WO2023276640A1 - 飛翔体制御システム、飛翔体制御方法およびプログラム - Google Patents

飛翔体制御システム、飛翔体制御方法およびプログラム Download PDF

Info

Publication number
WO2023276640A1
WO2023276640A1 PCT/JP2022/023657 JP2022023657W WO2023276640A1 WO 2023276640 A1 WO2023276640 A1 WO 2023276640A1 JP 2022023657 W JP2022023657 W JP 2022023657W WO 2023276640 A1 WO2023276640 A1 WO 2023276640A1
Authority
WO
WIPO (PCT)
Prior art keywords
flying object
racket
information specifying
trajectory
flight direction
Prior art date
Application number
PCT/JP2022/023657
Other languages
English (en)
French (fr)
Inventor
陽一 落合
真明 貞末
達也 皆川
龍樹 伏見
Original Assignee
国立大学法人筑波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021165764A external-priority patent/JP2023007307A/ja
Application filed by 国立大学法人筑波大学 filed Critical 国立大学法人筑波大学
Publication of WO2023276640A1 publication Critical patent/WO2023276640A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B67/00Sporting games or accessories therefor, not provided for in groups A63B1/00 - A63B65/00
    • A63B67/18Badminton or similar games with feathered missiles
    • A63B67/183Feathered missiles
    • A63B67/197Feathered missiles with special functions, e.g. light emission or sound generation
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H27/00Toy aircraft; Other flying toys
    • A63H27/12Helicopters ; Flying tops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • Embodiments of the present invention relate to a flying object control system, a flying object control method, and a program.
  • This application claims priority based on provisional application 63/216,529 filed in the United States on June 30, 2021 and Japanese Patent Application No. 2021-165764 filed in Japan on October 7, 2021. , the contents of which are hereby incorporated by reference.
  • An object of the present invention is to provide a flying object control system, a flying object control method, and a program that can increase opportunities for visually impaired people such as weak eyesight to exercise.
  • An embodiment of the present invention comprises: an area forming portion forming a predetermined area with respect to a grip portion; a detecting portion detecting displacement of the predetermined area formed by the area forming portion; and a controller that controls flight of the flying object based on the displacement of the predetermined area.
  • the control unit controls the movement of the grip portion and the information for specifying the flight direction of the flying object based on the information specifying the movement of the grip portion and the information specifying the flight direction of the flying object. Based on the movement of the grip portion when the detection portion detects displacement of the predetermined area using a learned model created by machine learning the relationship between the flight direction of the projectile and the Controls the flight direction of the projectile.
  • the information specifying the movement of the grip includes information specifying acceleration and information specifying angular velocity.
  • the flight of the projectile includes hovering, ascending, descending, forward/backward/leftward/rightward movement, left turn, and right turn.
  • the area forming unit forms the predetermined area using a non-contact sensor.
  • the detection unit detects displacement of the predetermined area formed by the area formation unit based on the detection result of the non-contact sensor.
  • An embodiment of the present invention is a computer-executed projectile control method, comprising: detecting a displacement of a predetermined area formed on a grip; and controlling the flight of the projectile.
  • An embodiment of the present invention provides a computer with the steps of detecting displacement of a predetermined area formed with respect to a grip, and controlling flight of a projectile based on the displacement of the predetermined area. It is a program that executes
  • a flying object control system it is possible to provide a flying object control system, a flying object control method, and a program that can increase opportunities for visually impaired people such as weak eyesight to exercise.
  • FIG. 2 is a diagram showing an example of an appearance schematic diagram of a flying object included in the flying object control system of the present embodiment
  • 2 is a diagram showing details of a flying object, an information processing device, and a racket included in an example of the flying object control system of the present embodiment
  • FIG. It is a figure which shows an example of the external appearance schematic diagram of the racket contained in the flying object control system of this embodiment.
  • 4 is a flow chart showing an example of the operation of the flying object control system of the present embodiment
  • It is a figure which shows the structural example of the flying object control system of the modified example of embodiment.
  • It is a figure which shows the detail of the flying object control system of the modified example of embodiment.
  • 9 is a flow chart showing an example of the operation of a flying object control system according to a modification of the embodiment;
  • FIG. 1 is a diagram showing a configuration example of a flying object control system according to an embodiment of the present invention.
  • a flying object control system 1 of this embodiment includes a flying object 50, an information processing device 100, a first racket 200-1, and a second racket 200-2. Flying object 50, information processing device 100, first racket 200-1, and second racket 200-2 communicate via network NW.
  • the network NW includes, for example, the Internet, WAN (Wide Area Network), LAN (Local Area Network), provider equipment, wireless base stations, and the like.
  • the first racket 200-1 and the second racket 200-2 have their gut portions removed, and are equipped with a predetermined structure corresponding to the gut portions using a sensor for detecting electromagnetic waves and an IoT (Internet of Things) development board. An area (face) is formed. First racket 200-1 and second racket 200-2 detect that flying object 50 has passed through a predetermined area, and notify information processing apparatus 100 of the detection result. Information processing apparatus 100 changes the trajectory and flight direction of flying object 50 based on the detection results notified by first racket 200-1 and second racket 200-2. A ball game is played by using a plurality of rackets such as the first racket 200-1 and the second racket 200-2. An example of a ball game is badminton.
  • a first user U1 and a second user U2 use two rackets, a first racket 200-1 and a second racket 200-2, to perform a badminton rally with flying objects 50 assuming shuttlecocks. The description will be continued for the case of performing
  • a first user U1 and a second user U2 are positioned on both sides of the court CO. Both sides of the court CO may be separated by a net or the like.
  • First racket 200-1 is used by first user U1
  • second racket 200-2 is used by second user U2.
  • An example of the first user U1 and the second user U2 is a visually impaired person such as a person with low vision.
  • the information processing device 100 uses machine learning using 6-axis data before swinging forward or backward, up or down, left or right (along the axes of a three-dimensional orthogonal coordinate system) to determine the position of the flying object. For the trajectory 50, the direction of movement is selected from three types of trajectories of right and left straight lines, and the flying object 50 is reproduced.
  • Examples of the trajectory of the flying object 50 include a trajectory similar to that of the shuttle by underhand shots such as hairpins and lobs, a trajectory similar to that of the shuttle by overhand shots such as drops and smashes, and a trajectory similar to that of the shuttle by overhand shots such as drops and smashes.
  • An example of the trajectory of the flying object 50 may include a trajectory similar to the trajectory drawn by the shuttle due to cuts, pushes, driven clears, receives, and the like.
  • first user U1 and second user U2 cannot pass projectile 50 through the predetermined area of first racket 200-1 and first racket 200-1
  • the flying object 50 collides with the boundary part other than the area of 1 points are given to the other side of the rally.
  • the number of swings may be determined at once. A score is specified in advance, and the user who obtains the specified score first wins.
  • the first racket 200-1 has a first grip portion, and forms a face by forming a predetermined area on the first grip portion with electromagnetic waves.
  • the second racket 200-2 has a second grip portion, and forms a face by forming a predetermined area on the second grip portion with electromagnetic waves.
  • First user U1 likens flying object 50 to a shuttle, and swings first racket 200-1 so that flying object 50 passes through the face, using the flight sound of flying object 50 as a clue. By swinging first racket 200-1 by first user U1, flying object 50 passes through a face formed by electromagnetic waves. The face is displaced when the flying object 50 passes through the face. First racket 200-1 detects the displacement of the face.
  • first racket 200-1 detects the movement of the first grip when the displacement of the face is detected, and detects the identification information of the first racket 200-1 (hereinafter referred to as "first racket identification information").
  • first racket identification information A movement notification addressed to the information processing apparatus 100 is created, including information specifying the movement of the first grip.
  • First racket 200 - 1 transmits the created motion notification to information processing apparatus 100 .
  • Information processing apparatus 100 stores first racket identification information and identification information of second racket 200-2 (hereinafter referred to as “second racket identification information”) for each of first racket and second racket, and Address information that associates the address with the address of the second racket is stored.
  • the information processing device 100 stores the address of the flying object 50 .
  • An example of an address is an IP address.
  • Information processing apparatus 100 receives the motion notification transmitted by first racket 200-1, and acquires the first racket identification information and the information specifying the detected motion of the first grip included in the received motion notification. Information processing apparatus 100 acquires information specifying the trajectory and flight direction of flying object 50 when receiving the motion notification transmitted by first racket 200-1.
  • Information processing apparatus 100 controls first racket 200-1 based on the acquired information specifying the motion of the first grip, the information specifying the trajectory of flying object 50, and the information specifying the flight direction of flying object 50. The trajectory and flight direction of the flying object 50 after transmitting the motion notification are grasped.
  • the information processing apparatus 100 machine-learns the movement of the grip portion, the trajectory of the projectile 50, the flight direction of the projectile 50, and the subsequent relationship between the trajectory of the projectile 50 and the flight direction of the projectile 50. Stores the result of machine learning (learned model).
  • the information processing apparatus 100 uses the learned model to convert the acquired information specifying the movement of the first grip, the information specifying the trajectory of the flying object 50, and the information specifying the flight direction of the flying object 50 into the learned model. , and obtains the information specifying the trajectory of the flying object 50 and the information specifying the flight direction of the flying object 50 output by the learned model.
  • the information processing apparatus 100 Based on the acquired information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50, the information processing apparatus 100 causes the flying object 50 to fly on a trajectory corresponding to the information specifying the trajectory. Create control information for flying in the flight direction corresponding to the direction. The information processing device 100 transmits the created control information to the flying object 50 .
  • the flying object 50 receives the control information transmitted by the information processing device 100, and controls its trajectory and flight direction based on the received control information. For example, the flying object 50 changes its flight direction from the user U1 toward the user U2 on the trajectory corresponding to the information specifying the trajectory.
  • Second user U2 uses projectile 50 as a shuttle, and swings second racket 200-2 so that projectile 50 passes through the face, using the sound of flight of projectile 50 as a clue.
  • flying object 50 passes through a face formed by electromagnetic waves. The face is displaced when the flying object 50 passes through the face.
  • the second racket 200-2 detects the displacement of the face.
  • the second racket 200-2 detects the movement of the second grip when the displacement of the face is detected, and information processing including the second racket identification information and the information specifying the detected movement of the second grip. Create a motion notification destined for the device 100 . Second racket 200 - 2 transmits the created motion notification to information processing apparatus 100 .
  • Information processing apparatus 100 receives the motion notification transmitted by second racket 200-2, and acquires the second racket identification information included in the received motion notification and the information specifying the detected motion of the second grip. Information processing apparatus 100 acquires information specifying the trajectory and flight direction of flying object 50 when receiving the motion notification transmitted by second racket 200-2. Information processing apparatus 100 controls second racket 200-2 based on the acquired information specifying the motion of the second grip, the information specifying the trajectory of flying object 50, and the information specifying the flight direction of flying object 50. The trajectory and flight direction of the flying object 50 after transmitting the motion notification are grasped.
  • the information processing apparatus 100 Based on the acquired information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50, the information processing apparatus 100 causes the flying object 50 to fly on a trajectory corresponding to the information specifying the trajectory. Create control information for flying in the flight direction corresponding to the direction.
  • the information processing device 100 transmits the created control information to the flying object 50 .
  • the flying object 50 receives the control information transmitted by the information processing device 100, and controls its trajectory and flight direction based on the received control information. For example, the flying object 50 changes its flight direction from the user U2 toward the user U1 on the trajectory corresponding to the information specifying the trajectory.
  • An arbitrary racket among the first racket 200-1 and the second racket 200-2 is referred to as racket 200.
  • the flying object 50 is an object that flies without a person on board (it is an unmanned aircraft).
  • An example of the flying object 50 is an unmanned aerial vehicle (UAV) or a drone.
  • FIG. 2 is a diagram showing an example of a schematic external view of a flying object included in the flying object control system of this embodiment.
  • the flying object 50 includes a motor 53a, a motor 53b, a motor 53c, a motor 53d, a rotor 54a, a rotor 54b, a rotor 54c, and a rotor 54d.
  • the motors 53a, 53b, 53c, and 53d rotate the corresponding rotors 54a, 54b, 54c, and 54d, respectively, to give lift and propulsion to the flying object 50.
  • the flight altitude, azimuth, and traveling direction of the flying object 50 can be controlled.
  • An arbitrary motor among the motors 53a, 53b, 53c and 53d will be referred to as a motor 53 hereinafter.
  • An arbitrary rotor out of the rotor 54a, the rotor 54b, the rotor 54c, and the rotor 54d is referred to as the rotor 54.
  • FIG. 3 is a diagram showing details of a flying object, an information processing device, and a racket included in an example of the flying object control system of this embodiment.
  • the flying object 50 of this embodiment will be described.
  • the flying object 50 includes, for example, a communication section 52 , a motor 53 , a rotor 54 , a flight control section 55 , a speedometer 56 , a sensor 57 , a power supply section 58 and a storage section 60 .
  • the communication unit 52 is implemented by a communication module.
  • the communication unit 52 communicates with an external communication device via the network NW.
  • the communication unit 52 may communicate using a wireless communication method such as wireless LAN, Bluetooth (registered trademark), or LTE (registered trademark).
  • the communication unit 52 communicates with the information processing device 100 that controls the flying object 50 .
  • the communication unit 52 receives control signals transmitted by the information processing device 100 .
  • the flight control unit 55 obtains a control signal from the communication unit 52, and controls the drive current supplied to the motor 53 based on the control information included in the obtained control signal, thereby controlling the trajectory and flight direction of the flying object 50. and control the flight.
  • the flight of the projectile includes hovering, ascent, descent, forward/backward/left/right movement, left turn, and right turn.
  • the flight control unit 55 acquires the measurement result of the flight speed from the speedometer 56, acquires the measurement result of the environmental condition from the sensor 57, and either one of the acquired measurement result of the flight speed and the measurement result of the environmental condition, or
  • the flight of the flying object 50 may be controlled by controlling the drive current supplied to the motor 53 based on both.
  • a speedometer 56 measures the flight speed of the projectile 50 .
  • a sensor 57 measures environmental conditions such as wind direction, wind speed, and atmospheric pressure.
  • the power supply unit 58 includes a battery that powers the flying object 50 .
  • the flight control unit 55 is realized by executing a computer program (software) stored in the storage unit 60 by a hardware processor such as a CPU (Central Processing Unit), for example.
  • a hardware processor such as a CPU (Central Processing Unit), for example.
  • Some or all of these functional units are hardware (circuits) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). (including circuit), or by cooperation between software and hardware.
  • the computer program may be stored in advance in a storage device such as a HDD (Hard Disk Drive) or flash memory, or may be stored in a removable storage medium such as a DVD (Digital Versatile Disc) or CD-ROM, It may be installed by attaching the storage medium to the drive device.
  • a storage device such as a HDD (Hard Disk Drive) or flash memory
  • a removable storage medium such as a DVD (Digital Versatile Disc) or CD-ROM
  • the information processing device 100 is implemented by a device such as a personal computer, server, smart phone, tablet computer, or industrial computer.
  • the information processing apparatus 100 includes a communication unit 102, a creation unit 104, a control unit 105, and a storage unit 110, for example.
  • the communication unit 102 is implemented by a communication module.
  • the communication unit 102 communicates with an external communication device via the network NW.
  • the communication unit 102 may communicate using a wireless communication method such as a wireless LAN, Bluetooth (registered trademark), or LTE (registered trademark).
  • the communication unit 102 may communicate using a communication method such as a wired LAN.
  • Storage unit 110 is implemented by an HDD, flash memory, RAM, ROM, and the like.
  • Storage unit 110 stores first racket identification information, second racket identification information, and address information that associates the first racket address with the second racket address for each of the first racket and the second racket. ing.
  • the storage unit 110 stores the address of the flying object 50 .
  • An example of an address is an IP address.
  • the communication unit 102 receives the motion notification transmitted by the racket 200 .
  • the control unit 105 acquires the motion notification received by the communication unit 102, and acquires the racket identification information and the information specifying the motion of the grip included in the acquired motion notification.
  • the control unit 105 acquires information specifying the trajectory of the flying object 50 and information specifying the flight direction.
  • An example of the information specifying the trajectory of the flying object 50 and the information specifying the flight direction to be acquired is the information used when the flying object 50 was previously (most recently) controlled.
  • the control unit 105 grasps the trajectory and flight direction of the flying object 50 based on the obtained information specifying the movement of the grip, the information specifying the trajectory of the flying object 50, and the information specifying the flight direction of the flying object 50. .
  • the control unit 105 has a trained model 105a.
  • the learned model 105a includes information specifying the movement of the grip acquired by the racket 200, information specifying the trajectory of the projectile 50, information specifying the flight direction of the projectile 50, and information specifying the trajectory of the projectile 50 after that. and the flight direction are machine-learned results (learned model).
  • the information specifying the movement of the grip includes information specifying the acceleration generated in the grip and information specifying the angular velocity of the grip.
  • the control unit 105 inputs information specifying the movement of the grip, information specifying the trajectory of the projectile 50, and information specifying the flight direction of the projectile 50 to the learned model 105a, and determines the flight pattern output by the learned model 105a.
  • Information specifying the trajectory of the body 50 and information specifying the direction of flight are acquired. Based on the acquired information specifying the trajectory of the flying object 50 and the information specifying the flight direction, the control unit 105 causes the flying object 50 to fly in the trajectory corresponding to the information specifying the trajectory and in the flight direction. Create control information to fly in the direction.
  • the creation unit 104 acquires control information from the control unit 105 and creates a control signal addressed to the racket 200 including the acquired control information. Creation unit 104 outputs the created control signal to communication unit 102 .
  • the communication unit 102 transmits the control signal output by the creation unit 104 to the flying object 50 .
  • the control unit 105 is implemented, for example, by a hardware processor such as a CPU executing a computer program (software) stored in the storage unit 110 . Also, some or all of these functional units may be implemented by hardware (including circuit units) such as LSI, ASIC, FPGA, GPU, etc., or by cooperation between software and hardware. may be implemented.
  • a hardware processor such as a CPU executing a computer program (software) stored in the storage unit 110 .
  • some or all of these functional units may be implemented by hardware (including circuit units) such as LSI, ASIC, FPGA, GPU, etc., or by cooperation between software and hardware. may be implemented.
  • FIG. 4 is a diagram showing an example of an appearance schematic diagram of a racket included in the flying object control system of the present embodiment.
  • Racket 200 includes a frame FR and a grip GR.
  • Amblyopia often perceive things by hand in daily life. Therefore, it is difficult for some people with low vision to get a sense of the distance between the tip of the frame and the hand due to the presence of the handle. Therefore, the racket 200 is configured by dividing the frame FR and the grip portion GR.
  • the grip part GR was created with a 3D printer and designed so as not to have a handle.
  • a predetermined area A is formed on the grip portion GR by electromagnetic waves.
  • An example of electromagnetic waves is infrared radiation.
  • An example of the predetermined area A is at least part of the area of the frame FR.
  • a detector is attached to the joint portion between the frame FR and the grip GR. The range of the predetermined area A can be adjusted by the number of detectors.
  • An example of a detector is an infrared sensor.
  • the detection unit is an infrared sensor.
  • An infrared sensor detects displacement of the face.
  • the infrared rays forming the face are displaced by the flying object 50 passing through the face.
  • the infrared sensor becomes unable to detect the infrared rays, thereby detecting the displacement of the face.
  • the racket 200 includes, for example, a frame FR and a grip GR.
  • the grip part GR includes a communication part 202 , an area formation part 203 , a creation part 204 , a sensor 206 , a detection part 207 and a storage part 210 .
  • the communication unit 202 is implemented by a communication module.
  • the communication unit 202 communicates with an external communication device via the network NW.
  • the communication unit 202 may communicate using a wireless communication method such as wireless LAN, Bluetooth (registered trademark), or LTE (registered trademark).
  • Storage unit 210 is implemented by an HDD, flash memory, RAM, ROM, or the like.
  • Storage unit 210 stores, for each of the first racket and the second racket, first racket identification information, second racket identification information, and address information that associates the address of the first racket with the address of the second racket.
  • An example of an address is an IP address.
  • Area formation unit 203 is configured by a non-contact sensor.
  • One example of a non-contact sensor is a distance sensor.
  • the area forming unit 203 outputs a signal from an infrared light emitting diode (LED) or the like, and measures displacement such as time for the output signal to return and intensity of the returned signal.
  • the sensor 206 includes, for example, an accelerometer and an angular velocity meter, and measures acceleration and angular velocity generated in the grip portion GR.
  • the detection unit 207 acquires the displacement measurement result of the signal returned from the area formation unit 203 .
  • the detection unit 207 detects the displacement of the area formed by the area forming unit 203 based on the acquired measurement result of the displacement of the returned signal.
  • the creation unit 204 acquires the movement of the grip portion GR when the detection unit 207 detects the displacement of the area.
  • the creation unit 204 acquires the measurement results of acceleration and angular velocity from the sensor 206 when the detection unit 207 detects the displacement of the area.
  • the creation unit 204 creates a motion notification addressed to the information processing apparatus 100 including the measurement results of the acceleration and angular velocity acquired from the sensor 206 .
  • the creation unit 204 outputs the created motion notification to the communication unit 202 .
  • the communication unit 202 transmits the motion notification output by the creation unit 204 to the information processing apparatus 100 .
  • the creation unit 204 is implemented by executing a computer program (software) stored in the storage unit 210 by a hardware processor such as a CPU, for example. Also, some or all of these functional units may be implemented by hardware (including circuit units) such as LSI, ASIC, FPGA, GPU, etc., or by cooperation between software and hardware. may be implemented.
  • FIG. 5 is a flow chart showing an example of the operation of the flying object control system of this embodiment.
  • the control unit 105 acquires information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50 .
  • An example of the trajectory of the flying object 50 is the trajectory of a serve.
  • An example of the flight direction of the flying object 50 is the direction of the first user U1 or the second user U2.
  • the control unit 105 Based on the acquired information specifying the trajectory of the flying object 50 and the information specifying the flight direction of the flying object 50, the control unit 105 causes the flying object 50 to fly in the direction of the first user U1 on the trajectory of the serve. create control information for The creation unit 104 acquires control information from the control unit 105 and creates a control signal addressed to the flying object 50 including the acquired control information. (Step S2-1) In information processing apparatus 100 , creation unit 104 outputs the created control signal to communication unit 102 . The communication unit 102 transmits the control signal output by the creation unit 104 to the flying object 50 .
  • Step S3-1 In the flying object 50 , the communication unit 52 receives the control signal transmitted by the information processing device 100 .
  • the flight control unit 55 obtains a control signal from the communication unit 52, and controls the drive current supplied to the motor 53 based on the control information included in the obtained control signal, thereby controlling the trajectory and flight direction of the flying object 50. and change.
  • Step S4-1 User U1 swings first racket 200-1 so that flying object 50 passes through the face, using the flight sound of flying object 50 as a clue.
  • the first user U1 fails to pass the flying object 50 through the predetermined area of the first racket 200-1, or causes the flying object 50 to collide with the boundary portion between the predetermined area and the area other than the predetermined area. points for the opposing side of the rally.
  • detector 207 detects the displacement of the area (face) formed by area forming unit 203.
  • Step S5-1) In first racket 200 - 1 , detection section 207 acquires the displacement measurement result of the signal returned from area forming section 203 .
  • Step S6-1) In the first racket 200-1, the creation unit 204 acquires the movement of the grip portion GR when the detection unit 207 detects the displacement of the area.
  • the creation unit 204 creates a motion notification addressed to the information processing apparatus 100 including the measurement results of the acceleration and angular velocity acquired from the sensor 206 .
  • Step S7-1) In first racket 200-1, creation unit 204 outputs the created motion notification to communication unit 202.
  • the communication unit 202 transmits the motion notification output by the creation unit 204 to the information processing apparatus 100 .
  • Step S8-1) In information processing apparatus 100, communication unit 102 receives the motion notification transmitted by first racket 200-1.
  • the control unit 105 acquires the motion notification received by the communication unit 102, and acquires the racket identification information and the information specifying the motion of the grip GR included in the acquired motion notification.
  • the control unit 105 acquires information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50 .
  • Step S9-1) In the information processing apparatus 100, the control unit 105 controls the movement of the flying object 50 based on the acquired information specifying the movement of the grip GR, information specifying the trajectory of the flying object 50, and information specifying the flight direction of the flying object 50. Know your trajectory and flight direction.
  • the control unit 105 inputs information specifying the movement of the grip GR, information specifying the trajectory of the projectile 50, and information specifying the flight direction of the projectile 50 to the learned model 105a, and the learned model 105a outputs the information.
  • Information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50 are acquired.
  • the control unit 105 controls the flying object 50 to follow the trajectory corresponding to the information specifying the trajectory.
  • the creation unit 104 acquires control information from the control unit 105 and creates a control signal addressed to the flying object 50 including the acquired control information. (Step S10-1)
  • creation unit 104 outputs the created control signal to communication unit 102 .
  • the communication unit 102 transmits the control signal output by the creation unit 104 to the flying object 50 .
  • Step S11-1) In the flying object 50 , the communication unit 52 receives the control signal transmitted by the information processing device 100 .
  • the flight control unit 55 obtains a control signal from the communication unit 52, and controls the drive current supplied to the motor 53 based on the control information included in the obtained control signal, thereby controlling the trajectory and flight direction of the flying object 50. and change.
  • Step S12-1) User U2 swings second racket 200-2 so that flying object 50 passes through the face, using the flight sound of flying object 50 as a clue. When the second user U2 fails to pass the flying object 50 through the predetermined area of the second racket 200-2, and when the flying object 50 collides with the boundary portion between the predetermined area and the area other than the predetermined area.
  • the detection section 207 detects the displacement of the area (face) formed by the area formation section 203.
  • FIG. Step S13-1)
  • detection section 207 acquires the displacement measurement result of the signal returned from area forming section 203 .
  • Step S14-1) In the second racket 200-2, the creation unit 204 acquires the motion of the grip portion GR when the detection unit 207 detects the displacement of the area.
  • the creation unit 204 creates a motion notification addressed to the information processing apparatus 100 including the measurement results of the acceleration and angular velocity acquired from the sensor 206 .
  • Step S15-1) In second racket 200 - 2 , creation unit 204 outputs the created motion notification to communication unit 202 .
  • the communication unit 202 transmits the motion notification output by the creation unit 204 to the information processing apparatus 100 .
  • Step S16-1 In information processing apparatus 100, communication unit 102 receives the motion notification transmitted by second racket 200-2.
  • the control unit 105 acquires the motion notification received by the communication unit 102, and acquires the racket identification information and the information specifying the motion of the grip GR included in the acquired motion notification.
  • the control unit 105 acquires information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50 .
  • Step S17-1) In the information processing apparatus 100, the control unit 105 determines the trajectory of the flying object 50 based on the obtained information specifying the movement of the grip GR, the information specifying the trajectory of the flying object 50, and the information specifying the flight direction of the flying object 50. and flight direction.
  • the control unit 105 inputs information specifying the movement of the grip GR, information specifying the trajectory of the projectile 50, and information specifying the flight direction of the projectile 50 to the learned model 105a, and the learned model 105a outputs the information.
  • Information specifying the trajectory of the flying object 50 and information specifying the flight direction are acquired.
  • the control unit 105 controls the flying object 50 to follow the trajectory corresponding to the information specifying the trajectory.
  • the creation unit 104 acquires control information from the control unit 105 and creates a control signal addressed to the flying object 50 including the acquired control information.
  • Step S18-1) In information processing apparatus 100 , creation unit 104 outputs the created control signal to communication unit 102 .
  • the communication unit 102 transmits the control signal output by the creation unit 104 to the flying object 50 .
  • Step S19-1) In the flying object 50 , the communication unit 52 receives the control signal transmitted by the information processing device 100 .
  • the flight control unit 55 obtains a control signal from the communication unit 52, and controls the drive current supplied to the motor 53 based on the control information included in the obtained control signal, thereby controlling the trajectory and flight direction of the flying object 50. and change. After that, the process moves to step S4-1.
  • an example of the rule of the ball game using the first racket 200-1, the second racket 200-2, and the projectile 50 is defined as a failed swing, collision of the racket with the projectile 50, collision of the racket with the projectile 50, Although a case has been described where points are given to the opponent and the user (player) who first obtains the specified number of points is the winner, the present invention is not limited to this example.
  • a rule may be adopted in which two players form a pair, control the moving speed of the flying object 50 to increase each time a rally is performed, and update the number of consecutive rallies.
  • the flying object 50 is controlled by swinging to move to a specified location, and the user (player) with the highest score obtained by adding up the points at the specified location is defined as the winner. good too. If the swing fails, or if the racket collides with the projectile 50 and causes the projectile 50 to crash, points are awarded to the opponent, and the user (player) who acquires the designated points first wins. , When a specific action is taken, the opponent receives points, and the player who wins the specified points first can win. Since the flying object 50 may become difficult to operate when it collides or crashes, the possibility of the flying object 50 colliding or crashing can be eliminated as much as possible.
  • the control unit 105 uses information that specifies the trajectory of the flying object 50 and information that specifies the flight direction of the flying object 50. Although the case of using information has been described, it is not limited to this example. For example, it may be configured to acquire information specifying the trajectory and information specifying the flight direction from the flying object 50 . In the above-described embodiment, in the information processing device 100, based on the information specifying the movement of the grip, the information specifying the trajectory of the flying object 50, and the information specifying the flight direction of the flying object 50, the subsequent flying object 50 is determined.
  • the present invention is not limited to this example.
  • the subsequent flight direction of the projectile 50 may be grasped based on the information specifying the movement of the grip and the information specifying the flight direction of the projectile 50.
  • FIG. In the above-described embodiment, a case where a predetermined area (face) corresponding to a gut portion is formed using a sensor that detects electromagnetic waves and an IoT development board has been described, but the present invention is not limited to this example.
  • a predetermined area (face) corresponding to the gut portion may be formed using a sensor that detects ultrasonic waves and an IoT development board.
  • the trajectory and flight direction of the flying object 50 may be acquired by automatically simulating the trajectory and flight direction of the flying object 50 based on information obtained from sensors.
  • the trained model 105a may be updated. Ball games such as badminton in the above-described embodiment can be played not only by visually impaired people but also by sighted people.
  • the flying object control system 1 includes the area forming section 203 that forms a predetermined area with respect to the grip portion GR, and the displacement of the predetermined area formed by the area forming section 203. and a control unit 105 that controls the flight of the flying object 50 based on the displacement of the predetermined area detected by the detection unit 207 .
  • the control unit 105 controls the movement of the grip portion GR and the flight direction of the flying object 50 based on the information specifying the movement of the grip portion GR and the information specifying the flight direction of the flying object 50.
  • the control unit 105 uses a learned model created by machine-learning the relationship between and, based on the movement of the grip portion GR when the detection portion 207 detects displacement in a predetermined area, the flight direction of the projectile 50 is determined. Control.
  • the flying object control system 1 can program the speed and trajectory of the flying object 50, the flying object 50 can be moved artificially. A flying object 50 that has a certain size and emits a flying sound can be used.
  • the information specifying the movement of the grip part GR includes information specifying acceleration and information specifying angular velocity.
  • the racket 6 is rotated based on the information specifying the acceleration and the information specifying the angular velocity included in the information specifying the movement of the grip portion GR.
  • Axis data etc. can be detected. Based on the detected data, it is possible to cause the flying object 50 to reproduce an appropriate trajectory from trajectories prepared in advance. For example, when the flying object 50 is swung to the right, a trajectory is reproduced in which the flying object 50 moves to the right.
  • the speed and trajectory of the projectile 50 can be controlled based on the information specifying the movement of the grip portion GR.
  • the flight of the flying object 50 includes hovering, ascent, descent, forward/backward/left/right movement, left turn, and right turn. With this configuration, the flying object 50 can hover, ascend, descend, move forward, backward, left and right, turn left, and turn right.
  • the area formation unit 203 forms a predetermined area using a non-contact sensor. By configuring in this way, the racket 200 using a non-contact sensor such as an infrared sensor can be used instead of the gut. A user (player) can move the flying object 50 toward the opponent by passing the flying object 50 through the frame FR, thereby forming a rally.
  • the detection unit 207 detects displacement of the predetermined area formed by the area formation unit 203 based on the detection result of the non-contact sensor. With this configuration, the displacement of the predetermined area formed by the area forming section 203 can be detected, so the flight of the flying object 50 is determined based on whether or not the flying object 50 has passed through the face based on the detection result. You can control it.
  • FIG. 6 is a diagram illustrating a configuration example of a flying object control system according to a modification of the embodiment;
  • a flying object control system 1a of a modification of the embodiment includes a flying object 50, a first racket 200a-1, and a second racket 200a-2.
  • the flying object control system 1a of the embodiment differs from the flying object control system 1 of the embodiment in that the information processing device 100 is not provided. Flying object 50, first racket 200a-1, and second racket 200a-2 communicate via network NW.
  • the first racket 200a-1 and the second racket 200a-2 have their gut portions removed, and a predetermined area (face) corresponding to the gut portions is created using a sensor that detects electromagnetic waves and an IoT development board. formed.
  • the first racket 200a-1 and the second racket 200a-2 detect that the flying object 50 has passed through a predetermined area, and change the trajectory and flight direction of the flying object 50 based on the detection result.
  • a ball game is played by using a plurality of rackets such as the first racket 200a-1 and the second racket 200a-2.
  • An example of a ball game is badminton.
  • a first user U1 and a second user U2 use two rackets, a first racket 200a-1 and a second racket 200a-2, to perform a badminton rally with the projectile 50 as if it were a shuttle.
  • the description will be continued for the case of performing
  • a first user U1 and a second user U2 are positioned on both sides of the court CO. Both sides of the court CO may be separated by a net or the like.
  • the first racket 200a-1 is used by the first user U1
  • the second racket 200a-2 is used by the second user U2.
  • An example of the first user U1 and the second user U2 is a visually impaired person such as a person with low vision.
  • the first racket 200a-1 and the second racket 200a-2 use 6-axis data before swinging forward or backward, up or down, left or right (along the axes of the three-dimensional orthogonal coordinate system).
  • the moving direction of the trajectory of the flying object 50 is selected from three types of trajectories of right and left straight lines, and the flying object 50 is caused to reproduce the trajectory.
  • first user U1 and second user U2 are unable to pass projectile 50 through a predetermined area between first racket 200a-1 and first racket 200a-1
  • points are given to the other side of the rally.
  • the number of swings may be determined at once. A score is specified in advance, and the user who obtains the specified score first wins.
  • the first racket 200a-1 has a first grip portion, and forms a face by forming a predetermined area on the first grip portion with electromagnetic waves.
  • the second racket 200a-2 has a second grip portion, and forms a face by forming a predetermined area on the second grip portion with electromagnetic waves.
  • First user U1 likens flying object 50 to a shuttle, and swings first racket 200a-1 so that flying object 50 passes through the face, using the flight sound of flying object 50 as a cue.
  • flying object 50 passes through a face formed by electromagnetic waves.
  • the face is displaced when the flying object 50 passes through the face.
  • the first racket 200a-1 detects the displacement of the face.
  • the first racket 200a-1 detects the movement of the first grip when detecting the displacement of the face.
  • First racket 200a-1 detects information specifying the movement of the first grip, information specifying the trajectory of projectile 50, and information specifying the direction of flight of projectile 50, based on which first racket 200a-1 grasps the trajectory and flight direction of the flying object 50 after sending the motion notification.
  • the first racket 200 a - 1 stores the address of the second racket and the address of the flying object 50 .
  • An example of an address is an IP address.
  • the first racket 200a-1 machine-learns the movement of the grip portion, the trajectory of the projectile 50, the flight direction of the projectile 50, and the subsequent relationship between the trajectory of the projectile 50 and the flight direction of the projectile 50. , and stores the machine learning result (learned model).
  • the first racket 200a-1 uses the learned model to learn the acquired information specifying the movement of the first grip, the information specifying the trajectory of the projectile 50, and the information specifying the flight direction of the projectile 50.
  • information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50 output from the trained model.
  • the first racket 200a-1 moves the flying object 50 along a trajectory corresponding to the information specifying the trajectory. , creates control information for flying in a flight direction corresponding to the flight direction.
  • the first racket 200a-1 creates a control signal addressed to the flying object 50 and including the created control information.
  • the first racket 200 a - 1 transmits the created control signal to the flying object 50 .
  • First racket 200a-1 creates a flight direction notification addressed to second racket 200a-2, which includes information specifying the trajectory of projectile 50 and information specifying the flight direction of projectile 50.
  • the first racket 200a-1 transmits the created flight direction notification to the second racket 200a-2.
  • the flying object 50 receives the control signal transmitted by the first racket 200a-1, and controls its trajectory and flight direction based on the control information included in the received control signal. For example, the flying object 50 changes its flight direction from the user U1 toward the user U2 on the trajectory corresponding to the information specifying the trajectory.
  • the second racket 200a-2 receives the flight direction notification transmitted by the first racket 200a-1, and specifies the information specifying the trajectory of the flying object 50 and the flight direction of the flying object 50 included in the received flight direction notification. to obtain information about
  • the second user U2 likens the flying object 50 to a shuttle, and swings the second racket 200a-2 so that the flying object 50 passes through the face, using the flight sound of the flying object 50 as a cue.
  • the flying object 50 passes through the face formed by the electromagnetic waves.
  • the face is displaced when the flying object 50 passes through the face.
  • the second racket 200a-2 detects the displacement of the face.
  • the second racket 200a-2 detects the movement of the second grip when detecting the displacement of the face.
  • Second racket 200a-2 moves second racket 200a-2 based on the information specifying the detected movement of the second grip, the information specifying the trajectory of projectile 50, and the information specifying the flight direction of projectile 50. grasps the trajectory and flight direction of the flying object 50 after sending the motion notification.
  • the second racket 200a-2 stores the address of the first racket and the address of the flying object 50.
  • FIG. An example of an address is an IP address.
  • the second racket 200a-2 machine-learns the movement of the grip portion, the trajectory of the projectile 50, the flight direction of the projectile 50, and the subsequent relationship between the trajectory of the projectile 50 and the flight direction of the projectile 50. , and stores the machine learning result (learned model).
  • the second racket 200a-2 uses the learned model to learn the acquired information specifying the movement of the second grip, the information specifying the trajectory of the projectile 50, and the information specifying the flight direction of the projectile 50.
  • information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50 output from the trained model.
  • the second racket 200a-2 moves the flying object 50 along the trajectory corresponding to the information specifying the trajectory based on the obtained information specifying the trajectory of the flying object 50 and the information specifying the flight direction of the flying object 50.
  • the second racket 200a-2 creates a control signal addressed to the flying object 50 and including the created control information.
  • the second racket 200 a - 2 transmits the created control signal to the flying object 50 .
  • the second racket 200a-2 creates a flight direction notification addressed to the first racket 200a-1, which includes information specifying the trajectory of the projectile 50 and information specifying the flight direction of the projectile 50.
  • the second racket 200a-2 transmits the created flight direction notification to the first racket 200a-1.
  • the flying object 50 receives the control information transmitted by the second racket 200a-2, and controls its trajectory and flight direction based on the control information included in the received control signal. For example, the flying object 50 changes its flight direction from the user U2 toward the user U1 on the trajectory corresponding to the information specifying the trajectory.
  • the first racket 200a-1 receives the flight direction notification transmitted by the second racket 200a-2, and specifies the information specifying the trajectory of the flying object 50 and the flight direction of the flying object 50 included in the received flight direction notification. to obtain information about An arbitrary racket among the first racket 200a-1 and the second racket 200a-2 is referred to as racket 200a.
  • FIG. 7 is a diagram illustrating details of a flying object control system according to a modification of the embodiment; (Racket 200a)
  • FIG. 4 can be applied as an example of a schematic appearance diagram of a racket included in the flying object control system 1a of the modified example of the embodiment.
  • the racket 200a includes a frame FR and a grip GR.
  • a predetermined area A (face) is formed on the grip portion GR by electromagnetic waves.
  • An example of electromagnetic waves is infrared radiation.
  • An example of the predetermined area A is at least part of the area of the frame FR.
  • a detector is attached to the joint portion between the frame FR and the grip GR.
  • An example of a detector is an infrared sensor.
  • the detection unit is an infrared sensor.
  • An infrared sensor detects displacement of the face.
  • the infrared rays forming the face are displaced by the flying object 50 passing through the face.
  • the infrared sensor becomes unable to detect the infrared rays, thereby detecting the displacement of the face.
  • the racket 200a includes, for example, a frame FR and a grip GR.
  • the grip part GR includes a communication part 202 , an area forming part 203 , a creation part 204 a , a control part 205 , a sensor 206 , a detection part 207 and a storage part 210 .
  • the storage unit 210 stores address information that associates racket identification information with racket addresses.
  • the storage unit 210 stores the address of the flying object 50 .
  • An example of an address is an IP address.
  • the control unit 205 acquires information identifying the movement of the grip detected by the sensor 206 .
  • the control unit 205 acquires information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50 .
  • the control unit 205 determines the trajectory and flight direction of the flying object 50 based on the acquired information specifying the movement of the grip portion GR, the information specifying the trajectory of the flying object 50, and the information specifying the flight direction of the flying object 50. grasp.
  • the control unit 205 has a trained model 205a.
  • the trained model 205a includes information specifying the movement of the grip portion GR acquired by the racket 200a, the trajectory and flight direction of the projectile 50, and the subsequent relationship between the trajectory and flight direction of the projectile 50. It includes the result of machine learning (learned model).
  • the information specifying the movement of the grip GR includes information specifying the acceleration generated in the grip GR and information specifying the angular velocity of the grip GR.
  • the control unit 205 inputs information specifying the movement of the grip unit GR, information specifying the trajectory of the projectile 50, and information specifying the flight direction of the projectile 50 to the learned model 205a, and the learned model 205a outputs the information.
  • the trajectory and flight direction of the flying object 50 are grasped.
  • the control unit 205 controls the flying object 50 to follow the trajectory corresponding to the information identifying the trajectory and the information identifying the flight direction.
  • Create control information for flying in the flight direction corresponding to The creating unit 204 a acquires control information, information specifying the trajectory of the flying object 50 , and information specifying the flight direction of the flying object 50 from the control unit 205 .
  • the creation unit 204a creates a control signal addressed to the flying object 50, including the acquired control information.
  • the creation unit 204 a outputs the created control signal to the communication unit 202 .
  • the communication unit 202 acquires the control signal output by the creation unit 204 a and transmits the acquired control signal to the flying object 50 .
  • the creation unit 204a creates a flight direction notification addressed to another racket 200a, including information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50.
  • the creation unit 204 a outputs the created flight direction notification to the communication unit 202 .
  • the communication unit 202 acquires the flight direction notification output by the creation unit 204 a and transmits the acquired flight direction notification to the flying object 50 .
  • the creation unit 204 a and the control unit 205 are implemented by executing a computer program (software) stored in the storage unit 210 by a hardware processor such as a CPU, for example. Also, some or all of these functional units may be implemented by hardware (including circuit units) such as LSI, ASIC, FPGA, GPU, etc., or by cooperation between software and hardware. may be implemented.
  • FIG. 8 is a flow chart showing an example of the operation of the flying object control system according to the modified example of the embodiment. Referring to FIG. 8, a process in which first user U1 and second user U2 play badminton with projectile 50 as a shuttle will be described.
  • Step S1-2 In the second racket 200 a - 2 , the control unit 205 acquires information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50 .
  • An example of the trajectory of the flying object 50 is the trajectory of a serve.
  • An example of the flight direction of the flying object 50 is the direction of the first user U1 who is a rally opponent.
  • the control unit 205 Based on the obtained information specifying the trajectory of the flying object 50 and the information specifying the flight direction of the flying object 50, the control unit 205 causes the flying object 50 to fly in the direction of the first user U1 on the trajectory of the serve.
  • create control information for The creation unit 204a acquires control information from the control unit 205 and creates a control signal addressed to the flying object 50, including the acquired control information.
  • Step S2-2 In the second racket 200a-2, the creation unit 204a outputs the created control signal to the communication unit 202.
  • the communication unit 202 transmits the control signal output by the creation unit 204 a to the flying object 50 .
  • the communication unit 52 receives the control signal transmitted by the second racket 200a-2.
  • the flight control unit 55 acquires the control signal received by the communication unit 52, and controls the drive current supplied to the motor 53 based on the control information included in the acquired control signal, thereby adjusting the trajectory of the flying object 50. change the flight direction.
  • Step S4-2 In the second racket 200a-2, the creation unit 204a acquires information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50 from the control unit 205, and calculates the acquired trajectory of the flying object 50.
  • a flight direction notification addressed to the first racket 200a-1 is created, which includes the specifying information and the information specifying the flight direction of the projectile 50.
  • FIG. (Step S5-2) In the second racket 200a-2, the creation unit 204a outputs the created flight direction notification to the communication unit 202.
  • the communication unit 202 transmits the flight direction notification output by the creation unit 204a to the first racket 200a-1.
  • Step S6-2 User U1 swings first racket 200a-1 so that flying object 50 passes through the face, using the flight sound of flying object 50 as a clue.
  • the first user U1 fails to pass the flying object 50 through the predetermined area of the first racket 200a-1, or causes the flying object 50 to collide with the boundary portion between the predetermined area and the area other than the predetermined area. points for the opposing side of the rally.
  • the detection section 207 detects the displacement of the area (face) formed by the area formation section 203.
  • Step S7-2) In the first racket 200 a - 1 , the detector 207 acquires the displacement measurement result of the signal returned from the area forming unit 203 .
  • the control unit 205 acquires the movement of the grip portion GR when the detection unit 207 detects the displacement of the area.
  • the control unit 205 acquires information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50 .
  • Step S8-2) In the first racket 200a-1, the control unit 205 determines the trajectory of the flying object 50 based on the information specifying the trajectory of the flying object 50 and the information specifying the flight direction of the flying object 50 included in the acquired flight direction notification. and flight direction.
  • Step S9-2 In the first racket 200a-1, the control unit 205 inputs information specifying the movement of the grip, information specifying the trajectory of the projectile 50, and information specifying the flight direction of the projectile 50 to the learned model 205a, Information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50 output by the learned model 205a are acquired. Based on the obtained information specifying the trajectory of the flying object 50 and the information specifying the flight direction of the flying object 50, the control unit 205 directs the flying object 50 to follow the trajectory corresponding to the information specifying the trajectory. Create control information for flying in the flight direction corresponding to the specified information.
  • the creation unit 204a acquires control information from the control unit 205 and creates a control signal including the acquired control information and destined for the second racket 200a-2. (Step S10-2) In the first racket 200 a - 1 , the creating section 204 a outputs the created control signal to the communication section 202 . The communication unit 202 transmits the control signal output by the creation unit 204 a to the flying object 50 .
  • Step S11-2) In the flying object 50, the communication unit 102 receives the control signal transmitted by the first racket 200a-1.
  • the flight control unit 55 obtains the control signal received by the communication unit 102, and controls the drive current supplied to the motor 53 based on the control information included in the obtained control signal, thereby adjusting the trajectory of the flying object 50. change the flight direction.
  • Step S12-2) In the first racket 200a-1, the creation unit 204a acquires information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50 from the control unit 205, and creates the acquired trajectory of the flying object 50.
  • a flight direction notification addressed to the second racket 200a-2 is generated, which includes the specifying information and the information specifying the flight direction of the projectile 50.
  • FIG. (Step S13-2)
  • the creation unit 204a In the first racket 200a-1, the creation unit 204a outputs the created flight direction notification to the communication unit 202.
  • FIG. The communication unit 202 transmits the flight direction notification output by the creation unit 204a to the second racket 200a-2.
  • User U2 swings second racket 200a-2 so that flying object 50 passes through the face, using the flight sound of flying object 50 as a clue.
  • the detection section 207 detects the displacement of the area (face) formed by the area formation section 203.
  • Step S15-2) In the second racket 200 a - 2 , the detection section 207 acquires the displacement measurement result of the signal returned from the area forming section 203 .
  • the control unit 205 acquires the movement of the grip portion GR when the detection unit 207 detects the displacement of the area.
  • the control unit 205 acquires information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50 .
  • Step S16-2) In the second racket 200a-2, the control unit 205 determines the trajectory of the flying object 50 based on the information specifying the trajectory of the flying object 50 and the information specifying the flight direction of the flying object 50 included in the acquired flight direction notification. and flight direction.
  • Step S17-2 In the second racket 200a-2, the control unit 205 inputs information specifying the movement of the grip, information specifying the trajectory of the projectile 50, and information specifying the flight direction of the projectile 50 to the learned model 205a, Information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50 output by the learned model 205a are acquired. Based on the obtained information specifying the trajectory of the flying object 50 and the information specifying the flight direction of the flying object 50, the control unit 205 directs the flying object 50 to follow the trajectory corresponding to the information specifying the trajectory. Create control information for flying in the flight direction corresponding to the specified information.
  • the creation unit 204a acquires control information from the control unit 205 and creates a control signal, including the acquired control information, destined for the first racket 200a-1. (Step S18-2) In the second racket 200a-2, the creation unit 204a outputs the created control signal to the communication unit 202. FIG. The communication unit 202 transmits the control signal output by the creation unit 204 a to the flying object 50 .
  • Step S19-2) In the flying object 50, the communication unit 102 receives the control signal transmitted by the second racket 200a-2.
  • the flight control unit 55 obtains the control signal received by the communication unit 102, and controls the drive current supplied to the motor 53 based on the control information included in the obtained control signal, thereby adjusting the trajectory of the flying object 50. change the flight direction.
  • Step S20-2) In the second racket 200a-2, the creation unit 204a acquires information specifying the trajectory of the flying object 50 and information specifying the flight direction of the flying object 50 from the control unit 205, and calculates the acquired trajectory of the flying object 50.
  • a flight direction notification addressed to the first racket 200a-1 is created, which includes the specifying information and the information specifying the flight direction of the projectile 50.
  • FIG. (Step S21-2)
  • the creation unit 204a outputs the created flight direction notification to the communication unit 202.
  • FIG. The communication unit 202 transmits the flight direction notification output by the creation unit 204a to the first racket 200a-1. After that, the process moves to step S6-2.
  • the flying object control system 1a of the modified example of the present embodiment the same effects as those of the above-described embodiment can be obtained, and the information processing device 100 is not required. can be simplified.
  • the process of each process of each apparatus described above is stored in a computer-readable recording medium in the form of a program, and the above process is performed by reading and executing this program by a computer.
  • the computer-readable recording medium includes a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, and the like.
  • the computer program may be distributed to a computer via a communication line, and the computer receiving the distribution may execute the program.
  • the program may be for realizing part of the functions described above. Further, it may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Toys (AREA)

Abstract

飛翔体制御システムは、グリップ部に対して所定のエリアを形成するエリア形成部と、エリア形成部が形成した所定のエリアの変位を検出する検出部と、検出部が検出した所定のエリアの変位に基づいて、飛翔体の飛行を制御する制御部とを備える。

Description

飛翔体制御システム、飛翔体制御方法およびプログラム
 本発明の実施形態は、飛翔体制御システム、飛翔体制御方法およびプログラムに関する。
 本願は、2021年6月30日に、米国に仮出願された63/216,529と、2021年10月7日に、日本に出願された特願2021-165764号に基づき優先権を主張し、その内容をここに援用する。
 従来の視覚障碍者用に開発された競技、特に球技においてはボールの中に音源を入れ、バウンドを要するルールを制定することでバウンド音による音源定位を可能にし、競技を成立させてきた。
 また、サポート技術の開発領域ではこれまで、ユーザに体を動かしてもらいアバターを操作するゲームの視覚障碍者用アクセシビリティを向上させる技術やラケットのスイング方向や速度から球の軌道を計算し、コートの側にあるスピーカの音を用いて仮想のバドミントンを成立させる技術が知られている。
 視覚障碍者用に開発されたボールに関して、プレー中の球技用の球がたとえ飛翔状態にあっても、その球技用の球から音を発し、聴覚での捕捉を可能にする技術が知られている(例えば、特許文献1参照)。この技術によれば、中空の球の内部の面の全体に突起もしくは溝を施した構造を特徴とする音源球を用いて、これら各種球技用の球に内包する。
特開2012-232079号公報
 従来の視覚障碍者用に開発された球技デザインでは、バドミントンのような空中で球が移動するデザインの競技は弱視者にとって行うことが非常に困難であることから、これまでそのような仕様の競技は開発されていない。その結果、晴眼者が行う競技に比べ、視覚障碍者の競技の種類は乏しい。
 また、視覚障碍者は、周囲の環境の安全を確認する能力が低いことが多いため、運動を行う機会が少なく、その結果肥満や鬱病に陥る可能性が高いことが報告されている。
 本発明の目的は、弱視者などの視覚障碍者が運動する機会を増やすことができる飛翔体制御システム、飛翔体制御方法およびプログラムを提供することを目的とする。
 本発明の一実施形態は、グリップ部に対して所定のエリアを形成するエリア形成部と、前記エリア形成部が形成した所定の前記エリアの変位を検出する検出部と、前記検出部が検出した所定の前記エリアの前記変位に基づいて、飛翔体の飛行を制御する制御部とを備える、飛翔体制御システムである。
 本発明の一実施形態は、前述の飛翔体制御システムにおいて、前記制御部は、グリップ部の動き特定する情報と、飛翔体の飛行方向を特定する情報とに基づいて、グリップ部の動きと、飛翔体の飛行方向との関係を機械学習することによって作成された学習済モデルを使用して、前記検出部が所定の前記エリアの変位を検出したときの前記グリップ部の動きに基づいて、前記飛翔体の飛行方向を制御する。
 本発明の一実施形態は、前述の飛翔体制御システムにおいて、前記グリップ部の動きを特定する情報は、加速度を特定する情報と、角速度を特定する情報とを含む。
 本発明の一実施形態は、前述の飛翔体制御システムにおいて、飛翔体の前記飛行には、ホバリングと、上昇と、下降と、前後左右移動と、左旋回と、右旋回とが含まれる。
 本発明の一実施形態は、前述の飛翔体制御システムにおいて、前記エリア形成部は、非接触式センサによって、所定の前記エリアを形成する。
 本発明の一実施形態は、前述の飛翔体制御システムにおいて、前記検出部は、前記非接触式センサの検出結果に基づいて、前記エリア形成部が形成した所定の前記エリアの変位を検出する。
 本発明の一実施形態は、コンピュータが実行する、飛翔体制御方法であって、グリップ部に対して形成された所定のエリアの変位を検出するステップと、所定の前記エリアの前記変位に基づいて、飛翔体の飛行を制御するステップとを有する、飛翔体制御方法である。
 本発明の一実施形態は、コンピュータに、グリップ部に対して形成された所定のエリアの変位を検出するステップと、所定の前記エリアの前記変位に基づいて、飛翔体の飛行を制御するステップとを実行させる、プログラムである。
 本発明の実施形態によれば、弱視者などの視覚障碍者が運動する機会を増やすことができる飛翔体制御システム、飛翔体制御方法およびプログラムを提供することができる。
本発明の実施形態の飛翔体制御システムの構成例を示す図である。 本実施形態の飛翔体制御システムに含まれる飛翔体の外観模式図の一例を示す図である。 本実施形態の飛翔体制御システムの一例に含まれる飛翔体と情報処理装置とラケットとの詳細を示す図である。 本実施形態の飛翔体制御システムに含まれるラケットの外観模式図の一例を示す図である。 本実施形態の飛翔体制御システムの動作の一例を示すフローチャートである。 実施形態の変形例の飛翔体制御システムの構成例を示す図である。 実施形態の変形例の飛翔体制御システムの詳細を示す図である。 実施形態の変形例の飛翔体制御システムの動作の一例を示すフローチャートである。
 次に、本実施形態の飛翔体制御システム、飛翔体制御方法およびプログラムを、図面を参照しつつ説明する。以下で説明する実施形態は一例に過ぎず、本発明が適用される実施形態は、以下の実施形態に限られない。
 なお、実施形態を説明するための全図において、同一の機能を有するものは同一符号を用い、繰り返しの説明は省略する。
 また、本願でいう「XXに基づく」とは、「少なくともXXに基づく」ことを意味し、XXに加えて別の要素に基づく場合も含む。また、「XXに基づく」とは、XXを直接に用いる場合に限定されず、XXに対して演算や加工が行われたものに基づく場合も含む。「XX」は、任意の要素(例えば、任意の情報)である。
 (実施形態)
 (飛翔体制御システム)
 図1は、本発明の実施形態の飛翔体制御システムの構成例を示す図である。本実施形態の飛翔体制御システム1は、飛翔体50と情報処理装置100と第1ラケット200-1と第2ラケット200-2とを備える。
 飛翔体50と情報処理装置100と第1ラケット200-1と第2ラケット200-2とは、ネットワークNWを介して通信する。ネットワークNWは、例えば、インターネット、WAN(Wide Area Network)、LAN(Local Area Network)、プロバイダ装置、無線基地局などを含む。
 第1ラケット200-1と第2ラケット200-2とは、ラケットのガット部分が取り除かれ、電磁波を検出するセンサとIoT(Internet of Thing)開発基板とを使用してガット部分に相当する所定のエリア(フェース)が形成されている。
 第1ラケット200-1と第2ラケット200-2とは、飛翔体50が所定のエリアを通過したことを検出し、検出結果を情報処理装置100へ通知する。情報処理装置100は、第1ラケット200-1と第2ラケット200-2とが通知した検出結果に基づいて、飛翔体50の軌道と飛行方向とを変更させる。
 第1ラケット200-1、第2ラケット200-2などの複数のラケットを使用することで、球技が行われる。球技の一例は、バドミントンなどである。以下、一例として、第1ユーザU1と第2ユーザU2とが、第1ラケット200-1と第2ラケット200-2との2つのラケットを使用して飛翔体50をシャトルに見立ててバドミントンでラリーを行う場合について説明を続ける。
 第1ユーザU1と第2ユーザU2とは、コートCOの両側に位置する。コートCOの両側がネットなどによって隔てられていてもよい。第1ラケット200-1は第1ユーザU1が使用し、第2ラケット200-2は第2ユーザU2が使用する。第1ユーザU1と第2ユーザU2との一例は、弱視者などの視覚障碍者である。
 情報処理装置100は、前または後、上または下、左または右に(3次元の直交座標系の軸に沿って)スイング前の6軸データを使用して機械学習を使用して、飛翔体50の軌道について、移動方向を左右直線の三種類の軌道から選択し、飛翔体50に再生させる。飛翔体50の軌道の一例は、ヘアピン、ロブなどのアンダーハンドショットによってシャトルが描く軌道と同様の軌道、ドロップ、スマッシュなどのオーバーハンドショットによってシャトルが描く軌道と同様の軌道、ドライブなどのサイドハンドショットによってシャトルが描く軌道と同様の軌道である。飛翔体50の軌道の一例に、カット、プッシュ、ドリブンクリア、レシーブなどによってシャトルが描く軌道と同様の軌道が含まれてもよい。
 第1ユーザU1と第2ユーザU2とが、第1ラケット200-1と第1ラケット200-1との所定のエリアに飛翔体50を通過させることができなかった場合と、所定のエリアと所定のエリア以外との境界部分に飛翔体50を衝突させた場合に、ラリーの相手側に点数が入るようにする。飛翔体50と、境界部分とが衝突する危険を回避するために、スイングの回数は一度に決めてもよい。予め点数を指定しておき、指定した点数を先に取得したユーザを勝利とする。
 第1ラケット200-1は、第1グリップ部を備え、第1グリップ部に対して電磁波によって所定のエリアを形成することでフェースを形成する。第2ラケット200-2は、第2グリップ部を備え、第2グリップ部に対して電磁波によって所定のエリアを形成することでフェースを形成する。
 第1ユーザU1は、飛翔体50をシャトルに見立てて、飛翔体50の飛行音を手掛かりにして、フェースを飛翔体50が通過するように、第1ラケット200-1を振る。第1ユーザU1が第1ラケット200-1を振ることによって、飛翔体50が電磁波によって形成されたフェースを通過する。飛翔体50がフェースを通過する際にフェースが変位する。第1ラケット200-1は、フェースの変位を検出する。また、第1ラケット200-1は、フェースの変位を検出したときの第1グリップの動きを検出し、第1ラケット200-1の識別情報(以下「第1ラケット識別情報」という)と検出した第1グリップの動きを特定する情報とを含む、情報処理装置100を宛先とする動き通知を作成する。第1ラケット200-1は、作成した動き通知を情報処理装置100に送信する。
 情報処理装置100は、第1ラケットと第2ラケットとの各々について、第1ラケット識別情報と第2ラケット200-2の識別情報(以下「第2ラケット識別情報」という)と、第1ラケットのアドレスと第2ラケットのアドレスとを関連付けたアドレス情報を記憶している。情報処理装置100は、飛翔体50のアドレスを記憶している。アドレスの一例はIPアドレスである。
 情報処理装置100は、第1ラケット200-1が送信した動き通知を受信し、受信した動き通知に含まれる第1ラケット識別情報と検出した第1グリップの動きを特定する情報とを取得する。情報処理装置100は、第1ラケット200-1が送信した動き通知を受信したときの飛翔体50の軌道を特定する情報と飛行方向を特定する情報を取得する。情報処理装置100は、取得した第1グリップの動きを特定する情報と飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて、第1ラケット200-1が動き通知を送信した後の飛翔体50の軌道と飛行方向とを把握する。
 情報処理装置100は、グリップ部の動き、飛翔体50の軌道および飛翔体50の飛行方向と、その後の飛翔体50の軌道と飛翔体50の飛行方向との関係を機械学習しており、その機械学習の結果(学習済モデル)を記憶している。情報処理装置100は、学習済モデルを使用して、取得した第1グリップの動きを特定する情報、飛翔体50の軌道を特定する情報および飛翔体50の飛行方向を特定する情報を学習済モデルに入力し、学習済モデルが出力する飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。情報処理装置100は、取得した飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて、飛翔体50を、軌道を特定する情報に該当する軌道で、飛行方向に該当する飛行方向に飛行させるための制御情報を作成する。情報処理装置100は、作成した制御情報を飛翔体50送信する。
 飛翔体50は、情報処理装置100が送信した制御情報を受信し、受信した制御情報に基づいて、軌道と飛行方向とを制御する。例えば、飛翔体50は、軌道を特定する情報に該当する軌道で、ユーザU1からユーザU2の方へ飛行方向を変更する。
 第2ユーザU2は、飛翔体50をシャトルに見立てて、飛翔体50の飛行音を手掛かりにして、フェースを飛翔体50が通過するように、第2ラケット200-2を振る。第2ユーザU2が第2ラケット200-2を振ることによって、飛翔体50が電磁波によって形成されたフェースを通過する。飛翔体50がフェースを通過する際にフェースが変位する。第2ラケット200-2は、フェースの変位を検出する。また、第2ラケット200-2は、フェースの変位を検出したときの第2グリップの動きを検出し、第2ラケット識別情報と検出した第2グリップの動きを特定する情報とを含む、情報処理装置100を宛先とする動き通知を作成する。第2ラケット200-2は、作成した動き通知を情報処理装置100に送信する。
 情報処理装置100は、第2ラケット200-2が送信した動き通知を受信し、受信した動き通知に含まれる第2ラケット識別情報と検出した第2グリップの動きを特定する情報とを取得する。情報処理装置100は、第2ラケット200-2が送信した動き通知を受信したときの飛翔体50の軌道を特定する情報と飛行方向を特定する情報を取得する。情報処理装置100は、取得した第2グリップの動きを特定する情報と飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて、第2ラケット200-2が動き通知を送信した後の飛翔体50の軌道と飛行方向とを把握する。情報処理装置100は、取得した飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて、飛翔体50を、軌道を特定する情報に該当する軌道で、飛行方向に該当する飛行方向に飛行させるための制御情報を作成する。情報処理装置100は、作成した制御情報を飛翔体50送信する。
 飛翔体50は、情報処理装置100が送信した制御情報を受信し、受信した制御情報に基づいて、軌道と飛行方向とを制御する。例えば、飛翔体50は、軌道を特定する情報に該当する軌道で、ユーザU2からユーザU1の方へ飛行方向を変更する。
 第1ラケット200-1と第2ラケット200-2とのうち、任意のラケットをラケット200と記載する。
 以下、飛翔体制御システム1に含まれる飛翔体50と、情報処理装置100と、ラケット200との各々について、順次説明する。
 (飛翔体50)
 飛翔体50は、人が搭乗しない(無人機である)で飛翔する物体である。飛翔体50の一例は、無人航空機(unmanned aerial vehicle; UAV)、ドローン(drone)である。
 図2は、本実施形態の飛翔体制御システムに含まれる飛翔体の外観模式図の一例を示す図である。
 飛翔体50は、モータ53aとモータ53bとモータ53cとモータ53dとロータ54aとロータ54bとロータ54cとロータ54dとを備える。モータ53a、モータ53b、モータ53cおよびモータ53dは、対応するロータ54a、ロータ54b、ロータ54cおよびロータ54dを、それぞれ回転させることにより、飛翔体50に揚力および推進力を与える。また、モータ53a、モータ53b、モータ53cおよびモータ53dの各々に供給する駆動電流を制御することにより、飛翔体50の飛行高度、方位、進行方向を制御することができる。
 以下、モータ53a、モータ53b、モータ53cおよびモータ53dのうち、任意のモータをモータ53と記載する。また、ロータ54a、ロータ54b、ロータ54cおよびロータ54dのうち、任意のロータをロータ54と記載する。
 図3は、本実施形態の飛翔体制御システムの一例に含まれる飛翔体と情報処理装置とラケットとの詳細を示す図である。
 本実施形態の飛翔体50について説明する。飛翔体50は、例えば、通信部52とモータ53とロータ54と飛行制御部55と速度計56とセンサ57と電源部58と記憶部60とを備える。
 通信部52は、通信モジュールによって実現される。通信部52は、ネットワークNWを介して、外部の通信装置と通信する。通信部52は、例えば、無線LAN、ブルートゥース(登録商標)又はLTE(登録商標)などの無線通信方式で通信してもよい。通信部52は、飛翔体50を制御する情報処理装置100との間で通信を行う。通信部52は、情報処理装置100が送信する制御信号を受信する。
 飛行制御部55は、通信部52から制御信号を取得し、取得した制御信号に含まれる制御情報に基づいて、モータ53に供給する駆動電流を制御することにより、飛翔体50の軌道、飛行方向などの飛行を制御する。飛翔体の飛行には、ホバリングと、上昇と、下降と、前後左右移動と、左旋回と、右旋回とが含まれる。
 飛行制御部55は、速度計56から飛行速度の測定結果を取得し、センサ57から環境状況の計測結果を取得し、取得した飛行速度の測定結果と環境状況の計測結果とのいずれか一方又は両方に基づいて、モータ53に供給する駆動電流を制御することにより、飛翔体50の飛行を制御するようにしてもよい。
 速度計56は、飛翔体50の飛行速度を測定する。
 センサ57は、風向き、風速、気圧などの環境状況を計測する。
 電源部58は、飛翔体50の電源であるバッテリーを備える。
 飛行制御部55は、例えば、CPU(Central Processing Unit)などのハードウェアプロセッサが記憶部60に格納されたコンピュータプログラム(ソフトウェア)を実行することにより実現される。また、これらの機能部のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアとの協働によって実現されてもよい。コンピュータプログラムは、予めHDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置に格納されていてもよいし、DVD(Digital Versatile Disc)やCD-ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体がドライブ装置に装着されることでインストールされてもよい。
 (情報処理装置100)
 情報処理装置100は、パーソナルコンピュータ、サーバ、スマートフォン、タブレットコンピュータ又は産業用コンピュータ等の装置によって実現される。情報処理装置100は、例えば通信部102と作成部104と制御部105と記憶部110とを備える。
 通信部102は、通信モジュールによって実現される。通信部102は、ネットワークNWを介して、外部の通信装置と通信する。通信部102は、例えば無線LAN、ブルートゥース(登録商標)又はLTE(登録商標)などの無線通信方式で通信してもよい。また、通信部102は、例えば有線LANなどの通信方式で通信してもよい。
 記憶部110は、HDD、フラッシュメモリ、RAM、ROMなどにより実現される。記憶部110は、第1ラケットと第2ラケットとの各々について、第1ラケット識別情報と第2ラケット識別情報と、第1ラケットのアドレスと第2ラケットのアドレスとを関連付けたアドレス情報を記憶している。記憶部110は、飛翔体50のアドレスを記憶している。アドレスの一例はIPアドレスである。
 通信部102は、ラケット200が送信した動き通知を受信する。
 制御部105は、通信部102が受信した動き通知を取得し、取得した動き通知に含まれるラケット識別情報とグリップの動きを特定する情報とを取得する。制御部105は、飛翔体50の軌道を特定する情報と飛行方向を特定する情報とを取得する。取得する飛翔体50の軌道を特定する情報と飛行方向を特定する情報との一例は、以前(直近)に飛翔体50を制御する際に使用した情報である。制御部105は、取得したグリップの動きを特定する情報、飛翔体50の軌道を特定する情報および飛翔体50の飛行方向を特定する情報に基づいて飛翔体50の軌道と飛行方向とを把握する。
 制御部105は、学習済モデル105aを備える。学習済モデル105aは、ラケット200によって取得されたグリップ部の動きを特定する情報、飛翔体50の軌道を特定する情報および飛翔体50の飛行方向を特定する情報と、その後の飛翔体50の軌道と飛行方向との関係を機械学習した結果(学習済モデル)を含んで構成される。ここで、グリップ部の動きを特定する情報は、グリップ部に生じた加速度を特定する情報と、グリップ部の角速度を特定する情報とを含む。
 制御部105は、グリップの動きを特定する情報、飛翔体50の軌道を特定する情報および飛翔体50の飛行方向を特定する情報を学習済モデル105aに入力し、学習済モデル105aが出力する飛翔体50の軌道を特定する情報と飛行方向を特定する情報とを取得する。制御部105は、取得した飛翔体50の軌道を特定する情報と飛行方向を特定する情報とに基づいて、飛翔体50を、軌道を特定する情報に該当する軌道で、飛行方向に該当する飛行方向に飛行させるための制御情報を作成する。
 作成部104は、制御部105から制御情報を取得し、取得した制御情報を含む、ラケット200を宛先とする制御信号を作成する。作成部104は、作成した制御信号を、通信部102へ出力する。
 通信部102は、作成部104が出力した制御信号を飛翔体50に送信する。
 制御部105は、例えば、CPUなどのハードウェアプロセッサが記憶部110に格納されたコンピュータプログラム(ソフトウェア)を実行することにより実現される。また、これらの機能部のうち一部または全部は、LSIやASIC、FPGA、GPUなどのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアとの協働によって実現されてもよい。
 (ラケット200)
 図4は、本実施形態の飛翔体制御システムに含まれるラケットの外観模式図の一例を示す図である。
 ラケット200は、フレームFRとグリップ部GRとを含んで構成される。弱視者は、日常生活において、手でものを認識することが多い。そのため、弱視者でよっては、柄があることで、フレームの先端と手との間の距離感を掴むことが困難である。そこで、フレームFRとグリップ部GRとに分けてラケット200を構成した。具体的には、グリップ部GRは3Dプリンタで作成し、柄を設けないようにデザインした。フレームFRは弱視者が自身の障碍の程度によって選択できるように、フェースの面積が異なる数種類のフレームFRを用意し、グリップ部GRと接続できるように構成した。
 グリップ部GRに対して、電磁波によって所定のエリアA(フェース)が形成される。電磁波の一例は赤外線である。所定のエリアAの一例は、フレームFRの領域の少なくとも一部である。以下、一例として、グリップ部GRに対して、赤外線によってフェースが形成される場合について説明を続ける。
 フレームFRとグリップ部GRとのジョイント部分には検出部が取り付けられる。所定のエリアAの範囲は、検出部の数によって調節可能である。例えば、検出部の数を増加させることによって所定のエリアAの範囲を広げることが可能である。検出部の一例は、赤外線センサである。以下、一例として、検出部が赤外線センサである場合について説明を続ける。赤外線センサは、フェースの変位を検出する。例えば、フェースを形成する赤外線は、フェースを飛翔体50が通過することによって変位する。例えば、赤外線によって形成されたフェースを、飛翔体50が通過することによって、赤外線センサが赤外線を検出できなくなることによって、フェースの変位を検出する。図3に戻り説明を続ける。
 ラケット200は、例えば、フレームFRと、グリップ部GRとを備える。グリップ部GRは、通信部202と、エリア形成部203と、作成部204と、センサ206と、検出部207と、記憶部210とを備える。
 通信部202は、通信モジュールによって実現される。通信部202は、ネットワークNWを介して、外部の通信装置と通信する。通信部202は、例えば無線LAN、ブルートゥース(登録商標)又はLTE(登録商標)などの無線通信方式で通信してもよい。
 記憶部210は、HDD、フラッシュメモリ、RAM、ROMなどにより実現される。記憶部210は、第1ラケットと第2ラケットとの各々について、第1ラケット識別情報と第2ラケット識別情報と、第1ラケットのアドレスと第2ラケットのアドレスとを関連付けたアドレス情報を記憶している。アドレスの一例はIPアドレスである。
 エリア形成部203は、非接触式センサによって構成される。非接触式センサの一例は、距離センサである。例えば、エリア形成部203は、赤外線発光ダイオード(light emitting diode: LED)などから信号を出力して、出力した信号が戻るのにした時間、戻った信号の強度などの変位を測定する。
 センサ206は、例えば加速度計と角速度計とを含んで構成され、グリップ部GRに生じる加速度と角速度とを計測する。
 検出部207は、エリア形成部203から戻った信号の変位の測定結果を取得する。検出部207は、取得した戻った信号の変位の測定結果に基づいて、エリア形成部203が形成したエリアの変位を検出する。
 作成部204は、検出部207がエリアの変位を検出したときのグリップ部GRの動きを取得する。具体的には、作成部204は、検出部207がエリアの変位を検出したときに、センサ206から加速度と角速度との計測結果を取得する。作成部204は、センサ206から取得した加速度と角速度との計測結果を含む、情報処理装置100を宛先とする動き通知を作成する。作成部204は、作成した動き通知を通信部202へ出力する。通信部202は、作成部204が出力した動き通知を情報処理装置100へ送信する。
 作成部204は、例えば、CPUなどのハードウェアプロセッサが記憶部210に格納されたコンピュータプログラム(ソフトウェア)を実行することにより実現される。また、これらの機能部のうち一部または全部は、LSIやASIC、FPGA、GPUなどのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアとの協働によって実現されてもよい。
 (飛翔体制御システム1の動作)
 図5は、本実施形態の飛翔体制御システムの動作の一例を示すフローチャートである。図5を参照して、第1ユーザU1と第2ユーザU2とが、飛翔体50をシャトルに見立ててバドミントンを行う場合の処理の一例について説明する。
 (ステップS1-1)
 情報処理装置100において、制御部105は、飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。飛翔体50の軌道の一例は、サーブによる軌道である。飛翔体50の飛行方向の一例は、第1ユーザU1又は第2ユーザU2の方向である。飛翔体50の軌道をサーブによる軌道で飛翔体50の飛行方向を、第1ユーザU1の方向とした場合について説明を続ける。制御部105は、取得した飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて、飛翔体50をサーブによる軌道で第1ユーザU1の方向に飛行させるための制御情報を作成する。作成部104は、制御部105から制御情報を取得し、取得した制御情報を含む、飛翔体50を宛先とする制御信号を作成する。
 (ステップS2-1)
 情報処理装置100において、作成部104は、作成した制御信号を、通信部102へ出力する。通信部102は、作成部104が出力した制御信号を飛翔体50に送信する。
 (ステップS3-1)
 飛翔体50において、通信部52は、情報処理装置100が送信した制御信号を受信する。飛行制御部55は、通信部52から制御信号を取得し、取得した制御信号に含まれる制御情報に基づいて、モータ53に供給する駆動電流を制御することにより、飛翔体50の軌道と飛行方向とを変更する。
 (ステップS4-1)
 ユーザU1は、飛翔体50の飛行音を手掛かりにして、フェースを飛翔体50が通過するように、第1ラケット200-1を振る。第1ユーザU1が、第1ラケット200-1の所定のエリアに飛翔体50を通過させることができなかった場合と、所定のエリアと所定のエリア以外との境界部分に飛翔体50を衝突させた場合に、ラリーの相手側に点数が入る。ここでは、フェースを飛翔体50が通過した場合について説明を続ける。第1ラケット200-1において、検出部207は、エリア形成部203が形成したエリア(フェース)の変位を検出する。
 (ステップS5-1)
 第1ラケット200-1において、検出部207は、エリア形成部203から戻った信号の変位の測定結果を取得する。
 (ステップS6-1)
 第1ラケット200-1において、作成部204は、検出部207がエリアの変位を検出したときのグリップ部GRの動きを取得する。作成部204は、センサ206から取得した加速度と角速度との計測結果を含む、情報処理装置100を宛先とする動き通知を作成する。
 (ステップS7-1)
 第1ラケット200-1において、作成部204は、作成した動き通知を通信部202へ出力する。通信部202は、作成部204が出力した動き通知を情報処理装置100へ送信する。
 (ステップS8-1)
 情報処理装置100において、通信部102は、第1ラケット200-1が送信した動き通知を受信する。制御部105は、通信部102が受信した動き通知を取得し、取得した動き通知に含まれるラケット識別情報とグリップGRの動きを特定する情報とを取得する。制御部105は、飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。
 (ステップS9-1)
 情報処理装置100において、制御部105は、取得したグリップGRの動きを特定する情報と飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて飛翔体50の軌道と飛行方向とを把握する。制御部105は、グリップGRの動きを特定する情報、飛翔体50の軌道を特定する情報および飛翔体50の飛行方向を特定する情報を学習済モデル105aに入力し、学習済モデル105aが出力する飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。制御部105は、取得した飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて、飛翔体50を、軌道を特定する情報に該当する軌道で、飛行方向を特定する情報に該当する飛行方向に飛行させるための制御情報を作成する。作成部104は、制御部105から制御情報を取得し、取得した制御情報を含む、飛翔体50を宛先とする制御信号を作成する。
 (ステップS10-1)
 情報処理装置100において、作成部104は、作成した制御信号を、通信部102へ出力する。通信部102は、作成部104が出力した制御信号を飛翔体50に送信する。
 (ステップS11-1)
 飛翔体50において、通信部52は、情報処理装置100が送信した制御信号を受信する。飛行制御部55は、通信部52から制御信号を取得し、取得した制御信号に含まれる制御情報に基づいて、モータ53に供給する駆動電流を制御することにより、飛翔体50の軌道と飛行方向とを変更する。
 (ステップS12-1)
 ユーザU2は、飛翔体50の飛行音を手掛かりにして、フェースを飛翔体50が通過するように、第2ラケット200-2を振る。第2ユーザU2が、第2ラケット200-2の所定のエリアに飛翔体50を通過させることができなかった場合と、所定のエリアと所定のエリア以外との境界部分に飛翔体50を衝突させた場合に、ラリーの相手側に点数が入る。ここでは、フェースを飛翔体50が通過した場合について説明を続ける。第2ラケット200-2において、検出部207は、エリア形成部203が形成したエリア(フェース)の変位を検出する。
 (ステップS13-1)
 第2ラケット200-2において、検出部207は、エリア形成部203から戻った信号の変位の測定結果を取得する。
 (ステップS14-1)
 第2ラケット200-2において、作成部204は、検出部207がエリアの変位を検出したときのグリップ部GRの動きを取得する。作成部204は、センサ206から取得した加速度と角速度との計測結果を含む、情報処理装置100を宛先とする動き通知を作成する。
 (ステップS15-1)
 第2ラケット200-2において、作成部204は、作成した動き通知を通信部202へ出力する。通信部202は、作成部204が出力した動き通知を情報処理装置100へ送信する。
 (ステップS16-1)
 情報処理装置100において、通信部102は、第2ラケット200-2が送信した動き通知を受信する。制御部105は、通信部102が受信した動き通知を取得し、取得した動き通知に含まれるラケット識別情報とグリップGRの動きを特定する情報とを取得する。制御部105は、飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。
 (ステップS17-1)
 情報処理装置100において、制御部105は、取得したグリップGRの動きを特定する情報、飛翔体50の軌道を特定する情報および飛翔体50の飛行方向を特定する情報に基づいて飛翔体50の軌道と飛行方向とを把握する。制御部105は、グリップGRの動きを特定する情報、飛翔体50の軌道を特定する情報および飛翔体50の飛行方向を特定する情報を学習済モデル105aに入力し、学習済モデル105aが出力する飛翔体50の軌道を特定する情報と飛行方向を特定する情報とを取得する。制御部105は、取得した飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて、飛翔体50を、軌道を特定する情報に該当する軌道で、飛行方向に該当する飛行方向に飛行させるための制御情報を作成する。作成部104は、制御部105から制御情報を取得し、取得した制御情報を含む、飛翔体50を宛先とする制御信号を作成する。
 (ステップS18-1)
 情報処理装置100において、作成部104は、作成した制御信号を、通信部102へ出力する。通信部102は、作成部104が出力した制御信号を飛翔体50に送信する。
 (ステップS19-1)
 飛翔体50において、通信部52は、情報処理装置100が送信した制御信号を受信する。飛行制御部55は、通信部52から制御信号を取得し、取得した制御信号に含まれる制御情報に基づいて、モータ53に供給する駆動電流を制御することにより、飛翔体50の軌道と飛行方向とを変更する。その後、ステップS4-1に移行する。
 前述した実施形態では、第1ラケット200-1と第2ラケット200-2と飛翔体50とを使用した球技のルールの一例について、スイングの失敗、飛翔体50にラケットを衝突させ、飛翔体50を墜落させた場合には相手に点数が入り、指定した点数を先に取得したユーザ(プレイヤー)を勝利とする場合について説明したがこの例に限られない。
 例えば、二人一組になり、ラリーの度に飛翔体50の移動速度が速くなるように制御し、連続したラリーの回数を更新するルールとしてもよい。
 例えば、輪投げの要領で、飛翔体50をスイングによりコントロールして指定された場所に飛翔体50を移動させ、指定場所にあるポイントを足し合わせた点数が高いユーザ(プレイヤー)を勝利とするルールとしてもよい。
 スイングの失敗、飛翔体50にラケットを衝突させ、飛翔体50を墜落させた場合には相手に点数が入り、指定した点数を先に取得したユーザ(プレイヤー)を勝利とするルールにすることによって、特定のアクションを起こした場合に相手に点数が入り、指定ポイントを先取したプレイヤーに勝利させることができる。飛翔体50は衝突、墜落した場合に動作が困難になる可能性があるため、飛翔体50が衝突、墜落する可能性をなるべく排除できる。ユーザUがむやみに早くラケット200をスイングして、飛翔体50を墜落させることを防ぐことができる。
 前述した実施形態では、情報処理装置100において、制御部105は、飛翔体50の軌道を特定する情報と飛行方向を特定する情報として、以前(直近)に飛翔体50を制御する際に使用した情報を使用する場合について説明したがこの例に限られない。例えば、飛翔体50から軌道を特定する情報と飛行方向を特定する情報とを取得するように構成してもよい。
 前述した実施形態では、情報処理装置100において、グリップの動きを特定する情報と飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて、その後の飛翔体50の軌道と飛行方向とを把握する場合について説明したがこの例に限られない。例えば、情報処理装置100において、グリップの動きを特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて、その後の飛翔体50の飛行方向を把握するようにしてもよい。
 前述した実施形態では、電磁波を検出するセンサとIoT開発基板とを使用してガット部分に相当する所定のエリア(フェース)が形成されている場合について説明したが、この例に限られない。超音波を検出するセンサとIoT開発基板とを使用してガット部分に相当する所定のエリア(フェース)が形成されてもよい。
 前述した実施形態では、学習済モデル105aを使用して、飛翔体50の軌道と飛翔体50の飛行方向とを取得する場合について説明したがこの例に限られない。例えば、センサから得られる情報に基づいて、飛翔体50の軌道と飛行方向とを自動シミュレートすることによって飛翔体50の軌道と飛翔体50の飛行方向とを取得するようにしてもよい。
 前述した実施形態において、学習済モデル105aが更新されてもよい。
 前述した実施形態のバドミントンなどの球技は、弱視者に限らず、晴眼者が行うことも可能である。
 本実施形態の飛翔体制御システム1によれば、飛翔体制御システム1は、グリップ部GRに対して所定のエリアを形成するエリア形成部203と、エリア形成部203が形成した所定のエリアの変位を検出する検出部207と、検出部207が検出した所定のエリアの変位に基づいて、飛翔体50の飛行を制御する制御部105とを備える。
 このように構成することによって、ドローンなどの飛翔体50を球として使用するスポーツデザインおよび専用デバイスを提供できる。空中で移動する球を認識し、ラリーすることができるため、特に弱視者競技の選択肢やスポーツをする機会の幅を広げることができる。これまで、サポート技術の開発領域では、仮想空間を用いたシステムが多く、実世界における競技を成立させる技術は存在しなかったが、本実施形態によれば、競技を成立させることができる。弱視者の競技を開発できるため、弱視者が運動する際に選択できる競技の幅が広がるとともに、運動する機会を増やすことができる。
 飛翔体制御システム1において、制御部105は、グリップ部GRの動き特定する情報と、飛翔体50の飛行方向を特定する情報とに基づいて、グリップ部GRの動きと、飛翔体50の飛行方向との関係を機械学習することによって作成された学習済モデルを使用して、検出部207が所定のエリアの変位を検出したときのグリップ部GRの動きに基づいて、飛翔体50の飛行方向を制御する。
 このように構成することによって、弱視者が空中で移動する球を認識し、ラリーを行うことができる。弱視者が空中で移動する球を認識し、ラリーを行うことが困難な理由として三つの要因があげられる。一つ目は、球の大きさである。空中で移動する球が小さい場合、弱視者は自身の視力や視野角の制限により、位置を把握することが困難であり、見失うことがある。二つ目は、球の移動速度である。空中で移動する球はバウンドによる減速が見込まれず、速度が速いことが多いため、球を当てるタイミングを掴むことが困難である。三つ目は、音源定位の困難性である。バウンドを必要としないデザインの競技では、音源を球の中に入れた場合でも、音が鳴るタイミングが一定ではないため、音によるサポートをすることは困難である。飛翔体制御システム1では、飛翔体50の速度や、軌道をプログラムできるため、飛翔体50の人為的な移動が可能である。ある程度の大きさを持ち、自身から飛行音が鳴っている飛翔体50を使用できる。
 飛翔体制御システム1において、グリップ部GRの動きを特定する情報は、加速度を特定する情報と、角速度を特定する情報とを含む。
 このように構成することによって、飛翔体50が、フェースを通過させる際に、グリップ部GRの動きを特定する情報に含まれる加速度を特定する情報と角速度を特定する情報とに基づいてラケットの6軸データなどを検出できる。検出したデータに基づいて、予め用意された軌道の中から適切な軌道を飛翔体50に再生させることができる。例えば、右方向にスイングした場合、飛翔体50は右方向に移動する軌道が再生される。グリップ部GRの動きを特定する情報に基づいて、飛翔体50の速度や、軌道を制御できる。
 飛翔体制御システム1において、飛翔体50の飛行は、ホバリングと、上昇と、下降と、前後左右移動と、左旋回と、右旋回とが含まれる。
 このように構成することによって、飛翔体50に、ホバリングと、上昇と、下降と、前後左右移動と、左旋回と、右旋回とをさせることができる。
 飛翔体制御システム1において、エリア形成部203は、非接触式センサによって、所定のエリアを形成する。
 このように構成することによって、ガットの代わりに赤外線センサなどの非接触式センサを使用したラケット200を使用できる。ユーザ(プレイヤー)は、フレームFR内に飛翔体50を通過させることで飛翔体50を相手方向に移動させ、ラリーを成立させることができる。仮に従来のラケットを使用する場合には、ガットに飛翔体50が衝突し、飛翔体50が破損し、ユーザ(プレイヤー)に危険が及ぶおそれがあった。
 飛翔体制御システム1において、検出部207は、非接触式センサの検出結果に基づいて、エリア形成部203が形成した所定のエリアの変位を検出する。
 このように構成することによって、エリア形成部203が形成した所定のエリアの変位を検出できるため、検出結果に基づいて飛翔体50がフェースを通過したか否かに基づいて飛翔体50の飛行を制御できる。
 (実施形態の変形例)
 (飛翔体制御システム)
 図6は、実施形態の変形例の飛翔体制御システムの構成例を示す図である。実施形態の変形例の飛翔体制御システム1aは、飛翔体50と第1ラケット200a-1と第2ラケット200a-2とを備える。実施形態の飛翔体制御システム1aは、実施形態の飛翔体制御システム1と比較して、情報処理装置100を備えない点で異なる。飛翔体50と第1ラケット200a-1と第2ラケット200a-2とは、ネットワークNWを介して通信する。
 第1ラケット200a-1と第2ラケット200a-2とは、ラケットのガット部分が取り除かれ、電磁波を検出するセンサとIoT開発基板とを使用してガット部分に相当する所定のエリア(フェース)が形成されている。
 第1ラケット200a-1と第2ラケット200a-2とは、飛翔体50が所定のエリアを通過したことを検出し、検出結果に基づいて、飛翔体50の軌道と飛行方向とを変更させる。
 第1ラケット200a-1、第2ラケット200a-2などの複数のラケットを使用することで、球技が行われる。球技の一例は、バドミントンなどである。以下、一例として、第1ユーザU1と第2ユーザU2とが、第1ラケット200a-1と第2ラケット200a-2との2つのラケットを使用して飛翔体50をシャトルに見立ててバドミントンでラリーを行う場合について説明を続ける。
 第1ユーザU1と第2ユーザU2とは、コートCOの両側に位置する。コートCOの両側がネットなどによって隔てられていてもよい。第1ラケット200a-1は第1ユーザU1が使用し、第2ラケット200a-2は第2ユーザU2が使用する。第1ユーザU1と第2ユーザU2との一例は、弱視者などの視覚障碍者である。
 第1ラケット200a-1と第2ラケット200a-2とは、前または後、上または下、左または右に(3次元の直交座標系の軸に沿って)スイング前の6軸データを使用して機械学習を使用して、飛翔体50の軌道について、移動方向を左右直線の三種類の軌道から選択し、飛翔体50に再生させる。
 第1ユーザU1と第2ユーザU2とが、第1ラケット200a-1と第1ラケット200a-1との所定のエリアに飛翔体50を通過させることができなかった場合と、所定のエリアと所定のエリア以外との境界部分に飛翔体50を衝突させた場合に、ラリーの相手側に点数が入るようにする。飛翔体50と、境界部分とが衝突する危険を回避するために、スイングの回数は一度に決めてもよい。予め点数を指定しておき、指定した点数を先に取得したユーザを勝利とする。
 第1ラケット200a-1は、第1グリップ部を備え、第1グリップ部に対して電磁波によって所定のエリアを形成することでフェースを形成する。第2ラケット200a-2は、第2グリップ部を備え、第2グリップ部に対して電磁波によって所定のエリアを形成することでフェースを形成する。
 第1ユーザU1は、飛翔体50をシャトルに見立てて、飛翔体50の飛行音を手掛かりにして、フェースを飛翔体50が通過するように、第1ラケット200a-1を振る。第1ユーザU1が第1ラケット200a-1を振ることによって、飛翔体50が電磁波によって形成されたフェースを通過する。飛翔体50がフェースを通過する際にフェースが変位する。第1ラケット200a-1は、フェースの変位を検出する。また、第1ラケット200a-1は、フェースの変位を検出したときの第1グリップの動きを検出する。
 第1ラケット200a-1は、検出した第1グリップの動きを特定する情報、飛翔体50の軌道を特定する情報および飛翔体50の飛行方向を特定する情報に基づいて、第1ラケット200a-1が動き通知を送信した後の飛翔体50の軌道と飛行方向を把握する。
 第1ラケット200a-1は、第2ラケットのアドレスと、飛翔体50のアドレスとを記憶している。アドレスの一例はIPアドレスである。第1ラケット200a-1は、グリップ部の動き、飛翔体50の軌道および飛翔体50の飛行方向と、その後の飛翔体50の軌道と飛翔体50の飛行方向との関係を機械学習しており、その機械学習の結果(学習済モデル)を記憶している。第1ラケット200a-1は、学習済モデルを使用して、取得した第1グリップの動きを特定する情報、飛翔体50の軌道を特定する情報および飛翔体50の飛行方向を特定する情報を学習済モデルに入力し、学習済モデルが出力する飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。第1ラケット200a-1は、取得した飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて、飛翔体50を、軌道を特定する情報に該当する軌道で、飛行方向に該当する飛行方向に飛行させるための制御情報を作成する。
 第1ラケット200a-1は、作成した制御情報を含む、飛翔体50を宛先とする制御信号を作成する。第1ラケット200a-1は、作成した制御信号を飛翔体50に送信する。第1ラケット200a-1は、飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを含む、第2ラケット200a-2を宛先とする飛行方向通知を作成する。第1ラケット200a-1は、作成した飛行方向通知を第2ラケット200a-2に送信する。
 飛翔体50は、第1ラケット200a-1が送信した制御信号を受信し、受信した制御信号に含まれる制御情報に基づいて、軌道と飛行方向とを制御する。例えば、飛翔体50は、軌道を特定する情報に該当する軌道で、ユーザU1からユーザU2の方へ飛行方向を変更する。
 第2ラケット200a-2は、第1ラケット200a-1が送信した飛行方向通知を受信し、受信した飛行方向通知に含まれる飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。
 第2ユーザU2は、飛翔体50をシャトルに見立てて、飛翔体50の飛行音を手掛かりにして、フェースを飛翔体50が通過するように、第2ラケット200a-2を振る。第2ユーザU2が第2ラケット200a-2を振ることによって、飛翔体50が電磁波によって形成されたフェースを通過する。飛翔体50がフェースを通過する際にフェースが変位する。第2ラケット200a-2は、フェースの変位を検出する。また、第2ラケット200a-2は、フェースの変位を検出したときの第2グリップの動きを検出する。
 第2ラケット200a-2は、検出した第2グリップの動きを特定する情報、飛翔体50の軌道を特定する情報および飛翔体50の飛行方向を特定する情報に基づいて、第2ラケット200a-2が動き通知を送信した後の飛翔体50の軌道と飛行方向を把握する。
 第2ラケット200a-2は、第1ラケットのアドレスと、飛翔体50のアドレスとを記憶している。アドレスの一例はIPアドレスである。第2ラケット200a-2は、グリップ部の動き、飛翔体50の軌道および飛翔体50の飛行方向と、その後の飛翔体50の軌道と飛翔体50の飛行方向との関係を機械学習しており、その機械学習の結果(学習済モデル)を記憶している。第2ラケット200a-2は、学習済モデルを使用して、取得した第2グリップの動きを特定する情報、飛翔体50の軌道を特定する情報および飛翔体50の飛行方向を特定する情報を学習済モデルに入力し、学習済モデルが出力する飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。第2ラケット200a-2は、取得した飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて、飛翔体50を、軌道を特定する情報に該当する軌道で、飛行方向に該当する飛行方向に飛行させるための制御情報を作成する。
 第2ラケット200a-2は、作成した制御情報を含む、飛翔体50を宛先とする制御信号を作成する。第2ラケット200a-2は、作成した制御信号を飛翔体50に送信する。第2ラケット200a-2は、飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを含む、第1ラケット200a-1を宛先とする飛行方向通知を作成する。第2ラケット200a-2は、作成した飛行方向通知を第1ラケット200a-1に送信する。
 飛翔体50は、第2ラケット200a-2が送信した制御情報を受信し、受信した制御信号に含まれる制御情報に基づいて、軌道と飛行方向とを制御する。例えば、飛翔体50は、軌道を特定する情報に該当する軌道で、ユーザU2からユーザU1の方へ飛行方向を変更する。
 第1ラケット200a-1は、第2ラケット200a-2が送信した飛行方向通知を受信し、受信した飛行方向通知に含まれる飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。
 第1ラケット200a-1と第2ラケット200a-2とのうち、任意のラケットをラケット200aと記載する。
 以下、飛翔体制御システム1aに含まれる飛翔体50と、ラケット200aとについて、実施形態と異なるラケット200aについて説明する。図7は、実施形態の変形例の飛翔体制御システムの詳細を示す図である。
 (ラケット200a)
 実施形態の変形例の飛翔体制御システム1aに含まれるラケットの外観模式図の一例は、図4を適用できる。
 ラケット200aは、フレームFRとグリップ部GRとを含んで構成される。グリップ部GRに対して、電磁波によって所定のエリアA(フェース)が形成される。電磁波の一例は赤外線である。所定のエリアAの一例は、フレームFRの領域の少なくとも一部である。以下、一例として、グリップ部GRに対して、赤外線によってフェースが形成される場合について説明を続ける。
 フレームFRとグリップ部GRとのジョイント部分には検出部が取り付けられる。検出部の一例は、赤外線センサである。以下、一例として、検出部が赤外線センサである場合について説明を続ける。赤外線センサは、フェースの変位を検出する。例えば、フェースを形成する赤外線は、フェースを飛翔体50が通過することによって変位する。例えば、赤外線によって形成されたフェースを、飛翔体50が通過することによって、赤外線センサが赤外線を検出できなくなることによって、フェースの変位を検出する。
 ラケット200aは、例えば、フレームFRと、グリップ部GRとを備える。グリップ部GRは、通信部202と、エリア形成部203と、作成部204aと、制御部205と、センサ206と、検出部207と、記憶部210とを備える。
 記憶部210は、ラケット識別情報と、ラケットのアドレスとを関連付けたアドレス情報を記憶している。記憶部210は、飛翔体50のアドレスを記憶する。アドレスの一例はIPアドレスである。
 制御部205は、センサ206が検出したグリップの動きを特定する情報を取得する。制御部205は、飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。制御部205は、取得したグリップ部GRの動きを特定する情報、飛翔体50の軌道を特定する情報および飛翔体50の飛行方向を特定する情報に基づいて飛翔体50の軌道と飛行方向とを把握する。
 制御部205は、学習済モデル205aを備える。学習済モデル205aは、ラケット200aによって取得されたグリップ部GRの動きを特定する情報、飛翔体50の軌道および飛翔体50の飛行方向と、その後の飛翔体50の軌道と飛行方向との関係を機械学習した結果(学習済モデル)を含んで構成される。ここで、グリップ部GRの動きを特定する情報は、グリップ部GRに生じた加速度を特定する情報と、グリップ部GRの角速度を特定する情報とを含む。
 制御部205は、グリップ部GRの動きを特定する情報、飛翔体50の軌道を特定する情報および飛翔体50の飛行方向を特定する情報を学習済モデル205aに入力し、学習済モデル205aが出力する飛翔体50の軌道と飛行方向とを把握する。制御部205は、把握した飛翔体50の軌道を特定する情報と飛行方向を特定する情報とに基づいて、飛翔体50を、軌道を特定する情報に該当する軌道で、飛行方向を特定する情報に該当する飛行方向に飛行させるための制御情報を作成する。
 作成部204aは、制御部205から制御情報と飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。作成部204aは、取得した制御情報を含む、飛翔体50を宛先とする制御信号を作成する。作成部204aは、作成した制御信号を通信部202に出力する。通信部202は、作成部204aが出力した制御信号を取得し、取得した制御信号を飛翔体50に送信する。
 作成部204aは、飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを含む、他のラケット200aを宛先とする飛行方向通知を作成する。作成部204aは、作成した飛行方向通知を通信部202に出力する。通信部202は、作成部204aが出力した飛行方向通知を取得し、取得した飛行方向通知を飛翔体50に送信する。
 作成部204a、制御部205は、例えば、CPUなどのハードウェアプロセッサが記憶部210に格納されたコンピュータプログラム(ソフトウェア)を実行することにより実現される。また、これらの機能部のうち一部または全部は、LSIやASIC、FPGA、GPUなどのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアとの協働によって実現されてもよい。
 (飛翔体制御システム1aの動作)
 図8は、実施形態の変形例の飛翔体制御システムの動作の一例を示すフローチャートである。図8を参照して、第1ユーザU1と第2ユーザU2とが、飛翔体50をシャトルに見立ててバドミントンを行う場合の処理について説明する。
 (ステップS1-2)
 第2ラケット200a-2において、制御部205は、飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。飛翔体50の軌道の一例は、サーブによる軌道である。飛翔体50の飛行方向の一例は、ラリー相手である第1ユーザU1の方向である。飛翔体50の軌道をサーブによる軌道で飛翔体50の飛行方向を、第1ユーザU1の方向とした場合について説明を続ける。制御部205は、取得した飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて、飛翔体50をサーブによる軌道で第1ユーザU1の方向に飛行させるための制御情報を作成する。作成部204aは、制御部205から制御情報を取得し、取得した制御情報を含む、飛翔体50を宛先とする制御信号を作成する。
 (ステップS2-2)
 第2ラケット200a-2において、作成部204aは、作成した制御信号を通信部202に出力する。通信部202は、作成部204aが出力した制御信号を飛翔体50に送信する。
 (ステップS3-2)
 飛翔体50において、通信部52は、第2ラケット200a-2が送信した制御信号を受信する。飛行制御部55は、通信部52が受信する制御信号を取得し、取得した制御信号に含まれる制御情報に基づいて、モータ53に供給する駆動電流を制御することにより、飛翔体50の軌道と飛行方向とを変更する。
(ステップS4-2)
 第2ラケット200a-2において、作成部204aは、制御部205から飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得し、取得した飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを含む、第1ラケット200a-1を宛先とする飛行方向通知を作成する。
(ステップS5-2)
 第2ラケット200a-2において、作成部204aは、作成した飛行方向通知を通信部202に出力する。通信部202は、作成部204aが出力した飛行方向通知を第1ラケット200a-1に送信する。
(ステップS6-2)
 ユーザU1は、飛翔体50の飛行音を手掛かりにして、フェースを飛翔体50が通過するように、第1ラケット200a-1を振る。第1ユーザU1が、第1ラケット200a-1の所定のエリアに飛翔体50を通過させることができなかった場合と、所定のエリアと所定のエリア以外との境界部分に飛翔体50を衝突させた場合に、ラリーの相手側に点数が入る。ここでは、フェースを飛翔体50が通過した場合について説明を続ける。
 第1ラケット200a-1において、検出部207は、エリア形成部203が形成したエリア(フェース)の変位を検出する。
 (ステップS7-2)
 第1ラケット200a-1において、検出部207は、エリア形成部203から戻った信号の変位の測定結果を取得する。制御部205は、検出部207がエリアの変位を検出したときのグリップ部GRの動きを取得する。制御部205は、飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。
 (ステップS8-2)
 第1ラケット200a-1において、制御部205は、取得した飛行方向通知に含まれる飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて飛翔体50の軌道と飛行方向とを把握する。
 (ステップS9-2)
 第1ラケット200a-1において、制御部205は、グリップの動きを特定する情報、飛翔体50の軌道を特定する情報および飛翔体50の飛行方向を特定する情報を学習済モデル205aに入力し、学習済モデル205aが出力する飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。制御部205は、取得した飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて、飛翔体50を、軌道を特定する情報に該当する軌道で飛行方向を特定する情報に該当する飛行方向に飛行させるための制御情報を作成する。作成部204aは、制御部205から制御情報を取得し、取得した制御情報を含む、第2ラケット200a-2を宛先とする制御信号を作成する。
 (ステップS10-2)
 第1ラケット200a-1において、作成部204aは、作成した制御信号を通信部202に出力する。通信部202は、作成部204aが出力した制御信号を飛翔体50に送信する。
 (ステップS11-2)
 飛翔体50において、通信部102は、第1ラケット200a-1が送信した制御信号を受信する。飛行制御部55は、通信部102が受信した制御信号を取得し、取得した制御信号に含まれる制御情報に基づいて、モータ53に供給する駆動電流を制御することにより、飛翔体50の軌道と飛行方向とを変更する。
(ステップS12-2)
 第1ラケット200a-1において、作成部204aは、制御部205から飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得し、取得した飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを含む、第2ラケット200a-2を宛先とする飛行方向通知を作成する。
(ステップS13-2)
 第1ラケット200a-1において、作成部204aは、作成した飛行方向通知を通信部202に出力する。通信部202は、作成部204aが出力した飛行方向通知を第2ラケット200a-2に送信する。
(ステップS14-2)
 ユーザU2は、飛翔体50の飛行音を手掛かりにして、フェースを飛翔体50が通過するように、第2ラケット200a-2を振る。第2ユーザU2が、第2ラケット200a-2の所定のエリアに飛翔体50を通過させることができなかった場合と、所定のエリアと所定のエリア以外との境界部分に飛翔体50を衝突させた場合に、ラリーの相手側に点数が入る。ここでは、フェースを飛翔体50が通過した場合について説明を続ける。
 第2ラケット200a-2において、検出部207は、エリア形成部203が形成したエリア(フェース)の変位を検出する。
 (ステップS15-2)
 第2ラケット200a-2において、検出部207は、エリア形成部203から戻った信号の変位の測定結果を取得する。制御部205は、検出部207がエリアの変位を検出したときのグリップ部GRの動きを取得する。制御部205は、飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。
 (ステップS16-2)
 第2ラケット200a-2において、制御部205は、取得した飛行方向通知に含まれる飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて飛翔体50の軌道と飛行方向とを把握する。
 (ステップS17-2)
 第2ラケット200a-2において、制御部205は、グリップの動きを特定する情報、飛翔体50の軌道を特定する情報および飛翔体50の飛行方向を特定する情報を学習済モデル205aに入力し、学習済モデル205aが出力する飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得する。制御部205は、取得した飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とに基づいて、飛翔体50を、軌道を特定する情報に該当する軌道で飛行方向を特定する情報に該当する飛行方向に飛行させるための制御情報を作成する。作成部204aは、制御部205から制御情報を取得し、取得した制御情報を含む、第1ラケット200a-1を宛先とする制御信号を作成する。
 (ステップS18-2)
 第2ラケット200a-2において、作成部204aは、作成した制御信号を通信部202に出力する。通信部202は、作成部204aが出力した制御信号を飛翔体50に送信する。
 (ステップS19-2)
 飛翔体50において、通信部102は、第2ラケット200a-2が送信した制御信号を受信する。飛行制御部55は、通信部102が受信した制御信号を取得し、取得した制御信号に含まれる制御情報に基づいて、モータ53に供給する駆動電流を制御することにより、飛翔体50の軌道と飛行方向とを変更する。
(ステップS20-2)
 第2ラケット200a-2において、作成部204aは、制御部205から飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを取得し、取得した飛翔体50の軌道を特定する情報と飛翔体50の飛行方向を特定する情報とを含む、第1ラケット200a-1を宛先とする飛行方向通知を作成する。
(ステップS21-2)
 第2ラケット200a-2において、作成部204aは、作成した飛行方向通知を通信部202に出力する。通信部202は、作成部204aが出力した飛行方向通知を第1ラケット200a-1に送信する。その後、ステップS6-2に移行する。
 本実施形態の変形例の飛翔体制御システム1aによれば、前述した実施形態と同様の効果が得られるとともに、情報処理装置100を備える必要がないため、飛翔体制御システム1aに含まれる装置構成を簡略化できる。
 以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組合わせを行うことができる。これら実施形態およびその変形例は、発明の範囲や要旨に含まれると同時に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 なお、前述の第1ラケット200-1、第2ラケット200-2、情報処理装置100、第1ラケット200a-1、第2ラケット200a―2は内部にコンピュータを有している。そして、前述した各装置の各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリなどをいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
 また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。
さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
1、1a…飛翔体制御システム、 50…飛翔体、 52…通信部、 53、53a、53b、53c、53d…モータ、 54、54a、54b、54c、54d…ロータ、 55…飛行制御部、 56…速度計、 57…センサ、 58…電源部、 60…記憶部、100…情報処理装置、 102…通信部、 104…作成部、 105…制御部、 105a…学習済モデル、 110…記憶部、 200…ラケット、 200-1、200a-1…第1ラケット、 200-2、200a-2…第2ラケット、 202…通信部、 203…エリア形成部、 204、204a…作成部、 205…制御部、 205a…学習済モデル、 206…センサ、 207…検出部、 210…記憶部

Claims (8)

  1.  グリップ部に対して所定のエリアを形成するエリア形成部と、
     前記エリア形成部が形成した所定の前記エリアの変位を検出する検出部と、
     前記検出部が検出した所定の前記エリアの前記変位に基づいて、飛翔体の飛行を制御する制御部と
     を備える、飛翔体制御システム。
  2.  前記制御部は、グリップ部の動き特定する情報と、飛翔体の飛行方向を特定する情報とに基づいて、グリップ部の動きと、飛翔体の飛行方向との関係を機械学習することによって作成された学習済モデルを使用して、前記検出部が所定の前記エリアの変位を検出したときの前記グリップ部の動きに基づいて、前記飛翔体の飛行方向を制御する、
     請求項1に記載の飛翔体制御システム。
  3.  前記グリップ部の動きを特定する情報は、加速度を特定する情報と、角速度を特定する情報とを含む、
     請求項2に記載の飛翔体制御システム。
  4.  飛翔体の前記飛行には、ホバリングと、上昇と、下降と、前後左右移動と、左旋回と、右旋回とが含まれる、請求項1から請求項3のいずれか一項に記載の飛翔体制御システム。
  5.  前記エリア形成部は、非接触式センサによって、所定の前記エリアを形成する、請求項1から請求項4のいずれか一項に記載の飛翔体制御システム。
  6.  前記検出部は、前記非接触式センサの検出結果に基づいて、前記エリア形成部が形成した所定の前記エリアの変位を検出する、請求項5に記載の飛翔体制御システム。
  7.  コンピュータが実行する、飛翔体制御方法であって、
     グリップ部に対して形成された所定のエリアの変位を検出するステップと、
     所定の前記エリアの前記変位に基づいて、飛翔体の飛行を制御するステップと
     を有する、飛翔体制御方法。
  8.  コンピュータに、
     グリップ部に対して形成された所定のエリアの変位を検出するステップと、
     所定の前記エリアの前記変位に基づいて、飛翔体の飛行を制御するステップと
     を実行させる、プログラム。
PCT/JP2022/023657 2021-06-30 2022-06-13 飛翔体制御システム、飛翔体制御方法およびプログラム WO2023276640A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163216529P 2021-06-30 2021-06-30
US63/216,529 2021-06-30
JP2021165764A JP2023007307A (ja) 2021-06-30 2021-10-07 飛翔体制御システム、飛翔体制御方法およびプログラム
JP2021-165764 2021-10-07

Publications (1)

Publication Number Publication Date
WO2023276640A1 true WO2023276640A1 (ja) 2023-01-05

Family

ID=84692238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023657 WO2023276640A1 (ja) 2021-06-30 2022-06-13 飛翔体制御システム、飛翔体制御方法およびプログラム

Country Status (1)

Country Link
WO (1) WO2023276640A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160250535A1 (en) * 2015-02-27 2016-09-01 Joseph S. Yatsko Apparatus and method for arial game playing
KR20180079084A (ko) * 2016-12-30 2018-07-10 동의대학교 산학협력단 이동체와 이를 무선 조종하는 무선조종기
WO2021079967A1 (ja) * 2019-10-25 2021-04-29 京セラ株式会社 ラケット用解析システム、ラケット用解析装置、ラケット用解析プログラム及びラケット用解析方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160250535A1 (en) * 2015-02-27 2016-09-01 Joseph S. Yatsko Apparatus and method for arial game playing
KR20180079084A (ko) * 2016-12-30 2018-07-10 동의대학교 산학협력단 이동체와 이를 무선 조종하는 무선조종기
WO2021079967A1 (ja) * 2019-10-25 2021-04-29 京セラ株式会社 ラケット用解析システム、ラケット用解析装置、ラケット用解析プログラム及びラケット用解析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SADASUE MASAAKI: "There Blind Badminton -System Development to Recognize a Flying Object Without Vision-", 26 February 2021 (2021-02-26), XP093018576, Retrieved from the Internet <URL:https://web.archive.org/web/20210226230937if_/https://klis.tsukuba.ac.jp/archives/2019/201611509.pdf> [retrieved on 20230127] *
SUGIMOTO, TAKUYA, GOUKO, MANABU: "Realization of hovering using reinforcement learning with an actual UAV", LECTURE PROCEEDINGS OF THE ROBOTICS AND MECHATRONICS CONFERENCE 2016. THE JAPAN SOCIETY OF MECHANICAL ENGINEERS, 8 June 2016 (2016-06-08), pages 1P1 - to 1P1-04b2(3), XP093018574, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/jsmermd/2016/0/2016_1P1-04b2/_pdf/-char/ja> [retrieved on 20230127] *

Similar Documents

Publication Publication Date Title
US10286330B2 (en) Apparatus and method for arial game playing
EP3592443B1 (en) Augmented ride system and method
Gerndt et al. Humanoid robots in soccer: Robots versus humans in RoboCup 2050
Regan Visual factors in hitting and catching
US20210096648A1 (en) Virtual reality haptic system and apparatus
US10112076B2 (en) Robotic athletic training or sporting method, apparatus, system, and computer program product
EP3242732B1 (en) Mobile platform
Nitta et al. HoverBall: augmented sports with a flying ball
US11614796B1 (en) Virtual reality haptic system and apparatus
KR102233490B1 (ko) 구기스포츠를 위한 3차원 타겟 시스템
US11352135B2 (en) Tactile and force feedback in virtual reality via drone
KR101683147B1 (ko) 장난감 비행체를 이용한 게임 장치
JP6910809B2 (ja) シミュレーションシステム、プログラム及びコントローラ
CN107551539A (zh) 一种空中对战模拟设备及系统
JP2019008751A (ja) 情報処理方法、プログラム及び情報処理装置
KR20200111300A (ko) 드론 당구공 및 이를 포함한 당구대 세트
CN114404938B (zh) 一种虚拟现实方法
US6042490A (en) Systems and methods of playing games in three dimensions
JP6806868B2 (ja) ゴルフのスイングの練習を補助する人工知能、及び拡張現実基盤のゴルフ練習装置
WO2023276640A1 (ja) 飛翔体制御システム、飛翔体制御方法およびプログラム
Zaidi et al. Athletic mobile manipulator system for robotic wheelchair tennis
JP2023007307A (ja) 飛翔体制御システム、飛翔体制御方法およびプログラム
Nitta et al. Shepherd pass: ability tuning for augmented sports using ball-shaped quadcopter
JP3138335U (ja) 疑似輪投げ遊戯装置
WO2019142229A1 (ja) ロボット装置、ロボット装置の制御方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832796

Country of ref document: EP

Kind code of ref document: A1