WO2023276501A1 - Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device - Google Patents

Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device Download PDF

Info

Publication number
WO2023276501A1
WO2023276501A1 PCT/JP2022/021504 JP2022021504W WO2023276501A1 WO 2023276501 A1 WO2023276501 A1 WO 2023276501A1 JP 2022021504 W JP2022021504 W JP 2022021504W WO 2023276501 A1 WO2023276501 A1 WO 2023276501A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
stool
index
ultrasonic
area
Prior art date
Application number
PCT/JP2022/021504
Other languages
French (fr)
Japanese (ja)
Inventor
幸哉 宮地
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023531712A priority Critical patent/JPWO2023276501A1/ja
Publication of WO2023276501A1 publication Critical patent/WO2023276501A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus used for examination of stool of a subject and a control method for the ultrasonic diagnostic apparatus.
  • Non-Patent Document 1 it is known that the appearance of stool in an ultrasound image differs depending on whether the stool in the subject is so-called hard stool or not.
  • Non-Patent Document 1 when a user such as a doctor confirms an ultrasound image showing the stool of a subject and determines the properties of the stool, normally, the stool as disclosed in Non-Patent Document 1 It was necessary to rely on qualitative information such as the relationship between the properties of stool and the appearance of stool on ultrasound images. Furthermore, examination of the stool of a subject using an ultrasonic diagnostic apparatus is a relatively new field of examination compared to examination of other examination subjects using an ultrasonic diagnostic apparatus. In many cases, it was difficult to judge the nature of the stool.
  • the present invention has been made to solve such conventional problems, and provides an ultrasonic diagnostic apparatus and a control method for the ultrasonic diagnostic apparatus that enable a user to easily determine the properties of the stool of a subject. for the purpose.
  • an ultrasonic probe an image generating unit that generates an ultrasonic image based on a received signal obtained by scanning a subject using an ultrasonic probe; an area detection unit that detects a stool area and an acoustic shadow area due to stool in the ultrasound image generated by the image generation unit; Based on at least one of luminance information of the stool area detected by the area detection unit, luminance information of the acoustic shadow area detected by the area detection unit, and shape information of the stool area detected by the area detection unit, An ultrasonic diagnostic apparatus comprising: an index calculation unit that calculates an index related to the properties of stool in a sample.
  • the ultrasonic diagnostic apparatus having a monitor, The ultrasonic diagnostic apparatus according to [1], wherein the index calculator displays the index on a monitor.
  • the index calculator displays the index as a numerical value on the monitor.
  • the index calculation unit displays indices in at least one of the vicinity of the stool region and the vicinity of the acoustic shadow region detected by the region detection unit.
  • the index calculation unit displays the index on the monitor by adding a color corresponding to the index to the outline of the stool area and the outline of the acoustic shadow area detected by the area detection unit.
  • the area detection unit according to any one of [1] to [5], wherein the area detection unit detects the stool area and the acoustic shadow area by performing image analysis on the ultrasonic image generated by the image generation unit.
  • Ultrasound diagnostic equipment [7] The area detection unit detects a stool area by performing image analysis on the ultrasonic image generated by the image generation unit, and detects a predetermined area located at a predetermined depth with respect to the stool area.
  • the ultrasonic diagnostic apparatus according to any one of [1] to [5] for detection as an acoustic shadow area.
  • index calculator according to any one of [1] to [7], wherein the index calculation unit calculates the index by calculating a ratio C or a difference D between the luminance information of the stool region and the luminance information of the acoustic shadow region. sound wave diagnostic equipment.
  • the ultrasonic diagnostic apparatus according to [8] which is calculated by: [10]
  • An index correction unit for correcting the index calculated by the index calculation unit based on transmission/reception conditions of ultrasonic waves transmitted/received by the ultrasonic probe and imaging conditions in the image generation unit [1] to [16] The ultrasonic diagnostic apparatus according to any one of 1.
  • a control method for an ultrasonic diagnostic apparatus comprising: calculating an index relating to the properties of stool in a subject based on at least one of luminance information of a stool region, luminance information of an acoustic shadow region, and shape information of a stool region.
  • an ultrasonic diagnostic apparatus includes an ultrasonic probe, an image generator for generating an ultrasonic image based on a received signal obtained by scanning a subject using the ultrasonic probe, and an image generator.
  • an area detection unit that detects a stool area and an acoustically shadowed area due to stool in an ultrasound image generated by a method, luminance information of the stool area detected by the area detecting unit, and luminance information of the acoustically shadowed area detected by the area detection unit
  • an index calculation unit that calculates an index related to the properties of stool in the subject based on at least one of the shape information of the stool region detected by the region detection unit. Properties can be easily determined.
  • FIG. 1 is a block diagram showing the configuration of an ultrasonic diagnostic apparatus according to an embodiment of the present invention
  • FIG. 1 is a block diagram showing the configuration of a transmission/reception circuit according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing the configuration of an image generator in the embodiment of the present invention
  • FIG. 2 is a schematic diagram showing an example of an ultrasound image according to the embodiment of the present invention
  • FIG. 4 is a schematic diagram showing an example of an ultrasonic image and indices displayed on a monitor in the embodiment of the present invention
  • It is a flow chart which shows the operation of the ultrasonic diagnostic apparatus according to the embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of a transmission/reception circuit according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing the configuration of an image generator in the embodiment of the present invention
  • FIG. 2 is a schematic diagram showing an example of an ultrasound image according to the embodiment of the present invention
  • FIG. 4 is a schematic
  • FIG. 4 is a schematic diagram showing an example in which indices are displayed near the stool region and near the acoustic shadow region, respectively, in the embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing an example in which colors are added to the outline of the stool area and the outline of the acoustic shadow area in the embodiment of the present invention;
  • FIG. 1 shows the configuration of an ultrasonic diagnostic apparatus 1 according to an embodiment of the present invention.
  • An ultrasonic diagnostic apparatus 1 includes an ultrasonic probe 2 and an apparatus body 3 connected to the ultrasonic probe 2 .
  • the ultrasonic probe 2 has a transducer array 11 connected to the device body 3 .
  • the device main body 3 has a transmission/reception circuit 12 connected to the transducer array 11 .
  • An image generation unit 13 , a display control unit 14 and a monitor 15 are connected to the transmission/reception circuit 12 in sequence.
  • An area detection unit 16 is also connected to the image generation unit 13 .
  • An index calculator 17 and an index corrector 18 are connected to the area detector 16 in sequence. Also, the index calculator 17 and the index corrector 18 are each connected to the display controller 14 .
  • a device control unit 19 is connected to the transmission/reception circuit 12, the image generation unit 13, the display control unit 14, the area detection unit 16, the index calculation unit 17, and the index correction unit 18.
  • An input device 20 is also connected to the device control section 19 .
  • a processor 21 for the device main body 3 is configured by the image generation unit 13, the display control unit 14, the area detection unit 16, the index calculation unit 17, the index correction unit 18, and the device control unit 19.
  • the transducer array 11 of the ultrasonic probe 2 has a plurality of ultrasonic transducers arranged one-dimensionally or two-dimensionally. These ultrasonic transducers each transmit ultrasonic waves in accordance with drive signals supplied from the transmission/reception circuit 12, receive ultrasonic echoes from the subject, and output signals based on the ultrasonic echoes.
  • Each ultrasonic transducer includes, for example, a piezoelectric ceramic typified by PZT (Lead Zirconate Titanate), a polymer piezoelectric element typified by PVDF (Poly Vinylidene Di Fluoride), and a PMN- It is constructed by forming electrodes on both ends of a piezoelectric body made of a piezoelectric single crystal or the like, typified by PT (Lead Magnesium Niobate-Lead Titanate).
  • PZT Lead Zirconate Titanate
  • PVDF Poly Vinylidene Di Fluoride
  • PMN- It is constructed by forming electrodes on both ends of a piezoelectric body made of a piezoelectric single crystal or the like, typified by PT (Lead Magnesium Niobate-Lead Titanate).
  • the transmission/reception circuit 12 transmits ultrasonic waves from the transducer array 11 and processes signals acquired by the transducer array 11 under the control of the device control unit 19 .
  • the transmitting/receiving circuit 12 includes a pulser 31 connected to the transducer array 11, an amplifier section 32 sequentially connected in series from the transducer array 11, an AD (Analog Digital) conversion section 33, and a beam It has a former 34 .
  • the pulsar 31 includes, for example, a plurality of pulse generators, and based on a transmission delay pattern selected according to a control signal from the device control unit 19, the ultrasonic transducers of the transducer array 11 transmit Each driving signal is supplied to a plurality of ultrasonic transducers by adjusting the delay amount so that the ultrasonic waves generated form ultrasonic beams.
  • a pulse-like or continuous-wave voltage is applied to the electrodes of the ultrasonic transducers of the transducer array 11
  • the piezoelectric body expands and contracts, and pulse-like or continuous-wave ultrasonic waves are generated from the respective ultrasonic transducers. are generated, and an ultrasonic beam is formed from the composite wave of these ultrasonic waves.
  • the transmitted ultrasonic beams are, for example, reflected by an object to be inspected within the subject and propagate toward the transducer array 11 of the ultrasonic probe 2 .
  • the ultrasonic echoes propagating toward the transducer array 11 in this manner are received by the respective ultrasonic transducers forming the transducer array 11 .
  • each ultrasonic transducer that constitutes the transducer array 11 expands and contracts by receiving a propagating ultrasonic echo, generates a received signal that is an electric signal, and these received signals are amplified by an amplifier. 32.
  • the amplification unit 32 amplifies the signal input from each ultrasonic transducer that constitutes the transducer array 11 and transmits the amplified signal to the AD conversion unit 33 .
  • the AD converter 33 converts the signal transmitted from the amplifier 32 into a digital format.
  • the beamformer 34 performs so-called reception focusing processing by giving respective delays to the digital received signals received from the AD converter 33 and adding them. By this reception focusing process, each reception signal converted by the AD converter 33 is subjected to phasing addition, and a reception signal in which the focus of the ultrasonic echo is narrowed down is acquired.
  • the image generator 13 has a configuration in which a signal processor 35, a DSC (Digital Scan Converter) 36, and an image processor 37 are connected in series.
  • the signal processing unit 35 corrects the attenuation due to the distance according to the depth of the reflection position of the ultrasonic wave to the sound ray signal sent from the transmission/reception circuit 12, and then performs envelope detection processing to obtain the sound ray signal from the subject.
  • a B-mode image signal which is tomographic image information regarding internal tissue, is generated.
  • the DSC 36 converts (raster-converts) the B-mode image signal generated by the signal processing unit 35 into an image signal conforming to the normal television signal scanning method.
  • the image processing unit 37 performs various necessary image processing such as gradation processing on the B-mode image signal input from the DSC 36, and then outputs the B-mode image signal to the display control unit in accordance with a command from the device control unit 19. 14 and area detection unit 16 .
  • the B-mode image signal subjected to image processing by the image processing unit 37 is simply referred to as an ultrasound image.
  • the region detection unit 16 performs image analysis on the ultrasonic image generated by the image generation unit 13, thereby detecting an intra-subject stool region R1 in the ultrasonic image U and a stool region R1 as shown in FIG. Detect the acoustic shadow region R2.
  • the stool region R1 is an ultrasonic wave beam transmitted from the transducer array 11 toward the inside of the subject and propagated toward the transducer array 11 by being reflected by the shallow part of the stool in the subject. Area imaged based on acoustic echoes.
  • the acoustic shadow region R2 is formed in the ultrasonic image U due to the presence of stool in the subject, is positioned deeper than the stool region R1, and has a lower brightness than the stool region R1.
  • the acoustic shadow region R2 when relatively hard stool is present in the subject, ultrasonic waves are reflected and attenuated by the stool, and ultrasonic echoes from the deep side of the stool reach the transducer array 11. It occurs when propagation becomes difficult.
  • the region detection unit 16 can use various commonly known methods as image analysis performed on the ultrasonic image U when detecting the feces region R1 and the acoustic shadow region R2.
  • the area detection unit 16 can use, for example, a so-called template matching method.
  • the area detection unit 16 prestores, for example, a plurality of templates with different shapes and textures for the stool area R1 and the acoustic shadow area R2, and determines the correlation between the patterns appearing in the ultrasonic image U and the templates. A value is calculated, and a region where the correlation value is equal to or higher than a certain value is detected as a feces region R1 or an acoustic shadow region R2.
  • the area detection unit 16 can also use, for example, a so-called machine learning method.
  • the region detection unit 16 may generate, for example, a plurality of teacher images regarding the stool region R1 and the acoustic shadow region R2, and a plurality of teacher images regarding the anatomical structures existing around the stool region R1 and the acoustic shadow region R2. is converted into a so-called feature vector in advance, and the obtained feature vector is used to detect the stool region R1 and the acoustic shadow region R2 by so-called Adaboost or SVM (Support Vector Machine).
  • Adaboost or SVM Serial Vector Machine
  • the area detection unit 16 can also use, for example, a so-called deep learning method.
  • the area detection unit 16 stores in advance a plurality of teacher images, for example, regarding the stool area R1, the acoustic shadow area R2, and the anatomical structures existing around the stool area R1 and the acoustic shadow area R2.
  • the stool region R1 and the acoustic shadow region R2 can be detected using a so-called segmentation model or the like based on a plurality of stored teacher images.
  • the index calculation unit 17 calculates at least one of the luminance information of the stool region R1, the luminance information of the acoustic shadow region R2, and the shape information, which is information regarding the shape and size of the stool region R1, and calculates the calculated stool region. Based on at least one of luminance information of R1, luminance information of acoustic shadow region R2, and shape information of stool region R1, an index relating to the properties of stool in the subject is calculated.
  • the index calculation unit 17 also displays the calculated index on the monitor 15 via the display control unit 14 .
  • the index calculation unit 17 can calculate, for example, the average value of the luminance over the entire feces region R1 as the luminance information of the feces region R1.
  • the index calculation unit 17 can also calculate, for example, the maximum luminance in the stool region R1 as the luminance information of the stool region R1.
  • the index calculation unit 17 calculates the intensity of the RF (Radio Frequency) signal in the feces region R1, that is, The strength of the received signal of the transducer array 11 can also be used.
  • the luminance value of each pixel in an ultrasonic image is often subjected to processing such as gain adjustment in order to clearly depict the ultrasonic image, but RF signals are not subjected to such processing. not Therefore, the index calculator 17 can calculate the index more accurately by using the intensity of the RF signal as the luminance information.
  • the ultrasonic beams transmitted from the transducer array 11 into the subject are likely to be reflected in the superficial portion of the stool and penetrate deep into the stool. tends to be difficult.
  • the stool of the subject is relatively soft, there is a tendency for the ultrasonic beams transmitted from the transducer array 11 into the subject to easily penetrate deep into the stool. Therefore, the luminance information of the stool region R1 tends to show a relatively high value when the stool of the subject is relatively hard, and a relatively low value when the stool of the subject is relatively soft.
  • the index calculator 17 calculates the luminance information of the stool region R1 as an index
  • the user of the ultrasonic diagnostic apparatus 1 such as a doctor should refer to the luminance information of the stool region R1 displayed on the monitor 15. Therefore, it is possible to easily determine the properties of the subject's stool, that is, whether the subject's stool is hard or soft.
  • the index calculation unit 17 can calculate, for example, the average value of the luminance over the entire acoustic shadow region R2 as the luminance information of the acoustic shadow region R2.
  • the index calculation unit 17 can also calculate, for example, the lowest luminance in the acoustic shadow region R2 as the luminance information of the acoustic shadow region R2.
  • the index calculator 17 can also use the intensity of the RF signal corresponding to the acoustic shadow region R2 instead of using the luminance value of the pixel in the ultrasonic image U as the luminance information of the acoustic shadow region R2.
  • the luminance information of the acoustic shadow region R2 shows a relatively low value when the stool of the subject is relatively hard, and is relatively high when the stool of the subject is relatively soft. tend to show value. Therefore, when the index calculator 17 calculates the luminance information of the acoustic shadow region R2 as an index, the user of the ultrasonic diagnostic apparatus 1, such as a doctor, refers to the luminance information of the acoustic shadow region R2 displayed on the monitor 15. By doing so, the properties of the subject's stool can also be easily determined.
  • the index calculation unit 17 can also calculate the index using both the luminance information of the feces region R1 and the luminance information of the acoustic shadow region R2.
  • the index calculator 17 can calculate, for example, the ratio C or the difference D between the luminance information of the stool region R1 and the luminance information of the acoustic shadow region R2 as an index.
  • the harder the stool of the subject the higher the luminance information Le of the stool region R1 and the lower the luminance information Ls of the acoustic shadow region R2.
  • a relatively hard stool tends to give a high value
  • a relatively soft stool tends to give a low value.
  • the brightness in the ultrasonic image U may vary depending on the imaging conditions, the subject, etc., but according to the ratio C, the influence of the brightness variation caused by the imaging conditions, the subject, etc. is reduced. can. Therefore, by checking the ratio C, a user such as a doctor can more accurately determine the nature of the stool.
  • the difference D tends to indicate a relatively low value.
  • the difference D can also reduce the influence of variations in luminance caused by the imaging conditions, the subject, or the like. can be determined.
  • the sum of the luminance information Le and the luminance information Ls obtained by subtracting the luminance information Ls of the acoustic shadow information from the luminance information Le of the fecal region R1 is normalized. Therefore, it is possible to further reduce the influence of variations in brightness caused by imaging conditions, the subject, or the like. Therefore, by checking the ratio C, a user such as a doctor can more accurately determine the nature of the stool.
  • the index calculation unit 17 calculates the ratio C using the formula (1) and calculates the difference D using the formula (2) or (3), the average luminance It is not limited to calculating the average luminance value of the acoustic shadow region R2.
  • the index calculation unit 17 calculates the average value of the intensity of the RF signal corresponding to the feces region R1 as the luminance information Le of the feces region R1, and calculates the RF signal corresponding to the acoustic shadow region R2 as the luminance information Ls of the acoustic shadow region R2. It is also possible to calculate the average value of the signal.
  • the index calculator 17 can calculate, for example, the depth direction of the stool region R1, that is, the length along the sound ray direction (sound ray direction) as the shape information of the stool region R1.
  • the index calculation unit 17 can calculate the length L1 along the depth direction at the central portion in the width direction of the feces region R1 as the shape information.
  • the width direction of the stool region R1 is a direction orthogonal to the direction along the sound ray SL passing through the center of the stool region R1.
  • L1 tends to be relatively short.
  • the length L1 tends to be relatively long. Therefore, a user such as a doctor can easily determine the properties of stool in the subject by checking the length L1.
  • the index calculation unit 17 can also calculate the average value of the length along the depth direction of the feces region R1 as the shape information of the feces region R1.
  • the index calculation unit 17 can calculate, for example, the luminance profile of the ultrasound image U on a line passing through the center of the stool region R1 in the width direction and along the depth direction.
  • the brightness profile is a graph obtained by plotting the relationship between the depth and the brightness value, for example, with the depth of the ultrasonic image U on the horizontal axis and the brightness value on the vertical axis.
  • a graph with an upwardly convex peak shape is formed in the depth range corresponding to the stool region R1.
  • the index calculation unit 17 calculates the length of the depth range having luminance values equal to or greater than half of the maximum luminance value, that is, the half width in the depth direction of the feces region R1. It can also be calculated as the length along.
  • the index calculation unit 17 can send the index calculated in this way to the display control unit 14 and display it on the monitor 15 as a numerical value as shown in FIG. 5, for example.
  • the luminance information Le of the feces region R1 is displayed on the monitor 15 as "mean luminance of feces region: W”
  • the luminance information Ls of the acoustic shadow region R2 is displayed as "acoustic
  • the ratio C is displayed as “luminance ratio: Y”
  • the shape information of the feces region R1 is displayed as “length in the depth direction: Z”.
  • the index correction unit 18 is controlled by the device control unit 19, and the index calculation unit 17 calculates the Correct the indicators.
  • the ultrasonic transmission/reception conditions include, for example, ultrasonic transmission frequency, ultrasonic transmission sound pressure, ultrasonic reception frequency, so-called analog gain, and so-called analog STC (sensitivity time control).
  • Imaging conditions also include, for example, so-called digital gain and so-called digital STC.
  • the index correction unit 18 can automatically correct the index based on the ultrasonic transmission/reception conditions and the imaging conditions, and can also correct the index using the user's input operation via the input device 20 as a trigger.
  • the device control section 19 controls each section of the device main body 3 according to a prerecorded program or the like. Under the control of the device control unit 19, the display control unit 14 displays the ultrasonic image U generated by the image generation unit 13, the index information calculated by the index calculation unit 17, and the index corrected by the index correction unit 18. are subjected to predetermined processing and displayed on the monitor 15 .
  • the monitor 15 performs various displays under the control of the display control unit 14.
  • the monitor 15 includes, for example, a display device such as an LCD (Liquid Crystal Display) or an organic EL display (Organic Electroluminescence Display).
  • the input device 20 is for a user such as a doctor to perform an input operation.
  • the input device 20 is configured by, for example, devices such as buttons, switches, touch pads, and touch panels for users to perform input operations.
  • the processor 21 having the image generation unit 13, the display control unit 14, the area detection unit 16, the index calculation unit 17, the index correction unit 18, and the device control unit 19 includes a CPU (Central Processing Unit), and It consists of a control program for making the CPU perform various processing, FPGA (Field Programmable Gate Array: Feed Programmable Gate Array), DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit: Application Specific Integrated Circuit), GPU (Graphics Processing Unit), other ICs (Integrated Circuits), or may be configured by combining them.
  • FPGA Field Programmable Gate Array: Feed Programmable Gate Array
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • GPU Graphics Processing Unit
  • other ICs Integrated Circuits
  • the image generation unit 13, the display control unit 14, the area detection unit 16, the index calculation unit 17, the index correction unit 18, and the device control unit 19 of the processor 21 are partially or wholly integrated into one CPU or the like. can also be configured
  • step S1 ultrasonic images U inside the subject are continuously captured while the user keeps the ultrasonic probe 2 in contact with the abdomen of the subject.
  • ultrasonic beams are transmitted into the object from the plurality of transducers of the transducer array 11 in accordance with the drive signal from the pulser 31 of the transmission/reception circuit 12, and each transducer that receives the ultrasonic echo from the object
  • a received signal is sent to the amplifying section 32 of the transmitting/receiving circuit 12 .
  • the received signal is amplified by the amplifier 32, converted from analog format to digital format by the AD converter 33, and phased and added by the beamformer 34 to generate a sound ray signal.
  • the sound ray signal is subjected to various types of processing in the image generation unit 13 to generate an ultrasonic image U.
  • the ultrasonic images U continuously generated in this way are displayed continuously on the monitor 15 at a constant frame rate.
  • step S2 the device control unit 19 determines whether or not the ultrasonic image U has been frozen by the user via the input device 20 .
  • to freeze the ultrasonic image U means that, in a state in which the ultrasonic image U is continuously displayed on the monitor 15, one frame displayed on the monitor 15 at the timing when the freeze instruction is issued by the user. To continue displaying the ultrasonic image U on the monitor 15 as a still image.
  • step S2 If it is determined in step S2 that the ultrasonic image U is not frozen, the process returns to step S1, and the ultrasonic image U is continuously generated again and displayed on the monitor 15. FIG. If it is determined in step S2 that the ultrasonic image U has been frozen, the process proceeds to step S3.
  • step S3 the region detection unit 16 performs processing for detecting the stool region R1 and the acoustic shadow region R2 in the ultrasound image U frozen in step S2.
  • the area detection unit 16 can perform a process of detecting the stool area R1 and the acoustic shadow area R2 using methods such as template matching, machine learning, or deep learning.
  • the index calculator 17 calculates an index regarding the properties of the subject's stool based on the stool region R1 and the acoustic shadow region R2 detected in step S4. At this time, the index calculator 17 can calculate, for example, the brightness information Le of the stool region R1 detected in step S4 as an index.
  • the index calculation unit 17 uses, as the luminance information Le of the feces region R1, for example, an average value of luminance values over the feces region R1, a maximum value of luminance values in the feces region R1, and an average value of RF signal intensities over the feces region R1. Alternatively, the maximum value of the intensity of the RF signal corresponding to the fecal region R1 can be calculated.
  • the luminance information Le of the stool region R1 calculated in this manner exhibits a relatively high value when the stool inside the subject is relatively hard, and exhibits a relatively low value when the stool inside the subject is relatively soft. tend to show
  • the index calculation unit 17 can calculate, for example, the acoustic shadow region R2 detected in step S4 as an index.
  • the index calculation unit 17 uses, as the luminance information Ls of the acoustic shadow region R2, for example, the average luminance value over the acoustic shadow region R2, the minimum luminance value in the acoustic shadow region R2, and the RF signal over the acoustic shadow region R2.
  • An average intensity value or a minimum intensity value of the RF signal corresponding to the acoustic shadow region R2 can be calculated.
  • the luminance information Ls of the acoustic shadow region R2 calculated in this manner indicates a relatively low value when the stool inside the subject is relatively hard, and a relatively high value when the stool inside the subject is relatively soft. tend to show
  • the index calculator 17 can also calculate the index based on the luminance information Ls of the feces region R1 and the luminance information Ls of the acoustic shadow region R2 detected in step S4, for example.
  • the index calculation unit 17 can calculate the ratio C of the luminance information Le of the stool region R1 and the luminance information Ls of the acoustic shadow region R2 using, for example, Equation (1) as an index, ) or equation (3) can be used to calculate the difference D between the luminance information Le of the feces region R1 and the luminance information Ls of the acoustic shadow region R2.
  • the ratio C tends to show a relatively high value when the stool inside the subject is relatively hard, and shows a relatively low value when the stool inside the subject is relatively soft. Also, the difference D tends to show a relatively high value when the stool in the subject is relatively hard, and a relatively low value when the stool in the subject is relatively soft.
  • the index calculator 17 can also calculate the shape information of the stool region R1 detected in step S4 as an index. At this time, the index calculation unit 17 can calculate the length along the depth direction of the stool region R1. As this length, for example, the index calculation unit 17 can calculate a length L1 along the depth direction at the central portion in the width direction of the stool region R1, as shown in FIG. The index calculation unit 17 can also calculate the average value of the length along the depth direction over the feces region R1 as the length along the depth direction of the feces region R1.
  • the index calculation unit 17 can calculate, for example, the luminance profile of the ultrasound image U on a line passing through the center of the stool region R1 in the width direction and along the depth direction.
  • a graph with an upwardly convex peak shape is formed in the depth range corresponding to the stool region R1.
  • the index calculation unit 17 calculates the length of the depth range having luminance values equal to or greater than half of the maximum luminance value, that is, the half width in the depth direction of the feces region R1. It can also be calculated as the length along.
  • the length along the depth direction of the stool region R1 calculated in this manner is relatively short when the stool inside the subject is relatively hard, and is relatively short when the stool inside the subject is relatively soft. become longer.
  • the index calculation unit 17 can calculate only one of a plurality of types of indices that can be calculated in this manner, and can also calculate any plurality of indices.
  • the index calculation unit 17 displays the index calculated in step S4 on the monitor 15 as shown in FIG. 5, for example.
  • a plurality of indicators are displayed as numerical values on the monitor 15
  • the luminance information Le of the feces region R1 is "mean luminance of the feces region: W”
  • the luminance information Ls of the acoustic shadow region R2 is "acoustic Next to the ultrasound image U
  • the ratio C is "luminance ratio: Y"
  • the length along the depth direction of the stool region R1 is “length in the depth direction: Z”. and is displayed on the monitor 15.
  • the index calculated in step S4 is an index that tends to indicate a higher numerical value as the stool in the subject is harder, or an index that tends to indicate a lower numerical value as the stool in the subject is harder. Since it is a quantitative index regarding properties, a user such as a doctor can more accurately and easily determine the properties of stool in the subject by checking the index displayed on the monitor 15 in step S5.
  • step S6 the device control unit 19 determines whether or not the inspection is finished. For example, when the user inputs an instruction to end the examination of the subject via the input device 20, the device control unit 19 determines that the examination is to end, and the instruction to end the examination of the subject is not input. In this case, it can be determined that the examination is continued without finishing the examination of the subject.
  • step S6 If it is determined in step S6 that the examination of the subject has not been completed, the process returns to step S1. Further, when it is determined in step S6 that the examination of the subject is finished, the operation of the ultrasonic diagnostic apparatus 1 according to the flowchart of FIG. 6 is finished.
  • the stool region R1 and the acoustic shadow region R2 are detected in the ultrasonic image U, and the luminance information Le of the stool region R1 and the acoustic shadow region R2 are detected. Based on at least one of the luminance information Ls and the shape information of the stool region R1, an index related to the properties of stool in the subject is calculated. You can easily determine the nature of the internal stool.
  • the flowchart of FIG. 6 describes a case where the index correction unit 18 does not correct the index, but the index correction processing by the index correction unit 18 is performed between steps S4 and S5, for example. may be performed immediately after step S5.
  • step S4 When the index correction processing by the index correction unit 18 is performed between step S4 and step S5, for example, the index calculated in step S4 is changed by the index correction unit 18 to the ultrasonic transmission/reception conditions and the image The corrected index is displayed on the monitor 15 in step S5.
  • step S5 when the index correction processing by the index correction unit 18 is performed after step S5, for example, the index displayed on the monitor 15 in step S5 is corrected by the index correction unit 18 and calculated in step S4.
  • the index corrected by the index correction unit 18 is displayed on the monitor 15 instead of the index that has been corrected.
  • the ultrasonic probe 2 and the apparatus main body 3 can be connected to each other by so-called wired communication, and can also be connected to each other by so-called wireless communication.
  • the transmitting/receiving circuit 12 is provided in the device body 3, the transmitting/receiving circuit 12 may be provided in the ultrasonic probe 2 instead.
  • the region detection unit 16 detects both the stool region R1 and the acoustic shadow region R2 in the ultrasonic image U by image analysis. It is also possible to detect the acoustic shadow region R2 based on the detected stool region R1 by performing analysis. In this case, the region detection unit 16 can detect a predetermined region centered at a position deeper than the detected stool region R1 by a predetermined depth, such as 1 cm to 5 cm, as the acoustic shadow region R2. .
  • the size and shape of the determined area detected as the acoustic shadow area R2 are not particularly limited. However, since the acoustic shadow is usually positioned directly under the stool in the depth direction and has the same length in the width direction as the length in the width direction of the stool region R1, the region detection unit 16 A region having the same widthwise length as the feces region R1 is preferably detected as the acoustic shadow region R2.
  • the index calculator 17 can calculate the index based on the stool region R1 or the acoustic shadow region R2 manually specified by the user. .
  • the index calculator 17 can calculate the index again based on the stool region R1 and the acoustic shadow region R2 in the ultrasound image U specified by the user via the input device 20 .
  • the index calculation unit 17 can calculate the accuracy based on the stool region R1 or the acoustic shadow region R2 manually specified by the user. You can calculate the index well.
  • the index calculated by the index calculation unit 17 is displayed as a numerical value adjacent to the ultrasonic image U, but the display method of the index is not limited to this.
  • the index calculation unit 17 displays an index representing the luminance information Le of the feces region R1 near the feces region R1, and displays the luminance information Ls of the acoustic shadow region R2 near the acoustic shadow region R2.
  • the index calculation unit 17 can display, for example, the ratio C or the difference D near the stool region R1 and the acoustic shadow region R2, and can display the shape information of the stool region R1 near the stool region R1.
  • the user can determine whether the indices displayed on the monitor 15 are related to the stool region R1 or the acoustic shadow region R2. It is easy to understand whether
  • the index calculator 17 converts the calculated index into a color, and as schematically shown in FIG. The index can also be displayed on the monitor 15 by adding color to the line B2.
  • the index calculator 17 can give the outline B1 of the stool region R1 a color corresponding to an index related to the stool region R1, such as the luminance information Le of the stool region R1 or the shape information of the stool region R1.
  • the index calculation unit 17 can give the contour line B2 of the acoustic shadow region R2 a color corresponding to an index relating to the acoustic shadow region R2, such as luminance information of the acoustic shadow region R2.
  • the index calculation unit 17 calculates a color corresponding to an index related to both the stool region R1 and the acoustic shadow region R2, such as the ratio C or the difference D, by calculating the contour line B1 of the stool region R1 and the contour line of the acoustic shadow region R2. It can be applied to both lines B2.
  • the outline B1 of the stool region R1 and the outline B2 of the acoustic shadow region R2 are given colors corresponding to the indices, so that the user can easily select the indices for the stool region R1 and the acoustic shadow region R2. Easy to grasp.
  • the index calculator 17 indicates the relationship between the colors assigned to the outline B1 of the stool region R1 and the outline B2 of the acoustic shadow region R2 and the height of the index.
  • a color bar G can be displayed on the monitor 15 .
  • the color bar G has colors that gradually change from the top to the bottom, with the color positioned at the top indicating a higher index, and the color positioned at the bottom indicating a lower index.
  • the user can easily grasp the correspondence relationship between the colors given to the contour lines B1 and B2 and the height of the index.
  • the index calculation unit 17 divides the feces region R1 and the acoustic shadow region R2 with colors corresponding to the indices. You can fill it. In this case, the index calculation unit 17 can change the transparency of the filled color depending on the height of the index, for example.
  • the ultrasonic image U is frozen in step S2, and the frozen ultrasonic image U undergoes region detection processing in step S3 and step S4. and the index display processing of step S5 are performed, but without performing the freeze processing, steps S3 to The process of step S5 may be performed.
  • each of the ultrasonic images U continuously generated by the image generator 13 is subjected to the area detection process in step S3 and the index calculation process in step S4.
  • the index is displayed on the monitor 15 one after another. Even in this case, a user such as a doctor can easily determine the properties of stool in the subject by checking the index, as in the case where the ultrasound image U is frozen.
  • 1 Ultrasound diagnostic device 1 Ultrasound diagnostic device, 2 Ultrasound probe, 3 Device body, 11 Transducer array, 12 Transmission/reception circuit, 13 Image generation unit, 14 Display control unit, 15 Monitor, 16 Area detection unit, 17 Index calculation unit, 18 Index correction section, 19 device control section, 20 input device, 21 processor, 31 pulser, 32 amplifier section, 33 AD conversion section, 34 beam former, 35 signal processing section, 36 DSC, 37 image processing section, B1, B2 outline, G Color bar, L1 length, Q1, Q2 display panel, R1 stool area, R2 acoustic shadow area, SL sound ray, U ultrasound image.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

This ultrasonic diagnostic device (1) comprises: an ultrasonic probe (2); an image generation unit (13) for generating an ultrasonic image on the basis of a received signal obtained by scanning a subject using the ultrasonic probe (2); a region detection unit (16) for detecting a fecal region, and an acoustically shadowed region produced by feces, in the subject in the ultrasonic image generated by the image generation unit (13); and an index calculation unit (17) for calculating an index relating to the properties of the feces in the subject on the basis of luminance information for the fecal region detected by the region detection unit (16), luminance information for the acoustically shadowed region detected by the region detection unit (16), and/or shape information for the fecal region detected by the region detection unit (16).

Description

超音波診断装置および超音波診断装置の制御方法ULTRASOUND DIAGNOSTIC SYSTEM AND CONTROL METHOD OF ULTRASOUND DIAGNOSTIC SYSTEM
 本発明は、被検体の便の検査に使用される超音波診断装置および超音波診断装置の制御方法に関する。 The present invention relates to an ultrasonic diagnostic apparatus used for examination of stool of a subject and a control method for the ultrasonic diagnostic apparatus.
 近年では、超音波診断装置を用いて被検体の腹部を検査することにより、被検体内の便の性状に関する検査が試みられている。例えば、被検体内の便がいわゆる硬便であるかそうでないかによって、非特許文献1に開示されるように、超音波画像における便の見え方が異なることが知られている。 In recent years, attempts have been made to examine the properties of stool within a subject by examining the subject's abdomen using an ultrasound diagnostic device. For example, as disclosed in Non-Patent Document 1, it is known that the appearance of stool in an ultrasound image differs depending on whether the stool in the subject is so-called hard stool or not.
 しかしながら、医師等のユーザが、被検体の便が写っている超音波画像を確認して、その便の性状を判断する場合には、通常、非特許文献1に開示されているような、便の性状と超音波画像における便の見え方の関係という定性的な情報に頼る必要があった。さらに、超音波診断装置を用いた被検体の便の検査は、他の検査対象に対する超音波診断装置を用いた検査よりも比較的新しい分野の検査であるため、不慣れなユーザが検査を行うことが多く、便の性状の判断に関しても困難な場合が多かった。 However, when a user such as a doctor confirms an ultrasound image showing the stool of a subject and determines the properties of the stool, normally, the stool as disclosed in Non-Patent Document 1 It was necessary to rely on qualitative information such as the relationship between the properties of stool and the appearance of stool on ultrasound images. Furthermore, examination of the stool of a subject using an ultrasonic diagnostic apparatus is a relatively new field of examination compared to examination of other examination subjects using an ultrasonic diagnostic apparatus. In many cases, it was difficult to judge the nature of the stool.
 本発明は、このような従来の問題点を解消するためになされたものであり、ユーザが被検体の便の性状を容易に判断できる超音波診断装置および超音波診断装置の制御方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve such conventional problems, and provides an ultrasonic diagnostic apparatus and a control method for the ultrasonic diagnostic apparatus that enable a user to easily determine the properties of the stool of a subject. for the purpose.
 以下の構成によれば、上記目的が達成される。
 〔1〕 超音波プローブと、
 超音波プローブを用いた被検体に対する走査により得られた受信信号に基づいて超音波画像を生成する画像生成部と、
 画像生成部により生成された超音波画像における便領域および便による音響陰影領域を検出する領域検出部と、
 領域検出部により検出された便領域の輝度情報、領域検出部により検出された音響陰影領域の輝度情報、および、領域検出部により検出された便領域の形状情報の少なくとも1つに基づいて、被検体内の便の性状に関する指標を算出する指標算出部と
 を備える超音波診断装置。
 〔2〕 モニタを備え、
 指標算出部は、指標をモニタに表示する〔1〕に記載の超音波診断装置。
 〔3〕 指標算出部は、指標を数値としてモニタに表示する〔2〕に記載の超音波診断装置。
 〔4〕 指標算出部は、領域検出部により検出された便領域の近傍および音響陰影領域の近傍の少なくとも一方に指標を表示する〔3〕に記載の超音波診断装置。
 〔5〕 指標算出部は、領域検出部により検出された便領域の輪郭線および音響陰影領域の輪郭線に指標に応じた色を付与することにより、指標をモニタに表示する〔2〕に記載の超音波診断装置。
 〔6〕 領域検出部は、画像生成部により生成された超音波画像に対して画像解析を行うことにより、便領域および音響陰影領域を検出する〔1〕~〔5〕のいずれかに記載の超音波診断装置。
 〔7〕 領域検出部は、画像生成部により生成された超音波画像に対して画像解析を行うことにより便領域を検出し、便領域に対して定められた深度に位置する定められた領域を音響陰影領域として検出する〔1〕~〔5〕のいずれかに記載の超音波診断装置。
 〔8〕 指標算出部は、便領域の輝度情報と音響陰影領域の輝度情報との比率Cまたは差分Dを算出することにより指標を算出する〔1〕~〔7〕のいずれかに記載の超音波診断装置。
 〔9〕 指標算出部は、比率Cを、便領域の輝度情報をLe、音響陰影領域の輝度情報をLsとして、
  C=Le/Ls
により算出する〔8〕に記載の超音波診断装置。
 〔10〕 指標算出部は、差分Dを、便領域の輝度情報をLe、音響陰影領域の輝度情報をLsとして、
  D=Le-Ls
により算出する請求項8に記載の超音波診断装置。
 〔11〕 指標算出部は、差分Dを、便領域の輝度情報をLe、音響陰影領域の輝度情報をLsとして、
  D=(Le-Ls)/(Le+Ls)
により算出する〔8〕に記載の超音波診断装置。
 〔12〕 指標算出部は、便領域の形状情報として、便領域の深さ方向に沿った長さを算出する〔1〕~〔7〕のいずれかに記載の超音波診断装置。
 〔13〕 指標算出部は、便領域の形状情報として、便領域の幅方向の中央部における深さ方向に沿った長さを算出する〔12〕に記載の超音波診断装置。
 〔14〕 指標算出部は、便領域の形状情報として、便領域の深さ方向に沿った長さの平均値を算出する〔12〕に記載の超音波診断装置。
 〔15〕 ユーザが入力操作を行うための入力装置を備え、
 指標算出部は、入力装置を介してユーザにより指定された、超音波画像における便領域と音響陰影領域とに基づいて、指標を算出する請求項〔1〕~〔15〕のいずれかに記載の超音波診断装置。
 〔16〕 超音波プローブにより送受信される超音波の送受信条件および画像生成部における画像化条件に基づいて、指標算出部により算出された指標を修正する指標修正部を備える〔1〕~〔16〕のいずれかに記載の超音波診断装置。
 〔17〕 超音波プローブを用いた被検体に対する走査により得られた受信信号に基づいて超音波画像を生成し、
 超音波画像における被検体内の便領域および便による音響陰影領域を検出し、
 便領域の輝度情報、音響陰影領域の輝度情報および便領域の形状情報の少なくとも1つに基づいて、被検体内の便の性状に関する指標を算出する
 超音波診断装置の制御方法。
According to the following configuration, the above objects are achieved.
[1] an ultrasonic probe;
an image generating unit that generates an ultrasonic image based on a received signal obtained by scanning a subject using an ultrasonic probe;
an area detection unit that detects a stool area and an acoustic shadow area due to stool in the ultrasound image generated by the image generation unit;
Based on at least one of luminance information of the stool area detected by the area detection unit, luminance information of the acoustic shadow area detected by the area detection unit, and shape information of the stool area detected by the area detection unit, An ultrasonic diagnostic apparatus comprising: an index calculation unit that calculates an index related to the properties of stool in a sample.
[2] having a monitor,
The ultrasonic diagnostic apparatus according to [1], wherein the index calculator displays the index on a monitor.
[3] The ultrasonic diagnostic apparatus according to [2], wherein the index calculator displays the index as a numerical value on the monitor.
[4] The ultrasonic diagnostic apparatus according to [3], wherein the index calculation unit displays indices in at least one of the vicinity of the stool region and the vicinity of the acoustic shadow region detected by the region detection unit.
[5] The index calculation unit displays the index on the monitor by adding a color corresponding to the index to the outline of the stool area and the outline of the acoustic shadow area detected by the area detection unit. ultrasound diagnostic equipment.
[6] The area detection unit according to any one of [1] to [5], wherein the area detection unit detects the stool area and the acoustic shadow area by performing image analysis on the ultrasonic image generated by the image generation unit. Ultrasound diagnostic equipment.
[7] The area detection unit detects a stool area by performing image analysis on the ultrasonic image generated by the image generation unit, and detects a predetermined area located at a predetermined depth with respect to the stool area. The ultrasonic diagnostic apparatus according to any one of [1] to [5] for detection as an acoustic shadow area.
[8] The index calculator according to any one of [1] to [7], wherein the index calculation unit calculates the index by calculating a ratio C or a difference D between the luminance information of the stool region and the luminance information of the acoustic shadow region. sound wave diagnostic equipment.
[9] The index calculation unit sets the ratio C to Le as the luminance information of the stool region, and Ls as the luminance information of the acoustic shadow region,
C = Le/Ls
The ultrasonic diagnostic apparatus according to [8], which is calculated by:
[10] The index calculation unit calculates the difference D as the luminance information of the stool region with Le and the luminance information of the acoustic shadow region as Ls,
D = Le - Ls
The ultrasonic diagnostic apparatus according to claim 8, which is calculated by:
[11] The index calculation unit calculates the difference D by using Le as the luminance information of the stool area and Ls as the luminance information of the acoustic shadow area,
D = (Le - Ls) / (Le + Ls)
The ultrasonic diagnostic apparatus according to [8], which is calculated by:
[12] The ultrasonic diagnostic apparatus according to any one of [1] to [7], wherein the index calculation unit calculates the length of the feces region along the depth direction as the shape information of the feces region.
[13] The ultrasonic diagnostic apparatus according to [12], wherein the index calculation unit calculates, as the shape information of the feces region, the length along the depth direction at the central portion in the width direction of the feces region.
[14] The ultrasonic diagnostic apparatus according to [12], wherein the index calculation unit calculates an average length of the feces region along the depth direction as the shape information of the feces region.
[15] Provided with an input device for a user to perform an input operation,
The index calculator according to any one of claims [1] to [15], wherein the index calculation unit calculates the index based on the stool region and the acoustic shadow region in the ultrasonic image, which are specified by the user via the input device. Ultrasound diagnostic equipment.
[16] An index correction unit for correcting the index calculated by the index calculation unit based on transmission/reception conditions of ultrasonic waves transmitted/received by the ultrasonic probe and imaging conditions in the image generation unit [1] to [16] The ultrasonic diagnostic apparatus according to any one of 1.
[17] generating an ultrasonic image based on a received signal obtained by scanning a subject using an ultrasonic probe;
Detecting a stool region and a stool acoustically shadowed region within a subject in an ultrasound image,
A control method for an ultrasonic diagnostic apparatus, comprising: calculating an index relating to the properties of stool in a subject based on at least one of luminance information of a stool region, luminance information of an acoustic shadow region, and shape information of a stool region.
 本発明によれば、超音波診断装置が、超音波プローブと、超音波プローブを用いた被検体に対する走査により得られた受信信号に基づいて超音波画像を生成する画像生成部と、画像生成部により生成された超音波画像における便領域および便による音響陰影領域を検出する領域検出部と、領域検出部により検出された便領域の輝度情報、領域検出部により検出された音響陰影領域の輝度情報、および、領域検出部により検出された便領域の形状情報の少なくとも1つに基づいて、被検体内の便の性状に関する指標を算出する指標算出部とを備えるため、ユーザが被検体の便の性状を容易に判断できる。 According to the present invention, an ultrasonic diagnostic apparatus includes an ultrasonic probe, an image generator for generating an ultrasonic image based on a received signal obtained by scanning a subject using the ultrasonic probe, and an image generator. an area detection unit that detects a stool area and an acoustically shadowed area due to stool in an ultrasound image generated by a method, luminance information of the stool area detected by the area detecting unit, and luminance information of the acoustically shadowed area detected by the area detection unit , and an index calculation unit that calculates an index related to the properties of stool in the subject based on at least one of the shape information of the stool region detected by the region detection unit. Properties can be easily determined.
本発明の実施の形態に係る超音波診断装置の構成を示すブロック図である。1 is a block diagram showing the configuration of an ultrasonic diagnostic apparatus according to an embodiment of the present invention; FIG. 本発明の実施の形態における送受信回路の構成を示すブロック図である。1 is a block diagram showing the configuration of a transmission/reception circuit according to an embodiment of the present invention; FIG. 本発明の実施の形態における画像生成部の構成を示すブロック図である。3 is a block diagram showing the configuration of an image generator in the embodiment of the present invention; FIG. 本発明の実施の形態における超音波画像の例を示す模式図である。FIG. 2 is a schematic diagram showing an example of an ultrasound image according to the embodiment of the present invention; FIG. 本発明の実施の形態においてモニタに表示された超音波画像と指標の例を示す模式図である。FIG. 4 is a schematic diagram showing an example of an ultrasonic image and indices displayed on a monitor in the embodiment of the present invention; 本発明の実施の形態に係る超音波診断装置の動作を示すフローチャートである。It is a flow chart which shows the operation of the ultrasonic diagnostic apparatus according to the embodiment of the present invention. 本発明の実施の形態において、便領域の近傍と音響陰影領域の近傍のそれぞれに指標が表示される例を示す模式図である。FIG. 4 is a schematic diagram showing an example in which indices are displayed near the stool region and near the acoustic shadow region, respectively, in the embodiment of the present invention. 本発明の実施の形態において、便領域の輪郭線と音響陰影領域の輪郭線に色が付与される例を示す模式図である。FIG. 4 is a schematic diagram showing an example in which colors are added to the outline of the stool area and the outline of the acoustic shadow area in the embodiment of the present invention;
 以下、この発明の実施の形態を添付図面に基づいて説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「同一」、「同じ」は、技術分野で一般的に許容される誤差範囲を含むものとする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
The description of the constituent elements described below is based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
As used herein, the terms "same" and "same" shall include the margin of error generally accepted in the technical field.
実施の形態
 図1に本発明の実施の形態における超音波診断装置1の構成を示す。超音波診断装置1は、超音波プローブ2と、超音波プローブ2と接続される装置本体3とを備えている。
 超音波プローブ2は、装置本体3に接続される振動子アレイ11を備えている。
Embodiment FIG. 1 shows the configuration of an ultrasonic diagnostic apparatus 1 according to an embodiment of the present invention. An ultrasonic diagnostic apparatus 1 includes an ultrasonic probe 2 and an apparatus body 3 connected to the ultrasonic probe 2 .
The ultrasonic probe 2 has a transducer array 11 connected to the device body 3 .
 装置本体3は、振動子アレイ11に接続される送受信回路12を備えている。送受信回路12に、画像生成部13、表示制御部14およびモニタ15が順次接続されている。また、画像生成部13に、領域検出部16が接続されている。領域検出部16に、指標算出部17および指標修正部18が順次接続されている。また、指標算出部17および指標修正部18は、それぞれ、表示制御部14に接続されている。 The device main body 3 has a transmission/reception circuit 12 connected to the transducer array 11 . An image generation unit 13 , a display control unit 14 and a monitor 15 are connected to the transmission/reception circuit 12 in sequence. An area detection unit 16 is also connected to the image generation unit 13 . An index calculator 17 and an index corrector 18 are connected to the area detector 16 in sequence. Also, the index calculator 17 and the index corrector 18 are each connected to the display controller 14 .
 また、送受信回路12、画像生成部13、表示制御部14、領域検出部16、指標算出部17および指標修正部18に、装置制御部19が接続されている。また、装置制御部19に、入力装置20が接続されている。 A device control unit 19 is connected to the transmission/reception circuit 12, the image generation unit 13, the display control unit 14, the area detection unit 16, the index calculation unit 17, and the index correction unit 18. An input device 20 is also connected to the device control section 19 .
 また、画像生成部13、表示制御部14、領域検出部16、指標算出部17、指標修正部18および装置制御部19により、装置本体3用のプロセッサ21が構成されている。 A processor 21 for the device main body 3 is configured by the image generation unit 13, the display control unit 14, the area detection unit 16, the index calculation unit 17, the index correction unit 18, and the device control unit 19.
 超音波プローブ2の振動子アレイ11は、1次元または2次元に配列された複数の超音波振動子を有している。これらの超音波振動子は、それぞれ送受信回路12から供給される駆動信号に従って超音波を送信すると共に、被検体からの超音波エコーを受信して、超音波エコーに基づく信号を出力する。各超音波振動子は、例えば、PZT(Lead Zirconate Titanate:チタン酸ジルコン酸鉛)に代表される圧電セラミック、PVDF(Poly Vinylidene Di Fluoride:ポリフッ化ビニリデン)に代表される高分子圧電素子およびPMN-PT(Lead Magnesium Niobate-Lead Titanate:マグネシウムニオブ酸鉛-チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成することにより構成される。 The transducer array 11 of the ultrasonic probe 2 has a plurality of ultrasonic transducers arranged one-dimensionally or two-dimensionally. These ultrasonic transducers each transmit ultrasonic waves in accordance with drive signals supplied from the transmission/reception circuit 12, receive ultrasonic echoes from the subject, and output signals based on the ultrasonic echoes. Each ultrasonic transducer includes, for example, a piezoelectric ceramic typified by PZT (Lead Zirconate Titanate), a polymer piezoelectric element typified by PVDF (Poly Vinylidene Di Fluoride), and a PMN- It is constructed by forming electrodes on both ends of a piezoelectric body made of a piezoelectric single crystal or the like, typified by PT (Lead Magnesium Niobate-Lead Titanate).
 送受信回路12は、装置制御部19による制御の下で、振動子アレイ11から超音波を送信し且つ振動子アレイ11により取得された信号の処理を行う。送受信回路12は、図2に示すように、振動子アレイ11に接続されるパルサ31と、振動子アレイ11から順次直列に接続される増幅部32、AD(Analog Digital)変換部33、およびビームフォーマ34を有している。 The transmission/reception circuit 12 transmits ultrasonic waves from the transducer array 11 and processes signals acquired by the transducer array 11 under the control of the device control unit 19 . As shown in FIG. 2, the transmitting/receiving circuit 12 includes a pulser 31 connected to the transducer array 11, an amplifier section 32 sequentially connected in series from the transducer array 11, an AD (Analog Digital) conversion section 33, and a beam It has a former 34 .
 パルサ31は、例えば、複数のパルス発生器を含んでおり、装置制御部19からの制御信号に応じて選択された送信遅延パターンに基づいて、振動子アレイ11の複数の超音波振動子から送信される超音波が超音波ビームを形成するようにそれぞれの駆動信号を、遅延量を調節して複数の超音波振動子に供給する。このように、振動子アレイ11の超音波振動子の電極にパルス状または連続波状の電圧が印加されると、圧電体が伸縮し、それぞれの超音波振動子からパルス状または連続波状の超音波が発生して、それらの超音波の合成波から、超音波ビームが形成される。 The pulsar 31 includes, for example, a plurality of pulse generators, and based on a transmission delay pattern selected according to a control signal from the device control unit 19, the ultrasonic transducers of the transducer array 11 transmit Each driving signal is supplied to a plurality of ultrasonic transducers by adjusting the delay amount so that the ultrasonic waves generated form ultrasonic beams. In this way, when a pulse-like or continuous-wave voltage is applied to the electrodes of the ultrasonic transducers of the transducer array 11, the piezoelectric body expands and contracts, and pulse-like or continuous-wave ultrasonic waves are generated from the respective ultrasonic transducers. are generated, and an ultrasonic beam is formed from the composite wave of these ultrasonic waves.
 送信された超音波ビームは、例えば、被検体内の検査対象において反射され、超音波プローブ2の振動子アレイ11に向かって伝搬する。このように振動子アレイ11に向かって伝搬する超音波エコーは、振動子アレイ11を構成するそれぞれの超音波振動子により受信される。この際に、振動子アレイ11を構成するそれぞれの超音波振動子は、伝搬する超音波エコーを受信することにより伸縮して、電気信号である受信信号を発生させ、これらの受信信号を増幅部32に出力する。 The transmitted ultrasonic beams are, for example, reflected by an object to be inspected within the subject and propagate toward the transducer array 11 of the ultrasonic probe 2 . The ultrasonic echoes propagating toward the transducer array 11 in this manner are received by the respective ultrasonic transducers forming the transducer array 11 . At this time, each ultrasonic transducer that constitutes the transducer array 11 expands and contracts by receiving a propagating ultrasonic echo, generates a received signal that is an electric signal, and these received signals are amplified by an amplifier. 32.
 増幅部32は、振動子アレイ11を構成するそれぞれの超音波振動子から入力された信号を増幅し、増幅した信号をAD変換部33に送信する。AD変換部33は、増幅部32から送信された信号をデジタル形式に変換する。ビームフォーマ34は、AD変換部33から受け取ったデジタル形式の各受信信号に対してそれぞれの遅延を与えて加算することにより、いわゆる受信フォーカス処理を行う。この受信フォーカス処理により、AD変換部33で変換された各受信信号が整相加算され且つ超音波エコーの焦点が絞り込まれた受信信号が取得される。 The amplification unit 32 amplifies the signal input from each ultrasonic transducer that constitutes the transducer array 11 and transmits the amplified signal to the AD conversion unit 33 . The AD converter 33 converts the signal transmitted from the amplifier 32 into a digital format. The beamformer 34 performs so-called reception focusing processing by giving respective delays to the digital received signals received from the AD converter 33 and adding them. By this reception focusing process, each reception signal converted by the AD converter 33 is subjected to phasing addition, and a reception signal in which the focus of the ultrasonic echo is narrowed down is acquired.
 画像生成部13は、図3に示すように、信号処理部35、DSC(Digital Scan Converter:デジタルスキャンコンバータ)36および画像処理部37が順次直列に接続された構成を有している。
 信号処理部35は、送受信回路12から送出された音線信号に対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像信号を生成する。
As shown in FIG. 3, the image generator 13 has a configuration in which a signal processor 35, a DSC (Digital Scan Converter) 36, and an image processor 37 are connected in series.
The signal processing unit 35 corrects the attenuation due to the distance according to the depth of the reflection position of the ultrasonic wave to the sound ray signal sent from the transmission/reception circuit 12, and then performs envelope detection processing to obtain the sound ray signal from the subject. A B-mode image signal, which is tomographic image information regarding internal tissue, is generated.
 DSC36は、信号処理部35で生成されたBモード画像信号を通常のテレビジョン信号の走査方式に従う画像信号に変換(ラスター変換)する。
 画像処理部37は、DSC36から入力されるBモード画像信号に階調処理等の各種の必要な画像処理を施した後、装置制御部19による指令に応じて、Bモード画像信号を表示制御部14および領域検出部16に送出する。以降では、画像処理部37により画像処理が施されたBモード画像信号を、単に超音波画像と呼ぶ。
The DSC 36 converts (raster-converts) the B-mode image signal generated by the signal processing unit 35 into an image signal conforming to the normal television signal scanning method.
The image processing unit 37 performs various necessary image processing such as gradation processing on the B-mode image signal input from the DSC 36, and then outputs the B-mode image signal to the display control unit in accordance with a command from the device control unit 19. 14 and area detection unit 16 . Hereinafter, the B-mode image signal subjected to image processing by the image processing unit 37 is simply referred to as an ultrasound image.
 領域検出部16は、画像生成部13により生成された超音波画像に対して画像解析を行うことにより、例えば図4に示すような、超音波画像Uにおける被検体内の便領域R1および便による音響陰影領域R2を検出する。 The region detection unit 16 performs image analysis on the ultrasonic image generated by the image generation unit 13, thereby detecting an intra-subject stool region R1 in the ultrasonic image U and a stool region R1 as shown in FIG. Detect the acoustic shadow region R2.
 ここで、便領域R1とは、被検体内に向かって振動子アレイ11から送信された超音波ビームが被検体内の便の浅部で反射することにより振動子アレイ11に向かって伝搬する超音波エコーに基づいて画像化された領域である。また、音響陰影領域R2とは、被検体内の便の存在により超音波画像U内に形成され、便領域R1よりも深部に位置し、便領域R1よりも低輝度の領域である。この音響陰影領域R2は、被検体内に比較的硬い便が存在している場合に、便により超音波の反射および減衰が生じ、便の深部側からの超音波エコーが振動子アレイ11にまで伝搬しにくくなることにより発生する。 Here, the stool region R1 is an ultrasonic wave beam transmitted from the transducer array 11 toward the inside of the subject and propagated toward the transducer array 11 by being reflected by the shallow part of the stool in the subject. Area imaged based on acoustic echoes. The acoustic shadow region R2 is formed in the ultrasonic image U due to the presence of stool in the subject, is positioned deeper than the stool region R1, and has a lower brightness than the stool region R1. In the acoustic shadow region R2, when relatively hard stool is present in the subject, ultrasonic waves are reflected and attenuated by the stool, and ultrasonic echoes from the deep side of the stool reach the transducer array 11. It occurs when propagation becomes difficult.
 また、領域検出部16は、便領域R1および音響陰影領域R2を検出する際に、超音波画像Uに対して行う画像解析として、一般的に知られた種々の方法を用いることができる。 In addition, the region detection unit 16 can use various commonly known methods as image analysis performed on the ultrasonic image U when detecting the feces region R1 and the acoustic shadow region R2.
 領域検出部16は、例えば、いわゆるテンプレートマッチングの方法を用いることができる。この場合に、領域検出部16は、例えば、便領域R1および音響陰影領域R2に関して、形状およびテクスチャ等が異なる複数のテンプレートを予め記憶し、超音波画像Uに写るパターンとテンプレートとの間の相関値を算出し、相関値が一定以上となる領域を便領域R1または音響陰影領域R2として検出する。 The area detection unit 16 can use, for example, a so-called template matching method. In this case, the area detection unit 16 prestores, for example, a plurality of templates with different shapes and textures for the stool area R1 and the acoustic shadow area R2, and determines the correlation between the patterns appearing in the ultrasonic image U and the templates. A value is calculated, and a region where the correlation value is equal to or higher than a certain value is detected as a feces region R1 or an acoustic shadow region R2.
 また、領域検出部16は、例えば、いわゆる機械学習の方法を用いることもできる。この場合に、領域検出部16は、例えば、便領域R1および音響陰影領域R2に関する複数の教師画像と、便領域R1および音響陰影領域R2の周囲に存在する解剖学的構造等に関する複数の教師画像を、予め、いわゆる特徴量ベクトルに変換しておき、得られた特徴量ベクトルを用いて、いわゆるAdaboostまたはSVM(Support Vector Machine:サポートベクトルマシン)等により、便領域R1および音響陰影領域R2を検出できる。 The area detection unit 16 can also use, for example, a so-called machine learning method. In this case, the region detection unit 16 may generate, for example, a plurality of teacher images regarding the stool region R1 and the acoustic shadow region R2, and a plurality of teacher images regarding the anatomical structures existing around the stool region R1 and the acoustic shadow region R2. is converted into a so-called feature vector in advance, and the obtained feature vector is used to detect the stool region R1 and the acoustic shadow region R2 by so-called Adaboost or SVM (Support Vector Machine). can.
 また、領域検出部16は、例えば、いわゆる深層学習の方法を用いることもできる。この場合に、領域検出部16は、例えば、便領域R1、音響陰影領域R2、および、便領域R1と音響陰影領域R2の周囲に存在する解剖学的構造等に関する複数の教師画像を予め記憶し、記憶された複数の教師画像に基づいて、いわゆるセグメンテーションモデル等を用いて便領域R1および音響陰影領域R2を検出できる。 The area detection unit 16 can also use, for example, a so-called deep learning method. In this case, the area detection unit 16 stores in advance a plurality of teacher images, for example, regarding the stool area R1, the acoustic shadow area R2, and the anatomical structures existing around the stool area R1 and the acoustic shadow area R2. , the stool region R1 and the acoustic shadow region R2 can be detected using a so-called segmentation model or the like based on a plurality of stored teacher images.
 指標算出部17は、便領域R1の輝度情報、音響陰影領域R2の輝度情報、および、便領域R1の形状およびサイズに関する情報である形状情報の少なくとも1つを算出し、算出された、便領域R1の輝度情報、音響陰影領域R2の輝度情報、および、便領域R1の形状情報の少なくとも1つに基づいて、被検体内の便の性状に関する指標を算出する。また、指標算出部17は、算出された指標を表示制御部14を介してモニタ15に表示する。 The index calculation unit 17 calculates at least one of the luminance information of the stool region R1, the luminance information of the acoustic shadow region R2, and the shape information, which is information regarding the shape and size of the stool region R1, and calculates the calculated stool region. Based on at least one of luminance information of R1, luminance information of acoustic shadow region R2, and shape information of stool region R1, an index relating to the properties of stool in the subject is calculated. The index calculation unit 17 also displays the calculated index on the monitor 15 via the display control unit 14 .
 ここで、指標算出部17は、便領域R1の輝度情報として、例えば、便領域R1の全体に亘る輝度の平均値を算出できる。また、指標算出部17は、便領域R1の輝度情報として、例えば、便領域R1における最大の輝度を算出することもできる。 Here, the index calculation unit 17 can calculate, for example, the average value of the luminance over the entire feces region R1 as the luminance information of the feces region R1. The index calculation unit 17 can also calculate, for example, the maximum luminance in the stool region R1 as the luminance information of the stool region R1.
 また、指標算出部17は、便領域R1の輝度情報として、超音波画像Uにおける画素の輝度値を用いる代わりに、便領域R1におけるRF(Radio Frequency)信号の強度、すなわち、便領域R1に対応する振動子アレイ11の受信信号の強度を用いることもできる。一般的に、超音波画像における各画素の輝度値は、超音波画像を鮮明に描出するためにいわゆるゲインの調整等の処理が行われることが多いが、RF信号はそのような処理が施されていない。そのため、指標算出部17は、輝度情報としてRF信号の強度を用いることにより、指標をより精確に算出できる。 In addition, instead of using the luminance values of the pixels in the ultrasound image U as the luminance information of the feces region R1, the index calculation unit 17 calculates the intensity of the RF (Radio Frequency) signal in the feces region R1, that is, The strength of the received signal of the transducer array 11 can also be used. In general, the luminance value of each pixel in an ultrasonic image is often subjected to processing such as gain adjustment in order to clearly depict the ultrasonic image, but RF signals are not subjected to such processing. not Therefore, the index calculator 17 can calculate the index more accurately by using the intensity of the RF signal as the luminance information.
 ここで、一般的に、被検体の便が比較的硬い場合には、振動子アレイ11から被検体内に送信された超音波ビームが便の浅部において反射されやすく、便の深部にまで透過しにくい傾向がある。また、被検体の便が比較的柔らかい場合には、振動子アレイ11から被検体内に送信された超音波ビームが便の深部にまで透過しやすい傾向がある。そのため、便領域R1の輝度情報は、被検体の便が比較的硬い場合に比較的高い値を示し、被検体の便が比較的柔らかい場合に比較的低い値を示す傾向がある。 Here, in general, when the stool of the subject is relatively hard, the ultrasonic beams transmitted from the transducer array 11 into the subject are likely to be reflected in the superficial portion of the stool and penetrate deep into the stool. tends to be difficult. In addition, when the stool of the subject is relatively soft, there is a tendency for the ultrasonic beams transmitted from the transducer array 11 into the subject to easily penetrate deep into the stool. Therefore, the luminance information of the stool region R1 tends to show a relatively high value when the stool of the subject is relatively hard, and a relatively low value when the stool of the subject is relatively soft.
 そのため、指標算出部17が指標として便領域R1の輝度情報を算出する場合に、医師等の超音波診断装置1のユーザは、モニタ15に表示された便領域R1の輝度情報を参考にすることにより、被検体の便の性状すなわち被検体の便が硬いか柔らかいかを容易に判断できる。 Therefore, when the index calculator 17 calculates the luminance information of the stool region R1 as an index, the user of the ultrasonic diagnostic apparatus 1 such as a doctor should refer to the luminance information of the stool region R1 displayed on the monitor 15. Therefore, it is possible to easily determine the properties of the subject's stool, that is, whether the subject's stool is hard or soft.
 また、指標算出部17は、音響陰影領域R2の輝度情報として、例えば、音響陰影領域R2の全体に亘る輝度の平均値を算出できる。また、指標算出部17は、音響陰影領域R2の輝度情報として、例えば、音響陰影領域R2における最低の輝度を算出することもできる。また、指標算出部17は、音響陰影領域R2の輝度情報として、超音波画像Uにおける画素の輝度値を用いる代わりに、音響陰影領域R2に対応するRF信号の強度を用いることもできる。 Also, the index calculation unit 17 can calculate, for example, the average value of the luminance over the entire acoustic shadow region R2 as the luminance information of the acoustic shadow region R2. The index calculation unit 17 can also calculate, for example, the lowest luminance in the acoustic shadow region R2 as the luminance information of the acoustic shadow region R2. The index calculator 17 can also use the intensity of the RF signal corresponding to the acoustic shadow region R2 instead of using the luminance value of the pixel in the ultrasonic image U as the luminance information of the acoustic shadow region R2.
 音響陰影領域R2の輝度情報は、便領域R1の輝度情報とは反対に、被検体の便が比較的硬い場合に比較的低い値を示し、被検体の便が比較的柔らかい場合に比較的高い値を示す傾向がある。そのため、指標算出部17が指標として音響陰影領域R2の輝度情報を算出する場合に、医師等の超音波診断装置1のユーザは、モニタ15に表示された音響陰影領域R2の輝度情報を参考にすることによっても、被検体の便の性状を容易に判断できる。 Contrary to the luminance information of the stool region R1, the luminance information of the acoustic shadow region R2 shows a relatively low value when the stool of the subject is relatively hard, and is relatively high when the stool of the subject is relatively soft. tend to show value. Therefore, when the index calculator 17 calculates the luminance information of the acoustic shadow region R2 as an index, the user of the ultrasonic diagnostic apparatus 1, such as a doctor, refers to the luminance information of the acoustic shadow region R2 displayed on the monitor 15. By doing so, the properties of the subject's stool can also be easily determined.
 また、指標算出部17は、便領域R1の輝度情報と、音響陰影領域R2の輝度情報の双方を用いて指標を算出することもできる。
 指標算出部17は、例えば、便領域R1の輝度情報と音響陰影領域R2の輝度情報との比率Cまたは差分Dを指標として算出できる。
Moreover, the index calculation unit 17 can also calculate the index using both the luminance information of the feces region R1 and the luminance information of the acoustic shadow region R2.
The index calculator 17 can calculate, for example, the ratio C or the difference D between the luminance information of the stool region R1 and the luminance information of the acoustic shadow region R2 as an index.
 より具体的に、指標算出部17は、例えば、便領域R1の輝度情報Leとして便領域R1に亘る輝度の平均値を算出し、音響陰影領域R2の輝度情報Lsとして音響陰影領域R2に亘る輝度の平均値を算出し、比率Cを、
  C=Le/Ls ・・・(1)
により算出できる。
More specifically, for example, the index calculation unit 17 calculates the average value of the luminance over the feces region R1 as the luminance information Le of the feces region R1, and calculates the luminance over the acoustic shadow region R2 as the luminance information Ls of the acoustic shadow region R2. Calculate the average value of the ratio C,
C=Le/Ls (1)
It can be calculated by
 ここで、被検体の便が硬いほど便領域R1の輝度情報Leは高い値を示し且つ音響陰影領域R2の輝度情報Lsは低い値を示す傾向があるため、比率Cは、被検体の便が比較的硬い場合に高い値を示し、被検体の便が比較的柔らかい場合に低い値を示す傾向がある。一般的に、撮影条件または被検体等によって、超音波画像U中の輝度にばらつきが生じることがあるが、比率Cによれば、撮影条件または被検体等に起因する輝度のばらつきの影響を低減できる。そのため、医師等のユーザは、比率Cを確認することにより、より精確に便の性状を判断可能である。 Here, the harder the stool of the subject, the higher the luminance information Le of the stool region R1 and the lower the luminance information Ls of the acoustic shadow region R2. A relatively hard stool tends to give a high value, and a relatively soft stool tends to give a low value. In general, the brightness in the ultrasonic image U may vary depending on the imaging conditions, the subject, etc., but according to the ratio C, the influence of the brightness variation caused by the imaging conditions, the subject, etc. is reduced. can. Therefore, by checking the ratio C, a user such as a doctor can more accurately determine the nature of the stool.
 また、指標算出部17は、例えば、便領域R1の輝度情報Leとして便領域R1に亘る輝度の平均値を算出し、音響陰影領域R2の輝度情報Lsとして音響陰影領域R2に亘る輝度の平均値を算出し、差分Dを、
  D=Le-Ls ・・・(2)
 により算出できる。
In addition, for example, the index calculation unit 17 calculates an average value of luminance over the feces region R1 as the luminance information Le of the feces region R1, and calculates an average value of luminance over the acoustic shadow region R2 as luminance information Ls of the acoustic shadow region R2. is calculated, and the difference D is
D=Le−Ls (2)
It can be calculated by
 ここで、被検体の便が硬いほど、便領域R1の輝度情報Leが高い値を示し、音響陰影領域R2の輝度情報Lsが低い値を示す傾向があるため、被検体の便が比較的硬い場合に差分Dが高い値を示し、被検体の便が比較的柔らかい場合に差分Dが比較的低い値を示す傾向がある。比率Cと同様に、差分Dによっても、撮影条件または被検体等に起因する輝度のばらつきの影響を低減できるため、医師等のユーザは、差分Dを確認することにより、より精確に便の性状を判断可能である。 Here, the harder the stool of the subject, the higher the luminance information Le of the stool region R1 and the lower the luminance information Ls of the acoustic shadow region R2. When the stool of the subject is relatively soft, the difference D tends to indicate a relatively low value. As with the ratio C, the difference D can also reduce the influence of variations in luminance caused by the imaging conditions, the subject, or the like. can be determined.
 また、指標算出部17は、例えば、便領域R1の輝度情報Leとして便領域R1に亘る輝度の平均値を算出し、音響陰影領域R2の輝度情報Lsとして音響陰影領域R2に亘る輝度の平均値を算出し、差分Dを、
  D=(Le-Ls)/(Le+Ls) ・・・(3)
により算出することもできる。
In addition, for example, the index calculation unit 17 calculates an average value of luminance over the feces region R1 as the luminance information Le of the feces region R1, and calculates an average value of luminance over the acoustic shadow region R2 as luminance information Ls of the acoustic shadow region R2. is calculated, and the difference D is
D=(Le−Ls)/(Le+Ls) (3)
It can also be calculated by
 式(3)を用いて差分Dを算出する場合には、便領域R1の輝度情報Leから音響陰影情報の輝度情報Lsを減じたものを輝度情報Leと輝度情報Lsとの和で規格化することになるため、撮影条件または被検体等に起因する輝度のばらつきの影響をより低減できる。そのため、医師等のユーザは、比率Cを確認することにより、より精確に便の性状を判断可能である。 When calculating the difference D using equation (3), the sum of the luminance information Le and the luminance information Ls obtained by subtracting the luminance information Ls of the acoustic shadow information from the luminance information Le of the fecal region R1 is normalized. Therefore, it is possible to further reduce the influence of variations in brightness caused by imaging conditions, the subject, or the like. Therefore, by checking the ratio C, a user such as a doctor can more accurately determine the nature of the stool.
 なお、指標算出部17は、式(1)を用いて比率Cを算出する場合および式(2)または(3)を用いて差分Dを算出する場合に、便領域R1の輝度の平均値および音響陰影領域R2の輝度の平均値を算出することに限定されない。指標算出部17は、例えば、便領域R1の輝度情報Leとして便領域R1に対応するRF信号の強度の平均値を算出し、音響陰影領域R2の輝度情報Lsとして音響陰影領域R2に対応するRF信号の平均値を算出することもできる。 Note that the index calculation unit 17 calculates the ratio C using the formula (1) and calculates the difference D using the formula (2) or (3), the average luminance It is not limited to calculating the average luminance value of the acoustic shadow region R2. For example, the index calculation unit 17 calculates the average value of the intensity of the RF signal corresponding to the feces region R1 as the luminance information Le of the feces region R1, and calculates the RF signal corresponding to the acoustic shadow region R2 as the luminance information Ls of the acoustic shadow region R2. It is also possible to calculate the average value of the signal.
 また、指標算出部17は、便領域R1の形状情報として、例えば、便領域R1の深さ方向すなわち音線に沿った方向(音線方向)に沿った長さを算出できる。
 この場合に、指標算出部17は、例えば、図4に示すように、形状情報として、便領域R1の幅方向の中央部における深さ方向に沿った長さL1を算出できる。便領域R1の幅方向とは、便領域R1の中心を通るような音線SLに沿った方向に対して直交する方向のことである。
Further, the index calculator 17 can calculate, for example, the depth direction of the stool region R1, that is, the length along the sound ray direction (sound ray direction) as the shape information of the stool region R1.
In this case, for example, as shown in FIG. 4, the index calculation unit 17 can calculate the length L1 along the depth direction at the central portion in the width direction of the feces region R1 as the shape information. The width direction of the stool region R1 is a direction orthogonal to the direction along the sound ray SL passing through the center of the stool region R1.
 通常、被検体内の便が比較的硬い場合には、振動子アレイ11から被検体内に送信された超音波ビームが便の浅部において反射しやすい傾向があるため、便領域R1の長さL1は比較的短くなる傾向がある。また、通常、被検体内の便が比較的柔らかい場合には、振動子アレイ11から被検体内に送信された超音波ビームが便の浅部を透過しやすい傾向があるため、便領域R1の長さL1は比較的長くなる傾向がある。そのため、医師等のユーザは、長さL1を確認することにより、被検体内の便の性状を容易に判断可能である。 Normally, when the stool in the subject is relatively hard, the ultrasonic beams transmitted from the transducer array 11 into the subject tend to be easily reflected in the shallow part of the stool. L1 tends to be relatively short. Generally, when the stool in the subject is relatively soft, the ultrasonic beams transmitted from the transducer array 11 into the subject tend to easily pass through the shallow part of the stool. The length L1 tends to be relatively long. Therefore, a user such as a doctor can easily determine the properties of stool in the subject by checking the length L1.
 また、指標算出部17は、便領域R1の形状情報として、便領域R1の深さ方向に沿った長さの平均値を算出することもできる。 The index calculation unit 17 can also calculate the average value of the length along the depth direction of the feces region R1 as the shape information of the feces region R1.
 また、指標算出部17は、例えば、便領域R1の幅方向の中央部を通り且つ深さ方向に沿った線上における超音波画像Uの輝度プロファイルを算出できる。輝度プロファイルとは、例えば超音波画像Uの深さを横軸、輝度値を縦軸として深さと輝度値の関係をプロットしたグラフである。この輝度プロファイルでは、便領域R1に対応する深さ範囲において、上に凸のピーク形状のグラフが形成される。指標算出部17は、例えば、便領域R1に対応する深さ範囲において、最大の輝度値の半分以上の輝度値を有する深さ範囲の長さすなわち半値幅を、便領域R1の深さ方向に沿った長さとして算出することもできる。 In addition, the index calculation unit 17 can calculate, for example, the luminance profile of the ultrasound image U on a line passing through the center of the stool region R1 in the width direction and along the depth direction. The brightness profile is a graph obtained by plotting the relationship between the depth and the brightness value, for example, with the depth of the ultrasonic image U on the horizontal axis and the brightness value on the vertical axis. In this luminance profile, a graph with an upwardly convex peak shape is formed in the depth range corresponding to the stool region R1. For example, in the depth range corresponding to the feces region R1, the index calculation unit 17 calculates the length of the depth range having luminance values equal to or greater than half of the maximum luminance value, that is, the half width in the depth direction of the feces region R1. It can also be calculated as the length along.
 指標算出部17は、このようにして算出された指標を、表示制御部14に送出し、例えば図5に示すように数値としてモニタ15に表示できる。図5では、それぞれ超音波画像Uに隣接して、モニタ15に、便領域R1の輝度情報Leが「便領域の平均輝度:W」と表示され、音響陰影領域R2の輝度情報Lsが「音響陰影情報の平均輝度:X」として表示され、比率Cが「輝度比率:Y」として表示され、便領域R1の形状情報が「深さ方向の長さ:Z」として表示されている。 The index calculation unit 17 can send the index calculated in this way to the display control unit 14 and display it on the monitor 15 as a numerical value as shown in FIG. 5, for example. In FIG. 5, adjacent to the ultrasonic image U, the luminance information Le of the feces region R1 is displayed on the monitor 15 as "mean luminance of feces region: W", and the luminance information Ls of the acoustic shadow region R2 is displayed as "acoustic The average luminance of shadow information: X”, the ratio C is displayed as “luminance ratio: Y”, and the shape information of the feces region R1 is displayed as “length in the depth direction: Z”.
 指標修正部18は、装置制御部19による制御の下で、超音波プローブ2により送受信される超音波の送受信条件および画像生成部13における画像化条件に基づいて、指標算出部17により算出された指標を修正する。ここで、超音波の送受信条件には、例えば、超音波の送信周波数、超音波の送信音圧、超音波の受信周波数、いわゆるアナログゲイン、および、いわゆるアナログSTC(sensitivity time control)等を含む。また、画像化条件には、例えば、いわゆるデジタルゲインおよびいわゆるデジタルSTC等を含む。指標修正部18は、超音波の送受信条件および画像化条件に基づいて自動的に指標を修正することができ、入力装置20を介したユーザの入力操作をトリガとして指標を修正することもできる。 The index correction unit 18 is controlled by the device control unit 19, and the index calculation unit 17 calculates the Correct the indicators. Here, the ultrasonic transmission/reception conditions include, for example, ultrasonic transmission frequency, ultrasonic transmission sound pressure, ultrasonic reception frequency, so-called analog gain, and so-called analog STC (sensitivity time control). Imaging conditions also include, for example, so-called digital gain and so-called digital STC. The index correction unit 18 can automatically correct the index based on the ultrasonic transmission/reception conditions and the imaging conditions, and can also correct the index using the user's input operation via the input device 20 as a trigger.
 装置制御部19は、予め記録されたプログラム等に従って装置本体3の各部を制御する。
 表示制御部14は、装置制御部19の制御の下で、画像生成部13により生成された超音波画像U、指標算出部17により算出された指標の情報および指標修正部18により修正された指標の情報等に対して所定の処理を施して、それらをモニタ15に表示する。
The device control section 19 controls each section of the device main body 3 according to a prerecorded program or the like.
Under the control of the device control unit 19, the display control unit 14 displays the ultrasonic image U generated by the image generation unit 13, the index information calculated by the index calculation unit 17, and the index corrected by the index correction unit 18. are subjected to predetermined processing and displayed on the monitor 15 .
 モニタ15は、表示制御部14の制御の下で、種々の表示を行う。モニタ15は、例えば、LCD(Liquid Crystal Display:液晶ディスプレイ)、または、有機ELディスプレイ(Organic Electroluminescence Display)等のディスプレイ装置を含む。 The monitor 15 performs various displays under the control of the display control unit 14. The monitor 15 includes, for example, a display device such as an LCD (Liquid Crystal Display) or an organic EL display (Organic Electroluminescence Display).
 入力装置20は、医師等のユーザが入力操作を行うためのものである。入力装置20は、例えば、ボタン、スイッチ、タッチパッドおよびタッチパネル等のユーザが入力操作を行うための装置等により構成される。 The input device 20 is for a user such as a doctor to perform an input operation. The input device 20 is configured by, for example, devices such as buttons, switches, touch pads, and touch panels for users to perform input operations.
 なお、画像生成部13、表示制御部14、領域検出部16、指標算出部17、指標修正部18および装置制御部19を有するプロセッサ21は、CPU(Central Processing Unit:中央処理装置)、および、CPUに各種の処理を行わせるための制御プログラムから構成されるが、FPGA(Field Programmable Gate Array:フィードプログラマブルゲートアレイ)、DSP(Digital Signal Processor:デジタルシグナルプロセッサ)、ASIC(Application Specific Integrated Circuit:アプリケーションスペシフィックインテグレイテッドサーキット)、GPU(Graphics Processing Unit:グラフィックスプロセッシングユニット)、その他のIC(Integrated Circuit:集積回路)を用いて構成されてもよく、もしくはそれらを組み合わせて構成されてもよい。 Note that the processor 21 having the image generation unit 13, the display control unit 14, the area detection unit 16, the index calculation unit 17, the index correction unit 18, and the device control unit 19 includes a CPU (Central Processing Unit), and It consists of a control program for making the CPU perform various processing, FPGA (Field Programmable Gate Array: Feed Programmable Gate Array), DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit: Application Specific Integrated Circuit), GPU (Graphics Processing Unit), other ICs (Integrated Circuits), or may be configured by combining them.
 また、プロセッサ21の画像生成部13、表示制御部14、領域検出部16、指標算出部17、指標修正部18および装置制御部19は、部分的にあるいは全体的に1つのCPU等に統合させて構成されることもできる。 The image generation unit 13, the display control unit 14, the area detection unit 16, the index calculation unit 17, the index correction unit 18, and the device control unit 19 of the processor 21 are partially or wholly integrated into one CPU or the like. can also be configured
 次に、図6のフローチャートを用いて実施の形態に係る超音波診断装置1の基本的な動作を説明する。 Next, the basic operation of the ultrasonic diagnostic apparatus 1 according to the embodiment will be described using the flowchart of FIG.
 まず、ステップS1において、ユーザが超音波プローブ2を被検体の腹部に接触させた状態で、被検体内の超音波画像Uが連続的に撮影される。この際に、送受信回路12のパルサ31からの駆動信号に従って振動子アレイ11の複数の振動子から被検体内に超音波ビームが送信され、被検体からの超音波エコーを受信した各振動子から送受信回路12の増幅部32に受信信号が送出される。受信信号は、増幅部32で増幅され、AD変換部33でアナログ形式からデジタル形式に変換された後、ビームフォーマ34で整相加算されて、音線信号が生成される。音線信号は、画像生成部13において各種の処理が施されることにより、超音波画像Uが生成される。 First, in step S1, ultrasonic images U inside the subject are continuously captured while the user keeps the ultrasonic probe 2 in contact with the abdomen of the subject. At this time, ultrasonic beams are transmitted into the object from the plurality of transducers of the transducer array 11 in accordance with the drive signal from the pulser 31 of the transmission/reception circuit 12, and each transducer that receives the ultrasonic echo from the object A received signal is sent to the amplifying section 32 of the transmitting/receiving circuit 12 . The received signal is amplified by the amplifier 32, converted from analog format to digital format by the AD converter 33, and phased and added by the beamformer 34 to generate a sound ray signal. The sound ray signal is subjected to various types of processing in the image generation unit 13 to generate an ultrasonic image U. FIG.
 このようにして連続的に生成される超音波画像Uは、モニタ15において一定のフレームレートに従って連続的に表示される。 The ultrasonic images U continuously generated in this way are displayed continuously on the monitor 15 at a constant frame rate.
 次に、装置制御部19により、ステップS2において、入力装置20を介してユーザにより超音波画像Uがフリーズされたか否かが判定される。ここで、超音波画像Uをフリーズするとは、超音波画像Uがモニタ15に連続的に表示されている状態において、ユーザによりフリーズの指示がなされたタイミングでモニタ15に表示されていた1フレームの超音波画像Uを、そのまま静止画としてモニタ15に表示させ続けることである。 Next, in step S2, the device control unit 19 determines whether or not the ultrasonic image U has been frozen by the user via the input device 20 . Here, to freeze the ultrasonic image U means that, in a state in which the ultrasonic image U is continuously displayed on the monitor 15, one frame displayed on the monitor 15 at the timing when the freeze instruction is issued by the user. To continue displaying the ultrasonic image U on the monitor 15 as a still image.
 ステップS2で超音波画像Uがフリーズされていないと判定された場合に、ステップS1に戻り、超音波画像Uが、再度連続的に生成されて、モニタ15に表示される。
 ステップS2で超音波画像Uがフリーズされたと判定された場合には、ステップS3に進む。
If it is determined in step S2 that the ultrasonic image U is not frozen, the process returns to step S1, and the ultrasonic image U is continuously generated again and displayed on the monitor 15. FIG.
If it is determined in step S2 that the ultrasonic image U has been frozen, the process proceeds to step S3.
 ステップS3において、領域検出部16により、ステップS2でフリーズされた超音波画像Uにおける便領域R1と音響陰影領域R2を検出する処理が行われる。領域検出部16は、例えば、テンプレートマッチング、機械学習または深層学習等の方法を用いて便領域R1と音響陰影領域R2を検出する処理を行うことができる。 In step S3, the region detection unit 16 performs processing for detecting the stool region R1 and the acoustic shadow region R2 in the ultrasound image U frozen in step S2. The area detection unit 16 can perform a process of detecting the stool area R1 and the acoustic shadow area R2 using methods such as template matching, machine learning, or deep learning.
 続くステップS4において、指標算出部17は、ステップS4で検出された便領域R1と音響陰影領域R2に基づいて、被検体の便の性状に関する指標を算出する。
 この際に、指標算出部17は、例えば、ステップS4で検出された便領域R1の輝度情報Leを指標として算出できる。指標算出部17は、便領域R1の輝度情報Leとして、例えば、便領域R1に亘る輝度値の平均値、便領域R1における輝度値の最大値、便領域R1に亘るRF信号の強度の平均値または便領域R1に対応するRF信号の強度の最大値等を算出できる。
In subsequent step S4, the index calculator 17 calculates an index regarding the properties of the subject's stool based on the stool region R1 and the acoustic shadow region R2 detected in step S4.
At this time, the index calculator 17 can calculate, for example, the brightness information Le of the stool region R1 detected in step S4 as an index. The index calculation unit 17 uses, as the luminance information Le of the feces region R1, for example, an average value of luminance values over the feces region R1, a maximum value of luminance values in the feces region R1, and an average value of RF signal intensities over the feces region R1. Alternatively, the maximum value of the intensity of the RF signal corresponding to the fecal region R1 can be calculated.
 このようにして算出された便領域R1の輝度情報Leは、被検体内の便が比較的硬い場合に比較的高い値を示し、被検体内の便が比較的柔らかい場合に比較的低い値を示す傾向がある。 The luminance information Le of the stool region R1 calculated in this manner exhibits a relatively high value when the stool inside the subject is relatively hard, and exhibits a relatively low value when the stool inside the subject is relatively soft. tend to show
 また、指標算出部17は、例えば、ステップS4で検出された音響陰影領域R2を指標として算出できる。指標算出部17は、音響陰影領域R2の輝度情報Lsとして、例えば、音響陰影領域R2に亘る輝度値の平均値、音響陰影領域R2における輝度値の最小値、音響陰影領域R2に亘るRF信号の強度の平均値または音響陰影領域R2に対応するRF信号の強度の最小値等を算出できる。 Also, the index calculation unit 17 can calculate, for example, the acoustic shadow region R2 detected in step S4 as an index. The index calculation unit 17 uses, as the luminance information Ls of the acoustic shadow region R2, for example, the average luminance value over the acoustic shadow region R2, the minimum luminance value in the acoustic shadow region R2, and the RF signal over the acoustic shadow region R2. An average intensity value or a minimum intensity value of the RF signal corresponding to the acoustic shadow region R2 can be calculated.
 このようにして算出された音響陰影領域R2の輝度情報Lsは、被検体内の便が比較的硬い場合に比較的低い値を示し、被検体内の便が比較的柔らかい場合に比較的高い値を示す傾向がある。 The luminance information Ls of the acoustic shadow region R2 calculated in this manner indicates a relatively low value when the stool inside the subject is relatively hard, and a relatively high value when the stool inside the subject is relatively soft. tend to show
 また、指標算出部17は、例えば、ステップS4で検出された便領域R1の輝度情報Lsと音響陰影領域R2の輝度情報Lsとに基づいて指標を算出することもできる。
 この際に、指標算出部17は、指標として、例えば、式(1)を用いて便領域R1の輝度情報Leと音響陰影領域R2の輝度情報Lsとの比率Cすることができ、式(2)または式(3)を用いて便領域R1の輝度情報Leと音響陰影領域R2の輝度情報Lsとの差分Dを算出することもできる。
The index calculator 17 can also calculate the index based on the luminance information Ls of the feces region R1 and the luminance information Ls of the acoustic shadow region R2 detected in step S4, for example.
At this time, the index calculation unit 17 can calculate the ratio C of the luminance information Le of the stool region R1 and the luminance information Ls of the acoustic shadow region R2 using, for example, Equation (1) as an index, ) or equation (3) can be used to calculate the difference D between the luminance information Le of the feces region R1 and the luminance information Ls of the acoustic shadow region R2.
 比率Cは、被検体内の便が比較的硬い場合に比較的高い値を示し、被検体内の便が比較的柔らかい場合に比較的低い値を示す傾向がある。また、差分Dは、被検体内の便が比較的硬い場合に比較的高い値を示し、被検体内の便が比較的柔らかい場合に比較的低い値を示す傾向がある。 The ratio C tends to show a relatively high value when the stool inside the subject is relatively hard, and shows a relatively low value when the stool inside the subject is relatively soft. Also, the difference D tends to show a relatively high value when the stool in the subject is relatively hard, and a relatively low value when the stool in the subject is relatively soft.
 また、指標算出部17は、ステップS4で検出された便領域R1の形状情報を指標として算出することもできる。
 この際に、指標算出部17は、便領域R1の深さ方向に沿った長さを算出できる。指標算出部17は、例えば、この長さとして、図4に示すように、便領域R1の幅方向の中央部における深さ方向に沿った長さL1を算出できる。また、指標算出部17は、便領域R1の深さ方向に沿った長さとして、便領域R1に亘る深さ方向に沿った長さの平均値を算出することもできる。
The index calculator 17 can also calculate the shape information of the stool region R1 detected in step S4 as an index.
At this time, the index calculation unit 17 can calculate the length along the depth direction of the stool region R1. As this length, for example, the index calculation unit 17 can calculate a length L1 along the depth direction at the central portion in the width direction of the stool region R1, as shown in FIG. The index calculation unit 17 can also calculate the average value of the length along the depth direction over the feces region R1 as the length along the depth direction of the feces region R1.
 また、指標算出部17は、例えば、便領域R1の幅方向の中央部を通り且つ深さ方向に沿った線上における超音波画像Uの輝度プロファイルを算出できる。この輝度プロファイルでは、便領域R1に対応する深さ範囲において、上に凸のピーク形状のグラフが形成される。指標算出部17は、例えば、便領域R1に対応する深さ範囲において、最大の輝度値の半分以上の輝度値を有する深さ範囲の長さすなわち半値幅を、便領域R1の深さ方向に沿った長さとして算出することもできる。 In addition, the index calculation unit 17 can calculate, for example, the luminance profile of the ultrasound image U on a line passing through the center of the stool region R1 in the width direction and along the depth direction. In this luminance profile, a graph with an upwardly convex peak shape is formed in the depth range corresponding to the stool region R1. For example, in the depth range corresponding to the feces region R1, the index calculation unit 17 calculates the length of the depth range having luminance values equal to or greater than half of the maximum luminance value, that is, the half width in the depth direction of the feces region R1. It can also be calculated as the length along.
 このようにして算出される便領域R1の深さ方向に沿った長さは、被検体内の便が比較的硬い場合に比較的短くなり、被検体内の便が比較的柔らかい場合に比較的長くなる。 The length along the depth direction of the stool region R1 calculated in this manner is relatively short when the stool inside the subject is relatively hard, and is relatively short when the stool inside the subject is relatively soft. become longer.
 指標算出部17は、このようにして算出可能な複数の種類の指標のうち1つのみを算出することができ、任意の複数の指標を算出することもできる。 The index calculation unit 17 can calculate only one of a plurality of types of indices that can be calculated in this manner, and can also calculate any plurality of indices.
 続くステップS5において、指標算出部17は、ステップS4で算出された指標を、例えば図5に示すようにモニタ15に表示する。図5の例では、複数の指標が数値としてモニタ15に表示されており、便領域R1の輝度情報Leが「便領域の平均輝度:W」として、音響陰影領域R2の輝度情報Lsが「音響陰影領域の平均輝度」として、比率Cが「輝度比率:Y」として、便領域R1の深さ方向に沿った長さが「深さ方向の長さ:Z」として、超音波画像Uに隣接してモニタ15に表示されている。 In subsequent step S5, the index calculation unit 17 displays the index calculated in step S4 on the monitor 15 as shown in FIG. 5, for example. In the example of FIG. 5, a plurality of indicators are displayed as numerical values on the monitor 15, the luminance information Le of the feces region R1 is "mean luminance of the feces region: W", and the luminance information Ls of the acoustic shadow region R2 is "acoustic Next to the ultrasound image U, the ratio C is "luminance ratio: Y" and the length along the depth direction of the stool region R1 is "length in the depth direction: Z". and is displayed on the monitor 15.
 ステップS4で算出された指標は、被検体内の便が硬いほど高い数値を示す傾向がある指標または被検体内の便が硬いほど低い数値を示す傾向がある指標、すなわち、被検体の便の性状に関する定量的な指標であるため、医師等のユーザがステップS5でモニタ15に表示された指標を確認することにより、被検体内の便の性状をより精確に且つ容易に判断できる。 The index calculated in step S4 is an index that tends to indicate a higher numerical value as the stool in the subject is harder, or an index that tends to indicate a lower numerical value as the stool in the subject is harder. Since it is a quantitative index regarding properties, a user such as a doctor can more accurately and easily determine the properties of stool in the subject by checking the index displayed on the monitor 15 in step S5.
 最後に、ステップS6において、装置制御部19は、検査が終了するか否かを判定する。装置制御部19は、例えば、入力装置20を介してユーザにより被検体に対する検査を終了する指示が入力された場合に、検査が終了すると判断し、被検体に対する検査が終了する指示が特に入力されない場合に、被検体に対する検査が終了せずに検査が続行されると判定できる。 Finally, in step S6, the device control unit 19 determines whether or not the inspection is finished. For example, when the user inputs an instruction to end the examination of the subject via the input device 20, the device control unit 19 determines that the examination is to end, and the instruction to end the examination of the subject is not input. In this case, it can be determined that the examination is continued without finishing the examination of the subject.
 ステップS6で被検体に対する検査が終了しないと判定された場合には、ステップS1に戻る。また、ステップS6で被検体に対する検査が終了すると判定された場合には、図6のフローチャートに従う超音波診断装置1の動作が終了する。 If it is determined in step S6 that the examination of the subject has not been completed, the process returns to step S1. Further, when it is determined in step S6 that the examination of the subject is finished, the operation of the ultrasonic diagnostic apparatus 1 according to the flowchart of FIG. 6 is finished.
 以上から、本発明の実施の形態に係る超音波診断装置1によれば、超音波画像Uにおける便領域R1および音響陰影領域R2が検出され、便領域R1の輝度情報Le、音響陰影領域R2の輝度情報Ls、および、便領域R1の形状情報の少なくとも1つに基づいて、被検体内の便の性状に関する指標が算出されるため、医師等のユーザは、指標を確認することにより、被検体内の便の性状を容易に判断できる。 As described above, according to the ultrasonic diagnostic apparatus 1 according to the embodiment of the present invention, the stool region R1 and the acoustic shadow region R2 are detected in the ultrasonic image U, and the luminance information Le of the stool region R1 and the acoustic shadow region R2 are detected. Based on at least one of the luminance information Ls and the shape information of the stool region R1, an index related to the properties of stool in the subject is calculated. You can easily determine the nature of the internal stool.
 なお、図6のフローチャートでは、指標修正部18による指標の修正が行われない場合が説明されているが、指標修正部18による指標の修正の処理は、例えば、ステップS4とステップS5との間に行われてもよく、ステップS5の後に行われてもよい。 Note that the flowchart of FIG. 6 describes a case where the index correction unit 18 does not correct the index, but the index correction processing by the index correction unit 18 is performed between steps S4 and S5, for example. may be performed immediately after step S5.
 指標修正部18による指標の修正の処理がステップS4とステップS5との間に行われる場合には、例えば、ステップS4で算出された指標が、指標修正部18により、超音波の送受信条件および画像化条件に基づいて修正され、修正された指標がステップS5でモニタ15に表示される。 When the index correction processing by the index correction unit 18 is performed between step S4 and step S5, for example, the index calculated in step S4 is changed by the index correction unit 18 to the ultrasonic transmission/reception conditions and the image The corrected index is displayed on the monitor 15 in step S5.
 また、指標修正部18による指標の修正の処理がステップS5の後に行われる場合には、例えば、ステップS5でモニタ15に表示された指標が、指標修正部18により修正され、ステップS4で算出された指標の代わりに指標修正部18により修正された指標がモニタ15に表示される。 Further, when the index correction processing by the index correction unit 18 is performed after step S5, for example, the index displayed on the monitor 15 in step S5 is corrected by the index correction unit 18 and calculated in step S4. The index corrected by the index correction unit 18 is displayed on the monitor 15 instead of the index that has been corrected.
 また、超音波プローブ2と装置本体3とは、いわゆる有線通信により互いに接続されることができ、いわゆる無線通信により互いに接続されることもできる。 In addition, the ultrasonic probe 2 and the apparatus main body 3 can be connected to each other by so-called wired communication, and can also be connected to each other by so-called wireless communication.
 また、送受信回路12が装置本体3に備えられていることが説明されているが、その代わりに、送受信回路12が超音波プローブ2に備えられていてもよい。 Also, although it has been described that the transmitting/receiving circuit 12 is provided in the device body 3, the transmitting/receiving circuit 12 may be provided in the ultrasonic probe 2 instead.
 また、領域検出部16が画像解析により超音波画像Uにおける便領域R1と音響陰影領域R2の双方を検出することが説明されているが、領域検出部16は、例えば、便領域R1を、画像解析を行うことにより検出し、検出された便領域R1に基づいて音響陰影領域R2を検出することもできる。この場合に、領域検出部16は、検出された便領域R1に対して、例えば1cm~5cm等の定められた深度だけ深い位置を中心とする定められた領域を、音響陰影領域R2として検出できる。 Further, it has been described that the region detection unit 16 detects both the stool region R1 and the acoustic shadow region R2 in the ultrasonic image U by image analysis. It is also possible to detect the acoustic shadow region R2 based on the detected stool region R1 by performing analysis. In this case, the region detection unit 16 can detect a predetermined region centered at a position deeper than the detected stool region R1 by a predetermined depth, such as 1 cm to 5 cm, as the acoustic shadow region R2. .
 音響陰影領域R2として検出される定められた領域のサイズおよび形状は、特に限定されない。しかしながら、通常、音響陰影は便の深さ方向の直下に位置し且つ便領域R1の幅方向の長さと同一の幅方向の長さを有していることが多いため、領域検出部16は、便領域R1の幅方向の長さと同一の幅方向の長さを有する領域を音響陰影領域R2として検出することが好ましい。 The size and shape of the determined area detected as the acoustic shadow area R2 are not particularly limited. However, since the acoustic shadow is usually positioned directly under the stool in the depth direction and has the same length in the width direction as the length in the width direction of the stool region R1, the region detection unit 16 A region having the same widthwise length as the feces region R1 is preferably detected as the acoustic shadow region R2.
 また、領域検出部16により便領域R1と音響陰影領域R2のいずれか一方が検出できない場合には、ユーザが、検出できなかった便領域R1または音響陰影領域R2を、入力装置20を介して手動で指定することができる。これにより、何らかの原因により便領域R1または音響陰影領域R2が検出できなかった場合でも、指標算出部17は、ユーザにより手動で指定された便領域R1または音響陰影領域R2に基づいて指標を算出できる。 Further, when either the feces region R1 or the acoustic shadow region R2 cannot be detected by the region detection unit 16, the user manually selects the feces region R1 or the acoustic shadow region R2 that could not be detected via the input device 20. can be specified with As a result, even if the stool region R1 or the acoustic shadow region R2 cannot be detected for some reason, the index calculator 17 can calculate the index based on the stool region R1 or the acoustic shadow region R2 manually specified by the user. .
 また、領域検出部16により便領域R1と音響陰影領域R2の双方が検出された場合でも、ユーザが、検出された便領域R1および音響陰影領域R2を、入力装置20を介して手動で指定できる。この場合に、指標算出部17は、入力装置20を介してユーザに指定された、超音波画像Uにおける便領域R1と音響陰影領域R2とに基づいて、指標を再度算出できる。これにより、何らかの原因で、便領域R1または音響陰影領域R2が適切に検出されなかった場合でも、指標算出部17は、ユーザにより手動で指定された便領域R1または音響陰影領域R2に基づいて精度良く指標を算出できる。 Further, even when both the feces region R1 and the acoustic shadow region R2 are detected by the region detection unit 16, the user can manually specify the detected feces region R1 and the acoustic shadow region R2 via the input device 20. . In this case, the index calculator 17 can calculate the index again based on the stool region R1 and the acoustic shadow region R2 in the ultrasound image U specified by the user via the input device 20 . As a result, even if the stool region R1 or the acoustic shadow region R2 is not properly detected for some reason, the index calculation unit 17 can calculate the accuracy based on the stool region R1 or the acoustic shadow region R2 manually specified by the user. You can calculate the index well.
 また、図5の例では、指標算出部17により算出された指標が超音波画像Uに隣接して数値として表示されることが説明されているが、指標の表示方法は、これに限定されない。 Also, in the example of FIG. 5, it is explained that the index calculated by the index calculation unit 17 is displayed as a numerical value adjacent to the ultrasonic image U, but the display method of the index is not limited to this.
 指標算出部17は、例えば図7に示すように、便領域R1の近傍に便領域R1の輝度情報Leを表す指標を表示し、音響陰影領域R2の近傍に音響陰影領域R2の輝度情報Lsを表す指標を表示できる。図7の例では、便領域R1の輝度情報Leが、「便領域の平均輝度:W」というテキストを含む表示パネルQ1により表示され、音響陰影領域R2の輝度情報Lsが、「音響陰影領域の平均輝度:X」というテキストを含む表示パネルQ2により表示されている。また、図示しないが、指標算出部17は、例えば、比率Cまたは差分Dを便領域R1と音響陰影領域R2の近傍に表示でき、便領域R1の形状情報を便領域R1の近傍に表示できる。 For example, as shown in FIG. 7, the index calculation unit 17 displays an index representing the luminance information Le of the feces region R1 near the feces region R1, and displays the luminance information Ls of the acoustic shadow region R2 near the acoustic shadow region R2. You can display the index that represents In the example of FIG. 7, the brightness information Le of the stool region R1 is displayed by the display panel Q1 including the text "Average brightness of the stool region: W", and the brightness information Ls of the acoustic shadow region R2 is displayed as "Average brightness of the stool region: W". is displayed by the display panel Q2 containing the text "Average luminance: X". Also, although not shown, the index calculation unit 17 can display, for example, the ratio C or the difference D near the stool region R1 and the acoustic shadow region R2, and can display the shape information of the stool region R1 near the stool region R1.
 このようにして、便領域R1と音響陰影領域R2の近傍に指標を表示することにより、ユーザが、モニタ15上に表示されている指標が便領域R1と音響陰影領域R2のいずれに関係する指標であるかを容易に把握できる。 By displaying the indices in the vicinity of the stool region R1 and the acoustic shadow region R2 in this manner, the user can determine whether the indices displayed on the monitor 15 are related to the stool region R1 or the acoustic shadow region R2. It is easy to understand whether
 また、指標算出部17は、算出された指標を色に変換し、図8に模式的に示すように、領域検出部16により検出された便領域R1の輪郭線B1および音響陰影領域R2の輪郭線B2に対して色を付与することにより、指標をモニタ15に表示することもできる。指標算出部17は、例えば、便領域R1の輝度情報Leまたは便領域R1の形状情報等の便領域R1に関する指標に応じた色を便領域R1の輪郭線B1に付与できる。また、指標算出部17は、例えば、音響陰影領域R2の輝度情報等の音響陰影領域R2に関する指標に応じた色を音響陰影領域R2の輪郭線B2に付与できる。また、指標算出部17は、例えば、比率Cまたは差分D等の便領域R1と音響陰影領域R2の双方に関する指標に応じた色を、便領域R1の輪郭線B1と、音響陰影領域R2の輪郭線B2の双方に付与できる。 In addition, the index calculator 17 converts the calculated index into a color, and as schematically shown in FIG. The index can also be displayed on the monitor 15 by adding color to the line B2. The index calculator 17 can give the outline B1 of the stool region R1 a color corresponding to an index related to the stool region R1, such as the luminance information Le of the stool region R1 or the shape information of the stool region R1. In addition, the index calculation unit 17 can give the contour line B2 of the acoustic shadow region R2 a color corresponding to an index relating to the acoustic shadow region R2, such as luminance information of the acoustic shadow region R2. In addition, the index calculation unit 17 calculates a color corresponding to an index related to both the stool region R1 and the acoustic shadow region R2, such as the ratio C or the difference D, by calculating the contour line B1 of the stool region R1 and the contour line of the acoustic shadow region R2. It can be applied to both lines B2.
 このようにして、便領域R1の輪郭線B1および音響陰影領域R2の輪郭線B2に対して指標に応じた色が付与されることにより、ユーザは、便領域R1および音響陰影領域R2に関する指標を容易に把握できる。 In this way, the outline B1 of the stool region R1 and the outline B2 of the acoustic shadow region R2 are given colors corresponding to the indices, so that the user can easily select the indices for the stool region R1 and the acoustic shadow region R2. Easy to grasp.
 また、この際に、指標算出部17は、図8に示すように、便領域R1の輪郭線B1および音響陰影領域R2の輪郭線B2に付与された色と、指標の高低との関係を示すカラーバーGをモニタ15に表示できる。カラーバーGは、例えば、上部から下部にかけて徐々に変化するように色を有しており、上部に位置する色ほど指標が高いことを示し、下部に位置する色ほど指標が低いことを示す。
 このように、ユーザは、カラーバーGを確認して、輪郭線B1およびB2に付与された色と指標の高さとの対応関係を容易に把握できる。
At this time, as shown in FIG. 8, the index calculator 17 indicates the relationship between the colors assigned to the outline B1 of the stool region R1 and the outline B2 of the acoustic shadow region R2 and the height of the index. A color bar G can be displayed on the monitor 15 . For example, the color bar G has colors that gradually change from the top to the bottom, with the color positioned at the top indicating a higher index, and the color positioned at the bottom indicating a lower index.
Thus, by checking the color bar G, the user can easily grasp the correspondence relationship between the colors given to the contour lines B1 and B2 and the height of the index.
 また、指標算出部17は、便領域R1の輪郭線B1と音響陰影領域R2の輪郭線B2に対して色を付与する代わりに、指標に対応する色により、便領域R1および音響陰影領域R2を塗りつぶしてもよい。この場合に、指標算出部17は、例えば、指標の高低によって塗りつぶされた色の透明度を変更することもできる。 In addition, instead of adding colors to the contour line B1 of the feces region R1 and the contour line B2 of the acoustic shadow region R2, the index calculation unit 17 divides the feces region R1 and the acoustic shadow region R2 with colors corresponding to the indices. You can fill it. In this case, the index calculation unit 17 can change the transparency of the filled color depending on the height of the index, for example.
 また、図6のフローチャートを用いた超音波診断装置1の動作説明では、ステップS2で超音波画像Uがフリーズされ、フリーズされた超音波画像Uに対してステップS3の領域検出の処理、ステップS4の指標算出の処理およびステップS5の指標表示の処理が行われていることが説明されているが、フリーズの処理を行わずに、ステップS1で超音波画像Uが撮影される毎にステップS3~ステップS5の処理が行われてもよい。この場合には、画像生成部13において連続的に生成される超音波画像Uのそれぞれに対して、ステップS3の領域検出の処理、ステップS4の指標算出の処理が行われ、ステップS4で算出された指標が次々とモニタ15に表示される。この場合でも、医師等のユーザは、超音波画像Uがフリーズされる場合と同様に、指標を確認することにより被検体内の便の性状を容易に判断できる。 Further, in the description of the operation of the ultrasonic diagnostic apparatus 1 using the flowchart of FIG. 6, the ultrasonic image U is frozen in step S2, and the frozen ultrasonic image U undergoes region detection processing in step S3 and step S4. and the index display processing of step S5 are performed, but without performing the freeze processing, steps S3 to The process of step S5 may be performed. In this case, each of the ultrasonic images U continuously generated by the image generator 13 is subjected to the area detection process in step S3 and the index calculation process in step S4. The index is displayed on the monitor 15 one after another. Even in this case, a user such as a doctor can easily determine the properties of stool in the subject by checking the index, as in the case where the ultrasound image U is frozen.
1 超音波診断装置、2 超音波プローブ、3 装置本体、11 振動子アレイ、12 送受信回路、13 画像生成部、14 表示制御部、15 モニタ、16 領域検出部、17 指標算出部、18 指標修正部、19 装置制御部、20 入力装置、21 プロセッサ、31 パルサ、32 増幅部、33 AD変換部、34 ビームフォーマ、35 信号処理部、36 DSC、37 画像処理部、B1,B2 輪郭線、G カラーバー、L1 長さ、Q1,Q2 表示パネル、R1 便領域、R2 音響陰影領域、SL 音線、U 超音波画像。 1 Ultrasound diagnostic device, 2 Ultrasound probe, 3 Device body, 11 Transducer array, 12 Transmission/reception circuit, 13 Image generation unit, 14 Display control unit, 15 Monitor, 16 Area detection unit, 17 Index calculation unit, 18 Index correction section, 19 device control section, 20 input device, 21 processor, 31 pulser, 32 amplifier section, 33 AD conversion section, 34 beam former, 35 signal processing section, 36 DSC, 37 image processing section, B1, B2 outline, G Color bar, L1 length, Q1, Q2 display panel, R1 stool area, R2 acoustic shadow area, SL sound ray, U ultrasound image.

Claims (17)

  1.  超音波プローブと、
     前記超音波プローブを用いた被検体に対する走査により得られた受信信号に基づいて超音波画像を生成する画像生成部と、
     前記画像生成部により生成された前記超音波画像における便領域および便による音響陰影領域を検出する領域検出部と、
     前記領域検出部により検出された前記便領域の輝度情報、前記領域検出部により検出された前記音響陰影領域の輝度情報、および、前記領域検出部により検出された前記便領域の形状情報の少なくとも1つに基づいて、前記被検体内の便の性状に関する指標を算出する指標算出部と
     を備える超音波診断装置。
    an ultrasound probe;
    an image generating unit that generates an ultrasonic image based on a received signal obtained by scanning a subject using the ultrasonic probe;
    an area detection unit that detects a stool area and an acoustic shadow area due to stool in the ultrasonic image generated by the image generation unit;
    At least one of luminance information of the stool region detected by the region detection unit, luminance information of the acoustic shadow region detected by the region detection unit, and shape information of the stool region detected by the region detection unit. and an index calculation unit that calculates an index related to the properties of the stool in the subject based on the above.
  2.  モニタを備え、
     前記指標算出部は、前記指標を前記モニタに表示する請求項1に記載の超音波診断装置。
    equipped with a monitor,
    The ultrasonic diagnostic apparatus according to claim 1, wherein the index calculator displays the index on the monitor.
  3.  前記指標算出部は、前記指標を数値として前記モニタに表示する請求項2に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 2, wherein the index calculation unit displays the index as a numerical value on the monitor.
  4.  前記指標算出部は、前記領域検出部により検出された前記便領域の近傍および前記音響陰影領域の近傍の少なくとも一方に前記指標を表示する請求項3に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 3, wherein the index calculation unit displays the index in at least one of the vicinity of the stool region and the vicinity of the acoustic shadow region detected by the region detection unit.
  5.  前記指標算出部は、前記領域検出部により検出された前記便領域の輪郭線および前記音響陰影領域の輪郭線に前記指標に応じた色を付与することにより、前記指標を前記モニタに表示する請求項2に記載の超音波診断装置。 The index calculation unit displays the index on the monitor by adding a color corresponding to the index to the outline of the stool area and the outline of the acoustic shadow area detected by the area detection unit. Item 3. The ultrasonic diagnostic apparatus according to item 2.
  6.  前記領域検出部は、前記画像生成部により生成された前記超音波画像に対して画像解析を行うことにより、前記便領域および前記音響陰影領域を検出する請求項1~5のいずれか一項に記載の超音波診断装置。 6. The area detection unit detects the stool area and the acoustic shadow area by performing image analysis on the ultrasonic image generated by the image generation unit. The ultrasound diagnostic device described.
  7.  前記領域検出部は、前記画像生成部により生成された前記超音波画像に対して画像解析を行うことにより前記便領域を検出し、前記便領域に対して定められた深度に位置する定められた領域を前記音響陰影領域として検出する請求項1~5のいずれか一項に記載の超音波診断装置。 The area detection unit detects the stool area by performing image analysis on the ultrasonic image generated by the image generation unit, and detects the stool area at a predetermined depth relative to the stool area. The ultrasonic diagnostic apparatus according to any one of claims 1 to 5, wherein an area is detected as the acoustic shadow area.
  8.  前記指標算出部は、前記便領域の輝度情報と前記音響陰影領域の輝度情報との比率Cまたは差分Dを算出することにより前記指標を算出する請求項1~5のいずれか一項に記載の超音波診断装置。 6. The index calculation unit according to any one of claims 1 to 5, wherein the index calculation unit calculates the index by calculating a ratio C or a difference D between the luminance information of the stool area and the luminance information of the acoustic shadow area. Ultrasound diagnostic equipment.
  9.  前記指標算出部は、前記比率Cを、前記便領域の輝度情報をLe、前記音響陰影領域の輝度情報をLsとして、
      C=Le/Ls
    により算出する請求項8に記載の超音波診断装置。
    The index calculation unit sets the ratio C as luminance information of the stool region to Le and luminance information of the acoustic shadow region to Ls,
    C = Le/Ls
    The ultrasonic diagnostic apparatus according to claim 8, which is calculated by:
  10.  前記指標算出部は、前記差分Dを、前記便領域の輝度情報をLe、前記音響陰影領域の輝度情報をLsとして、
      D=Le-Ls
    により算出する請求項8に記載の超音波診断装置。
    The index calculation unit uses the difference D as the luminance information of the stool region as Le and the luminance information of the acoustic shadow region as Ls,
    D = Le - Ls
    The ultrasonic diagnostic apparatus according to claim 8, which is calculated by:
  11.  前記指標算出部は、前記差分Dを、前記便領域の輝度情報をLe、前記音響陰影領域の輝度情報をLsとして、
      D=(Le-Ls)/(Le+Ls)
    により算出する請求項8に記載の超音波診断装置。
    The index calculation unit uses the difference D as the luminance information of the stool region as Le and the luminance information of the acoustic shadow region as Ls,
    D = (Le - Ls) / (Le + Ls)
    The ultrasonic diagnostic apparatus according to claim 8, which is calculated by:
  12.  前記指標算出部は、前記便領域の形状情報として、前記便領域の深さ方向に沿った長さを算出する請求項1~5のいずれか一項に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to any one of claims 1 to 5, wherein the index calculation unit calculates the length of the stool region along the depth direction as the shape information of the stool region.
  13.  前記指標算出部は、前記便領域の形状情報として、前記便領域の幅方向の中央部における深さ方向に沿った長さを算出する請求項12に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 12, wherein the index calculation unit calculates, as the shape information of the stool region, the length along the depth direction at the central portion in the width direction of the stool region.
  14.  前記指標算出部は、前記便領域の形状情報として、前記便領域の深さ方向に沿った長さの平均値を算出する請求項12に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 12, wherein the index calculation unit calculates an average length of the stool region along the depth direction as the shape information of the stool region.
  15.  ユーザが入力操作を行うための入力装置を備え、
     前記指標算出部は、前記入力装置を介して前記ユーザにより指定された、前記超音波画像における前記便領域と前記音響陰影領域とに基づいて、前記指標を算出する請求項1~5のいずれか一項に記載の超音波診断装置。
    Equipped with an input device for a user to perform an input operation,
    6. The index calculator according to any one of claims 1 to 5, wherein the index calculator calculates the index based on the stool region and the acoustic shadow region in the ultrasonic image specified by the user via the input device. 1. The ultrasonic diagnostic apparatus according to item 1.
  16.  前記超音波プローブにより送受信される超音波の送受信条件および前記画像生成部における画像化条件に基づいて、前記指標算出部により算出された前記指標を修正する指標修正部を備える請求項1~5のいずれか一項に記載の超音波診断装置。 6. The index correction unit for correcting the index calculated by the index calculation unit based on transmission/reception conditions of ultrasonic waves transmitted/received by the ultrasonic probe and imaging conditions in the image generation unit. The ultrasonic diagnostic apparatus according to any one of claims 1 to 3.
  17.  超音波プローブを用いた被検体に対する走査により得られた受信信号に基づいて超音波画像を生成し、
     前記超音波画像における前記被検体内の便領域および前記便による音響陰影領域を検出し、
     前記便領域の輝度情報、前記音響陰影領域の輝度情報および前記便領域の形状情報の少なくとも1つに基づいて、前記被検体内の便の性状に関する指標を算出する
     超音波診断装置の制御方法。
    generating an ultrasound image based on a received signal obtained by scanning a subject using an ultrasound probe;
    detecting a stool area within the subject and an acoustically shadowed area due to the stool in the ultrasound image;
    A control method for an ultrasonic diagnostic apparatus, comprising: calculating an index relating to properties of stool in the subject based on at least one of luminance information of the stool region, luminance information of the acoustic shadow region, and shape information of the stool region.
PCT/JP2022/021504 2021-06-29 2022-05-26 Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device WO2023276501A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023531712A JPWO2023276501A1 (en) 2021-06-29 2022-05-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-107362 2021-06-29
JP2021107362 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023276501A1 true WO2023276501A1 (en) 2023-01-05

Family

ID=84691261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021504 WO2023276501A1 (en) 2021-06-29 2022-05-26 Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device

Country Status (2)

Country Link
JP (1) JPWO2023276501A1 (en)
WO (1) WO2023276501A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120243757A1 (en) * 2010-07-30 2012-09-27 Siemens Corporation System and method for detection of acoustic shadows and automatic assessment of image usability in 3d ultrasound images
JP2016195748A (en) * 2015-04-06 2016-11-24 国立大学法人 熊本大学 Diagnostic device and diagnostic method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120243757A1 (en) * 2010-07-30 2012-09-27 Siemens Corporation System and method for detection of acoustic shadows and automatic assessment of image usability in 3d ultrasound images
JP2016195748A (en) * 2015-04-06 2016-11-24 国立大学法人 熊本大学 Diagnostic device and diagnostic method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANABE, MASAYUKI. TOMIHARA, KANAKO. YOTSUYA, JUNKO. TAKII, MICHIAKI. NISHIMOTO, MASAHIKO: "Quantitative evaluation of ultrasound images using machine learning for automatic classification of stool and gas in the large intestine", JOURNAL OF MEDICAL ULTRASONICS, vol. 45, no. Suppl., 15 April 2018 (2018-04-15), pages S554, XP009543231, ISSN: 1346-1176 *

Also Published As

Publication number Publication date
JPWO2023276501A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
JP5559788B2 (en) Ultrasonic diagnostic equipment
US9052268B2 (en) Ultrasound diagnostic apparatus and method of producing ultrasound image
JP6419976B2 (en) Ultrasonic diagnostic apparatus and control method of ultrasonic diagnostic apparatus
JP5166154B2 (en) Ultrasonic diagnostic equipment
JP2020096894A (en) Ultrasonic diagnostic apparatus and operation method of ultrasonic diagnostic apparatus
US20120238877A1 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JP5588924B2 (en) Ultrasonic diagnostic equipment
US20120215107A1 (en) Ultrasound probe and ultrasound diagnostic apparatus
JP2007301181A (en) Ultrasonic diagnostic apparatus and image display method
US10788459B2 (en) Ultrasound diagnostic apparatus, ultrasound image generation method, and recording medium
US20160367222A1 (en) Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus
WO2023276501A1 (en) Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device
JP4614739B2 (en) Ultrasonic diagnostic equipment
US20240081779A1 (en) Ultrasound diagnostic apparatus and control method for ultrasound diagnostic apparatus
JP2002345823A (en) Ultrasonic diagnostic device
JP6728767B2 (en) Ultrasonic diagnostic device and ultrasonic information processing method
US20240081786A1 (en) Ultrasound diagnostic apparatus and control method for ultrasound diagnostic apparatus
US20240130713A1 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
US20240130716A1 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
WO2022044654A1 (en) Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device
JP2007301086A (en) Ultrasonic diagnostic equipment
US20240081788A1 (en) Ultrasound diagnostic apparatus and control method for ultrasound diagnostic apparatus
WO2022270219A1 (en) Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device
WO2023281987A1 (en) Ultrasonic system and method for controlling ultrasonic system
JP2012192075A (en) Ultrasound diagnostic apparatus and ultrasound image generation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832659

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531712

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE