WO2020230890A1 - Liquid crystalline resin composition and molded body using same - Google Patents

Liquid crystalline resin composition and molded body using same Download PDF

Info

Publication number
WO2020230890A1
WO2020230890A1 PCT/JP2020/019448 JP2020019448W WO2020230890A1 WO 2020230890 A1 WO2020230890 A1 WO 2020230890A1 JP 2020019448 W JP2020019448 W JP 2020019448W WO 2020230890 A1 WO2020230890 A1 WO 2020230890A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal resin
resin composition
mass
content
Prior art date
Application number
PCT/JP2020/019448
Other languages
French (fr)
Japanese (ja)
Inventor
真奈 中村
博樹 深津
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN202080034568.9A priority Critical patent/CN113874432B/en
Priority to JP2021500763A priority patent/JP7026842B2/en
Publication of WO2020230890A1 publication Critical patent/WO2020230890A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity

Definitions

  • the present invention relates to a liquid crystal resin composition and a molded product using the same.
  • Liquid crystal resins represented by liquid crystal polyester resins have a good balance of excellent mechanical strength, heat resistance, chemical resistance, electrical properties, etc., and also have excellent dimensional stability, so they are widely used as high-performance engineering plastics. It's being used. Recently, liquid crystal resins have come to be used for precision equipment parts by taking advantage of these features.
  • Examples of precision equipment parts in which liquid crystal resin is used include connectors; relay cases and the like. In these parts, if a large warp deformation occurs, the quality may be adversely affected.
  • a liquid crystal resin composition has been developed using the flatness of a flat plate as an index (for example, Patent Document 1).
  • the above-mentioned parts are not formed only from a flat plate, but are formed from a liquid crystal resin molded body having a bent portion.
  • a liquid crystal resin molded body for example, a liquid crystal resin molded body having an L-shaped corner portion, particularly a U-shaped liquid crystal resin molded body, may undergo so-called inward tilt deformation.
  • the inward tilting deformation since the wide-angle side is rapidly cooled at the bent portion, the liquid crystal resin composition is solidified before crystallization proceeds and the shrinkage rate is small, whereas the narrow-angle side is slowly cooled. Therefore, the liquid crystal resin composition is solidified in a more crystallized state, and the shrinkage rate is large.
  • the present invention has been made in view of such circumstances, and the molding is performed while suppressing inward tilt deformation of a liquid crystal resin molded body having an L-shaped corner portion, particularly a U-shaped liquid crystal resin molded body. It is an object of the present invention to provide a liquid crystal resin composition capable of imparting sufficient mechanical strength to a body and having good fluidity at the time of melting, and a molded product made of the liquid crystal resin composition.
  • the present inventors have found that the above problems can be solved by combining a liquid crystal resin, a fibrous filler, and silica at a predetermined content and setting the total amount of the filler within a predetermined range. .. Specifically, the present invention provides the following.
  • a liquid crystal resin composition containing (A) a liquid crystal resin, (B) a fibrous filler, and (C) silica.
  • the content of the liquid crystal resin (A) is 55 to 65% by mass.
  • the content of the fibrous filler (B) is 5 to 15% by mass.
  • the content of the silica (C) is 10 to 32.5% by mass.
  • the content of the total filler contained in the liquid crystal resin composition is 35 to 45% by mass.
  • a liquid crystal resin molded product having an L-shaped corner portion, particularly a U-shaped liquid crystal resin molded product, is provided with sufficient mechanical strength while suppressing inward deformation. It is possible to provide a liquid crystal resin composition which can be used and has good fluidity when melted, and a molded product made of the liquid crystal resin composition.
  • FIG. 1A is a perspective view showing a U-shaped liquid crystal resin molded product used for the evaluation of inward tilt deformation performed in the examples
  • FIG. 1B is a U-shaped liquid crystal resin molded product. It is a side view which shows the molded body.
  • the liquid crystal resin composition of the present invention contains (A) a liquid crystal resin, (B) a fibrous filler, and (C) silica.
  • the liquid crystal resin (A) used in the present invention refers to a melt-processable polymer having a property of forming an optically anisotropic molten phase.
  • the properties of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizing element. More specifically, the confirmation of the anisotropic molten phase can be carried out by observing the molten sample placed on the Leitz hot stage at a magnification of 40 times under a nitrogen atmosphere using a Leitz polarizing microscope.
  • Liquid crystalline polymers applicable to the present invention normally transmit polarized light and are optically anisotropy when inspected between orthogonal polarizers, even in the molten and resting state.
  • the type of the liquid crystal resin (A) as described above is not particularly limited, and is preferably an aromatic polyester and / or an aromatic polyester amide.
  • the range also includes polyesters that partially contain aromatic polyesters and / or aromatic polyester amides in the same molecular chain.
  • the liquid crystal resin (A) preferably at least about 2.0 dl / g, more preferably 2.0 to 10.0 dl / g when dissolved in pentafluorophenol at 60 ° C. at a concentration of 0.1% by mass. Those having a logarithmic viscosity (IV) of are preferably used.
  • the aromatic polyester or aromatic polyesteramide as the (A) liquid crystal resin applicable to the present invention is particularly preferably at least one selected from the group consisting of aromatic hydroxycarboxylic acid, aromatic hydroxyamine, and aromatic diamine. It is an aromatic polyester or an aromatic polyester amide having a repeating unit derived from a species compound as a constituent.
  • Polyester consisting of repeating units mainly derived from one or more aromatic hydroxycarboxylic acids and their derivatives; (2) Repeating units mainly derived from (a) one or more aromatic hydroxycarboxylic acids and their derivatives, and (b) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and one of their derivatives.
  • a polyester consisting of a repeating unit derived from two or more kinds and (c) a repeating unit derived from at least one kind or two or more kinds of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof; (3) Repetitive units mainly derived from (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof, and (b) one or two aromatic hydroxyamines, aromatic diamines, and derivatives thereof.
  • a polyester amide consisting of a repeating unit derived from a species or more and (c) a repeating unit derived from one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof; (4) Repeating units mainly derived from (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof, and (b) aromatic hydroxyamines, aromatic diamines, and one or two derivatives thereof. Repetitive units derived from species or higher, (c) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and repeating units derived from one or more of their derivatives, and (d) aromatic diols, alicyclics.
  • polyesteramides consisting of group diols, aliphatic diols, and repeating units derived from at least one or more of the derivatives thereof.
  • a molecular weight adjusting agent may be used in combination with the above-mentioned constituent components as needed.
  • Preferred examples of the specific compound constituting the (A) liquid crystal resin applicable to the present invention include aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, and 2,6-dihydroxy.
  • Aromatic diols such as naphthalene, 1,4-dihydroxynaphthalene, 4,4'-dihydroxybiphenyl, hydroquinone, resorcin, a compound represented by the following general formula (I), and a compound represented by the following general formula (II).
  • Aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 4,4'-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and compounds represented by the following general formula (III); p-aminophenol, p- Examples include aromatic amines such as phenylenediamine.
  • X A group selected from alkylene (C 1 to C 4 ), alkylidene, -O-, -SO-, -SO 2- , -S-, and -CO-)
  • the liquid crystal resin (A) used in the present invention can be prepared by a known method from the above-mentioned monomer compound (or mixture of monomers) by a direct polymerization method or a transesterification method, and is usually a melt polymerization method.
  • a melt polymerization method Solution polymerization method, slurry polymerization method, solid phase polymerization method, etc., or a combination of two or more of these is used, and a melt polymerization method or a combination of a melt polymerization method and a solid phase polymerization method is preferably used.
  • the above compounds having an ester-forming ability may be used in the polymerization as they are, or may be modified from a precursor to a derivative having the ester-forming ability in the pre-polymerization step.
  • Various catalysts can be used for these polymerizations, and typical ones are potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris (2). , 4-Pentandionato) Metal salt-based catalysts such as cobalt (III), and organic compound-based catalysts such as N-methylimidazole and 4-dimethylaminopyridine.
  • the amount of the catalyst used is generally preferably about 0.001 to 1% by mass, particularly preferably about 0.01 to 0.2% by mass, based on the total mass of the monomer. If necessary, the polymer produced by these polymerization methods can be increased in molecular weight by a solid-phase polymerization method in which the polymer is heated under reduced pressure or in an inert gas.
  • the melt viscosity of the liquid crystal resin (A) obtained by the above method is not particularly limited. Generally, a melt viscosity at a molding temperature of 1000 sec -1 and a shear rate of 3 Pa ⁇ s or more and 500 Pa ⁇ s or less can be used. However, the one having a very high viscosity by itself is not preferable because the fluidity is very deteriorated.
  • the liquid crystal resin (A) may be a mixture of two or more kinds of liquid crystal resins.
  • the content of the liquid crystal resin (A) is 55 to 65% by mass.
  • the content of the component (A) is within the above range, the fluidity of the liquid crystal resin composition tends to be sufficient, and a molded product having excellent mechanical strength can be easily obtained.
  • the liquid crystal resin composition of the present invention can impart sufficient mechanical strength to the molded product made of the liquid crystal resin composition.
  • the fibrous filler can be used alone or in combination of two or more.
  • the weight average fiber length of the fibrous filler is not particularly limited, and may be, for example, 250 ⁇ m or more, preferably 350 to 600 ⁇ m, and more preferably 450 to 500 ⁇ m.
  • the weight average fiber length is 250 ⁇ m or more, the molded product obtained from the liquid crystal resin composition of the present invention tends to have improved mechanical strength and heat resistance.
  • the weight average fiber length is 600 ⁇ m or less, the fluidity of the liquid crystal resin composition tends to be sufficient.
  • the weight average fiber length of the (B) fibrous filler in the liquid crystal resin composition is the fibrous state remaining after the liquid crystal resin composition is incinerated by heating at 600 ° C. for 2 hours.
  • the stereomicroscopic image of the filler is captured from the CCD camera into the PC, and the average of the values obtained by measuring the fiber length of the fibrous filler by an image processing method with an image measuring machine is adopted.
  • the average fiber diameter of the fibrous filler is not particularly limited, and may be, for example, 20 ⁇ m or less, or 5 to 15 ⁇ m.
  • the average fiber diameter of the (B) fibrous filler in the liquid crystal resin composition is defined as the fibrous filling remaining after the liquid crystal resin composition is incinerated by heating at 600 ° C. for 2 hours. The agent is observed with a scanning electron microscope, and the average of the measured values of the fiber diameter of the fibrous filler is adopted.
  • any fiber can be used as long as it is a fibrous filler satisfying the above shape.
  • the (B) fibrous filler for example, glass fiber, milled fiber, carbon fiber, asbestos fiber, silica fiber , Silica / alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, and inorganic fibrous material such as metal fibrous material such as stainless steel, aluminum, titanium, copper and brass. Be done.
  • glass fiber for example, glass fiber, milled fiber, carbon fiber, asbestos fiber, silica fiber , Silica / alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, and inorganic fibrous material such as metal fibrous material such as stainless steel, aluminum, titanium, copper and brass. Be done.
  • glass fiber it is preferable to use glass fiber as the component (B) from the viewpoint of mechanical strength.
  • the content of the fibrous filler (B) is 5 to 15% by mass, preferably 6.5 to 15% by mass, and more preferably 8 to 15% by mass in the liquid crystal resin composition of the present invention.
  • the content of the fibrous filler (B) is within the above range, the fluidity of the liquid crystal resin composition is sufficiently ensured, and the mechanical strength of the molded product obtained from the liquid crystal resin composition is improved.
  • Cheap is 5 to 15% by mass, preferably 6.5 to 15% by mass, and more preferably 8 to 15% by mass in the liquid crystal resin composition of the present invention.
  • the liquid crystal resin composition of the present invention can provide a liquid crystal resin molded product in which inward tilt deformation is suppressed.
  • (C) Silica can be used alone or in combination of two or more.
  • the median diameter of (C) silica is not particularly limited, and may be, for example, 1.3 to 30.0 ⁇ m. When the median diameter is within this range, the effect of suppressing inward deformation of the liquid crystal resin molded product tends to be higher.
  • the median diameter is preferably 1.5 to 25.0 ⁇ m, more preferably 2.0 to 15.0 ⁇ m.
  • the median diameter means the median value of the volume standard measured by the laser diffraction / scattering type particle size distribution measurement method.
