WO2023276468A1 - Polyolefin microporous membrane and battery separator - Google Patents

Polyolefin microporous membrane and battery separator Download PDF

Info

Publication number
WO2023276468A1
WO2023276468A1 PCT/JP2022/020339 JP2022020339W WO2023276468A1 WO 2023276468 A1 WO2023276468 A1 WO 2023276468A1 JP 2022020339 W JP2022020339 W JP 2022020339W WO 2023276468 A1 WO2023276468 A1 WO 2023276468A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous membrane
polyolefin
layer
polyolefin microporous
mass
Prior art date
Application number
PCT/JP2022/020339
Other languages
French (fr)
Japanese (ja)
Inventor
竹田健人
窪田隆
李丹
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2022529493A priority Critical patent/JPWO2023276468A1/ja
Priority to KR1020237028410A priority patent/KR20240026878A/en
Priority to CN202280030525.2A priority patent/CN117203843A/en
Publication of WO2023276468A1 publication Critical patent/WO2023276468A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a polyolefin microporous membrane and a battery separator.
  • Microporous membranes are used in various fields such as filters such as filtration membranes and dialysis membranes, separators for batteries and separators for electrolytic capacitors.
  • a microporous film made of polyolefin as a resin material is widely used as a secondary battery separator because it is excellent in chemical resistance, insulation, mechanical strength, etc., and has shutdown characteristics.
  • batteries must meet safety requirements such as self-discharge characteristics, nail penetration tests, hot box tests, and impact resistance tests to extend life and prevent capacity deterioration. Improvements in insulation, mechanical strength, shutdown characteristics, etc. are required.
  • the polyolefin laminated microporous membrane consists of at least three layers, the film thickness is in the range of 3 to 25 ⁇ m, and the meltdown temperature is in the range of 159 to 200 ° C. has an air permeability in the range of 50 to 300 seconds, a puncture strength in the range of 100 to 550 gf, contains polypropylene only in the inner layer of the three layers, and at least one layer forming the surface layer has a melt flow
  • a separator film has been proposed, characterized in that it contains a resin with a rate of 50-150 g/10 min and a melting point of 120-130°C.
  • Patent Document 2 a laminated microporous membrane made of polyethylene and polypropylene and having a thickness of 5 to 20 ⁇ m, the microporous membrane contains 3 to 50% of polypropylene, and the difference between the shutdown temperature and the membrane rupture temperature is is 33° C. or higher, the shutdown temperature is 140° C. or lower, and the membrane rupture temperature is 150° C. or higher.
  • Patent Document 3 in order to ensure battery safety at high temperatures, it is a microporous material characterized by containing polymethylpentene having a Tm of 200.0 ° C. or more and an MFR of 80.0 dg / min or less. , a meltdown temperature of 180.0° C. or higher, a shutdown temperature of 131.0° C. or lower, and a 170° C. TD heat shrinkage of 30.0% or lower. ing.
  • lithium-ion secondary batteries are required to have even higher capacity and higher safety. Therefore, separators are required to be thinner, maintain insulation at high temperatures inside the battery, and improve mechanical strength and shutdown characteristics.
  • the object of the present invention is to provide a polyolefin microporous membrane that is thin, has a low shutdown temperature, and has both high mechanical strength and insulating properties after melting.
  • the polyolefin microporous membrane of the first aspect of the present invention has a thickness of 6 ⁇ m or less, a puncture strength equivalent to 5 ⁇ m of 1.7 N or more, and a shutdown temperature of 80° C. or more as measured by the temperature-rising air permeability method.
  • the temperature is 138° C. or lower, and the crystallinity of the polypropylene at 169° C. is 3 ppm or more and 200 ppm or less.
  • polyolefin microporous membrane may be a multi-layer microporous membrane consisting of a plurality of layers.
  • the polyolefin microporous membrane has peaks in the molecular weight ranges of 5.0 ⁇ 10 4 to 1.0 ⁇ 10 5 and 3.0 ⁇ 10 5 to 7.0 ⁇ 10 5 in the GPC chart. You may have
  • polyethylene having a weight average molecular weight of 4.0 ⁇ 10 5 or more and 1.0 ⁇ 10 6 or less may be contained.
  • the polyolefin microporous membrane may have a polypropylene concentration of 3.5% by mass or more and 10.0% by mass or less.
  • the polyolefin microporous membrane may have a porous layer laminated on at least one side of the polyolefin microporous membrane.
  • the battery separator of the second aspect of the present invention comprises the polyolefin microporous membrane.
  • polyolefin microporous membrane that is thin, has a low shutdown temperature, and has both puncture strength and insulation after melting.
  • polyolefin microporous membranes are suitably used as battery separators.
  • the polyolefin microporous membrane of the present invention has a thickness of 6 ⁇ m or less, a puncture strength equivalent to 5 ⁇ m of 1.7 N or more, and a shutdown temperature measured by a temperature-rising air permeability method of 80° C. or more and 138° C. or less. , the crystallinity of the polypropylene when reaching 169° C. is 3 ppm or more and 200 ppm or less.
  • the upper limit of the thickness of the polyolefin microporous membrane of the present invention is 6 ⁇ m or less. If the film thickness exceeds 6 ⁇ m, the high capacity of the battery cannot be achieved.
  • the upper limit of the film thickness is preferably 4.7 ⁇ m or less, more preferably 4.5 ⁇ m or less.
  • the lower limit of the film thickness is preferably 1 ⁇ m or more, more preferably 3.0 ⁇ m or more, from the viewpoint of puncture strength and insulation at high temperatures.
  • the film thickness is within the above preferred range, when the polyolefin microporous film is used as a battery separator, the amount of active material in the electrode can be increased by the amount of the reduced film thickness, resulting in an improvement in battery capacity. .
  • the film thickness can be set within a predetermined range by adjusting the extrusion rate and the heat setting temperature.
  • the polyolefin microporous membrane of the present invention has a puncture strength converted to a thickness of 5 ⁇ m (puncture strength converted to 5 ⁇ m) of 1.7 N or higher, and a shutdown temperature of 80° C. or higher and 138° C. or lower. Due to these characteristics, the film is resistant to breakage even when high tension is applied, and has high durability, and when incorporated into a battery, it has excellent self-discharge characteristics. Furthermore, when the battery heats up abnormally, it shuts down more quickly and prevents the temperature from rising. Further, when the shutdown temperature is 80° C. or higher, unnecessary shutdown does not occur in extremely hot regions or seasons, and the possibility of impairing the function as a battery is low, which is preferable.
  • the balance between the puncture strength equivalent to 5 ⁇ m and the shutdown temperature can be adjusted within a predetermined range by adjusting the film-forming conditions such as the molecular weight of the polyolefin, the compounding ratio, and the stretching temperature in the manufacturing process.
  • the lower limit of the 5 ⁇ m equivalent puncture strength is preferably 1.7 N or more, more preferably 1.9 N or more, from the viewpoints of suppressing the defective rate in the battery process, maintaining the self-discharge characteristics of the battery, and compressing resistance.
  • the upper limit is not particularly limited, 3.0N or less is preferable.
  • the shutdown temperature preferably has an upper limit of 137° C. or lower, more preferably 136° C. or lower, from the viewpoint of suppressing abnormal heat generation of the battery more quickly.
  • the crystallinity of polypropylene when heated to 169°C is 3 ppm or more and 200 ppm or less.
  • the fact that the crystallinity of polypropylene is 3 ppm or more indicates that the regular structure of polypropylene remains sufficiently when it reaches 169 ° C., and it is difficult to relax even when the temperature rises, so it has excellent shape retention properties after melting and is in an insulating state. can be kept in good condition.
  • the crystallinity of polypropylene is 200 ppm or less, the amount of ordered structures does not become excessive, and phase separation between polyolefin and polypropylene at high temperatures is suppressed, holes are less likely to open, and short circuits can be further suppressed.
  • the crystallinity of polypropylene is preferably 10 ppm or more and 170 ppm or less, more preferably 20 ppm or more and 150 ppm or less, from the viewpoint of suppressing short circuits due to film breakage at high temperatures.
  • the crystallinity of polypropylene when it reaches 169°C can be obtained by differential scanning calorimetry (DSC), which will be described later. Crystallinity can be brought within a given range, for example, by adding polypropylene of a given molecular weight and melting point. In this polyolefin microporous membrane, the crystallinity of the polypropylene when it reaches 169° C. should be adjusted in consideration of the compatibility with other polyolefins to be mixed, and the molecular weight and melting point of the other polyolefins.
  • the polyolefin microporous membrane can also be a multilayer microporous membrane consisting of multiple layers.
  • the polyolefin constituting the polyolefin microporous membrane of the present invention has a molecular weight in the range of 5.0 ⁇ 10 4 to 1.0 ⁇ 10 5 and 3.0 in the GPC chart from the viewpoint of facilitating control of strength and shutdown characteristics. It is preferable that each have a peak in the range of ⁇ 10 5 to 7.0 ⁇ 10 5 .
  • the polyolefin microporous membrane of the present invention preferably contains polyethylene having a weight average molecular weight of 4.0 ⁇ 10 5 or more and 1.0 ⁇ 10 6 or less. More preferably, the weight average molecular weight of polyethylene is 4.0 ⁇ 10 5 or more and 1.0 ⁇ 10 6 or less.
  • the weight-average molecular weight of the polyolefin resin composition constituting the polyolefin microporous membrane can be determined by the GPC method.
  • the polyolefin microporous membrane of the present invention contains polyethylene and isotactic polypropylene, and the concentration of isotactic polypropylene with respect to the total mass of polyethylene and isotactic polypropylene is 3.5% by mass or more and 10.0% by mass or less. is preferred. More preferably, it is 4.0% by mass or more and 6.0% by mass or less.
  • the concentration of isotactic polypropylene with respect to the total mass of polyethylene and isotactic polypropylene is 3.5% by mass or more and 10.0% by mass or less. is preferred. More preferably, it is 4.0% by mass or more and 6.0% by mass or less.
  • the lower limit of the polypropylene concentration is within the above preferred range, the polypropylene component remains even after the polyolefin melts, has a sufficient network, and can maintain heat resistance.
  • the polypropylene concentration in the polyolefin microporous film can be determined by infrared spectrometry (IR measurement), which will be described later.
  • IR measurement infrared spectrometry
  • the polypropylene concentration relative to the total mass of polyethylene and isotactic polypropylene in the polyolefin microporous membrane can be controlled by the polypropylene concentration contained in the polyolefin resin raw material forming the polyolefin microporous membrane.
  • the concentration of polypropylene contained with respect to the total weight of polyethylene and isotactic polypropylene in the polyolefin resin raw material is preferably 1.0% by mass or more and 10.0% by mass or less, more preferably 2.0% by mass or more6. It is 0% by mass or less, more preferably 3.0% by mass or more and 5.5% by mass or less.
  • the lower limit of the porosity of the polyolefin microporous membrane of the present invention is not particularly limited, it is, for example, 20% or more, more preferably 30% or more.
  • the lower limit of the porosity is not particularly limited, it is, for example, 70% or less, preferably 60% or less.
  • the porosity is within the above range, it is possible to increase the retention amount of the electrolytic solution and ensure high ion permeability. Further, when the porosity is within the above range, rate characteristics are improved. Moreover, from the viewpoint of further enhancing ion permeability and rate characteristics, the porosity is preferably 20% or more.
  • the porosity can be set within the above range by adjusting the compounding ratio of the constituent components of the polyolefin, the draw ratio, the heat setting conditions, and the like in the manufacturing process.
  • the heat shrinkage rate in the machine direction of the polyolefin microporous membrane of the present invention is, for example, 10% or less, preferably 9% or less, and more preferably 8% or less.
  • the heat shrinkage rate in the width direction of the polyolefin microporous membrane at 120° C. for 1 hour is, for example, 10% or less, preferably 9% or less, and more preferably 7% or less.
  • the lower limit of the heat shrinkage in the machine direction and the lower limit of the heat shrinkage in the width direction are not particularly limited, they are preferably -2.0% or more.
  • the heat shrinkage of the polyolefin microporous membrane can be controlled within the above range by adjusting the compounding ratio of the constituent components of the polyolefin, the draw ratio, the heat setting conditions, and the like in the manufacturing process.
  • the polyolefin microporous membrane of the present invention may be a single-layer microporous membrane or a multilayer microporous membrane comprising a plurality of layers.
  • the layer structure is preferably two or more layers, more preferably three layers, and it is particularly preferred that A layer and B layer having different resin compositions are A layer/B layer/A layer or B layer/A layer/B layer. preferable.
  • the polyolefin resin composition A and the polyolefin resin composition B constituting the A layer and the B layer are described below.
  • Polyolefin resin composition A The polyolefin resin composition A may contain polyethylene a1 and polyethylene a2.
  • Polyethylene a1 is polyethylene having a weight average molecular weight (Mw) of 7.0 ⁇ 10 5 or more. Polyethylene a1 may be a copolymer containing a small amount of an ⁇ -olefin copolymer other than ethylene, but it is preferable to use an ethylene homopolymer. Preferred ⁇ -olefin copolymers other than ethylene are propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate and styrene.
  • the content of ⁇ -olefins other than ethylene is preferably 5 mol % or less based on 100 mol % of the ⁇ -olefin copolymer. From the viewpoint of uniformity of the pore structure of the polyolefin microporous membrane, it is preferably an ethylene homopolymer.
  • Polyethylene a1 preferably has a weight-average molecular weight (Mw) of 7.0 ⁇ 10 5 or more and less than 2.0 ⁇ 10 6 from the viewpoint of facilitating control of the strength, stretchability, and melting of the microporous membrane. 0 ⁇ 10 6 or more and 1.8 ⁇ 10 6 or less is more preferable.
  • the melting point of polyethylene a1 is preferably 134° C. or higher and 137° C. or lower, more preferably 134° C. or higher and 136° C. or lower.
  • the content of polyethylene a1 is preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably 70% by mass or more based on 100% by mass of the polyolefin resin composition A. The upper limit is 95% by mass.
  • Polyethylene a2 has a weight average molecular weight (Mw) of 5.0 ⁇ 10 4 or more and less than 7.0 ⁇ 10 5 and 3.0 ⁇ 10 5 or less from the viewpoint of facilitating control of melting of the microporous membrane. is preferred, and 2.0 ⁇ 10 5 or less is more preferred.
  • Polyethylene a2 is preferably a low melting point component, preferably has a melting point of 130° C. or more and less than 134° C., more preferably 130° C. or more and 133° C. or less, and preferably 130° C. or more and 132° C. or less. More preferred.
  • Polyethylene a2 is preferably at least one selected from the group consisting of high density polyethylene, medium density polyethylene, branched low density polyethylene and linear low density polyethylene, and a small amount of other ⁇ -olefin copolymer other than ethylene. It may be a copolymer containing. Preferred ⁇ -olefin copolymers other than ethylene are propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate and styrene.
  • the content of ⁇ -olefins other than ethylene is preferably 10 mol % or less based on 100 mol % of the ⁇ -olefin copolymer.
  • the content of polyethylene a2 is preferably 50% by mass or less, more preferably 40% by mass or less, and still more preferably 30% by mass or more, relative to 100% by mass of the polyolefin resin composition A.
  • the polyolefin resin composition B may contain polyethylene b1 and polypropylene.
  • Polyethylene b1 can be the same as polyethylene a1 in the above item. However, the same meaning means polyethylene having the same range of molecular weight and melting point as polyethylene a1.
  • polypropylene The type of polypropylene is not particularly limited as long as it satisfies the following molecular weights and melting points.
  • the weight average molecular weight (Mw) of polypropylene is preferably 1 ⁇ 10 6 or more, more preferably 1.2 ⁇ 10 6 or more, more preferably 1.2 ⁇ 10 6 from the viewpoint of phase separation and shape retention of the microporous membrane at high temperatures. ⁇ 4 ⁇ 10 6 is even more preferred.
  • the melting point of polypropylene is preferably 155 to 175°C, more preferably 160 to 170°C.
  • Polypropylene may be a propylene homopolymer, a copolymer of propylene and other ⁇ -olefins and/or diolefins (propylene copolymer), or a mixture of two or more selected from these, but propylene is more preferably used alone. Either a random copolymer or a block copolymer can be used as the propylene copolymer.
  • ⁇ -olefin in the propylene copolymer ⁇ -olefins having 8 or less carbon atoms are preferred.
  • Examples of ⁇ -olefins having 8 or less carbon atoms include ethylene, butene-1, pentene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate, styrene and combinations thereof.
  • a diolefin having 4 to 14 carbon atoms is preferable.
  • Examples of diolefins having 4 to 14 carbon atoms include butadiene, 1,5-hexadiene, 1,7-octadiene and 1,9-decadiene.
  • the contents of other ⁇ -olefins and diolefins in the propylene copolymer are preferably adjusted so that the polypropylene has the above preferred melting point range.
  • the polypropylene content is preferably 10% by mass or more and 30% by mass or less, more preferably 10% by mass or more and 20% by mass or less, relative to 100% by mass of the polyolefin resin composition B.
  • the above polyolefin resin compositions A and B may contain resin components other than polyethylene a1, a2, b1 and polypropylene, if necessary.
  • resin components for example, a resin that further imparts heat resistance can be contained.
  • various additives such as antioxidants, heat stabilizers, antistatic agents, ultraviolet absorbers, antiblocking agents, fillers, crystal nucleating agents, and crystallization retardants are added to the extent that they do not impair the effects of the present invention. may be included.
  • the thickness ratio of A layer/B layer is preferably 5/95 to 90/10, more preferably 30/70 to 80/20, It is more preferably 35/65 to 75/25. As a result, even a thin film can have high heat resistance while maintaining puncture strength.
  • a microporous membrane may be formed by laminating a porous layer on at least one side of the polyolefin microporous membrane.
  • the porous layer is not particularly limited, for example, a porous layer made of resin may be laminated.
  • the resin used here is not particularly limited, and known resins can be used, including acrylic resins, polyvinylidene fluoride resins, polyamideimide resins, polyamide resins, aromatic polyamide resins, and polyimide resins.
  • the porous layer may further contain inorganic particles, and the inorganic particles are not particularly limited, and known materials can be used, such as alumina, boehmite, barium sulfate, magnesium oxide, magnesium hydroxide, magnesium carbonate, silicon, and the like. is mentioned.
  • the method for producing a microporous polyolefin membrane of the present invention includes the following steps. Details of each step will be described. (a) Preparation of layer A and layer B solutions (b) Formation of gel sheet (c) First stretching (d) Plasticizer removal and drying (e) Second stretching (f) Heat treatment.
  • Layers A and B are composed of the aforementioned polyolefin resin composition A and polyolefin resin composition B, respectively.
  • a plasticizer is added to the polyolefin resin composition in a twin-screw extruder and melt-kneaded to prepare solutions for the A layer and the B layer, respectively.
  • the polyolefin resin composition preferably contains 10% by mass or more and 30% by mass or less with respect to the entire resin solution.
  • the solutions of the A layer and the B layer are each fed from an extruder to a single die, where both solutions are extruded in the form of a layered sheet to obtain an extrudate.
  • the extrusion method may be either a flat die method or an inflation method. In either method, the solutions are supplied to separate manifolds and layered at the lip inlet of the multi-layer die (multi-manifold method), or the solutions are pre-layered and fed to the die (block method). can be used. A common method can be applied to the multiple manifold method and the block method.
  • the gap of the multilayer flat die can be set to 0.1 mm or more and 5 mm or less.
  • the extrusion temperature is preferably 140° C. or higher and 250° C. or lower, and the extrusion speed is preferably 0.2 to 15 m/min.
  • the film thickness ratio of the layers can be adjusted by adjusting the extrusion rate of the solution for each layer.
  • each sheet is preferably 5/95 to 90/10, more preferably 30/70 to 80, where the sheet thickness of the solution forming layer A/the sheet thickness of the solution forming layer B is 5/95 to 90/10. /20, more preferably 35/65 to 75/25.
  • a polyolefin microporous membrane having an excellent balance between strength and melting can be obtained while the polypropylene network is maintained within the preferred ranges of the polyolefin composition, the thickness ratio of each sheet, and the stretching conditions described later.
  • the polypropylene concentration of the polyolefin resin composition B is 10% by mass or more and 30% by mass or less, from the viewpoint of maintaining the polypropylene network, it is 0/100 (single layer structure of B layer).
  • a gel-like sheet is formed by cooling the obtained extrudate.
  • a cooling method a method of contacting with a cooling medium such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used, but cooling by contacting with a roll cooled with a cooling medium is preferable. Cooling is preferably carried out at a rate of 50° C./min or more until at least the gelation temperature. Cooling is preferably performed to 25° C. or lower. When the cooling rate is within the above range, the crystallinity is kept within a suitable range, and a gel-like sheet suitable for stretching is obtained.
  • the gel-like sheet is stretched.
  • the gel-like sheet is preferably stretched at a predetermined magnification by a tenter method, a roll method, an inflation method, or a combination thereof. Stretching may be uniaxial stretching or biaxial stretching.
  • the draw ratio area draw ratio
  • MD longitudinal direction
  • TD width direction
  • stretch ratio in both MD and TD should be 3 times or more. preferable.
  • the lower limit of the first stretching temperature is preferably 100°C or higher and 130°C or lower, more preferably 110°C or higher and 120°C or lower.
  • the plasticizer contained in the gel-like sheet is removed and dried using a washing solvent. Since the washing solvent and the method for removing the plasticizer using the washing solvent are known, the explanation thereof is omitted. For example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent Application Laid-Open No. 2002-256099 can be used. After removing the plasticizer, it is dried by a heat drying method or an air drying method. Any method capable of removing the wash solvent may be used, including conventional methods such as heat drying, air drying (moving air), and the like.
  • a microporous polyolefin membrane can be obtained by stretching the dried sheet in at least one direction after preheating (dry stretching).
  • the second stretching can be performed by a tenter method or the like while heating.
  • the final draw ratio of the second drawing is preferably 1.1 times or more, more preferably 1.4 times or more.
  • the puncture strength can be easily controlled within the desired range.
  • the stretching is preferably 9 times or less.
  • the heat treatment is preferably performed at 115.0° C. or higher and 135.0° C. or lower.
  • a thermal relaxation treatment may be performed during the heat treatment.
  • the relaxation rate can be 5% or more and 30% or less, with the immediately preceding length being 100%.
  • Metsuke A polyolefin microporous membrane cut into 5 cm squares was prepared, the mass was measured with a precision balance (5 significant digits (0.0000 g)), and the weight was calculated by dividing the mass by 25 cm 2 . If the sample size cannot be 5 cm ⁇ 5 cm, the sample may be cut into an arbitrary size and the measured mass divided by the area.
  • Porosity ((volume - mass / membrane density) / volume) x 100
  • the film density was set to 0.99 g/cm 3 .
  • the film thickness measured in (1) above was used to calculate the volume.
  • Air resistance For the polyolefin microporous membrane, air resistance (sec / 100 cm 3 ) was measured.
  • Shutdown temperature also called SD temperature
  • a polyolefin microporous membrane punched into a circle with a diameter of 45 mm was exposed to an atmosphere of 20° C., and the air resistance was measured while the temperature was raised at a rate of 5° C./min. The temperature when reaching 3 was defined as the shutdown temperature and the average value of two measurements was used.
  • the air resistance was measured using an air resistance meter (manufactured by Asahi Seiko Co., Ltd., EGO-1T) in accordance with JIS P8117:2009.
  • Meltdown temperature also called MD temperature
  • a polyolefin microporous membrane punched into a circle with a diameter of 45 mm was exposed to an atmosphere of 20 ° C., and the air resistance was measured while increasing the temperature at a rate of 5 ° C./min. After reaching 100 cm 3 , the temperature was continued to rise, and the temperature at which the air resistance was less than 100,000 seconds/100 cm 3 was defined as the meltdown temperature.
  • the air resistance was measured using an air resistance meter (manufactured by Asahi Seiko Co., Ltd., EGO-1T) in accordance with JIS P8117:2009.
  • the polyolefin microporous membrane was cut into a size of 95 mm ⁇ 95 mm, and the length (mm) of the test piece before shrinkage at room temperature (25 ° C.) was measured in both the machine direction and the width direction. After exposing the test piece of the porous membrane to a temperature of 105° C. for 8 hours without applying a load, the test piece was returned to room temperature and the length (mm) after shrinkage in the machine direction and the width direction was measured. Then, the heat shrinkage rate (%) in the machine direction and width direction was obtained using the following equations.
  • MD heat shrinkage (%) (1 - length after shrinkage in machine direction / length before shrinkage in machine direction) x 100
  • TD thermal shrinkage rate (%) (1-length after shrinkage in width direction/length before shrinkage in width direction) x 100 (9)
  • Weight Average Molecular Weight The weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the polyolefin resin and polyolefin microporous membrane were obtained by gel permeation chromatography (GPC) using the following measurement conditions. Measurement conditions Measurement device: Agilent high temperature GPC device PL-GPC220 ⁇ Column: Agilent PL1110-6200 (20 ⁇ m MIXED-A) ⁇ 2 ⁇ Column temperature: 160 ° C.
  • Low-molecular-weight peak position the peak position of the Gaussian function on the low-molecular-weight side when the molecular weight distribution is fitted with two Gaussian functions.
  • -High molecular weight side peak position molecular weight at the maximum value of the molecular weight distribution.
  • the melting point of the polyolefin resin and the melting peak of the polyolefin microporous membrane were determined by a scanning differential calorimeter (PYRIS DIAMOND DSC manufactured by PARKING ELMER).
  • the polyolefin resin and the polyolefin microporous membrane were each placed in a sample holder, heated from 30° C. to 230° C. to melt completely, held at 230° C. for 3 minutes, and heated at a rate of 10° C./min for 30 minutes. The temperature was lowered to °C.
  • the melting point (Tm) of the polyolefin resin and the heat of fusion of the polyolefin microporous membrane were determined from the endothermic peak at the second temperature rise.
  • Tm melting point
  • a straight line connecting 30° C. and 230° C. was used as a baseline for calculating the heat of fusion.
  • the peak at the heat of fusion of 70 J/g or more was regarded as the endothermic peak
  • the peak at the heat of fusion of 0.1 J/g or more was regarded as the endothermic peak.
  • the layer ratio of the polyolefin microporous membrane was observed using a transmission electron microscope (TEM) under the following measurement conditions. Measurement conditions and sample preparation: A polyolefin microporous membrane is dyed with ruthenium tetroxide and cross-sectioned with an ultramicrotome. ⁇ Measuring device: transmission electron microscope (JEOL JEM1400Plus type) ⁇ Observation conditions: acceleration voltage of 100 kV Observation direction: TD/ND.
  • TEM transmission electron microscope
  • ⁇ HPP is the value obtained by dividing the area surrounded by the DSC curve and the line connecting the start temperature and end temperature of the exothermic peak due to crystallization of polypropylene on the DSC curve in the temperature-lowering process by the mass of the measurement sample.
  • the isotactic polypropylene concentration is a value obtained from IR measurement described later.
  • ⁇ H PP f represents the complete melting enthalpy (J/g) of polypropylene.
  • ⁇ H PP f was calculated using 170 J/g.
  • Formula: isotactic polypropylene concentration (%) (1462 cm ⁇ 1 peak height ⁇ conversion factor 1)/(1376 cm ⁇ 1 peak height ⁇ conversion factor 2) ⁇ 100.
  • the conversion factor 1 is 20 and the conversion factor 2 is 10.
  • Hot-box characteristics Battery safety was evaluated by the following hot-box characteristics.
  • a positive electrode and a negative electrode are laminated with a separator interposed therebetween, and the separator contains an electrolytic solution (electrolyte).
  • electrolytic solution electrolytic solution
  • Lithium cobalt composite oxide LiCoO 2 was used as the positive electrode active material
  • graphite was used as the negative electrode active material
  • 1 mol/L LiPF 6 prepared in a mixed solvent of DC/dimethyl carbonate (DMC) was used as the electrolyte.
  • a battery is assembled by laminating a positive electrode, a separator made of a microporous film, and a negative electrode, then preparing a wound electrode body by a conventional method, inserting it into a battery can, impregnating it with an electrolytic solution, and then a positive electrode terminal equipped with a safety valve.
  • the battery lid which also serves as a battery, was crimped through a gasket.
  • Hot box test The assembled battery was charged at a current value of 1C to a voltage of 4.2V, then charged at a constant voltage of 4.2V, and then discharged at a current of 0.2C to a final voltage of 3.0V. rice field.
  • constant voltage charging to 4.2 V was performed as pretreatment.
  • the pretreated battery was placed in an oven, heated from room temperature at a rate of 5° C./min, and left at 150° C. for 30 minutes. A charge voltage drop of 50% or more within 15 minutes after reaching 150° C. was rated unacceptable, a charge voltage drop of 20 to 50% was rated acceptable, and a charge voltage drop of 20% or less was rated excellent.
  • Example 1 (1) Preparation of layer A solution 90% by mass of polyethylene having a weight average molecular weight of 1.5 ⁇ 10 6 and a melting point of 136.0° C. and 10 mass of polyethylene having a weight average molecular weight of 1.0 ⁇ 10 5 and a melting point of 132.0° C. % was melt-kneaded with liquid paraffin with a twin-screw extruder so that the resin concentration was 17% by mass, and a polyolefin solution A was prepared.
  • Layer B Solution 70% by mass of polyethylene having a weight average molecular weight of 1.5 ⁇ 10 6 and a melting point of 136.0° C. and 30% by mass of polypropylene having a weight average molecular weight of 2.0 ⁇ 10 6 were combined to a resin concentration of 20% by mass. % by melt-kneading liquid paraffin with a twin-screw extruder to prepare a polyolefin solution B.
  • Example 2 The polyolefin solutions A and B were drawn in the same manner as in Example 1 except that the polyolefin solutions A and B were extruded so that the layer thickness ratio of B layer solution/A layer solution/B layer solution was 25/50/25. A membrane was obtained.
  • Example 3 (1) Preparation of layer A solution 70% by mass of polyethylene having a weight average molecular weight of 1.5 ⁇ 10 6 and a melting point of 135.0° C. and 30 mass of polyethylene having a weight average molecular weight of 1.0 ⁇ 10 5 and a melting point of 132.0° C. % was melt-kneaded with liquid paraffin using a twin-screw extruder to give a resin concentration of 20% by mass, to prepare a polyolefin solution A.
  • Layer B Solution 85% by mass of polyethylene having a weight average molecular weight of 1.5 ⁇ 10 6 and a melting point of 135.0° C. and 15% by mass of polypropylene having a weight average molecular weight of 2.0 ⁇ 10 6 were combined to a resin concentration of 20% by mass. % by melt-kneading liquid paraffin with a twin-screw extruder to prepare a polyolefin solution B.
  • Second stretching, heat treatment After preheating at 127.0°C and stretching 1.5 times in TD with a tenter stretching machine, 15.0% relaxation is applied to TD and 127 while holding in the tenter. It was heat-set at 0°C to obtain a polyolefin microporous membrane.
  • Example 4 Polyolefin solutions A and B are supplied from a twin-screw extruder to a three-layer T die, and extruded so that the layer thickness ratio of B layer solution/A layer solution/B layer solution is 30/40/30, A polyolefin microporous membrane was obtained in the same manner as in Example 3, except that the first stretching temperature was 113.5°C, and the second stretching temperature and heat setting temperature were 126.0°C.
  • Example 5 A polyolefin microporous membrane was produced in the same manner as in Example 4 except that the first stretching temperature was 114.5°C, the second stretching temperature and heat setting temperature were 126.0°C, and the relaxation rate was 10.0%. Obtained.
  • Example 6 A polyolefin microporous membrane was obtained in the same manner as in Example 5, except that the first stretching temperature was set to 115.0°C.
  • Example 7 The layer B solution/layer A solution/layer B solution was extruded so that the layer thickness ratio was 25/50/25, and the first stretching temperature was 115.5° C. and the relaxation rate was 15.0%.
  • a polyolefin microporous membrane was obtained in the same manner as in Example 5 except for the above.
  • Example 8 (1) Preparation of layer A solution 85% by mass of polyethylene having a weight average molecular weight of 7.5 ⁇ 10 5 and a melting point of 136.0° C. and 15 mass of polyethylene having a weight average molecular weight of 1.0 ⁇ 10 5 and a melting point of 132.0° C. % was melt-kneaded with liquid paraffin with a twin-screw extruder so that the resin concentration was 25% by mass, to prepare a polyolefin solution A.
  • Example 9 The proportions of polyethylene and polypropylene in the polyolefin solution B are set to 90% and 10%, respectively, and the layer A solution/layer B solution/layer A solution is extruded so that the layer thickness ratio is 30/40/30, and the second A microporous polyolefin membrane was obtained in the same manner as in Example 5, except that the draw ratio was 1.8 and the relaxation rate was 15.0.
  • Example 10 A polyolefin microporous membrane was obtained in the same manner as in Example 8 except that the first stretching temperature was 113.0°C and the second stretching temperature was 125.0°C.
  • Example 11 A layer solution/B layer solution/A layer solution was extruded so that the layer thickness ratio was 25/50/25.
  • a polyolefin microporous membrane was obtained in the same manner as in Example 1, except that the content was 0%.
  • Example 12 The layer A solution/layer B solution/layer A solution was extruded to a layer thickness ratio of 35/30/35, the first stretching temperature was 112.0°C, and the second stretching relaxation rate was 10.0°C.
  • a polyolefin microporous membrane was obtained in the same manner as in Example 8, except that the content was 0%.
  • Layer B Solution 80% by mass of polyethylene having a weight average molecular weight of 3.0 ⁇ 10 5 and a melting point of 135.0° C. and 20% by mass of polypropylene having a weight average molecular weight of 2.0 ⁇ 10 6 were combined to a resin concentration of 25% by mass. % by melt-kneading liquid paraffin with a twin-screw extruder to prepare a polyolefin solution B.
  • Layer B Solution 70% by mass of polyethylene having a weight average molecular weight of 3.0 ⁇ 10 5 and a melting point of 135.0° C. and 30% by mass of polypropylene having a weight average molecular weight of 2.0 ⁇ 10 6 were combined to a resin concentration of 25% by mass. % by melt-kneading liquid paraffin with a twin-screw extruder to prepare a polyolefin solution B.
  • Table 2 shows the physical property measurement results of the obtained polyolefin microporous membrane.
  • the polyolefin microporous membranes obtained in the examples are thinner than the comparative examples, but have a lower shutdown temperature, and have both puncture strength and insulation properties after melting. Excellent battery safety and self-discharge characteristics.
  • the polyolefin microporous membrane of the present invention is used as a battery separator, it is possible to provide a polyolefin microporous membrane that is safe even when the battery is in a high temperature state even if it is a thin film.

Abstract

The objective of the present invention is to provide a polyolefin microporous membrane which is a thin membrane when used as a separator, has a low shutdown temperature, and has both mechanical strength and insulating properties after melting. The polyolefin microporous membrane is characterized in that: the membrane has a thickness of at most 6 μm; the puncture strength for an equivalent of 5 μm is at least 1.7 N; the shutdown temperature as measured through temperature-rising air permeability is 80-138 °C; and the crystallinity of polypropylene when reaching 169 °C is 3-200 ppm.

Description

ポリオレフィン微多孔膜および電池用セパレータPolyolefin Microporous Membrane and Battery Separator
 本発明は、ポリオレフィン微多孔膜および電池用セパレータに関する。 The present invention relates to a polyolefin microporous membrane and a battery separator.
 微多孔膜は、ろ過膜、透析膜などのフィルター、電池用セパレータや電解コンデンサー用のセパレータなどの種々の分野に用いられる。これらの中でも、ポリオレフィンを樹脂材料とする微多孔膜は、耐薬品性、絶縁性、機械的強度などに優れ、シャットダウン特性を有するため、二次電池用セパレータとして広く用いられる。さらに、電池には、長寿命化や容量低下を防ぐための自己放電特性、釘刺試験、ホットボックス試験、耐衝撃試験に代表される安全性を満たす必要があり、ポリオレフィン微多孔膜としては、絶縁性や機械的強度、シャットダウン特性などの向上が求められる。 Microporous membranes are used in various fields such as filters such as filtration membranes and dialysis membranes, separators for batteries and separators for electrolytic capacitors. Among them, a microporous film made of polyolefin as a resin material is widely used as a secondary battery separator because it is excellent in chemical resistance, insulation, mechanical strength, etc., and has shutdown characteristics. In addition, batteries must meet safety requirements such as self-discharge characteristics, nail penetration tests, hot box tests, and impact resistance tests to extend life and prevent capacity deterioration. Improvements in insulation, mechanical strength, shutdown characteristics, etc. are required.
 電池の熱的な安全性の観点から、特許文献1ではポリオレフィン製積層微多孔膜は少なくとも三層からなり、膜厚が3~25μmの範囲であり、メルトダウン温度が159~200℃の範囲であり、透気度が50~300秒の範囲であり、突刺強度が100~550gfの範囲であり、三層のうちの内層にのみポリプロピレンを含有し、表層を形成する少なくとも1層が、メルトフローレートが50~150g/10分、融点が120~130℃の樹脂を含むことを特徴とするセパレータフィルムが提案されている。また特許文献2では、ポリエチレンとポリプロピレンからなる膜厚が5~20μmの積層微多孔膜であって、微多孔膜中にポリプロピレンを割合3~50%含有し、シャットダウン温度と破膜温度との差が33℃以上であって、シャットダウン温度が140℃以下、破膜温度が150℃以上であることを特徴とするセパレータフィルムが提案されている。特許文献3においては、高温での電池安全性を担保するために200.0℃以上のTmおよび80.0dg/分以下のMFRを有するポリメチルペンテンを含むことを特徴とする微多孔性であり、180.0℃以上のメルトダウン温度を有し、131.0℃以下のシャットダウン温度を有し、かつ30.0%以下の170℃TD熱収縮を有することを特徴とするセパレータフィルムが提案されている。 From the viewpoint of thermal safety of the battery, in Patent Document 1, the polyolefin laminated microporous membrane consists of at least three layers, the film thickness is in the range of 3 to 25 μm, and the meltdown temperature is in the range of 159 to 200 ° C. has an air permeability in the range of 50 to 300 seconds, a puncture strength in the range of 100 to 550 gf, contains polypropylene only in the inner layer of the three layers, and at least one layer forming the surface layer has a melt flow A separator film has been proposed, characterized in that it contains a resin with a rate of 50-150 g/10 min and a melting point of 120-130°C. Further, in Patent Document 2, a laminated microporous membrane made of polyethylene and polypropylene and having a thickness of 5 to 20 μm, the microporous membrane contains 3 to 50% of polypropylene, and the difference between the shutdown temperature and the membrane rupture temperature is is 33° C. or higher, the shutdown temperature is 140° C. or lower, and the membrane rupture temperature is 150° C. or higher. In Patent Document 3, in order to ensure battery safety at high temperatures, it is a microporous material characterized by containing polymethylpentene having a Tm of 200.0 ° C. or more and an MFR of 80.0 dg / min or less. , a meltdown temperature of 180.0° C. or higher, a shutdown temperature of 131.0° C. or lower, and a 170° C. TD heat shrinkage of 30.0% or lower. ing.
特開2015-208894号公報JP 2015-208894 A 特開2011-63025号公報JP 2011-63025 A 特開2012-530802号公報JP 2012-530802 A
 近年、電気自動車の走行性能の向上やインターネット通信の4Gから5Gへの移行に向けて、リチウムイオン二次電池にはさらなる高容量化、高安全性が求められている。そのためセパレータには、薄膜化とともに、電池内部での高温時の絶縁性維持、機械的強度やシャットダウン特性の向上が求められる。 In recent years, with the improvement of the driving performance of electric vehicles and the shift from 4G to 5G Internet communication, lithium-ion secondary batteries are required to have even higher capacity and higher safety. Therefore, separators are required to be thinner, maintain insulation at high temperatures inside the battery, and improve mechanical strength and shutdown characteristics.
 しかしながら、セパレータは薄膜化により機械的強度と高温時の絶縁性を維持することが困難となる。また、セパレータの機械的強度を向上させるために、例えば、製膜条件を調製することができるが、このような方法ではシャットダウン温度が上昇する傾向にある。結果として、異常発熱時に電池内温度が上昇しすぎるため、高温時の絶縁性を十分に維持することができない。特許文献1~3のセパレータでは、薄膜化した場合、高温時の絶縁性維持と機械的強度のバランスを十分にとることができない。 However, it becomes difficult for the separator to maintain its mechanical strength and insulation at high temperatures due to thinning. In addition, for example, the film-forming conditions can be adjusted in order to improve the mechanical strength of the separator, but such a method tends to increase the shutdown temperature. As a result, the internal temperature of the battery rises excessively when abnormal heat is generated, and the insulation at high temperatures cannot be sufficiently maintained. With the separators of Patent Documents 1 to 3, when thinned, it is not possible to achieve a sufficient balance between the maintenance of insulating properties at high temperatures and the mechanical strength.
 本発明は、上記事情に鑑みて、薄膜であり、シャットダウン温度が低く、高い機械的強度と溶融後の絶縁性を併せ持つポリオレフィン微多孔膜を提供することを目的とする。 In view of the above circumstances, the object of the present invention is to provide a polyolefin microporous membrane that is thin, has a low shutdown temperature, and has both high mechanical strength and insulating properties after melting.
 本発明の第1の態様のポリオレフィン微多孔膜は、膜厚が6μm以下であって、5μm換算突刺強度が1.7N以上であり、昇温透気度法で測定したシャットダウン温度が80℃以上138℃以下であり、169℃到達時のポリプロピレンの結晶度が3ppm以上200ppm以下であることを特徴とする。 The polyolefin microporous membrane of the first aspect of the present invention has a thickness of 6 μm or less, a puncture strength equivalent to 5 μm of 1.7 N or more, and a shutdown temperature of 80° C. or more as measured by the temperature-rising air permeability method. The temperature is 138° C. or lower, and the crystallinity of the polypropylene at 169° C. is 3 ppm or more and 200 ppm or less.
 また、上記ポリオレフィン微多孔膜は、複数の層からなる多層微多孔膜であってもよい。 Further, the polyolefin microporous membrane may be a multi-layer microporous membrane consisting of a plurality of layers.
 また、上記ポリオレフィン微多孔膜は、GPCチャートにおいて分子量が5.0×10~1.0×10の範囲と、3.0×10~7.0×10の範囲にそれぞれピークを持っていてもよい。 The polyolefin microporous membrane has peaks in the molecular weight ranges of 5.0×10 4 to 1.0×10 5 and 3.0×10 5 to 7.0×10 5 in the GPC chart. You may have
 また、重量平均分子量が4.0×10以上1.0×10以下であるポリエチレンを含有してもよい。 Also, polyethylene having a weight average molecular weight of 4.0×10 5 or more and 1.0×10 6 or less may be contained.
 また、上記ポリオレフィン微多孔膜は、ポリプロピレン濃度が3.5質量%以上10.0質量%以下であってもよい。 Further, the polyolefin microporous membrane may have a polypropylene concentration of 3.5% by mass or more and 10.0% by mass or less.
 また、上記ポリオレフィン微多孔膜は、ポリオレフィン微多孔膜の少なくとも片面に多孔質層を積層してもよい。 In addition, the polyolefin microporous membrane may have a porous layer laminated on at least one side of the polyolefin microporous membrane.
 本発明の第2の態様の電池用セパレータは、上記ポリオレフィン微多孔膜を含んでなる。 The battery separator of the second aspect of the present invention comprises the polyolefin microporous membrane.
 本発明によれば、薄膜であり、シャットダウン温度が低く、突刺強度と溶融後の絶縁性を併せ持つポリオレフィン微多孔膜を提供することができる。特にポリオレフィン微多孔膜は電池用セパレータとして好適に用いられる。 According to the present invention, it is possible to provide a polyolefin microporous membrane that is thin, has a low shutdown temperature, and has both puncture strength and insulation after melting. In particular, polyolefin microporous membranes are suitably used as battery separators.
 以下、本発明の本実施形態について説明する。なお、本発明は以下に説明する実施形態に限定されるものではない。 The present embodiment of the present invention will be described below. It should be noted that the present invention is not limited to the embodiments described below.
 本発明のポリオレフィン微多孔膜は、膜厚が6μm以下であって、5μm換算突刺強度が1.7N以上であり、昇温透気度法で測定したシャットダウン温度が80℃以上138℃以下であり、169℃到達時のポリプロピレンの結晶度が3ppm以上200ppm以下である。 The polyolefin microporous membrane of the present invention has a thickness of 6 μm or less, a puncture strength equivalent to 5 μm of 1.7 N or more, and a shutdown temperature measured by a temperature-rising air permeability method of 80° C. or more and 138° C. or less. , the crystallinity of the polypropylene when reaching 169° C. is 3 ppm or more and 200 ppm or less.
 本発明のポリオレフィン微多孔膜は、膜厚の上限が6μm以下である。膜厚が6μmを超えると、電池の高容量に対応できない。膜厚の上限は、好ましくは4.7μm以下であり、より好ましくは4.5μm以下である。膜厚の下限は、突刺強度や高温での絶縁性の観点から、1μm以上が好ましく、より好ましくは3.0μm以上である。前記膜厚が上記好ましい範囲であると、ポリオレフィン微多孔膜を電池用セパレータとして使用したとき、膜厚を薄くした分だけ電極の活物質量を増やすことができ、その結果電池容量の向上につながる。膜厚は押出の吐出量や熱固定温度を調整することにより所定の範囲内とすることが可能である。 The upper limit of the thickness of the polyolefin microporous membrane of the present invention is 6 μm or less. If the film thickness exceeds 6 μm, the high capacity of the battery cannot be achieved. The upper limit of the film thickness is preferably 4.7 μm or less, more preferably 4.5 μm or less. The lower limit of the film thickness is preferably 1 μm or more, more preferably 3.0 μm or more, from the viewpoint of puncture strength and insulation at high temperatures. When the film thickness is within the above preferred range, when the polyolefin microporous film is used as a battery separator, the amount of active material in the electrode can be increased by the amount of the reduced film thickness, resulting in an improvement in battery capacity. . The film thickness can be set within a predetermined range by adjusting the extrusion rate and the heat setting temperature.
 本発明のポリオレフィン微多孔膜は、厚み5μm換算の突刺強度(5μm換算突刺強度)が1.7N以上であり、かつシャットダウン温度が80℃以上138℃以下である。これらの特性により高い張力がかかった場合も膜が破断しにくく高い耐久性を有するとともに、電池に組み込んだ際に自己放電特性に優れる。さらに、電池の異常発熱時にはより早くシャットダウンし、温度上昇を防止できる。またシャットダウン温度が80℃以上であると酷暑地域や時期で不必要なシャットダウンが起こらず電池としての機能を損なう可能性が低いため、好ましい。5μm換算突刺強度とシャットダウン温度のバランスは、製造工程において、ポリオレフィンの分子量や配合比や延伸温度などの製膜条件を組み合わせて調整することにより所定の範囲内とすることが可能である。5μm換算突刺強度は、電池工程での不良率抑制、電池の自己放電特性維持、耐圧縮性の観点から、下限が1.7N以上であることが好ましく、より好ましくは1.9N以上であり、上限は特に限定されないが3.0N以下が好ましい。シャットダウン温度は、電池の異常発熱をより早く抑制する観点から、上限が137℃以下であることが好ましく、より好ましくは136℃以下である。 The polyolefin microporous membrane of the present invention has a puncture strength converted to a thickness of 5 μm (puncture strength converted to 5 μm) of 1.7 N or higher, and a shutdown temperature of 80° C. or higher and 138° C. or lower. Due to these characteristics, the film is resistant to breakage even when high tension is applied, and has high durability, and when incorporated into a battery, it has excellent self-discharge characteristics. Furthermore, when the battery heats up abnormally, it shuts down more quickly and prevents the temperature from rising. Further, when the shutdown temperature is 80° C. or higher, unnecessary shutdown does not occur in extremely hot regions or seasons, and the possibility of impairing the function as a battery is low, which is preferable. The balance between the puncture strength equivalent to 5 μm and the shutdown temperature can be adjusted within a predetermined range by adjusting the film-forming conditions such as the molecular weight of the polyolefin, the compounding ratio, and the stretching temperature in the manufacturing process. The lower limit of the 5 μm equivalent puncture strength is preferably 1.7 N or more, more preferably 1.9 N or more, from the viewpoints of suppressing the defective rate in the battery process, maintaining the self-discharge characteristics of the battery, and compressing resistance. Although the upper limit is not particularly limited, 3.0N or less is preferable. The shutdown temperature preferably has an upper limit of 137° C. or lower, more preferably 136° C. or lower, from the viewpoint of suppressing abnormal heat generation of the battery more quickly.
 本発明のポリオレフィン微多孔膜は、昇温して169℃に到達した時のポリプロピレンの結晶度(以下、169℃到達時のポリプロピレンの結晶度ということもある)が3ppm以上200ppm以下である。ポリプロピレンの結晶度が3ppm以上であることは、169℃到達時にポリプロピレンの規則構造が十分に残存していることを示し、温度上昇時においても緩和しにくいため溶融後の形状保持特性に優れ絶縁状態を良好に保つことができる。またポリプロピレンの結晶度が200ppm以下であることは、規則構造量が過剰とならず高温でのポリオレフィンとポリプロピレンの相分離が抑えられ、穴が開きにくくなり短絡をより抑えることができる。ポリプロピレンの結晶度は、高温下での破膜による短絡抑制の観点から、10ppm以上170ppm以下が好ましく、より好ましくは20ppm以上150ppm以下である。 In the polyolefin microporous film of the present invention, the crystallinity of polypropylene when heated to 169°C (hereinafter sometimes referred to as the crystallinity of polypropylene when reaching 169°C) is 3 ppm or more and 200 ppm or less. The fact that the crystallinity of polypropylene is 3 ppm or more indicates that the regular structure of polypropylene remains sufficiently when it reaches 169 ° C., and it is difficult to relax even when the temperature rises, so it has excellent shape retention properties after melting and is in an insulating state. can be kept in good condition. In addition, when the crystallinity of polypropylene is 200 ppm or less, the amount of ordered structures does not become excessive, and phase separation between polyolefin and polypropylene at high temperatures is suppressed, holes are less likely to open, and short circuits can be further suppressed. The crystallinity of polypropylene is preferably 10 ppm or more and 170 ppm or less, more preferably 20 ppm or more and 150 ppm or less, from the viewpoint of suppressing short circuits due to film breakage at high temperatures.
 ここで169℃到達時のポリプロピレンの結晶度とは、後述する示差走査熱量測定(DSC)によって求めることができる。結晶度は例えば、所定の分子量と融点のポリプロピレンを添加することによって所定の範囲内とすることが可能である。このポリオレフィン微多孔膜において、169℃到達時のポリプロピレンの結晶度は混合する他のポリオレフィンとの相溶性なども考慮し、他のポリオレフィンの分子量や融点を調整する必要がある。 Here, the crystallinity of polypropylene when it reaches 169°C can be obtained by differential scanning calorimetry (DSC), which will be described later. Crystallinity can be brought within a given range, for example, by adding polypropylene of a given molecular weight and melting point. In this polyolefin microporous membrane, the crystallinity of the polypropylene when it reaches 169° C. should be adjusted in consideration of the compatibility with other polyolefins to be mixed, and the molecular weight and melting point of the other polyolefins.
 上記突刺強度、シャットダウン温度、169℃到達時のポリプロピレンの結晶度を満たすために、ポリオレフィン微多孔膜は、複数の層からなる多層微多孔膜とすることもできる。 In order to satisfy the puncture strength, shutdown temperature, and crystallinity of polypropylene when reaching 169°C, the polyolefin microporous membrane can also be a multilayer microporous membrane consisting of multiple layers.
 本発明のポリオレフィン微多孔膜を構成するポリオレフィンは、強度とシャットダウン特性を制御しやすくする観点から、GPCチャートにおいて分子量が5.0×10~1.0×10の範囲と、3.0×10~7.0×10の範囲にそれぞれピークを持つことが好ましい。 The polyolefin constituting the polyolefin microporous membrane of the present invention has a molecular weight in the range of 5.0×10 4 to 1.0×10 5 and 3.0 in the GPC chart from the viewpoint of facilitating control of strength and shutdown characteristics. It is preferable that each have a peak in the range of ×10 5 to 7.0×10 5 .
 本発明のポリオレフィン微多孔膜は、重量平均分子量が4.0×10以上1.0×10以下であるポリエチレンを含有することが好ましい。ポリエチレンの重量平均分子量は4.0×10以上1.0×10以下であることがより好ましい。ポリオレフィン微多孔膜を構成するポリオレフィンを前記範囲のポリオレフィン樹脂組成物とすることで、薄膜にした際にも強度を維持しつつ、さらには融解しやすいため、シャットダウン特性に優れる。ポリオレフィン微多孔膜を構成するポリオレフィン樹脂組成物の重量平均分子量はGPC法により求めることができる。 The polyolefin microporous membrane of the present invention preferably contains polyethylene having a weight average molecular weight of 4.0×10 5 or more and 1.0×10 6 or less. More preferably, the weight average molecular weight of polyethylene is 4.0×10 5 or more and 1.0×10 6 or less. By using the polyolefin resin composition within the above range for the polyolefin constituting the polyolefin microporous membrane, the strength is maintained even when formed into a thin film, and the membrane is easily melted, resulting in excellent shutdown characteristics. The weight-average molecular weight of the polyolefin resin composition constituting the polyolefin microporous membrane can be determined by the GPC method.
