WO2023276328A1 - 面状照明装置 - Google Patents

面状照明装置 Download PDF

Info

Publication number
WO2023276328A1
WO2023276328A1 PCT/JP2022/012691 JP2022012691W WO2023276328A1 WO 2023276328 A1 WO2023276328 A1 WO 2023276328A1 JP 2022012691 W JP2022012691 W JP 2022012691W WO 2023276328 A1 WO2023276328 A1 WO 2023276328A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
reflector
light source
substrate
light
Prior art date
Application number
PCT/JP2022/012691
Other languages
English (en)
French (fr)
Inventor
勇佑 奈良
隆人 吉田
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Priority to JP2023531428A priority Critical patent/JPWO2023276328A1/ja
Priority to CN202280032613.6A priority patent/CN117280155A/zh
Publication of WO2023276328A1 publication Critical patent/WO2023276328A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a planar lighting device.
  • a direct type planar illumination device in which light sources such as LEDs (Light Emitting Diodes) are arranged two-dimensionally on a substrate, the light emitted from the light source in an oblique direction with respect to the normal direction of the substrate is reflected and emitted.
  • a reflector is often used to increase light in the direction normal to the surface (see, for example, Patent Document 1).
  • the reflector has a unit structure called a segment provided for each light source.
  • Each segment has a hole through which the head (light-emitting part) of each light source is inserted, and an oblique extension from the hole. and a reflective surface surrounding the light source. Segments are often formed in regular shapes such as rectangles and hexagons in a plan view.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a planar lighting device that is less prone to dark areas even when it has an irregular outer shape.
  • a planar lighting device includes a plurality of light sources, a substrate, and a reflector.
  • the light sources are two-dimensionally arranged on the substrate.
  • the reflector is provided with a segment having a hole corresponding to the light source and a reflective surface extending obliquely from the periphery of the hole. be done.
  • the surface of the outer wall facing the substrate is provided with a light source for accommodating the light source or for adjusting the amount of light. A recess is provided.
  • a planar lighting device can be one in which dark areas are less likely to occur even when having an irregular outer shape.
  • FIG. 1 is a perspective view of a planar illumination device according to a first embodiment
  • FIG. FIG. 2 is an exploded perspective view of the planar lighting device.
  • FIG. 3 is an enlarged perspective view of the vicinity of the notch of the reflector.
  • FIG. 4 is an enlarged perspective view of the vicinity of the notch of the reflector from another viewpoint.
  • FIG. 5 is a view of the vicinity of the cutout portion of the planar illumination device, viewed from the direction directly facing the emission surface.
  • FIG. 6 is a perspective view showing an example in which a recess is provided without penetrating the outer wall of the reflector.
  • FIG. 7 is a perspective view of a planar lighting device according to a second embodiment.
  • FIG. 8 is an exploded perspective view of the planar lighting device.
  • FIG. 1 is a perspective view of a planar illumination device according to a first embodiment
  • FIG. 2 is an exploded perspective view of the planar lighting device.
  • FIG. 3 is an enlarged perspective view
  • FIG. 9 is an enlarged perspective view of the vicinity of the notch of the reflector.
  • FIG. 10A is a plan view showing the vicinity of the notch of the planar lighting device.
  • FIG. 10B is a diagram showing an example of luminance distribution of the planar illumination device of FIG. 10A.
  • FIG. 11A is a plan view showing the vicinity of a cutout portion of a planar lighting device of a comparative example (modification).
  • FIG. 11B is a diagram showing an example of luminance distribution of the planar illumination device of FIG. 11A.
  • FIG. 12A is a plan view showing the vicinity of the notch of the planar illumination device according to the third embodiment;
  • FIG. 12B is a diagram showing an example of luminance distribution of the planar illumination device of FIG. 12A.
  • FIG. 13 is a perspective view showing the vicinity of the cutout portion of the planar illumination device according to the fourth embodiment.
  • FIG. 14 is a plan view of a planar illumination device according to a fifth embodiment;
  • FIG. 15A is a plan view showing an example in which the rotation angle within the plane of the light source of the planar illumination device is 0°.
  • FIG. 15B is a diagram showing the characteristics of the luminance distribution for the arrangement of FIG. 15A.
  • FIG. 16A is a plan view showing an example in which the rotation angle within the plane of the light source of the planar illumination device is 45°.
  • FIG. 16B is a diagram showing the characteristics of the luminance distribution in the arrangement of FIG. 16A.
  • FIG. 17 is a plan view showing an example in which the rotation angle within the plane of all the light sources of the planar illumination device is 0°.
  • FIG. 18 is a plan view showing an example in which all the light sources of the planar illumination device are rotated 45 degrees within the plane.
  • FIG. 19 is a plan view showing an example in which the rotation angle within the plane of the light sources at the corners of the entire planar illumination device is 0°, and the rotation angle within the plane of the other light sources is 45°. .
  • FIG. 20 is a plan view (1) showing an example of the shape of the reflecting surface of the segment of the reflector.
  • FIG. 21 is a plan view (2) showing an example of the shape of the reflecting surface of the segment of the reflector.
  • FIG. 22 is a plan view (3) showing an example of the shape of the reflecting surface of the segment of the reflector.
  • FIG. 23 is a plan view (4) showing an example of the shape of the reflecting surface of the segment of the reflector.
  • a planar illumination device will be described below with reference to the drawings.
  • this invention is not limited by this embodiment.
  • the dimensional relationship of each element in the drawings, the ratio of each element, and the like may differ from reality. Even between the drawings, there are cases where portions with different dimensional relationships and ratios are included. In principle, the contents described in one embodiment and modification are similarly applied to other embodiments and modifications.
  • FIG. 1 is a perspective view of a planar illumination device 1 according to the first embodiment.
  • the longitudinal direction of the planar illumination device 1 is the X-axis direction
  • the lateral direction is the Y-axis direction
  • the thickness direction is the Z-axis direction.
  • a planar illumination device 1 includes a substrate 2 and a reflector 4 fixed to the upper side of the substrate 2 in the drawing with double-sided tape or the like. Moreover, a notch 1a is provided on the left side of the substrate 2 and the reflector 4 in the drawing to form an irregular outer shape.
  • the deformed external shape may be not only a linear chip like the notch portion 1a, but also an arc-shaped chip or a chip with a complicated shape.
  • FIG. 2 is an exploded perspective view of the planar illumination device 1.
  • light sources 3 such as LEDs (Light Emitting Diodes) are arranged two-dimensionally on a substrate 2, and wiring (not shown) to each light source 3 is also provided.
  • the substrate 2 and the reflector 4 are flat, but the substrate 2 and the reflector 4 may have a curved surface such as a convex curved surface or a concave curved surface.
  • two-dimensional arrangement means arrangement on a curved surface, for example, arrangement at a position represented by two independent coordinate axes on a curved surface such as cylindrical coordinates or spherical coordinates. do.
  • the light source 3 has an optical axis in the normal direction of the substrate 2 .
  • a portion of the substrate 2 that is not covered by the reflector 4 (a portion exposed through a hole 4b, which will be described later) or the entire surface of the substrate 2 is treated to increase light reflectance.
  • the optical sheet includes a prism sheet (prism film), a brightness enhancement sheet (brightness enhancement film), a louver sheet (louver film), and the like.
  • FIG. 3 is an enlarged perspective view of the vicinity of the notch 1a of the reflector 4.
  • FIG. 4 is an enlarged perspective view of the vicinity of the notch 1a of the reflector 4 from another viewpoint.
  • FIG. 5 is a view of the planar illumination device 1 near the notch 1a from the direction directly facing the emission surface.
  • the reflector 4 has outer walls 4e, 4f, 4g, and 4h (the outer wall 4h is not shown) that serve as the outer peripheral portion.
  • a concave portion 4n in FIG. 4 is a portion where a double-sided tape for attaching the reflector 4 to the substrate 2 is arranged.
  • the reflector 4 has a segment 4d provided corresponding to each light source 3 (Fig. 2).
  • the segment 4 d has a hole 4 b through which the head of the light source 3 is inserted, and a reflecting surface 4 c that extends obliquely from the periphery of the hole 4 b and surrounds the light source 3 .
  • the segment 4d is formed in a rectangular shape, and the reflecting surface 4c is divided into four. That is, the light source 3 has a substantially rectangular outer shape in plan view, the predetermined shape of the segment is substantially rectangular in plan view, the hole 4b in the predetermined shape of the segment has a substantially rectangular outer shape in plan view,
  • the reflecting surface 4c in the predetermined shape of the segment consists of four planes.
  • part or all of the reflecting surface may be composed of two or more surfaces. For example, when all the reflecting surfaces are each composed of two surfaces, the total number of reflecting surfaces is eight.
  • the cutout portion 1a having an irregular outer shape regarding the column of segments extending in the vertical direction at the left end of FIG.
  • the segments are arranged in a non-predetermined shape.
  • concave portions 4l and 4m for accommodating the light source 3 are provided on the surface of the outer wall 4g of the reflector 4 facing the substrate 2 (the back surface in FIG. 3).
  • the recesses 4l, 4m are provided through the outer wall 4g and are of suitable width enough to accommodate the light sources 34, 35 (Fig. 5) even if the outer wall 4g is not thick enough. can be provided.
  • segments are not arranged in the two rows from the top of the figure, and segments are arranged in the lower three rows, although they are not in a regular predetermined shape. ing.
  • concave portions 4i, 4j, and 4k are provided on the surface of the outer wall 4g of the reflector 4 facing the substrate 2 (the back surface in FIG. 3). Two of the three recesses 4i, 4j are provided for accommodating light sources 31, 32 (Fig. 5). The remaining concave portion 4k is provided for adjusting the amount of light.
  • the outer wall 4g does not interfere with the arrangement of the light source 33 (FIG. 5), but the area of the segment becomes smaller, and the amount of light per area increases and becomes brighter. Therefore, part of the light is consumed by the concave portion 4k to adjust the amount of light.
  • the segments of the light source 36 (FIG. 5) also do not have a regular predetermined shape, but the recesses are not provided because the area of the segments is less reduced and the amount of light per area is less affected.
  • the reflector 4 is made of, for example, a white resin having a high reflectance
  • the material of the recesses 4i to 4m may be exposed as it is, or the reflectance may be changed by coloring or the like. .
  • the portion where the light source 3 cannot be placed due to the outer wall 4g being in the way is By providing concave portions 4i, 4j, 4l, and 4m on the surface facing the substrate 2, the light sources 31, 32, 34, and 35 can be arranged, and the segments can be arranged. As a result, it is possible to prevent the luminance from being lowered in the peripheral portion of the deformed portion and to prevent the formation of a dark portion.
  • the outer wall 4g does not interfere with the arrangement of the light source 33, but the concave portion 4k is used as described above for adjusting the amount of light per area.
  • the concave portion 4l in the segment of the light source 34 is enlarged to the upper side of the figure. can do.
  • the light from the light source 34 is guided to the area where the segment cannot be arranged and the area left halfway can be compensated for the lack of the amount of light.
  • FIG. 6 is a perspective view showing an example in which the recesses 4i to 4m are provided without penetrating the outer wall 4g of the reflector 4.
  • FIG. FIG. 6 is a view from the same viewpoint as FIG. In FIG. 6, since the outer wall 4g of the reflector 4 is thick, the recesses 4i, 4j, 4k, 4l, and 4m do not penetrate the outer wall 4g.
  • the concave portions 4i, 4j, 4k, 4l, and 4m do not penetrate the outer wall 4g, the thickness of the outer wall 4g is maintained and the strength of the reflector 4 can be prevented from being lowered.
  • Other effects are the same as those of the configuration example described above. Since there are spaces for arranging the light sources above the recess 4i in the drawing and above the recess 4l in the drawing, the segments and the recess may be provided in those portions. In that case, if the thickness of the outer wall 4g is insufficient, the recess may penetrate through the outer wall 4g as shown in FIG.
  • the reflector 4 is arranged so that the non-emission side surface (lattice surface) of the reflector 4 is in contact with the substrate 2, but the outer walls 4e to 4h of the reflector 4 are in contact with the substrate 2. or only a part thereof, and the hole 4b of the segment 4d may be in a state of floating from the substrate 2.
  • the head of the light source 3 arranged on the substrate 2 may or may not be inserted through the hole 4b of the segment 4d.
  • the size of the hole 4b of the segment 4d in plan view is the light emitting portion of the light source 3 (for example, the inside of the rectangular outer shape of the light source 3). provided with a rectangular light-emitting portion), and may be smaller than the outer shape of the light source 3 .
  • the reflector 4 can be easily manufactured by injection molding or the like, and the reflecting surfaces 4c of the segments 4d can be formed.
  • FIG. 7 is a perspective view of the planar illumination device 1 according to the second embodiment.
  • the longitudinal direction of the planar illumination device 1 is the X-axis direction
  • the lateral direction is the Y-axis direction
  • the thickness direction is the Z-axis direction.
  • a planar illumination device 1 includes a substrate 2 and a reflector 4 fixed to the upper side of the substrate 2 in the drawing with double-sided tape or the like. 7, illustration of the light source (3) on the substrate 2 is omitted.
  • a notch 1a is provided on the upper left side of the substrate 2 and the reflector 4 in the drawing to form an irregular outer shape.
  • the deformed external shape may be not only a linear chip like the notch portion 1a, but also an arc-shaped chip or a chip with a complicated shape.
  • FIG. 8 is an exploded perspective view of the planar illumination device 1.
  • light sources 3 such as LEDs (Light Emitting Diodes) are arranged two-dimensionally on a substrate 2, and wiring (not shown) to each light source 3 is also provided.
  • the substrate 2 and the reflector 4 are flat, but the substrate 2 and the reflector 4 may have a curved surface such as a convex curved surface or a concave curved surface.
  • two-dimensional arrangement means arrangement on a curved surface, for example, arrangement at a position represented by two independent coordinate axes on a curved surface such as cylindrical coordinates or spherical coordinates. do.
  • the light source 3 has an optical axis in the normal direction of the substrate 2 .
  • a portion of the substrate 2 that is not covered by the reflector 4 (a portion exposed through a hole 4b, which will be described later) or the entire surface of the substrate 2 is treated to increase light reflectance.
  • the optical sheet includes a prism sheet (prism film), a brightness enhancement sheet (brightness enhancement film), a louver sheet (louver film), and the like.
  • FIG. 9 is an enlarged perspective view of the vicinity of the notch 1a of the reflector 4.
  • FIG. 10A is a plan view showing the vicinity of the notch 1a of the planar illumination device 1.
  • the reflector 4 has outer walls 4e, 4f, 4g, and 4h (the outer wall 4h is not shown) that serve as the outer peripheral portion.
  • the reflector 4 has segments 4 d provided corresponding to the respective light sources 3 .
  • the segment 4 d has a hole 4 b through which the head of the light source 3 is inserted, and a reflecting surface 4 c that extends obliquely from the periphery of the hole 4 b and surrounds the light source 3 .
  • the outer walls 4e, 4f, 4g, and 4h do not need to be provided on the entire circumference of the outer peripheral portion, and may or may not be provided on a part thereof.
  • the segment 4d is formed in a rectangular shape, and the reflecting surface 4c is divided into four.
  • the light source 3 has a substantially cubic outer shape. That is, the light source 3 has a substantially rectangular outer shape in plan view, the standard shape of the segment excluding the deformed portion is substantially rectangular in plan view, and the hole 4b of the segment has a substantially rectangular outer shape in plan view.
  • the reflecting surface 4c of the segment consists of four planes. In some cases, part or all of the reflecting surface may be composed of two or more surfaces. For example, when all the reflecting surfaces are each composed of two surfaces, the total number of reflecting surfaces is eight.
  • the standard-shaped segment excluding the deformed portion is also referred to as a standard segment.
  • a plurality of standard segments 4d are arranged regularly (in a grid) in the row and column directions.
  • a segment group for improving uniformity is arranged instead of the standard segment. That is, in the 12 columns from the left end of the first row on the upper side of the figure to the right side, the two rows without the irregular shape are integrated by removing the partition wall in the middle.
  • the irregular-shaped segment 4d and the segment 4d adjacent thereto are integrated by removing the partition wall (reflecting surface 4c) forming the boundary.
  • the irregularly-shaped segment 4d is a (virtual) segment having at least one side along the outer shape of the whole (irregularly-shaped portion) and having a hole 4b smaller than the standard segment 4d.
  • the light sources 3 are vertically spaced in the holes 4b of these segments 4d.
  • the space where the partition wall (reflective surface 4c) was present can be used as a space for housing the light source 3.
  • FIG. The other segment 4d is arranged so that the light emission center of the light source 3 is positioned at the center.
  • the light emission center corresponds to the position of a minute light emitting chip built in the light source 3 and does not necessarily match the center of the package of the light source 3 .
  • FIG. 10B is a diagram showing an example of luminance distribution of the planar illumination device 1 of FIG. 10A. Its characteristics will be described later.
  • the number of the light sources 3 accommodated may be the same as that of the light sources 3 accommodated in the standard segment 4d. It does not have to be more than the number.
  • the irregularly shaped segment 4d may be integrated with three or more segments 4d, or may not be integrated with the adjacent segment 4d.
  • FIG. 11A is a plan view showing the vicinity of a notch 1a' of a planar illumination device 1' of a comparative example (modification).
  • FIG. 11A in the planar illumination device 1′ of the comparative example, in the cutout portion 1a′, two rows of 12 columns toward the right side from the left end of the first row on the upper side are not deformed. It is the same as in FIG. 10A that the partition walls are removed and integrated.
  • one light source 3' is placed in each original second row position in the hole of each segment 4d' of the profiled portion.
  • FIG. 11B is a diagram showing an example of the luminance distribution of the planar illumination device 1' of FIG.
  • the light sources 3 are densely arranged on the left side of the figure, where the brightness is slightly higher, but there is no dark area in the peripheral area.
  • dark areas cannot be corrected, bright areas can be corrected by an optical sheet or the like arranged on the exit surface side of the reflector 4 .
  • the luminance of the bright portion can be reduced and the overall luminance uniformity can be improved.
  • the brightness of the bright portion can be reduced, and the uniformity of the overall brightness can be improved.
  • FIG. 12A is a plan view showing the vicinity of the notch 1a of the planar illumination device 1 according to the third embodiment.
  • the segments 4d arranged in a predetermined area (first to about fourth rows from the top) including the notch 1a having an irregular outer shape are uniform in shape and size.
  • the predetermined area to be equalized is changed according to the mode of the deformed shape, and may be the entire surface or may be localized. Also, equalization does not mean that the shape and size are exactly the same, but that they are adjusted to be as similar as possible. Specifically, for example, in FIG.
  • the size from the side of the upper end of the reflector 4 including the notch portion 1a to the upper end of the fifth line below excluding the width of the outer wall is divided into four equal parts, and there are four lines. segment 4d is arranged. Other configurations are the same as those in FIGS.
  • FIG. 12B is a diagram showing an example of the luminance distribution of the planar illumination device 1 of FIG. 12A, and the luminance uniformity near the notch 1a is improved compared to the first embodiment of FIG. 10B.
  • FIG. 13 is a perspective view showing the vicinity of the cutout portion 1a of the planar illumination device 1 according to the fourth embodiment, which is an improved version of the second embodiment shown in FIG. Note that similar improvements may be made to the third embodiment of FIG. 12A.
  • the surface of the outer wall 4e facing the substrate 2 (the back surface in the figure) accommodates the light source 3, or the light source 3, similarly to the first embodiment.
  • Concave portions 4i, 4j, 4k, and 4l are provided for adjusting the amount of light of 3.
  • the recesses 4i, 4j, 4k, and 4l may or may not penetrate to the upper end of the outer wall 4e in the drawing.
  • the reflector 4 is made of, for example, a white resin having a high reflectance.
  • the recesses 4i, 4j, 4k, and 4l may be exposed as they are, or may be colored so that the reflectance of the surface is reduced. may be different.
  • Other configurations are the same as those in FIGS.
  • the size of the segment 4d cannot be sufficiently secured by the notch portion 1a, it may be difficult to arrange a plurality (two) of the light sources 3. Since the light source 3 can be arranged so as to hide the light source 3, it becomes easy to secure a space for arranging the light source 3. - ⁇ In addition, by arranging a plurality of (two) light sources 3 in the narrow segment 4d, the amount of light per area increases and the brightness increases (as described above in FIG.
  • the outer wall 4e serves as a cover for the light source 3, which is partially inserted into 4k and 4l, and blocks the light emitted directly above, thereby suppressing the amount of light, resulting in an unnecessarily high luminance. can be prevented. As a result, luminance uniformity can be improved.
  • FIG. 14 is a plan view of the planar illumination device 1 according to the fifth embodiment.
  • the illustration of the outer wall of the reflector 4 is omitted. 7 and 8, the substrate 2 is provided behind the reflector 4, and the light source 3 is arranged on the substrate 2.
  • FIG. 10A this is applied when a plurality of (two) light sources 3 are accommodated in the segment 4d on the notch 1a side, but one light source 3 is accommodated in the equalized segment 4d as shown in FIG. 12A. The same can be applied to the case where the light source 3 is accommodated.
  • a plurality (two) of light sources 3 are housed in the segment 4d of the first row on the notch 1a side of the reflector 4, as in the second embodiment of FIG. 10A.
  • the light sources 3 at the four corners of the reflector 4 as a whole are arranged with a rotation angle of 0° in which the four sides of the periphery are aligned with or perpendicular to the X-axis or the Y-axis in a plane parallel to the reflector 4 and the substrate (2). It has become.
  • the light source 3 arranged between the corners of both ends in the segment 4d of the first row on the side of the notch 1a has its rotation angle changed continuously from the right corner.
  • the other light sources 3 are arranged with a rotation angle of 45°.
  • FIG. 15A is a plan view showing an example in which the rotation angle within the plane of the light source 3 of the planar illumination device 1 is 0°.
  • the illustration of the outer wall of the reflector 4 is omitted.
  • the light source 3 has a substantially cubic (or substantially rectangular parallelepiped) package outer shape, and emits light mainly from four side surfaces provided with phosphors. Therefore, the direction of light emission is anisotropic, and the amount of light in the front direction of each of the four side surfaces increases.
  • the in-plane rotation angle of the light source 3 is 0°, the amount of light in the X-axis direction and the Y-axis direction increases.
  • FIG. 15B is a diagram showing the characteristics of the luminance distribution in the arrangement of FIG. 15A, where the luminance is high in a region R1 where the corners of the four segments 4d congregate, causing non-uniform luminance.
  • FIG. 16A is a plan view showing an example in which the rotation angle within the plane of the light source 3 of the planar illumination device 1 is 45°.
  • the illustration of the outer wall of the reflector 4 is omitted.
  • FIG. 16B is a diagram showing the characteristics of the luminance distribution in the case of the arrangement of FIG. 16A.
  • brightness is lower.
  • the brightness of the entire corner region R2 is reduced, causing non-uniform brightness. This is because the corners of the whole do not have segments adjacent to each other in two directions, so the brightness tends to be originally low.
  • the corners of each segment 4d become bright, so that the decrease in luminance is alleviated, but in the arrangement of FIG.
  • the rotation angle of the light sources 3 at the corners is set to 0° in order to suppress the decrease in luminance at the corners.
  • the rotation angle of the light source 3 is set to 45° except for the notch 1a side so that the brightness of the portion where the corners of the four segments 4d gather does not become high.
  • the light sources 3 arranged in the segment 4d except for the entire corners, which are both ends on the notch 1a side, are continuously changed in rotation angle from the light source 3 at the right end. This is because the area of the segment 4d is larger on the right side than on the left side, and the amount of light on the right side is relatively small. be.
  • FIG. 17 is a plan view showing an example in which all the light sources 3 of the planar illumination device 1 have a rotation angle of 0° within the plane.
  • the illustration of the outer wall of the reflector 4 is omitted.
  • the decrease in luminance at the corners of the entirety is mitigated to some extent, but the luminance is increased at the corners of the four inner segments 4d, resulting in uniform luminance. diminished sexuality.
  • FIG. 18 is a plan view showing an example in which all the light sources 3 of the planar illumination device 1 are rotated by 45 degrees within the plane.
  • the illustration of the outer wall of the reflector 4 is omitted.
  • the increase in luminance at the corners of the four inner segments 4d is suppressed, but the decrease in luminance at the corners as a whole becomes significant. , the brightness uniformity is degraded.
  • FIG. 19 is a plane showing an example in which the rotation angle of the light source 3 in the plane of the entire corner of the planar illumination device 1 is 0° and the rotation angle of the other light source 3 in the plane is 45°. It is a diagram. The illustration of the outer wall of the reflector 4 is omitted. In this case, the decrease in luminance at the corners of the entirety is mitigated to some extent, and the increase in luminance at the corners of the four inner segments 4d is suppressed.
  • FIG. 20 is a plan view showing an example of the shape of the reflecting surface 4c of the segment 4d of the reflector 4. As described above, the reflecting surfaces are formed by a plurality of planes divided by the diagonals of the rectangular segment 4d. 4c is configured. The dashed lines in the figure indicate the contour lines of the shape.
  • FIG. 21 is a plan view showing another example of the shape of the reflecting surface 4c of the segment 4d of the reflector 4, in which the reflecting surface 4c is composed of a plurality of planes divided by vertical and horizontal crosshairs.
  • the relative rotation angle between the anisotropy of the light source 3 and the anisotropy of the segment 4d is the same as in FIG. 16A, and the effect is also the same.
  • FIG. 22 is a plan view showing another example of the shape of the reflecting surface 4c of the segment 4d of the reflector 4, in which the reflecting surface 4c is composed of a conical curved surface. In this case, the anisotropy of the segment 4d is eliminated or relaxed, leaving only the anisotropy of the light source 3.
  • FIG. 22 is a plan view showing another example of the shape of the reflecting surface 4c of the segment 4d of the reflector 4, in which the reflecting surface 4c is composed of a conical curved surface. In this case, the anisotropy of the segment 4d is eliminated or relaxed, leaving only the anisotropy of the light source 3.
  • FIG. 23 is a plan view showing another example of the shape of the reflective surface 4c of the segment 4d of the reflector 4.
  • One area partitioned by one diagonal line is a plurality of planes divided by the other diagonal line, and the other area is divided by the other diagonal line.
  • the reflecting surface 4c is formed by a conical curved surface.
  • the anisotropy of the segment 4d disappears or is relaxed in the other region, leaving only the anisotropy of the light source 3.
  • the luminance can be changed in various ways.
  • the planar illumination device includes a plurality of light sources, a substrate on which the light sources are arranged two-dimensionally, holes corresponding to the light sources, and reflecting surfaces extending obliquely from the periphery of the holes.
  • an outer wall is provided on the entire outer peripheral portion of the segment, and a reflector is arranged on the output side of the substrate, and is arranged in a deformed portion of the outer peripheral portion of the reflector, and the outer wall forms a predetermined shape.
  • the surface of the outer wall facing the substrate is provided with a concave portion for accommodating the light source or adjusting the amount of light. As a result, even in the case of having an irregular outer shape, it is possible to prevent the occurrence of dark areas.
  • the recess is provided through the outer wall. This makes it possible to provide a recess of suitable width sufficient to accommodate the light source even if the outer wall thickness is not sufficient.
  • the recess is provided without penetrating the outer wall. Therefore, it is possible to cope with the case where the thickness of the outer wall is sufficient, and it is possible to prevent the strength of the reflector from being lowered.
  • the light source has a substantially rectangular outer shape in plan view
  • the predetermined shape of the segment is substantially rectangular in plan view
  • the hole in the predetermined shape of the segment has a substantially rectangular outer shape in plan view.
  • the reflective surface in the predetermined shape of the segment is composed of a plurality of planes.
  • It also has a segment group for improving uniformity that is arranged in the deformed portion of the outer periphery of the reflector. Thereby, even if the display device has an irregular outer shape, it is possible to maintain luminance uniformity.
  • the irregularly shaped segment and the segment adjacent to the segment are integrated by removing the boundary partition. This makes it possible to construct a segment suitable for an irregularly shaped portion. Also, the space for accommodating the light source can be increased.
  • a segment having a plurality of light sources, a substrate on which the light sources are two-dimensionally arranged, holes corresponding to the light sources, and reflective surfaces extending obliquely from the periphery of the holes is provided. and a group of segments for uniformity improvement arranged on the deformed portion of the outer periphery of the reflector.
  • the irregularly shaped segment and the segment adjacent to the segment are integrated by removing the boundary partition. This makes it possible to construct a segment suitable for an irregularly shaped portion. Also, the space for accommodating the light source can be increased.
  • the present invention is not limited by the above-described embodiment.
  • the present invention also includes those configured by appropriately combining the respective constituent elements described above. Further effects and modifications can be easily derived by those skilled in the art. Therefore, broader aspects of the present invention are not limited to the above-described embodiments, and various modifications are possible.
  • 1 Planar illumination device 1a notch, 2 substrate, 3, 31 to 36 light source, 4 reflector, 4a base material, 4b hole, 4c reflecting surface, 4d segment, 4e to 4h outer wall, 4i to 4m recess

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)

Abstract

実施形態の面状照明装置(1)は、複数の光源(3)と、基板(2)と、リフレクタ(4)とを備える。前記基板(2)には、前記光源(3)が2次元に配置される。前記リフレクタ(4)は、前記光源(3)に対応する孔(4b)と、該孔(4b)の周囲から傾斜して延在する反射面(4c)とを有するセグメント(4d)が設けられ、全体の外周部に外壁(4e~4h)が設けられ、前記基板(2)の出射側に配置される。前記リフレクタ(4)の外周部の異形部分(1a)に配置され、前記外壁(4e~4h)により所定の形状が構成できない前記セグメント(4d)において、前記外壁(4e~4h)の前記基板(2)と対向する面には、前記光源(3)を収容し、または光量を調整するための凹部(4i~4m)が設けられる。

Description

面状照明装置
 本発明は、面状照明装置に関する。
 基板上にLED(Light Emitting Diode)等の光源が2次元に配置される直下型の面状照明装置では、光源から基板の法線方向に対して斜め方向に出射される光を反射し、出射面の法線方向への光を増やすために、リフレクタが用いられることが多い(例えば、特許文献1等を参照)。
 リフレクタは個々の光源に対して設けられるセグメントと呼ばれる単位構造を有しており、各セグメントは個々の光源の頭部(発光部)が挿通される孔と、その孔の周囲から傾斜して延在し、光源を囲む反射面とを有している。セグメントは、平面視で矩形、6角形等の規則的な形に形成されることが多い。
特開2021-12884号公報
 しかしながら、外形が矩形でないような、異形の外形を有する面状照明装置の場合、異形部分の外周部において、所定の形状のセグメント(標準的なセグメント)が形成できないためにセグメントが配置できず、中途半端な領域を残してしまう場合がある。この場合、光源が配置できないような小さな領域である場合は無視できるが、リフレクタの外周部に設けられる強度確保等のための外壁が邪魔になって光源が配置できない場合には、残された領域は無視しがたい大きさとなる。その結果、異形部分の外周部の輝度が低下し、暗部ができてしまうという問題があった。
 本発明は、上記に鑑みてなされたものであって、異形の外形を有する場合であっても、暗部ができにくい面状照明装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る面状照明装置は、複数の光源と、基板と、リフレクタとを備える。前記基板には、前記光源が2次元に配置される。前記リフレクタは、前記光源に対応する孔と、該孔の周囲から傾斜して延在する反射面とを有するセグメントが設けられ、全体の外周部に外壁が設けられ、前記基板の出射側に配置される。前記リフレクタの外周部の異形部分に配置され、前記外壁により所定の形状が構成できない前記セグメントにおいて、前記外壁の前記基板と対向する面には、前記光源を収容し、または光量を調整するための凹部が設けられる。
 本発明の一態様に係る面状照明装置は、異形の外形を有する場合であっても、暗部ができにくいものとすることができる。
図1は、第1の実施形態にかかる面状照明装置の斜視図である。 図2は、面状照明装置の分解斜視図である。 図3は、リフレクタの切欠部付近の拡大斜視図である。 図4は、リフレクタの切欠部付近の他の視点からの拡大斜視図である。 図5は、面状照明装置の切欠部付近の出射面に正対する方向からの図である。 図6は、リフレクタの外壁を貫通させずに凹部が設けられる例を示す斜視図である。 図7は、第2の実施形態にかかる面状照明装置の斜視図である。 図8は、面状照明装置の分解斜視図である。 図9は、リフレクタの切欠部付近の拡大斜視図である。 図10Aは、面状照明装置の切欠部付近を示す平面図である。 図10Bは、図10Aの面状照明装置の輝度分布の例を示す図である。 図11Aは、比較例(変形例)の面状照明装置の切欠部付近を示す平面図である。 図11Bは、図11Aの面状照明装置の輝度分布の例を示す図である。 図12Aは、第3の実施形態にかかる面状照明装置の切欠部付近を示す平面図である。 図12Bは、図12Aの面状照明装置の輝度分布の例を示す図である。 図13は、第4の実施形態にかかる面状照明装置の切欠部付近を示す斜視図である。 図14は、第5の実施形態にかかる面状照明装置の平面図である。 図15Aは、面状照明装置の光源の平面内での回転角度が0°の場合の例を示す平面図である。 図15Bは、図15Aの配置の場合の輝度分布の特徴を示す図である。 図16Aは、面状照明装置の光源の平面内での回転角度が45°の場合の例を示す平面図である。 図16Bは、図16Aの配置の場合の輝度分布の特徴を示す図である。 図17は、面状照明装置の全ての光源の平面内での回転角度が0°の場合の例を示す平面図である。 図18は、面状照明装置の全ての光源の平面内での回転角度が45°の場合の例を示す平面図である。 図19は、面状照明装置の全体の角部の光源の平面内での回転角度が0°で、その他の光源の平面内での回転角度が45°の場合の例を示す平面図である。 図20は、リフレクタのセグメントの反射面の形状の例を示す平面図(1)である。 図21は、リフレクタのセグメントの反射面の形状の例を示す平面図(2)である。 図22は、リフレクタのセグメントの反射面の形状の例を示す平面図(3)である。 図23は、リフレクタのセグメントの反射面の形状の例を示す平面図(4)である。
 以下、実施形態に係る面状照明装置について図面を参照して説明する。なお、この実施形態によりこの発明が限定されるものではない。また、図面における各要素の寸法の関係、各要素の比率などは、現実と異なる場合がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、1つの実施形態や変形例に記載された内容は、原則として他の実施形態や変形例にも同様に適用される。
(第1の実施形態)
 図1は、第1の実施形態にかかる面状照明装置1の斜視図である。なお、便宜上、面状照明装置1の長手方向をX軸方向、短手方向をY軸方向、厚み方向をZ軸方向としているが、使用する際の姿勢は任意である。
 図1において、面状照明装置1は、基板2と、この基板2の図における上側に両面テープ等により固定されるリフレクタ4とを備えている。また、基板2およびリフレクタ4の図における左側には切欠部1aが設けられ、異形の外形となっている。なお、異形の外形は、切欠部1aのように直線状に欠ける場合だけでなく、円弧状に欠ける場合や、複雑な形状で欠ける場合もある。
 図2は、面状照明装置1の分解斜視図である。図2において、基板2には、LED(Light Emitting Diode)等の光源3が2次元に配置されており、各光源3への配線(図示せず)も施されている。なお、図示の例では、基板2およびリフレクタ4が平板状のものとされているが、凸曲面や凹曲面等の湾曲した基板2およびリフレクタ4であってもよい。この場合、2次元に配置とは、曲面上に配置されることを意味し、例えば、円筒座標、球座標等による曲面上の独立した2つの座標軸によって表される位置に配置されることを意味する。光源3は、基板2の法線方向に光軸を有するものである。なお、基板2のリフレクタ4によって覆われない部分(後述の孔4bから露出する部分)または全面には、光の反射率を高める処理が施されている。
 なお、実際の製品としては、リフレクタ4の図における上側(出射側)にレンズアレイやディフューザのほか各種の光学シートが配置され、全体は金属製または樹脂製等のフレーム(出射側に開口が設けられる)に収納される場合が多い。光学シートとしては、プリズムシート(プリズムフィルム)、輝度向上シート(輝度向上フィルム)、ルーバーシート(ルーバーフィルム)等がある。
 図3は、リフレクタ4の切欠部1a付近の拡大斜視図である。図4は、リフレクタ4の切欠部1a付近の他の視点からの拡大斜視図である。図5は、面状照明装置1の切欠部1a付近の出射面に正対する方向からの図である。
 図3~図5において、リフレクタ4は、外周部となる外壁4e、4f、4g、4h(外壁4hは図示せず)を有している。図4における凹部4nは、リフレクタ4を基板2に貼り付けるための両面テープが配置される部分である。
 図3~図5において、リフレクタ4は、各光源3(図2)に対応して設けられるセグメント4dを有している。セグメント4dは、光源3の頭部が挿通される孔4bと、この孔4bの周囲から傾斜して延在し、光源3を囲む反射面4cとを有している。図示の例では、セグメント4dが矩形状に形成される場合であり、反射面4cは4つに分割されている。すなわち、光源3は平面視で略矩形の外形を有し、セグメントの所定の形状は平面視で略矩形であり、セグメントの所定の形状における孔4bは平面視で略矩形の外形を有し、セグメントの所定の形状における反射面4cは4個の平面により構成されている。なお、一部または全部の反射面が更に2面以上の面で構成される場合もある。例えば、全部の反射面がそれぞれ2面で構成される場合は合計8面となる。
 異形の外形となる切欠部1aにおいて、図3の左端の縦方向に延びるセグメントの列については、図の上側から6つの行についてはセグメントが配置されず、その下の2つの行については、正規の所定の形状ではないがセグメントが配置されている。それらのセグメントでは、リフレクタ4の外壁4gの基板2と対向する面(図3の裏側の面)に、光源3を収容する凹部4l、4mがそれぞれ設けられている。凹部4l、4mは外壁4gを貫通して設けられており、外壁4gの厚みが充分でない場合にも、光源34、35(図5)を収容するのに十分な適切な幅の凹部4l、4mを設けることができる。
 また、図3の左端から2番目の列については、図の上側から2つの行についてはセグメントが配置されず、その下の3つの行については、正規の所定の形状ではないがセグメントが配置されている。それらのセグメントでは、リフレクタ4の外壁4gの基板2と対向する面(図3の裏側の面)に、凹部4i、4j、4kがそれぞれ設けられている。3個の内の2個の凹部4i、4jは、光源31、32(図5)を収容するために設けられる。残りの凹部4kは、光量を調整するために設けられる。
 すなわち、凹部4kが設けられるセグメントでは、光源33(図5)の配置に外壁4gが邪魔になることはないが、セグメントの面積が小さくなり、そのままでは面積当たりの光量が多くなって明るくなってしまうため、凹部4kにより光の一部を消費し、光量が調整されている。この点、光源36(図5)のセグメントも正規の所定の形状ではないが、セグメントの面積の減少が少なく、面積当たりの光量への影響が少ないため、凹部は設けられていない。
 なお、リフレクタ4は例えば反射率の高い白色の樹脂等により形成されるが、凹部4i~4mについても素材がそのまま露出するようにしてもよいし、着色等により反射率を変えるようにしてもよい。
 このように、切欠部1aによる異形の外形によって所定の外形のセグメント(標準的なセグメント)4dが配置できない異形部分においても、外壁4gが邪魔になって光源3が配置できない部分については、外壁4gの基板2と対向する面に凹部4i、4j、4l、4mが設けられることで、光源31、32、34、35が配置できるようになり、セグメントを配置することができる。その結果、異形部分の外周部の輝度の低下をなくし、暗部ができるのを防止することができる。
 また、凹部4i、4j、4l、4m等を設ける代わりに外壁4g自体をなくしてしまうことも考えられるが、リフレクタ4の強度が低下してしまうとともに、光源31、32、34、35等からの光が強すぎて、かえって輝度の均一性を害してしまうことになる。すなわち、凹部4i、4j、4l、4mが光源31、32、34、35の真上に出る光を遮ることで、面積当たりの発光効率を下げることができ、発光面内の均一性を向上させることができる。
 また、光源33のセグメントのように、光源33の配置に対して外壁4gが邪魔となることはないが、面積当たりの光量の調整のために、前述のように凹部4kが用いられる。
 なお、光源34のセグメントの図における上の領域のように、セグメントが配置できず、中途半端に残ってしまった領域による光量不足を補うため、光源34のセグメントにおける凹部4lを図の上側に拡大することができる。この場合、セグメントが配置できずに中途半端に残ってしまった領域に光源34から光が導かれ、光量不足を補うことができる。
 図6は、リフレクタ4の外壁4gを貫通させずに凹部4i~4mが設けられる例を示す斜視図である。図6は図4と同様の視点からの図である。図6において、リフレクタ4の外壁4gは厚めに構成されているため、凹部4i、4j、4k、4l、4mは外壁4gを貫通していない。
 凹部4i、4j、4k、4l、4mが外壁4gを貫通しないことで、外壁4gの厚みが維持され、リフレクタ4の強度の低下を防止することができる。他の効果は前述の構成例と同様である。なお、凹部4iの図における上や凹部4lの図における上にも光源を配置するスペースがあるため、その部分にセグメントおよび凹部が設けられるようにしてもよい。その場合、外壁4gの厚みが足りない場合には、図4のように凹部は外壁4gを貫通するものとしてもよい。
 また、図1~図6の例では、基板2上にリフレクタ4の非出射側の面(格子面)が接するように配置されているが、基板2と接するのはリフレクタ4の外壁4e~4hやその一部のみとし、セグメント4dの孔4bが基板2から浮いた状態とされるようにしてもよい。この場合、基板2上に配置された光源3の頭部は、セグメント4dの孔4bに挿通される状態でもよいし、挿通されない状態でもよい。光源3の頭部がセグメント4dの孔4bに挿通されない状態の場合、リフレクタ4や光源3が温度変化により膨張収縮した場合であっても、リフレクタ4と光源3とが干渉することが防止される。また、光源3の頭部がセグメント4dの孔4bに挿通されない状態の場合、セグメント4dの孔4bの平面視における大きさは、光源3の発光部(例えば、光源3の矩形状の外形の内側に矩形状の発光部が設けられる)より大きければよく、光源3の外形よりも小さくてもよい。この場合、光源3の配置のピッチが小さく、リフレクタ4のセグメント4dが高密度に配置されることになっても、リフレクタ4の射出成型等による製造が容易となり、セグメント4dの反射面4cを構成する壁を高くする(Z軸方向の厚みを大きくする)ことができ、反射効率が向上するとともに、隣接するセグメント4dへの光の出射が抑制されてローカルディミング時のコントラストが向上する。このようなリフレクタ4の構造は、以下の実施形態についても同様に適用可能である。
(第2の実施形態)
 図7は、第2の実施形態にかかる面状照明装置1の斜視図である。なお、便宜上、面状照明装置1の長手方向をX軸方向、短手方向をY軸方向、厚み方向をZ軸方向としているが、使用する際の姿勢は任意である。
 図7において、面状照明装置1は、基板2と、この基板2の図における上側に両面テープ等により固定されるリフレクタ4とを備えている。なお、図7においては、基板2上の光源(3)の図示は省略されている。また、基板2およびリフレクタ4の図における上側の左側には切欠部1aが設けられ、異形の外形となっている。なお、異形の外形は、切欠部1aのように直線状に欠ける場合だけでなく、円弧状に欠ける場合や、複雑な形状で欠ける場合もある。
 図8は、面状照明装置1の分解斜視図である。図8において、基板2には、LED(Light Emitting Diode)等の光源3が2次元に配置されており、各光源3への配線(図示せず)も施されている。なお、図示の例では、基板2およびリフレクタ4が平板状のものとされているが、凸曲面や凹曲面等の湾曲した基板2およびリフレクタ4であってもよい。この場合、2次元に配置とは、曲面上に配置されることを意味し、例えば、円筒座標、球座標等による曲面上の独立した2つの座標軸によって表される位置に配置されることを意味する。光源3は、基板2の法線方向に光軸を有するものである。なお、基板2のリフレクタ4によって覆われない部分(後述の孔4bから露出する部分)または全面には、光の反射率を高める処理が施されている。
 なお、実際の製品としては、リフレクタ4の図における上側(出射側)にレンズアレイやディフューザのほか各種の光学シートが配置され、全体は金属製または樹脂製等のフレーム(出射側に開口が設けられる)に収納される場合が多い。光学シートとしては、プリズムシート(プリズムフィルム)、輝度向上シート(輝度向上フィルム)、ルーバーシート(ルーバーフィルム)等がある。
 図9は、リフレクタ4の切欠部1a付近の拡大斜視図である。図10Aは、面状照明装置1の切欠部1a付近を示す平面図である。
 図9および図10Aにおいて、リフレクタ4は、外周部となる外壁4e、4f、4g、4h(外壁4hは図示せず)を有している。また、リフレクタ4は、各光源3に対応して設けられるセグメント4dを有している。セグメント4dは、光源3の頭部が挿通される孔4bと、この孔4bの周囲から傾斜して延在し、光源3を囲む反射面4cとを有している。なお、外壁4e、4f、4g、4hは、全体の外周部の全周に設けられている必要はなく、一部に設けられていてもよく、一部にも設けられていなくてもよい。
 図示の例では、セグメント4dが矩形状に形成される場合であり、反射面4cは4つに分割されている。また、光源3は略立方体状の外形を有している。すなわち、光源3は平面視で略矩形の外形を有し、異形部分を除くセグメントの標準的な形状は平面視で略矩形であり、セグメントの孔4bは平面視で略矩形の外形を有し、セグメントの反射面4cは4個の平面により構成されている。なお、一部または全部の反射面が更に2面以上の面で構成される場合もある。例えば、全部の反射面がそれぞれ2面で構成される場合は合計8面となる。以下では、異形部分を除く、標準的な形状のセグメントを、標準的なセグメントとも言う。本実施形態では、複数の標準的なセグメント4dは、行および列方向に対して規則的に(升目状に)並んでいる。
 また、異形の外形となる切欠部1aにおいては、標準的なセグメントではなく、均一性向上のためのセグメント群が配置されている。すなわち、図の上側の1行目の左端から右側に向かって12列については、異形がなかった場合の2行分が、途中の仕切りの壁が除去されて一体化されている。言い換えれば、異形状のセグメント4dとそれに隣接するセグメント4d(必ずしも標準的なセグメント4dとは限らない)とは、境界をなす仕切りの壁(反射面4c)が除去されて一体化されている。なお、異形状のセグメント4dとは、少なくとも一辺が全体(異形部分)の外形に沿い、標準的なセグメント4dよりも小さい孔4bを有する(仮想的な)セグメントである。また、各セグメント4dの孔4bの中に複数(2個)、あるいは、標準的なセグメント4dに収容される光源3の数よりも多い数の光源3が収容されるようになっている。これらのセグメント4dの孔4bの中では、光源3が上下に離れるように配置されている。異形状のセグメント4dの形状やサイズによっては、仕切りの壁(反射面4c)が存在していたスペースを、光源3を収容するスペースとして活用することもできる。その他のセグメント4dでは、中央に光源3の発光中心がくるように配置される。発光中心とは、光源3に内蔵される微小な発光チップの位置に対応し、光源3のパッケージの中心と必ずしも一致しない。また、発光チップが複数搭載される場合には、それらの平均的な位置が発光中心となる。図10Bは、図10Aの面状照明装置1の輝度分布の例を示す図である。その特徴については後述する。なお、一体化される異形状のセグメント4dの大きさ等によっては、光源3を配置する位置を変えるとしても、収容される光源3の数を、標準的なセグメント4dに収容される光源3の数よりも増やさなくてもよい。また、異形状のセグメント4dは、その大きさ等によっては、3つ以上のセグメント4dを一体化させてもよいし、隣接するセグメント4dと一体化させなくてもよい。
 一方、図11Aは、比較例(変形例)の面状照明装置1’の切欠部1a’付近を示す平面図である。図11Aにおいて、比較例の面状照明装置1’は、切欠部1a’において、上側の1行目の左端から右側に向かって12列については、異形がなかった場合の2行分が、途中の仕切りの壁が除去されて一体化されているのは図10Aと同様である。しかし、図11Aの比較例においては、異形部分の各セグメント4d’の孔の中の元の2行目の位置にそれぞれ1個の光源3’が配置されている。図11Bは、図11Aの面状照明装置1’の輝度分布の例を示す図であり、異形部分の外周部に暗部ができてしまっている。すなわち、異形部分において1つの光源3’でカバーするにはセグメント4d’の面積が大きすぎるものがあり、その結果、切欠部1a’の外周部に暗部ができてしまい、輝度が不均一になってしまう場合があった。
 この点、図7~図10Aの実施形態では、図10Bのように、光源3が密に配置される、図における左側の部分で輝度が若干高くなるものの、周辺部において暗部がなくなっている。なお、暗部については補正のしようがないが、明部についてはリフレクタ4の出射面側に配置される光学シート等により補正が可能である。例えば、明部となる部分に対応する光学シートの部分に光透過率を低下させる加工を施すことにより、明部の輝度を低下させ、全体の輝度均一性を向上させることができる。また、例えば光源3への印加電流調整により、発光量を調整することで明部の輝度を低下させ、全体の輝度均一性を向上させることができる。また、例えばセグメント4dの一部に黒色光吸収部材を配置することで明部の輝度を低下させ、全体の輝度均一性を向上させることも可能である。
(第3の実施形態)
 図12Aは、第3の実施形態にかかる面状照明装置1の切欠部1a付近を示す平面図である。図12Aにおいて、異形の外形となる切欠部1aを含む所定の領域(上から1行目から約4行目)内に配置されるセグメント4dは、形状およびサイズが均等化されている。なお、均等化される所定の領域は、異形の態様に応じて変更されるものであり、全面となる場合もあるし、局部的となる場合もある。また、均等化とは、形状およびサイズが厳密に同じという意味ではなく、可能な限り近似したものになるように調整されるということである。具体的には、例えば、図12Aにおいて、切欠部1aを含むリフレクタ4の上端の辺から外壁の幅を除いて下の5行目の上端までのサイズが4等分され、そこに4行分のセグメント4dが配置されている。その他の構成は図7~図9と同様である。
 図12Bは、図12Aの面状照明装置1の輝度分布の例を示す図であり、切欠部1a付近の輝度均一性が図10Bの第1の実施形態よりも向上している。
(第4の実施形態)
 図13は、第4の実施形態にかかる面状照明装置1の切欠部1a付近を示す斜視図であり、図9の第2の実施形態に改良が施されたものである。なお、図12Aの第3の実施形態に同様の改良が施されるようにしてもよい。
 図13において、リフレクタ4の切欠部1a付近には、外壁4eの基板2と対向する面(図における裏側の面)には、第1の実施形態と同様に、光源3を収容し、または光源3の光量を調整するための凹部4i、4j、4k、4lが設けられている。凹部4i、4j、4k、4lは、外壁4eの幅に応じ、外壁4eの図における上側の端部まで貫通するものでもよいし、貫通しないものでもよい。また、リフレクタ4は例えば反射率の高い白色の樹脂等により形成されるが、凹部4i、4j、4k、4lについては、素材がそのまま露出するようにしてもよいし、着色等により表面の反射率が異なるようにしてもよい。その他の構成は図7~図9と同様である。
 すなわち、切欠部1aによりセグメント4dのサイズを充分に確保できない場合、光源3を複数(2個)配置するのが困難となる場合があるが、凹部4i、4j、4k、4lの下に一部が隠れるように光源3が配置できるため、光源3の配置のためのスペースの確保が容易になる。また、狭いセグメント4d内に複数(2個)の光源3が配置されることで、面積当たりの光量が大きくなり輝度が高くなってしまうが(図10Bにおいて前述の通り)、凹部4i、4j、4k、4lに一部が挿入されて配置された光源3に対し、外壁4eが蓋となり、真上に出る光を遮ることで光量を抑えることができるため、必要以上に輝度が高くなってしまうのを防止することができる。その結果、輝度均一性を向上させることができる。
(第5の実施形態)
 図14は、第5の実施形態にかかる面状照明装置1の平面図である。なお、リフレクタ4の外壁については図示が省略されている。また、図7および図8と同様に、リフレクタ4の背面には基板2が設けられ、その基板2上に光源3が配置されている。なお、図10Aと同様に切欠部1a側のセグメント4dに複数(2個)の光源3が収容される場合に適用されているが、図12Aのように均等化されたセグメント4dに1個の光源3が収容される場合についても同様に適用が可能である。
 図14において、リフレクタ4の切欠部1a側の1行目のセグメント4dには、図10Aの第2の実施形態と同様に、複数(2個)の光源3が収容されている。また、リフレクタ4全体の4つの角部の光源3は、リフレクタ4および基板(2)に平行な面内で周囲の4辺がX軸またはY軸に一致または直交した回転角度が0°の配置となっている。また、切欠部1a側の1行目のセグメント4d内の両端の角部の間に配置される光源3は、配置の回転角度が右側の角部から連続的に変えられている。その他の光源3は、回転角度が45°の配置となっている。
 図15Aは、面状照明装置1の光源3の平面内での回転角度が0°の場合の例を示す平面図である。なお、リフレクタ4の外壁については図示が省略されている。光源3は略立方体(略直方体でも可)のパッケージ外形を有しており、蛍光体が設けられた4つの側面から主に発光する。そのため、発光する方向に異方性を有しており、4つの側面それぞれの正面方向の光量が多くなる。図15Aでは、光源3の平面内の回転角度が0°であるため、X軸方向およびY軸方向の光量が多くなる。また、セグメント4dの反射面4cは、図示の例では対角線により分割された複数の平面から構成されているため、反射にも異方性がある。その結果、各セグメント4dの角部に光が集まりやすくなり、角部の輝度が高くなる。図15Bは、図15Aの配置の場合の輝度分布の特徴を示す図であり、4つのセグメント4dの角部が集まる領域R1の輝度が高くなり、輝度不均一の原因となる。
 一方、図16Aは、面状照明装置1の光源3の平面内での回転角度が45°の場合の例を示す平面図である。なお、リフレクタ4の外壁については図示が省略されている。図16Bは、図16Aの配置の場合の輝度分布の特徴を示す図であり、光源3と反射面4cとの相対的な回転角度が45°変わったため、4つのセグメント4dの角部が集まる部分の輝度は低くなる。しかし、全体の角部の領域R2の輝度が低下し、輝度不均一の原因となる。全体の角部は、2方向に隣接するセグメントがないため、もともと輝度が低くなりやすいからである。この点に関して、図15Aの配置では各セグメント4dの角部が明るくなることから輝度低下が緩和されていたが、図16Aの配置では緩和されることがなくなり、輝度の低下が顕著となる。
 これらのことから、図14の面状照明装置1では、全体の角部の輝度の低下を抑えるため、全体の角部の光源3の回転角度は0°とされている。また、4つのセグメント4dの角部が集まる部分の輝度が高くならないように、切欠部1a側を除き、光源3の回転角度は45°とされている。また、切欠部1a側における両端である全体の角部を除くセグメント4dに配置された光源3については、右端の光源3から連続的に回転角度を変化させている。これは、セグメント4dの面積が左側に対して右側の方が大きくなり、右側における相対的な光量が少なくなるため、右側に行くほどセグメント4dの角部の明るさを確保する必要があるからである。
(第6の実施形態)
 上記の光源3の平面内における回転角度の変更は、切欠部1a等の異形部分がない場合にも適用することができる。
 図17は、面状照明装置1の全ての光源3の平面内での回転角度が0°の場合の例を示す平面図である。なお、リフレクタ4の外壁については図示が省略されている。この場合、図15Aおよび図15Bで説明されたように、全体の角部における輝度の低下はある程度緩和されるが、内側の4つのセグメント4dの角部が集まる部分の輝度が高くなり、輝度均一性が低下する。
 図18は、面状照明装置1の全ての光源3の平面内での回転角度が45°の場合の例を示す平面図である。なお、リフレクタ4の外壁については図示が省略されている。この場合、図16Aおよび図16Bで説明されたように、内側の4つのセグメント4dの角部が集まる部分の輝度が高くなるのは抑制されるが、全体の角部における輝度の低下が顕著となり、輝度均一性が低下する。
 図19は、面状照明装置1の全体の角部の光源3の平面内での回転角度が0°で、その他の光源3の平面内での回転角度が45°の場合の例を示す平面図である。なお、リフレクタ4の外壁については図示が省略されている。この場合、全体の角部における輝度の低下はある程度緩和されるとともに、内側の4つのセグメント4dの角部が集まる部分の輝度が高くなるのが抑制される。
(第7の実施形態)
 リフレクタ4のセグメント4dの反射面4cの形状のパターンについて以下に示す。なお、以下の図では光源3の平面内における回転角度を0°としているが、前述した原理に基づいて光源3の回転角度を変更することができる。
 図20は、リフレクタ4のセグメント4dの反射面4cの形状の例を示す平面図であり、これまで説明してきたのと同様に、矩形のセグメント4dの対角線により分割された複数の平面により反射面4cが構成される場合である。図中の破線は形状の等高線を示している。
 図21は、リフレクタ4のセグメント4dの反射面4cの形状の他の例を示す平面図であり、縦横の十字線により分割された複数の平面により反射面4cが構成される場合である。この場合、光源3の異方性とセグメント4dの異方性との相対的な回転角度は図16Aと同様になり、効果も同様になる。
 図22は、リフレクタ4のセグメント4dの反射面4cの形状の他の例を示す平面図であり、円錐面状の曲面により反射面4cが構成される場合である。この場合、セグメント4dの異方性がなくなるか緩和され、光源3の異方性だけが残ることになる。
 図23は、リフレクタ4のセグメント4dの反射面4cの形状の他の例を示す平面図であり、一の対角線で仕切られた一方の領域が他の対角線により分割された複数の平面で、他方の領域が円錐面状の曲面により反射面4cが構成される場合である。この場合、他方の領域ではセグメント4dの異方性がなくなるか緩和され、光源3の異方性だけが残ることになる。
 上記の図20~図23の反射面4cの形状パターンと、光源3の平面内での回転角度とを組み合わせることにより、輝度を様々に変化させることができる。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。
 以上のように、実施形態に係る面状照明装置は、複数の光源と、光源が2次元に配置される基板と、光源に対応する孔と、孔の周囲から傾斜して延在する反射面とを有するセグメントが設けられ、全体の外周部に外壁が設けられ、基板の出射側に配置されるリフレクタと、を備え、リフレクタの外周部の異形部分に配置され、外壁により所定の形状が構成できないセグメントにおいて、外壁の基板と対向する面には、光源を収容し、または光量を調整するための凹部が設けられる。これにより、異形の外形を有する場合であっても、暗部ができにくいものとすることができる。
 また、凹部は、外壁を貫通して設けられる。これにより、外壁の厚みが充分でない場合にも、光源を収容するのに十分な適切な幅の凹部を設けることができる。
 また、凹部は、外壁を貫通せずに設けられる。これにより、外壁の厚みが充分な場合に対応することができ、リフレクタの強度の低下を防止することができる。
 また、光源は、平面視で略矩形の外形を有し、セグメントの所定の形状は、平面視で略矩形であり、セグメントの所定の形状における孔は、平面視で略矩形の外形を有し、セグメントの所定の形状における反射面は、複数の平面により構成される。これにより、面状照明装置の構造を具体化することができる。
 また、リフレクタの外周部の異形部分に配置される均一性向上のためのセグメント群を備える。これにより、異形の外形を有する場合であっても、輝度均一性を維持することができる。
 また、セグメント群において、異形状のセグメントとセグメントに隣接するセグメントとは、境界の仕切りが除去されて一体化されている。これにより、異形部分に適したセグメントを構成することができる。また、光源を収容するスペースを増やすことができる。
 また、複数の光源と、光源が2次元に配置される基板と、光源に対応する孔と、孔の周囲から傾斜して延在する反射面とを有するセグメントが設けられ、基板の出射側配置されるリフレクタと、リフレクタの外周部の異形部分に配置される均一性向上のためのセグメント群と、を備える。これにより、異形の外形を有する場合であっても、輝度均一性を維持することができる。
 また、セグメント群において、異形状のセグメントとセグメントに隣接するセグメントとは、境界の仕切りが除去されて一体化されている。これにより、異形部分に適したセグメントを構成することができる。また、光源を収容するスペースを増やすことができる。
 また、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。
 1 面状照明装置,1a 切欠部,2 基板,3、31~36 光源,4 リフレクタ,4a 基材,4b 孔,4c 反射面,4d セグメント,4e~4h 外壁,4i~4m 凹部

Claims (8)

  1.  複数の光源と、
     前記光源が2次元に配置される基板と、
     前記光源に対応する孔と、該孔の周囲から傾斜して延在する反射面とを有するセグメントが設けられ、全体の外周部に外壁が設けられ、前記基板の出射側に配置されるリフレクタと、
    を備え、
     前記リフレクタの外周部の異形部分に配置され、前記外壁により所定の形状が構成できない前記セグメントにおいて、前記外壁の前記基板と対向する面には、前記光源を収容し、または光量を調整するための凹部が設けられる、
    面状照明装置。
  2.  前記凹部は、前記外壁を貫通して設けられる、
    請求項1に記載の面状照明装置。
  3.  前記凹部は、前記外壁を貫通せずに設けられる、
    請求項1に記載の面状照明装置。
  4.  前記光源は、平面視で略矩形の外形を有し、
     前記セグメントの所定の形状は、平面視で略矩形であり、
     前記セグメントの所定の形状における前記孔は、平面視で略矩形の外形を有し、
     前記セグメントの所定の形状における前記反射面は、複数の平面により構成される、
    請求項1~3のいずれか一つに記載の面状照明装置。
  5.  前記リフレクタの外周部の異形部分に配置される均一性向上のためのセグメント群を備える、
    請求項1~4のいずれか一つに記載の面状照明装置。
  6.  前記セグメント群において、異形状のセグメントと該セグメントに隣接するセグメントとは、境界の仕切りが除去されて一体化されている、
    請求項5に記載の面状照明装置。
  7.  複数の光源と、
     前記光源が2次元に配置される基板と、
     前記光源に対応する孔と、該孔の周囲から傾斜して延在する反射面とを有するセグメントが設けられ、前記基板の出射側配置されるリフレクタと、
     前記リフレクタの外周部の異形部分に配置される均一性向上のためのセグメント群と、
    を備える面状照明装置。
  8.  前記セグメント群において、異形状のセグメントと該セグメントに隣接するセグメントとは、境界の仕切りが除去されて一体化されている、
    請求項7に記載の面状照明装置。
PCT/JP2022/012691 2021-06-28 2022-03-18 面状照明装置 WO2023276328A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023531428A JPWO2023276328A1 (ja) 2021-06-28 2022-03-18
CN202280032613.6A CN117280155A (zh) 2021-06-28 2022-03-18 面状照明装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-106666 2021-06-28
JP2021106666 2021-06-28
JP2021139887 2021-08-30
JP2021-139887 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023276328A1 true WO2023276328A1 (ja) 2023-01-05

Family

ID=84692611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012691 WO2023276328A1 (ja) 2021-06-28 2022-03-18 面状照明装置

Country Status (2)

Country Link
JP (1) JPWO2023276328A1 (ja)
WO (1) WO2023276328A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089121A (ja) * 2009-10-23 2011-05-06 Samsung Led Co Ltd 赤色蛍光体、赤色蛍光体の製造方法、発光素子パッケージ、面光源装置、照明装置及び車両用ヘッドライト
JP2019091036A (ja) * 2017-11-13 2019-06-13 エルジー ディスプレイ カンパニー リミテッド 異形液晶発光装置
JP2021012884A (ja) 2019-03-08 2021-02-04 日亜化学工業株式会社 光源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089121A (ja) * 2009-10-23 2011-05-06 Samsung Led Co Ltd 赤色蛍光体、赤色蛍光体の製造方法、発光素子パッケージ、面光源装置、照明装置及び車両用ヘッドライト
JP2019091036A (ja) * 2017-11-13 2019-06-13 エルジー ディスプレイ カンパニー リミテッド 異形液晶発光装置
JP2021012884A (ja) 2019-03-08 2021-02-04 日亜化学工業株式会社 光源装置

Also Published As

Publication number Publication date
JPWO2023276328A1 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
JP5920616B2 (ja) 直下型ledバックライト装置及びそれを用いた液晶表示装置
US7901102B2 (en) Backlight unit and liquid crystal display apparatus employing the same
TWI422782B (zh) 照明系統,照明器及背光單元
US20080094853A1 (en) Light guides and backlight systems incorporating light redirectors at varying densities
US8950884B2 (en) Backlight and display
US10032963B2 (en) Light emitting diode package module and display device having the same
US20180107068A1 (en) Backlight device and liquid crystal display device
JP4926928B2 (ja) 照明装置および液晶表示装置
US20110051044A1 (en) Light quantity control member, surface light source unit and display device
JP2019515459A (ja) 照明モジュール及びこれを備える照明装置
US20060198598A1 (en) Light-guide plate
US10466536B2 (en) Backlight device and liquid crystal display apparatus
US20130250617A1 (en) Light unit
JP2005158310A (ja) 面光源装置及び当該装置を用いた機器
US8297824B2 (en) Light guide plate and display device using the same
US7989829B2 (en) Light emitting diode backlight module and liquid crystal display
WO2023276328A1 (ja) 面状照明装置
JP2005228535A (ja) 面状光源装置及び液晶表示装置
US7347601B2 (en) Vehicle lamp unit
JP5121305B2 (ja) Led補助照明装置
CN117280155A (zh) 面状照明装置
US10930828B2 (en) Non-rotationally symmetric lens for non-rotationally symmetric light source resulting in rotationally symmetric beam pattern
JP6559073B2 (ja) 照明装置
JPWO2009001802A1 (ja) 照明装置
JP7307009B2 (ja) 面状照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531428

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022832491

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022832491

Country of ref document: EP

Effective date: 20240129