  • the content of (C) silica is 10 to 32.5% by mass in the liquid crystal resin composition of the present invention.
  • the content of silica (C) is within the above range, it is easy to sufficiently suppress the inward deformation of the liquid crystal resin molded product.
  • the preferable content of (C) silica is 10 to 30% by mass.
  • the liquid crystal resin composition according to the present invention may contain a plate-like filler. Since the liquid crystal resin composition according to the present invention contains a plate-like filler, it is easy to obtain a molded product in which warpage deformation is suppressed.
  • the plate-shaped filler can be used alone or in combination of two or more.
  • the preferable content of the (D) plate-like filler is 7.7 to 30% by mass.
  • the content of the plate-like filler (D) is more preferably 9 to 20% by mass, and even more preferably 10 to 15% by mass.
  • Examples of the plate-like filler in the present invention include talc, mica, glass flakes, and various metal foils.
  • talc and mica are preferable, and mica is more preferable in that the warp deformation of the molded product obtained from the liquid crystal resin composition is suppressed without deteriorating the fluidity of the liquid crystal resin composition.
  • the average particle size of the plate-shaped filler is not particularly limited, and a smaller one is desirable in consideration of the fluidity in the thin-walled portion.
  • the total content of Fe 2 O 3 , Al 2 O 3 and Ca O is 2.5% by mass or less with respect to the total solid content of the talc, and Fe 2 O 3 and Al It is preferable that the total content of 2O 3 is more than 1.0% by mass and 2.0% by mass or less, and the content of CaO is less than 0.5% by mass. That is, the talc that can be used in the present invention contains at least one of Fe 2 O 3 , Al 2 O 3, and CaO in addition to SiO 2 and MgO, which are the main components thereof, and each component has the above content range. It may be contained in.
  • the total content of Fe 2 O 3 , Al 2 O 3 and CaO in the above talc was 2.5% by mass or less, the liquid crystal resin composition was molded from the molding processability and the liquid crystal resin composition. The heat resistance of the molded product is unlikely to deteriorate. Therefore, the total content of Fe 2 O 3 , Al 2 O 3 and CaO is preferably 1.0% by mass or more and 2.0% by mass or less.
  • talc having a total content of Fe 2 O 3 and Al 2 O 3 of more than 1.0% by mass is easily available.
  • the total content of Fe 2 O 3 and Al 2 O 3 is 2.0% by mass or less, the liquid crystal resin composition is molded from the moldability and the liquid crystal resin composition. The heat resistance of the molded product is unlikely to deteriorate. Therefore, the total content of Fe 2 O 3 and Al 2 O 3 is preferably more than 1.0% by mass and 1.7% by mass or less.
  • the CaO content is preferably 0.01% by mass or more and 0.4% by mass or less.
  • the mass-based or volume-based cumulative average particle diameter (D 50 ) of talc in the present invention measured by a laser diffraction method is determined from the viewpoint of preventing warpage deformation of the molded product and maintaining the fluidity of the liquid crystal resin composition. It is preferably 4.0 to 20.0 ⁇ m, more preferably 10 to 18 ⁇ m.
  • Mica is a pulverized product of silicate minerals containing aluminum, potassium, magnesium, sodium, iron and the like.
  • Examples of mica that can be used in the present invention include muscovite, phlogopite, biotite, and artificial mica. Of these, muscovite is preferable because it has a good hue and is inexpensive.
  • a wet pulverization method and a dry pulverization method are known as methods for pulverizing minerals.
  • the wet pulverization method is a method in which rough mica is roughly pulverized by a dry pulverizer, water is added, and the pulverization is carried out by wet pulverization in a slurry state, followed by dehydration and drying.
  • the dry pulverization method is a low-cost and general method as compared with the wet pulverization method, it is easier to pulverize the mineral thinly and finely by using the wet pulverization method.
  • the present invention it is preferable to use a thin and fine pulverized product because mica having a preferable average particle size and thickness described later can be obtained. Therefore, in the present invention, it is preferable to use mica produced by the wet pulverization method.
  • a coagulation sedimentation agent and / or a sedimentation aid is added to the object to be pulverized in order to improve the dispersion efficiency of the object to be pulverized.
  • a coagulation sedimentation agent and sedimentation aid that can be used in the present invention include polyaluminum chloride, aluminum sulfate, ferrous sulfate, ferric sulfate, copper chloride, polyiron sulfate, ferric chloride, and iron-silica inorganic high.
  • ferric chloride-silica inorganic polymer flocculant examples thereof include ferric chloride-silica inorganic polymer flocculant, aluminum sulfate (Ca (OH) 2 ), caustic soda (NaOH), soda ash (Na 2 CO 3 ) and the like.
  • These coagulation sedimentation agents and sedimentation aids have an alkaline or acidic pH.
  • the mica used in the present invention preferably does not use a coagulation sedimentation agent and / or a sedimentation aid during wet pulverization.
  • the mica that can be used in the present invention preferably has an average particle size of 10 to 100 ⁇ m measured by a microtrack laser diffraction method, and particularly preferably an average particle size of 20 to 80 ⁇ m.
  • the average particle size of mica is 10 ⁇ m or more, the effect of improving the rigidity of the molded product is likely to be sufficient, which is preferable.
  • the average particle size of mica is 100 ⁇ m or less, the rigidity of the molded product is likely to be sufficiently improved, and the weld strength is also likely to be sufficient, which is preferable.
  • the average particle size of mica is 100 ⁇ m or less, it is easy to secure sufficient fluidity for molding the connector or the like of the present invention.
  • the thickness of mica that can be used in the present invention is preferably 0.01 to 1 ⁇ m, particularly preferably 0.03 to 0.3 ⁇ m, as measured by observation with an electron microscope.
  • the thickness of the mica is 0.01 ⁇ m or more, the mica is less likely to crack during the melt processing of the liquid crystal resin composition, and the rigidity of the molded product may be easily improved, which is preferable.
  • the thickness of mica is 1 ⁇ m or less, the effect of improving the rigidity of the molded product is likely to be sufficient, which is preferable.
  • the mica that can be used in the present invention may be surface-treated with a silane coupling agent or the like, and / or may be granulated with a binder to form granules.
  • the content of the total filler contained in the liquid crystal resin composition according to the present invention is 35 to 45% by mass with respect to the entire liquid crystal resin composition, and the content of (C) silica is x% by mass.
  • x and y satisfy the following formula (1).
  • the content of the total filler is within the above range and the following formula (1) is satisfied, the liquid crystal resin molded body is deformed inward while sufficiently ensuring the fluidity of the liquid crystal resin composition. Easy to suppress sufficiently.
  • the liquid crystal resin composition according to the present invention includes (A) a polymer other than the liquid crystal resin, (C) a granular filler other than silica, a nucleating agent, carbon black, an inorganic fired pigment, and the like.
  • a polymer other than the liquid crystal resin e.g., polyethylene glycol dimethacrylate copolymer
  • a granular filler other than silica e.g., silica
  • a nucleating agent e.g., carbon black, an inorganic fired pigment, and the like.
  • Granular fillers other than silica include, for example, silicates such as quartz powder, glass beads, glass powder, calcium carbonate, aluminum silicate, kaolin, clay, diatomaceous earth, and wollastonite; iron oxide, oxidation.
  • Metal oxides such as titanium, zinc oxide and alumina; metal carbonates such as calcium carbonate and magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; diatomaceous earth; diatomaceous earth; boron nitride and the like.
  • the granular filler other than silica may be used alone or in combination of two or more.
  • the liquid crystal resin composition according to the present invention is other than (C) silica. It is preferably free of granular fillers, especially glass beads.
  • the method for producing the liquid crystal resin composition according to the present invention is not particularly limited as long as the components in the liquid crystal resin composition can be uniformly mixed, and can be appropriately selected from the conventionally known methods for producing the liquid crystal resin composition.
  • each component is melt-kneaded and extruded using a melt-kneading device such as a single-screw or twin-screw extruder, and then the obtained liquid crystal resin composition is processed into a desired form such as powder, flakes, and pellets. There is a way to do it.
  • the molded product of the present invention comprises the liquid crystal resin composition of the present invention.
  • the molded product of the present invention is suppressed from inwardly tilting deformation and has sufficient mechanical strength.
  • the molded product of the present invention can be used, for example, as a connector such as an IGBT connector; a relay case or the like.
  • Examples 1 to 8 Comparative Examples 1 to 6>
  • the liquid crystal resin was produced as follows. At that time, the melting point and the melt viscosity of the pellets were measured under the following conditions, respectively.
  • the stirring torque reached a predetermined value
  • nitrogen was introduced to bring the mixture from a reduced pressure state to a pressurized state through normal pressure
  • the polymer was discharged from the lower part of the polymerization vessel, and the strands were pelletized to obtain pellets.
  • the obtained pellets were heat-treated at 300 ° C. for 2 hours under a nitrogen stream to obtain the desired polymer.
  • the melting point of the obtained polymer was 336 ° C., and the melt viscosity at 350 ° C. was 19.0 Pa ⁇ s.
  • the melt viscosity of the polymer was measured in the same manner as the method for measuring the melt viscosity described later.
  • HBA 4-Hydroxybenzoic acid
  • HNA 2-Hydroxy-6-naphthoic acid
  • TA Terephthalic acid
  • BP 4,4'-dihydroxybiphenyl
  • APAP 4-acetoxyaminophenol
  • APAP 126 g (5 mol%)
  • Metal catalyst potassium acetate catalyst
  • 110 mg Acylating agent acetic anhydride
  • the liquid crystal resin obtained above and components other than the liquid crystal resin described above were mixed using a twin-screw extruder to obtain a liquid crystal resin composition.
  • the blending amount of each component is as shown in Tables 1 and 2. In the following, "%" regarding the blending amount in the table indicates mass%.
  • the extrusion conditions for obtaining the liquid crystal resin composition are as follows. [Extrusion conditions] [Examples 1 to 8, Comparative Examples 1 to 6] The temperature of the cylinder provided at the main feed port was set to 250 ° C, and the temperature of all other cylinders was set to 350 ° C. All liquid crystal resin was supplied from the main feed port. The filler was supplied from the side feed port.
  • the physical properties of the molded product made of the liquid crystal resin composition were measured based on the following method.
  • the pellets were molded using a molding machine (“SE-100DU” manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions to prepare five flat test pieces of 80 mm ⁇ 80 mm ⁇ 1 mm.
  • the first plate-shaped test piece was allowed to stand on a horizontal surface, and using a CNC image measuring machine (model: QVBHU404-PRO1F) manufactured by Mitutoyo Co., Ltd., at nine locations on the flat plate-shaped test piece, from the horizontal surface. The height was measured, and the average height was calculated from the obtained measured values.
  • the position where the height was measured is when a square with a side of 74 mm is placed on the main plane of the flat plate-shaped test piece so that the distance from each side of this main plane is 3 mm, and each vertex of this square is placed. , The midpoint of each side of this square, and the position corresponding to the intersection of the two diagonal lines of this square.
  • the height from the horizontal plane is the same as the average height, and a plane parallel to the horizontal plane is used as a reference plane. From the heights measured at the above nine points, the maximum height and the minimum height from the reference plane were selected, and the difference between the two was calculated. Similarly, the above difference was calculated for the other four flat plate-shaped test pieces, and the five values obtained were averaged to obtain the flatness value.
  • the liquid crystal resin composition according to the present invention can be applied to a liquid crystal resin molded product having L-shaped corners, particularly a U-shaped liquid crystal resin molded product, while suppressing inward deformation. It was confirmed that sufficient mechanical strength could be given and that the fluidity at the time of melting was good. Further, it was confirmed that the molded product obtained from the liquid crystal resin composition containing the plate-like filler had a small flatness and suppressed warpage deformation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides: a liquid crystalline resin composition which is capable of imparting a liquid crystalline resin molded body having an L-shaped corner part, especially a squared U-shaped liquid crystalline resin molded body with sufficient mechanical strength, while suppressing inward collapse deformation of the molded body, and which exhibits good fluidity when melted; and a molded body which is formed of this liquid crystalline resin composition. A liquid crystalline resin composition according to the present invention contains (A) a liquid crystalline resin, (B) a fibrous filler and (C) silica; relative to the entire liquid crystalline resin composition, the content of the liquid crystalline resin (A) is 55-65% by mass, the content of the fibrous filler (B) is 5-15% by mass and the content of the silica (C) is 10-32.5% by mass; the total content of all fillers contained in the liquid crystalline resin composition is 35-45% by mass; and if x (% by mass) is the content of the silica (C) and y (% by mass) is the total content of all fillers, x and y satisfy formula y ≥ -0.5x + 45.

Description

液晶性樹脂組成物及びそれを用いた成形体Liquid crystal resin composition and molded article using it
 本発明は、液晶性樹脂組成物及びそれを用いた成形体に関する。 The present invention relates to a liquid crystal resin composition and a molded product using the same.
 液晶性ポリエステル樹脂に代表される液晶性樹脂は、優れた機械的強度、耐熱性、耐薬品性、電気的性質等をバランス良く有し、優れた寸法安定性も有するため高機能エンジニアリングプラスチックとして広く利用されている。最近では、液晶性樹脂は、これらの特長を生かして、精密機器部品に使用されるようになっている。 Liquid crystal resins represented by liquid crystal polyester resins have a good balance of excellent mechanical strength, heat resistance, chemical resistance, electrical properties, etc., and also have excellent dimensional stability, so they are widely used as high-performance engineering plastics. It's being used. Recently, liquid crystal resins have come to be used for precision equipment parts by taking advantage of these features.
 液晶性樹脂が使用される精密機器部品としては、例えば、コネクター;リレーケース等が挙げられる。これらの部品においては、大きな反り変形が発生すると、品質に悪影響が生じる場合がある。従来、そり変形が抑制された部品を製造するために、平板の平面度を指標として、液晶性樹脂組成物が開発されてきた(例えば、特許文献1)。 Examples of precision equipment parts in which liquid crystal resin is used include connectors; relay cases and the like. In these parts, if a large warp deformation occurs, the quality may be adversely affected. Conventionally, in order to manufacture a part in which warpage deformation is suppressed, a liquid crystal resin composition has been developed using the flatness of a flat plate as an index (for example, Patent Document 1).
特開2015-021110号公報Japanese Unexamined Patent Publication No. 2015-021110
 上述したような部品は、平板のみから形成されているわけではなく、屈曲部を有する液晶性樹脂成形体から形成されている。このような液晶性樹脂成形体、例えば、L字型コーナー部を有する液晶性樹脂成形体、特に、コの字型液晶性樹脂成形体では、いわゆる内倒れ変形が生じ得る。内倒れ変形は、上記屈曲部において、広角側は急冷されるため、結晶化が進む前に液晶性樹脂組成物が固化して、収縮率が小さいのに対し、狭角側は徐冷されるため、より結晶化が進んだ状態で液晶性樹脂組成物が固化して、収縮率が大きいことによる。 The above-mentioned parts are not formed only from a flat plate, but are formed from a liquid crystal resin molded body having a bent portion. Such a liquid crystal resin molded body, for example, a liquid crystal resin molded body having an L-shaped corner portion, particularly a U-shaped liquid crystal resin molded body, may undergo so-called inward tilt deformation. In the inward tilting deformation, since the wide-angle side is rapidly cooled at the bent portion, the liquid crystal resin composition is solidified before crystallization proceeds and the shrinkage rate is small, whereas the narrow-angle side is slowly cooled. Therefore, the liquid crystal resin composition is solidified in a more crystallized state, and the shrinkage rate is large.
 本発明者らの検討により、内倒れ変形の大きさと平板の平面度との間には相関がないことが判明した。よって、平板の平面度が小さく、そり変形が抑制されている材料を使って得た液晶性樹脂成形体であっても、内倒れ変形が生じ、このような液晶性樹脂成形体を用いた精密機器部品において、品質が著しく損なわれる場合がある。そこで、実際に内倒れ変形が抑制された液晶性樹脂成形体の開発が求められている。その際、成形性向上のため、液晶性樹脂成形体を形成する液晶性樹脂組成物は、溶融時の流動性が良好であることが求められる。また、液晶性樹脂成形体の機械的強度が良好であることも求められる。 According to the studies by the present inventors, it was found that there is no correlation between the magnitude of the inward tilt deformation and the flatness of the flat plate. Therefore, even if the liquid crystal resin molded product is obtained by using a material in which the flatness of the flat plate is small and the warp deformation is suppressed, inward tilting deformation occurs, and precision using such a liquid crystal resin molded product The quality of equipment parts may be significantly impaired. Therefore, there is a demand for the development of a liquid crystal resin molded product in which inward tilting deformation is actually suppressed. At that time, in order to improve the moldability, the liquid crystal resin composition forming the liquid crystal resin molded body is required to have good fluidity at the time of melting. It is also required that the liquid crystal resin molded product has good mechanical strength.
 本発明は、かかる事情に鑑みてなされたものであり、L字型コーナー部を有する液晶性樹脂成形体、特に、コの字型液晶性樹脂成形体の内倒れ変形を抑制しつつ、該成形体に十分な機械的強度を与えることができ、かつ、溶融時の流動性が良好である液晶性樹脂組成物及び当該液晶性樹脂組成物からなる成形体を提供することを目的とする。 The present invention has been made in view of such circumstances, and the molding is performed while suppressing inward tilt deformation of a liquid crystal resin molded body having an L-shaped corner portion, particularly a U-shaped liquid crystal resin molded body. It is an object of the present invention to provide a liquid crystal resin composition capable of imparting sufficient mechanical strength to a body and having good fluidity at the time of melting, and a molded product made of the liquid crystal resin composition.
 本発明者らは、所定の含有量で、液晶性樹脂と、繊維状充填剤と、シリカと、を組み合わせ、充填剤の総量を所定の範囲とすることで上記の課題を解決できることを見出した。具体的には、本発明は、以下のようなものを提供する。 The present inventors have found that the above problems can be solved by combining a liquid crystal resin, a fibrous filler, and silica at a predetermined content and setting the total amount of the filler within a predetermined range. .. Specifically, the present invention provides the following.
 (1) (A)液晶性樹脂と、(B)繊維状充填剤と、(C)シリカと、を含む液晶性樹脂組成物であって、
 前記液晶性樹脂組成物全体に対して、
 前記(A)液晶性樹脂の含有量は、55~65質量%、
 前記(B)繊維状充填剤の含有量は、5~15質量%、
 前記(C)シリカの含有量は、10~32.5質量%、
 前記液晶性樹脂組成物に含まれる全充填剤の含有量は、35~45質量%であり、
 前記(C)シリカの含有量をx質量%とし、前記全充填材の含有量をy質量%としたとき、x及びyが、下記式(1)を満たす、
液晶性樹脂組成物。
y≧-0.5x+45(1)
(1) A liquid crystal resin composition containing (A) a liquid crystal resin, (B) a fibrous filler, and (C) silica.
For the entire liquid crystal resin composition
The content of the liquid crystal resin (A) is 55 to 65% by mass.
The content of the fibrous filler (B) is 5 to 15% by mass.
The content of the silica (C) is 10 to 32.5% by mass.
The content of the total filler contained in the liquid crystal resin composition is 35 to 45% by mass.
When the content of the silica (C) is x mass% and the content of the total filler is y mass%, x and y satisfy the following formula (1).
Liquid crystal resin composition.
y ≧ -0.5x + 45 (1)
 (2) 前記(B)繊維状充填剤は、ガラス繊維である、(1)に記載の液晶性樹脂組成物。 (2) The liquid crystal resin composition according to (1), wherein the (B) fibrous filler is glass fiber.
 (3) 更に、(D)板状充填剤を含む(1)又は(2)に記載の液晶性樹脂組成物。 (3) The liquid crystal resin composition according to (1) or (2), which further contains (D) a plate-like filler.
 (4) 前記液晶性樹脂組成物全体に対して、前記(D)板状充填剤の含有量は、7.5~30質量%である、(3)に記載の液晶性樹脂組成物。 (4) The liquid crystal resin composition according to (3), wherein the content of the plate-like filler (D) is 7.5 to 30% by mass with respect to the entire liquid crystal resin composition.
 (5) 前記(D)板状充填剤は、マイカである(3)又は(4)に記載の液晶性樹脂組成物。 (5) The liquid crystal resin composition according to (3) or (4), wherein the (D) plate-like filler is mica.
 (6) (1)~(5)のいずれかに記載の液晶性樹脂組成物からなる成形体。 (6) A molded product made of the liquid crystal resin composition according to any one of (1) to (5).
 本発明によれば、L字型コーナー部を有する液晶性樹脂成形体、特に、コの字型液晶性樹脂成形体の内倒れ変形を抑制しつつ、該成形体に十分な機械的強度を与えることができ、かつ、溶融時の流動性が良好である液晶性樹脂組成物及び当該液晶性樹脂組成物からなる成形体を提供することができる。 According to the present invention, a liquid crystal resin molded product having an L-shaped corner portion, particularly a U-shaped liquid crystal resin molded product, is provided with sufficient mechanical strength while suppressing inward deformation. It is possible to provide a liquid crystal resin composition which can be used and has good fluidity when melted, and a molded product made of the liquid crystal resin composition.
図1(a)は、実施例で行った内倒れ変形評価に用いたコの字型液晶性樹脂成形体を示す斜視図であり、図1(b)は、上記コの字型液晶性樹脂成形体を示す側面図である。FIG. 1A is a perspective view showing a U-shaped liquid crystal resin molded product used for the evaluation of inward tilt deformation performed in the examples, and FIG. 1B is a U-shaped liquid crystal resin molded product. It is a side view which shows the molded body.
<液晶性樹脂組成物>
 本発明の液晶性樹脂組成物は、(A)液晶性樹脂と、(B)繊維状充填剤と、(C)シリカと、を含む。
<Liquid crystal resin composition>
The liquid crystal resin composition of the present invention contains (A) a liquid crystal resin, (B) a fibrous filler, and (C) silica.
[(A)液晶性樹脂]
 本発明で使用する(A)液晶性樹脂とは、光学異方性溶融相を形成し得る性質を有する溶融加工性ポリマーを指す。異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することが出来る。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージに載せた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明に適用できる液晶性ポリマーは直交偏光子の間で検査したときに、たとえ溶融静止状態であっても偏光は通常透過し、光学的に異方性を示す。
[(A) Liquid crystal resin]
The liquid crystal resin (A) used in the present invention refers to a melt-processable polymer having a property of forming an optically anisotropic molten phase. The properties of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizing element. More specifically, the confirmation of the anisotropic molten phase can be carried out by observing the molten sample placed on the Leitz hot stage at a magnification of 40 times under a nitrogen atmosphere using a Leitz polarizing microscope. Liquid crystalline polymers applicable to the present invention normally transmit polarized light and are optically anisotropy when inspected between orthogonal polarizers, even in the molten and resting state.
 上記のような(A)液晶性樹脂の種類としては特に限定されず、芳香族ポリエステル及び/又は芳香族ポリエステルアミドであることが好ましい。また、芳香族ポリエステル及び/又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルもその範囲にある。(A)液晶性樹脂としては、60℃でペンタフルオロフェノールに濃度0.1質量%で溶解したときに、好ましくは少なくとも約2.0dl/g、更に好ましくは2.0~10.0dl/gの対数粘度(I.V.)を有するものが好ましく使用される。 The type of the liquid crystal resin (A) as described above is not particularly limited, and is preferably an aromatic polyester and / or an aromatic polyester amide. The range also includes polyesters that partially contain aromatic polyesters and / or aromatic polyester amides in the same molecular chain. The liquid crystal resin (A) preferably at least about 2.0 dl / g, more preferably 2.0 to 10.0 dl / g when dissolved in pentafluorophenol at 60 ° C. at a concentration of 0.1% by mass. Those having a logarithmic viscosity (IV) of are preferably used.
 本発明に適用できる(A)液晶性樹脂としての芳香族ポリエステル又は芳香族ポリエステルアミドは、特に好ましくは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、及び芳香族ジアミンからなる群より選ばれる少なくとも1種の化合物に由来する繰り返し単位を構成成分として有する芳香族ポリエステル又は芳香族ポリエステルアミドである。 The aromatic polyester or aromatic polyesteramide as the (A) liquid crystal resin applicable to the present invention is particularly preferably at least one selected from the group consisting of aromatic hydroxycarboxylic acid, aromatic hydroxyamine, and aromatic diamine. It is an aromatic polyester or an aromatic polyester amide having a repeating unit derived from a species compound as a constituent.
 より具体的には、
(1)主として芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位からなるポリエステル;
(2)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(c)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の少なくとも1種又は2種以上に由来する繰り返し単位、とからなるポリエステル;
(3)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位、とからなるポリエステルアミド;
(4)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(d)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の少なくとも1種又は2種以上に由来する繰り返し単位、とからなるポリエステルアミド等が挙げられる。更に上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
More specifically
(1) Polyester consisting of repeating units mainly derived from one or more aromatic hydroxycarboxylic acids and their derivatives;
(2) Repeating units mainly derived from (a) one or more aromatic hydroxycarboxylic acids and their derivatives, and (b) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and one of their derivatives. Or a polyester consisting of a repeating unit derived from two or more kinds and (c) a repeating unit derived from at least one kind or two or more kinds of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof;
(3) Repetitive units mainly derived from (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof, and (b) one or two aromatic hydroxyamines, aromatic diamines, and derivatives thereof. A polyester amide consisting of a repeating unit derived from a species or more and (c) a repeating unit derived from one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof;
(4) Repeating units mainly derived from (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof, and (b) aromatic hydroxyamines, aromatic diamines, and one or two derivatives thereof. Repetitive units derived from species or higher, (c) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and repeating units derived from one or more of their derivatives, and (d) aromatic diols, alicyclics. Examples thereof include polyesteramides consisting of group diols, aliphatic diols, and repeating units derived from at least one or more of the derivatives thereof. Further, a molecular weight adjusting agent may be used in combination with the above-mentioned constituent components as needed.
 本発明に適用できる(A)液晶性樹脂を構成する具体的化合物の好ましい例としては、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸等の芳香族ヒドロキシカルボン酸、2,6-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、下記一般式(I)で表される化合物、及び下記一般式(II)で表される化合物等の芳香族ジオール;テレフタル酸、イソフタル酸、4,4’-ジフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、及び下記一般式(III)で表される化合物等の芳香族ジカルボン酸;p-アミノフェノール、p-フェニレンジアミン等の芳香族アミン類が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(X:アルキレン(C~C)、アルキリデン、-O-、-SO-、-SO-、-S-、及び-CO-より選ばれる基である)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(Y:-(CH-(n=1~4)及び-O(CHO-(n=1~4)より選ばれる基である。)
Preferred examples of the specific compound constituting the (A) liquid crystal resin applicable to the present invention include aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, and 2,6-dihydroxy. Aromatic diols such as naphthalene, 1,4-dihydroxynaphthalene, 4,4'-dihydroxybiphenyl, hydroquinone, resorcin, a compound represented by the following general formula (I), and a compound represented by the following general formula (II). Aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 4,4'-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and compounds represented by the following general formula (III); p-aminophenol, p- Examples include aromatic amines such as phenylenediamine.
Figure JPOXMLDOC01-appb-C000001
(X: A group selected from alkylene (C 1 to C 4 ), alkylidene, -O-, -SO-, -SO 2- , -S-, and -CO-)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(Y:-(CH 2 ) n- (n = 1 to 4) and -O (CH 2 ) n O- (n = 1 to 4).)
 本発明に用いられる(A)液晶性樹脂の調製は、上記のモノマー化合物(又はモノマーの混合物)から直接重合法やエステル交換法を用いて公知の方法で行うことができ、通常は溶融重合法、溶液重合法、スラリー重合法、固相重合法等、又はこれらの2種以上の組み合わせが用いられ、溶融重合法、又は溶融重合法と固相重合法との組み合わせが好ましく用いられる。エステル形成能を有する上記化合物類はそのままの形で重合に用いてもよく、また、重合の前段階で前駆体から該エステル形成能を有する誘導体に変性されたものでもよい。これらの重合に際しては種々の触媒の使用が可能であり、代表的なものとしては、酢酸カリウム、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、三酸化アンチモン、トリス(2,4-ペンタンジオナト)コバルト(III)等の金属塩系触媒、N-メチルイミダゾール、4-ジメチルアミノピリジン等の有機化合物系触媒が挙げられる。触媒の使用量は一般にはモノマーの全質量に対して約0.001~1質量%、特に約0.01~0.2質量%が好ましい。これらの重合方法により製造されたポリマーは更に必要があれば、減圧又は不活性ガス中で加熱する固相重合法により分子量の増加を図ることができる。 The liquid crystal resin (A) used in the present invention can be prepared by a known method from the above-mentioned monomer compound (or mixture of monomers) by a direct polymerization method or a transesterification method, and is usually a melt polymerization method. , Solution polymerization method, slurry polymerization method, solid phase polymerization method, etc., or a combination of two or more of these is used, and a melt polymerization method or a combination of a melt polymerization method and a solid phase polymerization method is preferably used. The above compounds having an ester-forming ability may be used in the polymerization as they are, or may be modified from a precursor to a derivative having the ester-forming ability in the pre-polymerization step. Various catalysts can be used for these polymerizations, and typical ones are potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, and tris (2). , 4-Pentandionato) Metal salt-based catalysts such as cobalt (III), and organic compound-based catalysts such as N-methylimidazole and 4-dimethylaminopyridine. The amount of the catalyst used is generally preferably about 0.001 to 1% by mass, particularly preferably about 0.01 to 0.2% by mass, based on the total mass of the monomer. If necessary, the polymer produced by these polymerization methods can be increased in molecular weight by a solid-phase polymerization method in which the polymer is heated under reduced pressure or in an inert gas.
 上記のような方法で得られた(A)液晶性樹脂の溶融粘度は特に限定されない。一般には成形温度での溶融粘度が剪断速度1000sec-1で3Pa・s以上500Pa・s以下のものが使用可能である。しかし、それ自体あまり高粘度のものは流動性が非常に悪化するため好ましくない。なお、上記(A)液晶性樹脂は2種以上の液晶性樹脂の混合物であってもよい。 The melt viscosity of the liquid crystal resin (A) obtained by the above method is not particularly limited. Generally, a melt viscosity at a molding temperature of 1000 sec -1 and a shear rate of 3 Pa · s or more and 500 Pa · s or less can be used. However, the one having a very high viscosity by itself is not preferable because the fluidity is very deteriorated. The liquid crystal resin (A) may be a mixture of two or more kinds of liquid crystal resins.
 本発明の液晶性樹脂組成物において、(A)液晶性樹脂の含有量は、55~65質量%である。(A)成分の含有量が上記範囲内であると、液晶性樹脂組成物の流動性が十分となりやすく、かつ、機械的強度に優れる成形体を得やすい。 In the liquid crystal resin composition of the present invention, the content of the liquid crystal resin (A) is 55 to 65% by mass. When the content of the component (A) is within the above range, the fluidity of the liquid crystal resin composition tends to be sufficient, and a molded product having excellent mechanical strength can be easily obtained.
[(B)繊維状充填剤]
 本発明の液晶性樹脂組成物は、(B)繊維状充填剤を含有することにより、該液晶性樹脂組成物からなる成形体に十分な機械的強度を与えることができる。(B)繊維状充填剤は、1種単独で又は2種以上組み合わせて使用することができる。
[(B) Fibrous filler]
By containing (B) the fibrous filler, the liquid crystal resin composition of the present invention can impart sufficient mechanical strength to the molded product made of the liquid crystal resin composition. (B) The fibrous filler can be used alone or in combination of two or more.
 (B)繊維状充填剤の重量平均繊維長は、特に限定されず、例えば、250μm以上でよく、好ましくは350~600μmであり、より好ましくは450~500μmである。上記重量平均繊維長が250μm以上であると、本発明の液晶性樹脂組成物から得られる成形体は、機械的強度及び耐熱性が向上しやすい。上記重量平均繊維長が600μm以下であると、液晶性樹脂組成物の流動性が十分となりやすい。なお、本明細書において、液晶性樹脂組成物中の(B)繊維状充填剤の重量平均繊維長としては、液晶性樹脂組成物を600℃で2時間の加熱により灰化して残存した繊維状充填剤の実体顕微鏡画像をCCDカメラからPCに取り込み、画像測定機によって画像処理手法により当該繊維状充填剤の繊維長を測定した値の平均を採用する。 (B) The weight average fiber length of the fibrous filler is not particularly limited, and may be, for example, 250 μm or more, preferably 350 to 600 μm, and more preferably 450 to 500 μm. When the weight average fiber length is 250 μm or more, the molded product obtained from the liquid crystal resin composition of the present invention tends to have improved mechanical strength and heat resistance. When the weight average fiber length is 600 μm or less, the fluidity of the liquid crystal resin composition tends to be sufficient. In the present specification, the weight average fiber length of the (B) fibrous filler in the liquid crystal resin composition is the fibrous state remaining after the liquid crystal resin composition is incinerated by heating at 600 ° C. for 2 hours. The stereomicroscopic image of the filler is captured from the CCD camera into the PC, and the average of the values obtained by measuring the fiber length of the fibrous filler by an image processing method with an image measuring machine is adopted.
 (B)繊維状充填剤の平均繊維径としては、特に限定されず、例えば、20μm以下でよく、5~15μmでもよい。なお、本明細書において、液晶性樹脂組成物中の(B)繊維状充填剤の平均繊維径としては、液晶性樹脂組成物を600℃で2時間の加熱により灰化して残存した繊維状充填剤を走査型電子顕微鏡で観察し、当該繊維状充填剤の繊維径を測定した値の平均を採用する。 (B) The average fiber diameter of the fibrous filler is not particularly limited, and may be, for example, 20 μm or less, or 5 to 15 μm. In the present specification, the average fiber diameter of the (B) fibrous filler in the liquid crystal resin composition is defined as the fibrous filling remaining after the liquid crystal resin composition is incinerated by heating at 600 ° C. for 2 hours. The agent is observed with a scanning electron microscope, and the average of the measured values of the fiber diameter of the fibrous filler is adopted.
 以上の形状を満足する繊維状充填剤であれば、何れの繊維も用いることができるが、(B)繊維状充填剤としては、例えば、ガラス繊維、ミルドファイバー、カーボン繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維、硼素繊維、チタン酸カリウム繊維、更にステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物等の無機質繊維状物質が挙げられる。本発明においては、機械的強度の観点から、(B)成分として、ガラス繊維を使用することが好ましい。 Any fiber can be used as long as it is a fibrous filler satisfying the above shape. As the (B) fibrous filler, for example, glass fiber, milled fiber, carbon fiber, asbestos fiber, silica fiber , Silica / alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, and inorganic fibrous material such as metal fibrous material such as stainless steel, aluminum, titanium, copper and brass. Be done. In the present invention, it is preferable to use glass fiber as the component (B) from the viewpoint of mechanical strength.
 (B)繊維状充填剤の含有量は、本発明の液晶性樹脂組成物において、5~15質量%、好ましくは6.5~15質量%、より好ましくは8~15質量%である。(B)繊維状充填剤の含有量が上記範囲内であると、液晶性樹脂組成物の流動性が十分に確保されつつ、液晶性樹脂組成物から得られる成形体の機械的強度が向上しやすい。 The content of the fibrous filler (B) is 5 to 15% by mass, preferably 6.5 to 15% by mass, and more preferably 8 to 15% by mass in the liquid crystal resin composition of the present invention. When the content of the fibrous filler (B) is within the above range, the fluidity of the liquid crystal resin composition is sufficiently ensured, and the mechanical strength of the molded product obtained from the liquid crystal resin composition is improved. Cheap.
[(C)シリカ]
 本発明の液晶性樹脂組成物は、(C)シリカを含有することにより、内倒れ変形が抑制された液晶性樹脂成形体を与えることができる。(C)シリカは、1種単独で又は2種以上組み合わせて使用することができる。
[(C) Silica]
By containing (C) silica, the liquid crystal resin composition of the present invention can provide a liquid crystal resin molded product in which inward tilt deformation is suppressed. (C) Silica can be used alone or in combination of two or more.
 (C)シリカのメディアン径は、特に限定されず、例えば、1.3~30.0μmでよい。上記メディアン径がこの範囲内であると、液晶性樹脂成形体の内倒れ変形抑制効果がより高くなりやすい。上記メディアン径は、好ましくは1.5~25.0μmであり、より好ましくは2.0~15.0μmである。なお、本明細書において、メディアン径とは、レーザー回折/散乱式粒度分布測定法で測定した体積基準の中央値をいう。 The median diameter of (C) silica is not particularly limited, and may be, for example, 1.3 to 30.0 μm. When the median diameter is within this range, the effect of suppressing inward deformation of the liquid crystal resin molded product tends to be higher. The median diameter is preferably 1.5 to 25.0 μm, more preferably 2.0 to 15.0 μm. In the present specification, the median diameter means the median value of the volume standard measured by the laser diffraction / scattering type particle size distribution measurement method.
 (C)シリカの含有量は、本発明の液晶性樹脂組成物において、10~32.5質量%である。(C)シリカの含有量が上記範囲内であると、液晶性樹脂成形体の内倒れ変形を十分に抑制しやすい。(C)シリカの好ましい含有量は、10~30質量%である。 The content of (C) silica is 10 to 32.5% by mass in the liquid crystal resin composition of the present invention. When the content of silica (C) is within the above range, it is easy to sufficiently suppress the inward deformation of the liquid crystal resin molded product. The preferable content of (C) silica is 10 to 30% by mass.
[(D)板状充填剤]
 本発明に係る液晶性樹脂組成物には、板状充填剤が含まれていてもよい。本発明に係る液晶性樹脂組成物に板状充填剤が含まれることにより、そり変形が抑制された成形体を得やすい。板状充填剤は、1種単独で又は2種以上組み合わせて使用することができる。
[(D) Plate-shaped filler]
The liquid crystal resin composition according to the present invention may contain a plate-like filler. Since the liquid crystal resin composition according to the present invention contains a plate-like filler, it is easy to obtain a molded product in which warpage deformation is suppressed. The plate-shaped filler can be used alone or in combination of two or more.
 本発明の液晶性樹脂組成物において、(D)板状充填剤の好ましい含有量は、7.7~30質量%である。(D)板状充填剤の含有量が上記範囲内であると、得られる組成物からは、そり変形が抑制された成形体を更に得やすい。(D)板状充填剤の含有量は、より好ましくは9~20質量%、更により好ましくは10~15質量%である。 In the liquid crystal resin composition of the present invention, the preferable content of the (D) plate-like filler is 7.7 to 30% by mass. When the content of the plate-shaped filler (D) is within the above range, it is easier to obtain a molded product in which warpage deformation is suppressed from the obtained composition. The content of the plate-like filler (D) is more preferably 9 to 20% by mass, and even more preferably 10 to 15% by mass.
 本発明における板状充填剤としては、タルク、マイカ、ガラスフレーク、各種の金属箔等が挙げられる。液晶性樹脂組成物の流動性を悪化させることなく、液晶性樹脂組成物から得られる成形体のそり変形を抑制させるという点で、タルク及びマイカから選択される1種以上が好ましく、マイカがより好ましい。板状充填剤の平均粒径については、特に限定されず、薄肉部における流動性を考慮すると小さい方が望ましい。一方、液晶性樹脂組成物から得られる成形体のそり変形を小さくするためには、一定の大きさを維持している必要がある。具体的には、1~100μmが好ましく、5~50μmがより好ましい。 Examples of the plate-like filler in the present invention include talc, mica, glass flakes, and various metal foils. One or more selected from talc and mica are preferable, and mica is more preferable in that the warp deformation of the molded product obtained from the liquid crystal resin composition is suppressed without deteriorating the fluidity of the liquid crystal resin composition. preferable. The average particle size of the plate-shaped filler is not particularly limited, and a smaller one is desirable in consideration of the fluidity in the thin-walled portion. On the other hand, in order to reduce the warp deformation of the molded product obtained from the liquid crystal resin composition, it is necessary to maintain a constant size. Specifically, 1 to 100 μm is preferable, and 5 to 50 μm is more preferable.
 〔タルク〕
 本発明において使用できるタルクとしては、当該タルクの全固形分量に対して、Fe、Al及びCaOの合計含有量が2.5質量%以下であり、Fe及びAlの合計含有量が1.0質量%超2.0質量%以下であり、かつCaOの含有量が0.5質量%未満であるものが好ましい。即ち、本発明において使用できるタルクは、その主成分たるSiO及びMgOの他、Fe、Al及びCaOのうちの少なくとも1種を含有し、各成分が上記の含有量範囲で含有するものであってもよい。
〔talc〕
As the talc that can be used in the present invention, the total content of Fe 2 O 3 , Al 2 O 3 and Ca O is 2.5% by mass or less with respect to the total solid content of the talc, and Fe 2 O 3 and Al It is preferable that the total content of 2O 3 is more than 1.0% by mass and 2.0% by mass or less, and the content of CaO is less than 0.5% by mass. That is, the talc that can be used in the present invention contains at least one of Fe 2 O 3 , Al 2 O 3, and CaO in addition to SiO 2 and MgO, which are the main components thereof, and each component has the above content range. It may be contained in.
 上記タルクにおいて、Fe、Al及びCaOの合計含有量が2.5質量%以下であると、液晶性樹脂組成物の成形加工性及び当該液晶性樹脂組成物から成形された成形体の耐熱性が悪化しにくい。そのため、Fe、Al及びCaOの合計含有量は、1.0質量%以上2.0質量%以下が好ましい。 When the total content of Fe 2 O 3 , Al 2 O 3 and CaO in the above talc was 2.5% by mass or less, the liquid crystal resin composition was molded from the molding processability and the liquid crystal resin composition. The heat resistance of the molded product is unlikely to deteriorate. Therefore, the total content of Fe 2 O 3 , Al 2 O 3 and CaO is preferably 1.0% by mass or more and 2.0% by mass or less.
 また、上記タルクのうち、Fe及びAlの合計含有量が1.0質量%超のタルクは入手しやすい。また、上記タルクにおいて、Fe及びAlの合計含有量が2.0質量%以下であると、液晶性樹脂組成物の成形加工性及び当該液晶性樹脂組成物から成形された成形体の耐熱性が悪化しにくい。そのため、Fe及びAlの合計含有量は、1.0質量%超1.7質量%以下が好ましい。 Further, among the above talcs, talc having a total content of Fe 2 O 3 and Al 2 O 3 of more than 1.0% by mass is easily available. Further, in the above talc, when the total content of Fe 2 O 3 and Al 2 O 3 is 2.0% by mass or less, the liquid crystal resin composition is molded from the moldability and the liquid crystal resin composition. The heat resistance of the molded product is unlikely to deteriorate. Therefore, the total content of Fe 2 O 3 and Al 2 O 3 is preferably more than 1.0% by mass and 1.7% by mass or less.
 また、上記タルクにおいて、CaOの含有量が0.5質量%未満であると、液晶性樹脂組成物の成形加工性及び当該液晶性樹脂組成物から成形された成形体の耐熱性が悪化しにくい。そのため、CaOの含有量は、0.01質量%以上0.4質量%以下が好ましい。 Further, in the above talc, when the CaO content is less than 0.5% by mass, the molding processability of the liquid crystal resin composition and the heat resistance of the molded product molded from the liquid crystal resin composition are unlikely to deteriorate. .. Therefore, the CaO content is preferably 0.01% by mass or more and 0.4% by mass or less.
 本発明におけるタルクの、レーザー回折法で測定した質量基準又は体積基準の累積平均粒子径(D50)は、成形体のそり変形の防止及び液晶性樹脂組成物の流動性の維持という観点から、4.0~20.0μmであることが好ましく、10~18μmであることがより好ましい。 The mass-based or volume-based cumulative average particle diameter (D 50 ) of talc in the present invention measured by a laser diffraction method is determined from the viewpoint of preventing warpage deformation of the molded product and maintaining the fluidity of the liquid crystal resin composition. It is preferably 4.0 to 20.0 μm, more preferably 10 to 18 μm.
 〔マイカ〕
 マイカとは、アルミニウム、カリウム、マグネシウム、ナトリウム、鉄等を含んだケイ酸塩鉱物の粉砕物である。本発明において使用できるマイカとしては、白雲母、金雲母、黒雲母、人造雲母等が挙げられるが、これらのうち色相が良好であり、低価格であるという点で白雲母が好ましい。
[Mica]
Mica is a pulverized product of silicate minerals containing aluminum, potassium, magnesium, sodium, iron and the like. Examples of mica that can be used in the present invention include muscovite, phlogopite, biotite, and artificial mica. Of these, muscovite is preferable because it has a good hue and is inexpensive.
 また、マイカの製造において、鉱物を粉砕する方法としては、湿式粉砕法及び乾式粉砕法が知られている。湿式粉砕法とは、マイカ原石を乾式粉砕機にて粗粉砕した後、水を加えてスラリー状態にて湿式粉砕で本粉砕し、その後、脱水、乾燥を行う方法である。湿式粉砕法と比較して、乾式粉砕法は低コストで一般的な方法であるが、湿式粉砕法を用いると、鉱物を薄く細かく粉砕することがより容易である。後述する好ましい平均粒径及び厚みを有するマイカが得られるという理由で、本発明においては薄く細かい粉砕物を使用することが好ましい。したがって、本発明においては、湿式粉砕法により製造されたマイカを使用するのが好ましい。 Further, in the production of mica, a wet pulverization method and a dry pulverization method are known as methods for pulverizing minerals. The wet pulverization method is a method in which rough mica is roughly pulverized by a dry pulverizer, water is added, and the pulverization is carried out by wet pulverization in a slurry state, followed by dehydration and drying. Although the dry pulverization method is a low-cost and general method as compared with the wet pulverization method, it is easier to pulverize the mineral thinly and finely by using the wet pulverization method. In the present invention, it is preferable to use a thin and fine pulverized product because mica having a preferable average particle size and thickness described later can be obtained. Therefore, in the present invention, it is preferable to use mica produced by the wet pulverization method.
 また、湿式粉砕法においては、被粉砕物を水に分散させる工程が必要であるため、被粉砕物の分散効率を高めるために、被粉砕物に凝集沈降剤及び/又は沈降助剤を加えることが一般的である。本発明において使用できる凝集沈降剤及び沈降助剤としては、ポリ塩化アルミニウム、硫酸アルミニウム、硫酸第一鉄、硫酸第二鉄、塩化コッパラス、ポリ硫酸鉄、ポリ塩化第二鉄、鉄-シリカ無機高分子凝集剤、塩化第二鉄-シリカ無機高分子凝集剤、消石灰(Ca(OH))、苛性ソーダ(NaOH)、ソーダ灰(NaCO)等が挙げられる。これらの凝集沈降剤及び沈降助剤は、pHがアルカリ性又は酸性である。本発明で使用するマイカは、湿式粉砕する際に凝集沈降剤及び/又は沈降助剤を使用していないものが好ましい。凝集沈降剤及び/又は沈降助剤で処理されていないマイカを使用すると、液晶性樹脂組成物中のポリマーの分解が生じにくく、多量のガス発生やポリマーの分子量低下等が起きにくいため、得られる成形体の性能をより良好に維持するのが容易である。 Further, since the wet pulverization method requires a step of dispersing the object to be crushed in water, a coagulation sedimentation agent and / or a sedimentation aid is added to the object to be pulverized in order to improve the dispersion efficiency of the object to be pulverized. Is common. Examples of the coagulation sedimentation agent and sedimentation aid that can be used in the present invention include polyaluminum chloride, aluminum sulfate, ferrous sulfate, ferric sulfate, copper chloride, polyiron sulfate, ferric chloride, and iron-silica inorganic high. Examples thereof include ferric chloride-silica inorganic polymer flocculant, aluminum sulfate (Ca (OH) 2 ), caustic soda (NaOH), soda ash (Na 2 CO 3 ) and the like. These coagulation sedimentation agents and sedimentation aids have an alkaline or acidic pH. The mica used in the present invention preferably does not use a coagulation sedimentation agent and / or a sedimentation aid during wet pulverization. When mica that has not been treated with a coagulation sedimentation agent and / or a sedimentation aid is used, decomposition of the polymer in the liquid crystal resin composition is unlikely to occur, and a large amount of gas is less likely to be generated or the molecular weight of the polymer is less likely to decrease. It is easy to maintain better performance of the molded product.
 本発明において使用できるマイカは、マイクロトラックレーザー回折法により測定した平均粒径が10~100μmであるものが好ましく、平均粒径が20~80μmであるものが特に好ましい。マイカの平均粒径が10μm以上であると、成形体の剛性に対する改良効果が十分となりやすいため好ましい。マイカの平均粒径が100μm以下であると、成形体の剛性の向上が十分となりやすく、ウェルド強度も十分となりやすいため好ましい。更に、マイカの平均粒径が100μm以下であると、本発明のコネクター等を成形するのに十分な流動性を確保しやすい。 The mica that can be used in the present invention preferably has an average particle size of 10 to 100 μm measured by a microtrack laser diffraction method, and particularly preferably an average particle size of 20 to 80 μm. When the average particle size of mica is 10 μm or more, the effect of improving the rigidity of the molded product is likely to be sufficient, which is preferable. When the average particle size of mica is 100 μm or less, the rigidity of the molded product is likely to be sufficiently improved, and the weld strength is also likely to be sufficient, which is preferable. Further, when the average particle size of mica is 100 μm or less, it is easy to secure sufficient fluidity for molding the connector or the like of the present invention.
 本発明において使用できるマイカの厚みは、電子顕微鏡の観察により実測した厚みが0.01~1μmであることが好ましく、0.03~0.3μmであることが特に好ましい。マイカの厚みが0.01μm以上であると、液晶性樹脂組成物の溶融加工の際にマイカが割れにくくなるため、成形体の剛性が向上しやすい可能性があるため好ましい。マイカの厚みが1μm以下であると、成形体の剛性に対する改良効果が十分となりやすいため好ましい。 The thickness of mica that can be used in the present invention is preferably 0.01 to 1 μm, particularly preferably 0.03 to 0.3 μm, as measured by observation with an electron microscope. When the thickness of the mica is 0.01 μm or more, the mica is less likely to crack during the melt processing of the liquid crystal resin composition, and the rigidity of the molded product may be easily improved, which is preferable. When the thickness of mica is 1 μm or less, the effect of improving the rigidity of the molded product is likely to be sufficient, which is preferable.
 本発明において使用できるマイカは、シランカップリング剤等で表面処理されていてもよく、かつ/又は、結合剤で造粒し顆粒状とされていてもよい。 The mica that can be used in the present invention may be surface-treated with a silane coupling agent or the like, and / or may be granulated with a binder to form granules.
 本発明に係る液晶性樹脂組成物に含まれる全充填剤の含有量は、液晶性樹脂組成物全体に対して35~45質量%であり、かつ、(C)シリカの含有量をx質量%とし、前記全充填材の含有量をy質量%としたとき、x及びyは、下記式(1)を満たす。前記全充填材の含有量が上記範囲内にあり、かつ、下記式(1)を満たすと、液晶性樹脂組成物の流動性を十分に確保しつつ、液晶性樹脂成形体の内倒れ変形を十分に抑制しやすい。
y≧-0.5x+45(1)
The content of the total filler contained in the liquid crystal resin composition according to the present invention is 35 to 45% by mass with respect to the entire liquid crystal resin composition, and the content of (C) silica is x% by mass. When the content of the total filler is y mass%, x and y satisfy the following formula (1). When the content of the total filler is within the above range and the following formula (1) is satisfied, the liquid crystal resin molded body is deformed inward while sufficiently ensuring the fluidity of the liquid crystal resin composition. Easy to suppress sufficiently.
y ≧ -0.5x + 45 (1)
 (その他の成分)
 本発明に係る液晶性樹脂組成物には、上記の成分の他に、(A)液晶性樹脂以外の重合体、(C)シリカ以外の粒状充填剤、核剤、カーボンブラック、無機焼成顔料等の顔料、酸化防止剤、安定剤、可塑剤、滑剤、離型剤、及び難燃剤のうちの1種以上を配合してもよい。
(Other ingredients)
In addition to the above components, the liquid crystal resin composition according to the present invention includes (A) a polymer other than the liquid crystal resin, (C) a granular filler other than silica, a nucleating agent, carbon black, an inorganic fired pigment, and the like. One or more of pigments, antioxidants, stabilizers, plasticizers, lubricants, mold release agents, and flame retardants may be blended.
 (C)シリカ以外の粒状充填剤としては、例えば、石英粉末、ガラスビーズ、ガラス粉、硅酸カルシウム、硅酸アルミニウム、カオリン、クレー、珪藻土、ウォラストナイト等の硅酸塩;酸化鉄、酸化チタン、酸化亜鉛、アルミナ等の金属酸化物;炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩;硫酸カルシウム、硫酸バリウム等の金属硫酸塩;炭化硅素;窒化硅素;窒化硼素等が挙げられる。(C)シリカ以外の粒状充填剤は1種単独で用いても2種以上を組み合わせて用いてもよい。L字型コーナー部を有する液晶性樹脂成形体、特に、コの字型液晶性樹脂成形体の内倒れ変形抑制の観点から、本発明に係る液晶性樹脂組成物は、(C)シリカ以外の粒状充填剤、特に、ガラスビーズを含まないことが好ましい。 (C) Granular fillers other than silica include, for example, silicates such as quartz powder, glass beads, glass powder, calcium carbonate, aluminum silicate, kaolin, clay, diatomaceous earth, and wollastonite; iron oxide, oxidation. Metal oxides such as titanium, zinc oxide and alumina; metal carbonates such as calcium carbonate and magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; diatomaceous earth; diatomaceous earth; boron nitride and the like. (C) The granular filler other than silica may be used alone or in combination of two or more. From the viewpoint of suppressing inward tilt deformation of the liquid crystal resin molded body having an L-shaped corner portion, particularly the U-shaped liquid crystal resin molded body, the liquid crystal resin composition according to the present invention is other than (C) silica. It is preferably free of granular fillers, especially glass beads.
 本発明に係る液晶性樹脂組成物の製造方法は、液晶性樹脂組成物中の成分を均一に混合できれば特に限定されず、従来知られる樹脂組成物の製造方法から適宜選択することができる。例えば、1軸又は2軸押出機等の溶融混練装置を用いて、各成分を溶融混練して押出した後、得られた液晶性樹脂組成物を粉末、フレーク、ペレット等の所望の形態に加工する方法が挙げられる。 The method for producing the liquid crystal resin composition according to the present invention is not particularly limited as long as the components in the liquid crystal resin composition can be uniformly mixed, and can be appropriately selected from the conventionally known methods for producing the liquid crystal resin composition. For example, each component is melt-kneaded and extruded using a melt-kneading device such as a single-screw or twin-screw extruder, and then the obtained liquid crystal resin composition is processed into a desired form such as powder, flakes, and pellets. There is a way to do it.
<成形体>
 本発明の成形体は、本発明の液晶性樹脂組成物からなる。本発明の成形体は、内倒れ変形が抑制されており、十分な機械的強度を有する。本発明の成形体は、例えば、IGBTコネクター等のコネクター;リレーケース等に用いることができる。
<Molded body>
The molded product of the present invention comprises the liquid crystal resin composition of the present invention. The molded product of the present invention is suppressed from inwardly tilting deformation and has sufficient mechanical strength. The molded product of the present invention can be used, for example, as a connector such as an IGBT connector; a relay case or the like.
 以下に実施例を挙げて、本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.
<実施例1~8、比較例1~6>
 下記の実施例及び比較例において、液晶性樹脂は、以下の通りにして製造した。その際、ペレットの融点及び溶融粘度の測定は、それぞれ下記の条件で行った。
<Examples 1 to 8, Comparative Examples 1 to 6>
In the following Examples and Comparative Examples, the liquid crystal resin was produced as follows. At that time, the melting point and the melt viscosity of the pellets were measured under the following conditions, respectively.
 [融点の測定]
 TAインスツルメント社製DSCにて、液晶性樹脂を室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で室温まで一旦冷却した後、再度、20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度を測定した。
[Measurement of melting point]
After observing the heat absorption peak temperature (Tm1) observed when the liquid crystal resin was measured at a temperature rising condition of 20 ° C./min from room temperature with a DSC manufactured by TA Instruments, 2 at a temperature of (Tm1 + 40) ° C. After holding for 1 minute, the temperature was once cooled to room temperature under the temperature lowering condition of 20 ° C./min, and then the temperature of the heat absorption peak observed when the measurement was performed again under the temperature rising condition of 20 ° C./min was measured.
 [溶融粘度の測定]
 (株)東洋精機製作所製キャピログラフ1B型を使用し、液晶性樹脂の融点よりも10~30℃高い温度で、内径1mm、長さ20mmのオリフィスを用いて、剪断速度1000/秒で、ISO11443に準拠して、液晶性樹脂の溶融粘度を測定した。なお、測定温度は、350℃であった。
[Measurement of melt viscosity]
Using Capillograph 1B type manufactured by Toyo Seiki Seisakusho Co., Ltd., using an orifice with an inner diameter of 1 mm and a length of 20 mm at a temperature 10 to 30 ° C higher than the melting point of the liquid crystal resin, to ISO11443 at a shear rate of 1000 / sec. According to this, the melt viscosity of the liquid crystal resin was measured. The measured temperature was 350 ° C.
<液晶性樹脂>
・液晶性ポリエステルアミド樹脂
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に340℃まで4.5時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧して、酢酸、過剰の無水酢酸、及びその他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレットを得た。得られたペレットについて、窒素気流下、300℃で2時間の熱処理を行って、目的のポリマーを得た。得られたポリマーの融点は336℃、350℃における溶融粘度は19.0Pa・sであった。なお、上記ポリマーの溶融粘度は、後述する溶融粘度の測定方法と同様にして測定した。
 (I)4-ヒドロキシ安息香酸(HBA);1380g(60モル%)
 (II)2-ヒドロキシ-6-ナフトエ酸(HNA);157g(5モル%)
 (III)テレフタル酸(TA);484g(17.5モル%)
 (IV)4,4’-ジヒドロキシビフェニル(BP);388g(12.5モル%)
 (V)4-アセトキシアミノフェノール(APAP);126g(5モル%)
 金属触媒(酢酸カリウム触媒);110mg
 アシル化剤(無水酢酸);1659g
<Liquid crystal resin>
-After charging the following raw materials into a liquid crystal polyesteramide resin polymerization vessel, the temperature of the reaction system was raised to 140 ° C., and the reaction was carried out at 140 ° C. for 1 hour. Then, the temperature is further raised to 340 ° C. over 4.5 hours, and then the pressure is reduced to 10 Torr (that is, 1330 Pa) over 15 minutes while distilling acetic acid, excess acetic anhydride, and other low boiling points. Melt polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced to bring the mixture from a reduced pressure state to a pressurized state through normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strands were pelletized to obtain pellets. The obtained pellets were heat-treated at 300 ° C. for 2 hours under a nitrogen stream to obtain the desired polymer. The melting point of the obtained polymer was 336 ° C., and the melt viscosity at 350 ° C. was 19.0 Pa · s. The melt viscosity of the polymer was measured in the same manner as the method for measuring the melt viscosity described later.
(I) 4-Hydroxybenzoic acid (HBA); 1380 g (60 mol%)
(II) 2-Hydroxy-6-naphthoic acid (HNA); 157 g (5 mol%)
(III) Terephthalic acid (TA); 484 g (17.5 mol%)
(IV) 4,4'-dihydroxybiphenyl (BP); 388 g (12.5 mol%)
(V) 4-acetoxyaminophenol (APAP); 126 g (5 mol%)
Metal catalyst (potassium acetate catalyst); 110 mg
Acylating agent (acetic anhydride); 1659 g
 (液晶性樹脂以外の成分)
・繊維状充填剤
 ガラス繊維:日本電気硝子(株)製ECS03T-786H、繊維径10μm、長さ3mmのチョプドストランド
・粒状充填剤
 シリカ1:FB-5SDC(デンカ(株)製、シリカ、メディアン径5.0μm)
 シリカ2:FB-20D(デンカ(株)製、シリカ、メディアン径22.0μm)
 ガラスビーズ:EGB731(ポッターズ・バロティーニ(株)製、ガラスビーズ、メディアン径20.0μm)
・板状充填剤
 マイカ;(株)山口雲母工業製AB-25S、平均粒径25μm
(Ingredients other than liquid crystal resin)
・ Fibrous filler Glass fiber: ECS03T-786H manufactured by Nippon Electric Glass Co., Ltd., chopped strand with fiber diameter of 10 μm and length of 3 mm ・ Granular filler Silica 1: FB-5SDC (manufactured by Denka Co., Ltd., silica, median Diameter 5.0 μm)
Silica 2: FB-20D (manufactured by Denka Co., Ltd., silica, median diameter 22.0 μm)
Glass beads: EGB731 (manufactured by Potters Barotini Co., Ltd., glass beads, median diameter 20.0 μm)
-Plate-shaped filler mica; AB-25S manufactured by Yamaguchi Mica Industry Co., Ltd., average particle size 25 μm
 上記で得られた液晶性樹脂と、上述した液晶性樹脂以外の成分とを二軸押出機を使用して混合し、液晶性樹脂組成物を得た。各成分の配合量は表1及び表2に示した通りである。なお、以下、表中の配合量に関する「%」は質量%を示す。また、液晶性樹脂組成物を得る際の押出条件は下記の通りである。
 [押出条件]
 〔実施例1~8、比較例1~6〕
 メインフィード口に設けられたシリンダーの温度を250℃とし、他のシリンダーの温度はすべて350℃とした。液晶性樹脂はすべてをメインフィード口から供給した。また、充填剤はサイドフィード口から供給した。
The liquid crystal resin obtained above and components other than the liquid crystal resin described above were mixed using a twin-screw extruder to obtain a liquid crystal resin composition. The blending amount of each component is as shown in Tables 1 and 2. In the following, "%" regarding the blending amount in the table indicates mass%. The extrusion conditions for obtaining the liquid crystal resin composition are as follows.
[Extrusion conditions]
[Examples 1 to 8, Comparative Examples 1 to 6]
The temperature of the cylinder provided at the main feed port was set to 250 ° C, and the temperature of all other cylinders was set to 350 ° C. All liquid crystal resin was supplied from the main feed port. The filler was supplied from the side feed port.
 (液晶性樹脂組成物の溶融粘度の測定)
 (株)東洋精機製作所製キャピログラフ1B型を使用し、液晶性樹脂の融点よりも10~30℃高い温度で、内径1mm、長さ20mmのオリフィスを用いて、剪断速度1000/秒で、ISO11443に準拠して、液晶性樹脂組成物の溶融粘度を測定した。なお、測定温度は、350℃であった。結果を表1及び表2に示す。
(Measurement of melt viscosity of liquid crystal resin composition)
Using Capillograph 1B type manufactured by Toyo Seiki Seisakusho Co., Ltd., using an orifice with an inner diameter of 1 mm and a length of 20 mm at a temperature 10 to 30 ° C higher than the melting point of the liquid crystal resin, to ISO11443 at a shear rate of 1000 / sec. According to this, the melt viscosity of the liquid crystal resin composition was measured. The measured temperature was 350 ° C. The results are shown in Tables 1 and 2.
 下記の方法に基づき、液晶性樹脂組成物からなる成形体の物性を測定した。 The physical properties of the molded product made of the liquid crystal resin composition were measured based on the following method.
 (内倒れ変形評価)
 下記成形条件で、液晶性樹脂組成物を射出成形して、図1(a)及び図1(b)に示すコの字型液晶性樹脂成形体(厚み:0.5mm)を得、(株)キーエンス製画像寸法測定器IM-6020を使用し、図1(b)に示す角A(ゲート側)及び角B(反ゲート側)を測定した。角A及び角Bの測定結果、並びに、角Aと角Bとの和A+B及び角Bと角Aとの差B-Aの計算結果を表1及び表2に示す。
 [成形条件]
 成形機:住友重機械工業、SE30DUZ
 シリンダー温度:
     350℃(実施例1~8、比較例1~6)
 金型温度:90℃
 射出速度:100mm/sec
(Inward collapse deformation evaluation)
The liquid crystal resin composition was injection-molded under the following molding conditions to obtain a U-shaped liquid crystal resin molded product (thickness: 0.5 mm) shown in FIGS. 1 (a) and 1 (b). ) The angle A (gate side) and the angle B (anti-gate side) shown in FIG. 1 (b) were measured using the KEYENCE image dimension measuring instrument IM-6020. Tables 1 and 2 show the measurement results of the angles A and B, and the calculation results of the sum A + B of the angles A and B and the difference BA between the angles B and A.
[Molding condition]
Molding machine: Sumitomo Heavy Industries, SE30DUZ
Cylinder temperature:
350 ° C (Examples 1 to 8, Comparative Examples 1 to 6)
Mold temperature: 90 ° C
Injection speed: 100 mm / sec
 (曲げ試験)
 下記成形条件で、液晶性樹脂組成物を射出成形して0.8mm厚の成形体を得、ASTM D790に準拠し、曲げ強度、曲げ歪、及び曲げ弾性率を測定した。このうち、曲げ強度の測定結果を表1及び表2に示す。
 [成形条件]
 成形機:住友重機械工業、SE100DU
 シリンダー温度:
     350℃(実施例1~8、比較例1~6)
 金型温度:90℃
 射出速度:33mm/sec
(Bending test)
The liquid crystal resin composition was injection-molded under the following molding conditions to obtain a molded product having a thickness of 0.8 mm, and the bending strength, bending strain, and flexural modulus were measured in accordance with ASTM D790. Of these, the measurement results of bending strength are shown in Tables 1 and 2.
[Molding condition]
Molding machine: Sumitomo Heavy Industries, SE100DU
Cylinder temperature:
350 ° C (Examples 1 to 8, Comparative Examples 1 to 6)
Mold temperature: 90 ° C
Injection speed: 33 mm / sec
[平面度の測定]
 上記ペレットを、成形機(住友重機械工業(株)製 「SE-100DU」)を用いて、以下の成形条件で成形し、80mm×80mm×1mmの平板状試験片を5枚作製した。1枚目の平板状試験片を水平面に静置し、(株)ミツトヨ製のCNC画像測定機(型式:QVBHU404-PRO1F)を用いて、上記平板状試験片上の9箇所において、上記水平面からの高さを測定し、得られた測定値から平均の高さを算出した。高さを測定した位置は、平板状試験片の主平面上に、この主平面の各辺からの距離が3mmとなるように、一辺が74mmの正方形を置いたときに、この正方形の各頂点、この正方形の各辺の中点、及びこの正方形の2本の対角線の交点に該当する位置である。上記水平面からの高さが上記平均の高さと同一であり、上記水平面と平行な面を基準面とした。上記9箇所で測定された高さの中から、基準面からの最大高さと最小高さとを選択し、両者の差を算出した。同様にして、他の4枚の平板状試験片についても上記の差を算出し、得られた5個の値を平均して、平面度の値とした。結果を表1又は表2に示す。
〔成形条件〕
シリンダー温度:
     350℃(実施例1~8、比較例1~6)
金型温度: 90℃
射出速度: 33mm/sec
保圧: 70MPa
[Measurement of flatness]
The pellets were molded using a molding machine (“SE-100DU” manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions to prepare five flat test pieces of 80 mm × 80 mm × 1 mm. The first plate-shaped test piece was allowed to stand on a horizontal surface, and using a CNC image measuring machine (model: QVBHU404-PRO1F) manufactured by Mitutoyo Co., Ltd., at nine locations on the flat plate-shaped test piece, from the horizontal surface. The height was measured, and the average height was calculated from the obtained measured values. The position where the height was measured is when a square with a side of 74 mm is placed on the main plane of the flat plate-shaped test piece so that the distance from each side of this main plane is 3 mm, and each vertex of this square is placed. , The midpoint of each side of this square, and the position corresponding to the intersection of the two diagonal lines of this square. The height from the horizontal plane is the same as the average height, and a plane parallel to the horizontal plane is used as a reference plane. From the heights measured at the above nine points, the maximum height and the minimum height from the reference plane were selected, and the difference between the two was calculated. Similarly, the above difference was calculated for the other four flat plate-shaped test pieces, and the five values obtained were averaged to obtain the flatness value. The results are shown in Table 1 or Table 2.
〔Molding condition〕
Cylinder temperature:
350 ° C (Examples 1 to 8, Comparative Examples 1 to 6)
Mold temperature: 90 ° C
Injection speed: 33 mm / sec
Holding pressure: 70 MPa
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1及び表2に示される通り、実施例において、角Aと角Bとの和A+Bは176.3°以上、角Bと角Aとの差B-Aの絶対値は0.4°未満、溶融粘度は70Pa・s未満、曲げ強度は150MPa以上であった。よって、本発明に係る液晶性樹脂組成物は、L字型コーナー部を有する液晶性樹脂成形体、特に、コの字型液晶性樹脂成形体の内倒れ変形を抑制しつつ、該成形体に十分な機械的強度を与えることができ、かつ、溶融時の流動性が良好であることが確認された。また、板状充填剤を含む液晶性樹脂組成物から得られた成形体は、平面度が小さく、そり変形が抑制されていることが確認された。 As shown in Tables 1 and 2, in the examples, the sum A + B of the angles A and B is 176.3 ° or more, and the absolute value of the difference BA between the angles B and A is less than 0.4 °. The melt viscosity was less than 70 Pa · s, and the bending strength was 150 MPa or more. Therefore, the liquid crystal resin composition according to the present invention can be applied to a liquid crystal resin molded product having L-shaped corners, particularly a U-shaped liquid crystal resin molded product, while suppressing inward deformation. It was confirmed that sufficient mechanical strength could be given and that the fluidity at the time of melting was good. Further, it was confirmed that the molded product obtained from the liquid crystal resin composition containing the plate-like filler had a small flatness and suppressed warpage deformation.

Claims (6)

  1.  (A)液晶性樹脂と、(B)繊維状充填剤と、(C)シリカと、を含む液晶性樹脂組成物であって、
     前記液晶性樹脂組成物全体に対して、
     前記(A)液晶性樹脂の含有量は、55~65質量%、
     前記(B)繊維状充填剤の含有量は、5~15質量%、
     前記(C)シリカの含有量は、10~32.5質量%、
     前記液晶性樹脂組成物に含まれる全充填剤の含有量は、35~45質量%であり、
     前記(C)シリカの含有量をx質量%とし、前記全充填材の含有量をy質量%としたとき、x及びyが、下記式(1)を満たす、
    液晶性樹脂組成物。
    y≧-0.5x+45(1)
    A liquid crystal resin composition containing (A) a liquid crystal resin, (B) a fibrous filler, and (C) silica.
    For the entire liquid crystal resin composition
    The content of the liquid crystal resin (A) is 55 to 65% by mass.
    The content of the fibrous filler (B) is 5 to 15% by mass.
    The content of the silica (C) is 10 to 32.5% by mass.
    The content of the total filler contained in the liquid crystal resin composition is 35 to 45% by mass.
    When the content of the silica (C) is x mass% and the content of the total filler is y mass%, x and y satisfy the following formula (1).
    Liquid crystal resin composition.
    y ≧ -0.5x + 45 (1)
  2.  前記(B)繊維状充填剤は、ガラス繊維である、請求項1に記載の液晶性樹脂組成物。 The liquid crystal resin composition according to claim 1, wherein the (B) fibrous filler is glass fiber.
  3.  更に、(D)板状充填剤を含む請求項1又は2に記載の液晶性樹脂組成物。 The liquid crystal resin composition according to claim 1 or 2, further comprising (D) a plate-like filler.
  4.  前記液晶性樹脂組成物全体に対して、前記(D)板状充填剤の含有量は、7.5~30質量%である、請求項3に記載の液晶性樹脂組成物。 The liquid crystal resin composition according to claim 3, wherein the content of the plate-shaped filler (D) is 7.5 to 30% by mass with respect to the entire liquid crystal resin composition.
  5.  前記(D)板状充填剤は、マイカである請求項3又は4に記載の液晶性樹脂組成物。 The liquid crystal resin composition according to claim 3 or 4, wherein the plate-shaped filler (D) is mica.
  6.  請求項1~5のいずれかに記載の液晶性樹脂組成物からなる成形体。 A molded product made of the liquid crystal resin composition according to any one of claims 1 to 5.
PCT/JP2020/019448 2019-05-16 2020-05-15 Liquid crystalline resin composition and molded body using same WO2020230890A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080034568.9A CN113874432B (en) 2019-05-16 2020-05-15 Liquid crystalline resin composition and molded article using same
JP2021500763A JP7026842B2 (en) 2019-05-16 2020-05-15 Liquid crystal resin composition and molded article using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-093112 2019-05-16
JP2019093112 2019-05-16

Publications (1)

Publication Number Publication Date
WO2020230890A1 true WO2020230890A1 (en) 2020-11-19

Family

ID=73289827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019448 WO2020230890A1 (en) 2019-05-16 2020-05-15 Liquid crystalline resin composition and molded body using same

Country Status (4)

Country Link
JP (1) JP7026842B2 (en)
CN (1) CN113874432B (en)
TW (1) TW202104406A (en)
WO (1) WO2020230890A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192263A (en) * 1987-10-02 1989-04-11 Kuraray Co Ltd Sealing medium for electronic part
JP2003253097A (en) * 2002-03-01 2003-09-10 Ngk Insulators Ltd Composite material
JP2005060443A (en) * 2003-08-18 2005-03-10 Toray Ind Inc Resin composition for lamp unit member, lamp unit member obtained from the same
JP2010150534A (en) * 2008-11-27 2010-07-08 Toray Ind Inc Thermoplastic polyester resin composition
JP2013072070A (en) * 2011-09-29 2013-04-22 Sumitomo Chemical Co Ltd Liquid crystal polyester composition and connector
WO2017110424A1 (en) * 2015-12-24 2017-06-29 ポリプラスチックス株式会社 Liquid-crystalline resin composition for camera module, process for producing same, and camera module obtained using said composition
WO2018012371A1 (en) * 2016-07-11 2018-01-18 ポリプラスチックス株式会社 Liquid-crystalline resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727229B2 (en) * 2008-12-11 2015-06-03 ポリプラスチックス株式会社 Liquid crystalline resin composition
JP5407988B2 (en) * 2010-03-30 2014-02-05 住友化学株式会社 Liquid crystalline resin composition and molded product thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192263A (en) * 1987-10-02 1989-04-11 Kuraray Co Ltd Sealing medium for electronic part
JP2003253097A (en) * 2002-03-01 2003-09-10 Ngk Insulators Ltd Composite material
JP2005060443A (en) * 2003-08-18 2005-03-10 Toray Ind Inc Resin composition for lamp unit member, lamp unit member obtained from the same
JP2010150534A (en) * 2008-11-27 2010-07-08 Toray Ind Inc Thermoplastic polyester resin composition
JP2013072070A (en) * 2011-09-29 2013-04-22 Sumitomo Chemical Co Ltd Liquid crystal polyester composition and connector
WO2017110424A1 (en) * 2015-12-24 2017-06-29 ポリプラスチックス株式会社 Liquid-crystalline resin composition for camera module, process for producing same, and camera module obtained using said composition
WO2018012371A1 (en) * 2016-07-11 2018-01-18 ポリプラスチックス株式会社 Liquid-crystalline resin composition

Also Published As

Publication number Publication date
JP7026842B2 (en) 2022-02-28
CN113874432B (en) 2023-08-22
CN113874432A (en) 2021-12-31
TW202104406A (en) 2021-02-01
JPWO2020230890A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
TWI648337B (en) Composite resin composition and planar connector
KR102058121B1 (en) Composite resin composition, and electronic component molded from said composite resin composition
JP6356938B1 (en) Composite resin composition and connector molded from the composite resin composition
JP2001207054A (en) Molded article of liquid crystalline polymer
JP6837184B2 (en) Liquid crystal resin composition
JP6321899B1 (en) Composite resin composition and connector molded from the composite resin composition
JP6841978B2 (en) A connector containing a liquid crystal resin composition and a molded product of the liquid crystal resin composition.
JP6906123B1 (en) Liquid crystal resin composition for ball bearing sliding wear member and ball bearing sliding wear member using it
JP6109651B2 (en) Composite resin composition and planar connector molded from the composite resin composition
JP2018095684A (en) Composite resin composition, and connector molded from the composite resin composition
WO2020230890A1 (en) Liquid crystalline resin composition and molded body using same
WO2020070903A1 (en) Liquid crystal polyester resin
JP6895032B1 (en) A connector containing a liquid crystal resin composition and a molded product of the liquid crystal resin composition.
JP7393590B1 (en) Liquid crystalline resin composition for planar connectors and planar connectors using the same
JP7373080B2 (en) Conductive liquid crystal resin composition
WO2024143334A1 (en) Liquid crystalline resin composition and connector using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021500763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806088

Country of ref document: EP

Kind code of ref document: A1