 本発明のポリオレフィン微多孔膜は、ポリエチレンとアイソタクチックポリプロピレンを含み、ポリエチレンとアイソタクチックポリプロピレンの質量の合計に対するアイソタクチックポリプロピレン濃度が、3.5質量%以上10.0質量%以下であることが好ましい。より好ましくは、4.0質量%以上6.0質量%以下である。ポリプロピレン濃度の下限が上記の好ましい範囲内であると、ポリオレフィンが溶融した後もポリプロピレン成分が残存し、十分なネットワークを有し、耐熱性を維持できる。ポリプロピレン濃度の上限が上記の好ましい範囲内であると、膜全体の突刺強度の低下が抑制され、穴が開きにくくなり短絡をより抑えることができる。ポリオレフィン微多孔膜中のポリプロピレン濃度は、後述する赤外分光測定(IR測定)によって求めることができる。なお、ポリオレフィン微多孔膜中のポリエチレンとアイソタクチックポリプロピレンの質量の合計に対するポリプロピレン濃度は、ポリオレフィン微多孔膜を形成するポリオレフィン樹脂原料中に含まれるポリプロピレン濃度により制御することができる。ポリオレフィン樹脂原料中のポリエチレンとアイソタクチックポリプロピレンの質量の合計に対して含まれるポリプロピレン濃度は、1.0質量%以上10.0質量%以下が好ましく、より好ましくは2.0質量%以上6.0質量%以下であり、さらに好ましくは3.0質量%以上5.5質量%以下である。本発明のポリオレフィン微多孔膜の空孔率の下限は、特に限定されないが、例えば、20%以上であり、さらに好ましくは30%以上である。空孔率の下限は、特に限定されないが、例えば、70%以下であり、60%以下であることが好ましい。空孔率が上記範囲であることにより、電解液の保持量を高め、高いイオン透過性を確保することができる。また、空孔率が上記範囲であると、レート特性が向上する。また、イオン透過性及びレート特性をより高めるという観点から、空孔率が20%以上であることが好ましい。空孔率は、製造過程において、ポリオレフィンの構成成分の配合割合や延伸倍率、熱固定条件などを調節することにより、上記範囲とすることができる。 The polyolefin microporous membrane of the present invention contains polyethylene and isotactic polypropylene, and the concentration of isotactic polypropylene with respect to the total mass of polyethylene and isotactic polypropylene is 3.5% by mass or more and 10.0% by mass or less. is preferred. More preferably, it is 4.0% by mass or more and 6.0% by mass or less. When the lower limit of the polypropylene concentration is within the above preferred range, the polypropylene component remains even after the polyolefin melts, has a sufficient network, and can maintain heat resistance. When the upper limit of the polypropylene concentration is within the above preferred range, a decrease in the puncture strength of the entire film is suppressed, holes are less likely to open, and short circuits can be further suppressed. The polypropylene concentration in the polyolefin microporous film can be determined by infrared spectrometry (IR measurement), which will be described later. The polypropylene concentration relative to the total mass of polyethylene and isotactic polypropylene in the polyolefin microporous membrane can be controlled by the polypropylene concentration contained in the polyolefin resin raw material forming the polyolefin microporous membrane. The concentration of polypropylene contained with respect to the total weight of polyethylene and isotactic polypropylene in the polyolefin resin raw material is preferably 1.0% by mass or more and 10.0% by mass or less, more preferably 2.0% by mass or more6. It is 0% by mass or less, more preferably 3.0% by mass or more and 5.5% by mass or less. Although the lower limit of the porosity of the polyolefin microporous membrane of the present invention is not particularly limited, it is, for example, 20% or more, more preferably 30% or more. Although the lower limit of the porosity is not particularly limited, it is, for example, 70% or less, preferably 60% or less. When the porosity is within the above range, it is possible to increase the retention amount of the electrolytic solution and ensure high ion permeability. Further, when the porosity is within the above range, rate characteristics are improved. Moreover, from the viewpoint of further enhancing ion permeability and rate characteristics, the porosity is preferably 20% or more. The porosity can be set within the above range by adjusting the compounding ratio of the constituent components of the polyolefin, the draw ratio, the heat setting conditions, and the like in the manufacturing process.
 本発明のポリオレフィン微多孔膜の機械方向の熱収縮率は、例えば、10%以下であり、9%以下であることが好ましく、8%以下であることがより好ましい。ポリオレフィン微多孔膜の120℃1時間における幅方向の熱収縮率は、例えば、10%以下であり、9%以下であることが好ましく、7%以下であることがより好ましい。機械方向の熱収縮率の下限、及び幅方向の熱収縮率の下限は、特に限定されないが、-2.0%以上であるのが好ましい。機械方向の熱収縮率、及び幅方向の熱収縮率の上限が上記範囲内であるとき、電池内部での変形や端部での短絡のリスクを低減することができ、電池安全性が向上する。ポリオレフィン微多孔膜の熱収縮は、製造過程において、ポリオレフィンの構成成分の配合割合や延伸倍率、熱固定条件などを調節することにより、上記範囲とすることができる。 The heat shrinkage rate in the machine direction of the polyolefin microporous membrane of the present invention is, for example, 10% or less, preferably 9% or less, and more preferably 8% or less. The heat shrinkage rate in the width direction of the polyolefin microporous membrane at 120° C. for 1 hour is, for example, 10% or less, preferably 9% or less, and more preferably 7% or less. Although the lower limit of the heat shrinkage in the machine direction and the lower limit of the heat shrinkage in the width direction are not particularly limited, they are preferably -2.0% or more. When the upper limits of the heat shrinkage rate in the machine direction and the heat shrinkage rate in the width direction are within the above ranges, the risk of deformation inside the battery and short circuits at the ends can be reduced, and battery safety is improved. . The heat shrinkage of the polyolefin microporous membrane can be controlled within the above range by adjusting the compounding ratio of the constituent components of the polyolefin, the draw ratio, the heat setting conditions, and the like in the manufacturing process.
 (ポリオレフィン微多孔膜の製造方法)
 本発明のポリオレフィン微多孔膜は、単層の微多孔膜であっても、複数の層からなる多層微多孔膜であってもよい。層構成は二層以上であることが好ましく、三層がより好ましく、樹脂組成の異なるA層とB層がA層/B層/A層またはB層/A層/B層となることが特に好ましい。A層とB層を構成するポリオレフィン樹脂組成物Aおよびポリオレフィン樹脂組成物Bを以下に説明する。
(Method for producing polyolefin microporous membrane)
The polyolefin microporous membrane of the present invention may be a single-layer microporous membrane or a multilayer microporous membrane comprising a plurality of layers. The layer structure is preferably two or more layers, more preferably three layers, and it is particularly preferred that A layer and B layer having different resin compositions are A layer/B layer/A layer or B layer/A layer/B layer. preferable. The polyolefin resin composition A and the polyolefin resin composition B constituting the A layer and the B layer are described below.
 (1)ポリオレフィン樹脂組成物A
 ポリオレフィン樹脂組成物Aはポリエチレンa1とポリエチレンa2を含んでもよい。
(1) Polyolefin resin composition A
The polyolefin resin composition A may contain polyethylene a1 and polyethylene a2.
 (ポリエチレンa1)
 ポリエチレンa1は、重量平均分子量(Mw)が7.0×10以上のポリエチレンである。ポリエチレンa1は、エチレン以外の他のα-オレフィン共重合体を少量含有する共重合体であってもよいが、エチレンの単重合体を用いることが好ましい。エチレン以外のα-オレフィン共重合体としては、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン-1、酢酸ビニル、メタクリル酸メチル及びスチレンが好ましい。エチレン以外のα-オレフィンの含有率は、α-オレフィン共重合体を100mol%として5mol%以下が好ましい。ポリオレフィン微多孔膜の細孔構造均一性の観点から、エチレンの単重合体であることが好ましい。
(Polyethylene a1)
Polyethylene a1 is polyethylene having a weight average molecular weight (Mw) of 7.0×10 5 or more. Polyethylene a1 may be a copolymer containing a small amount of an α-olefin copolymer other than ethylene, but it is preferable to use an ethylene homopolymer. Preferred α-olefin copolymers other than ethylene are propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate and styrene. The content of α-olefins other than ethylene is preferably 5 mol % or less based on 100 mol % of the α-olefin copolymer. From the viewpoint of uniformity of the pore structure of the polyolefin microporous membrane, it is preferably an ethylene homopolymer.
 ポリエチレンa1は、微多孔膜の強度や延伸性、融解を制御しやすくする観点から、重量平均分子量(Mw)が7.0×10以上2.0×10未満であることが好ましく、1.0×10以上1.8×10以下であることがより好ましい。またポリエチレンa1の融点は、134℃以上137℃以下が好ましく、134℃以上136℃以下がより好ましい。ポリエチレンa1の含有率は、ポリオレフィン樹脂組成物A100質量%に対して、50質量%以上であることが好ましく、より好ましくは60質量%以上、さらに好ましくは70質量%以上である。上限は95質量%である。 Polyethylene a1 preferably has a weight-average molecular weight (Mw) of 7.0×10 5 or more and less than 2.0×10 6 from the viewpoint of facilitating control of the strength, stretchability, and melting of the microporous membrane. 0×10 6 or more and 1.8×10 6 or less is more preferable. The melting point of polyethylene a1 is preferably 134° C. or higher and 137° C. or lower, more preferably 134° C. or higher and 136° C. or lower. The content of polyethylene a1 is preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably 70% by mass or more based on 100% by mass of the polyolefin resin composition A. The upper limit is 95% by mass.
 (ポリエチレンa2)
 ポリエチレンa2は微多孔膜の融解を制御しやすくする観点から、重量平均分子量(Mw)が5.0×10以上7.0×10未満であり、3.0×10以下であることが好ましく、2.0×10以下であることがより好ましい。またポリエチレンa2は低融点成分であることが好ましく、融点が130℃以上134℃未満であることが好ましく、130℃以上133℃以下であることがより好ましく、130℃以上132℃以下であることがさらに好ましい。ポリエチレンa2は、高密度ポリエチレン、中密度ポリエチレン、分岐状低密度ポリエチレン及び線状低密度ポリエチレンからなる群から選ばれる少なくとも一種であることが好ましく、エチレン以外の他のα-オレフィン共重合体を少量含有する共重合体であってもよい。エチレン以外のα-オレフィン共重合体としては、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン-1、酢酸ビニル、メタクリル酸メチル及びスチレンが好ましい。エチレン以外のα-オレフィンの含有率は、α-オレフィン共重合体を100mol%として10mol%以下が好ましい。ポリエチレンa2の含有率は、ポリオレフィン樹脂組成物A100質量%に対して、50質量%以下であることが好ましく、より好ましくは40質量%以下、さらに好ましくは30質量%以上である。
(Polyethylene a2)
Polyethylene a2 has a weight average molecular weight (Mw) of 5.0 × 10 4 or more and less than 7.0 × 10 5 and 3.0 × 10 5 or less from the viewpoint of facilitating control of melting of the microporous membrane. is preferred, and 2.0×10 5 or less is more preferred. Polyethylene a2 is preferably a low melting point component, preferably has a melting point of 130° C. or more and less than 134° C., more preferably 130° C. or more and 133° C. or less, and preferably 130° C. or more and 132° C. or less. More preferred. Polyethylene a2 is preferably at least one selected from the group consisting of high density polyethylene, medium density polyethylene, branched low density polyethylene and linear low density polyethylene, and a small amount of other α-olefin copolymer other than ethylene. It may be a copolymer containing. Preferred α-olefin copolymers other than ethylene are propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate and styrene. The content of α-olefins other than ethylene is preferably 10 mol % or less based on 100 mol % of the α-olefin copolymer. The content of polyethylene a2 is preferably 50% by mass or less, more preferably 40% by mass or less, and still more preferably 30% by mass or more, relative to 100% by mass of the polyolefin resin composition A.
 (2)ポリオレフィン樹脂組成物B
 ポリオレフィン樹脂組成物Bはポリエチレンb1とポリプロピレンを含んでもよい。
(2) Polyolefin resin composition B
The polyolefin resin composition B may contain polyethylene b1 and polypropylene.
 (ポリエチレンb1)
 ポリエチレンb1は上記項目のポリエチレンa1と同じものを用いることができる。但し、同じの意味は、ポリエチレンa1と同じ範囲の分子量、融点を有するポリエチレンであることを意味する。
(Polyethylene b1)
Polyethylene b1 can be the same as polyethylene a1 in the above item. However, the same meaning means polyethylene having the same range of molecular weight and melting point as polyethylene a1.
 (ポリプロピレン)
 ポリプロピレンの種類は以下の分子量、および融点を満たすポリプロピレンであれば、特に限定されない。微多孔膜の高温下での相分離と形状保持の観点からポリプロピレンの重量平均分子量(Mw)は1×10以上が好ましく、1.2×10以上がより好ましく、1.2×10~4×10がさらに好ましい。またポリプロピレンの融点は、155~175℃が好ましく、160℃~170℃がより好ましい。
(polypropylene)
The type of polypropylene is not particularly limited as long as it satisfies the following molecular weights and melting points. The weight average molecular weight (Mw) of polypropylene is preferably 1×10 6 or more, more preferably 1.2×10 6 or more, more preferably 1.2×10 6 from the viewpoint of phase separation and shape retention of the microporous membrane at high temperatures. ˜4×10 6 is even more preferred. The melting point of polypropylene is preferably 155 to 175°C, more preferably 160 to 170°C.
 ポリプロピレンは、プロピレンの単重合体、プロピレンと他のα-オレフィン及び/又はジオレフィンとの共重合体(プロピレン共重合体)、あるいはこれらから選ばれる2種以上の混合物のいずれでも良いが、プロピレンの単重合体を単独で用いることがより好ましい。プロピレン共重合体としてはランダム共重合体又はブロック共重合体のいずれも用いることができる。プロピレン共重合体中のα-オレフィンとしては、炭素数が8以下であるα-オレフィンが好ましい。炭素数が8以下のα-オレフィンとして、エチレン、ブテン-1、ペンテン-1、4-メチルペンテン-1、オクテン-1、酢酸ビニル、メタクリル酸メチル、スチレン及びこれらの組合せ等が挙げられる。プロピレンの共重合体中のジオレフィンとしては、炭素数は4~14のジオレフィンが好ましい。炭素数が4~14のジオレフィンとして、例えばブタジエン、1,5-ヘキサジエン、1,7-オクタジエン、1,9-デカジエン等が挙げられる。プロピレン共重合体中の他のα-オレフィン及びジオレフィンの含有率は、ポリプロピレンが前述の好ましい融点範囲内になるように調整することが好ましい。ポリプロピレンの含有率は、ポリオレフィン樹脂組成物B100質量%に対して、好ましくは10質量%以上30質量%以下であり、より好ましくは10質量%以上20質量%以下である。 Polypropylene may be a propylene homopolymer, a copolymer of propylene and other α-olefins and/or diolefins (propylene copolymer), or a mixture of two or more selected from these, but propylene is more preferably used alone. Either a random copolymer or a block copolymer can be used as the propylene copolymer. As the α-olefin in the propylene copolymer, α-olefins having 8 or less carbon atoms are preferred. Examples of α-olefins having 8 or less carbon atoms include ethylene, butene-1, pentene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate, styrene and combinations thereof. As the diolefin in the propylene copolymer, a diolefin having 4 to 14 carbon atoms is preferable. Examples of diolefins having 4 to 14 carbon atoms include butadiene, 1,5-hexadiene, 1,7-octadiene and 1,9-decadiene. The contents of other α-olefins and diolefins in the propylene copolymer are preferably adjusted so that the polypropylene has the above preferred melting point range. The polypropylene content is preferably 10% by mass or more and 30% by mass or less, more preferably 10% by mass or more and 20% by mass or less, relative to 100% by mass of the polyolefin resin composition B.
 上記のポリオレフィン樹脂組成物A及びBには必要に応じて、ポリエチレンa1、a2、b1、及びポリプロピレン以外のその他の樹脂成分を含むことができる。その他の樹脂成分としては、例えば、さらに耐熱性を付与する樹脂などを含有させることができる。また、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、ブロッキング防止剤や充填剤、結晶造核剤、結晶化遅延剤等の各種添加剤を含有させてもよい。 The above polyolefin resin compositions A and B may contain resin components other than polyethylene a1, a2, b1 and polypropylene, if necessary. As other resin components, for example, a resin that further imparts heat resistance can be contained. In addition, various additives such as antioxidants, heat stabilizers, antistatic agents, ultraviolet absorbers, antiblocking agents, fillers, crystal nucleating agents, and crystallization retardants are added to the extent that they do not impair the effects of the present invention. may be included.
 ポリオレフィン微多孔膜の層構成をA層/B層とした場合、A層/B層の厚み比は5/95~90/10であることが好ましく、より好ましくは30/70~80/20、さらに好ましくは35/65~75/25である。これにより薄膜でも突刺強度を維持しつつ、高い耐熱性を有することができる。 When the layer structure of the polyolefin microporous membrane is A layer/B layer, the thickness ratio of A layer/B layer is preferably 5/95 to 90/10, more preferably 30/70 to 80/20, It is more preferably 35/65 to 75/25. As a result, even a thin film can have high heat resistance while maintaining puncture strength.
 本実施形態において、ポリオレフィン微多孔膜の少なくとも片面に多孔質層を積層して微多孔膜としてもよい。多孔質層としては、特に限定されないが、例えば、樹脂からなる多孔質層を積層してもよい。ここで用いる樹脂としては、特に限定されず、公知の樹脂を用いることができ、アクリル樹脂、ポリフッ化ビニリデン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、芳香族ポリアミド樹脂、ポリイミド樹脂などが挙げられる。多孔質層はさらに無機粒子を含んでもよく、無機粒子としては、特に限定されず、公知の材料を用いることができ、アルミナ、ベーマイト、硫酸バリウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、ケイ素などが挙げられる。 In the present embodiment, a microporous membrane may be formed by laminating a porous layer on at least one side of the polyolefin microporous membrane. Although the porous layer is not particularly limited, for example, a porous layer made of resin may be laminated. The resin used here is not particularly limited, and known resins can be used, including acrylic resins, polyvinylidene fluoride resins, polyamideimide resins, polyamide resins, aromatic polyamide resins, and polyimide resins. The porous layer may further contain inorganic particles, and the inorganic particles are not particularly limited, and known materials can be used, such as alumina, boehmite, barium sulfate, magnesium oxide, magnesium hydroxide, magnesium carbonate, silicon, and the like. is mentioned.
 (3)ポリオレフィン微多孔膜の製造方法
 本発明のポリオレフィン微多孔膜の製造方法は以下の工程を含む。各工程について詳細を説明する。
(a)A層およびB層の溶液の調製
(b)ゲル状シートの成形
(c)第一の延伸
(d)可塑剤の除去、乾燥
(e)第二の延伸
(f)熱処理。
(3) Method for producing a microporous polyolefin membrane The method for producing a microporous polyolefin membrane of the present invention includes the following steps. Details of each step will be described.
(a) Preparation of layer A and layer B solutions (b) Formation of gel sheet (c) First stretching (d) Plasticizer removal and drying (e) Second stretching (f) Heat treatment.
 (a)A層およびB層の溶液の調製
 A層、B層はそれぞれ前述のポリオレフィン樹脂組成物A、ポリオレフィン樹脂組成物Bからなる。二軸押出し機中にてポリオレフィン樹脂組成物に可塑剤を添加し、溶融混練し、A層およびB層の溶液をそれぞれ調製する。樹脂溶液の全体に対して、ポリオレフィン樹脂組成物は10質量%以上30質量%以下を含有することが好ましい。ポリオレフィン樹脂組成物の濃度を上記の範囲内にすることで、ポリオレフィン溶液を押出す際に、ダイ出口でのメルトフラクチャやネックインが防止でき、押出し成形体の成形性及び外観が良好になる。
(a) Preparation of solutions for layers A and B Layers A and B are composed of the aforementioned polyolefin resin composition A and polyolefin resin composition B, respectively. A plasticizer is added to the polyolefin resin composition in a twin-screw extruder and melt-kneaded to prepare solutions for the A layer and the B layer, respectively. The polyolefin resin composition preferably contains 10% by mass or more and 30% by mass or less with respect to the entire resin solution. By adjusting the concentration of the polyolefin resin composition within the above range, melt fracture and neck-in at the die exit can be prevented when the polyolefin solution is extruded, and the moldability and appearance of the extrudate are improved.
 A層およびB層の溶液をそれぞれ押出機から1つのダイに送給し、そこで両溶液を層状シート状に押し出すことで押出し成形体を得る。押出方法はフラットダイ法及びインフレーション法のいずれでもよい。いずれの方法でも、溶液を別々のマニホールドに供給して多層用ダイのリップ入口で層状に積層する方法(多数マニホールド法)、又は溶液を予め層状の流れにしてダイに供給する方法(ブロック法)を用いることができる。多数マニホールド法及びブロック法は通常の方法を適用できる。多層用フラットダイのギャップは0.1mm以上5mm以下に設定できる。押出し温度は140℃以上250℃以下が好ましく、押出速度は0.2~15m/分が好ましい。各層の溶液の押出量を調節することにより、層の膜厚比を調節することができる。 The solutions of the A layer and the B layer are each fed from an extruder to a single die, where both solutions are extruded in the form of a layered sheet to obtain an extrudate. The extrusion method may be either a flat die method or an inflation method. In either method, the solutions are supplied to separate manifolds and layered at the lip inlet of the multi-layer die (multi-manifold method), or the solutions are pre-layered and fed to the die (block method). can be used. A common method can be applied to the multiple manifold method and the block method. The gap of the multilayer flat die can be set to 0.1 mm or more and 5 mm or less. The extrusion temperature is preferably 140° C. or higher and 250° C. or lower, and the extrusion speed is preferably 0.2 to 15 m/min. The film thickness ratio of the layers can be adjusted by adjusting the extrusion rate of the solution for each layer.
 各シートの厚さは、A層を構成する溶液のシート厚さ/B層を構成する溶液のシート厚さが5/95~90/10であることが好ましく、より好ましくは30/70~80/20、さらに好ましくは35/65~75/25である。ポリオレフィン組成物、各シートの厚み比、後述する延伸条件の好ましい範囲においてポリプロピレンのネットワークが維持されつつ、強度と融解のバランスに優れるポリオレフィン微多孔膜が得られる。ポリオレフィン微多孔膜においては、ポリオレフィン樹脂組成物Bのポリプロピレン濃度が10質量%以上30質量%以下の場合、ポリプロピレンのネットワーク維持の観点で、0/100(B層の単層構造)とするよりも、例えば、50/50のように、ポリオレフィン樹脂組成物Bを多層で集中的に配置するのが好ましい。これにより薄膜でも突刺強度を維持しつつ、より高い耐熱性を有することができる。 The thickness of each sheet is preferably 5/95 to 90/10, more preferably 30/70 to 80, where the sheet thickness of the solution forming layer A/the sheet thickness of the solution forming layer B is 5/95 to 90/10. /20, more preferably 35/65 to 75/25. A polyolefin microporous membrane having an excellent balance between strength and melting can be obtained while the polypropylene network is maintained within the preferred ranges of the polyolefin composition, the thickness ratio of each sheet, and the stretching conditions described later. In the polyolefin microporous film, when the polypropylene concentration of the polyolefin resin composition B is 10% by mass or more and 30% by mass or less, from the viewpoint of maintaining the polypropylene network, it is 0/100 (single layer structure of B layer). , for example, it is preferable to dispose the polyolefin resin composition B intensively in multiple layers, such as 50/50. As a result, even a thin film can have higher heat resistance while maintaining puncture strength.
 (b)ゲル状シートの成形
 得られた押出し成形体を冷却することによりゲル状シートを成形する。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができるが、冷媒で冷却したロールに接触させて冷却させることが好ましい。冷却は少なくともゲル化温度までは50℃/分以上の速度で行うのが好ましい。冷却は25℃以下まで行うのが好ましい。冷却速度が上記範囲内であると結晶度が適度な範囲に保たれ、延伸に適したゲル状シートとなる。
(b) Formation of gel-like sheet A gel-like sheet is formed by cooling the obtained extrudate. As a cooling method, a method of contacting with a cooling medium such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used, but cooling by contacting with a roll cooled with a cooling medium is preferable. Cooling is preferably carried out at a rate of 50° C./min or more until at least the gelation temperature. Cooling is preferably performed to 25° C. or lower. When the cooling rate is within the above range, the crystallinity is kept within a suitable range, and a gel-like sheet suitable for stretching is obtained.
 (c)第一の延伸
 次いで、ゲル状シートを延伸する。ゲル状シートは予熱後、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸するのが好ましい。延伸は一軸延伸でも二軸延伸でもよい。延伸倍率(面延伸倍率)は、9倍以上が好ましく、16倍以上がより好ましく、25倍以上が特に好ましい。縦方向(以下、MDということがある。)および幅方向(以下、TDということがある。)での延伸倍率は同じでも異なってもよく、MD及びTDのいずれも延伸倍率は3倍以上が好ましい。
(c) First stretching Next, the gel-like sheet is stretched. After preheating, the gel-like sheet is preferably stretched at a predetermined magnification by a tenter method, a roll method, an inflation method, or a combination thereof. Stretching may be uniaxial stretching or biaxial stretching. The draw ratio (area draw ratio) is preferably 9 times or more, more preferably 16 times or more, and particularly preferably 25 times or more. The draw ratios in the longitudinal direction (hereinafter sometimes referred to as MD) and the width direction (hereinafter sometimes referred to as TD) may be the same or different, and the stretch ratio in both MD and TD should be 3 times or more. preferable.
 第一の延伸温度は、下限が100℃以上130℃以下であることが好ましく、より好ましくは110℃以上120℃以下である。前述したポリオレフィン組成物A、Bおよび層構成を用いて、延伸温度を前記の好ましい範囲内とすることで、低融点成分のポリオレフィン樹脂の延伸による破膜が抑制され、高倍率の延伸ができる。結果として、ポリオレフィン微多孔膜の突刺強度が向上し、かつシャットダウン温度の上昇が抑制されやすくなる。また、高温下でのポリエチレンとポリプロピレンの相分離を抑制し、形状保持性が向上する。そのため、電池用セパレータとして用いた場合、薄膜でも、機械的強度と電池安全性に優れる。 The lower limit of the first stretching temperature is preferably 100°C or higher and 130°C or lower, more preferably 110°C or higher and 120°C or lower. By using the above-described polyolefin compositions A and B and the layer structure, and by setting the stretching temperature within the preferred range described above, film breakage due to stretching of the low-melting-point polyolefin resin is suppressed, and high magnification stretching is possible. As a result, the puncture strength of the polyolefin microporous membrane is improved, and an increase in the shutdown temperature is easily suppressed. In addition, phase separation of polyethylene and polypropylene is suppressed at high temperatures, and shape retention is improved. Therefore, when used as a battery separator, even a thin film is excellent in mechanical strength and battery safety.
 (d)可塑剤の除去
 次いで洗浄溶媒を用いて、ゲル状シートに含まれる可塑剤の除去と乾燥を行う。洗浄溶媒およびこれを用いた可塑剤の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号明細書や特開2002-256099号公報に開示の方法を利用することができる。可塑剤を除去したあと、加熱乾燥法又は風乾法により乾燥する。加熱乾燥、風乾(空気を動かすこと)等の従来の方法を含む、洗浄溶媒を除去することが可能ないずれの方法を用いてもよい。
(d) Removal of plasticizer Next, the plasticizer contained in the gel-like sheet is removed and dried using a washing solvent. Since the washing solvent and the method for removing the plasticizer using the washing solvent are known, the explanation thereof is omitted. For example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent Application Laid-Open No. 2002-256099 can be used. After removing the plasticizer, it is dried by a heat drying method or an air drying method. Any method capable of removing the wash solvent may be used, including conventional methods such as heat drying, air drying (moving air), and the like.
 (e)第二の延伸
 乾燥後のシートを予熱後、少なくとも一方向に延伸する(乾式延伸)ことでポリオレフィン微多孔膜を得ることができる。第二の延伸は、加熱しながらテンター法等により行うことができる。第二の延伸の最終延伸倍率は、1.1倍以上であることが好ましく、1.4倍以上であることがより好ましい。最終延伸倍率を上記範囲とすることにより、突刺強度を所望の範囲に容易に制御することができる。ただし高倍率に延伸するとシャットダウン温度や熱収縮が上昇するため9倍以下であることが好ましい。前述したポリオレフィン組成物A、B、層構成を用いると低融点成分のポリオレフィン樹脂の延伸による破膜が抑制され、制御がしやすい。
(e) Second Stretching A microporous polyolefin membrane can be obtained by stretching the dried sheet in at least one direction after preheating (dry stretching). The second stretching can be performed by a tenter method or the like while heating. The final draw ratio of the second drawing is preferably 1.1 times or more, more preferably 1.4 times or more. By setting the final draw ratio within the above range, the puncture strength can be easily controlled within the desired range. However, when the film is stretched at a high magnification, the shutdown temperature and heat shrinkage increase, so the stretching is preferably 9 times or less. When the polyolefin compositions A and B described above and the layer structure are used, film breakage due to stretching of the polyolefin resin having a low melting point is suppressed, and control is facilitated.
 (f)熱処理
 第二の延伸後、クリップで把持した状態で、幅を固定したまま熱処理を施す。熱処理は115.0℃以上135.0℃以下とすることが好ましい。熱処理温度を上記の範囲とすることでポリオレフィン微多孔膜の熱収縮率を抑えることができる。熱処理中に、熱緩和処理を施してもよい。熱緩和処理を行う場合、緩和率は、直前の長さを100%として5%以上30%以下とすることができる。緩和率を上記の範囲とすることで熱収縮率を低減し、かつ緩和後の微多孔膜の工程でのバタつきを抑えることができる。
(f) Heat treatment After the second stretching, heat treatment is performed while the width is fixed while being held by clips. The heat treatment is preferably performed at 115.0° C. or higher and 135.0° C. or lower. By setting the heat treatment temperature within the above range, the thermal shrinkage of the polyolefin microporous membrane can be suppressed. A thermal relaxation treatment may be performed during the heat treatment. When thermal relaxation treatment is performed, the relaxation rate can be 5% or more and 30% or less, with the immediately preceding length being 100%. By setting the relaxation rate within the above range, it is possible to reduce the thermal shrinkage rate and suppress fluttering in the step of manufacturing the microporous membrane after the relaxation.
 以下、本発明を実施例によりさらに詳細に説明する。なお、本発明はこれらの例に限定されるものではない。 The present invention will be described in more detail below with reference to examples. However, the present invention is not limited to these examples.
 [測定方法]
 (1)膜厚
 ポリオレフィン微多孔膜の95mm×95mmの範囲内における左上、右上、中央、左下、右下の5点の膜厚を接触厚み計(株式会社ミツトヨ製ライトマチック、接触圧0.01N、10.5mmφプローブを用いた)により測定し、平均値を膜厚(μm)とした。なおサンプルサイズが95mm×95mmにできない場合は任意の大きさで切り出し、その左上、右上、中央、左下、右下の5点を測定してもよい。
[Measuring method]
(1) Film thickness The thickness of the polyolefin microporous film at five points in the range of 95 mm × 95 mm, upper left, upper right, center, lower left, and lower right, is measured by a contact thickness meter (Lightmatic manufactured by Mitutoyo Co., Ltd., contact pressure 0.01 N). , using a 10.5 mmφ probe), and the average value was taken as the film thickness (μm). If the sample size cannot be 95 mm×95 mm, the sample may be cut out in an arbitrary size and measured at the upper left, upper right, center, lower left, and lower right points.
 (2)目付
 5cm角にカットしたポリオレフィン微多孔膜を用意し、精密天秤(有効数字5桁(0.0000g))にて各々質量を測定し、その質量を25cmで除すことで算出した。なおサンプルサイズが5cm×5cmにできない場合は任意の大きさで切り出し、測定した質量をその面積で除して算出してもよい。
(2) Metsuke A polyolefin microporous membrane cut into 5 cm squares was prepared, the mass was measured with a precision balance (5 significant digits (0.0000 g)), and the weight was calculated by dividing the mass by 25 cm 2 . If the sample size cannot be 5 cm×5 cm, the sample may be cut into an arbitrary size and the measured mass divided by the area.
 (3)空孔率
 ポリオレフィン微多孔膜を95mm×95mmの大きさに切り出し、その体積(cm)と質量(g)を求め、それらと膜密度(g/cm)より、空孔率(%)を次式により計算した。
式:空孔率=((体積-質量/膜密度)/体積)×100
ここで、膜密度は0.99g/cmとした。また、体積の算出には、前述の(1)で測定した膜厚を使用した。
( 3 ) Porosity A polyolefin microporous membrane is cut into a size of 95 mm × 95 mm, its volume (cm 3 ) and mass (g) are obtained, and the porosity ( %) was calculated by the following formula.
Formula: porosity = ((volume - mass / membrane density) / volume) x 100
Here, the film density was set to 0.99 g/cm 3 . The film thickness measured in (1) above was used to calculate the volume.
 (4)透気抵抗度
 ポリオレフィン微多孔膜について、JIS P-8117:2009に準拠して、透気抵抗度計(旭精工株式会社製、EGO-1T)を用いて透気抵抗度(sec/100cm)を測定した。
(4) Air resistance For the polyolefin microporous membrane, air resistance (sec / 100 cm 3 ) was measured.
 (5)突刺強度
 直径1mm(先端は0.5mmR)の針を用い、速度2mm/秒で膜厚T(μm)のポリオレフィン微多孔膜を突刺したときの最大荷重値S(N)を測定した。下記の式により、膜厚5μmの換算突刺強度を算出した。
式:換算突刺強度=S(N)×5(μm)/T(μm)。
(5) Puncture strength Using a needle with a diameter of 1 mm (the tip is 0.5 mmR), the maximum load value S (N) when piercing a polyolefin microporous membrane with a film thickness T (μm) at a speed of 2 mm / sec was measured. . The converted puncture strength with a film thickness of 5 μm was calculated by the following formula.
Formula: Converted puncture strength = S (N) x 5 (μm)/T (μm).
 (6)シャットダウン温度(SD温度ともいう。)
 直径45mmの円形に打ち抜いたポリオレフィン微多孔膜を20℃の雰囲気中にさらし、5℃/分の速度で昇温しながら透気抵抗度を測定し、透気抵抗度が100,000秒/100cmに到達した時の温度をシャットダウン温度と定義し、2回の測定の平均値を用いた。透気抵抗度は、JIS P8117:2009に準拠して、透気抵抗度計(旭精工株式会社製、EGO-1T)を用いて測定した。
(6) Shutdown temperature (also called SD temperature)
A polyolefin microporous membrane punched into a circle with a diameter of 45 mm was exposed to an atmosphere of 20° C., and the air resistance was measured while the temperature was raised at a rate of 5° C./min. The temperature when reaching 3 was defined as the shutdown temperature and the average value of two measurements was used. The air resistance was measured using an air resistance meter (manufactured by Asahi Seiko Co., Ltd., EGO-1T) in accordance with JIS P8117:2009.
 (7)メルトダウン温度(MD温度ともいう。)
 直径45mmの円形に打ち抜いたポリオレフィン微多孔膜を20℃の雰囲気中にさらして、5℃/分の速度で昇温しながら透気抵抗度を測定し、透気抵抗度が100,000秒/100cmに到達した後もさらに昇温を継続し、透気抵抗度が100,000秒/100cm未満となる温度をメルトダウン温度と定義した。透気抵抗度は、JIS P8117:2009に準拠して、透気抵抗度計(旭精工株式会社製、EGO-1T)を用いて測定した。
(7) Meltdown temperature (also called MD temperature)
A polyolefin microporous membrane punched into a circle with a diameter of 45 mm was exposed to an atmosphere of 20 ° C., and the air resistance was measured while increasing the temperature at a rate of 5 ° C./min. After reaching 100 cm 3 , the temperature was continued to rise, and the temperature at which the air resistance was less than 100,000 seconds/100 cm 3 was defined as the meltdown temperature. The air resistance was measured using an air resistance meter (manufactured by Asahi Seiko Co., Ltd., EGO-1T) in accordance with JIS P8117:2009.
 (8)熱収縮率
ポリオレフィン微多孔膜を95mm×95mmの大きさに切り出し、室温(25℃)における試験片の収縮前長さ(mm)を機械方向および幅方向の両方について測定し、ポリオレフィン微多孔膜の試験片を荷重をかけずに105℃の温度に8時間曝した後、試験片を室温に戻し機械方向および幅方向の収縮後長さ(mm)を測定し、得られた試験片長さから次式を用いて機械方向および幅方向の熱収縮率(%)を求めた。
式:MD熱収縮率(%)=(1-機械方向の収縮後長さ/機械方向の収縮前長さ)×100
  TD熱収縮率(%)=(1-幅方向の収縮後長さ/幅方向の収縮前長さ)×100
 (9)重量平均分子量
 ポリオレフィン樹脂、ポリオレフィン微多孔膜の重量平均分子量(Mw)および分子量分布(Mw/Mn)は以下の測定条件を用いてゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
測定条件
 ・測定装置:Agilent製高温GPC装置PL-GPC220
 ・カラム:Agilent製PL1110-6200(20μm MIXED-A)×2本
 ・カラム温度:160℃
 ・溶媒(移動相):1,2,4-トリクロロベンゼン
 ・溶媒流速:1.0mL/分
 ・試料濃度:0.1質量%(溶解条件:160℃/3.5H)
 ・インジェクション量:500μL
 ・検出器:Agilent製示差屈折率検出器(RI検出器)
 ・粘度計:Agilent製粘度検出器
 ・検量線:単分散ポリスチレン標準試料を用いたユニバーサル検量線法にて作成した。
また低分子量側と高分子量側のピーク位置をそれぞれ以下のように見積もった。
・低分子量側ピーク位置:分子量分布を2つのガウス関数でフィッティングした際の低分子量側のガウス関数のピーク位置。
・高分子量側ピーク位置:分子量分布の最大値での分子量。
(8) Thermal shrinkage The polyolefin microporous membrane was cut into a size of 95 mm × 95 mm, and the length (mm) of the test piece before shrinkage at room temperature (25 ° C.) was measured in both the machine direction and the width direction. After exposing the test piece of the porous membrane to a temperature of 105° C. for 8 hours without applying a load, the test piece was returned to room temperature and the length (mm) after shrinkage in the machine direction and the width direction was measured. Then, the heat shrinkage rate (%) in the machine direction and width direction was obtained using the following equations.
Formula: MD heat shrinkage (%) = (1 - length after shrinkage in machine direction / length before shrinkage in machine direction) x 100
TD thermal shrinkage rate (%) = (1-length after shrinkage in width direction/length before shrinkage in width direction) x 100
(9) Weight Average Molecular Weight The weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the polyolefin resin and polyolefin microporous membrane were obtained by gel permeation chromatography (GPC) using the following measurement conditions.
Measurement conditions Measurement device: Agilent high temperature GPC device PL-GPC220
・ Column: Agilent PL1110-6200 (20 μm MIXED-A) × 2 ・ Column temperature: 160 ° C.
- Solvent (mobile phase): 1,2,4-trichlorobenzene - Solvent flow rate: 1.0 mL / min - Sample concentration: 0.1 mass% (dissolution conditions: 160 ° C. / 3.5 H)
・Injection volume: 500 μL
・ Detector: Agilent differential refractive index detector (RI detector)
• Viscometer: Viscosity detector manufactured by Agilent • Calibration curve: Created by a universal calibration curve method using a monodisperse polystyrene standard sample.
Also, the peak positions on the low molecular weight side and on the high molecular weight side were estimated as follows.
• Low-molecular-weight peak position: the peak position of the Gaussian function on the low-molecular-weight side when the molecular weight distribution is fitted with two Gaussian functions.
-High molecular weight side peak position: molecular weight at the maximum value of the molecular weight distribution.
 (10)融点及び融解ピーク
 ポリオレフィン樹脂の融点及びポリオレフィン微多孔膜の融解ピークは走査型示差熱量計(PARKING ELMER製 PYRIS DIAMOND DSC)により求めた。ポリオレフィン樹脂とポリオレフィン微多孔膜をそれぞれサンプルホルダー内に静置し、30℃から230℃まで昇温して完全に溶融させたのち、230℃で3分間保持し、10℃/分の速度で30℃まで降温させた。これを1回目の昇温として、同じ測定を再度繰り返し、2回目の昇温時の吸熱ピークよりポリオレフィン樹脂の融点(Tm)と、ポリオレフィン微多孔膜の融解熱量をそれぞれ求めた。なお融解熱量の算出の際のベースラインは30℃と230℃をつないだ直線とした。ポリオレフィン樹脂については、融解熱量が70J/g以上のピークを吸熱ピークとみなし、ポリオレフィン微多孔膜については、融解熱量が0.1J/g以上のピークを吸熱ピークとみなした。
(10) Melting point and melting peak The melting point of the polyolefin resin and the melting peak of the polyolefin microporous membrane were determined by a scanning differential calorimeter (PYRIS DIAMOND DSC manufactured by PARKING ELMER). The polyolefin resin and the polyolefin microporous membrane were each placed in a sample holder, heated from 30° C. to 230° C. to melt completely, held at 230° C. for 3 minutes, and heated at a rate of 10° C./min for 30 minutes. The temperature was lowered to °C. Using this as the first temperature rise, the same measurement was repeated, and the melting point (Tm) of the polyolefin resin and the heat of fusion of the polyolefin microporous membrane were determined from the endothermic peak at the second temperature rise. A straight line connecting 30° C. and 230° C. was used as a baseline for calculating the heat of fusion. For the polyolefin resin, the peak at the heat of fusion of 70 J/g or more was regarded as the endothermic peak, and for the polyolefin microporous membrane, the peak at the heat of fusion of 0.1 J/g or more was regarded as the endothermic peak.
 (11)層比
 ポリオレフィン微多孔膜の層比は、以下の測定条件で透過型電子顕微鏡(TEM)を用いて観察した。
測定条件
・試料調製:ポリオレフィン微多孔膜を四酸化ルテニウムにより染色し、ウルトラマイクロトームで断面切断する。
・測定装置:透過型電子顕微鏡(日本電子製JEM1400Plus型)
・観察条件:加速電圧100kV
・観察方向:TD/ND。
(11) Layer ratio The layer ratio of the polyolefin microporous membrane was observed using a transmission electron microscope (TEM) under the following measurement conditions.
Measurement conditions and sample preparation: A polyolefin microporous membrane is dyed with ruthenium tetroxide and cross-sectioned with an ultramicrotome.
・Measuring device: transmission electron microscope (JEOL JEM1400Plus type)
・Observation conditions: acceleration voltage of 100 kV
Observation direction: TD/ND.
 (12)169℃到達時のポリプロピレンの結晶度
 ポリオレフィン微多孔膜における169℃到達時のポリプロピレンの結晶度は以下の測定により求めた。
測定条件
 ・測定装置:走査型示差熱量計(PARKING ELMER製 PYRIS DIAMOND DSC)
 ・サンプル質量:6mg
 ・雰囲気気体:窒素
 ・開始温度:30℃
 ・昇温速度:5℃/分
 ・到達温度:169℃
 ・到達温度での保持時間:5分
 ・降温速度:30℃/分
 ・終了温度:30℃。
(12) Crystallinity of polypropylene at 169° C. The crystallinity of polypropylene in the polyolefin microporous membrane at 169° C. was obtained by the following measurement.
Measurement conditions Measurement device: Scanning differential calorimeter (PARKING ELMER PYRIS DIAMOND DSC)
・Sample mass: 6 mg
Atmospheric gas: Nitrogen Starting temperature: 30°C
・Temperature increase rate: 5°C/min ・Achievement temperature: 169°C
・Holding time at reaching temperature: 5 minutes ・Temperature decrease rate: 30°C/minute ・End temperature: 30°C.
 上記測定の降温過程において、規則構造が残存しているときには120℃以上の温度領域でポリプロピレンの結晶化による発熱ピークが検出される。本発明では169℃まで昇温させた後に冷却した場合に検出される発熱ピークからポリプロピレンの全樹脂に対する結晶度χを以下の式で求めた。
式:χ=ΔHPP/ΔHPP ×(アイソタクチックポリプロピレン濃度)
ここでΔHPPはポリプロピレン構造の降温過程における結晶化エンタルピー(J/g)を表す。ΔHPPとは降温過程におけるDSC曲線上のポリプロピレンの結晶化による発熱ピークの開始温度と終了温度を結んだ線とDSC曲線で囲まれる面積を測定サンプルの質量で割った値を言う。またアイソタクチックポリプロピレン濃度は後述するIR測定から求めた値である。例えば、ポリプロピレンがアイソタクチックポリプロピレンの場合、ΔHPP はポリプロピレンの完全融解エンタルピー(J/g)を表す。ΔHPP は170J/gを採用して算出した。
In the temperature-lowering process of the above measurement, an exothermic peak due to crystallization of polypropylene is detected in a temperature range of 120° C. or higher when the ordered structure remains. In the present invention, from the exothermic peak detected when the temperature was raised to 169° C. and then cooled, the crystallinity χ for all resins of polypropylene was obtained by the following formula.
Formula: χ = ΔH PP /ΔH PP f × (isotactic polypropylene concentration)
Here, ΔHPP represents the enthalpy of crystallization (J/g) in the process of cooling the polypropylene structure. ΔHPP is the value obtained by dividing the area surrounded by the DSC curve and the line connecting the start temperature and end temperature of the exothermic peak due to crystallization of polypropylene on the DSC curve in the temperature-lowering process by the mass of the measurement sample. Also, the isotactic polypropylene concentration is a value obtained from IR measurement described later. For example, if the polypropylene is isotactic polypropylene, ΔH PP f represents the complete melting enthalpy (J/g) of polypropylene. ΔH PP f was calculated using 170 J/g.
 (13)ポリオレフィン微多孔膜中のポリエチレンとアイソタクチックポリプロピレンの質量の合計に対するポリプロピレン濃度の測定
 ポリオレフィン微多孔膜中のポリエチレンとアイソタクチックポリプロピレンの質量の合計に対するアイソタクチックポリプロピレン濃度は、IR測定で得られたポリエチレン由来の1462cm-1およびアイソタクチックポリプロピレン由来の1376cm-1のピーク強度比により求めた。測定条件は下記のとおりである。
・測定装置:FT-IR装置(日本分光製 FT/IR-6600)
・測定温度:25℃
・アパーチャー:X=300μm、Y=300μm
・積算回数:16回
・分解能:4cm-1
式:アイソタクチックポリプロピレン濃度(%)=(1462cm-1ピーク高さ×換算係数1)/(1376cm-1ピーク高さ×換算係数2)×100。ここで換算係数1は20、換算係数2は10である。
(13) Measurement of polypropylene concentration for the total mass of polyethylene and isotactic polypropylene in the polyolefin microporous membrane The isotactic polypropylene concentration for the total mass of polyethylene and isotactic polypropylene in the polyolefin microporous membrane is measured by IR. was obtained from the peak intensity ratio of 1462 cm -1 derived from polyethylene and 1376 cm -1 derived from isotactic polypropylene. Measurement conditions are as follows.
・Measurement device: FT-IR device (FT/IR-6600 manufactured by JASCO Corporation)
・Measurement temperature: 25°C
・Aperture: X=300 μm, Y=300 μm
・Number of integration times: 16 times ・Resolution: 4 cm −1
Formula: isotactic polypropylene concentration (%)=(1462 cm −1 peak height×conversion factor 1)/(1376 cm −1 peak height×conversion factor 2)×100. Here, the conversion factor 1 is 20 and the conversion factor 2 is 10.
 (14)ホットボックス特性
 電池安全性は以下に示すホットボックス特性により評価した。
(14) Hot-box characteristics Battery safety was evaluated by the following hot-box characteristics.
 電池作製
 リチウムイオン二次電池は、正極と負極がセパレータを介して積層されており、セパレータが電解液(電解質)を含有している。正極活物質としてリチウムコバルト複合酸化物LiCoO、負極活物質として石墨、電解液としてDC/ジメチルカーボネート(DMC)の混合溶媒に調製した1mol/LのLiPFを使用した。電池の組立ては、正極、微多孔膜からなるセパレータ及び負極を積層した後、常法により巻回電極体を作製し、電池缶に挿入し、電解液を含浸させ、次いで安全弁を備えた正極端子を兼ねる電池蓋をガスケットを介してかしめた。
Battery Production In a lithium-ion secondary battery, a positive electrode and a negative electrode are laminated with a separator interposed therebetween, and the separator contains an electrolytic solution (electrolyte). Lithium cobalt composite oxide LiCoO 2 was used as the positive electrode active material, graphite was used as the negative electrode active material, and 1 mol/L LiPF 6 prepared in a mixed solvent of DC/dimethyl carbonate (DMC) was used as the electrolyte. A battery is assembled by laminating a positive electrode, a separator made of a microporous film, and a negative electrode, then preparing a wound electrode body by a conventional method, inserting it into a battery can, impregnating it with an electrolytic solution, and then a positive electrode terminal equipped with a safety valve. The battery lid, which also serves as a battery, was crimped through a gasket.
 ホットボックス試験
 組立てた電池を1Cの電流値で電圧4.2Vまで定電流充電した後、4.2Vの定電定圧充電行い、その後0.2Cの電流で3.0Vの終止電圧まで放電を行った。次に0.2Cの電流値で4.2Vまで定電流充電をした後に4.2Vの定電圧充電を行い前処理とした。前処理を行った電池をオーブンに投入し、室温から5℃/分で昇温した後150℃で30分間放置した。150℃到達後15分以内で充電電圧が50%以上低下したものを不可、充電電圧の低下が20~50%のものを可、20%以下のものを優とした。
Hot box test The assembled battery was charged at a current value of 1C to a voltage of 4.2V, then charged at a constant voltage of 4.2V, and then discharged at a current of 0.2C to a final voltage of 3.0V. rice field. Next, after constant current charging to 4.2 V at a current value of 0.2 C, constant voltage charging to 4.2 V was performed as pretreatment. The pretreated battery was placed in an oven, heated from room temperature at a rate of 5° C./min, and left at 150° C. for 30 minutes. A charge voltage drop of 50% or more within 15 minutes after reaching 150° C. was rated unacceptable, a charge voltage drop of 20 to 50% was rated acceptable, and a charge voltage drop of 20% or less was rated excellent.
 (15)自己放電特性
 自己放電特性(K値)は以下の方法で評価を行った。下記の(評価用電池の作製方法)にて組み立てた試験用二次電池0.5Cの電流値で電池電圧3.85Vまで定電流充電した後、電池電圧3.85Vで0.05Cになるまで定電圧充電を行った。この電池を24時間放置した後の開回路電圧を計測し、この値をV1とした。この電池について、さらに24時間放置、つまり充電後計48時間放置した後の開回路電圧を計測し、この値をV2とした。得られたV1、V2の値からK値を下記の式により算出した。
式:K値=(V1-V2)/24。
(15) Self-discharge characteristics Self-discharge characteristics (K value) were evaluated by the following method. After constant current charging to a battery voltage of 3.85 V at a current value of the test secondary battery 0.5 C assembled in the following (Evaluation battery production method), until the battery voltage reaches 0.05 C at 3.85 V Constant voltage charging was performed. The open-circuit voltage was measured after the battery was left for 24 hours, and this value was defined as V1. With respect to this battery, the open circuit voltage was measured after being left for another 24 hours, that is, after being left for a total of 48 hours after charging, and this value was defined as V2. The K value was calculated from the obtained V1 and V2 values by the following formula.
Formula: K value = (V1-V2)/24.
 [実施例1]
 (1)A層の溶液調製
 重量平均分子量が1.5×10、融点136.0℃のポリエチレン90質量%と重量平均分子量が1.0×10、融点132.0℃のポリエチレン10質量%を樹脂濃度17質量%となるように流動パラフィンと二軸押出機にて、溶融混練し、ポリオレフィン溶液Aを調製した。
[Example 1]
(1) Preparation of layer A solution 90% by mass of polyethylene having a weight average molecular weight of 1.5×10 6 and a melting point of 136.0° C. and 10 mass of polyethylene having a weight average molecular weight of 1.0×10 5 and a melting point of 132.0° C. % was melt-kneaded with liquid paraffin with a twin-screw extruder so that the resin concentration was 17% by mass, and a polyolefin solution A was prepared.
 (2)B層の溶液調製
 重量平均分子量が1.5×10、融点136.0℃のポリエチレン70質量%と重量平均分子量が2.0×10のポリプロピレン30質量%を樹脂濃度20質量%となるように流動パラフィンと二軸押出機にて、溶融混練し、ポリオレフィン溶液Bを調製した。
(2) Preparation of Layer B Solution 70% by mass of polyethylene having a weight average molecular weight of 1.5×10 6 and a melting point of 136.0° C. and 30% by mass of polypropylene having a weight average molecular weight of 2.0×10 6 were combined to a resin concentration of 20% by mass. % by melt-kneading liquid paraffin with a twin-screw extruder to prepare a polyolefin solution B.
 (3)ゲル状シートの成形
 ポリオレフィン溶液A及びBを、二軸押出機から3層用Tダイに供給し、A層の溶液/B層の溶液/A層の溶液が層厚比25/50/25となるように押し出した。押し出した成形体を、25℃で温調した冷却ロールで引き取りながら冷却し、ゲル状シートを形成した。
(3) Molding of gel-like sheet Polyolefin solutions A and B are supplied from a twin-screw extruder to a three-layer T-die, and the layer thickness ratio of A layer solution/B layer solution/A layer solution is 25/50. /25. The extruded compact was cooled while being taken up by a cooling roll controlled at 25° C. to form a gel-like sheet.
 (4)第一の延伸、製膜溶剤の除去、乾燥
 ゲル状シートを、テンター延伸機により110.0℃でMDおよびTDともに5倍に同時延伸した。延伸後シートを塩化メチレン浴中に浸漬し、流動パラフィンを除去した後、乾燥させ、乾燥後の微多孔膜を得た。
(4) First Stretching, Removal of Film-Forming Solvent, and Drying The gel-like sheet was simultaneously stretched 5 times in both MD and TD at 110.0° C. using a tenter stretching machine. After stretching, the sheet was immersed in a methylene chloride bath to remove the liquid paraffin and then dried to obtain a dried microporous membrane.
 (5)第二の延伸、熱処理
 その後、128.0℃で予熱してからテンター延伸機によりTDに1.6倍に延伸した後、TDに15.0%の緩和を施し、テンターに保持しながら128.0℃で熱固定し、ポリオレフィン微多孔膜を得た。得られたポリオレフィン微多孔膜の各特性を表1に示す。
(5) Second stretching and heat treatment After that, after preheating at 128.0 ° C. and stretching 1.6 times in TD with a tenter stretching machine, TD was relaxed by 15.0% and held in a tenter. It was heat-set at 128.0° C. while heating to obtain a polyolefin microporous membrane. Table 1 shows the characteristics of the obtained polyolefin microporous membrane.
 [実施例2]
 ポリオレフィン溶液A及びBをB層の溶液/A層の溶液/B層の溶液が層厚比25/50/25となるように押し出したこと以外は実施例1と同様に延伸し、ポリオレフィン微多孔膜を得た。
[Example 2]
The polyolefin solutions A and B were drawn in the same manner as in Example 1 except that the polyolefin solutions A and B were extruded so that the layer thickness ratio of B layer solution/A layer solution/B layer solution was 25/50/25. A membrane was obtained.
 [実施例3]
 (1)A層の溶液調製
 重量平均分子量が1.5×10、融点135.0℃のポリエチレン70質量%と重量平均分子量が1.0×10、融点132.0℃のポリエチレン30質量%を樹脂濃度20質量%となるように流動パラフィンと二軸押出機にて、溶融混練し、ポリオレフィン溶液Aを調製した。
[Example 3]
(1) Preparation of layer A solution 70% by mass of polyethylene having a weight average molecular weight of 1.5×10 6 and a melting point of 135.0° C. and 30 mass of polyethylene having a weight average molecular weight of 1.0×10 5 and a melting point of 132.0° C. % was melt-kneaded with liquid paraffin using a twin-screw extruder to give a resin concentration of 20% by mass, to prepare a polyolefin solution A.
 (2)B層の溶液調製
 重量平均分子量が1.5×10、融点135.0℃のポリエチレン85質量%と重量平均分子量が2.0×10のポリプロピレン15質量%を樹脂濃度20質量%となるように流動パラフィンと二軸押出機にて、溶融混練し、ポリオレフィン溶液Bを調製した。
(2) Preparation of Layer B Solution 85% by mass of polyethylene having a weight average molecular weight of 1.5×10 6 and a melting point of 135.0° C. and 15% by mass of polypropylene having a weight average molecular weight of 2.0×10 6 were combined to a resin concentration of 20% by mass. % by melt-kneading liquid paraffin with a twin-screw extruder to prepare a polyolefin solution B.
 (3)ゲル状シートの成形
 ポリオレフィン溶液A及びBを、二軸押出機から3層用Tダイに供給し、A層の溶液/B層の溶液/A層の溶液が層厚比20/60/20となるように押し出した。押し出した成形体を、25℃で温調した冷却ロールで引き取りながら冷却し、ゲル状シートを形成した。
(3) Gel-like sheet molding Polyolefin solutions A and B are supplied from a twin-screw extruder to a three-layer T-die, and the layer thickness ratio of A layer solution/B layer solution/A layer solution is 20/60. /20 was extruded. The extruded compact was cooled while being taken up by a cooling roll controlled at 25° C. to form a gel-like sheet.
 (4)第一の延伸、製膜溶剤の除去、乾燥
 ゲル状シートを、延伸温度112.5℃としたこと以外は実施例1と同様に延伸、流動パラフィンの除去、乾燥させ、乾燥後の微多孔膜を得た。
(4) First stretching, removal of film-forming solvent, drying The gel sheet was stretched, liquid paraffin was removed, and dried in the same manner as in Example 1, except that the stretching temperature was 112.5 ° C., and after drying, the A microporous membrane was obtained.
 (5)第二の延伸、熱処理
 127.0℃で予熱してからテンター延伸機によりTDに1.5倍に延伸した後、TDに15.0%の緩和を施し、テンターに保持しながら127.0℃で熱固定し、ポリオレフィン微多孔膜を得た。
(5) Second stretching, heat treatment After preheating at 127.0°C and stretching 1.5 times in TD with a tenter stretching machine, 15.0% relaxation is applied to TD and 127 while holding in the tenter. It was heat-set at 0°C to obtain a polyolefin microporous membrane.
 [実施例4]
 ポリオレフィン溶液A及びBを、二軸押出機から3層用Tダイに供給し、B層の溶液/A層の溶液/B層の溶液が層厚比30/40/30となるように押し出し、第一の延伸温度を113.5℃、第二の延伸温度および熱固定温度を126.0℃としたこと以外は実施例3と同様にしてポリオレフィン微多孔膜を得た。
[Example 4]
Polyolefin solutions A and B are supplied from a twin-screw extruder to a three-layer T die, and extruded so that the layer thickness ratio of B layer solution/A layer solution/B layer solution is 30/40/30, A polyolefin microporous membrane was obtained in the same manner as in Example 3, except that the first stretching temperature was 113.5°C, and the second stretching temperature and heat setting temperature were 126.0°C.
 [実施例5]
 第一の延伸温度を114.5℃、第二の延伸温度および熱固定温度を126.0℃、緩和率を10.0%としたこと以外は実施例4と同様にしてポリオレフィン微多孔膜を得た。
[Example 5]
A polyolefin microporous membrane was produced in the same manner as in Example 4 except that the first stretching temperature was 114.5°C, the second stretching temperature and heat setting temperature were 126.0°C, and the relaxation rate was 10.0%. Obtained.
 [実施例6]
 第一の延伸温度を115.0℃、としたこと以外は実施例5と同様にしてポリオレフィン微多孔膜を得た。
[Example 6]
A polyolefin microporous membrane was obtained in the same manner as in Example 5, except that the first stretching temperature was set to 115.0°C.
 [実施例7]
 B層の溶液/A層の溶液/B層の溶液が層厚比25/50/25となるように押し出し、第一の延伸温度を115.5℃、緩和率を15.0%としたこと以外は実施例5と同様にしてポリオレフィン微多孔膜を得た。
[Example 7]
The layer B solution/layer A solution/layer B solution was extruded so that the layer thickness ratio was 25/50/25, and the first stretching temperature was 115.5° C. and the relaxation rate was 15.0%. A polyolefin microporous membrane was obtained in the same manner as in Example 5 except for the above.
 [実施例8]
 (1)A層の溶液調製
 重量平均分子量が7.5×10、融点136.0℃のポリエチレン85質量%と重量平均分子量が1.0×10、融点132.0℃のポリエチレン15質量%を樹脂濃度25質量%となるように流動パラフィンと二軸押出機にて、溶融混練し、ポリオレフィン溶液Aを調製した。
[Example 8]
(1) Preparation of layer A solution 85% by mass of polyethylene having a weight average molecular weight of 7.5×10 5 and a melting point of 136.0° C. and 15 mass of polyethylene having a weight average molecular weight of 1.0×10 5 and a melting point of 132.0° C. % was melt-kneaded with liquid paraffin with a twin-screw extruder so that the resin concentration was 25% by mass, to prepare a polyolefin solution A.
 (2)B層の溶液調製
 重量平均分子量が7.5×10、融点136.0℃のポリエチレン90質量%と重量平均分子量が2.0×10のポリプロピレン10質量%を樹脂濃度15質量%となるように流動パラフィンと二軸押出機にて、溶融混練し、ポリオレフィン溶液Bを調製した。
(2) Preparation of Layer B Solution 90% by mass of polyethylene having a weight average molecular weight of 7.5×10 5 and a melting point of 136.0° C. and 10% by mass of polypropylene having a weight average molecular weight of 2.0×10 6 were combined to a resin concentration of 15% by mass. % by melt-kneading liquid paraffin with a twin-screw extruder to prepare a polyolefin solution B.
 (3)ゲル状シートの成形
 ポリオレフィン溶液A及びBを、二軸押出機から3層用Tダイに供給し、B層の溶液/A層の溶液/B層の溶液が層厚比15/70/15となるように押し出した。押し出した成形体を、25℃で温調した冷却ロールで引き取りながら冷却し、ゲル状シートを形成した。
(3) Molding of gel-like sheet Polyolefin solutions A and B were supplied from a twin-screw extruder to a three-layer T-die, and the layer thickness ratio of B layer solution/A layer solution/B layer solution was 15/70. /15 was extruded. The extruded compact was cooled while being taken up by a cooling roll controlled at 25° C. to form a gel-like sheet.
 (4)第一の延伸、製膜溶剤の除去、乾燥
 ゲル状シートを、延伸温度112.0℃としたこと以外は実施例1と同様に延伸、流動パラフィンの除去、乾燥させ、乾燥後の微多孔膜を得た。
(4) First stretching, removal of film-forming solvent, drying The gel-like sheet was stretched, liquid paraffin was removed, and dried in the same manner as in Example 1, except that the stretching temperature was set to 112.0 ° C., and after drying, the A microporous membrane was obtained.
 (5)第二の延伸、熱処理
 130.0℃で予熱してからテンター延伸機によりTDに1.8倍に延伸した後、TDに15.0%の緩和を施し、テンターに保持しながら130.0℃で熱固定し、ポリオレフィン微多孔膜を得た。
(5) Second stretching and heat treatment After preheating at 130.0°C and stretching to 1.8 times in TD with a tenter stretching machine, TD was relaxed by 15.0% and held in a tenter to 130 degrees. It was heat-set at 0°C to obtain a polyolefin microporous membrane.
 [実施例9]
 ポリオレフィン溶液Bのポリエチレンとポリプロピレンの割合をそれぞれ90%と10%とし、A層の溶液/B層の溶液/A層の溶液が層厚比30/40/30となるように押し出し、第二の延伸倍率を1.8倍、緩和率を15.0としたこと以外は実施例5と同様にしてポリオレフィン微多孔膜を得た。
[Example 9]
The proportions of polyethylene and polypropylene in the polyolefin solution B are set to 90% and 10%, respectively, and the layer A solution/layer B solution/layer A solution is extruded so that the layer thickness ratio is 30/40/30, and the second A microporous polyolefin membrane was obtained in the same manner as in Example 5, except that the draw ratio was 1.8 and the relaxation rate was 15.0.
 [実施例10]
 第一の延伸温度を113.0℃、第二の延伸温度を125.0℃としたこと以外は実施例8と同様にしてポリオレフィン微多孔膜を得た。
[Example 10]
A polyolefin microporous membrane was obtained in the same manner as in Example 8 except that the first stretching temperature was 113.0°C and the second stretching temperature was 125.0°C.
 [実施例11]
 A層の溶液/B層の溶液/A層の溶液が層厚比25/50/25となるように押し出し、第一の延伸温度を111.0℃、第二の延伸の緩和率を12.0%としたこと以外は実施例1と同様にしてポリオレフィン微多孔膜を得た。
[Example 11]
A layer solution/B layer solution/A layer solution was extruded so that the layer thickness ratio was 25/50/25. A polyolefin microporous membrane was obtained in the same manner as in Example 1, except that the content was 0%.
 [実施例12]
 A層の溶液/B層の溶液/A層の溶液が層厚比35/30/35となるように押し出し、第一の延伸温度を112.0℃、第二の延伸の緩和率を10.0%としたこと以外は実施例8と同様にしてポリオレフィン微多孔膜を得た。
[Example 12]
The layer A solution/layer B solution/layer A solution was extruded to a layer thickness ratio of 35/30/35, the first stretching temperature was 112.0°C, and the second stretching relaxation rate was 10.0°C. A polyolefin microporous membrane was obtained in the same manner as in Example 8, except that the content was 0%.
 [比較例1]
 (1)A層溶液調製
 重量平均分子量が2.0×10、融点133.0℃のポリエチレン40質量%と重量平均分子量が3.0×10、融点136.0℃のポリエチレン60質量%を樹脂濃度25質量%となるように流動パラフィンと二軸押出機にて、溶融混練し、ポリオレフィン溶液Aを調製した。
[Comparative Example 1]
(1) Preparation of Layer A Solution 40% by mass of polyethylene having a weight average molecular weight of 2.0×10 6 and a melting point of 133.0° C. and 60% by mass of polyethylene having a weight average molecular weight of 3.0×10 5 and a melting point of 136.0° C. was melt-kneaded with liquid paraffin with a twin-screw extruder so that the resin concentration was 25% by mass, to prepare a polyolefin solution A.
 (2)B層の溶液調製
 重量平均分子量が3.0×10、融点135.0℃のポリエチレン80質量%と重量平均分子量が2.0×10のポリプロピレン20質量%を樹脂濃度25質量%となるように流動パラフィンと二軸押出機にて、溶融混練し、ポリオレフィン溶液Bを調製した。
(2) Preparation of Layer B Solution 80% by mass of polyethylene having a weight average molecular weight of 3.0×10 5 and a melting point of 135.0° C. and 20% by mass of polypropylene having a weight average molecular weight of 2.0×10 6 were combined to a resin concentration of 25% by mass. % by melt-kneading liquid paraffin with a twin-screw extruder to prepare a polyolefin solution B.
 (3)ゲル状シートの成形
 ポリオレフィン溶液A及びBを、二軸押出機から3層用Tダイに供給し、B層の溶液/A層の溶液/B層の溶液が層厚比10/80/10となるように押し出した。押し出した成形体を、25℃で温調した冷却ロールで引き取りながら冷却し、ゲル状シートを形成した。この際、後述する延伸により延伸後の厚みが4.0μm付近となるように吐出を調整した。
(3) Gel-like sheet molding Polyolefin solutions A and B are supplied from a twin-screw extruder to a three-layer T-die, and the layer thickness ratio of B layer solution/A layer solution/B layer solution is 10/80. /10. The extruded compact was cooled while being taken up by a cooling roll controlled at 25° C. to form a gel-like sheet. At this time, the ejection was adjusted so that the thickness after stretching was about 4.0 μm by stretching, which will be described later.
 (4)第一の延伸、製膜溶剤の除去、乾燥
 ゲル状シートを、テンター延伸機により115.0℃でMDおよびTDともに5倍に同時延伸した。延伸後シートを塩化メチレン浴中に浸漬し、流動パラフィンを除去した後、乾燥させ、乾燥後の微多孔膜を得た。
(4) First Stretching, Removal of Film-Forming Solvent, and Drying The gel-like sheet was simultaneously stretched 5 times in both MD and TD at 115.0° C. using a tenter stretching machine. After stretching, the sheet was immersed in a methylene chloride bath to remove the liquid paraffin and then dried to obtain a dried microporous membrane.
 (5)第二の延伸、熱処理
 その後、125.5℃で予熱してからテンター延伸機によりTDに1.5倍に延伸した後、TDに15.0%の緩和を施し、テンターに保持しながら125.5℃で熱固定し、ポリオレフィン微多孔膜を得た。
(5) Second stretching and heat treatment After that, after preheating at 125.5 ° C. and stretching 1.5 times in TD with a tenter stretching machine, TD was relaxed by 15.0% and held in a tenter. It was heat-set at 125.5° C. while heating to obtain a polyolefin microporous membrane.
 [比較例2]
 (1)A層の溶液調製
 重量平均分子量が1.6×10、融点134.0℃のポリエチレン40質量%と重量平均分子量が3.0×10、融点135.0℃のポリエチレン60質量%を樹脂濃度28.5質量%となるように流動パラフィンと二軸押出機にて、溶融混練し、ポリオレフィン溶液Aを調製した。
[Comparative Example 2]
(1) Preparation of layer A solution 40% by mass of polyethylene having a weight average molecular weight of 1.6 × 10 6 and a melting point of 134.0°C and 60% by weight of polyethylene having a weight average molecular weight of 3.0 × 10 5 and a melting point of 135.0°C % was melt-kneaded with liquid paraffin using a twin-screw extruder to give a resin concentration of 28.5% by mass, to prepare a polyolefin solution A.
 (2)B層の溶液調製
 重量平均分子量が3.0×10、融点135.0℃のポリエチレン70質量%と重量平均分子量が2.0×10のポリプロピレン30質量%を樹脂濃度25質量%となるように流動パラフィンと二軸押出機にて、溶融混練し、ポリオレフィン溶液Bを調製した。
(2) Preparation of Layer B Solution 70% by mass of polyethylene having a weight average molecular weight of 3.0×10 5 and a melting point of 135.0° C. and 30% by mass of polypropylene having a weight average molecular weight of 2.0×10 6 were combined to a resin concentration of 25% by mass. % by melt-kneading liquid paraffin with a twin-screw extruder to prepare a polyolefin solution B.
 (3)ゲル状シートの成形
 ポリオレフィン溶液A及びBを、二軸押出機から3層用Tダイに供給し、A層の溶液/B層の溶液/A層の溶液が層厚比40/20/40となるように押し出した。押し出した押出し成形体を、25℃で温調した冷却ロールで引き取りながら冷却し、ゲル状シートを形成した。
(3) Molding of gel-like sheet Polyolefin solutions A and B are supplied from a twin-screw extruder to a three-layer T-die, and the layer thickness ratio of A layer solution/B layer solution/A layer solution is 40/20. /40 was extruded. The extruded extrudate was cooled while being taken up by a cooling roll controlled at 25° C. to form a gel-like sheet.
 (4)第一の延伸、製膜溶剤の除去、乾燥
 ゲル状シートを、テンター延伸機により110.0℃でMDおよびTDともに5倍に同時延伸した。延伸後シートを塩化メチレン浴中に浸漬し、流動パラフィンを除去した後、乾燥させ、乾燥後の微多孔膜を得た。
(4) First Stretching, Removal of Film-Forming Solvent, and Drying The gel-like sheet was simultaneously stretched 5 times in both MD and TD at 110.0° C. using a tenter stretching machine. After stretching, the sheet was immersed in a methylene chloride bath to remove the liquid paraffin and then dried to obtain a dried microporous membrane.
 (5)第二の延伸、熱処理
 その後、128.0℃で予熱してからテンター延伸機によりTDに1.6倍に延伸した後、TDに15.0%の緩和を施し、テンターに保持しながら128.0℃で熱固定し、ポリオレフィン微多孔膜を得た。
(5) Second stretching and heat treatment After that, after preheating at 128.0 ° C. and stretching 1.6 times in TD with a tenter stretching machine, TD was relaxed by 15.0% and held in a tenter. It was heat-set at 128.0° C. while heating to obtain a polyolefin microporous membrane.
 [比較例3]
 (1)A層溶液調製
 重量平均分子量が2.0×10、融点133.0℃のポリエチレン30質量%と重量平均分子量が3.0×10、融点135.0℃のポリエチレン70質量%を樹脂濃度28.5質量%となるように流動パラフィンと二軸押出機にて、溶融混練し、ポリオレフィン溶液Aを調製した。
[Comparative Example 3]
(1) Preparation of Layer A Solution 30% by mass of polyethylene having a weight average molecular weight of 2.0×10 6 and a melting point of 133.0° C. and 70% by mass of polyethylene having a weight average molecular weight of 3.0×10 5 and a melting point of 135.0° C. was melt-kneaded with liquid paraffin with a twin-screw extruder so that the resin concentration was 28.5% by mass, to prepare a polyolefin solution A.
 (2)B層の溶液調製
 重量平均分子量が3.0×10、融点135.0℃のポリエチレン50質量%と重量平均分子量が2.0×10のポリプロピレン50質量%を樹脂濃度30質量%となるように流動パラフィンと二軸押出機にて、溶融混練し、ポリオレフィン溶液Bを調製した。
(2) Preparation of Layer B Solution 50% by mass of polyethylene having a weight average molecular weight of 3.0×10 5 and a melting point of 135.0° C. and 50% by mass of polypropylene having a weight average molecular weight of 2.0×10 6 were combined to a resin concentration of 30% by mass. % by melt-kneading liquid paraffin with a twin-screw extruder to prepare a polyolefin solution B.
 (3)ゲル状シートの成形
 ポリオレフィン溶液A及びBを、二軸押出機から3層用Tダイに供給し、A層の溶液/B層の溶液/A層の溶液が層厚比35/30/35となるように押し出した。押し出した成形体を、25℃で温調した冷却ロールで引き取りながら冷却し、ゲル状シートを形成した。
(3) Molding of gel-like sheet Polyolefin solutions A and B are supplied from a twin-screw extruder to a three-layer T-die, and the layer thickness ratio of A layer solution/B layer solution/A layer solution is 35/30. /35 was extruded. The extruded compact was cooled while being taken up by a cooling roll controlled at 25° C. to form a gel-like sheet.
 (4)第一の延伸、製膜溶剤の除去、乾燥
 ゲル状シートを、テンター延伸機により114.0℃でMDおよびTDともに5倍に同時延伸した。延伸後シートを塩化メチレン浴中に浸漬し、流動パラフィンを除去した後、乾燥させ、乾燥後の微多孔膜を得た。
(4) First Stretching, Removal of Film-Forming Solvent, and Drying The gel-like sheet was simultaneously stretched 5 times in both MD and TD at 114.0° C. using a tenter stretching machine. After stretching, the sheet was immersed in a methylene chloride bath to remove the liquid paraffin and then dried to obtain a dried microporous membrane.
 (5)第二の延伸、熱処理
 その後、125.0℃で予熱してからテンター延伸機によりTDに1.5倍に延伸した後、TDに10.0%の緩和を施し、テンターに保持しながら125℃で熱固定し、ポリオレフィン微多孔膜を得た。
(5) Second stretching and heat treatment After that, after preheating at 125.0 ° C. and stretching 1.5 times in TD with a tenter stretching machine, TD was relaxed by 10.0% and held in a tenter. It was heat-set at 125° C. while heating to obtain a polyolefin microporous membrane.
 [比較例4]
 比較例1のポリオレフィン溶液Aのみでゲル状シートを形成し、第一の延伸温度を114.0℃、第二の延伸および熱固定温度を130.0℃、緩和率を20%としたこと以外は比較例1と同様にしてポリオレフィン微多孔膜を得た。
[Comparative Example 4]
Except that a gel-like sheet was formed only with the polyolefin solution A of Comparative Example 1, the first stretching temperature was 114.0°C, the second stretching and heat setting temperature was 130.0°C, and the relaxation rate was 20%. A polyolefin microporous membrane was obtained in the same manner as in Comparative Example 1.
 [参考例1]
 ポリオレフィン微多孔膜の膜厚が9.0μm程度となるように押出の吐出を調整したこと以外は比較例1と同様にしてポリオレフィン微多孔膜を得た。
[Reference example 1]
A polyolefin microporous membrane was obtained in the same manner as in Comparative Example 1, except that the extrusion discharge was adjusted so that the polyolefin microporous membrane had a thickness of about 9.0 μm.
 [結果]
 得られたポリオレフィン微多孔膜の物性測定結果を表2に示す。実施例で得られたポリオレフィン微多孔膜は比較例に比べて薄膜でありながらシャットダウン温度が低く、突刺強度と溶融後の絶縁性を併せ持ち、電池用セパレータとして用いた電池はホットボックスに代表される電池安全性と自己放電特性に優れる。
[result]
Table 2 shows the physical property measurement results of the obtained polyolefin microporous membrane. The polyolefin microporous membranes obtained in the examples are thinner than the comparative examples, but have a lower shutdown temperature, and have both puncture strength and insulation properties after melting. Excellent battery safety and self-discharge characteristics.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明のポリオレフィン微多孔膜は、電池用セパレータとして用いた場合、薄膜であっても電池が高温状態においても安全なポリオレフィン微多孔膜を提供することができる。 When the polyolefin microporous membrane of the present invention is used as a battery separator, it is possible to provide a polyolefin microporous membrane that is safe even when the battery is in a high temperature state even if it is a thin film.

Claims (7)

  1.  膜厚が6μm以下であって、5μm換算突刺強度が1.7N以上であり、昇温透気度法で測定したシャットダウン温度が80℃以上138℃以下であり、169℃到達時のポリプロピレンの結晶度が3ppm以上200ppm以下である、ポリオレフィン微多孔膜。 The film thickness is 6 μm or less, the 5 μm equivalent puncture strength is 1.7 N or more, the shutdown temperature measured by the temperature-rising air permeability method is 80° C. or more and 138° C. or less, and the polypropylene crystals when reaching 169° C. A polyolefin microporous membrane having a degree of 3 ppm or more and 200 ppm or less.
  2.  複数の層からなる多層微多孔膜である請求項1に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to claim 1, which is a multilayer microporous membrane consisting of a plurality of layers.
  3.  GPCチャートにおいて分子量が5.0×10~1.0×10の範囲と、3.0×10~7.0×10の範囲にそれぞれピークを持つ請求項1または2に記載のポリオレフィン微多孔膜。 3. The composition according to claim 1 or 2, which has peaks in a molecular weight range of 5.0×10 4 to 1.0×10 5 and a molecular weight range of 3.0×10 5 to 7.0×10 5 on a GPC chart. Polyolefin microporous membrane.
  4.  重量平均分子量が4.0×10以上1.0×10以下であるポリエチレンを含有する、請求項1~3のいずれかに記載のポリオレフィン微多孔膜。 4. The polyolefin microporous membrane according to any one of claims 1 to 3, comprising polyethylene having a weight average molecular weight of 4.0×10 5 or more and 1.0×10 6 or less.
  5.  ポリエチレンとアイソタクチックポリプロピレンを含み、ポリエチレンとアイソタクチックポリプロピレンの質量の合計に対するアイソタクチックポリプロピレン濃度が3.5質量%以上10.0質量%以下である、請求項1~4のいずれかに記載のポリオレフィン微多孔膜。 Any one of claims 1 to 4, comprising polyethylene and isotactic polypropylene, and having an isotactic polypropylene concentration of 3.5% by mass or more and 10.0% by mass or less with respect to the total mass of polyethylene and isotactic polypropylene. The polyolefin microporous membrane described.
  6.  少なくとも片面に多孔質層を有する、請求項1~5のいずれかに記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to any one of claims 1 to 5, which has a porous layer on at least one side.
  7.  請求項1~6のいずれかに記載のポリオレフィン微多孔膜を含む電池用セパレータ。 A battery separator comprising the polyolefin microporous membrane according to any one of claims 1 to 6.
PCT/JP2022/020339 2021-06-30 2022-05-16 Polyolefin microporous membrane and battery separator WO2023276468A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022529493A JPWO2023276468A1 (en) 2021-06-30 2022-05-16
KR1020237028410A KR20240026878A (en) 2021-06-30 2022-05-16 Polyolefin microporous membrane and battery separator
CN202280030525.2A CN117203843A (en) 2021-06-30 2022-05-16 Polyolefin microporous membrane and separator for battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-108522 2021-06-30
JP2021108522 2021-06-30
JP2021174340 2021-10-26
JP2021-174340 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023276468A1 true WO2023276468A1 (en) 2023-01-05

Family

ID=84691715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020339 WO2023276468A1 (en) 2021-06-30 2022-05-16 Polyolefin microporous membrane and battery separator

Country Status (3)

Country Link
JP (1) JPWO2023276468A1 (en)
KR (1) KR20240026878A (en)
WO (1) WO2023276468A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145319A1 (en) * 2022-01-28 2023-08-03 東レ株式会社 Polyolefin microporous membrane and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208894A (en) * 2014-04-24 2015-11-24 東レバッテリーセパレータフィルム株式会社 Polyolefin-made laminated microporous film
WO2020075794A1 (en) * 2018-10-10 2020-04-16 東レ株式会社 Polyolefin microporous membrane, multilayer polyolefin microporous membrane, battery
WO2021033735A1 (en) * 2019-08-22 2021-02-25 東レ株式会社 Polyolefin microporous film, layered body, and battery
WO2021033733A1 (en) * 2019-08-22 2021-02-25 東レ株式会社 Polyolefin micro porous film, laminate, and battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101900267B1 (en) 2009-06-19 2018-09-19 도레이 카부시키가이샤 Microporous membranes, methods for making these membranes, and the use of these membranes as battery separator films
JP5629542B2 (en) 2010-10-04 2014-11-19 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208894A (en) * 2014-04-24 2015-11-24 東レバッテリーセパレータフィルム株式会社 Polyolefin-made laminated microporous film
WO2020075794A1 (en) * 2018-10-10 2020-04-16 東レ株式会社 Polyolefin microporous membrane, multilayer polyolefin microporous membrane, battery
WO2021033735A1 (en) * 2019-08-22 2021-02-25 東レ株式会社 Polyolefin microporous film, layered body, and battery
WO2021033733A1 (en) * 2019-08-22 2021-02-25 東レ株式会社 Polyolefin micro porous film, laminate, and battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145319A1 (en) * 2022-01-28 2023-08-03 東レ株式会社 Polyolefin microporous membrane and method for producing same

Also Published As

Publication number Publication date
KR20240026878A (en) 2024-02-29
JPWO2023276468A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
TWI414548B (en) Polyolefin multi-layered micro-porous film, method of manufacturing the same, separator for battery and battery
JP5403633B2 (en) Microporous membrane, battery separator and battery
JP5403634B2 (en) Microporous membrane, battery separator and battery
JP5250261B2 (en) Polyolefin microporous membrane and battery separator and battery using the same
KR101143106B1 (en) Microporous polymer membrane
JP5497635B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
JP5202949B2 (en) Polyolefin multilayer microporous membrane and battery separator
JP5651731B2 (en) Microporous membrane and its manufacture and use
JP6443333B2 (en) Polyolefin microporous membrane and method for producing the same
JP4902455B2 (en) Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
US9203071B2 (en) Multi-layer microporous film
JP5450929B2 (en) Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
US9044716B2 (en) Microporous membranes and methods for producing and using such membranes
JP6394596B2 (en) Polyolefin multilayer microporous membrane and method for producing the same
US8304114B2 (en) Microporous polyolefin membrane and manufacturing method
JP2011503247A5 (en)
JP2011500881A5 (en)
JP6394597B2 (en) Polyolefin multilayer microporous membrane and method for producing the same
US11242440B2 (en) Polyolefin microporous membrane and production method thereof
TW201836852A (en) Polyolefin microporous film
TW201940528A (en) Porous polyolefin film
WO2023276468A1 (en) Polyolefin microporous membrane and battery separator
JP2019102126A (en) Battery separator and non-aqueous electrolyte secondary battery
CN114516982B (en) Polyolefin microporous membrane, separator for battery, and secondary battery
CN117203843A (en) Polyolefin microporous membrane and separator for battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022529493

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE