimes referred to as "component (C)").
  • component (C) include elutriated barium sulfate (barite powder) obtained by pulverizing a mineral called barite, deironizing, washing, and elutriating, and artificially synthesized precipitated barium sulfate.
  • component (C) include elutriated barium sulfate (barite powder) obtained by pulverizing a mineral called barite, deironizing, washing, and elutriating, and artificially synthesized precipitated barium sulfate.
  • the particle size can be controlled by the conditions during synthesis, and fine barium sulfate with a small content of coarse particles can be produced. From the viewpoint of further reducing impurities and making the particle size distribution more uniform, it is preferable to use precipitated barium
  • Component (C) is preferably a powder, and its average particle size is preferably 0.1 ⁇ m to 50 ⁇ m, more preferably 0.1 ⁇ m to 30 ⁇ m, still more preferably 0.1 ⁇ m to 5 ⁇ m. , still more preferably 0.15 ⁇ m to 1.2 ⁇ m, particularly preferably 0.2 ⁇ m to 0.8 ⁇ m, most preferably 0.2 ⁇ m to 0.5 ⁇ m.
  • the average particle size of component (C) can be measured by a laser diffraction/scattering method. More specifically, the average particle size of the component (C) is the particle size at 50% cumulative volume (volume-based cumulative 50% particle size) in the particle size distribution measured by a laser diffraction/scattering method, that is, D 50 ( median diameter).
  • D 50 median diameter
  • This volume-based cumulative 50% particle diameter (D 50 ) is obtained by determining the particle size distribution on a volume basis, counting the number of particles from the smallest particle size on the cumulative curve with the total volume as 100%, and the cumulative value is It is the particle diameter at the 50% point.
  • the particle shape of component (C) is not particularly limited as long as it is non-fibrous particles such as spherical, columnar, plate-like, rod-like, columnar, block-like, and irregularly shaped particles, but is preferably spherical or irregularly shaped.
  • the particle shape of component (C) can be analyzed, for example, by scanning electron microscope (SEM) observation.
  • Component (C) may be surface-treated, and examples of treatment agents include coating agents, dispersants, and modifiers.
  • the treatment agent includes fatty acids, waxes, nonionic surfactants, epoxy compounds, isocyanate compounds, silane compounds, titanate compounds, phosphorus compounds, aluminum salts such as alumina, and silicon dioxide. Titanium salts such as silicates and titanium dioxide are included. Although these may be used individually by 1 type, they can also be used in combination of 2 or more types.
  • the content of component (C) in the liquid crystal polymer composition of the present invention is preferably 1% by mass to 30% by mass, more preferably 1% by mass to 20% by mass, in 100% by mass of the total amount of the liquid crystal polymer composition. more preferably 1% by mass to 15% by mass, most preferably 1.5% by mass to 2.5% by mass.
  • the liquid crystal polymer composition of the present invention can contain a reinforcing material (D) (hereinafter sometimes referred to as “component (D)”), if necessary.
  • Component (D) is a powdery reinforcing material composed of particles, and the particle shape is not particularly limited as long as it improves the strength and rigidity of the polymer composition.
  • a fibrous reinforcing material (D1) that is a powder composed of fibrous particles (hereinafter sometimes referred to as “component (D1)"), or a powder composed of plate-like particles
  • component (D2) hereinafter sometimes referred to as "component (D2)
  • fibrous reinforcing materials (D1) and plate-like reinforcing materials (D2) are preferred.
  • the particle shape of component (D) can be analyzed, for example, by scanning electron microscope (SEM) observation.
  • a fibrous particle is defined as a rectangular parallelepiped having the smallest volume among the rectangular parallelepipeds circumscribing the particle (circumscribing rectangular parallelepiped), with the longest side having the major axis L, the next longest side having the minor axis B, and the shortest side having the thickness.
  • T rectangular parallelepiped having the smallest volume among the rectangular parallelepipeds circumscribing rectangular parallelepiped
  • both L/B and L/T are particles of 3 or more
  • the major axis L corresponds to the fiber length
  • the minor axis B corresponds to the fiber diameter.
  • Plate-like particles refer to particles having an L/B of less than 3 and an L/T of 3 or more.
  • the fibrous reinforcing material (D1) include carbon fiber, glass fiber, potassium titanate fiber, wollastonite fiber, aluminum borate, magnesium borate, xonotlite, zinc oxide, basic magnesium sulfate, alumina fiber, Inorganic fibers such as silicon carbide fibers and boron fibers; organic fibers such as aramid fibers and polyphenylenebenzoxazole (PBO) fibers; inorganic fibers are preferred.
  • One of these fibrous reinforcing materials (D1) may be used alone, or two or more of them may be used in combination.
  • the fibrous reinforcing material (D1) is preferably particles having a Mohs hardness of 2.5 or more and 5 or less.
  • a Mohs hardness is an index that indicates the hardness of a substance, and a substance with a lower hardness is obtained when the minerals are rubbed against each other and damaged.
  • the average fiber length of the fibrous reinforcing material (D1) is preferably 1 ⁇ m to 300 ⁇ m, more preferably 1 ⁇ m or more and less than 300 ⁇ m, still more preferably 1 ⁇ m to 200 ⁇ m, from the viewpoint of further reducing particle generation. Especially preferred is 3 ⁇ m to 100 ⁇ m, most preferred is 5 ⁇ m to 50 ⁇ m.
  • the average aspect ratio of the fibrous reinforcing material (D1) is preferably 3-200, more preferably 3-100, still more preferably 3-50, and particularly preferably 3-40.
  • the potassium titanate fiber conventionally known ones can be widely used, and examples thereof include potassium tetratitanate fiber, potassium hexatitanate fiber, potassium octatitanate fiber, and the like.
  • the dimensions of the potassium titanate fibers are not particularly limited as long as they are within the above dimensions, but the average fiber length is preferably 1 ⁇ m to 50 ⁇ m, more preferably 3 ⁇ m to 30 ⁇ m, still more preferably 3 ⁇ m to 20 ⁇ m.
  • the average fiber diameter of the potassium titanate fibers is preferably 0.01 ⁇ m to 1 ⁇ m, more preferably 0.05 ⁇ m to 0.8 ⁇ m, still more preferably 0.1 ⁇ m to 0.7 ⁇ m.
  • the average aspect ratio of the potassium titanate fibers is preferably 10 or more, more preferably 10-100, still more preferably 15-35.
  • These fibrous reinforcing materials (D1) can also be used as commercially available products. 15 ⁇ m, average fiber diameter 0.5 ⁇ m), etc. can be used.
  • Wollastonite fiber is an inorganic fiber made of calcium metasilicate.
  • the dimension of the wollastonite fiber is not particularly limited as long as it is within the dimension range of the fibrous reinforcing material (D1) described above. ⁇ 40 ⁇ m.
  • the average fiber diameter of the wollastonite fibers is preferably 0.1 ⁇ m to 15 ⁇ m, more preferably 1 ⁇ m to 10 ⁇ m, still more preferably 2 ⁇ m to 7 ⁇ m.
  • the average aspect ratio of the wollastonite fibers is preferably 3 or more, more preferably 3-30, and even more preferably 3-15.
  • These fibrous reinforcing materials (D1) can also be used as commercially available products, for example, "Bistal W” (average fiber length: 25 ⁇ m, average fiber diameter: 3 ⁇ m) manufactured by Otsuka Chemical Co., Ltd. can be used.
  • the above average fiber length and average fiber diameter can be measured by observation with a scanning electron microscope (SEM), and the average aspect ratio (average fiber length/average fiber diameter) is calculated from the average fiber length and average fiber diameter.
  • SEM scanning electron microscope
  • a plurality of fibrous reinforcing materials are photographed with a scanning electron microscope (SEM), 300 fibrous reinforcing materials are arbitrarily selected from the observed image, and their fiber lengths and fiber diameters are measured.
  • An average fiber length can be obtained by accumulating all the fiber lengths and dividing by the number, and an average fiber diameter can be obtained by accumulating all the fiber diameters and dividing by the number.
  • the plate-shaped reinforcing material (D2) include mica, mica, sericite, illite, talc, kaolinite, montmorillite, boehmite, smectite, vermiculite, titanium dioxide, potassium titanate, lithium potassium titanate, and magnesium titanate. Potassium, boehmite and the like can be mentioned.
  • These plate-shaped reinforcing materials (D2) may be used alone or in combination of multiple types.
  • the term "plate-like" includes not only the shape of a plate but also the shape of flakes, scales, and the like.
  • the plate-shaped reinforcing material (D2) is preferably particles having a Mohs hardness of 1 or more and less than 2.5, and is more preferably talc.
  • Talc is a hydrous magnesium silicate chemically, generally represented by the chemical formula 4SiO 2 .3MgO.2H 2 O, and is usually scaly particles having a layered structure. These talcs can also be used as commercial products.
  • the average particle size of the plate-shaped reinforcing material (D2) is preferably 1 ⁇ m to 50 ⁇ m, more preferably 3 ⁇ m to 30 ⁇ m, still more preferably 3 ⁇ m to 25 ⁇ m, from the viewpoint of further reducing particle generation, Especially preferred is 5 ⁇ m to 25 ⁇ m.
  • the average particle size of component (D2) can be measured by a laser diffraction/scattering method.
  • the average particle size of the component (D2) is the particle size when the volume-based cumulative 50% in the particle size distribution measured by the laser diffraction/scattering method (volume-based cumulative 50% particle size), that is, D 50 (median diameter).
  • This volume-based cumulative 50% particle diameter (D 50 ) is obtained by determining the particle size distribution on a volume basis, counting the number of particles from the smallest particle size on the cumulative curve with the total volume as 100%, and the cumulative value is It is the particle diameter at the 50% point.
  • component (D) is preferably a reinforcing material at least part of the surface of which is covered with a treated layer composed of a hydrophobic surface treating agent.
  • the treated layer preferably covers 50% or more, more preferably 80% or more, of the surface of the reinforcing material (D). However, it is particularly preferred that the treated layer covers the entire surface of the reinforcing material (D).
  • component (D) is composed of a reinforcing material whose surface is at least partially covered with a treated layer composed of a hydrophobic surface treatment agent, and a hydrophobic surface treatment agent, as long as the preferred physical properties are not impaired. Mixtures with uncovered untreated reinforcements may also be used.
  • hydrophobic surface treatment agents examples include silane coupling agents, titanium coupling agents, and aluminate coupling agents. Among these, silane coupling agents are preferred, and hydrophobic alkyl-based silane coupling agents are more preferred.
  • Hydrophobic silane coupling agents include essentially hydrophobic functional groups such as alkyl groups and aryl groups, and hydrolyzable functional groups that generate groups capable of reacting with hydrophilic groups on the surface of the reinforcing material. Anything you have is fine.
  • hydrophobic alkyl-based silane coupling agents include alkoxysilanes represented by the following general formula (II).
  • n represents an arbitrary integer selected from 1 to 3
  • R 1 represents an alkyl group, an alkenyl group or an aryl group, and these groups may have a substituent .
  • R2 represents an alkyl group, these groups may have substituents, and when there are multiple R2s, they may be the same or different.
  • Examples of the alkyl group represented by R 1 include alkyl groups such as heptyl group, octyl group, nonyl group, decyl group, dodecyl group, hexadecyl group, octadecyl group and icosyl group.
  • the number of carbon atoms in the alkyl group is preferably 8 or more, more preferably 10 or more.
  • the mechanical strength such as impact resistance of the obtained liquid crystal polymer molding can be further enhanced.
  • the adhesiveness between parts made of the obtained liquid crystal polymer molded article or between parts made of the liquid crystal polymer molded article and other parts is further improved.
  • the mechanism by which this is possible is not clear, it is thought to be due to the acceleration of the curing reaction with an adhesive such as an epoxy resin or the improvement in the elongation properties of the liquid crystal polymer molding itself.
  • the upper limit of the number of carbon atoms in the alkyl group is not particularly limited, but can be, for example, 20 or less.
  • alkyl groups may have a cyclic structure or a branched structure. Alkyl groups generally tend to have a higher degree of hydrophobicity as the number of straight-chain carbon atoms increases.
  • the alkyl group may have 1 to 4 (preferably 1 to 3, more preferably 1) substituents described later at any position.
  • alkenyl groups represented by R 1 include vinyl groups and butenyl groups. These may have a cyclic structure or a branched structure. In addition, the alkenyl group may have 1 to 4 (preferably 1 to 3, more preferably 1) substituents described later at any position.
  • Examples of the aryl group represented by R 1 include a phenyl group and a naphthyl group.
  • the aryl group may have 1 to 4 (preferably 1 to 3, more preferably 1) substituents described later at any position.
  • Each group represented by R 1 may have a substituent as long as it does not interfere with its hydrophobicity.
  • substituents include hydrophobic substituents such as fluorine atoms and (meth)acryloxy groups.
  • alkyl group represented by R 1 may have the aryl group exemplified above as a hydrophobic substituent. Also, the aryl group represented by R 1 may have an alkyl group as a hydrophobic substituent.
  • alkyl group represented by R2 examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, hexadecyl group and octadecyl. group, icosyl group, and the like.
  • the alkoxy group (OR 2 ) in the alkoxysilane represented by the general formula ( II ) is a hydrolyzable group. is preferably a group, more preferably an ethyl group or a methyl group, and even more preferably a methyl group.
  • n represents an arbitrary integer selected from 1 to 3. n is preferably 1 from the viewpoint of further increasing the reactivity with the reinforcing material particle surface and the hydrophobicity.
  • alkoxysilanes include methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, heptyltrimethoxysilane, octyltrimethoxysilane, nonyltrimethoxysilane, decyltrimethoxysilane, dodecyltrimethoxysilane.
  • hexadecyltrimethoxysilane, octadecyltrimethoxysilane, icosyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, hexyltriethoxysilane, heptyltriethoxysilane, octyltriethoxysilane, nonyltriethoxysilane, Ethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, hexadecyltriethoxysilane, octadecyltriethoxysilane, icosyltriethoxysilane, phenyltriethoxysilane and the like can be mentioned. These can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the degree of hydrophobicity of the surface treatment agent can be expressed by treating the glass plate surface with the surface treatment agent and measuring the surface free energy of the treated surface.
  • the surface free energy is measured by uniformly applying a surface treatment agent diluted 10 times with methanol to a glass plate, heating at 85° C. for 1 hour, and then heat-treating at 110° C. for 1 hour to remove the surface treatment agent.
  • the surface free energy of the coated surface can be obtained by measuring and calculating the two-liquid static contact angle between water and decane.
  • decyltrimethoxysilane has a surface free energy of 28 mN/m
  • ⁇ -glycidoxypropyltrimethoxysilane has a surface free energy of 55 mN/m
  • 3-aminopropyltriethoxysilane has a surface free energy of 68 mN. /m.
  • the surface treatment agent used in the present invention is not particularly limited. A surface free energy of 50 mN/m or less when uniformly treated is preferred. Although the lower limit of the surface free energy is not particularly limited, it is preferably 1 mN/m. Even if the surface treatment agent has a surface free energy of more than 50 mN/m, two or more of them may be mixed so that the surface free energy is 50 mN/m or less.
  • the surface free energy of the surface treatment agent exceeds 50 mN/m, the surface free energy becomes higher than that of the liquid crystal polymer (A), and the metal ions eluted from the broken surface due to breakage of the reinforcing material (D) during kneading and molding. It may be uncontrollable, and hydrolysis of the liquid crystal polymer (A) may be accelerated. Therefore, it is preferable to fill the liquid crystal polymer (A) with a reinforcing material (D) prepared to have a surface free energy range of 50 mN/m or less.
  • the oil absorption of the reinforcing material (D) after surface treatment is preferably 130 ml/100 g or less, more preferably 80 ml/100 g to 130 ml/100 g.
  • the oil absorption of the reinforcing material (D) after surface treatment can be measured using the refined linseed oil method [JIS K5101-13-1].
  • a dry method and a wet method are known as methods for previously treating the surface of the reinforcing material (D) with a coupling agent, and both methods are used. can do.
  • the surface treatment concentration at that time is preferably 0.1% by mass to 3.0% by mass, more preferably 0.5% by mass to 1.5% by mass, relative to 100% by mass of the reinforcing material (D).
  • a known surface treatment method can be used as a method for forming a treatment layer made of a surface treatment agent on the surface of component (D).
  • a reinforcing material is placed in a device capable of high-speed stirring such as a Henschel mixer, and under stirring, a surface treatment agent (in the case of a liquid) or a solvent that promotes hydrolysis (such as water, alcohol, or these A dry method, etc., in which a solution in which a surface treatment agent is dissolved in a mixed solvent is sprayed onto the reinforcing material.
  • the amount of the surface treatment agent when applying the surface treatment agent to the surface of the reinforcing material (D) used in the present invention is not particularly limited.
  • the processing agent is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, more preferably 0.3 to 5 parts by mass, still more preferably 0.5 to 5 parts by mass.
  • the solution of the surface treatment agent may be sprayed in an amount of 3 parts by mass, particularly preferably 0.8 to 1.2 parts by mass.
  • the adhesion with the component (A) can be further improved.
  • the particle shape of the component (D) in the liquid crystal polymer composition of the present invention is not particularly limited. However, from the viewpoint of further reducing particle generation when used as a camera module member, the component (D) contains both the fibrous reinforcing material (D1) and the plate-like reinforcing material (D2).
  • It preferably contains both a fibrous reinforcing material (D1) having a Mohs hardness of 2.5 or more and 5 or less and a plate-like reinforcing material (D2) having a Mohs hardness of 1 or more and less than 2.5 It is more preferable to be In this case, at least a portion of the surface of at least one of the fibrous reinforcing material (D1) and the plate-like reinforcing material (D2) may be covered with a treatment layer composed of a hydrophobic surface treatment agent.
  • At least part of the surface of both the fibrous reinforcing material (D1) and the plate-like reinforcing material (D2) is preferably covered with a treatment layer composed of a hydrophobic surface treatment agent.
  • the content of component (D) in the liquid crystal polymer composition of the present invention is preferably 0.1% by mass to 40% by mass, and 5% by mass to 35% by mass, based on the total amount of 100% by mass of the liquid crystal polymer composition. and more preferably 10% by mass to 30% by mass.
  • component (D) By setting the content of component (D) in the range of 0.1% by mass to 40% by mass, it is possible to further suppress the generation of particles when used as a camera module member.
  • the mass ratio of the plate-like reinforcing material (D2) to the fibrous reinforcing material (D1) is , preferably from 0 to 1, more preferably from 0.01 to 0.8, even more preferably from 0.1 to 0.7, particularly from 0.2 to 0.6 preferable.
  • the liquid crystal polymer composition of the present invention can contain a particulate carbon material (E), if desired.
  • the particulate carbon material (E) (hereinafter sometimes referred to as "component (E)") is not particularly limited, and is used, for example, for the purpose of ensuring light-shielding properties of liquid crystal polymer moldings such as parts for camera modules. A generally available one used for resin coloring can be preferably used.
  • the particulate carbon material (E) for example, graphite; carbon blacks such as acetylene black, furnace black, lamp black, thermal black, channel black, roll black, disc black; carbon nanotubes; carbon fibrils; .
  • the particulate carbon material (E) is preferably carbon black.
  • One of these particulate carbon materials (E) may be used alone, or a plurality of them may be used in combination.
  • the primary particle size of the particulate carbon material (E) is preferably 10 nm or more and 100 nm or less.
  • the primary particle size of the particulate carbon material (E) is 10 nm or more and 100 nm or less
  • the primary particle size of the particulate carbon material (E) is 10 nm or more and 100 nm or less
  • the surface resistance value of the liquid crystal polymer molded article molded from the liquid crystal polymer composition of the present invention can be sufficiently lowered, the increase in charge amount in the liquid crystal polymer molded article can be further suppressed.
  • the in-plane surface resistance value of the liquid crystal polymer molded article can be easily made uniform.
  • the primary particle size of the particulate carbon material (E) is preferably 15 nm or more and 85 nm or less, more preferably 20 nm or more and 75 nm or less.
  • the primary particle size of the particulate carbon material (E) an arithmetic mean particle size (number average), which is the average value of primary particle sizes measured with a transmission electron microscope, can be adopted.
  • the DBP oil absorption of the particulate carbon material (E) is preferably 90 cm 3 /100 g or more and preferably 550 cm 3 /100 g or less.
  • the liquid crystal polymer molded article molded from the liquid crystal polymer composition sufficiently conducts electricity at the connecting portions of the particulate carbon material (E). easier. As a result, the surface resistance value of the liquid crystal polymer molding can be further sufficiently lowered. Therefore, it is possible to more sufficiently suppress an increase in the amount of charge in the liquid crystal polymer molded article.
  • the DBP oil absorption of the particulate carbon material (E) is too high, there are too many voids in the vicinity of the surface of the particulate carbon material (E), and the particulate carbon materials (E) are separated from each other in the liquid crystal polymer composition. Strong and easy to pull.
  • the melt viscosity of the mixture may increase. As a result, it may become difficult to knead the mixture, making it difficult to produce the liquid crystal polymer composition.
  • the DBP oil absorption of the particulate carbon material (E) is 550 cm 3 /100 g or less, the liquid crystal polymer (A), the reinforcing material (D), the particulate carbon material (E) and optional additives are melted. These mixtures should not become too viscous during kneading.
  • the DBP oil absorption of the particulate carbon material (E) is preferably 90 cm 3 /100 g or more, more preferably 92 cm 3 /100 g or more, preferably 550 cm 3 /100 g or less, more preferably 525 cm 3 /100 g or less.
  • a value measured according to JIS K 6221 by a dibutyl phthalate absorption meter can be adopted as the DBP oil absorption.
  • the BET specific surface area of the particulate carbon material (E) is preferably 30 m 2 /g or more and 1500 m 2 /g or less, more preferably 40 m 2 /g or more and 1350 m 2 /g or less. It is preferably 45 m 2 /g or more and more preferably 1300 m 2 /g or less.
  • the BET specific surface area adopts a value calculated by the BET method by using a BET specific surface area measuring instrument to adsorb nitrogen gas under liquid nitrogen temperature, measuring the amount of adsorption.
  • a BET specific surface area measuring device for example, AccuSorb 2100E manufactured by Micromeritics can be used.
  • the liquid crystal polymer molded article molded from the liquid crystal polymer composition of the present invention will conduct electricity at the connecting portions of the particulate carbon material (E). Easy enough to get through. As a result, the surface resistance value of the liquid crystal polymer molding can be further reduced. Therefore, it is possible to further suppress an increase in the amount of charge in the liquid crystal polymer molded article.
  • the BET specific surface area of the particulate carbon material (E) is equal to or less than the above upper limit during the production of the liquid crystal polymer composition or the liquid crystal polymer molded article of the present invention, the liquid crystal polymer (A), the reinforcing material (D), the particulate When the carbon material (E) and optional additives are melt-kneaded, the melt viscosity of the mixture should not be too high. As a result, it becomes easier to knead the mixture, and it becomes even easier to produce the liquid crystal polymer composition of the present invention.
  • the content of the component (E) in the liquid crystal polymer composition of the present invention is preferably in the range of 0.1% by mass to 5.0% by mass in 100% by mass of the total amount of the liquid crystal polymer composition, and 0.5% by mass. % to 4.5% by mass, more preferably 0.8% to 4.0% by mass. If the content of the component (E) is too low, the resulting liquid crystal polymer composition may be less jet-black, failing to ensure sufficient light-shielding properties.
  • component (E) if the content of component (E) is too high, agglomerates (fine bumpy projections in which the particulate carbon material (E) aggregates in a resin composed of a molten liquid crystal polymer having a low viscosity during melt-kneading) ) drifts, making it difficult to apply shear during kneading, increasing the possibility of poor dispersion, and stress concentrates on aggregates, which become fracture starting points, resulting in a significant decrease in the mechanical strength of liquid crystal polymer moldings. It may become difficult to achieve the original purpose.
  • agglomerates fine bumpy projections in which the particulate carbon material (E) aggregates in a resin composed of a molten liquid crystal polymer having a low viscosity during melt-kneading
  • the content of the component (E) in the range of 0.1% by mass to 5.0% by mass By adjusting the content of the component (E) in the range of 0.1% by mass to 5.0% by mass, the dispersibility of the component (E) in the liquid crystal polymer composition is improved, and the resulting liquid crystal polymer molded article is obtained. It is possible to further improve mechanical strength, particularly impact resistance, while enhancing heat resistance and light shielding properties.
  • the liquid crystal polymer composition of the present invention may optionally contain a fluororesin (F) (hereinafter sometimes referred to as "component (F)").
  • Component (F) is a polymer having —(CF 2 —CF 2 )— repeating units, such as a perfluoroalkyl ether group —C p F 2p —O— (p is an integer of 1 to 4). can be used.
  • Component (F) may be obtained by adopting either a suspension polymerization method for obtaining general molding powder or an emulsion polymerization method for obtaining fine powder.
  • high-molecular-weight polytetrafluoroethylene resin may be reduced in molecular weight by thermal decomposition or radiation.
  • Component (F) is preferably powder, and its average particle size is preferably 0.1 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, still more preferably 5 ⁇ m to 20 ⁇ m. By setting the average particle size within the above range, the coefficient of friction during sliding can be further reduced.
  • the average particle size of the component (F) can be measured by a laser diffraction/scattering method. diameter), or D 50 (median diameter). This volume-based cumulative 50% particle diameter (D 50 ) is obtained by determining the particle size distribution on a volume basis, counting the number of particles from the smallest particle size on the cumulative curve with the total volume as 100%, and the cumulative value is It is the particle diameter at the 50% point.
  • the particle shape of component (F) is not particularly limited as long as it is a non-fibrous particle such as spherical, columnar, plate-like, rod-like, columnar, block-like, and irregular shape.
  • the particle shape of component (F) can be analyzed, for example, by scanning electron microscope (SEM) observation.
  • a fibrous particle is defined as a rectangular parallelepiped having the smallest volume among the rectangular parallelepipeds circumscribing the particle (circumscribing rectangular parallelepiped), with the longest side having the major axis L, the next longest side having the minor axis B, and the shortest side having the thickness.
  • T both L/B and L/T are particles of 3 or more, and the major axis L corresponds to the fiber length, and the minor axis B corresponds to the fiber diameter.
  • both L/B and L/T are preferably 5 or more.
  • Non-fibrous particles refer to particles with an L/B of less than 3.
  • particles having an L/B of less than 3 and an L/T of 3 or more are referred to as plate-like particles.
  • Polytetrafluoroethylene resin (hereinafter sometimes referred to as "PTFE") is classified as a thermoplastic resin, but generally cannot be injection molded due to its extremely high melt viscosity.
  • the resin composition which is the main component, is produced by a method (compression molding) in which mixed powder of resin is compressed and heated to a melting point or higher to fuse the powders together.
  • High-molecular-weight PTFE is used for compression molding.
  • high-molecular-weight PTFE is blended with a general thermoplastic resin and melt-mixed, the PTFE fibrillates and aggregates, resulting in fluidity of the resin composition. , and cannot be melt-blended or injection-molded.
  • PTFE with a low molecular weight is used as a solid lubricant for thermoplastic resins for injection molding.
  • Liquid crystal polymers are generally melt-mixed at a temperature around the melting point of PTFE and have a low viscosity when melted.
  • the PTFE used for component (F) preferably has an MFR value of 5 g/10 min or more, measured under conditions of 372° C. and a load of 5 kg, preferably 10 g/10 min or more. and more preferably greater than 35 g/10 min.
  • the MFR value of component (F) can be measured according to JIS K7210.
  • PTFE may be sintered to suppress fibrillation and aggregation. Although it varies depending on the molecular weight, the melting point of the sintered product is 320° C. to 330° C., and the melting point of the unsintered product is 330° C. to 350° C. Therefore, the degree of sintering can be estimated from the melting points.
  • Component (F) preferably has a melting point of less than 330°C, and a lower limit of 320°C, from the viewpoint of further suppressing aggregation during molding.
  • the melting point of PTFE can be measured according to JIS-K7121.
  • the content of component (F) in the liquid crystal polymer composition of the present invention is preferably 0.1% by mass to 30% by mass, more preferably 0.5% by mass to 20% by mass, based on the total amount of 100% by mass of the liquid crystal polymer composition.
  • Solid lubricant The liquid crystal polymer composition of the present invention can contain a solid lubricant as long as it does not impair its preferred physical properties.
  • Solid lubricants include polyolefin resins such as low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, and ultra-high molecular weight polyethylene, silicone resins, graphite, molybdenum disulfide, tungsten disulfide, boron nitride, A polytetrafluoroethylene resin, which is a polymer having repeating units of -(CF 2 -CF 2 )-, a perfluoroalkyl ether group -C p F 2p -O- (p is an integer of 1 to 4), etc.
  • the content of the solid lubricant in the liquid crystal polymer composition of the present invention is preferably 0.5% by mass to 20% by mass, and 1% by mass to 15% by mass, based on the total amount of 100% by mass of the liquid crystal polymer composition. is more preferable.
  • the liquid crystal polymer composition of the present invention may contain other additives as long as they do not impair its preferred physical properties.
  • Other additives include inorganic fillers (e.g., calcium carbonate, mica, mica, sericite, illite, kaolinite, montmorillonite, boehmite, smectite, vermiculite, palygorskite, pyrophyllite , hylosite , diatomaceous earth, titanium dioxide, etc.); laser direct structuring additives (e.g.
  • UV absorbers e.g. resorcinols, salicylates, benzotriazoles, benzophenones, triazines, etc.
  • light stabilizers e.g.
  • hindered phenols, hindered amines, etc. weathering agents; 10 to 25), fatty acids, fatty acid metal salts, etc.); lubricants; fluidity improvers; plasticizers, polyalkylene glycol plasticizers, epoxy plasticizers); impact modifiers; flame retardants (e.g., phosphazene compounds, phosphoric acid esters, condensed retardants, metal oxide flame retardants, metal hydroxide flame retardants, organic metal salt flame retardants, nitrogen flame retardants, boron compound flame retardants, etc.); anti-dripping agents; nucleating agents; Vibration agents; neutralizing agents; anti-blocking agents and the like can be mentioned, and one or more of these can be contained.
  • flame retardants e.g., phosphazene compounds, phosphoric acid esters, condensed retardants, metal oxide flame retardants, metal hydroxide flame retardants, organic metal salt flame retardants, nitrogen flame retardants, boron compound flame retardants, etc.
  • the liquid crystal polymer composition of the present invention contains a heat stabilizer and/or a light stabilizer from the viewpoint that the adhesiveness to adhesives such as epoxy resins is much more excellent, and the generation of particles is further suppressed. It preferably contains at least one compound selected from the group consisting of hindered phenols, hindered amines and thioethers, and the group consisting of hindered phenols and hindered amines. It is more preferable to contain at least one compound selected from The above compound preferably has an amide group and/or an amino group from the viewpoint of obtaining a molded article having even better adhesion to an adhesive such as an epoxy resin.
  • the amount thereof is not particularly limited as long as it does not impair the preferable physical properties of the liquid crystal polymer composition of the present invention. It is preferably 10% by mass or less, more preferably 5% by mass or less, based on 100% by mass of the total amount of the liquid crystal polymer composition.
  • the liquid crystal polymer composition of the present invention comprises a liquid crystal polymer (A), an epoxy compound (B) having less than 3 epoxy groups in the molecule, and barium sulfate (C).
  • a liquid crystal polymer A
  • an epoxy compound B
  • barium sulfate C
  • Manufactured by heating and mixing (in particular, melt-kneading) a mixture containing reinforcing material (D), particulate carbon material (E), fluororesin (F), solid lubricant, and other additives. can.
  • melt-kneading for example, a known melt-kneading device such as a twin-screw extruder can be used. Specifically, (1) a method of premixing each component with a mixer (tumbler, Henschel mixer, etc.), melt-kneading with a melt-kneading device, and pelletizing with a pelletizing means (pelletizer, etc.); (2) A method of preparing a masterbatch of desired components, mixing other components if necessary, melt-kneading them in a melt-kneading device, and pelletizing; (3) a method of supplying each component to a melt-kneading device and pelletizing; can be manufactured by
  • the processing temperature in melt-kneading is not particularly limited as long as it is a temperature at which the liquid crystal polymer (A) can be melted. Normally, the cylinder temperature of the melt-kneading device used for melt-kneading is adjusted within this range. Thus, the liquid crystal polymer composition of the present invention that exhibits desired effects is produced.
  • the liquid crystal polymer composition of the present invention is molded by a known resin molding method such as injection molding, insert molding, compression molding, blow molding, inflation molding, etc., depending on the type, application, shape, etc. of the desired liquid crystal polymer molded article. By doing so, a liquid crystal polymer molding can be obtained.
  • the molding method is preferably injection molding or insert molding. Also, a molding method that combines the above molding methods can be employed.
  • a liquid crystal polymer molded article obtained by molding the liquid crystal polymer composition of the present invention can improve adhesion between parts used in precision instruments and electronic parts.
  • liquid crystal polymer molded article obtained by molding the liquid crystal polymer composition of the present invention is expected to have excellent mechanical strength and light shielding properties by appropriately adding the above-described components to the composition before molding. It is possible to suppress the particles generated when colliding or falling.
  • a liquid crystal polymer molded article molded using the liquid crystal polymer composition of the present invention is suitably used as a member for manufacturing electronic parts of precision equipment.
  • the component comprising the liquid crystal polymer molded body is selected from the group consisting of electronic components for sliding members that slide with other members, such as connectors, antennas, switches, relays, and camera modules. It is preferably used for manufacturing parts.
  • the liquid crystal polymer molded article of the present invention can be expected to prevent deterioration of optical properties caused by fibrillation of the surface of the liquid crystal polymer molded article.
  • the optical electronic parts that make up the camera module include the lens barrel (the part where the lens is placed), spacer, mount holder (the part where the barrel is attached and fixed to the board), base, lens barrel, and CMOS (image sensor). Frames, shutters, shutter plates, shutter bobbies, diaphragm rings, stoppers (parts that hold down the lens), and the like.
  • the liquid crystal polymer molded article of the present invention can be used in electrical and electronic equipment having a camera function.
  • the liquid crystal polymer molded article of the present invention can be suitably used for smartphones or tablet terminals equipped with a camera function.
  • Liquid crystal polymer (A) Liquid crystal polymer: wholly aromatic type I, melt viscosity 2.0 ⁇ 10 4 mPa ⁇ s (350° C.), melting point 320° C., trade name “UENO LCP A-6000” manufactured by Ueno Pharmaceutical Co., Ltd.
  • Epoxy compound-1 triphenylmethane type, number of epoxy groups in the molecule: 3, manufactured by Nippon Kayaku Co., Ltd., trade name "EPPN-502H”
  • Epoxy compound-2 naphthol cresol novolak type, number of epoxy groups in the molecule: 3, manufactured by Nippon Kayaku Co., Ltd., trade name "NC-7000L”
  • barium sulfate (C) Precipitated barium sulfate: average particle size 0.28 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd., trade name “precipitated barium sulfate B-31”
  • Carbon black Primary particle diameter 50 nm, BET specific surface area 50 m 2 /g, DBP oil absorption 175 cm 3 /100 g, manufactured by Mitsubishi Chemical Corporation, trade name "#3050B"
  • melt viscosity of the liquid crystal polymer (A) was measured using a melt viscosity measuring device (manufactured by Toyo Seiki Seisakusho Co., Ltd., trade name “Capilograph 1D”) at a temperature 30° C. higher than the melting point of the liquid crystal polymer (A) and shear rate 1. Measurement was performed using an orifice of 1.0 mm ⁇ 10 mm under the condition of 0 ⁇ 10 3 sec ⁇ 1 .
  • the melting points of the liquid crystal polymer (A) and the epoxy compound (B) were measured according to JIS-K7121 using a differential calorimeter (manufactured by Hitachi High-Tech Science, trade name "DSC7000X"). Specifically, 10 mg of a sample was placed in an aluminum cell for measurement, heated from room temperature to 50° C. at a temperature elevation rate of 10° C./min under a nitrogen flow of 100 ml/min, and held at 50° C. for 5 minutes. The temperature was raised at a rate of temperature rise of 10°C/min and measured.
  • Average particle size of barium sulfate (C) and plate-shaped reinforcing material (D2) The average particle size was measured with a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, trade name "SALD-2100").
  • the average fiber length, average fiber diameter, and aspect ratio of the fibrous reinforcing material (D1) were obtained from arbitrary 1000 average values measured by observation with a scanning electron microscope (SEM).
  • the primary particle size of carbon black was determined by the arithmetic mean particle size (number average), which is the average value of primary particle sizes measured by a transmission electron microscope (manufactured by JEOL Ltd., product number “JEM2010”).
  • the DBP oil absorption was measured according to JIS K 6221 with a dibutyl phthalate absorption meter.
  • the BET specific surface area was measured according to JIS K 6217.
  • Synthesis example 2 A surface-treated talc was prepared in the same manner as in Synthesis Example 1, except that untreated wollastonite fibers were changed to untreated talc, and it was confirmed that the average particle size was the same as that of the untreated product.
  • Examples 1 to 9 and Comparative Examples 1 to 4 The liquid crystal polymer composition was melt-kneaded using a twin-screw extruder at the compounding ratio shown in Table 1 to produce pellets.
  • Table 1 the surface-treated products in Synthesis Example 1 and Synthesis Example 2 are described as surface-treated wollastonite fiber and surface-treated talc, respectively.
  • those not surface-treated are described as untreated wollastonite fiber, untreated talc, and untreated potassium titanate fiber, respectively.
  • the cylinder temperature of the twin-screw extruder was 340°C.
  • the obtained pellets are molded into flat plate 1 (length 90 mm, width 50 mm, thickness 3 mm), flat plate 2 (length 126 mm, width 13 mm, thickness 1.6 mm), and JIS test pieces for measuring mechanical properties. , a flat plate 3 (length 110 mm, width 10 mm, thickness 4 mm) and a flat plate 4 (length 64 mm, width 13 mm, thickness 4 mm) to obtain evaluation samples (liquid crystal polymer moldings).
  • the injection molding machine had a cylinder temperature of 340°C and a mold temperature of 130°C.
  • tensile strength, tensile elongation The tensile strength and tensile elongation were measured using Autograph AG-5000 (manufactured by Shimadzu Corporation) in accordance with JIS K7162. Table 1 shows the results.
  • Notched Izod (IZOD) impact value Notched Izod (IZOD) impact value was measured according to JIS K7110. Table 1 shows the results.
  • molding shrinkage rate The longitudinal dimension of the JIS test piece for tensile test measurement was accurately measured using a micrometer, and the error rate with the mold dimension was taken as the molding shrinkage rate (%). That is, the molding shrinkage rate (%) was calculated according to formula (IV).
  • Mold shrinkage rate (%) [(mold dimensions - molded product dimensions)/mold dimensions] x 100... formula (IV)
  • the plate 2 was dried in a forced convection oven at 120° C. for 60 minutes. After drying, the test site was wiped with a solvent to thoroughly degrease. Apply an adhesive (manufactured by Ajinomoto Fine-Techno Co., Ltd., low elasticity fast curing type epoxy adhesive, product number “AE-740”) to the part 15 mm from the end of the test piece opposite to the gate (mold fixing surface), and fix the mold. The surfaces were overlapped by 15 mm and stuck together, fixed with a clip, and cured for 60 minutes in an oven preliminarily adjusted to 80°C. After curing, the adhesive protruding significantly from the adhesive surface was removed in advance with a cutter or the like.
  • an adhesive manufactured by Ajinomoto Fine-Techno Co., Ltd., low elasticity fast curing type epoxy adhesive, product number “AE-740”
  • the adhesive strength between the liquid crystal polymer molded body and the epoxy adhesive is improved when the liquid crystal polymer composition contains the epoxy compound (B), compared to the case where the epoxy compound is not contained. Understand. Further, it can be seen that the adhesive strength is in a relationship of increasing in proportion to the amount of the epoxy compound (B) added within the range of Examples 1 to 4.
  • Example 1 when comparing Example 1 and Example 5, by using the reinforcing material (D) surface-treated with an alkyl-based alkoxysilane coupling agent having a hydrophobic alkyl group, there was no surface treatment. It can be seen that the adhesive strength between the liquid crystal polymer molding and the epoxy resin, the IZOD impact value, and the tensile elongation are further improved by comparison.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a liquid-crystal polymer composition capable of giving molded objects to which adhesives, e.g., epoxy resins, have excellent adhesiveness. Components each comprising the molded object can have improved bondability to each other or to other components. The liquid-crystal polymer composition is characterized by being obtained by mixing a liquid-crystal polymer (A), an epoxy compound (B) in which the number of epoxy groups in the molecule is less than 3, and barium sulfate (C).

Description

液晶ポリマー組成物および液晶ポリマー成形体Liquid crystal polymer composition and liquid crystal polymer molding
 本発明は、液晶ポリマー組成物および該液晶ポリマー組成物を用いた液晶ポリマー成形体に関する。 The present invention relates to a liquid crystal polymer composition and a liquid crystal polymer molded article using the liquid crystal polymer composition.
 液晶ポリマーは、機械強度、成形性、寸法精度、耐薬品性、耐湿性、電気的性質などが優れるため、様々な部品に用いられている。特に、耐熱性、薄肉成形性に優れることから、精密機器等の電子部品への使用が検討されており、例えばカメラモジュールへの使用が検討されている。 Liquid crystal polymers are used in various parts due to their excellent mechanical strength, moldability, dimensional accuracy, chemical resistance, moisture resistance, and electrical properties. In particular, due to its excellent heat resistance and thin-wall moldability, its use in electronic components such as precision equipment is being studied, and its use in camera modules, for example, is being studied.
 カメラモジュールでは、小さなゴミ、塵、埃等がレンズやイメージセンサーに付着すると光学特性が低下する。従って、このような光学特性の低下を防ぐ目的で、通常、カメラモジュール用部品においては、組立前に超音波洗浄され、表面に付着している小さなゴミ、塵、埃等が除去される。しかしながら、液晶ポリマーからなる成形体(液晶ポリマー成形体)では、液晶ポリマーの結晶配向性が高いことから成形体表面が剥離しやすく、特に超音波洗浄すると表面が剥離し、毛羽立つ現象(フィブリル化)が生じることが知られている。このフィブリル化した部分からは小さな粉(パーティクル)が発生しやすいことが知られており、カメラモジュールの高性能化に伴う画素数の向上によって、1μm未満といった微小の異物であっても不良の原因になる場合がある。また、カメラモジュールの組立前の各部材、さらには組立品を厳しい条件での超音波洗浄によって十分に洗浄する必要があり、生産性が低下する場合がある。 In the camera module, the optical characteristics deteriorate when small particles of dirt, dust, dust, etc. adhere to the lens or image sensor. Therefore, in order to prevent such degradation of optical characteristics, camera module parts are usually ultrasonically cleaned before assembly to remove small dirt, dust, dust, etc. adhering to the surface. However, in a molded body made of a liquid crystal polymer (liquid crystal polymer molded body), the surface of the molded body tends to peel off due to the high crystal orientation of the liquid crystal polymer. is known to occur. It is known that small particles are likely to be generated from this fibrillated part, and with the increase in the number of pixels that accompanies the high performance of camera modules, even minute foreign matter of less than 1 μm can cause defects. may become In addition, it is necessary to thoroughly clean each member of the camera module before assembly and further the assembled product by ultrasonic cleaning under severe conditions, which may reduce productivity.
 ところで、このようなカメラモジュールに使用される液晶ポリマー組成物の一例として、下記の特許文献1には、サーモトロピック液晶ポリマーと、モース硬度が2.5以上の無機粒子とを含有する組成物が開示されている。 By the way, as an example of a liquid crystal polymer composition used in such a camera module, Patent Document 1 below discloses a composition containing a thermotropic liquid crystal polymer and inorganic particles having a Mohs hardness of 2.5 or more. disclosed.
特表2017-513976号公報Japanese Patent Publication No. 2017-513976
 近年、1台のスマートフォンに搭載されるカメラ数が増加していることから、安価にカメラモジュールを製造できるように、AF機構とOIS機構とを一体化するなどの新たなアクチュエーター機構などが広く普及しており、機器および部品の小型化や薄型化が進行している。 In recent years, as the number of cameras mounted on a single smartphone has increased, new actuator mechanisms such as those that integrate the AF mechanism and OIS mechanism have become widely used so that camera modules can be manufactured at low cost. devices and parts are becoming smaller and thinner.
 カメラモジュール用部材に注目してみると、1億画素を超える高画素化や高倍率光学ズームが搭載され、そのためレンズ枚数の増加やレンズ自体の大型化に起因するカメラモジュール全体の重量増加など、カメラモジュールの新構造による応力の増加等が技術的にクローズアップされており、これまでになかった問題が発生している。 Focusing on camera module components, it is equipped with a high pixel count of over 100 million pixels and a high-magnification optical zoom. The increase in stress due to the new structure of the camera module has been technically highlighted, and new problems have arisen.
 具体的には、カメラモジュール全体の重量増加や応力増加により、部品同士を接着している接着剤と部品との接着力が不足し、部品の剥離問題が発生している。特に、落下による部品同士の剥離は、カメラモジュール動作への影響等、製品性能の不具合に直結するため、部品同士を接着剤により強固に接合することが求められており、部品同士を接着している接着剤と部品との接着力の向上は大きな課題となっている。また、上述のようなアクチュエーター機構をスムーズに動作させることを目的として、これらの機構の部品を構成する液晶ポリマー成形体には、エポキシ樹脂などの接着剤に対する接着性を向上させることが求められている。 Specifically, due to the increased weight and increased stress of the camera module as a whole, the adhesive that bonds the parts to each other lacks the adhesive strength between the parts, causing the parts to peel off. In particular, detachment of parts due to dropping directly affects product performance, such as affecting the operation of camera modules. Improving the adhesive force between the adhesive and the part is a major issue. In addition, for the purpose of smoothly operating the actuator mechanism as described above, the liquid crystal polymer molded body that constitutes the parts of these mechanisms is required to have improved adhesiveness to adhesives such as epoxy resin. there is
 しかしながら、特許文献1では、接着剤による接着性の改善に関する課題について何らの記載も示唆もされておらず、特許文献1で記載されている液晶ポリマー成形体では、エポキシ樹脂などの接着剤に対する接着性が十分ではないという問題があった。 However, in Patent Document 1, there is no description or suggestion of problems related to the improvement of adhesiveness with an adhesive. There was a problem that the sex was not enough.
 本発明は、このような機器および部品の小型化や薄型化の進行に伴い、それに用いる部品同士の接着性を向上させることができる液晶ポリマー組成物および該液晶ポリマー組成物の成形体である液晶ポリマー成形体を提供することを目的とし完成されたものである。 Along with the progress of miniaturization and thinning of such devices and parts, the present invention provides a liquid crystal polymer composition and a liquid crystal which is a molded product of the liquid crystal polymer composition, which can improve the adhesion between parts used therein. It was completed for the purpose of providing a polymer molding.
 即ち、本発明はかかる問題を解決することを目的とし、エポキシ樹脂などの接着剤に対する接着性に優れる成形体を得ることができ、該成形体からなる部品同士の接着性、あるいは該成形体からなる部品と他の部品との接着性を向上させることを可能とする液晶ポリマー組成物および該液晶ポリマー組成物の成形体である液晶ポリマー成形体を提供することを目的とする。 That is, an object of the present invention is to solve such problems, and it is possible to obtain a molded article having excellent adhesiveness to an adhesive such as an epoxy resin, and to improve the adhesiveness between parts made of the molded article, or to improve the adhesion from the molded article. An object of the present invention is to provide a liquid crystal polymer composition and a liquid crystal polymer molded product which is a molded product of the liquid crystal polymer composition, which is capable of improving adhesion between a part and other parts.
 本発明者は、上記課題を解決するべく鋭意検討を重ねた結果、液晶ポリマー(A)と、分子内におけるエポキシ基の数が3個未満であるエポキシ化合物(B)と、硫酸バリウム(C)とを配合してなる液晶ポリマー組成物が、成形体にしたときに、エポキシ樹脂などの接着剤に対する接着性において優れた効果が得られることを見出し、本発明を完成するに至った。即ち、本発明の要旨は以下の通りである。 As a result of intensive studies to solve the above problems, the present inventors have found that a liquid crystal polymer (A), an epoxy compound (B) having less than 3 epoxy groups in the molecule, and barium sulfate (C) The present inventors have found that a liquid crystal polymer composition obtained by blending (1) and (2) can obtain an excellent effect in terms of adhesion to an adhesive agent such as an epoxy resin when formed into a molded article, and have completed the present invention. That is, the gist of the present invention is as follows.
 項1 液晶ポリマー(A)と、分子内におけるエポキシ基の数が3個未満であるエポキシ化合物(B)と、硫酸バリウム(C)とを配合してなることを特徴とする、液晶ポリマー組成物。 Item 1 A liquid crystal polymer composition characterized by blending a liquid crystal polymer (A), an epoxy compound (B) having less than 3 epoxy groups in the molecule, and barium sulfate (C) .
 項2 前記エポキシ化合物(B)が、下記一般式(I)で表されるビフェニル型エポキシモノマーであることを特徴とする、項1に記載の液晶ポリマー組成物。 Item 2 The liquid crystal polymer composition according to Item 1, wherein the epoxy compound (B) is a biphenyl-type epoxy monomer represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 [一般式(I)において、n、mはそれぞれ0~2から選択される任意の整数を示す(ただし、n、mがともに0の場合は除く)。RおよびRは、それぞれ独立して水素原子または炭素数1~10の炭化水素基を表し、置換基を有していてもよく、RおよびRはそれぞれ互いに同一でも異なっていてもよい。a、bは、それぞれ0~2から選択される任意の整数を示す。ビフェニル骨格の左右におけるそれぞれのフェニル構造は、互いに同一であってもよく異なっていてもよい。] [In general formula (I), n and m each represent an arbitrary integer selected from 0 to 2 (except when both n and m are 0). R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms and may have a substituent; R 1 and R 2 may be the same or different; good. a and b each represent an arbitrary integer selected from 0 to 2; The phenyl structures on the left and right sides of the biphenyl skeleton may be the same or different. ]
 項3 前記一般式(I)において、n、mはそれぞれ1であり、RおよびRはメチル基をそれぞれ示す、項1または項2に記載の液晶ポリマー組成物。 Item 3. The liquid crystal polymer composition according to item 1 or 2, wherein in the general formula (I), n and m are each 1, and R 1 and R 2 each represent a methyl group.
 項4 前記エポキシ化合物(B)の含有量が、前記液晶ポリマー組成物全量100質量%中において、0.1質量%~5.0質量%であることを特徴とする、項1~項3のいずれか一項に記載の液晶ポリマー組成物。 Item 4 Items 1 to 3, characterized in that the content of the epoxy compound (B) is 0.1% by mass to 5.0% by mass in the total amount of 100% by mass of the liquid crystal polymer composition. A liquid crystal polymer composition according to any one of claims 1 to 3.
 項5 前記液晶ポリマー(A)が、全芳香族液晶ポリマーであることを特徴とする、項1~項4のいずれか一項に記載の液晶ポリマー組成物。 Item 5 The liquid crystal polymer composition according to any one of Items 1 to 4, wherein the liquid crystal polymer (A) is a wholly aromatic liquid crystal polymer.
 項6 前記液晶ポリマー組成物が、さらに補強材(D)を含むことを特徴とする、項1~項5のいずれか一項に記載の液晶ポリマー組成物。 Item 6 The liquid crystal polymer composition according to any one of Items 1 to 5, further comprising a reinforcing material (D).
 項7 前記補強材(D)が、疎水性表面処理剤で処理されていることを特徴とする、項6に記載の液晶ポリマー組成物。 Item 7 The liquid crystal polymer composition according to Item 6, wherein the reinforcing material (D) is treated with a hydrophobic surface treatment agent.
 項8 前記疎水性表面処理剤が、下記一般式(II)で表されるアルコキシシランであることを特徴とする、項7に記載の液晶ポリマー組成物。 Item 8 The liquid crystal polymer composition according to Item 7, wherein the hydrophobic surface treating agent is an alkoxysilane represented by the following general formula (II).
 R Si(OR4-n  …式(II) R 1 n Si(OR 2 ) 4-n Formula (II)
 [一般式(II)において、nは1~3から選択される任意の整数を示し、Rはアルキル基、アルケニル基またはアリール基を示し、Rはアルキル基を示す。] [In general formula (II), n represents an arbitrary integer selected from 1 to 3, R 1 represents an alkyl group, alkenyl group or aryl group, and R 2 represents an alkyl group. ]
 項9 前記補強材(D)の平均繊維長が、1μm~300μm未満であることを特徴とする、項6~項8のいずれか一項に記載の液晶ポリマー組成物。 Item 9 The liquid crystal polymer composition according to any one of Items 6 to 8, wherein the reinforcing material (D) has an average fiber length of 1 μm to less than 300 μm.
 項10 前記補強材(D)が、チタン酸カリウム繊維およびワラストナイト繊維のうち少なくとも一方であることを特徴とする、項6~項9のいずれか一項に記載の液晶ポリマー組成物。 Item 10 The liquid crystal polymer composition according to any one of Items 6 to 9, wherein the reinforcing material (D) is at least one of potassium titanate fiber and wollastonite fiber.
 項11 前記補強材(D)の含有量が、前記液晶ポリマー組成物全量100質量%中において、0.1質量%~40質量%であることを特徴とする、項6~項10のいずれか一項に記載の液晶ポリマー組成物。 Item 11 Any one of Items 6 to 10, wherein the content of the reinforcing material (D) is 0.1% by mass to 40% by mass in the total amount of 100% by mass of the liquid crystal polymer composition. 1. The liquid crystal polymer composition according to item 1.
 項12 カメラモジュールに用いられることを特徴とする、項1~項11のいずれか一項に記載の液晶ポリマー組成物。 Item 12 The liquid crystal polymer composition according to any one of Items 1 to 11, characterized by being used in a camera module.
 項13 項1~項12のいずれか一項に記載の液晶ポリマー組成物の成形体であることを特徴とする、液晶ポリマー成形体。 Item 13 A liquid crystal polymer molded article, characterized by being a molded article of the liquid crystal polymer composition according to any one of items 1 to 12.
 本発明によれば、エポキシ樹脂などの接着剤に対する接着性に優れる成形体を得ることができ、該成形体からなる部品同士の接着性、あるいは該成形体からなる部品と他の部品との接着性を向上させることを可能とする、液晶ポリマー組成物および該液晶ポリマー組成物の成形体である液晶ポリマー成形体を提供することができる。 According to the present invention, it is possible to obtain a molded article having excellent adhesion to an adhesive such as an epoxy resin, and the adhesion between parts made of the molded article, or the adhesion between parts made of the molded article and other parts. It is possible to provide a liquid crystal polymer composition and a liquid crystal polymer molded article that is a molded article of the liquid crystal polymer composition, which can improve the properties.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、以下の実施形態は単なる例示である。本発明は、下記の実施形態に何ら限定されない。 An example of a preferred embodiment of the present invention will be described below. However, the following embodiments are merely examples. The present invention is by no means limited to the following embodiments.
 <液晶ポリマー組成物>
 本発明の液晶ポリマー組成物は、液晶ポリマー(A)と、分子内におけるエポキシ基の数が3個未満であるエポキシ化合物(B)と、硫酸バリウム(C)とを配合してなる。また、本発明の液晶ポリマー組成物には、必要に応じて、補強材(D)、粒子状炭素材(E)、フッ素樹脂(F)、固体潤滑剤、その他添加剤がさらに配合されていてもよい。
<Liquid crystal polymer composition>
The liquid crystal polymer composition of the present invention comprises a liquid crystal polymer (A), an epoxy compound (B) having less than 3 epoxy groups in the molecule, and barium sulfate (C). In addition, the liquid crystal polymer composition of the present invention may further contain reinforcing material (D), particulate carbon material (E), fluororesin (F), solid lubricant, and other additives as required. good too.
 本発明の液晶ポリマー組成物は、上記の構成を備えるので、エポキシ樹脂などの接着剤に対する接着性に優れる成形体を得ることができ、該成形体からなる部品同士の接着性、あるいは該成形体からなる部品と他の部品との接着性を向上させることができる。 Since the liquid crystal polymer composition of the present invention has the above structure, it is possible to obtain a molded article having excellent adhesion to an adhesive such as an epoxy resin, and the adhesion between parts made of the molded article, or the adhesion of the molded article to each other. It is possible to improve the adhesion between the part made of and other parts.
 以下、本発明の液晶ポリマー組成物の各構成成分等について説明する。 The constituent components and the like of the liquid crystal polymer composition of the present invention are described below.
 <液晶ポリマー組成物の各構成成分>
 (液晶ポリマー(A))
 本発明の液晶ポリマー組成物は、液晶ポリマー(A)(以下「成分(A)」という場合がある。)を含有する。液晶ポリマー(A)とは、光学的異方性溶融相を形成し得る性質を有する溶融加工性ポリマーをいい、当該技術分野においてサーモトロピック液晶ポリマーと呼ばれるものであれば特に制限されない。光学的異方性溶融相は、直交偏光子を利用した通常の偏光検査法によって確認することができる。
<Each component of the liquid crystal polymer composition>
(Liquid crystal polymer (A))
The liquid crystal polymer composition of the present invention contains a liquid crystal polymer (A) (hereinafter sometimes referred to as "component (A)"). The liquid crystal polymer (A) is a melt-processable polymer having properties capable of forming an optically anisotropic melt phase, and is not particularly limited as long as it is called a thermotropic liquid crystal polymer in the technical field. Optically anisotropic melt phases can be identified by conventional polarimetry using crossed polarizers.
 液晶ポリマー(A)は、分子形状が細長く、扁平で分子の長鎖に沿って剛性が高い分子鎖(「メソゲン基」という)を有するものである。また、液晶ポリマー(A)はメソゲン基を高分子主鎖または側鎖のいずれか一方または両方に有していればよいが、得られる液晶ポリマー成形体が、より高い耐熱性を求めるならば高分子主鎖にメソゲン基を有していることが好ましい。 The liquid crystal polymer (A) has an elongated and flat molecular shape and a highly rigid molecular chain (referred to as a "mesogenic group") along the long molecular chain. The liquid crystal polymer (A) may have mesogenic groups in either or both of its main chain and side chains. It is preferable to have a mesogenic group in the molecular main chain.
 成分(A)としては、液晶ポリエステル、液晶ポリエステルアミド、液晶ポリエステルエーテル、液晶ポリエステルカーボネート、液晶ポリエステルイミド、液晶ポリアミド等が挙げられる。これらの中でも、より強度に優れた液晶ポリマー成形体を得る観点から、成分(A)としては、液晶ポリエステル、液晶ポリエステルアミドまたは液晶ポリアミドであることが好ましい。また、より低吸水性の液晶ポリマー成形体を得る観点から、成分(A)としては、液晶ポリエステルまたは液晶ポリエステルアミドであることが好ましく、液晶ポリエステルであることがより好ましい。 Examples of component (A) include liquid crystalline polyesters, liquid crystalline polyester amides, liquid crystalline polyester ethers, liquid crystalline polyester carbonates, liquid crystalline polyester imides, and liquid crystalline polyamides. Among these, liquid crystal polyesters, liquid crystal polyesteramides, and liquid crystal polyamides are preferred as the component (A) from the viewpoint of obtaining a liquid crystal polymer molded article having superior strength. Further, from the viewpoint of obtaining a liquid crystal polymer molded article with lower water absorption, the component (A) is preferably a liquid crystal polyester or a liquid crystal polyesteramide, more preferably a liquid crystal polyester.
 より具体的には、以下の(A1)~(A6)等の液晶ポリマーを挙げることができ、好ましくは原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリマーである。これらから選ばれる液晶ポリマーを単独で成分(A)として使用してもよく、2種以上組み合わせて成分(A)として使用してもよい。 More specifically, the following liquid crystal polymers (A1) to (A6) can be mentioned, preferably a wholly aromatic liquid crystal polymer using only an aromatic compound as a raw material monomer. A liquid crystal polymer selected from these may be used alone as component (A), or two or more of them may be used in combination as component (A).
 (A1)式(1)で表される繰り返し単位からなる液晶ポリエステル;
 (A2)式(2)で表される繰り返し単位および式(3)で表される繰り返し単位からなる液晶ポリエステル;
 (A3)式(1)で表される繰り返し単位、式(2)で表される繰り返し単位、および式(3)で表される繰り返し単位からなる液晶ポリエステル;
 (A4)(A1)において、式(1)で表される繰り返し単位の一部または全部を式(4)で表される繰り返し単位に置き換えてなる、液晶ポリエステルアミドまたは液晶ポリアミド;
 (A5)(A2)において、式(3)で表される繰り返し単位の一部または全部を式(5)で表される繰り返し単位および/または式(6)で表される繰り返し単位に置き換えてなる、液晶ポリエステルアミドまたは液晶ポリアミド;
 (A6)(A3)において、式(3)で表される繰り返し単位の一部または全部を式(5)で表される繰り返し単位および/または式(6)で表される繰り返し単位に置き換えてなる、液晶ポリエステルアミド等の液晶ポリマーを挙げることができ、これらから選ばれる液晶ポリマーを単独で成分(A)として使用してもよく、2種以上組み合わせて、成分(A)として使用してもよい。
(A1) liquid crystalline polyester comprising a repeating unit represented by formula (1);
(A2) a liquid crystalline polyester comprising a repeating unit represented by formula (2) and a repeating unit represented by formula (3);
(A3) A liquid crystalline polyester comprising a repeating unit represented by formula (1), a repeating unit represented by formula (2), and a repeating unit represented by formula (3);
(A4) A liquid crystalline polyesteramide or liquid crystalline polyamide obtained by replacing some or all of the repeating units represented by formula (1) in (A1) with repeating units represented by formula (4);
(A5) In (A2), some or all of the repeating units represented by formula (3) are replaced with repeating units represented by formula (5) and/or repeating units represented by formula (6) a liquid crystalline polyesteramide or liquid crystalline polyamide;
(A6) In (A3), some or all of the repeating units represented by formula (3) are replaced with repeating units represented by formula (5) and/or repeating units represented by formula (6). A liquid crystal polymer such as a liquid crystal polyester amide can be mentioned, and a liquid crystal polymer selected from these may be used alone as the component (A), or two or more of them may be combined and used as the component (A). good.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (式中、ArおよびArはそれぞれ独立に、1,4-フェニレン基、2,6-ナフタレンジイル基または4,4-ビフェニリレン基を表す。Ar、Ar、ArおよびArはそれぞれ独立に、1,4-フェニレン基、2,6-ナフタレンジイル基、1,3-フェニレン基または4,4-ビフェニリレン基を表す。また、Ar、Ar、Ar、Ar、ArおよびArは、その芳香環上の水素原子の一部または全部が、ハロゲン原子、アルキル基、アリール基に置換されていてもよい。) (wherein Ar 1 and Ar 4 each independently represent a 1,4-phenylene group, a 2,6-naphthalenediyl group or a 4,4-biphenylylene group; Ar 2 , Ar 3 , Ar 5 and Ar 6 are Each independently represents a 1,4-phenylene group, a 2,6-naphthalenediyl group, a 1,3-phenylene group or a 4,4-biphenylylene group, and Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar Part or all of the hydrogen atoms on the aromatic ring of 5 and Ar 6 may be substituted with a halogen atom, an alkyl group, or an aryl group.)
 式(1)で表される繰り返し単位は、芳香族ヒドロキシカルボン酸から誘導される繰り返し単位であり、該芳香族ヒドロキシカルボン酸としては、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、7-ヒドロキシ-2-ナフトエ酸、6-ヒドロキシ-1-ナフトエ酸、4-ヒドロキシビフェニル-4-カルボン酸、またはこれらの芳香族ヒドロキシカルボン酸における芳香環上の水素の一部または全部が、アルキル基、アリール基、ハロゲン原子に置換されてなる芳香族ヒドロキシカルボン酸が挙げられる。 The repeating unit represented by formula (1) is a repeating unit derived from an aromatic hydroxycarboxylic acid, and examples of the aromatic hydroxycarboxylic acid include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy -2-naphthoic acid, 7-hydroxy-2-naphthoic acid, 6-hydroxy-1-naphthoic acid, 4-hydroxybiphenyl-4-carboxylic acid, or one of the hydrogens on the aromatic ring in these aromatic hydroxycarboxylic acids Aromatic hydroxycarboxylic acids partially or wholly substituted with an alkyl group, an aryl group, or a halogen atom can be mentioned.
 式(2)で表される繰り返し単位は、芳香族ジカルボン酸から誘導される繰り返し単位であり、該芳香族ジカルボン酸としては、テレフタル酸、フタル酸、4,4-ジフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、イソフタル酸、またはこれら芳香族ジカルボン酸における芳香環上の水素の一部または全部が、アルキル基、アリール基、ハロゲン原子に置換されてなる芳香族ジカルボン酸が挙げられる。 The repeating unit represented by formula (2) is a repeating unit derived from an aromatic dicarboxylic acid. Examples of the aromatic dicarboxylic acid include terephthalic acid, phthalic acid, 4,4-diphenyldicarboxylic acid, 2,6 -Naphthalenedicarboxylic acid, isophthalic acid, or aromatic dicarboxylic acids in which some or all of the hydrogen atoms on the aromatic rings of these aromatic dicarboxylic acids are substituted with alkyl groups, aryl groups, or halogen atoms.
 式(3)で表される繰り返し単位は、芳香族ジオールから誘導される繰り返し単位であり、該芳香族ジオールとしては、ハイドロキノン、レゾルシン、ナフタレン-2,6-ジオール、4,4-ビフェニレンジオール、3,3-ビフェニレンジオール、4,4-ジヒドロキシジフェニルエーテル、4,4-ジヒドロキシジフェニルスルホンまたはこれら芳香族ジオールにおける芳香環上の水素の一部または全部が、アルキル基、アリール基、ハロゲン原子に置換されてなる芳香族ジオールが挙げられる。 The repeating unit represented by formula (3) is a repeating unit derived from an aromatic diol. Examples of the aromatic diol include hydroquinone, resorcinol, naphthalene-2,6-diol, 4,4-biphenylenediol, 3,3-biphenylenediol, 4,4-dihydroxydiphenyl ether, 4,4-dihydroxydiphenyl sulfone, or aromatic diols in which some or all of the hydrogen atoms on the aromatic ring are substituted with an alkyl group, an aryl group, or a halogen atom. and aromatic diols.
 式(4)で表される繰り返し単位は、芳香族アミノカルボン酸から誘導される繰り返し単位であり、該芳香族アミノカルボン酸としては、4-アミノ安息香酸、3-アミノ安息香酸、6-アミノ-2-ナフトエ酸、またはこれら芳香族アミノカルボン酸における芳香環上の水素の一部または全部が、アルキル基、アリール基、ハロゲン原子に置換されてなる芳香族アミノカルボン酸が挙げられる。 The repeating unit represented by formula (4) is a repeating unit derived from an aromatic aminocarboxylic acid. Examples of the aromatic aminocarboxylic acid include 4-aminobenzoic acid, 3-aminobenzoic acid, 6-amino -2-naphthoic acid, and aromatic aminocarboxylic acids in which some or all of the hydrogen atoms on the aromatic rings of these aromatic aminocarboxylic acids are substituted with alkyl groups, aryl groups, or halogen atoms.
 式(5)で表される繰り返し単位は、ヒドロキシ基を有する芳香族アミンから誘導される繰り返し単位であり、4-アミノフェノール、3-アミノフェノール、4-アミノ-1-ナフトール、4-アミノ-4-ヒドロキシジフェニル、またはこれらヒドロキシ基を有する芳香族アミンにおける芳香環上の水素の一部または全部が、アルキル基、アリール基、ハロゲン原子に置換されてなる芳香族ヒドロキシアミンが挙げられる。 The repeating unit represented by formula (5) is a repeating unit derived from an aromatic amine having a hydroxy group, such as 4-aminophenol, 3-aminophenol, 4-amino-1-naphthol, 4-amino- Examples include 4-hydroxydiphenyl, and aromatic hydroxyamines in which some or all of the hydrogen atoms on the aromatic rings of these aromatic amines having hydroxy groups are substituted with alkyl groups, aryl groups, or halogen atoms.
 式(6)で表される繰り返し単位は、芳香族ジアミンから誘導される構造単位であり、1,4-フェニレンジアミン、1,3-フェニレンジアミンまたはこれらの芳香族ジアミンにおける芳香環上の水素の一部または全部が、アルキル基、アリール基、ハロゲン原子に置換されてなる芳香族ジアミンが挙げられる。 The repeating unit represented by formula (6) is a structural unit derived from an aromatic diamine, and is 1,4-phenylenediamine, 1,3-phenylenediamine, or hydrogen atoms on the aromatic rings of these aromatic diamines. Aromatic diamines partially or wholly substituted with an alkyl group, an aryl group, or a halogen atom can be mentioned.
 上述の構造単位において置換基として例示されているアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基などの、炭素数1~10の直鎖、分岐または脂環状のアルキル基が挙げられる。アリール基としては、フェニル基やナフチル基などの炭素数6~10のアリール基が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 Alkyl groups exemplified as substituents in the above structural units include methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, hexyl, cyclohexyl, octyl, and decyl groups. , linear, branched or alicyclic alkyl groups having 1 to 10 carbon atoms. The aryl group includes aryl groups having 6 to 10 carbon atoms such as phenyl group and naphthyl group. Halogen atoms include fluorine, chlorine, bromine and iodine atoms.
 成分(A)の中でも、(A1)~(A3)からなる群より選ばれる少なくとも1種の液晶ポリエステルが、より耐熱性や寸法安定性に優れた液晶ポリマー成形体が得られる点で好ましく、(A1)または(A3)の液晶ポリエステルが特に好ましい。 Among component (A), at least one liquid crystalline polyester selected from the group consisting of (A1) to (A3) is preferable in terms of obtaining a liquid crystalline polymer molded article having excellent heat resistance and dimensional stability. Liquid crystalline polyesters A1) or (A3) are particularly preferred.
 本発明で使用する液晶ポリマー(A)は、変形、変色等をより一層抑制し、得られる成形体の耐熱性をより一層高める観点から、融点が150℃以上であることが好ましい。また、押出、成形、紡糸等の溶融加工での液晶ポリマー(A)の熱分解をより一層抑制するため、融点が350℃以下であることが好ましく、330℃以下であることがより好ましい。融点は、JIS-K7121に準じて測定することができる。 The liquid crystal polymer (A) used in the present invention preferably has a melting point of 150°C or higher from the viewpoint of further suppressing deformation, discoloration, etc. and further increasing the heat resistance of the resulting molded product. In addition, the melting point is preferably 350° C. or lower, more preferably 330° C. or lower, in order to further suppress thermal decomposition of the liquid crystal polymer (A) during melt processing such as extrusion, molding, and spinning. The melting point can be measured according to JIS-K7121.
 成分(A)の中でも、融点より20℃~40℃高い温度で測定した溶融粘度が1.0×10mPa・s~1.0×10mPa・sである液晶ポリマーが好ましい。例えば、液晶ポリマーは、熱変形温度の違いにより、荷重たわみ温度が260℃以上のものがI型と称され、荷重たわみ温度が210℃以上260℃未満のものがII型と称されるが、I型の液晶ポリマーは融点より30℃高い温度で測定し、II型の液晶ポリマーは融点より40℃高い温度で測定する。上記溶融粘度は、キャピラリーレオメーターを使用して、直径1mm、長さ10mmのオリフィスを、1.0×10sec-1のずり速度で通過する際の粘度を測定することによって得ることができる。 Among component (A), a liquid crystal polymer having a melt viscosity of 1.0×10 3 mPa·s to 1.0×10 5 mPa·s measured at a temperature 20° C. to 40° C. higher than the melting point is preferred. For example, a liquid crystal polymer having a deflection temperature under load of 260° C. or more is called type I, and a liquid crystal polymer having a deflection temperature under load of 210° C. or more and less than 260° C. is called type II, depending on the difference in heat distortion temperature. Type I liquid crystal polymers are measured at 30° C. above the melting point, and type II liquid crystal polymers are measured at 40° C. above the melting point. The melt viscosity can be obtained by measuring the viscosity when passing through an orifice with a diameter of 1 mm and a length of 10 mm at a shear rate of 1.0×10 3 sec −1 using a capillary rheometer. .
 成分(A)の形状は、溶融混練が可能であれば特に制限されず、例えば、粉末状、顆粒状、ペレット状のいずれも使用することができる。 The shape of component (A) is not particularly limited as long as melt-kneading is possible, and for example, any of powder, granules, and pellets can be used.
 本発明の液晶ポリマー組成物における成分(A)の含有量は、液晶ポリマー組成物全量100質量%中において40質量%~98質量%であることが好ましく、50質量%~94質量%であることがより好ましく、60質量%~90質量%であることがさらに好ましい。 The content of component (A) in the liquid crystal polymer composition of the present invention is preferably 40% by mass to 98% by mass, more preferably 50% by mass to 94% by mass, based on the total amount of 100% by mass of the liquid crystal polymer composition. is more preferable, and 60% by mass to 90% by mass is even more preferable.
 (分子内におけるエポキシ基の数が3個未満であるエポキシ化合物(B))
 本発明の液晶ポリマー組成物は、分子内におけるエポキシ基の数が3個未満であるエポキシ化合物(B)(以下「成分(B)」という場合がある。)を含有する。分子内におけるエポキシ基の数が3個未満であるエポキシ化合物(B)とは、同一分子内にエポキシ官能基を好ましくは2個以下、より好ましくは1個または2個、さらに好ましくは2個含有するエポキシ化合物をいう。また、エポキシ化合物(B)の骨格は特に限定されないが、好ましくは下記一般式(I)で表されるビフェニル型エポキシモノマーである。
(Epoxy compound (B) having less than 3 epoxy groups in the molecule)
The liquid crystal polymer composition of the present invention contains an epoxy compound (B) having less than 3 epoxy groups in the molecule (hereinafter sometimes referred to as "component (B)"). The epoxy compound (B) having less than 3 epoxy groups in the molecule preferably contains 2 or less, more preferably 1 or 2, and still more preferably 2 epoxy functional groups in the same molecule. Epoxy compounds that The skeleton of the epoxy compound (B) is not particularly limited, but is preferably a biphenyl-type epoxy monomer represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(I)において、n、mはそれぞれ0~2から選択される任意の整数を示す(ただし、n、mがともに0の場合は除く)。RおよびRは、それぞれ独立して水素原子または炭素数1~10の炭化水素基を表し、置換基を有していてもよく、RおよびRはそれぞれ互いに同一でも異なっていてもよい。a、bは、それぞれ0~2から選択される任意の整数を示す。ビフェニル骨格の左右におけるそれぞれのフェニル構造は、互いに同一であってもよく異なっていてもよい。 In general formula (I), n and m each represent an arbitrary integer selected from 0 to 2 (except when both n and m are 0). R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms and may have a substituent; R 1 and R 2 may be the same or different; good. a and b each represent an arbitrary integer selected from 0 to 2; The phenyl structures on the left and right sides of the biphenyl skeleton may be the same or different.
 本発明の効果のうち、液晶ポリマー成形体のエポキシ樹脂などの接着剤に対する接着性がより一層高められるメカニズムは定かではないが、液晶ポリマー成形体からなる部品をエポキシ樹脂のような接着剤を介して同じ部品同士あるいは他の部品と接合させるに際し、その成形体を構成する液晶ポリマー組成物中に成分(B)を含有することで、成分(B)中のエポキシ基またはグリシジル基と接着剤中に含有する硬化剤の末端基(アミド基、アミノ基、カルボキシル基、アミノカルボキシル基等)との化学反応が促進され、成形体からなる部品と接着剤との接着性が向上し、機器や部品の衝突時や落下時における部品の接着剥離を抑制できるためではないかと考えられる。上記他の部品は、エポキシ接着剤との接着性が優れていることが好ましい。 Of the effects of the present invention, the mechanism by which the adhesiveness of the liquid crystal polymer molded body to an adhesive such as an epoxy resin is further enhanced is not clear, but it is possible to bond parts made of the liquid crystal polymer molded body via an adhesive such as an epoxy resin. When bonding the same parts to each other or to other parts, by containing the component (B) in the liquid crystal polymer composition constituting the molded product, the epoxy group or glycidyl group in the component (B) and the adhesive The chemical reaction with the terminal groups (amide group, amino group, carboxyl group, aminocarboxyl group, etc.) of the curing agent contained in is promoted, and the adhesiveness between the molded parts and the adhesive is improved, and the equipment and parts This is thought to be due to the fact that it is possible to suppress the adhesion peeling of the parts at the time of collision or drop. It is preferable that the other parts have excellent adhesiveness with the epoxy adhesive.
 成分(B)の上記一般式(I)のRおよびRの炭化水素基の種類は、本発明の液晶ポリマー組成物中の成分(B)のグリシジルエーテル基とエポキシ樹脂などの接着剤との硬化反応を促進させ部品同士の接着性をより一層向上させるという観点から、置換基を有する場合は立体障害の少ないメチル基(-CH基)であることが好ましい。 The types of hydrocarbon groups for R 1 and R 2 in the above general formula (I) of component (B) are determined by the glycidyl ether group of component (B) in the liquid crystal polymer composition of the present invention and the adhesive agent such as epoxy resin. From the standpoint of promoting the curing reaction of and further improving the adhesiveness between parts, when it has a substituent, it is preferably a methyl group (--CH 3 group) with little steric hindrance.
 成分(B)の上記一般式(I)のグリシジルエーテル基の位置は、特に限定されないが、本発明の液晶ポリマー組成物中の成分(B)のグリシジルエーテル基とエポキシ樹脂などの接着剤との硬化反応を促進させ部品同士の接着性をより一層向上させるという観点から、成分(B)中にグリシジルエーテル基を2個含有する場合は、成分(B)の分子内での化学反応をより一層抑制するうえで、グリシジルエーテル基は3,3’位、3,4’位、3,5’位、4,3’位、4,4’位、4,5’位、3,4’位、または5,4’位に設けられていることが好ましく、4,4’位に設けられていることがより好ましい。 The position of the glycidyl ether group of the above general formula (I) of component (B) is not particularly limited, but the position of the glycidyl ether group of component (B) in the liquid crystal polymer composition of the present invention and an adhesive such as an epoxy resin From the viewpoint of promoting the curing reaction and further improving the adhesion between parts, when two glycidyl ether groups are contained in the component (B), the chemical reaction within the molecule of the component (B) is further enhanced. For inhibition, glycidyl ether groups are 3,3′, 3,4′, 3,5′, 4,3′, 4,4′, 4,5′, 3,4′. , or preferably at the 5,4′ positions, more preferably at the 4,4′ positions.
 RおよびRは、例えば、グリシジルエーテル基が4,4’位の場合は、2,2’位、2,6’位あるいは6,2’位、2,3’位あるいは3,2’位、2,5’位あるいは5,2’位、6,6’位、6,3’位あるいは3,6’位、6,5’位あるいは5,6’位、3,3’位、3,5’位あるいは5,3’位および5,5’位のいずれかの位置に設けられていればよい。もっとも、RおよびRは、3,3’位、3,5’位あるいは5,3’位、および5,5’位のいずれかの位置に設けられていることが好ましく、3,3’位および5,5’位のいずれの位置にも設けられていることが特に好ましい。 R 1 and R 2 are, for example, 2,2′-position, 2,6′-position or 6,2′-position, 2,3′-position or 3,2′-position when the glycidyl ether group is in 4,4′-position. 2,5′ or 5,2′, 6,6′, 6,3′ or 3,6′, 6,5′ or 5,6′, 3,3′, It may be provided at any one of the 3,5′ positions or the 5,3′ and 5,5′ positions. However, R 1 and R 2 are preferably provided at any one of 3,3′-position, 3,5′-position or 5,3′-position and 5,5′-position, and 3,3 It is particularly preferred to be provided at both the '-position and the 5,5'-position.
 グリシジルエーテル基が4,4’位に設けられているエポキシ化合物(B)としては、例えば、下記式(III)で表されるビフェニル型エポキシモノマーが挙げられる。 Examples of the epoxy compound (B) having glycidyl ether groups at the 4,4' positions include biphenyl-type epoxy monomers represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(III)において、RおよびRは、いずれもメチル基である。また、RおよびRは、3,3’位および5,5’位に設けられている。 In formula (III), both R 1 and R 2 are methyl groups. Also, R 1 and R 2 are provided at the 3,3′ and 5,5′ positions.
 本発明では、分子内におけるエポキシ基の数が3個未満であるエポキシ化合物(B)による接着性を高めつつ、動摩擦係数および/または静摩擦係数をより一層低める観点から、エポキシ化合物(B)の含有量は、液晶ポリマー組成物全量100質量%中に対し、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.8質量%以上であることがさらに好ましく、0.95質量%以上であることが特に好ましく、1.2質量%以上であることが最も好ましい。また、分子内におけるエポキシ基の数が3個未満であるエポキシ化合物(B)による機械強度の低下をより一層抑制しつつ、接着性をより一層高める観点から、エポキシ化合物(B)の含有量は、液晶ポリマー組成物全量100質量%中に対し、5.0質量%以下であることが好ましく、4.5質量%以下であることがより好ましく、3.8質量%以下であることがさらに好ましく、3.5質量%以下であることが特に好ましく、3.2質量%以下であることが最も好ましい。 In the present invention, the epoxy compound (B) is contained from the viewpoint of further lowering the coefficient of dynamic friction and/or the coefficient of static friction while enhancing the adhesiveness of the epoxy compound (B) having less than 3 epoxy groups in the molecule. The amount is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and preferably 0.8% by mass or more based on the total amount of 100% by mass of the liquid crystal polymer composition. It is more preferably 0.95% by mass or more, particularly preferably 1.2% by mass or more, and most preferably 1.2% by mass or more. In addition, from the viewpoint of further improving adhesiveness while further suppressing a decrease in mechanical strength due to the epoxy compound (B) having less than 3 epoxy groups in the molecule, the content of the epoxy compound (B) is , preferably 5.0% by mass or less, more preferably 4.5% by mass or less, and even more preferably 3.8% by mass or less with respect to 100% by mass of the total amount of the liquid crystal polymer composition , is particularly preferably 3.5% by mass or less, and most preferably 3.2% by mass or less.
 本発明では、成分(B)による機械強度の低下をより一層抑制しつつ、接着性をより一層高める観点から、成分(B)のエポキシ当量は、140g/eq~210g/eqであることが好ましく、145g/eq~205g/eqであることがさらに好ましく、150g/eq~200g/eqであることが特に好ましい。 In the present invention, the epoxy equivalent of component (B) is preferably from 140 g/eq to 210 g/eq from the viewpoint of further improving adhesiveness while further suppressing deterioration in mechanical strength due to component (B). , more preferably 145 g/eq to 205 g/eq, and particularly preferably 150 g/eq to 200 g/eq.
 本発明の液晶ポリマー組成物の成形性をより一層高める観点から、成分(B)の融点は、100℃以上であることが好ましく、200℃以下であることが好ましい。 From the viewpoint of further enhancing the moldability of the liquid crystal polymer composition of the present invention, the melting point of component (B) is preferably 100°C or higher and preferably 200°C or lower.
 成分(B)の製造方法は、特に限定されず、従来公知の方法を使用して製造することができる。もっとも、上記一般式(I)のビフェニル型エポキシモノマーを製造するに際し、特にヒドロキシル基を分子内に3個未満含有する多価ヒドロキシビフェニルとエピハロヒドリンを反応させて上記一般式(I)のビフェニル型エポキシモノマーを製造する場合は、例えば、原料となる多価ヒドロキシビフェニルは、クロスカップリング反応を行って製造することができる。この際、クロスカップリング反応の選択性は、特に限定はされないが、位置選択的クロスカップリング反応を含む製造方法等で得ることができる多価ヒドロキシビフェニルを使用した方が、ビフェニル型エポキシモノマーの製造効率および純度の観点から好ましい。ヒドロキシル基を分子内に3個未満含有する多価ヒドロキシビフェニルとエピハロヒドリンを反応させて上記一般式(I)のビフェニル型エポキシモノマーを製造する方法は、従来公知の方法であれば、特に限定はされないが、例えば、上述のようにフェノール誘導体の位置選択的カップリング反応で合成した高純度の多価ヒドロキシビフェニルとエピハロヒドリンを反応させる方法等が挙げられる。 The method for producing component (B) is not particularly limited, and it can be produced using a conventionally known method. However, in the production of the biphenyl-type epoxy monomer of general formula (I), polyvalent hydroxybiphenyl containing less than 3 hydroxyl groups in the molecule is reacted with epihalohydrin to obtain the biphenyl-type epoxy of general formula (I). When producing a monomer, for example, polyhydric hydroxybiphenyl as a raw material can be produced by carrying out a cross-coupling reaction. At this time, the selectivity of the cross-coupling reaction is not particularly limited. It is preferable from the viewpoint of production efficiency and purity. The method for producing the biphenyl-type epoxy monomer of general formula (I) by reacting polyvalent hydroxybiphenyl containing less than 3 hydroxyl groups in the molecule with epihalohydrin is not particularly limited as long as it is a conventionally known method. However, for example, a method of reacting highly pure polyvalent hydroxybiphenyl synthesized by a regioselective coupling reaction of a phenol derivative with epihalohydrin as described above may be used.
 なお、上記一般式(I)で示されるビフェニル型エポキシモノマーは、フェノール誘導体の位置選択的カップリング反応で合成した高純度の多価ヒドロキシビフェニルに、本発明の効果を損なわない範囲で、他の方法で得た多価フェノールを併用して、エピハロヒドリンと反応させてビフェニル型エポキシモノマーを得てもよい。 The biphenyl-type epoxy monomer represented by the above general formula (I) may be added to a high-purity polyhydroxybiphenyl synthesized by a regioselective coupling reaction of a phenol derivative, to the extent that it does not impair the effects of the present invention. The polyhydric phenol obtained by the method may be used in combination and reacted with epihalohydrin to obtain a biphenyl-type epoxy monomer.
 また、成分(B)は、市販品を用いてもよい。 In addition, a commercially available product may be used as the component (B).
 (硫酸バリウム(C))
 本発明の液晶ポリマー組成物は、硫酸バリウム(C)(以下「成分(C)」という場合がある。)を含有する。成分(C)としては、重晶石と呼ばれる鉱物を粉砕して脱鉄洗浄、水簸して得られる簸性硫酸バリウム(バライト粉)や、人工的に合成する沈降性硫酸バリウムが挙げられる。沈降性硫酸バリウムでは合成時の条件により粒子の大きさを制御することができ、目的とする粗大粒子の含有量が少ない、微細な硫酸バリウムを製造することができる。不純物をより一層少なくし、粒度分布をより一層均一にする観点から、沈降性硫酸バリウムを用いることが好ましい。
(Barium sulfate (C))
The liquid crystal polymer composition of the present invention contains barium sulfate (C) (hereinafter sometimes referred to as "component (C)"). Examples of component (C) include elutriated barium sulfate (barite powder) obtained by pulverizing a mineral called barite, deironizing, washing, and elutriating, and artificially synthesized precipitated barium sulfate. With precipitated barium sulfate, the particle size can be controlled by the conditions during synthesis, and fine barium sulfate with a small content of coarse particles can be produced. From the viewpoint of further reducing impurities and making the particle size distribution more uniform, it is preferable to use precipitated barium sulfate.
 成分(C)は、粉末であることが好ましく、その平均粒子径は、好ましくは0.1μm~50μmであり、より好ましくは0.1μm~30μmであり、さらに好ましくは0.1μm~5μmであり、さらにより好ましくは0.15μm~1.2μmであり、特に好ましくは0.2μm~0.8μmであり、最も好ましくは0.2μm~0.5μmである。平均粒子径を上記範囲とすることで摺動時の摩擦係数をより一層小さくすることができ、パーティクルの発生をより一層抑制することができる。 Component (C) is preferably a powder, and its average particle size is preferably 0.1 μm to 50 μm, more preferably 0.1 μm to 30 μm, still more preferably 0.1 μm to 5 μm. , still more preferably 0.15 μm to 1.2 μm, particularly preferably 0.2 μm to 0.8 μm, most preferably 0.2 μm to 0.5 μm. By setting the average particle size within the above range, the coefficient of friction during sliding can be further reduced, and the generation of particles can be further suppressed.
 成分(C)の平均粒子径は、レーザー回折・散乱法により測定することができる。より具体的に、成分(C)の平均粒子径は、レーザー回折・散乱法により測定される粒度分布における体積基準累積50%時の粒子径(体積基準累積50%粒子径)、すなわちD50(メジアン径)である。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。 The average particle size of component (C) can be measured by a laser diffraction/scattering method. More specifically, the average particle size of the component (C) is the particle size at 50% cumulative volume (volume-based cumulative 50% particle size) in the particle size distribution measured by a laser diffraction/scattering method, that is, D 50 ( median diameter). This volume-based cumulative 50% particle diameter (D 50 ) is obtained by determining the particle size distribution on a volume basis, counting the number of particles from the smallest particle size on the cumulative curve with the total volume as 100%, and the cumulative value is It is the particle diameter at the 50% point.
 成分(C)の粒子形状は、球状、柱状、板状、棒状、円柱状、ブロック状、不定形状等の非繊維状粒子であれば特に限定されないが、好ましくは球状または不定形状である。成分(C)の粒子形状は、例えば走査型電子顕微鏡(SEM)観察から解析することができる。成分(C)は表面処理されていてもよく、その処理剤としては、コーティング剤、分散剤、改質剤などを挙げることができる。具体的に、処理剤としては、脂肪酸、ワックス、非イオン系界面活性剤、エポキシ系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物、リン系化合物、アルミナなどのアルミニウム塩、二酸化ケイ素などのケイ酸塩、二酸化チタンなどのチタニウム塩等が挙げられる。これらは1種を単独で用いてもよいが、2種以上を併用して使用することもできる。 The particle shape of component (C) is not particularly limited as long as it is non-fibrous particles such as spherical, columnar, plate-like, rod-like, columnar, block-like, and irregularly shaped particles, but is preferably spherical or irregularly shaped. The particle shape of component (C) can be analyzed, for example, by scanning electron microscope (SEM) observation. Component (C) may be surface-treated, and examples of treatment agents include coating agents, dispersants, and modifiers. Specifically, the treatment agent includes fatty acids, waxes, nonionic surfactants, epoxy compounds, isocyanate compounds, silane compounds, titanate compounds, phosphorus compounds, aluminum salts such as alumina, and silicon dioxide. Titanium salts such as silicates and titanium dioxide are included. Although these may be used individually by 1 type, they can also be used in combination of 2 or more types.
 本発明の液晶ポリマー組成物における成分(C)の含有量は、液晶ポリマー組成物全量100質量%中において、1質量%~30質量%であることが好ましく、1質量%~20質量%であることがより好ましく、1質量%~15質量%であることがさらに好ましく、1.5質量%~2.5質量%であることが最も好ましい。成分(C)の含有量を1質量%~30質量%の範囲とすることで、パーティクルの発生をより一層低減することができる。 The content of component (C) in the liquid crystal polymer composition of the present invention is preferably 1% by mass to 30% by mass, more preferably 1% by mass to 20% by mass, in 100% by mass of the total amount of the liquid crystal polymer composition. more preferably 1% by mass to 15% by mass, most preferably 1.5% by mass to 2.5% by mass. By setting the content of component (C) in the range of 1% by mass to 30% by mass, the generation of particles can be further reduced.
 (補強材(D))
 本発明の液晶ポリマー組成物は、必要に応じて、補強材(D)(以下「成分(D)」という場合がある。)を含有することができる。成分(D)としては、粒子から構成される粉末状の補強材であり、ポリマー組成物の強度や剛性を向上させるものであれば、粒子形状は特に限定されない。成分(D)としては、例えば、繊維状粒子から構成される粉末である繊維状補強材(D1)(以下「成分(D1)」という場合がある。)や、板状粒子から構成される粉末である板状補強材(D2)(以下「成分(D2)」という場合がある。)等を用いることができる。なかでも、繊維状補強材(D1)および板状補強材(D2)からなる群から選ばれる1種または2種以上であることが好ましい。成分(D)の粒子形状は、例えば走査型電子顕微鏡(SEM)観察から解析することができる。
(Reinforcing material (D))
The liquid crystal polymer composition of the present invention can contain a reinforcing material (D) (hereinafter sometimes referred to as "component (D)"), if necessary. Component (D) is a powdery reinforcing material composed of particles, and the particle shape is not particularly limited as long as it improves the strength and rigidity of the polymer composition. As the component (D), for example, a fibrous reinforcing material (D1) that is a powder composed of fibrous particles (hereinafter sometimes referred to as "component (D1)"), or a powder composed of plate-like particles A plate-like reinforcing material (D2) (hereinafter sometimes referred to as "component (D2)"), etc. can be used. Among them, one or more selected from the group consisting of fibrous reinforcing materials (D1) and plate-like reinforcing materials (D2) are preferred. The particle shape of component (D) can be analyzed, for example, by scanning electron microscope (SEM) observation.
 本発明において繊維状粒子とは、粒子に外接する直方体のうち最小の体積をもつ直方体(外接直方体)の最も長い辺を長径Lとし、次に長い辺を短径Bとし、最も短い辺を厚さT(B>T)と定義したときに、L/BおよびL/Tがいずれも3以上の粒子のことをいい、長径Lが繊維長、短径Bが繊維径に相当する。また、板状粒子とは、L/Bが3よりも小さく、L/Tが3以上の粒子のことをいう。 In the present invention, a fibrous particle is defined as a rectangular parallelepiped having the smallest volume among the rectangular parallelepipeds circumscribing the particle (circumscribing rectangular parallelepiped), with the longest side having the major axis L, the next longest side having the minor axis B, and the shortest side having the thickness. When defined as T (B>T), both L/B and L/T are particles of 3 or more, and the major axis L corresponds to the fiber length, and the minor axis B corresponds to the fiber diameter. Plate-like particles refer to particles having an L/B of less than 3 and an L/T of 3 or more.
 繊維状補強材(D1)の具体例としては、炭素繊維、ガラス繊維、チタン酸カリウム繊維、ワラストナイト繊維、ホウ酸アルミニウム、ホウ酸マグネシウム、ゾノトライト、酸化亜鉛、塩基性硫酸マグネシウム、アルミナ繊維、シリコンカーバイド繊維、ボロン繊維等の無機繊維;アラミド繊維、ポリフェニレンベンズオキサゾール(PBO)繊維等の有機繊維が挙げられ、好ましくは無機繊維である。これらの繊維状補強材(D1)は、1種を単独で用いてもよく、複数種を併用してもよい。 Specific examples of the fibrous reinforcing material (D1) include carbon fiber, glass fiber, potassium titanate fiber, wollastonite fiber, aluminum borate, magnesium borate, xonotlite, zinc oxide, basic magnesium sulfate, alumina fiber, Inorganic fibers such as silicon carbide fibers and boron fibers; organic fibers such as aramid fibers and polyphenylenebenzoxazole (PBO) fibers; inorganic fibers are preferred. One of these fibrous reinforcing materials (D1) may be used alone, or two or more of them may be used in combination.
 繊維状補強材(D1)は、パーティクルの発生をより一層低減する観点から、モース硬度が、2.5以上、5以下の粒子であることが好ましく、チタン酸カリウム繊維およびワラストナイト繊維のうち少なくとも一方であることがより好ましい。モース硬度とは、物質の硬さを表す指標であり、鉱物同士を擦り付けて傷ついたほうが硬度の小さい物質となる。 From the viewpoint of further reducing particle generation, the fibrous reinforcing material (D1) is preferably particles having a Mohs hardness of 2.5 or more and 5 or less. Among potassium titanate fibers and wollastonite fibers, At least one is more preferable. The Mohs hardness is an index that indicates the hardness of a substance, and a substance with a lower hardness is obtained when the minerals are rubbed against each other and damaged.
 繊維状補強材(D1)の平均繊維長は、パーティクルの発生をより一層低減する観点から、好ましくは1μm~300μmであり、より好ましくは1μm以上、300μm未満、さらに好ましくは1μm~200μmであり、特に好ましくは3μm~100μmであり、最も好ましくは5μm~50μmである。また、繊維状補強材(D1)の平均アスペクト比は、好ましくは3~200であり、より好ましくは3~100であり、さらに好ましくは3~50であり、特に好ましくは3~40である。 The average fiber length of the fibrous reinforcing material (D1) is preferably 1 μm to 300 μm, more preferably 1 μm or more and less than 300 μm, still more preferably 1 μm to 200 μm, from the viewpoint of further reducing particle generation. Especially preferred is 3 μm to 100 μm, most preferred is 5 μm to 50 μm. The average aspect ratio of the fibrous reinforcing material (D1) is preferably 3-200, more preferably 3-100, still more preferably 3-50, and particularly preferably 3-40.
 チタン酸カリウム繊維としては、従来公知のものを広く使用でき、例えば、4チタン酸カリウム繊維、6チタン酸カリウム繊維、8チタン酸カリウム繊維等が挙げられる。チタン酸カリウム繊維の寸法は、上述の寸法の範囲であれば特に制限されないが、平均繊維長が好ましくは1μm~50μm、より好ましくは3μm~30μm、さらに好ましくは3μm~20μmである。チタン酸カリウム繊維の平均繊維径は、好ましくは0.01μm~1μm、より好ましくは0.05μm~0.8μm、さらに好ましくは0.1μm~0.7μmである。また、チタン酸カリウム繊維の平均アスペクト比は、好ましくは10以上、より好ましくは10~100、さらに好ましくは15~35である。これらの繊維状補強材(D1)は市販品でも使用でき、例えば、大塚化学社製の「TISMO D」(平均繊維長15μm、平均繊維径0.5μm)や、「TISMO N」(平均繊維長15μm、平均繊維径0.5μm)等を使用することができる。 As the potassium titanate fiber, conventionally known ones can be widely used, and examples thereof include potassium tetratitanate fiber, potassium hexatitanate fiber, potassium octatitanate fiber, and the like. The dimensions of the potassium titanate fibers are not particularly limited as long as they are within the above dimensions, but the average fiber length is preferably 1 μm to 50 μm, more preferably 3 μm to 30 μm, still more preferably 3 μm to 20 μm. The average fiber diameter of the potassium titanate fibers is preferably 0.01 μm to 1 μm, more preferably 0.05 μm to 0.8 μm, still more preferably 0.1 μm to 0.7 μm. Further, the average aspect ratio of the potassium titanate fibers is preferably 10 or more, more preferably 10-100, still more preferably 15-35. These fibrous reinforcing materials (D1) can also be used as commercially available products. 15 μm, average fiber diameter 0.5 μm), etc. can be used.
 ワラストナイト繊維は、メタ珪酸カルシウムからなる無機繊維である。ワラストナイト繊維の寸法は、上述の繊維状補強材(D1)の寸法の範囲であれば特に制限されないが、平均繊維長が好ましくは5μm~180μm、より好ましくは7μm~100μm、さらに好ましくは9μm~40μmである。ワラストナイト繊維の平均繊維径は、好ましくは0.1μm~15μm、より好ましくは1μm~10μm、さらに好ましくは2μm~7μmである。また、ワラストナイト繊維の平均アスペクト比は、好ましくは3以上、より好ましくは3~30、さらに好ましくは3~15である。これらの繊維状補強材(D1)は市販品でも使用でき、例えば、大塚化学社製の「バイスタルW」(平均繊維長25μm、平均繊維径3μm)等を使用することができる。 Wollastonite fiber is an inorganic fiber made of calcium metasilicate. The dimension of the wollastonite fiber is not particularly limited as long as it is within the dimension range of the fibrous reinforcing material (D1) described above. ˜40 μm. The average fiber diameter of the wollastonite fibers is preferably 0.1 μm to 15 μm, more preferably 1 μm to 10 μm, still more preferably 2 μm to 7 μm. The average aspect ratio of the wollastonite fibers is preferably 3 or more, more preferably 3-30, and even more preferably 3-15. These fibrous reinforcing materials (D1) can also be used as commercially available products, for example, "Bistal W" (average fiber length: 25 µm, average fiber diameter: 3 µm) manufactured by Otsuka Chemical Co., Ltd. can be used.
 上述の平均繊維長および平均繊維径は、走査型電子顕微鏡(SEM)の観察により測定することができ、平均アスペクト比(平均繊維長/平均繊維径)は、平均繊維長および平均繊維径より算出することできる。例えば、走査型電子顕微鏡(SEM)により、複数の繊維状補強材を撮影し、その観察像から繊維状補強材を任意に300個選択し、それらの繊維長および繊維径を測定する。そして、繊維長の全てを積算して個数で除したものを平均繊維長とし、繊維径の全てを積算し個数で除したものを平均繊維径とすることができる。 The above average fiber length and average fiber diameter can be measured by observation with a scanning electron microscope (SEM), and the average aspect ratio (average fiber length/average fiber diameter) is calculated from the average fiber length and average fiber diameter. can do For example, a plurality of fibrous reinforcing materials are photographed with a scanning electron microscope (SEM), 300 fibrous reinforcing materials are arbitrarily selected from the observed image, and their fiber lengths and fiber diameters are measured. An average fiber length can be obtained by accumulating all the fiber lengths and dividing by the number, and an average fiber diameter can be obtained by accumulating all the fiber diameters and dividing by the number.
 板状補強材(D2)の具体例としては、雲母、マイカ、セリサイト、イライト、タルク、カオリナイト、モンモリナイト、ベーマイト、スメクタイト、バーミキュライト、二酸化チタン、チタン酸カリウム、チタン酸リチウムカリウム、チタン酸マグネシウムカリウム、ベーマイト等を挙げることができる。これらの板状補強材(D2)は、1種を単独で用いてもよく、複数種を併用してもよい。なお、本発明において、板状とは、板状の他に、薄片状、鱗片状等も包含するものとする。 Specific examples of the plate-shaped reinforcing material (D2) include mica, mica, sericite, illite, talc, kaolinite, montmorillite, boehmite, smectite, vermiculite, titanium dioxide, potassium titanate, lithium potassium titanate, and magnesium titanate. Potassium, boehmite and the like can be mentioned. These plate-shaped reinforcing materials (D2) may be used alone or in combination of multiple types. In the present invention, the term "plate-like" includes not only the shape of a plate but also the shape of flakes, scales, and the like.
 板状補強材(D2)は、パーティクル発生をより一層低減する観点から、モース硬度が1以上、2.5未満の粒子であることが好ましく、タルクであることがより好ましい。 From the viewpoint of further reducing particle generation, the plate-shaped reinforcing material (D2) is preferably particles having a Mohs hardness of 1 or more and less than 2.5, and is more preferably talc.
 タルクは、化学組成的には含水珪酸マグネシウムであり、一般的には化学式4SiO・3MgO・2HOで表され、通常、層状構造を持った鱗片状の粒子である。これらのタルクは市販品でも使用することができる。 Talc is a hydrous magnesium silicate chemically, generally represented by the chemical formula 4SiO 2 .3MgO.2H 2 O, and is usually scaly particles having a layered structure. These talcs can also be used as commercial products.
 板状補強材(D2)の平均粒子径は、パーティクルの発生をより一層低減する観点から、好ましくは1μm~50μmであり、より好ましくは3μm~30μmであり、さらに好ましくは3μm~25μmであり、特に好ましくは5μm~25μmである。 The average particle size of the plate-shaped reinforcing material (D2) is preferably 1 μm to 50 μm, more preferably 3 μm to 30 μm, still more preferably 3 μm to 25 μm, from the viewpoint of further reducing particle generation, Especially preferred is 5 μm to 25 μm.
 成分(D2)の平均粒子径は、レーザー回折・散乱法により測定することができる。具体的に、成分(D2)の平均粒子径は、レーザー回折・散乱法により測定される粒度分布における体積基準累積50%時の粒子径(体積基準累積50%粒子径)、すなわちD50(メジアン径)である。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。 The average particle size of component (D2) can be measured by a laser diffraction/scattering method. Specifically, the average particle size of the component (D2) is the particle size when the volume-based cumulative 50% in the particle size distribution measured by the laser diffraction/scattering method (volume-based cumulative 50% particle size), that is, D 50 (median diameter). This volume-based cumulative 50% particle diameter (D 50 ) is obtained by determining the particle size distribution on a volume basis, counting the number of particles from the smallest particle size on the cumulative curve with the total volume as 100%, and the cumulative value is It is the particle diameter at the 50% point.
 本発明において、成分(D)は、表面における少なくとも一部が、疎水性表面処理剤により構成されている処理層により覆われている、補強材であることが好ましい。なお、処理層は、補強材(D)の表面における50%以上を覆っていることが好ましく、80%以上を覆っていることがより好ましい。もっとも、処理層は、補強材(D)の表面全体を覆っていることが特に好ましい。さらに、成分(D)は、その好ましい物性を損なわない範囲において、表面における少なくとも一部が疎水性表面処理剤により構成されている処理層により覆われている補強材と、疎水性表面処理剤により表面が覆われていない未処理の補強材とを混合したものを使用してもよい。 In the present invention, component (D) is preferably a reinforcing material at least part of the surface of which is covered with a treated layer composed of a hydrophobic surface treating agent. The treated layer preferably covers 50% or more, more preferably 80% or more, of the surface of the reinforcing material (D). However, it is particularly preferred that the treated layer covers the entire surface of the reinforcing material (D). Furthermore, component (D) is composed of a reinforcing material whose surface is at least partially covered with a treated layer composed of a hydrophobic surface treatment agent, and a hydrophobic surface treatment agent, as long as the preferred physical properties are not impaired. Mixtures with uncovered untreated reinforcements may also be used.
 疎水性表面処理剤としては、例えば、シランカップリング剤、チタンカップリング剤、アルミネート系カップリング剤等を挙げることできる。これらの中でもシランカップリング剤が好ましく、疎水性のアルキル系シランカップリング剤がより好ましい。 Examples of hydrophobic surface treatment agents include silane coupling agents, titanium coupling agents, and aluminate coupling agents. Among these, silane coupling agents are preferred, and hydrophobic alkyl-based silane coupling agents are more preferred.
 疎水性のシランカップリング剤としては、アルキル基、アリール基等の本質的に疎水性の官能基と、補強材表面の親水性基と反応し得る基を生成する加水分解性の官能基とを有するものであればよい。このような疎水性のアルキル系シランカップリング剤の代表例としては、例えば、下記一般式(II)で表されるアルコキシシランを挙げることができる。 Hydrophobic silane coupling agents include essentially hydrophobic functional groups such as alkyl groups and aryl groups, and hydrolyzable functional groups that generate groups capable of reacting with hydrophilic groups on the surface of the reinforcing material. Anything you have is fine. Representative examples of such hydrophobic alkyl-based silane coupling agents include alkoxysilanes represented by the following general formula (II).
 R Si(OR4-n  …式(II) R 1 n Si(OR 2 ) 4-n Formula (II)
 〔一般式(II)において、nは1~3から選択される任意の整数を示し、Rはアルキル基、アルケニル基またはアリール基を示し、それらの基は置換基を有していてもよい。Rが複数存在する場合には互いに同一であっても異なっていてもよい。Rはアルキル基を示し、それらの基は置換基を有していてもよく、Rが複数存在する場合には互いに同一であっても異なっていてもよい。〕 [In the general formula (II), n represents an arbitrary integer selected from 1 to 3, R 1 represents an alkyl group, an alkenyl group or an aryl group, and these groups may have a substituent . When two or more R 1 are present, they may be the same or different. R2 represents an alkyl group, these groups may have substituents, and when there are multiple R2s, they may be the same or different. ]
 Rで示されるアルキル基としては、例えば、へプチル基、オクチル基、ノニル基、デシル基、ドデシル基、ヘキサデシル基、オクタデシル基、イコシル基等のアルキル基を挙げることができる。上記アルキル基の炭素数は、好ましくは8以上、より好ましくは10以上である。上記アルキル基の炭素数が上記下限値以上である場合、得られる液晶ポリマー成形体の耐衝撃性などの機械的強度をより一層高めることができる。また、液晶ポリマー成形体同士の接着性のより一層の向上も図ることができる。なお、上記アルキル基の炭素数が上記下限値以上である場合、得られる液晶ポリマー成形体からなる部品同士、あるいは該液晶ポリマー成形体からなる部品と他の部品との接着性をより一層向上させることができるメカニズムは定かではないが、エポキシ樹脂などの接着剤との硬化反応が促進したり、液晶ポリマー成形体そのものの伸び特性が向上したりするためではないかと考えられる。また、上記アルキル基の炭素数の上限値は、特に限定されないが、例えば、20以下とすることができる。 Examples of the alkyl group represented by R 1 include alkyl groups such as heptyl group, octyl group, nonyl group, decyl group, dodecyl group, hexadecyl group, octadecyl group and icosyl group. The number of carbon atoms in the alkyl group is preferably 8 or more, more preferably 10 or more. When the number of carbon atoms in the alkyl group is at least the above lower limit, the mechanical strength such as impact resistance of the obtained liquid crystal polymer molding can be further enhanced. In addition, it is possible to further improve the adhesiveness between the liquid crystal polymer moldings. When the number of carbon atoms in the alkyl group is not less than the above lower limit, the adhesiveness between parts made of the obtained liquid crystal polymer molded article or between parts made of the liquid crystal polymer molded article and other parts is further improved. Although the mechanism by which this is possible is not clear, it is thought to be due to the acceleration of the curing reaction with an adhesive such as an epoxy resin or the improvement in the elongation properties of the liquid crystal polymer molding itself. Also, the upper limit of the number of carbon atoms in the alkyl group is not particularly limited, but can be, for example, 20 or less.
 これらのアルキル基は、環状構造を有していてもよく、分岐構造を有していてもよい。アルキル基は、一般に直鎖の炭素数が多いほど疎水性の程度が大きい傾向がある。アルキル基は任意の位置に、後述する置換基を1個~4個(好ましくは1個~3個、より好ましくは1個)有していてもよい。 These alkyl groups may have a cyclic structure or a branched structure. Alkyl groups generally tend to have a higher degree of hydrophobicity as the number of straight-chain carbon atoms increases. The alkyl group may have 1 to 4 (preferably 1 to 3, more preferably 1) substituents described later at any position.
 Rで示されるアルケニル基としては、例えば、ビニル基、ブテニル基等を挙げることができる。これらは、環状構造を有していてもよく、分岐構造を有していてもよい。また、アルケニル基は任意の位置に、後述する置換基を1個~4個(好ましくは1個~3個、より好ましくは1個)有していてもよい。 Examples of alkenyl groups represented by R 1 include vinyl groups and butenyl groups. These may have a cyclic structure or a branched structure. In addition, the alkenyl group may have 1 to 4 (preferably 1 to 3, more preferably 1) substituents described later at any position.
 Rで示されるアリール基としては、例えば、フェニル基、ナフチル基等を挙げることができる。また、アリール基は任意の位置に、後述する置換基を1個~4個(好ましくは1個~3個、より好ましくは1個)有していてもよい。 Examples of the aryl group represented by R 1 include a phenyl group and a naphthyl group. In addition, the aryl group may have 1 to 4 (preferably 1 to 3, more preferably 1) substituents described later at any position.
 Rで示される基は、その疎水性を阻害しない限り、それぞれ置換基を有していてもよい。置換基としては、例えば、フッ素原子、(メタ)アクリロキシ基等の疎水性の置換基が挙げられる。 Each group represented by R 1 may have a substituent as long as it does not interfere with its hydrophobicity. Examples of substituents include hydrophobic substituents such as fluorine atoms and (meth)acryloxy groups.
 さらに、Rで示されるアルキル基は、疎水性の置換基として上記で例示したアリール基を有していてもよい。また、Rで示されるアリール基は、疎水性の置換基としてアルキル基を有していてもよい。 Furthermore, the alkyl group represented by R 1 may have the aryl group exemplified above as a hydrophobic substituent. Also, the aryl group represented by R 1 may have an alkyl group as a hydrophobic substituent.
 Rで示されるアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デシル基、ドデシル基、ヘキサデシル基、オクタデシル基、イコシル基等を挙げることができる。なかでも、一般式(II)で表されるアルコキシシラン中のアルコキシ基(OR)は加水分解性の基であるため、加水分解性の観点からは、Rが炭素数4以下の低級アルキル基であることが好ましく、エチル基またはメチル基であることがより好ましく、メチル基であることがさらに好ましい。 Examples of the alkyl group represented by R2 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, hexadecyl group and octadecyl. group, icosyl group, and the like. Among them, the alkoxy group (OR 2 ) in the alkoxysilane represented by the general formula ( II ) is a hydrolyzable group. is preferably a group, more preferably an ethyl group or a methyl group, and even more preferably a methyl group.
 nは、1~3から選択される任意の整数を示す。補強材粒子表面との反応性および疎水性をより一層高める観点から、nは、好ましくは1である。  n represents an arbitrary integer selected from 1 to 3. n is preferably 1 from the viewpoint of further increasing the reactivity with the reinforcing material particle surface and the hydrophobicity.
 上述のアルコキシシランの具体例としては、メチルトリメトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン、へプチルトリメトキシシラン、オクチルトリメトキシシラン、ノニルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、ヘキサデシルトリメトキシシラン、オクタデシルトリメトキシシラン、イコシルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、ヘキシルトリエトキシシラン、ヘプチルトリエトキシシラン、オクチルトリエトキシシラン、ノニルトリエトキシシラン、デシルトリエトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリエトキシシラン、オクタデシルトリエトキシシラン、イコシルトリエトキシシラン、フェニルトリエトキシシラン等を挙げることができる。これらは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 Specific examples of the above alkoxysilanes include methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, heptyltrimethoxysilane, octyltrimethoxysilane, nonyltrimethoxysilane, decyltrimethoxysilane, dodecyltrimethoxysilane. , hexadecyltrimethoxysilane, octadecyltrimethoxysilane, icosyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, hexyltriethoxysilane, heptyltriethoxysilane, octyltriethoxysilane, nonyltriethoxysilane, Ethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, hexadecyltriethoxysilane, octadecyltriethoxysilane, icosyltriethoxysilane, phenyltriethoxysilane and the like can be mentioned. These can also be used individually by 1 type, and can also be used in combination of 2 or more type.
 本発明において表面処理剤における疎水性の度合いは、ガラス板表面を表面処理剤で処理し、該処理面の表面自由エネルギーを測定することにより表すことができる。また、本発明において表面自由エネルギーは、ガラス板にメタノールで10倍希釈した表面処理剤を均一に塗布し、85℃で1時間加熱後、110℃で1時間加熱処理を行い、表面処理剤を塗布した面の表面自由エネルギーを、水とデカンとの2液静的接触角を測定して算出することにより求めることができる。例えば、デシルトリメトキシシランの表面自由エネルギーは28mN/mであり、γ-グリシドキシプロピルトリメトキシシランの表面自由エネルギーは55mN/mであり、3-アミノプロピルトリエトキシシランの表面自由エネルギーは68mN/mである。 In the present invention, the degree of hydrophobicity of the surface treatment agent can be expressed by treating the glass plate surface with the surface treatment agent and measuring the surface free energy of the treated surface. In the present invention, the surface free energy is measured by uniformly applying a surface treatment agent diluted 10 times with methanol to a glass plate, heating at 85° C. for 1 hour, and then heat-treating at 110° C. for 1 hour to remove the surface treatment agent. The surface free energy of the coated surface can be obtained by measuring and calculating the two-liquid static contact angle between water and decane. For example, decyltrimethoxysilane has a surface free energy of 28 mN/m, γ-glycidoxypropyltrimethoxysilane has a surface free energy of 55 mN/m, and 3-aminopropyltriethoxysilane has a surface free energy of 68 mN. /m.
 本発明で使用される表面処理剤としては、特に限定されるものではないが、液晶ポリマーの成形加工温度において熱安定性が良好で、物理的、化学的に安定であり、且つガラス板上に均一に処理された時の表面自由エネルギーが、50mN/m以下であるものが好ましい。なお、表面自由エネルギーの下限値は、特に限定されないが、好ましくは1mN/mである。なお、表面自由エネルギーが50mN/mを超える表面処理剤であっても、2種以上を混合することにより、表面自由エネルギーを50mN/m以下として用いてもよい。 The surface treatment agent used in the present invention is not particularly limited. A surface free energy of 50 mN/m or less when uniformly treated is preferred. Although the lower limit of the surface free energy is not particularly limited, it is preferably 1 mN/m. Even if the surface treatment agent has a surface free energy of more than 50 mN/m, two or more of them may be mixed so that the surface free energy is 50 mN/m or less.
 表面処理剤の表面自由エネルギーが50mN/mを超えると液晶ポリマー(A)よりも表面自由エネルギーが高くなり、混練、成形加工時の補強材(D)の破損により破損面から溶出する金属イオンを制御できない場合があり、液晶ポリマー(A)の加水分解が促進される場合がある。そのため、表面自由エネルギーの範囲が50mN/m以下に調製された補強材(D)を液晶ポリマー(A)に充填することが好ましい。 When the surface free energy of the surface treatment agent exceeds 50 mN/m, the surface free energy becomes higher than that of the liquid crystal polymer (A), and the metal ions eluted from the broken surface due to breakage of the reinforcing material (D) during kneading and molding. It may be uncontrollable, and hydrolysis of the liquid crystal polymer (A) may be accelerated. Therefore, it is preferable to fill the liquid crystal polymer (A) with a reinforcing material (D) prepared to have a surface free energy range of 50 mN/m or less.
 また、補強材(D)の表面処理後の吸油量は、130ml/100g以下であることが好ましく、80ml/100g~130ml/100gであることがより好ましい。 Further, the oil absorption of the reinforcing material (D) after surface treatment is preferably 130 ml/100 g or less, more preferably 80 ml/100 g to 130 ml/100 g.
 吸油量が130ml/100gを超えると極端に液晶ポリマー(A)との相溶性が低下するため著しく生産性が低下し、さらには表面処理された補強材(D)の充填量を増加できないという問題が生じる場合がある。 If the oil absorption exceeds 130 ml/100 g, the compatibility with the liquid crystal polymer (A) is extremely reduced, resulting in a significant decrease in productivity, and furthermore, there is the problem that the filling amount of the surface-treated reinforcing material (D) cannot be increased. may occur.
 また、補強材(D)の表面処理後における吸油量の測定は、精製アマニ油法〔JIS K5101-13-1〕を用いて測定することができる。 In addition, the oil absorption of the reinforcing material (D) after surface treatment can be measured using the refined linseed oil method [JIS K5101-13-1].
 本発明において、補強材(D)への表面処理方法としては、あらかじめカップリング剤を補強材(D)の表面へ処理する方法として乾式法および湿式法が知られており、どちらの方法も使用することができる。その際の表面処理濃度は、補強材(D)100質量%に対して好ましくは0.1質量%~3.0質量%、より好ましくは0.5質量%~1.5質量%である。 In the present invention, as a method for surface treatment of the reinforcing material (D), a dry method and a wet method are known as methods for previously treating the surface of the reinforcing material (D) with a coupling agent, and both methods are used. can do. The surface treatment concentration at that time is preferably 0.1% by mass to 3.0% by mass, more preferably 0.5% by mass to 1.5% by mass, relative to 100% by mass of the reinforcing material (D).
 成分(D)の表面に表面処理剤からなる処理層を形成する方法としては、公知の表面処理方法を使用することができる。表面処理は、例えば、ヘンシェルミキサーのような高速撹拌可能な装置に補強材を仕込み、撹拌下、表面処理剤(液体の場合)、または加水分解を促進する溶媒(例えば、水、アルコールまたはこれらの混合溶媒)に表面処理剤を溶解した溶液を補強材に噴霧する乾式法等でなされる。 A known surface treatment method can be used as a method for forming a treatment layer made of a surface treatment agent on the surface of component (D). For surface treatment, for example, a reinforcing material is placed in a device capable of high-speed stirring such as a Henschel mixer, and under stirring, a surface treatment agent (in the case of a liquid) or a solvent that promotes hydrolysis (such as water, alcohol, or these A dry method, etc., in which a solution in which a surface treatment agent is dissolved in a mixed solvent is sprayed onto the reinforcing material.
 表面処理剤を本発明で用いる補強材(D)の表面へ処理する際における表面処理剤の量は特に限定されないが、乾式法の場合、例えば、補強材(D)100質量部に対して表面処理剤が好ましくは0.1質量部~20質量部、より好ましくは0.1質量部~10質量部、より好ましくは0.3質量部~5質量部、さらに好ましくは0.5質量部~3質量部、特に好ましくは0.8質量部~1.2質量部となるように表面処理剤の溶液を噴霧すればよい。 The amount of the surface treatment agent when applying the surface treatment agent to the surface of the reinforcing material (D) used in the present invention is not particularly limited. The processing agent is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, more preferably 0.3 to 5 parts by mass, still more preferably 0.5 to 5 parts by mass. The solution of the surface treatment agent may be sprayed in an amount of 3 parts by mass, particularly preferably 0.8 to 1.2 parts by mass.
 表面処理剤の量を上記範囲内にすることで、成分(A)との密着性をより一層向上させることができる。 By setting the amount of the surface treatment agent within the above range, the adhesion with the component (A) can be further improved.
 本発明の液晶ポリマー組成物における成分(D)において、粒子形状は特に限定されない。もっとも、カメラモジュール用部材に用いたときに、パーティクルの発生をより一層低減する観点からは、成分(D)が、繊維状補強材(D1)および板状補強材(D2)の双方を含有していることが好ましく、モース硬度が2.5以上、5以下の繊維状補強材(D1)およびモース硬度が1以上、2.5未満である板状補強材(D2)の双方を含有していることがより好ましい。この場合、繊維状補強材(D1)および板状補強材(D2)のうち少なくとも一方の表面における少なくとも一部が、疎水性表面処理剤により構成されている処理層によって覆われていればよい。もっとも、カメラモジュール用部材のパーティクルをさらに一層低減し、動摩擦係数および静摩擦係数をより一層低める観点からは、繊維状補強材(D1)および板状補強材(D2)の双方の表面における少なくとも一部が、疎水性表面処理剤により構成されている処理層によって覆われていることが好ましい。 The particle shape of the component (D) in the liquid crystal polymer composition of the present invention is not particularly limited. However, from the viewpoint of further reducing particle generation when used as a camera module member, the component (D) contains both the fibrous reinforcing material (D1) and the plate-like reinforcing material (D2). It preferably contains both a fibrous reinforcing material (D1) having a Mohs hardness of 2.5 or more and 5 or less and a plate-like reinforcing material (D2) having a Mohs hardness of 1 or more and less than 2.5 It is more preferable to be In this case, at least a portion of the surface of at least one of the fibrous reinforcing material (D1) and the plate-like reinforcing material (D2) may be covered with a treatment layer composed of a hydrophobic surface treatment agent. However, from the viewpoint of further reducing the particles in the camera module member and further lowering the dynamic friction coefficient and the static friction coefficient, at least part of the surface of both the fibrous reinforcing material (D1) and the plate-like reinforcing material (D2) is preferably covered with a treatment layer composed of a hydrophobic surface treatment agent.
 本発明の液晶ポリマー組成物における成分(D)の含有量は、液晶ポリマー組成物全量100質量%中において、0.1質量%~40質量%であることが好ましく、5質量%~35質量%であることがより好ましく、10質量%~30質量%であることがさらに好ましい。 The content of component (D) in the liquid crystal polymer composition of the present invention is preferably 0.1% by mass to 40% by mass, and 5% by mass to 35% by mass, based on the total amount of 100% by mass of the liquid crystal polymer composition. and more preferably 10% by mass to 30% by mass.
 成分(D)の含有量を0.1質量%~40質量%の範囲とすることで、カメラモジュール用部材に用いたときに、パーティクルの発生をより一層抑制することができる。 By setting the content of component (D) in the range of 0.1% by mass to 40% by mass, it is possible to further suppress the generation of particles when used as a camera module member.
 本発明の液晶ポリマー組成物における成分(D)について、板状補強材(D2)の繊維状補強材(D1)に対する質量比、すなわち板状補強材(D2)/繊維状補強材(D1)は、0~1であることが好ましく、0.01~0.8であることがより好ましく、0.1~0.7であることが更に好ましく、0.2~0.6であることが特に好ましい。板状補強材(D2)の繊維状補強材(D1)に対する質量比を、0~1の範囲とすることでパーティクルの発生をより一層抑制することができる。 Regarding the component (D) in the liquid crystal polymer composition of the present invention, the mass ratio of the plate-like reinforcing material (D2) to the fibrous reinforcing material (D1), that is, the plate-like reinforcing material (D2)/fibrous reinforcing material (D1) is , preferably from 0 to 1, more preferably from 0.01 to 0.8, even more preferably from 0.1 to 0.7, particularly from 0.2 to 0.6 preferable. By setting the mass ratio of the plate-like reinforcing material (D2) to the fibrous reinforcing material (D1) in the range of 0 to 1, the generation of particles can be further suppressed.
 (粒子状炭素材(E))
 本発明の液晶ポリマー組成物は、必要に応じて、粒子状炭素材(E)を含有することができる。粒子状炭素材(E)(以下「成分(E)」という場合がある。)は、特に限定されず、例えば、カメラモジュール用部品等の液晶ポリマー成形体の遮光性を確保する目的で使用されるものであって、樹脂着色に用いられる一般的に入手可能なものを好適に使用することができる。
(Particulate carbon material (E))
The liquid crystal polymer composition of the present invention can contain a particulate carbon material (E), if desired. The particulate carbon material (E) (hereinafter sometimes referred to as "component (E)") is not particularly limited, and is used, for example, for the purpose of ensuring light-shielding properties of liquid crystal polymer moldings such as parts for camera modules. A generally available one used for resin coloring can be preferably used.
 粒子状炭素材(E)としては、例えば、黒鉛;アセチレンブラック、ファーネスブラック、ランプブラック、サーマルブラック、チャンネルブラック、ロールブラック、ディスクブラック等のカーボンブラック;カーボンナノチューブ;カーボンフィブリル等を用いることができる。本発明の液晶ポリマー組成物から成形された液晶ポリマー成形体の遮光性をより一層高める観点からは、粒子状炭素材(E)が、カーボンブラックであることが好ましい。なお、これらの粒子状炭素材(E)は、1種を単独で用いてもよく、複数種を併用してもよい。 As the particulate carbon material (E), for example, graphite; carbon blacks such as acetylene black, furnace black, lamp black, thermal black, channel black, roll black, disc black; carbon nanotubes; carbon fibrils; . From the viewpoint of further enhancing the light shielding properties of the liquid crystal polymer molded article molded from the liquid crystal polymer composition of the present invention, the particulate carbon material (E) is preferably carbon black. One of these particulate carbon materials (E) may be used alone, or a plurality of them may be used in combination.
 本発明において、粒子状炭素材(E)の一次粒子径は、好ましくは10nm以上、100nm以下である。 In the present invention, the primary particle size of the particulate carbon material (E) is preferably 10 nm or more and 100 nm or less.
 粒子状炭素材(E)の一次粒子径が10nm以上、100nm以下であると、本発明の液晶ポリマー組成物や本発明の液晶ポリマー組成物から成形された液晶ポリマー成形体を製造する際に、液晶ポリマー組成物中に粒子状炭素材(E)を分散させ易い。また、本発明の液晶ポリマー組成物から成形された液晶ポリマー成形体の表面抵抗値を十分に低くすることができるため、液晶ポリマー成形体における帯電量の増加をより一層抑制することができる。このようにして得られた液晶ポリマー成形体においては、液晶ポリマー成形体の面内の表面抵抗値を均一にし易い。その結果、液晶ポリマー成形体の面内のいずれの場所においても、帯電量の増加を抑制することができる。粒子状炭素材(E)の一次粒子径は、15nm以上、85nm以下であることが好ましく、20nm以上、75nm以下であることがより好ましい。 When the primary particle size of the particulate carbon material (E) is 10 nm or more and 100 nm or less, when producing the liquid crystal polymer composition of the present invention or a liquid crystal polymer molded article formed from the liquid crystal polymer composition of the present invention, It is easy to disperse the particulate carbon material (E) in the liquid crystal polymer composition. In addition, since the surface resistance value of the liquid crystal polymer molded article molded from the liquid crystal polymer composition of the present invention can be sufficiently lowered, the increase in charge amount in the liquid crystal polymer molded article can be further suppressed. In the thus obtained liquid crystal polymer molded article, the in-plane surface resistance value of the liquid crystal polymer molded article can be easily made uniform. As a result, an increase in the amount of charge can be suppressed at any location in the plane of the liquid crystal polymer molded body. The primary particle size of the particulate carbon material (E) is preferably 15 nm or more and 85 nm or less, more preferably 20 nm or more and 75 nm or less.
 本発明において、粒子状炭素材(E)の一次粒子径は、透過型電子顕微鏡により測定される一次粒子径の平均値である算術平均粒子径(数平均)を採用することができる。 In the present invention, as the primary particle size of the particulate carbon material (E), an arithmetic mean particle size (number average), which is the average value of primary particle sizes measured with a transmission electron microscope, can be adopted.
 本発明において、粒子状炭素材(E)のDBP吸油量は、好ましくは90cm/100g以上、好ましくは550cm/100g以下である。 In the present invention, the DBP oil absorption of the particulate carbon material (E) is preferably 90 cm 3 /100 g or more and preferably 550 cm 3 /100 g or less.
 粒子状炭素材(E)のDBP吸油量が高いほど、粒子状炭素材(E)の表面近傍の空隙が多いことを意味する。粒子状炭素材(E)の表面近傍の空隙が多いと、液晶ポリマー組成物中で粒子状炭素材(E)同士が引っかかりやすく、連結しやすい。 The higher the DBP oil absorption of the particulate carbon material (E), the more voids there are in the vicinity of the surface of the particulate carbon material (E). If there are many voids in the vicinity of the surface of the particulate carbon material (E), the particulate carbon material (E) is likely to be caught in the liquid crystal polymer composition and easily connected.
 粒子状炭素材(E)のDBP吸油量が90cm/100g以上であると、液晶ポリマー組成物から成形された液晶ポリマー成形体は、粒子状炭素材(E)の連結部分で電気を十分通しやすくなる。その結果、液晶ポリマー成形体の表面抵抗値をより一層十分に低くすることができる。したがって、液晶ポリマー成形体における帯電量の増加をより一層十分に抑制することができる。しかしながら、粒子状炭素材(E)のDBP吸油量が高すぎると、粒子状炭素材(E)の表面近傍の空隙が多すぎて、液晶ポリマー組成物中で粒子状炭素材(E)同士が強く引っかかりやすい。液晶ポリマー(A)、補強材(D)、粒子状炭素材(E)および所望により添加される添加剤を溶融混練する際に、これらの混合物の溶融粘度が高くなる場合がある。その結果、混合物を混練しにくくなって、液晶ポリマー組成物を製造することが困難となる場合がある。粒子状炭素材(E)のDBP吸油量が550cm/100g以下であると、液晶ポリマー(A)、補強材(D)、粒子状炭素材(E)および所望により添加される添加剤を溶融混練する際に、これらの混合物の粘度が高くなり過ぎない。その結果、混合物を造粒しやすくなり、本発明の液晶ポリマー組成物を製造することがより一層容易となる。粒子状炭素材(E)のDBP吸油量は、好ましくは90cm/100g以上、より好ましくは92cm/100g以上、好ましくは550cm/100g以下、より好ましくは525cm/100g以下である。 When the DBP oil absorption of the particulate carbon material (E) is 90 cm 3 /100 g or more, the liquid crystal polymer molded article molded from the liquid crystal polymer composition sufficiently conducts electricity at the connecting portions of the particulate carbon material (E). easier. As a result, the surface resistance value of the liquid crystal polymer molding can be further sufficiently lowered. Therefore, it is possible to more sufficiently suppress an increase in the amount of charge in the liquid crystal polymer molded article. However, when the DBP oil absorption of the particulate carbon material (E) is too high, there are too many voids in the vicinity of the surface of the particulate carbon material (E), and the particulate carbon materials (E) are separated from each other in the liquid crystal polymer composition. Strong and easy to pull. When melt-kneading the liquid crystal polymer (A), the reinforcing material (D), the particulate carbon material (E) and optional additives, the melt viscosity of the mixture may increase. As a result, it may become difficult to knead the mixture, making it difficult to produce the liquid crystal polymer composition. When the DBP oil absorption of the particulate carbon material (E) is 550 cm 3 /100 g or less, the liquid crystal polymer (A), the reinforcing material (D), the particulate carbon material (E) and optional additives are melted. These mixtures should not become too viscous during kneading. As a result, it becomes easier to granulate the mixture, and it becomes even easier to produce the liquid crystal polymer composition of the present invention. The DBP oil absorption of the particulate carbon material (E) is preferably 90 cm 3 /100 g or more, more preferably 92 cm 3 /100 g or more, preferably 550 cm 3 /100 g or less, more preferably 525 cm 3 /100 g or less.
 本発明において、DBP吸油量は、ジブチルフタレートアブソーブドメーターによって、JIS K 6221に準拠して測定される値を採用することができる。 In the present invention, a value measured according to JIS K 6221 by a dibutyl phthalate absorption meter can be adopted as the DBP oil absorption.
 本発明において、粒子状炭素材(E)のBET比表面積は、30m/g以上、1500m/g以下であることが好ましく、40m/g以上、1350m/g以下であることがより好ましく、45m/g以上、1300m/g以下であることがさらに好ましい。 In the present invention, the BET specific surface area of the particulate carbon material (E) is preferably 30 m 2 /g or more and 1500 m 2 /g or less, more preferably 40 m 2 /g or more and 1350 m 2 /g or less. It is preferably 45 m 2 /g or more and more preferably 1300 m 2 /g or less.
 本発明において、BET比表面積は、BET比表面積測定器を用いて、液体窒素温度下で窒素ガスを吸着させ、吸着量を測定し、BET法で算出した値を採用する。BET比表面積測定器としては、例えば、Micromeritics社製、AccuSorb 2100Eを用いることができる。 In the present invention, the BET specific surface area adopts a value calculated by the BET method by using a BET specific surface area measuring instrument to adsorb nitrogen gas under liquid nitrogen temperature, measuring the amount of adsorption. As a BET specific surface area measuring device, for example, AccuSorb 2100E manufactured by Micromeritics can be used.
 粒子状炭素材(E)のBET比表面積が上記下限値以上であると、本発明の液晶ポリマー組成物から成形された液晶ポリマー成形体は、粒子状炭素材(E)の連結部分で電気を十分通しやすくなる。その結果、液晶ポリマー成形体の表面抵抗値をより一層低くすることができる。したがって、液晶ポリマー成形体における帯電量の増加をより一層抑制することができる。 When the BET specific surface area of the particulate carbon material (E) is at least the above lower limit value, the liquid crystal polymer molded article molded from the liquid crystal polymer composition of the present invention will conduct electricity at the connecting portions of the particulate carbon material (E). Easy enough to get through. As a result, the surface resistance value of the liquid crystal polymer molding can be further reduced. Therefore, it is possible to further suppress an increase in the amount of charge in the liquid crystal polymer molded article.
 本発明の液晶ポリマー組成物や液晶ポリマー成形体の製造時に、粒子状炭素材(E)のBET比表面積が上記上限値以下であると、液晶ポリマー(A)、補強材(D)、粒子状炭素材(E)および所望により添加される添加剤を溶融混練する際に、これらの混合物の溶融粘度が高くなり過ぎない。その結果、混合物をより一層混練しやすくなり、本発明の液晶ポリマー組成物を製造することがより一層容易となる。 When the BET specific surface area of the particulate carbon material (E) is equal to or less than the above upper limit during the production of the liquid crystal polymer composition or the liquid crystal polymer molded article of the present invention, the liquid crystal polymer (A), the reinforcing material (D), the particulate When the carbon material (E) and optional additives are melt-kneaded, the melt viscosity of the mixture should not be too high. As a result, it becomes easier to knead the mixture, and it becomes even easier to produce the liquid crystal polymer composition of the present invention.
 本発明の液晶ポリマー組成物における成分(E)の含有量は、液晶ポリマー組成物全量100質量%中において0.1質量%~5.0質量%の範囲とすることが好ましく、0.5質量%~4.5質量%がより好ましく、0.8質量%~4.0質量%がさらに好ましい。成分(E)の含有量が少なすぎると、得られる液晶ポリマー組成物の漆黒性が低下し、遮光性が十分確保できない場合がある。 The content of the component (E) in the liquid crystal polymer composition of the present invention is preferably in the range of 0.1% by mass to 5.0% by mass in 100% by mass of the total amount of the liquid crystal polymer composition, and 0.5% by mass. % to 4.5% by mass, more preferably 0.8% to 4.0% by mass. If the content of the component (E) is too low, the resulting liquid crystal polymer composition may be less jet-black, failing to ensure sufficient light-shielding properties.
 また、成分(E)の含有量が多すぎると、溶融混練時に粘度の低い溶融させた液晶ポリマーからなる樹脂の中を凝集塊(粒子状炭素材(E)が凝集した細かいブツブツ状の突起物)が漂う形となり、混練時のシェアが掛かり難く、分散不良が起こる可能性が高くなり、凝集塊に応力が集中し破壊起点となるため、液晶ポリマー成形体の機械的強度が著しく低下してしまう恐れがあり、本来の目的を達成することが困難となる場合がある。 Also, if the content of component (E) is too high, agglomerates (fine bumpy projections in which the particulate carbon material (E) aggregates in a resin composed of a molten liquid crystal polymer having a low viscosity during melt-kneading) ) drifts, making it difficult to apply shear during kneading, increasing the possibility of poor dispersion, and stress concentrates on aggregates, which become fracture starting points, resulting in a significant decrease in the mechanical strength of liquid crystal polymer moldings. It may become difficult to achieve the original purpose.
 成分(E)の含有量を0.1質量%~5.0質量%の範囲とすることで、液晶ポリマー組成物中の成分(E)の分散性を向上させ、得られる液晶ポリマー成形体の耐熱性、遮光性を高めつつ、機械強度とりわけ耐衝撃特性をより一層向上させることができる。 By adjusting the content of the component (E) in the range of 0.1% by mass to 5.0% by mass, the dispersibility of the component (E) in the liquid crystal polymer composition is improved, and the resulting liquid crystal polymer molded article is obtained. It is possible to further improve mechanical strength, particularly impact resistance, while enhancing heat resistance and light shielding properties.
 (フッ素樹脂(F))
 本発明の液晶ポリマー組成物は、必要に応じて、フッ素樹脂(F)(以下、「成分(F)」と称する場合がある。)を含有することができる。成分(F)は、-(CF-CF)-の繰り返し単位を有する重合体であり、例えば、パーフルオロアルキルエーテル基-C2p-O-(pは1~4の整数)などを導入した変性ポリテトラフルオロエチレン樹脂を使用することができる。
(Fluororesin (F))
The liquid crystal polymer composition of the present invention may optionally contain a fluororesin (F) (hereinafter sometimes referred to as "component (F)"). Component (F) is a polymer having —(CF 2 —CF 2 )— repeating units, such as a perfluoroalkyl ether group —C p F 2p —O— (p is an integer of 1 to 4). can be used.
 成分(F)は、一般的なモールディングパウダーを得る懸濁重合法、ファインパウダーを得る乳化重合法のいずれを採用して得られたものでもよい。また、高分子量ポリテトラフルオロエチレン樹脂を熱分解や放射線により低分子量化したものでもよい。 Component (F) may be obtained by adopting either a suspension polymerization method for obtaining general molding powder or an emulsion polymerization method for obtaining fine powder. Alternatively, high-molecular-weight polytetrafluoroethylene resin may be reduced in molecular weight by thermal decomposition or radiation.
 成分(F)は粉末であることが好ましく、その平均粒子径は、好ましくは0.1μm~100μmであり、より好ましくは1μm~50μmであり、さらに好ましくは5μm~20μmである。平均粒子径を上記範囲にすることで摺動時の摩擦係数をより一層小さくすることができる。成分(F)の平均粒子径は、レーザー回折・散乱法により測定することができ、レーザー回折・散乱法により測定される粒度分布における体積基準累積50%時の粒子径(体積基準累積50%粒子径)、すなわちD50(メジアン径)である。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。 Component (F) is preferably powder, and its average particle size is preferably 0.1 μm to 100 μm, more preferably 1 μm to 50 μm, still more preferably 5 μm to 20 μm. By setting the average particle size within the above range, the coefficient of friction during sliding can be further reduced. The average particle size of the component (F) can be measured by a laser diffraction/scattering method. diameter), or D 50 (median diameter). This volume-based cumulative 50% particle diameter (D 50 ) is obtained by determining the particle size distribution on a volume basis, counting the number of particles from the smallest particle size on the cumulative curve with the total volume as 100%, and the cumulative value is It is the particle diameter at the 50% point.
 成分(F)の粒子形状は、球状、柱状、板状、棒状、円柱状、ブロック状、不定形状等の非繊維状粒子であれば特に限定されず使用することができる。成分(F)の粒子形状は、例えば走査型電子顕微鏡(SEM)観察から解析することができる。 The particle shape of component (F) is not particularly limited as long as it is a non-fibrous particle such as spherical, columnar, plate-like, rod-like, columnar, block-like, and irregular shape. The particle shape of component (F) can be analyzed, for example, by scanning electron microscope (SEM) observation.
 本発明において繊維状粒子とは、粒子に外接する直方体のうち最小の体積をもつ直方体(外接直方体)の最も長い辺を長径Lとし、次に長い辺を短径Bとし、最も短い辺を厚さT(B>T)と定義したときに、L/BおよびL/Tがいずれも3以上の粒子のことをいい、長径Lが繊維長、短径Bが繊維径に相当する。なお、繊維状粒子においては、L/BおよびL/Tがいずれも5以上であることが好ましい。非繊維状粒子とは、L/Bが3より小さい粒子のことをいい、非繊維状粒子のうちL/Bが3より小さく、L/Tが3以上の粒子を板状の粒子という。 In the present invention, a fibrous particle is defined as a rectangular parallelepiped having the smallest volume among the rectangular parallelepipeds circumscribing the particle (circumscribing rectangular parallelepiped), with the longest side having the major axis L, the next longest side having the minor axis B, and the shortest side having the thickness. When defined as T (B>T), both L/B and L/T are particles of 3 or more, and the major axis L corresponds to the fiber length, and the minor axis B corresponds to the fiber diameter. In the fibrous particles, both L/B and L/T are preferably 5 or more. Non-fibrous particles refer to particles with an L/B of less than 3. Among non-fibrous particles, particles having an L/B of less than 3 and an L/T of 3 or more are referred to as plate-like particles.
 ポリテトラフルオロエチレン樹脂(以下、「PTFE」と称する場合がある。)は熱可塑性樹脂に分類されるものの、一般的には溶融粘度が異常に高いことから射出成形することはできず、PTFEを主成分とする樹脂組成物は樹脂の混合粉末を圧縮し、これを融点以上に加熱して粉末同士を融着させる方法(圧縮成形)で成形体が製造されている。圧縮成形に用いられるPTFEは高分子量のものが用いられているが、高分子量のPTFEを一般的な熱可塑性樹脂に配合して溶融混合すると、PTFEのフィブリル化や凝集により樹脂組成物の流動性がなくなり、溶融混合や射出成形することができない。このため、射出成形用熱可塑性樹脂の固体潤滑剤として用いるPTFEは低分子量のものが用いられている。また、液晶ポリマーは、一般的にPTFEの融点前後の温度で溶融混合され、かつ溶融時の粘度が小さいため、配合して溶融混合するPTFEの分子量が大きすぎると凝集するおそれがある。 Polytetrafluoroethylene resin (hereinafter sometimes referred to as "PTFE") is classified as a thermoplastic resin, but generally cannot be injection molded due to its extremely high melt viscosity. The resin composition, which is the main component, is produced by a method (compression molding) in which mixed powder of resin is compressed and heated to a melting point or higher to fuse the powders together. High-molecular-weight PTFE is used for compression molding. However, when high-molecular-weight PTFE is blended with a general thermoplastic resin and melt-mixed, the PTFE fibrillates and aggregates, resulting in fluidity of the resin composition. , and cannot be melt-blended or injection-molded. For this reason, PTFE with a low molecular weight is used as a solid lubricant for thermoplastic resins for injection molding. Liquid crystal polymers are generally melt-mixed at a temperature around the melting point of PTFE and have a low viscosity when melted.
 PTFEの分子量と溶融粘度は相関することから、成分(F)に用いるPTFEとしては、372℃、荷重5kgの条件で測定したMFR値が、5g/10min以上であることが好ましく、10g/10min以上であることがより好ましく、35g/10minより大きいことがさらに好ましい。また、成分(F)のMFR値は、JIS K7210に準拠して測定することができる。 Since the molecular weight and melt viscosity of PTFE are correlated, the PTFE used for component (F) preferably has an MFR value of 5 g/10 min or more, measured under conditions of 372° C. and a load of 5 kg, preferably 10 g/10 min or more. and more preferably greater than 35 g/10 min. In addition, the MFR value of component (F) can be measured according to JIS K7210.
 PTFEは、フィブリル化、凝集を抑制するために焼成することがある。分子量により前後するが、焼成体の融点は320℃~330℃、未焼成体の融点は330℃~350℃にあることから、融点をみることで焼成度を推測することができる。成分(F)では、成形時に凝集をより一層抑制する観点から、融点が330℃未満であることが好ましく、下限値は320℃であることが好ましい。PTFEの融点は、JIS-K7121に準じて測定することができる。  PTFE may be sintered to suppress fibrillation and aggregation. Although it varies depending on the molecular weight, the melting point of the sintered product is 320° C. to 330° C., and the melting point of the unsintered product is 330° C. to 350° C. Therefore, the degree of sintering can be estimated from the melting points. Component (F) preferably has a melting point of less than 330°C, and a lower limit of 320°C, from the viewpoint of further suppressing aggregation during molding. The melting point of PTFE can be measured according to JIS-K7121.
 本発明の液晶ポリマー組成物における成分(F)の含有量は、液晶ポリマー組成物全量100質量%中において0.1質量%~30質量%が好ましく、0.5質量%~20質量%がより好ましく、1.0質量%~18質量%がさらに好ましく、1.5質量%~15質量%が特に好ましい。成分(F)の含有量を0.1質量%~30質量%の範囲とすることで、摺動特性をより一層高めることができる。 The content of component (F) in the liquid crystal polymer composition of the present invention is preferably 0.1% by mass to 30% by mass, more preferably 0.5% by mass to 20% by mass, based on the total amount of 100% by mass of the liquid crystal polymer composition. Preferably, 1.0% by mass to 18% by mass is more preferable, and 1.5% by mass to 15% by mass is particularly preferable. By setting the content of component (F) in the range of 0.1% by mass to 30% by mass, the sliding properties can be further enhanced.
 <液晶ポリマー組成物のその他添加剤>
 (固体潤滑剤)
 本発明の液晶ポリマー組成物は、その好ましい物性を損なわない範囲で、固体潤滑剤を含有することができる。固体潤滑剤としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン等のポリオレフィン樹脂、シリコーン樹脂、グラファイト、二硫化モリブテン、二硫化タングステン、窒化ホウ素、-(CF-CF)-の繰り返し単位を有する重合体であるポリテトラフルオロエチレン樹脂、パーフルオロアルキルエーテル基-C2p-O-(pは1~4の整数)などを導入した変性ポリテトラフルオロエチレン樹脂等を挙げることができ、これらは、1種または2種以上を配合してもよい。本発明の液晶ポリマー組成物における固体潤滑剤の含有量は、液晶ポリマー組成物全量100質量%中において0.5質量%~20質量%であることが好ましく、1質量%~15質量%であることがより好ましい。
<Other Additives for Liquid Crystal Polymer Composition>
(solid lubricant)
The liquid crystal polymer composition of the present invention can contain a solid lubricant as long as it does not impair its preferred physical properties. Solid lubricants include polyolefin resins such as low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, and ultra-high molecular weight polyethylene, silicone resins, graphite, molybdenum disulfide, tungsten disulfide, boron nitride, A polytetrafluoroethylene resin, which is a polymer having repeating units of -(CF 2 -CF 2 )-, a perfluoroalkyl ether group -C p F 2p -O- (p is an integer of 1 to 4), etc. are introduced. Modified polytetrafluoroethylene resins and the like can be mentioned, and these may be blended alone or in combination of two or more. The content of the solid lubricant in the liquid crystal polymer composition of the present invention is preferably 0.5% by mass to 20% by mass, and 1% by mass to 15% by mass, based on the total amount of 100% by mass of the liquid crystal polymer composition. is more preferable.
 (その他添加剤)
 本発明の液晶ポリマー組成物は、その好ましい物性を損なわない範囲において、その他添加剤を含有することができる。その他添加剤としては、硫酸バリウム(C)および補強材(D)を除く無機充填材(例えば、炭酸カルシウム、雲母、マイカ、セリサイト、イライト、カオリナイト、モンモリナイト、ベーマイト、スメクタイト、バーミキュライト、パリゴルスカイト、パイロフィライト、ハイロサイト、珪藻土、二酸化チタン等);レーザーダイレクトストラクチャリング添加材(例えばMgAl、ZnAl、FeAl、CuFe、CuCr、MnFe、NiFe、TiFe、FeCr、MgCr等);粒子状炭素材(E)を除く導電性充填剤(例えば、金属粒子(例えばアルミニウムフレーク)、金属繊維、金属酸化物粒子、炭素繊維、イオン性液体、界面活性剤等);帯電防止剤(例えばアニオン性帯電防止剤、カチオン性帯電防止剤、非イオン系帯電防止剤等);酸化防止剤および熱安定剤(例えばヒンダードフェノール類、ヒドロキノン類、ホスファイト類、チオエーテル類およびこれらの置換体等);紫外線吸収剤(例えばレゾルシノール類、サリシレート系、ベンゾトリアゾール類、ベンゾフェノン類、トリアジン類等);光安定剤(例えばヒンダードフェノール類、ヒンダードアミン類等);耐候剤;耐光剤;離型剤(例えば高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸金属塩(ここで高級脂肪酸とは炭素原子数10~25のものをいう)、脂肪酸、脂肪酸金属塩等);滑剤;流動性改良剤;可塑剤(例えばポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、リン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤、エポキシ系可塑剤);耐衝撃性改良剤;難燃剤(例えばホスファゼン系化合物、リン酸エステル、縮合リン酸エステル、無機リン系、ハロゲン系、シリコーン系難燃剤、金属酸化物系難燃剤、金属水酸化物系難燃剤、有機金属塩系難燃剤、窒素系難燃剤、ホウ素化合物系難燃剤等);ドリッピング防止剤;核形成剤;分散剤;制振剤;中和剤;ブロッキング防止剤等が挙げられ、これらの1種または2種以上を含有することができる。
(Other additives)
The liquid crystal polymer composition of the present invention may contain other additives as long as they do not impair its preferred physical properties. Other additives include inorganic fillers (e.g., calcium carbonate, mica, mica, sericite, illite, kaolinite, montmorillonite, boehmite, smectite, vermiculite, palygorskite, pyrophyllite , hylosite , diatomaceous earth, titanium dioxide, etc.); laser direct structuring additives ( e.g. MgAl2O4 , ZnAl2O4 , FeAl2O4 , CuFe2O4 , CuCr2O4 , MnFe2O ) ; 4 , NiFe 2 O 4 , TiFe 2 O 4 , FeCr 2 O 4 , MgCr 2 O 4 etc.); , metal oxide particles, carbon fibers, ionic liquids, surfactants, etc.); antistatic agents (e.g. anionic antistatic agents, cationic antistatic agents, nonionic antistatic agents, etc.); antioxidants and heat Stabilizers (e.g. hindered phenols, hydroquinones, phosphites, thioethers and substituted products thereof, etc.); UV absorbers (e.g. resorcinols, salicylates, benzotriazoles, benzophenones, triazines, etc.); light stabilizers (e.g. hindered phenols, hindered amines, etc.); weathering agents; 10 to 25), fatty acids, fatty acid metal salts, etc.); lubricants; fluidity improvers; plasticizers, polyalkylene glycol plasticizers, epoxy plasticizers); impact modifiers; flame retardants (e.g., phosphazene compounds, phosphoric acid esters, condensed retardants, metal oxide flame retardants, metal hydroxide flame retardants, organic metal salt flame retardants, nitrogen flame retardants, boron compound flame retardants, etc.); anti-dripping agents; nucleating agents; Vibration agents; neutralizing agents; anti-blocking agents and the like can be mentioned, and one or more of these can be contained.
 本発明の液晶ポリマー組成物は、エポキシ樹脂などの接着剤に対する接着性がより一層優れ、パーティクルの発生がより一層抑制された成形体が得られる観点から、熱安定剤および/または光安定剤を含有していることが好ましく、なかでもヒンダードフェノール類、ヒンダードアミン類およびチオエーテル類からなる群から選ばれる少なくとも1種の化合物を含有していることが好ましく、ヒンダードフェノール類およびヒンダードアミン類よりなる群から選ばれる少なくとも1種の化合物を含有していることがより好ましい。上記化合物はエポキシ樹脂などの接着剤に対する接着性がより一層優れた成形体が得られる観点から、アミド基および/またはアミノ基を有していることが好ましい。 The liquid crystal polymer composition of the present invention contains a heat stabilizer and/or a light stabilizer from the viewpoint that the adhesiveness to adhesives such as epoxy resins is much more excellent, and the generation of particles is further suppressed. It preferably contains at least one compound selected from the group consisting of hindered phenols, hindered amines and thioethers, and the group consisting of hindered phenols and hindered amines. It is more preferable to contain at least one compound selected from The above compound preferably has an amide group and/or an amino group from the viewpoint of obtaining a molded article having even better adhesion to an adhesive such as an epoxy resin.
 本発明の液晶ポリマー組成物がその他添加剤を含む場合、その配合量は、本発明の液晶ポリマー組成物の好ましい物性を損なわない範囲であれば特に制限はない。液晶ポリマー組成物全量100質量%中において、好ましくは10質量%以下であり、より好ましくは5質量%以下である。 When the liquid crystal polymer composition of the present invention contains other additives, the amount thereof is not particularly limited as long as it does not impair the preferable physical properties of the liquid crystal polymer composition of the present invention. It is preferably 10% by mass or less, more preferably 5% by mass or less, based on 100% by mass of the total amount of the liquid crystal polymer composition.
 <液晶ポリマー組成物の製造方法>
 本発明の液晶ポリマー組成物は、液晶ポリマー(A)と、分子内におけるエポキシ基の数が3個未満のエポキシ化合物(B)と、硫酸バリウム(C)とを配合してなり、必要に応じて、補強材(D)、粒子状炭素材(E)、フッ素樹脂(F)、固体潤滑剤、その他添加剤を配合してなる混合物を、加熱および混合(特に、溶融混練)することによって製造できる。
<Method for producing liquid crystal polymer composition>
The liquid crystal polymer composition of the present invention comprises a liquid crystal polymer (A), an epoxy compound (B) having less than 3 epoxy groups in the molecule, and barium sulfate (C). Manufactured by heating and mixing (in particular, melt-kneading) a mixture containing reinforcing material (D), particulate carbon material (E), fluororesin (F), solid lubricant, and other additives. can.
 溶融混練には、例えば、二軸押出機等の公知の溶融混練装置を使用することができる。具体的には、(1)混合機(タンブラー、ヘンシェルミキサー等)で各成分を予備混合して、溶融混練装置で溶融混練し、ペレット化手段(ペレタイザー等)でペレット化する方法;(2)所望する成分のマスターバッチを調整し、必要により他の成分を混合して溶融混練装置で溶融混練してペレット化する方法;(3)各成分を溶融混練装置に供給してペレット化する方法等により製造することができる。 For melt-kneading, for example, a known melt-kneading device such as a twin-screw extruder can be used. Specifically, (1) a method of premixing each component with a mixer (tumbler, Henschel mixer, etc.), melt-kneading with a melt-kneading device, and pelletizing with a pelletizing means (pelletizer, etc.); (2) A method of preparing a masterbatch of desired components, mixing other components if necessary, melt-kneading them in a melt-kneading device, and pelletizing; (3) a method of supplying each component to a melt-kneading device and pelletizing; can be manufactured by
 溶融混練における加工温度は、液晶ポリマー(A)が溶融し得る温度であれば特に限定されない。通常、溶融混練に用いる溶融混練装置のシリンダー温度をこの範囲に調整する。かくして、所望の効果を発揮する本発明の液晶ポリマー組成物が製造される。 The processing temperature in melt-kneading is not particularly limited as long as it is a temperature at which the liquid crystal polymer (A) can be melted. Normally, the cylinder temperature of the melt-kneading device used for melt-kneading is adjusted within this range. Thus, the liquid crystal polymer composition of the present invention that exhibits desired effects is produced.
 <液晶ポリマー成形体の製造方法および用途>
 本発明の液晶ポリマー組成物は、目的とする液晶ポリマー成形体の種類、用途、形状等に応じて、射出成形、インサート成形、圧縮成形、ブロー成形、インフレーション成形等の公知の樹脂成形方法により成形することで液晶ポリマー成形体とすることができる。成形方法は、射出成形、インサート成形であることが好ましい。また、上記の成形方法を組み合わせた成形方法を採用することができる。本発明の液晶ポリマー組成物を成形することで得られる液晶ポリマー成形体は、精密機器および電子部品に用いる部品同士の接着性を改善することができる。また、本発明の液晶ポリマー組成物を成形することで得られる液晶ポリマー成形体は、成形前の組成物に上述した各成分を適宜含有させることにより、機械的強度や遮光性に優れたものとすることができ、衝突時や落下時に発生するパーティクルを抑制することができる。
<Production method and use of liquid crystal polymer molded article>
The liquid crystal polymer composition of the present invention is molded by a known resin molding method such as injection molding, insert molding, compression molding, blow molding, inflation molding, etc., depending on the type, application, shape, etc. of the desired liquid crystal polymer molded article. By doing so, a liquid crystal polymer molding can be obtained. The molding method is preferably injection molding or insert molding. Also, a molding method that combines the above molding methods can be employed. A liquid crystal polymer molded article obtained by molding the liquid crystal polymer composition of the present invention can improve adhesion between parts used in precision instruments and electronic parts. In addition, the liquid crystal polymer molded article obtained by molding the liquid crystal polymer composition of the present invention is expected to have excellent mechanical strength and light shielding properties by appropriately adding the above-described components to the composition before molding. It is possible to suppress the particles generated when colliding or falling.
 本発明の液晶ポリマー組成物を用いて成形された液晶ポリマー成形体は、精密機器の電子部品の製造に用いられる部材として好適に使用される。上記液晶ポリマー成形体を備える部品としては、他の部材との摺動を伴う摺動部材用電子部品、例えば、コネクタ、アンテナ、スイッチ、リレー、カメラモジュールからなる群から選択されるものを構成する部品の製造に好適に使用される。これらの中でも、本発明の液晶ポリマー成形体は、液晶ポリマー成形体表面のフィブリル化に起因する光学特性の低下を阻止することが期待できることから、カメラモジュールを構成する光学電子部品(カメラモジュール用部材)の製造に特に好適に使用される。カメラモジュールを構成する光学電子部品としては、レンズバレル部(レンズが載る部分)、スペーサー、マウントホルダー部(バレルを装着し、基板に固定する部分)、ベース、鏡筒、CMOS(イメージセンサー)の枠、シャッター、シャッタープレート、シャッターボビ部、絞りのリング、ストッパー(レンズを押さえる部分)等が挙げられる。 A liquid crystal polymer molded article molded using the liquid crystal polymer composition of the present invention is suitably used as a member for manufacturing electronic parts of precision equipment. The component comprising the liquid crystal polymer molded body is selected from the group consisting of electronic components for sliding members that slide with other members, such as connectors, antennas, switches, relays, and camera modules. It is preferably used for manufacturing parts. Among these, the liquid crystal polymer molded article of the present invention can be expected to prevent deterioration of optical properties caused by fibrillation of the surface of the liquid crystal polymer molded article. ) is particularly suitable for the production of The optical electronic parts that make up the camera module include the lens barrel (the part where the lens is placed), spacer, mount holder (the part where the barrel is attached and fixed to the board), base, lens barrel, and CMOS (image sensor). Frames, shutters, shutter plates, shutter bobbies, diaphragm rings, stoppers (parts that hold down the lens), and the like.
 本発明の液晶ポリマー成形体は、カメラ機能を有する、電気電子機器に用いることができる。特に、本発明の液晶ポリマー成形体は、カメラ機能を搭載したスマートフォンまたはタブレット型端末に好適に用いることができる。 The liquid crystal polymer molded article of the present invention can be used in electrical and electronic equipment having a camera function. In particular, the liquid crystal polymer molded article of the present invention can be suitably used for smartphones or tablet terminals equipped with a camera function.
 以下に実施例および比較例に基づいて、本発明を具体的に説明するが、本発明は何らこれに限定されるものではない。なお、本実施例および比較例で使用した原材料は具体的には以下の通りである。 The present invention will be specifically described below based on Examples and Comparative Examples, but the present invention is not limited thereto. In addition, the raw materials used in the present examples and comparative examples are specifically as follows.
 (液晶ポリマー(A))
 液晶ポリマー:全芳香族I型、溶融粘度2.0×10mPa・s(350℃)、融点320℃、上野製薬社製、商品名「UENO LCP A-6000」
(Liquid crystal polymer (A))
Liquid crystal polymer: wholly aromatic type I, melt viscosity 2.0×10 4 mPa·s (350° C.), melting point 320° C., trade name “UENO LCP A-6000” manufactured by Ueno Pharmaceutical Co., Ltd.
 (エポキシ化合物(B))
 ビフェニル型エポキシモノマー:上記式(III)で表されるエポキシ化合物(分子内におけるエポキシ基の数:2個)、エポキシ当量187g/eq~197g/eq、融点105℃、三菱ケミカル社製、商品名「JER YX-4000H」
(Epoxy compound (B))
Biphenyl-type epoxy monomer: epoxy compound represented by the above formula (III) (number of epoxy groups in the molecule: 2), epoxy equivalent 187 g/eq to 197 g/eq, melting point 105° C., manufactured by Mitsubishi Chemical Corporation, trade name "JER YX-4000H"
 (その他のエポキシ化合物)
 エポキシ化合物-1:トリフェニルメタン型、分子内におけるエポキシ基の数:3個、日本化薬社製、商品名「EPPN-502H」
 エポキシ化合物-2:ナフトールクレゾールノボラック型、分子内におけるエポキシ基の数:3個、日本化薬社製、商品名「NC-7000L」
(Other epoxy compounds)
Epoxy compound-1: triphenylmethane type, number of epoxy groups in the molecule: 3, manufactured by Nippon Kayaku Co., Ltd., trade name "EPPN-502H"
Epoxy compound-2: naphthol cresol novolak type, number of epoxy groups in the molecule: 3, manufactured by Nippon Kayaku Co., Ltd., trade name "NC-7000L"
 (硫酸バリウム(C))
 沈降性硫酸バリウム:平均粒子径0.28μm、堺化学工業社製、商品名「沈降性硫酸バリウムB-31」
(Barium sulfate (C))
Precipitated barium sulfate: average particle size 0.28 μm, manufactured by Sakai Chemical Industry Co., Ltd., trade name “precipitated barium sulfate B-31”
 (補強材(D))
 <繊維状補強材(D1)>
 未処理ワラストナイト繊維:平均繊維長9.3μm、平均繊維径2.4μm、アスペクト比3.9
 未処理チタン酸カリウム繊維:平均繊維長15μm、平均繊維径0.5μm、アスペクト比30、6チタン酸カリウム繊維
 <板状補強材(D2)>
 未処理タルク:平均粒子径19μm、富士タルク工業社製、商品名「RG319」
(Reinforcing material (D))
<Fibrous reinforcing material (D1)>
Untreated wollastonite fiber: average fiber length 9.3 μm, average fiber diameter 2.4 μm, aspect ratio 3.9
Untreated potassium titanate fiber: average fiber length 15 μm, average fiber diameter 0.5 μm, aspect ratio 30, 6 potassium titanate fiber <plate-like reinforcing material (D2)>
Untreated talc: average particle size 19 μm, manufactured by Fuji Talc Industry Co., Ltd., trade name “RG319”
 (粒子状炭素材(E))
 カーボンブラック:一次粒子径50nm、BET比表面積50m/g、DBP吸油量175cm/100g、三菱ケミカル社製、商品名「#3050B」
(Particulate carbon material (E))
Carbon black: primary particle diameter 50 nm, BET specific surface area 50 m 2 /g, DBP oil absorption 175 cm 3 /100 g, manufactured by Mitsubishi Chemical Corporation, trade name "#3050B"
 (溶融粘度の測定)
 液晶ポリマー(A)の溶融粘度は、溶融粘度測定装置(株式会社東洋精機製作所社製、商品名「キャピログラフ1D」)にて、液晶ポリマー(A)の融点より30℃高い温度でずり速度1.0×10sec-1の条件にて、1.0mmφ×10mmのオリフィスを用いて測定した。
(Measurement of melt viscosity)
The melt viscosity of the liquid crystal polymer (A) was measured using a melt viscosity measuring device (manufactured by Toyo Seiki Seisakusho Co., Ltd., trade name “Capilograph 1D”) at a temperature 30° C. higher than the melting point of the liquid crystal polymer (A) and shear rate 1. Measurement was performed using an orifice of 1.0 mmφ×10 mm under the condition of 0×10 3 sec −1 .
 (融点の測定)
 液晶ポリマー(A)およびエポキシ化合物(B)の融点は、JIS-K7121に準じて、示差熱量測定装置(日立ハイテクサイエンス社製、商品名「DSC7000X」)を用いて測定した。具体的には、試料10mgを測定用アルミセルの中に入れ、窒素気流100ml/min条件下、室温から50℃まで昇温速度10℃/minで昇温させ、50℃で5分間保持した後、昇温速度10℃/minで昇温して測定した。
(Measurement of melting point)
The melting points of the liquid crystal polymer (A) and the epoxy compound (B) were measured according to JIS-K7121 using a differential calorimeter (manufactured by Hitachi High-Tech Science, trade name "DSC7000X"). Specifically, 10 mg of a sample was placed in an aluminum cell for measurement, heated from room temperature to 50° C. at a temperature elevation rate of 10° C./min under a nitrogen flow of 100 ml/min, and held at 50° C. for 5 minutes. The temperature was raised at a rate of temperature rise of 10°C/min and measured.
 (硫酸バリウム(C)および板状補強材(D2)の平均粒子径)
 平均粒子径は、レーザー回折式粒度分布測定装置(島津製作所社製、商品名「SALD-2100」)により測定した。
(Average particle size of barium sulfate (C) and plate-shaped reinforcing material (D2))
The average particle size was measured with a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, trade name "SALD-2100").
 (繊維状補強材(D1)の平均繊維長、平均繊維径、およびアスペクト比)
 繊維状補強材(D1)の平均繊維長、平均繊維径、およびアスペクト比は、走査型電子顕微鏡(SEM)の観察により測定した任意の1000個の平均値から求めた。
(Average fiber length, average fiber diameter, and aspect ratio of fibrous reinforcing material (D1))
The average fiber length, average fiber diameter, and aspect ratio of the fibrous reinforcing material (D1) were obtained from arbitrary 1000 average values measured by observation with a scanning electron microscope (SEM).
 (粒子状炭素材(E)の物性)
 カーボンブラックの一次粒子径は、透過型電子顕微鏡(日本電子株式会社製、品番「JEM2010」)により測定される一次粒子径の平均値である算術平均粒子径(数平均)により求めた。DBP吸油量は、ジブチルフタレートアブソーブドメーターによって、JIS K 6221に準拠して測定した。BET比表面積は、JIS K 6217に準拠して測定した。
(Physical properties of particulate carbon material (E))
The primary particle size of carbon black was determined by the arithmetic mean particle size (number average), which is the average value of primary particle sizes measured by a transmission electron microscope (manufactured by JEOL Ltd., product number “JEM2010”). The DBP oil absorption was measured according to JIS K 6221 with a dibutyl phthalate absorption meter. The BET specific surface area was measured according to JIS K 6217.
 (合成例1)
 ヘンシェルミキサーに未処理ワラストナイト繊維を仕込み、オクチルトリエトキシシランが未処理ワラストナイト繊維に対して1.0質量%処理されるように、ワラストナイト繊維に乾式法で表面処理して表面処理ワラストナイト繊維を調製し、平均繊維長、平均繊維径およびアスペクト比が未処理品と同じであることを確認した。
(Synthesis example 1)
Untreated wollastonite fibers were placed in a Henschel mixer, and the wollastonite fibers were surface-treated by a dry method so that octyltriethoxysilane was treated in an amount of 1.0% by mass with respect to the untreated wollastonite fibers. Treated wollastonite fibers were prepared and found to have the same average fiber length, average fiber diameter and aspect ratio as the untreated.
 (合成例2)
 未処理ワラストナイト繊維を未処理タルクに変更した以外は合成例1と同様の方法で、表面処理タルクを調製し、平均粒子径が未処理品と同じであることを確認した。
(Synthesis example 2)
A surface-treated talc was prepared in the same manner as in Synthesis Example 1, except that untreated wollastonite fibers were changed to untreated talc, and it was confirmed that the average particle size was the same as that of the untreated product.
 <液晶ポリマー組成物および液晶ポリマー成形体の製造>
 (実施例1~実施例9および比較例1~4)
 液晶ポリマー組成物を表1に示す配合割合で、二軸押出機を用いて溶融混練し、それぞれペレットを製造した。表1において、合成例1および合成例2で表面処理をしたものをそれぞれ表面処理ワラストナイト繊維および表面処理タルクと記載している。また、表面処理していないものをそれぞれ未処理ワラストナイト繊維、未処理タルク、および未処理チタン酸カリウム繊維と記載している。なお、二軸押出機のシリンダー温度は、340℃であった。
<Production of liquid crystal polymer composition and liquid crystal polymer molding>
(Examples 1 to 9 and Comparative Examples 1 to 4)
The liquid crystal polymer composition was melt-kneaded using a twin-screw extruder at the compounding ratio shown in Table 1 to produce pellets. In Table 1, the surface-treated products in Synthesis Example 1 and Synthesis Example 2 are described as surface-treated wollastonite fiber and surface-treated talc, respectively. In addition, those not surface-treated are described as untreated wollastonite fiber, untreated talc, and untreated potassium titanate fiber, respectively. The cylinder temperature of the twin-screw extruder was 340°C.
 得られたペレットを射出成形機にて、平板1(縦90mm、横50mm、厚み3mm)、平板2(縦126mm、横13mm、厚み1.6mm)、機械的物性を測定するためのJIS試験片、平板3(縦110mm、横10mm、厚み4mm)および平板4(縦64mm、横13mm、厚み4mm)に成形し、評価サンプル(液晶ポリマー成形体)とした。なお、射出成形機のシリンダー温度は340℃、金型温度は130℃であった。 Using an injection molding machine, the obtained pellets are molded into flat plate 1 (length 90 mm, width 50 mm, thickness 3 mm), flat plate 2 (length 126 mm, width 13 mm, thickness 1.6 mm), and JIS test pieces for measuring mechanical properties. , a flat plate 3 (length 110 mm, width 10 mm, thickness 4 mm) and a flat plate 4 (length 64 mm, width 13 mm, thickness 4 mm) to obtain evaluation samples (liquid crystal polymer moldings). The injection molding machine had a cylinder temperature of 340°C and a mold temperature of 130°C.
 <評価>
 (ハンター白度)
 色差計(日本電色株式会社製、商品名「ZE6000」)を用いて、成形直後の平板1のハンター白度を測定した。結果を表1に示した。
<Evaluation>
(Hunter Whiteness)
Using a color difference meter (manufactured by Nippon Denshoku Co., Ltd., trade name "ZE6000"), the Hunter whiteness of the flat plate 1 immediately after molding was measured. Table 1 shows the results.
 (引張強さ、引張伸び)
 JIS K7162に準拠して、オートグラフAG-5000(島津製作所社製)にて引張強さおよび引張伸びを測定した。結果を表1に示した。
(tensile strength, tensile elongation)
The tensile strength and tensile elongation were measured using Autograph AG-5000 (manufactured by Shimadzu Corporation) in accordance with JIS K7162. Table 1 shows the results.
 (曲げ強さ、曲げ弾性率)
 JIS K7171に準じ、オートグラフAG-5000(島津製作所社製)にて支点間距離60mmの3点曲げ試験により曲げ強さ、曲げ弾性率を測定した。結果を表1に示した。
(bending strength, bending elastic modulus)
According to JIS K7171, bending strength and bending elastic modulus were measured by a three-point bending test with a distance between fulcrums of 60 mm using Autograph AG-5000 (manufactured by Shimadzu Corporation). Table 1 shows the results.
 (ノッチ付きアイゾット(IZOD)衝撃値)
 JIS K7110に準じ、ノッチ付きアイゾット(IZOD)衝撃値を測定した。結果を表1に示した。
(Notched Izod (IZOD) impact value)
Notched Izod (IZOD) impact value was measured according to JIS K7110. Table 1 shows the results.
 (成形収縮率)
 引張試験測定用のJIS試験片の長手方向の寸法をマイクロメータを用いて正確に測定し、金型寸法との誤差率を成形収縮率(%)とした。即ち、成形収縮率(%)を式(IV)に従って算出した。
(Molding shrinkage rate)
The longitudinal dimension of the JIS test piece for tensile test measurement was accurately measured using a micrometer, and the error rate with the mold dimension was taken as the molding shrinkage rate (%). That is, the molding shrinkage rate (%) was calculated according to formula (IV).
 成形収縮率(%)=[(金型寸法-成形品寸法)/金型寸法]×100…式(IV) Mold shrinkage rate (%) = [(mold dimensions - molded product dimensions)/mold dimensions] x 100... formula (IV)
 結果を表1に示した。 The results are shown in Table 1.
 (荷重たわみ温度)
 JIS K7191A法に準拠して、HDT測定装置(東洋精機製作所社製、商品名「HDT.VSPT.TESTER S-3M」)を用いて、エッジワイズ試験を実施し荷重たわみ温度(℃)を測定した。試験条件は、上記で作製した平板3を荷重たわみ温度試験片として用いて、荷重たわみ温度を測定した。JIS K7191A法に準拠し、各試験片についての荷重たわみ温度(℃)を求めた。開始温度50℃、昇温速度120℃/h、荷重1.8MPa、支点間距離100mmとした。
(Load deflection temperature)
In accordance with the JIS K7191A method, an edgewise test was performed using an HDT measuring device (manufactured by Toyo Seiki Seisakusho, trade name "HDT.VSPT.TESTER S-3M") to measure the deflection temperature under load (°C). . As for the test conditions, the flat plate 3 prepared above was used as a load deflection temperature test piece, and the load deflection temperature was measured. Deflection temperature under load (°C) of each test piece was determined according to JIS K7191A method. The starting temperature was 50° C., the temperature increase rate was 120° C./h, the load was 1.8 MPa, and the distance between fulcrums was 100 mm.
 (パーティクル発生量)
 精密天秤(エー・アンド・デイ社製、品番「GR-200」)を用いて、平板4の重量を測定した後、往復摺動試験機(評価機器:トークシステム社製、TK-1)に設置し、移動距離20mm、荷重5N、速度40mm/sにて、液晶ポリエステル樹脂(ロックウェル硬度HRM53)を相手材として、往復回数200回摺動させた。摺動終了後、エアーで平板4に付着したパーティクルを除去した後に、平板4を精密天秤(エー・アンド・デイ社製、品番「GR-200」)を用いて重量を測定し、試験前後の重量差をパーティクル発生量とした。結果を表1に示した。
(Amount of particles generated)
After measuring the weight of the flat plate 4 using a precision balance (manufactured by A&D Co., Ltd., product number "GR-200"), it is subjected to a reciprocating sliding tester (evaluation equipment: manufactured by Talk System Co., Ltd., TK-1). A liquid crystal polyester resin (Rockwell hardness HRM 53) was slid 200 times reciprocally at a moving distance of 20 mm, a load of 5 N, and a speed of 40 mm/s. After the end of sliding, the particles adhering to the flat plate 4 were removed with air, and then the weight of the flat plate 4 was measured using a precision balance (manufactured by A&D Co., Ltd., product number "GR-200"). The weight difference was defined as the particle generation amount. Table 1 shows the results.
 (摩擦係数)
 静摩擦試験機(協和界面科学株式会社製、品番「TRIBOSTAR TS 501」)を用いて、荷重50g、速度1mm/sec、移動距離1mm、ステンレス球(SUS304、Φ3mm)の条件で、硬質金属との摺動試験を行い、平板1の静摩擦係数(μs)と動摩擦係数(μk)を測定した。結果を表1に示した。
(Coefficient of friction)
Using a static friction tester (manufactured by Kyowa Interface Science Co., Ltd., product number "TRIBOSTAR TS 501"), under the conditions of a load of 50 g, a speed of 1 mm / sec, a moving distance of 1 mm, and a stainless steel ball (SUS304, Φ3 mm), sliding with hard metal A dynamic test was performed to measure the static friction coefficient (μs) and dynamic friction coefficient (μk) of the flat plate 1 . Table 1 shows the results.
 (引張接着力測定)
 平板2を120℃で60分間の条件にて、強制対流式オーブンで乾燥させた。乾燥後、溶剤で試験部位を拭き、充分に脱脂した。試験片反ゲート側の末端から15mmの部分(金型固定面)に接着剤(味の素ファインテクノ社製、低弾性速硬化タイプエポキシ接着剤、品番「AE-740」)を塗布し、金型固定面同士を15mm分オーバーラップさせて貼り合わせ、クリップで固定した状態で、あらかじめ80℃に調整しておいたオーブンで60分間の硬化を行った。硬化後、接着面から大幅にはみ出した接着剤は事前にカッター等で除去した。試験片の調整後、島津製作所社製、オートグラフ、品番「AG-I」にて10mm/minの速度で引張試験を行い、得られた最大応力(MPa)を接着強さとした。試験は5回実施し、その平均値を平均接着強さ(引張接着力)として表1に示した。
(Tensile adhesion measurement)
The plate 2 was dried in a forced convection oven at 120° C. for 60 minutes. After drying, the test site was wiped with a solvent to thoroughly degrease. Apply an adhesive (manufactured by Ajinomoto Fine-Techno Co., Ltd., low elasticity fast curing type epoxy adhesive, product number “AE-740”) to the part 15 mm from the end of the test piece opposite to the gate (mold fixing surface), and fix the mold. The surfaces were overlapped by 15 mm and stuck together, fixed with a clip, and cured for 60 minutes in an oven preliminarily adjusted to 80°C. After curing, the adhesive protruding significantly from the adhesive surface was removed in advance with a cutter or the like. After preparation of the test piece, a tensile test was performed at a speed of 10 mm/min using Autograph, product number "AG-I" manufactured by Shimadzu Corporation, and the resulting maximum stress (MPa) was taken as the adhesive strength. The test was performed 5 times, and the average value is shown in Table 1 as the average adhesive strength (tensile adhesive strength).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1から明らかなように、実施例1~実施例9と比較例1~4とを対比すると、比較例1~4の液晶ポリマー成形体の引張接着力は17MPa~20MPaであるのに対し、実施例1~実施例9の液晶ポリマー成形体ではエポキシ化合物(B)の添加量に応じて、21MPa~39MPaと向上し、実施例1~4の範囲では、添加量が増える順に引張接着力が向上していることがわかる。これにより、液晶ポリマー成形体からなる部品同士の接着性、あるいは該成形体からなる部品と他の部品との接着性を向上させることができる。また、このことから、液晶ポリマー組成物にエポキシ化合物(B)を含有させた方が、エポキシ化合物を含有させない場合と比べて、液晶ポリマー成形体とエポキシ接着剤との接着力は向上することがわかる。また、接着力は、実施例1~4の範囲において、エポキシ化合物(B)の添加量に比例して向上する関係にあることがわかる。 As is clear from Table 1, when comparing Examples 1 to 9 with Comparative Examples 1 to 4, the tensile adhesive strength of the liquid crystal polymer moldings of Comparative Examples 1 to 4 is 17 MPa to 20 MPa, In the liquid crystal polymer moldings of Examples 1 to 9, the tensile adhesive strength increased from 21 MPa to 39 MPa depending on the amount of the epoxy compound (B) added. You can see that it is improving. As a result, it is possible to improve the adhesiveness between the parts made of the liquid crystal polymer molded article, or the adhesiveness between the parts made of the molded article and other parts. In addition, from this, it can be said that the adhesive strength between the liquid crystal polymer molded body and the epoxy adhesive is improved when the liquid crystal polymer composition contains the epoxy compound (B), compared to the case where the epoxy compound is not contained. Understand. Further, it can be seen that the adhesive strength is in a relationship of increasing in proportion to the amount of the epoxy compound (B) added within the range of Examples 1 to 4.
 また、実施例1と実施例5とを対比すると、疎水性のアルキル基を有するアルキル系アルコキシシランカップリング剤で表面処理をした補強材(D)を使用することにより、表面処理をしない場合と比べて、液晶ポリマー成形体とエポキシ樹脂との接着力や、IZOD衝撃値、引張伸びがさらに向上していることがわかる。 Further, when comparing Example 1 and Example 5, by using the reinforcing material (D) surface-treated with an alkyl-based alkoxysilane coupling agent having a hydrophobic alkyl group, there was no surface treatment. It can be seen that the adhesive strength between the liquid crystal polymer molding and the epoxy resin, the IZOD impact value, and the tensile elongation are further improved by comparison.

Claims (13)

  1.  液晶ポリマー(A)と、分子内におけるエポキシ基の数が3個未満であるエポキシ化合物(B)と、硫酸バリウム(C)とを配合してなることを特徴とする、液晶ポリマー組成物。 A liquid crystal polymer composition characterized by blending a liquid crystal polymer (A), an epoxy compound (B) having less than 3 epoxy groups in the molecule, and barium sulfate (C).
  2.  前記エポキシ化合物(B)が、下記一般式(I)で表されるビフェニル型エポキシモノマーであることを特徴とする、請求項1に記載の液晶ポリマー組成物。
    Figure JPOXMLDOC01-appb-C000001
     [一般式(I)において、n、mはそれぞれ0~2から選択される任意の整数を示す(ただし、n、mがともに0の場合は除く)。RおよびRは、それぞれ独立して水素原子または炭素数1~10の炭化水素基を表し、置換基を有していてもよく、RおよびRはそれぞれ互いに同一でも異なっていてもよい。a、bは、それぞれ0~2から選択される任意の整数を示す。ビフェニル骨格の左右におけるそれぞれのフェニル構造は、互いに同一であってもよく異なっていてもよい。]
    2. The liquid crystal polymer composition according to claim 1, wherein the epoxy compound (B) is a biphenyl type epoxy monomer represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000001
    [In general formula (I), n and m each represent an arbitrary integer selected from 0 to 2 (except when both n and m are 0). R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms and may have a substituent; R 1 and R 2 may be the same or different; good. a and b each represent an arbitrary integer selected from 0 to 2; The phenyl structures on the left and right sides of the biphenyl skeleton may be the same or different. ]
  3.  前記一般式(I)において、n、mはそれぞれ1であり、RおよびRはメチル基をそれぞれ示す、請求項1または請求項2に記載の液晶ポリマー組成物。 3. The liquid crystal polymer composition according to claim 1, wherein in the general formula (I), n and m are each 1, and R1 and R2 each represent a methyl group.
  4.  前記エポキシ化合物(B)の含有量が、前記液晶ポリマー組成物全量100質量%中において、0.1質量%~5.0質量%であることを特徴とする、請求項1または請求項2に記載の液晶ポリマー組成物。 The content of the epoxy compound (B) is 0.1% by mass to 5.0% by mass in the total amount of 100% by mass of the liquid crystal polymer composition, according to claim 1 or 2. The liquid crystalline polymer composition described.
  5.  前記液晶ポリマー(A)が、全芳香族液晶ポリマーであることを特徴とする、請求項1または請求項2に記載の液晶ポリマー組成物。 The liquid crystal polymer composition according to claim 1 or 2, wherein the liquid crystal polymer (A) is a wholly aromatic liquid crystal polymer.
  6.  前記液晶ポリマー組成物が、さらに補強材(D)を含むことを特徴とする、請求項1または請求項2に記載の液晶ポリマー組成物。 The liquid crystal polymer composition according to claim 1 or 2, characterized in that the liquid crystal polymer composition further contains a reinforcing material (D).
  7.  前記補強材(D)が、疎水性表面処理剤で処理されていることを特徴とする、請求項6に記載の液晶ポリマー組成物。 The liquid crystal polymer composition according to claim 6, wherein the reinforcing material (D) is treated with a hydrophobic surface treatment agent.
  8.  前記疎水性表面処理剤が、下記一般式(II)で表されるアルコキシシランであることを特徴とする、請求項7に記載の液晶ポリマー組成物。
     R Si(OR4-n  …式(II)
     [一般式(II)において、nは1~3から選択される任意の整数を示し、Rはアルキル基、アルケニル基またはアリール基を示し、Rはアルキル基を示す。]
    8. The liquid crystal polymer composition according to claim 7, wherein the hydrophobic surface treating agent is an alkoxysilane represented by the following general formula (II).
    R 1 n Si(OR 2 ) 4-n Formula (II)
    [In general formula (II), n represents an arbitrary integer selected from 1 to 3, R 1 represents an alkyl group, alkenyl group or aryl group, and R 2 represents an alkyl group. ]
  9.  前記補強材(D)の平均繊維長が、1μm~300μm未満であることを特徴とする、請求項6に記載の液晶ポリマー組成物。 The liquid crystal polymer composition according to claim 6, wherein the reinforcing material (D) has an average fiber length of 1 µm to less than 300 µm.
  10.  前記補強材(D)が、チタン酸カリウム繊維およびワラストナイト繊維のうち少なくとも一方であることを特徴とする、請求項6に記載の液晶ポリマー組成物。 The liquid crystal polymer composition according to claim 6, wherein the reinforcing material (D) is at least one of potassium titanate fiber and wollastonite fiber.
  11.  前記補強材(D)の含有量が、前記液晶ポリマー組成物全量100質量%中において、0.1質量%~40質量%であることを特徴とする、請求項6に記載の液晶ポリマー組成物。 7. The liquid crystal polymer composition according to claim 6, wherein the content of the reinforcing material (D) is 0.1% by mass to 40% by mass in 100% by mass of the total amount of the liquid crystal polymer composition. .
  12.  カメラモジュールに用いられることを特徴とする、請求項1または請求項2に記載の液晶ポリマー組成物。 The liquid crystal polymer composition according to claim 1 or 2, characterized by being used in a camera module.
  13.  請求項1または請求項2に記載の液晶ポリマー組成物の成形体であることを特徴とする、液晶ポリマー成形体。 A liquid crystal polymer molded article, characterized by being a molded article of the liquid crystal polymer composition according to claim 1 or claim 2.
PCT/JP2022/024120 2021-06-30 2022-06-16 Liquid-crystal polymer composition and molded liquid-crystal polymer WO2023276699A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280038059.2A CN117396557A (en) 2021-06-30 2022-06-16 Liquid crystal polymer composition and liquid crystal polymer molded body
JP2023531787A JPWO2023276699A1 (en) 2021-06-30 2022-06-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021108929 2021-06-30
JP2021-108929 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276699A1 true WO2023276699A1 (en) 2023-01-05

Family

ID=84692335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024120 WO2023276699A1 (en) 2021-06-30 2022-06-16 Liquid-crystal polymer composition and molded liquid-crystal polymer

Country Status (3)

Country Link
JP (1) JPWO2023276699A1 (en)
CN (1) CN117396557A (en)
WO (1) WO2023276699A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7308378B1 (en) 2021-09-28 2023-07-13 ポリプラスチックス株式会社 resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166056A (en) * 1993-12-16 1995-06-27 Toray Ind Inc Resin composition
JPH07166057A (en) * 1993-12-16 1995-06-27 Toray Ind Inc Resin composition
JPH07224210A (en) * 1993-12-16 1995-08-22 Toray Ind Inc Polyphenylene sulfide resin molding
JPH07224208A (en) * 1993-12-16 1995-08-22 Toray Ind Inc Polyphenylene sulfide resin composition
JPH07224209A (en) * 1993-12-16 1995-08-22 Toray Ind Inc Polyphenylene sulfide resin composition
WO2015083759A1 (en) * 2013-12-03 2015-06-11 Jx日鉱日石エネルギー株式会社 Wholly aromatic liquid crystal polyester resin composition and camera module component including injection-molded article of same as constituent member
WO2021117607A1 (en) * 2019-12-11 2021-06-17 大塚化学株式会社 Liquid crystal polymer composition, liquid crystal polymer molded body, and camera module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166056A (en) * 1993-12-16 1995-06-27 Toray Ind Inc Resin composition
JPH07166057A (en) * 1993-12-16 1995-06-27 Toray Ind Inc Resin composition
JPH07224210A (en) * 1993-12-16 1995-08-22 Toray Ind Inc Polyphenylene sulfide resin molding
JPH07224208A (en) * 1993-12-16 1995-08-22 Toray Ind Inc Polyphenylene sulfide resin composition
JPH07224209A (en) * 1993-12-16 1995-08-22 Toray Ind Inc Polyphenylene sulfide resin composition
WO2015083759A1 (en) * 2013-12-03 2015-06-11 Jx日鉱日石エネルギー株式会社 Wholly aromatic liquid crystal polyester resin composition and camera module component including injection-molded article of same as constituent member
WO2021117607A1 (en) * 2019-12-11 2021-06-17 大塚化学株式会社 Liquid crystal polymer composition, liquid crystal polymer molded body, and camera module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7308378B1 (en) 2021-09-28 2023-07-13 ポリプラスチックス株式会社 resin composition

Also Published As

Publication number Publication date
CN117396557A (en) 2024-01-12
JPWO2023276699A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
CN114787285B (en) Liquid crystal polymer composition, liquid crystal polymer molded body, and camera module
JP7043159B1 (en) Liquid crystal polymer compositions, liquid crystal polymer moldings, and electrical and electronic equipment.
CN112969750B (en) Liquid crystal polyester resin composition and molded article
US10377851B2 (en) Liquid crystal polymer
JP2001207054A (en) Molded article of liquid crystalline polymer
EP3369774B1 (en) Camera module-use liquid crystalline polyester resin composition and camera module-use molded product formed thereof
WO2022092015A1 (en) Liquid crystal polymer composition, liquid crystal polymer molded body, and electrical and electronic equipment
US10711134B2 (en) Liquid crystal polyester resin composition
WO2023276699A1 (en) Liquid-crystal polymer composition and molded liquid-crystal polymer
TW201925343A (en) Liquid crystalline resin composition for sliding wear resistant member and sliding wear resistant member using same
WO2023276698A1 (en) Liquid crystal polymer composition and liquid crystal polymer molded article
WO2022220125A1 (en) Liquid-crystal polymer composition, molded liquid-crystal polymer, and electrical/electronic appliance
JP2020007394A (en) Liquid crystalline resin composition for sliding wear-resistant members, and sliding wear-resistant member including the same
JP4368079B2 (en) Liquid crystalline polyester resin composition
JP2007217643A (en) Resin composition containing compound of single-phase dispersive inorganic fine particle and production method therefor
WO2020070904A1 (en) Liquid crystal polyester resin
WO2020230890A1 (en) Liquid crystalline resin composition and molded body using same
WO2020070903A1 (en) Liquid crystal polyester resin
WO2023026998A1 (en) Liquid crystal polyester pellet composition and injection molded article
JP2023123057A (en) Liquid crystalline resin composition for camera module, and camera module using the same
CN112341609A (en) Liquid crystalline polyester resin
JP2018203810A (en) Liquid crystal polymer composition
JP2014125582A (en) Polymer alloy molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832849

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531787

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280038059.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE