WO2023276163A1 - 端末及び通信方法 - Google Patents

端末及び通信方法 Download PDF

Info

Publication number
WO2023276163A1
WO2023276163A1 PCT/JP2021/025221 JP2021025221W WO2023276163A1 WO 2023276163 A1 WO2023276163 A1 WO 2023276163A1 JP 2021025221 W JP2021025221 W JP 2021025221W WO 2023276163 A1 WO2023276163 A1 WO 2023276163A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
carrier
transmitting
terminal
base station
Prior art date
Application number
PCT/JP2021/025221
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
翔平 吉岡
慎也 熊谷
優元 ▲高▼橋
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP21948467.2A priority Critical patent/EP4366417A1/en
Priority to JP2023531338A priority patent/JPWO2023276163A1/ja
Priority to CN202180099300.8A priority patent/CN117480833A/zh
Priority to PCT/JP2021/025221 priority patent/WO2023276163A1/ja
Publication of WO2023276163A1 publication Critical patent/WO2023276163A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present invention relates to a terminal and communication method in a wireless communication system.
  • NR New Radio
  • NR New Radio
  • 5G various radio technologies and network architectures are being studied in order to meet the requirements of realizing a throughput of 10 Gbps or more and keeping the delay in the radio section to 1 ms or less (for example, Non-Patent Document 1).
  • PUCCH Physical Uplink Control Channel
  • URLLC Ultra-Reliable and Low Latency Communications
  • PUCCH carrier switching is being studied as a method of reducing the latency of HARQ-ACK (Hybrid Automatic Repeat Request Acknowledgment) feedback in a TDD (Time Division Duplex) scheme (for example, Non-Patent Document 2).
  • 3GPP TS 38.300 V16.4.0 (2020-12) 3GPP TSG RAN Meeting #88e, RP-201310, Electronic meeting, June 29-July 3, 2020
  • a PUCCH resource is configured in a primary cell, a primary secondary cell group cell, or a PUCCH secondary cell.
  • a terminal could not transmit PUCCH except from a primary cell, a primary secondary cell group cell, or a PUCCH secondary cell. Which cell should be used to transmit PUCCH is defined in advance, and it was difficult to flexibly change it.
  • the present invention has been made in view of the above points, and aims to improve the flexibility of settings related to transmission of uplink control channels in a wireless communication system.
  • a receiving unit that receives control information and data from a base station, a control unit that determines a carrier for transmitting an uplink control channel based on the control information, and the data on the determined carrier and a transmission unit configured to transmit information related to retransmission control of the uplink control channel to the base station via the uplink control channel, wherein the control unit selects one of all configured carriers as the uplink control channel
  • a terminal is provided that determines as a carrier to transmit a .
  • FIG. 1 is a diagram for explaining an example (1) of a wireless communication system according to an embodiment of the present invention
  • FIG. FIG. 2 is a diagram for explaining example (2) of a wireless communication system according to an embodiment of the present invention
  • 4 is a flow chart for explaining an example of PUCCH transmission according to an embodiment of the present invention
  • FIG. 4 is a diagram showing an example (1) of PUCCH transmission according to the embodiment of the present invention
  • FIG. 4 is a diagram showing an example (2) of PUCCH transmission according to the embodiment of the present invention
  • FIG. 4 is a diagram showing an example (3) of PUCCH transmission in the embodiment of the present invention
  • FIG. 4 is a diagram showing an example (4) of PUCCH transmission according to the embodiment of the present invention
  • FIG. 5 is a diagram showing an example (5) of PUCCH transmission according to the embodiment of the present invention
  • FIG. 6 is a diagram showing an example (6) of PUCCH transmission according to the embodiment of the present invention
  • FIG. 10 is a diagram showing an example (7) of PUCCH transmission according to the embodiment of the present invention
  • FIG. 4 is a diagram showing an example of MAC-CE in an embodiment of the present invention
  • FIG. 10 is a diagram showing an example (8) of PUCCH transmission according to the embodiment of the present invention
  • FIG. 10 is a diagram showing an example (9) of PUCCH transmission in the embodiment of the present invention
  • FIG. 4 is a diagram showing an example (1) of PUCCH carrier switching according to an embodiment of the present invention
  • FIG. 4 is a diagram showing an example (2) of PUCCH carrier switching according to an embodiment of the present invention
  • FIG. 4 is a diagram showing an example (3) of PUCCH carrier switching according to an embodiment of the present invention
  • FIG. 4 is a diagram showing an example of disabling PUCCH carrier switching according to an embodiment of the invention
  • FIG. 4 is a diagram showing an example (1) of PUCCH transmission power control according to the embodiment of the present invention
  • FIG. 4 is a diagram showing an example (2) of PUCCH transmission power control in the embodiment of the present invention
  • FIG. 4 is a diagram showing an example (3) of PUCCH transmission power control in the embodiment of the present invention
  • FIG. 4 is a diagram showing an example (4) of PUCCH transmission power control in the embodiment of the present invention
  • FIG. 5 is a diagram showing an example (5) of PUCCH transmission power control in the embodiment of the present invention; It is a figure which shows the example of the spatial relationship in embodiment of this invention.
  • FIG. 6 is a diagram showing an example (6) of PUCCH transmission power control in the embodiment of the present invention;
  • FIG. 4 is a diagram showing an example (1) of UCI multiplexing according to the embodiment of the present invention;
  • FIG. 4 is a diagram showing an example (2) of UCI multiplexing in the embodiment of the present invention;
  • FIG. 10 is a diagram showing an example (3) of UCI multiplexing in the embodiment of the present invention;
  • FIG. 4 is a diagram showing an example (4) of UCI multiplexing in the embodiment of the present invention;
  • FIG. 10 is a diagram showing an example (5) of UCI multiplexing in the embodiment of the present invention
  • FIG. 4 is a diagram showing an example (1) of HARQ-ACK offsets according to the embodiment of the present invention
  • FIG. 4 is a diagram showing an example (2) of HARQ-ACK offsets according to the embodiment of the present invention
  • FIG. 4 is a diagram showing an example (3) of HARQ-ACK offsets according to the embodiment of the present invention
  • FIG. 4 is a diagram showing an example (4) of HARQ-ACK offsets according to the embodiment of the present invention
  • FIG. 5 is a diagram showing an example (5) of HARQ-ACK offsets according to the embodiment of the present invention
  • FIG. 5 is a diagram showing an example (5) of HARQ-ACK offsets according to the embodiment of the present invention
  • FIG. 6 is a diagram showing an example (6) of HARQ-ACK offsets in the embodiment of the present invention. It is a figure showing an example of functional composition of base station 10 in an embodiment of the invention.
  • 2 is a diagram showing an example of the functional configuration of terminal 20 according to the embodiment of the present invention;
  • FIG. 2 is a diagram showing an example of hardware configuration of base station 10 or terminal 20 according to an embodiment of the present invention;
  • existing technology may be used as appropriate.
  • the existing technology is, for example, existing NR or LTE, but is not limited to existing NR or LTE.
  • FIG. 1 is a diagram for explaining example (1) of a wireless communication system according to an embodiment of the present invention.
  • a wireless communication system according to an embodiment of the present invention includes a base station 10 and terminals 20, as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is an example and there may be more than one.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • a physical resource of a radio signal is defined in the time domain and the frequency domain.
  • the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks.
  • a TTI (Transmission Time Interval) in the time domain may be a slot, or a TTI may be a subframe.
  • the base station 10 can perform carrier aggregation (CA) in which multiple cells (multiple CCs (component carriers)) are bundled and communicated with the terminal 20 .
  • CA carrier aggregation
  • multiple cells multiple CCs (component carriers)
  • carrier aggregation one PCell (Primary Cell) and one or more SCells (Secondary Cell) are used.
  • the base station 10 transmits a synchronization signal, system information, etc. to the terminal 20.
  • Synchronization signals are, for example, NR-PSS and NR-SSS.
  • System information is transmitted, for example, on NR-PBCH or PDSCH, and is also called broadcast information.
  • the base station 10 transmits control signals or data to the terminal 20 on DL (Downlink) and receives control signals or data from the terminal 20 on UL (Uplink).
  • control channels such as PUCCH (Physical Uplink Shared Channel) and PDCCH (Physical Downlink Control Channel) is called a control signal
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • the terminal 20 is a communication device with a wireless communication function, such as a smartphone, mobile phone, tablet, wearable terminal, or M2M (Machine-to-Machine) communication module. As shown in FIG. 1 , the terminal 20 receives control signals or data from the base station 10 on the DL and transmits control signals or data to the base station 10 on the UL, thereby performing various functions provided by the wireless communication system. Use communication services. Note that the terminal 20 may be called UE, and the base station 10 may be called gNB.
  • FIG. 2 is a diagram for explaining example (2) of the wireless communication system according to the embodiment of the present invention.
  • FIG. 2 shows a configuration example of a radio communication system when dual connectivity (DC) is performed.
  • a base station 10A serving as a master node (MN: Master Node) and a base station 10B serving as a secondary node (SN: Secondary Node) are provided.
  • the base station 10A and the base station 10B are connected to the core network 30 respectively.
  • Terminal 20 can communicate with both base station 10A and base station 10B.
  • MCG master cell group
  • SCG secondary cell group
  • an MCG is composed of one PCell and 0 or more SCells
  • PSCell Primary SCG Cell
  • SCell or PSCell may be described as SpCell (Special Cell).
  • dual connectivity may be a communication method using two communication standards, and any communication standards may be combined.
  • the combination may be either NR and 6G standard or LTE and 6G standard.
  • dual connectivity may be a communication method using three or more communication standards, and may be called by other names different from dual connectivity.
  • the processing operations in the present embodiment may be executed in the system configuration shown in FIG. 1, may be executed in the system configuration shown in FIG. 2, or may be executed in a system configuration other than these. .
  • the PUCCH resource is set to PCell, PSCell or PUCCH-SCell. Terminals could not transmit PUCCH except on PCell, PSCell or PUCCH-SCell. Which cell should be used to transmit PUCCH is defined in advance, and it was difficult to flexibly change it.
  • PUCCH group 1 it was possible to transmit PUCCH only on CC0, and it was not possible to transmit PUCCH on CC1.
  • PUCCH group 2 it was possible to transmit PUCCH only on CC2 and not on CC3.
  • PUCCH-SCell cannot be set in intra-band CA, it has been difficult to flexibly change which CC is used to transmit PUCCH in intra-band.
  • CCs for transmitting PUCCH may be flexibly selected, and it may be specified on which CC the PUCCH is transmitted.
  • PUCCH carrier switching based on dynamic notification by DCI (Downlink Control Information) that schedules PUCCH may be supported.
  • PUCCH carrier switching based on semi-static configuration may be supported.
  • PUCCH carrier switching may mean switching a carrier, CC, or cell for transmitting PUCCH.
  • the semi-static configuration may be based on the PUCCH cell timing pattern configured by RRC (Radio Resource Control), or PUCCH carrier switching between cells with different newerologies or subcarrier spacings may be supported. good.
  • a PUCCH cell may be a cell capable of transmitting PUCCH.
  • the maximum number of PUCCH cells may be defined. Also, dynamic configuration and semi-static configuration may be combined and applied to PUCCH carrier switching. Also, PUCCH carrier switching and SPS (Semi-persistent) HARQ-ACK deferral may be integrated and applied.
  • SPS Semi-persistent
  • FIG. 3 is a flowchart for explaining an example of PUCCH transmission according to the embodiment of the present invention.
  • the terminal 20 receives DCI and PDSCH from the base station 10 .
  • the terminal 20 determines PUCCH for transmitting HARQ-ACK corresponding to the received PDSCH.
  • the terminal 20 may determine the cell or carrier for transmitting the PUCCH, the resource for transmitting the PUCCH, and the transmission power for transmitting the PUCCH based on the control information received from the base station 10 .
  • the control information may be, for example, RRC, MAC-CE and/or DCI.
  • RRC, MAC-CE and DCI may be replaced with each other.
  • the terminal 20 transmits the determined PUCCH to the base station 10 .
  • the base station 10 may indicate the PUCCH transmission destination CC using RRC, MAC-CE (Medium Access Control-Control Element), or DCI.
  • Terminal 20 may transmit PUCCH on the indicated CC.
  • PUCCH#1 transmitted by PCell or PSCell and PUCCH#2 transmitted by PUCCH-SCell may be switched by RRC, MAC-CE or DCI.
  • FIG. 4 is a diagram showing an example (1) of PUCCH transmission according to the embodiment of the present invention.
  • switching of CCs transmitting PUCCH may be indicated by RRC, MAC-CE and/or DCI, without being limited to PCell, PSCell or PUCCH-SCell.
  • a CC that transmits PUCCH may be indicated by RRC, MAC-CE and/or DCI.
  • a predetermined one or a plurality of CC lists including some CCs are selected or set in advance, and among the CCs included in the selected or set CC list, RRC, MAC - A CC that transmits PUCCH may be indicated by CE and/or DCI.
  • one or more predetermined CC lists including some CCs may be selected or set based on predetermined rules.
  • the predetermined rule may include a list of a predetermined number of CCs starting with the smallest CCID.
  • the predetermined number may be specified by the specification, may be set by a higher layer, or may be notified from the terminal 20 to the base station 10 by a UE capability report.
  • one or a plurality of predetermined CC lists including some CCs among all set CCs may be set by a higher layer.
  • the maximum number of CCs that can be set per CC list may be notified from the terminal 20 to the base station 10 by a UE capability report.
  • the degree of congestion of resources used by UEs differs for each CC, so resource distribution is possible. Also, since the TDD setting may differ for each CC, the PUCCH can be transmitted with more flexible timing.
  • FIG. 5 is a diagram showing an example (2) of PUCCH transmission according to the embodiment of the present invention.
  • the PUCCH CCs that collectively transmit UCI may be indicated or selected by MAC-CE and/or DCI from predetermined CC candidates, eg, the first CC list shown in FIG. Reducing signaling overhead and reducing UE complexity, as the first CC list can be configured or defined to limit candidate CCs that can be indicated by MAC-CE and/or DCI. can be done.
  • the terminal 20 may collectively transmit the UCIs of all CCs on the PUCCH.
  • the all CCs may be all CCs including SpCell and SCell, or may be all CCs within the PUCCH cell group.
  • FIG. 6 is a diagram showing an example (3) of PUCCH transmission according to the embodiment of the present invention. As shown in FIG. 6, different CCs may have different TDD settings. When the slot indicated as HARQ timing is DL, if UL exists in another CC in the slot, by transmitting HARQ-ACK in the other CC, it is possible to reduce the HARQ delay more than before. and the URLLLC performance can be improved.
  • the CC that transmits PUCCH is You may switch to SCell#1.
  • the unusable condition may be, for example, that it is a DL slot, that the UL symbol of PUCCH cannot be used in a special subframe, that it is a UL slot but has already been assigned to another channel, and the like. .
  • the CC that transmits PUCCH is preset by RRC, or by searching for a CC that can be used by terminal 20, even if there is no instruction for PUCCH carrier switching by MAC-CE or DCI Even if there is, it is possible to switch the CC that transmits the PUCCH.
  • the PUCCH may be transmitted in the same slot as the slot indicated by the HARQ feedback timing indicator or in a slot that at least partially overlaps in the case of different SCSs. If multiple CCs are available, the CCs may be pre-defined or pre-configured with priority. For example, PUCCH may be transmitted with priority given to a smaller CC index. Candidates of CCs that transmit PUCCH to be switched may be set in advance by higher layers. This makes it possible to prevent PUCCH from being transmitted in CCs that the terminal 20 does not want to transmit.
  • FIG. 7 is a diagram showing an example (4) of PUCCH transmission according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing an example (5) of PUCCH transmission according to the embodiment of the present invention.
  • the terminal 20 may switch the CC that transmits the PUCCH.
  • terminal 20 may change the slot for transmitting HARQ-ACK. good.
  • FIG. 7 is an example of changing to an earlier available slot in the time domain
  • FIG. 8 is an example of changing to a later available slot in the time domain.
  • the terminal 20 may not assume a case where there are no other available CCs.
  • the base station 10 instructs the terminal 20 on which CC to transmit PUCCH by RRC, MAC-CE and/or DCI
  • the base station 10 and the terminal 20 first determine the CC on which PUCCH is transmitted, and then A slot for transmitting the PUCCH may be determined.
  • the base station 10 indicates to the terminal 20 which CC to transmit PUCCH by RRC, MAC-CE and/or DCI
  • the base station 10 and the terminal 20 first determine the slot for transmitting PUCCH, and then A CC that transmits PUCCH may be determined.
  • FIG. 9 is a diagram showing an example (6) of PUCCH transmission according to the embodiment of the present invention.
  • the terminal 20 may transmit HARQ-ACK in the slot and CC in which the PUCCH can be transmitted the earliest after a predetermined time has elapsed after receiving the PDSCH.
  • HARQ-ACK may mean HARQ feedback and may include ACK, positive acknowledgment or NACK, negative acknowledgment.
  • the UE may not have some or all of the HARQ feedback timing indicator fields in DCI format 1_0, DCI format 1_1 and DCI format 1_2 if the behavior is configured from higher layers.
  • HARQ-ACK of PDSCH scheduled by DCI in which the HARQ feedback timing indicator field does not exist may transmit HARQ-ACK in the slot and CC in which PUCCH can be transmitted earliest after elapse of a predetermined time after receiving PDSCH. .
  • HARQ feedback delay is minimized and signaling such as HARQ feedback timing indicator is not required, so DCI overhead can be reduced.
  • the terminal 20 transmits PUCCH in SCell #1, which can be transmitted in the nearest slot after the lapse of a predetermined time after receiving the PDSCH.
  • priority among CCs may be defined or set in advance. For example, a CC with a smaller CC index may be preferentially used for PUCCH transmission.
  • candidates for the CC to which the PUCCH is switched may be set in advance by a higher layer. This makes it possible to prevent PUCCH from being transmitted in CCs that the terminal 20 does not want to transmit.
  • the base station 10 may indicate or select a CC for transmitting PUCCH to the terminal 20 using DCI.
  • a CC that transmits PUCCH may be indicated using a predetermined field of DCI.
  • a new CC indication field may be defined to indicate the CC that transmits the PUCCH.
  • a new CC indication field may be defined in some or all of DCI format 1_0, DCI format 1_1 and DCI format 1_2, which are DCIs for scheduling DL.
  • Table 1 is an example of the new CC indication field.
  • the CC that transmits the PUCCH is designated by the DCI codepoint.
  • Table 1 shows an example of a 2-bit CC indication field.
  • the CC index associated with each DCI codepoint may be signaled by RRC or MAC-CE.
  • a CC that transmits PUCCH may be indicated by an existing DCI field. For example, it may be indicated by a PRI (PUCCH resource indicator) field.
  • PRI PUCCH resource indicator
  • Table 2 is an example of indicating a CC that transmits PUCCH using the PRI field.
  • each PUCCH resource may be associated with a CC that transmits the PUCCH.
  • a destination CC associated with each PUCCH resource may be configured by higher layers.
  • the existing DCI field may be used to indicate the CC that transmits the PUCCH.
  • a CC that transmits PUCCH may be indicated using a carrier indicator field (CIF).
  • CIF may be present if PUCCH carrier switching is configured, regardless of whether PDSCH is cross-carrier scheduled.
  • the base station 10 may use the CIF to instruct the terminal 20 on which CC to transmit the PUCCH.
  • a CC on which PDSCH is scheduled and a CC on which PUCCH is transmitted may be indicated using a common CIF.
  • the CC on which the PDSCH is scheduled may be indicated using the CIF, and the CC transmitting the PUCCH may be indicated by the method 1) or 2) above.
  • the CIF may be extended, the first CIF may be used to indicate the CC on which the PDSCH is scheduled, and the second CIF may be used to indicate the CC transmitting the PUCCH.
  • FIG. 10 is a diagram showing an example (7) of PUCCH transmission according to the embodiment of the present invention.
  • HARQ-ACKs corresponding to multiple PDSCHs triggered or scheduled by multiple DCIs are transmitted on the PUCCH, it may be set or defined in advance which DCI indicates which CC to transmit the PUSCH to use.
  • a CC (CC0 in FIG. 10) that transmits PUCCH may be determined based on the last DCI in the time and frequency directions.
  • FIG. 11 is a diagram showing an example of MAC-CE in the embodiment of the present invention.
  • the base station 10 may indicate to the terminal 20 the CC on which PUCCH is to be transmitted by MAC-CE.
  • MAC-CE may be defined to indicate the CC that transmits PUCCH.
  • Terminal 20 may transmit PUCCH on the CC indicated by the MAC-CE.
  • a cell transmitting PUCCH may be indicated by one relevant MAC-CE per cell group, or a cell transmitting PUCCH may be indicated by one relevant MAC-CE per UE.
  • FIG. 12 is a diagram showing an example (8) of PUCCH transmission according to the embodiment of the present invention.
  • terminal 20 may use PUCCH resources of CCs that transmit PUCCH indicated by MAC-CE and/or DCI, as shown in FIG.
  • the terminal 20 may use the PUCCH resource of the scheduled cell indicated by the information indicating the CC that transmits the PRI or PUCCH.
  • FIG. 13 is a diagram showing an example (9) of PUCCH transmission according to the embodiment of the present invention.
  • the terminal 20 may use the PUCCH resource configured in the CC that received the PRI or the DCI that indicates information indicating the CC that transmits the PUCCH.
  • the terminal 20 may use the PUCCH resource of the scheduling cell that indicates information indicating the CC that transmits the PRI or PUCCH.
  • the terminal 20 may use the PUCCH resource of the scheduling cell that indicates information indicating the CC that transmits the PRI or PUCCH.
  • transmitting PUCCH scheduled from multiple CCs as shown in FIG. may
  • the terminal 20 may use the PUCCH resource allocated to the CC that received the PDSCH scheduled by the last DCI.
  • the PUCCH-config may be set for each BWP (Bandwidth Part).
  • CC may be replaced with “BWP in CC”.
  • PUCCH carrier switching may be read as "instructing a CC that transmits PUCCH by RRC, MAC-CE and/or DCI".
  • slot and sub-slot may be read interchangeably.
  • SUL Supplemental Uplink
  • SUL Supplemental Uplink
  • Whether or not the SUL is included in the target CC for PUCCH carrier switching may be reported from the terminal 20 to the base station 10 using the UE capability report.
  • the embodiment of the present invention may be applied only to terminals 20 that have reported UE capabilities shown in 1) and/or 2) below.
  • UE capability to indicate whether or not to support PUCCH carrier switching For example, it may be a UE capability indicating whether RRC, MAC-CE and/or DCI indicates whether the CC to transmit PUCCH is indicated. Also, it may be a UE capability indicating whether or not a CC for transmitting PUCCH is instructed by MAC-CE. Also, it may be a UE capability indicating whether or not a CC for transmitting PUCCH is instructed in DCI.
  • the number of CCs to which PUCCH carrier switching is switched It may be the maximum number of CCs that can be set per CC list to which PUCCH carrier switching is switched.
  • the CC to which PUCCH carrier switching is switched may be set as one or more NR carrier types below.
  • the terminal 20 may report a carrier type on which PUCCH transmission is possible, and the PUCCH carrier may be switched only to that carrier type.
  • the one or more NR carrier types are ⁇ FR1 licensed TDD (fr1-NonSharedTDD-r16), FR1 unlicensed TDD (fr1-SharedTDD-r16), FR1 licensed FDD (fr1-NonSharedFDD-r16), FR2 (fr2-r16) ⁇ may be.
  • the one or more NR carrier types may be ⁇ FR1-NonSharedTDD, FR1-SharedTDD, FR1-NonSharedFDD, FR2 ⁇ .
  • the application timing (activation timing) of the indication of the CC to transmit the PUCCH may be specified. For example, the time from when a CC to transmit PUCCH is indicated by RRC, MAC-CE and/or DCI to when PUCCH carrier switching is actually applied may be defined.
  • the base station 10 and the terminal 20 need to have a common understanding of the CC that transmits PUCCH.
  • the base station 10 can recognize that the instruction is not valid. can.
  • PUCCH carrier switching may be enabled or disabled.
  • An instruction for a CC to transmit PUCCH may be called an activation command, and an activation command for validating the instruction may be defined separately from the instruction.
  • a deactivation command may also be defined to invalidate the indication.
  • FIG. 14 is a diagram showing an example (1) of PUCCH carrier switching according to the embodiment of the present invention.
  • the assumption of the CC to transmit PUCCH may be switched.
  • the predetermined time may be, for example, 3 ms later, or may be until the start of the next slot after 3 ms have elapsed.
  • the MAC-CE may indicate a CC that transmits PUCCH only with the MAC-CE, or the MAC-CE may indicate a CC list including multiple CCs, and the DCI may indicate one CC list. CC may be indicated.
  • FIG. 15 is a diagram showing an example (2) of PUCCH carrier switching according to the embodiment of the present invention. As shown in FIG. 15, the assumption of the CC transmitting PUCCH may be switched before PUCCH/PUSCH transmission in which ACK/NACK for DCI indicating the CC transmitting PUCCH is transmitted.
  • FIG. 16 is a diagram showing an example (3) of PUCCH carrier switching according to the embodiment of the present invention. As shown in FIG. 16, after a predetermined period of time has passed since ACK for DCI indicating the CC to transmit PUCCH is transmitted, the assumption of the CC to transmit PUCCH may be switched. The predetermined time may be, for example, 3 ms later, or may be until the start of the next slot after 3 ms have elapsed.
  • deactivation timing may be specified. For CCs that transmit PUCCHs that have been activated in the past, the CCs that transmit PUCCHs that were activated in the past may be deactivated when the CCs that transmit PUCCH are next activated.
  • FIG. 17 is a diagram showing an example of disabling PUCCH carrier switching according to the embodiment of the present invention.
  • a disable command may be defined, and PUCCH carrier switching may be disabled for terminals 20 that receive the disable command.
  • the invalidation command may be notified by MAC-CE or may be indicated by DCI. It may be disabled after a predetermined time or a predetermined period of time after receiving an enable command or after a CC instructs to transmit PUCCH with MAC-CE and /DCI. As shown in FIG. 17, it may fall back to transmitting PUCCH on the PCell, PSCell or PUCCH-SCell during the invalidation period.
  • the predetermined time may be, for example, 3 ms later, or may be until the start of the next slot after 3 ms have elapsed.
  • the instruction of the CC that transmits PUCCH shown in FIG. 16 is DCI indicating invalidation, it is assumed that the assumption of the CC that transmits PUCCH is switched after a predetermined time has elapsed since the ACK for the DCI was transmitted. good too.
  • the predetermined time may be, for example, 3 ms later, or may be until the start of the next slot after 3 ms have elapsed.
  • PUCCH power control is set by pucch-PowerControl included in PUCCH-Config, which is an RRC information element, and PUCCH spatial relation included in PUCCH resource.
  • PUCCH-Config which is an RRC information element
  • PUCCH spatial relation included in PUCCH resource.
  • a plurality of sets of P0, ⁇ , and path loss RS may be set in pucch-PowerControl, and an ID indicating one of the sets may be indicated in PUCCH spatial relation.
  • the parameters for PUCCH power control set in the CC (or BWP) that transmits PUCCH may be used to determine PUCCH transmission power.
  • the parameters may be pucch-PowerControl included in PUCCH-Config and PUCCH spatial relation included in PUCCH resource.
  • FIG. 18 is a diagram showing an example (1) of PUCCH transmission power control according to the embodiment of the present invention.
  • terminal 20 may use the PUCCH power control parameters of the CC transmitting PUCCH indicated by MAC-CE and/or DCI, as shown in FIG.
  • the terminal 20 may use the PUCCH power control parameter of the scheduled cell indicated by the information indicating the CC that transmits the PRI or PUCCH.
  • FIG. 19 is a diagram showing an example (2) of PUCCH transmission power control according to the embodiment of the present invention.
  • the terminal 20 may use the PUCCH power control parameter set to the CC that received the PRI or the DCI indicating the information indicating the CC that transmits the PUCCH. good.
  • the terminal 20 may use the PUCCH power control parameter of the scheduling cell that indicates information indicating the CC that transmits the PRI or PUCCH.
  • transmitting PUCCH scheduled from multiple CCs as shown in FIG. may be used.
  • the terminal 20 may use the PUCCH power control parameters assigned to the CC that received the PDSCH scheduled by the last DCI.
  • FIG. 20 is a diagram showing an example (3) of PUCCH transmission power control according to the embodiment of the present invention.
  • the terminal 20 may reset the TPC (Transmission Power Control) command cumulative value or set the value to 0.
  • the TPC command accumulated value of PUCCH in CC0 may be different from the TPC command accumulated value of PUCCH in CC1 because the frequency and propagation path are different.
  • FIG. 21 is a diagram showing an example (4) of PUCCH transmission power control according to the embodiment of the present invention.
  • the terminal 20 may accumulate the TPC command accumulated value before and after executing PUCCH carrier switching or before and after being instructed.
  • FIG. 22 is a diagram showing an example (5) of PUCCH transmission power control according to the embodiment of the present invention.
  • the cumulative value of CL-PC may be held for each CC.
  • a TPC command when instructed for the PUCCH resource of CC0, it may be held as an accumulated value of the TPC command for the PUCCH of CC0. may be held as an accumulated value of TPC commands of PUCCH.
  • the PUCCH of CC1 is not transmitted. Thereafter, when CC1 is designated as the CC to transmit PUCCH, PUCCH may be transmitted using the cumulative value of TPC commands accumulated in CC1.
  • FIG. 23 is a diagram showing an example of spatial relationships in the embodiment of the present invention. As shown in FIG. 23, when transmitting to one base station 10, different beams, that is, different spatial relations, result in different path losses. Also, when transmitting to two base stations 10, the path loss is different. Therefore, the terminal 20 can hold two cumulative CL-PC values.
  • PUCCH closedLoopIndexes when different PUCCH closedLoopIndexes are set between PUCCH resources before and after PUCCH carrier switching, it may be considered that the PUCCH closedLoopIndex is switched along with PUCCH carrier switching.
  • closedLoopIndex and the like are examples of TPC parameters, and other RRC parameters applied to PUCCH power control such as P0, ⁇ values, PL-RS, etc. are set in terminal 20 in the same manner as closedLoopIndex. good too.
  • TPC parameters associated with the switching destination PUCCH resource may be applied by the same mechanism.
  • FIG. 25 is a diagram showing an example (1) of UCI multiplexing according to the embodiment of the present invention. As shown in FIG. 25 , when transmitting multiple UCIs in the same slot or subslot is indicated by the HARQ feedback timing indicator field, the multiple UCIs are multiplexed and transmitted on the same PUCCH resource. may Hereinafter, "slot" may be replaced with "subslot”.
  • PUCCH carrier switching is dynamically performed in consideration of the numerology or subcarrier spacing (SCS) of the CC that transmits the PUCCH.
  • SCS subcarrier spacing
  • FIG. 26 is a diagram showing an example (2) of UCI multiplexing according to the embodiment of the present invention.
  • CC0 and CC1 have different SCSs and the CC that transmits PUCCH has a smaller SCS, two UCIs are not transmitted in the same slot.
  • CC0 instructs HARQ-ACK transmission in slot #n
  • CC1 instructs HARQ-ACK transmission in slot #m.
  • PUCCH may be transmitted in slot #n of CC0.
  • FIG. 27 is a diagram showing an example (3) of UCI multiplexing according to the embodiment of the present invention.
  • CC0 and CC1 have different SCSs and the CC that transmits PUCCH has a smaller SCS, two UCIs are not transmitted in the same slot.
  • CC0 instructs HARQ-ACK transmission in slot #n
  • CC1 instructs HARQ-ACK transmission in slot #m+1.
  • PUCCH may be transmitted in slot #n of CC0.
  • FIG. 28 is a diagram showing an example (4) of UCI multiplexing according to the embodiment of the present invention.
  • CC0 and CC1 have different SCSs and the CC that transmits PUCCH has a larger SCS, two UCIs are not transmitted in the same slot.
  • CC0 instructs HARQ-ACK transmission in slot #n
  • CC1 instructs HARQ-ACK transmission in slot #m.
  • PUCCH may be transmitted in slot #m of CC1.
  • FIG. 29 is a diagram showing an example (5) of UCI multiplexing according to the embodiment of the present invention.
  • CC0 and CC1 have different SCSs and the CC that transmits PUCCH has a larger SCS, two UCIs are not transmitted in the same slot.
  • CC0 instructs HARQ-ACK transmission in slot #n
  • CC1 instructs HARQ-ACK transmission in slot #m+1.
  • PUCCH may be transmitted in slot #m+1 of CC1.
  • the conditions under which UCIs are multiplexed on the same PUCCH resource may be the conditions shown in 1)-3) below.
  • UCIs may be multiplexed if at least some of the slots or subslots of the PUCCH resource overlap in the PUCCH CC at the indicated time. It is assumed that the CC of PUCCH when PUCCH resources were indicated in the past and the CC that actually transmits PUCCH are different when PUCCH carrier switching occurs, but terminal 20 indicates or triggered PUCCH resources.
  • the SCS and slot or sub-slot of the current PUCCH CC may be used to determine conditions under which UCI is multiplexed on the same PUCCH resource and to determine UCI transmission timing.
  • the UCI may be multiplexed.
  • the UCI may be transmitted unmultiplexed if it does not overlap with the slot or subslot of the CC transmitting the PUCCH.
  • terminal 20 determines whether or not to multiplex PUCCH based on whether PUCCH slots or subslots overlap by at least one symbol in the time domain.
  • FIG. 30 is a diagram showing an example (1) of HARQ-ACK offsets according to the embodiment of the present invention.
  • the timing of transmitting HARQ-ACK is indicated by the offset k of the PDSCH reception slot.
  • UCI of each CC is transmitted on PCell, PSCell, or PUCCH-SCell, and which CC's UCI is transmitted on which CC's PUCCH may be determined in advance. That is, the CC transmitting PUCCH may not be updated by RRC, MAC-CE or DCI.
  • the k value may be counted in the same SpCell slot as the PDSCH reception slot.
  • the UCI of all CCs is transmitted by PUCCH of SpCell, so the timing of transmitting HARQ-ACK of all CCs is the slot of HARQ-ACK in the CC that transmits SpCell, ie PUCCH, or A subslot offset may be indicated.
  • the timing of the HARQ-ACK of the PCell's PDSCH scheduled in the PCell's DCI may be indicated by the HARQ-ACK slot or sub-slot offset in the PCell.
  • the timing of the HARQ-ACK of the PDSCH of the SCell scheduled in the DCI of the SCell may be indicated by the slot or subslot offset of the HARQ-ACK in the PCell.
  • the CC transmitting PUCCH may be updated with RRC, MAC-CE and/or DCI.
  • the timing of transmitting HARQ-ACK is indicated as a slot or subslot in which CC.
  • the slot or subslot may be indicated in the HARQ Feedback Timing Indicator field.
  • the offset value may be determined without considering PUCCH carrier switching.
  • FIG. 31 is a diagram showing an example (2) of HARQ-ACK offsets in the embodiment of the present invention. For example, if PUCCH-SCell is not configured, as shown in FIG. 31, assuming that PUCCH is transmitted in PCell or PSCell, that is, SpCell in each CC, the slot or sub-slot offset for transmitting HARQ-ACK is indicated. may be
  • terminal 20 may transmit PUCCH in narrow SCS slots in which slots of large SCS overlap even partially.
  • the slots may be specified in the same way.
  • HARQ-ACK when PUCCH-SCell is configured, regarding HARQ-ACK of PCell or PSCell, assuming that PUCCH is transmitted on PCell or PSCell, even if a slot or sub-slot for transmitting HARQ-ACK is indicated good.
  • HARQ-ACK for CCs other than PCell and PSCell, a slot or subslot for transmitting HARQ-ACK may be indicated assuming that PUCCH is transmitted on PUCCH-SCell.
  • FIG. 32 is a diagram showing an example (3) of HARQ-ACK offsets in the embodiment of the present invention.
  • a slot or subslot for transmitting HARQ-ACK assuming a PUCCH destination CC may be indicated.
  • the PUCCH transmission destination CC may be determined by a method based on PUCCH switching in the embodiment of the present invention.
  • a slot or sub-slot for transmitting HARQ-ACK assuming a PUCCH destination CC at any one of DCI reception timing, PDSCH reception timing, and PUCCH transmission timing that triggered UCI may be indicated.
  • the point in time may be specified in the specification, may be set in a higher layer, or may be indicated in the UE capability report.
  • FIG. 33 is a diagram showing an example (4) of HARQ-ACK offsets in the embodiment of the present invention.
  • the UCI of each CC may indicate a slot or subslot in which HARQ-ACK is transmitted assuming the CC that received the PDSCH.
  • a slot or subslot to transmit HARQ-ACK may be indicated, given the CC that received the DCI that triggered the UCI.
  • FIG. 34 is a diagram showing an example (5) of HARQ-ACK offsets according to the embodiment of the present invention.
  • the timing of transmitting HARQ-ACK is determined, and the slot that overlaps with the timing Or you may transmit PUCCH by a subslot.
  • FIG. 34 shows an example of the timing of transmitting HARQ-ACK when the CC that transmits PUCCH is updated from SCell#2 to SpCell. The counting of k values is done in slots in SCell#2.
  • FIG. 35 is a diagram showing an example (6) of HARQ-ACK offsets according to the embodiment of the present invention. As shown in FIG. 35, assuming a CC that actually transmits PUCCH, timing for transmitting HARQ-ACK may be determined, and PUCCH may be transmitted in slots or subslots that overlap with the timing. FIG. 35 shows an example of the timing of transmitting HARQ-ACK when the CC that transmits PUCCH is updated from SCell#2 to SpCell. The counting of k values is done in slots in the SpCell.
  • PUCCH carrier switching (RRC, MAC-CE and / or DCI to be instructed CC to transmit PUCCH) is limited to the terminal 20 is set, for SCell other than SpCell and PUCCH-SCell PUCCH- Config may be set. However, it may be limited to SCells corresponding to CCs included in a CC list that is a transition destination of PUCCH carrier switching set in a higher layer.
  • PUCCH-Config may be set to a maximum of one additional SCell, PUCCH-Config may be configured for a maximum of one serving cell per FR.
  • terminal 20 can flexibly set the transition destination carrier for PUCCH carrier switching. Also, it is possible to clarify PUCCH transmission power control when PUCCH carrier switching is performed. Also, it is possible to clarify the timing of transmitting HARQ-ACK when PUCCH carrier switching is performed even if the SCSs are different.
  • the base stations 10 and terminals 20 contain the functionality to implement the embodiments described above. However, each of the base station 10 and the terminal 20 may have only the functions proposed in any of the embodiments.
  • FIG. 36 is a diagram showing an example of the functional configuration of the base station 10.
  • the base station 10 has a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 36 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary.
  • the transmitting unit 110 and the receiving unit 120 may be called a communication unit.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and wirelessly transmitting the signal.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, higher layer information from the received signals.
  • the transmitting unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DL data, etc. to the terminal 20 . Also, the transmission unit 110 transmits the setting information and the like described in the embodiment.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads them from the storage device as necessary.
  • the control unit 140 performs overall control of the base station 10 including control related to signal transmission/reception, for example. It should be noted that the functional unit related to signal transmission in control unit 140 may be included in transmitting unit 110 , and the functional unit related to signal reception in control unit 140 may be included in receiving unit 120 . Also, the transmitting unit 110 and the receiving unit 120 may be called a transmitter and a receiver, respectively.
  • FIG. 37 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 has a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 37 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary.
  • the transmitting unit 210 and the receiving unit 220 may be called a communication unit.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal. Also, the transmitting unit 210 transmits HARQ-ACK, and the receiving unit 220 receives the setting information and the like described in the embodiment.
  • the setting unit 230 stores various types of setting information received from the base station 10 by the receiving unit 220 in the storage device, and reads them from the storage device as necessary.
  • the setting unit 230 also stores preset setting information.
  • the control unit 240 performs overall control of the terminal 20 including control related to signal transmission/reception. It should be noted that the functional unit related to signal transmission in control unit 240 may be included in transmitting unit 210 , and the functional unit related to signal reception in control unit 240 may be included in receiving unit 220 . Also, the transmitting section 210 and the receiving section 220 may be called a transmitter and a receiver, respectively.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • the base station 10, the terminal 20, etc. may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 38 is a diagram illustrating an example of a hardware configuration of base station 10 and terminal 20 according to an embodiment of the present disclosure.
  • the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. good too.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the base station 10 and terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • Each function of the base station 10 and the terminal 20 is performed by the processor 1001 performing calculations and controlling communication by the communication device 1004 by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002. or by controlling at least one of data reading and writing in the storage device 1002 and the auxiliary storage device 1003 .
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the control unit 140 , the control unit 240 and the like described above may be implemented by the processor 1001 .
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • control unit 140 of base station 10 shown in FIG. 36 may be implemented by a control program stored in storage device 1002 and operated by processor 1001 .
  • the control unit 240 of the terminal 20 shown in FIG. 37 may be implemented by a control program stored in the storage device 1002 and operated by the processor 1001.
  • FIG. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the storage device 1002 is a computer-readable recording medium, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the storage device 1002 can store executable programs (program code), software modules, etc. for implementing a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of storage device 1002 and secondary storage device 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the transceiver may be physically or logically separate implementations for the transmitter and receiver.
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the terminal 20 include hardware such as microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), and FPGAs (Field Programmable Gate Arrays). , and part or all of each functional block may be implemented by the hardware.
  • processor 1001 may be implemented using at least one of these pieces of hardware.
  • a receiving unit that receives control information and data from a base station, and a control unit that determines a carrier for transmitting an uplink control channel based on the control information and a transmission unit configured to transmit information related to retransmission control of the data on the determined carrier to the base station via the uplink control channel, wherein the control unit selects among all the set carriers
  • a terminal is provided that determines one of the carriers as a carrier for transmitting the uplink control channel.
  • terminal 20 can flexibly set the transition destination carrier for PUCCH carrier switching. That is, in a radio communication system, it is possible to improve the flexibility of settings related to transmission of uplink control channels.
  • the control unit may determine a carrier for transmitting the uplink control channel from carriers included in a list among all configured carriers.
  • the control unit determines, as a carrier for transmitting the uplink control channel, the earliest carrier capable of transmitting the uplink control channel after a certain period of time has passed since the receiving unit received the control information and the data. may With this configuration, terminal 20 can flexibly set the carrier to which PUCCH carrier switching transitions, thereby reducing signaling.
  • the control unit may determine a carrier for transmitting the uplink control channel based on the last control information in time and frequency directions. .
  • terminal 20 can flexibly set the carrier to which PUCCH carrier switching transitions.
  • the control unit may determine the carrier indicated by the control information as a carrier for transmitting the uplink control channel.
  • terminal 20 can flexibly set the carrier to which PUCCH carrier switching transitions.
  • a receiving procedure for receiving control information and data from a base station a control procedure for determining a carrier for transmitting an uplink control channel based on the control information; a transmission procedure for transmitting information related to retransmission control of the data on the selected carrier to the base station via the uplink control channel; and transmitting the uplink control channel using one of all configured carriers.
  • a communication method is provided in which a terminal executes a procedure for determining a carrier.
  • terminal 20 can flexibly set the transition destination carrier for PUCCH carrier switching. That is, in a radio communication system, it is possible to improve the flexibility of settings related to transmission of uplink control channels.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described using functional block diagrams for convenience of explanation of processing, such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are stored in random access memory (RAM), flash memory, read-only memory, respectively. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other appropriate storage medium.
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may also be called an RRC message, for example, RRC It may be a connection setup (RRC Connection Setup) message, an RRC connection reconfiguration message, or the like.
  • Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system) system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other suitable systems and extended It may be applied to at least one of the next generation systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
  • a specific operation performed by the base station 10 in this specification may be performed by its upper node in some cases.
  • various operations performed for communication with terminal 20 may be performed by base station 10 and other network nodes other than base station 10 (eg, but not limited to MME or S-GW).
  • base station 10 e.g, but not limited to MME or S-GW
  • the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals, etc. described in the present disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination in the present disclosure may be performed by a value represented by 1 bit (0 or 1), may be performed by a boolean value (Boolean: true or false), or may be performed by comparing numerical values (e.g. , comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station base station
  • base station fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH:
  • RRH indoor small base station
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems serving communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • the terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station may have the functions that the above-described user terminal has.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed or that the first element must precede the second element in any way.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be of a fixed length of time (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transceiver It may indicate at least one of certain filtering operations performed in the frequency domain, certain windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • transceiver It may indicate at least one of certain filtering operations performed in the frequency domain, certain windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • one slot or one minislot may be called a TTI.
  • TTI Transmission Time Interval
  • at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. may be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. may be called.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a bandwidth part) may represent a subset of contiguous common resource blocks (RBs) for a certain numerology on a certain carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for terminal 20 within one carrier.
  • At least one of the configured BWPs may be active, and the terminal 20 may not expect to transmit or receive a given signal/channel outside the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be read as "BWP”.
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • base station 110 transmitting unit 120 receiving unit 130 setting unit 140 control unit 20 terminal 210 transmitting unit 220 receiving unit 230 setting unit 240 control unit 30 core network 1001 processor 1002 storage device 1003 auxiliary storage device 1004 communication device 1005 input device 1006 output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、制御情報及びデータを基地局から受信する受信部と、上り制御チャネルを送信するキャリアを、前記制御情報に基づいて決定する制御部と、前記決定されたキャリアにおいて前記データの再送制御に係る情報を前記上り制御チャネルを介して前記基地局に送信する送信部とを有し、前記制御部は、設定されたすべてのキャリアのうちいずれかのキャリアを、前記上り制御チャネルを送信するキャリアとして決定する。

Description

端末及び通信方法
 本発明は、無線通信システムにおける端末及び通信方法に関する。
 3GPP(3rd Generation Partnership Project)では、システム容量の更なる大容量化、データ伝送速度の更なる高速化、無線区間における更なる低遅延化等を実現するために、5GあるいはNR(New Radio)と呼ばれる無線通信方式(以下、当該無線通信方式を「NR」という。)の検討が進んでいる。5Gでは、10Gbps以上のスループットを実現しつつ無線区間の遅延を1ms以下にするという要求条件を満たすために、様々な無線技術及びネットワークアーキテクチャの検討が行われている(例えば非特許文献1)。
 さらに、3GPP標準化において、URLLC(Ultra-Reliable and Low Latency Communications)技術の拡張に関して、PUCCH(Physical Uplink Control Channel)キャリアスイッチング(carrier switching)が検討されている。例えば、PUCCHキャリアスイッチングは、TDD(Time Division Duplex)方式において、HARQ-ACK(Hybrid Automatic Repeat Request Acknowledgement)フィードバックのレイテンシを削減する方法として検討されている(例えば非特許文献2)。
3GPP TS 38.300 V16.4.0 (2020-12) 3GPP TSG RAN Meeting #88e、RP-201310、Electronic meeting、June 29-July 3,2020
 PUCCHリソースは、プライマリセル、プライマリセカンダリセルグループセル又はPUCCHセカンダリセルに設定される。端末は、プライマリセル、プライマリセカンダリセルグループセル又はPUCCHセカンダリセル以外ではPUCCHを送信することはできなかった。いずれのセルでPUCCHを送信するかは予め規定されており、柔軟に変更することは困難であった。
 本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、上り制御チャネルの送信に係る設定の柔軟性を向上させることを目的とする。
 開示の技術によれば、制御情報及びデータを基地局から受信する受信部と、上り制御チャネルを送信するキャリアを、前記制御情報に基づいて決定する制御部と、前記決定されたキャリアにおいて前記データの再送制御に係る情報を前記上り制御チャネルを介して前記基地局に送信する送信部とを有し、前記制御部は、設定されたすべてのキャリアのうちいずれかのキャリアを、前記上り制御チャネルを送信するキャリアとして決定する端末が提供される。
 開示の技術によれば、無線通信システムにおいて、上り制御チャネルの送信に係る設定の柔軟性を向上させることができる。
本発明の実施の形態における無線通信システムの例(1)を説明するための図である。 本発明の実施の形態における無線通信システムの例(2)を説明するための図である。 本発明の実施の形態におけるPUCCH送信の例を説明するためのフローチャートである。 本発明の実施の形態におけるPUCCH送信の例(1)を示す図である。 本発明の実施の形態におけるPUCCH送信の例(2)を示す図である。 本発明の実施の形態におけるPUCCH送信の例(3)を示す図である。 本発明の実施の形態におけるPUCCH送信の例(4)を示す図である。 本発明の実施の形態におけるPUCCH送信の例(5)を示す図である。 本発明の実施の形態におけるPUCCH送信の例(6)を示す図である。 本発明の実施の形態におけるPUCCH送信の例(7)を示す図である。 本発明の実施の形態におけるMAC-CEの例を示す図である。 本発明の実施の形態におけるPUCCH送信の例(8)を示す図である。 本発明の実施の形態におけるPUCCH送信の例(9)を示す図である。 本発明の実施の形態におけるPUCCHキャリアスイッチングの例(1)を示す図である。 本発明の実施の形態におけるPUCCHキャリアスイッチングの例(2)を示す図である。 本発明の実施の形態におけるPUCCHキャリアスイッチングの例(3)を示す図である。 本発明の実施の形態におけるPUCCHキャリアスイッチング無効化の例を示す図である。 本発明の実施の形態におけるPUCCH送信電力制御の例(1)を示す図である。 本発明の実施の形態におけるPUCCH送信電力制御の例(2)を示す図である。 本発明の実施の形態におけるPUCCH送信電力制御の例(3)を示す図である。 本発明の実施の形態におけるPUCCH送信電力制御の例(4)を示す図である。 本発明の実施の形態におけるPUCCH送信電力制御の例(5)を示す図である。 本発明の実施の形態における空間関係の例を示す図である。 本発明の実施の形態におけるPUCCH送信電力制御の例(6)を示す図である。 本発明の実施の形態におけるUCI多重の例(1)を示す図である。 本発明の実施の形態におけるUCI多重の例(2)を示す図である。 本発明の実施の形態におけるUCI多重の例(3)を示す図である。 本発明の実施の形態におけるUCI多重の例(4)を示す図である。 本発明の実施の形態におけるUCI多重の例(5)を示す図である。 本発明の実施の形態におけるHARQ-ACKオフセットの例(1)を示す図である。 本発明の実施の形態におけるHARQ-ACKオフセットの例(2)を示す図である。 本発明の実施の形態におけるHARQ-ACKオフセットの例(3)を示す図である。 本発明の実施の形態におけるHARQ-ACKオフセットの例(4)を示す図である。 本発明の実施の形態におけるHARQ-ACKオフセットの例(5)を示す図である。 本発明の実施の形態におけるHARQ-ACKオフセットの例(6)を示す図である。 本発明の実施の形態における基地局10の機能構成の一例を示す図である。 本発明の実施の形態における端末20の機能構成の一例を示す図である。 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用されてよい。当該既存技術は、例えば既存のNRあるいはLTEであるが、既存のNRあるいはLTEに限られない。
 図1は、本発明の実施の形態における無線通信システムの例(1)を説明するための図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロットであってもよいし、TTIがサブフレームであってもよい。
 基地局10は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて端末20と通信を行うキャリアアグリゲーション(CA:Carrier Aggregation)を行うことが可能である。キャリアアグリゲーションでは、1つのPCell(Primary Cell, プライマリセル)と1以上のSCell(Secondary Cell, セカンダリセル)が使用される。
 基地局10は、同期信号及びシステム情報等を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHあるいはPDSCHにて送信され、ブロードキャスト情報ともいう。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。なお、ここでは、PUCCH(Physical Uplink Shared Channel)、PDCCH(Physical Downlink Control Channel)等の制御チャネルで送信されるものを制御信号と呼び、PUSCH(Physical Uplink Shared Channel)、PDSCH(Physical Downlink Shared Channel)等の共有チャネルで送信されるものをデータと呼んでいるが、このような呼び方は一例である。
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。なお、端末20をUEと呼び、基地局10をgNBと呼んでもよい。
 図2は、本発明の実施の形態における無線通信システムの例(2)を説明するための図である。図2は、デュアルコネクティビティ(DC:Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示されるとおり、マスタノード(MN:Master Node)となる基地局10Aと、セカンダリノード(SN:Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワーク30に接続される。端末20は基地局10Aと基地局10Bの両方と通信を行うことができる。
 MNである基地局10Aにより提供されるセルグループをマスタセルグループ(MCG:Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをセカンダリセルグループ(SCG:Secondary Cell Group)と呼ぶ。また、デュアルコネクティビティにおいて、MCGは1つのPCellと0以上のSCellから構成され、SCGは1つのPSCell(Primary SCG Cell)と0以上のSCellから構成される。PCell又はPSCellを、SpCell(Special Cell)と記載してもよい。
 なお、デュアルコネクティビティは2つの通信規格を利用した通信方法であってもよく、どのような通信規格が組み合わされてもよい。例えば、当該組み合わせは、NRと6G規格、LTEと6G規格のいずれでもよい。また、デュアルコネクティビティは3以上の通信規格を利用した通信方法であってもよく、デュアルコネクティビティとは異なる他の名称で呼ばれてもよい。
 本実施の形態における処理動作は、図1に示されるシステム構成で実行されてもよいし、図2に示されるシステム構成で実行されてもよいし、これら以外のシステム構成で実行されてもよい。
 3GPP標準化において、強化されたIoT(Internet of Things)及びURLLC(Ultra-reliable and low latency communication)をNRでサポートすることが検討されている。さらに、URLLCの要件に対応するため、HARQ-ACKフィードバックの強化が検討されている。例えば、HARQ-ACKフィードバックのレイテンシを改善するため、PUCCHキャリアスイッチングが検討されている。
 ここで、PUCCHリソースは、PCell、PSCell又はPUCCH-SCellに設定される。端末は、PCell、PSCell又はPUCCH-SCell以外ではPUCCHを送信することはできなかった。いずれのセルでPUCCHを送信するかは予め規定されており、柔軟に変更することは困難であった。
 例えば、以下のような設定がされたとする。
PUCCHグループ1:CC0=PCell、CC1=SCell
PUCCHグループ2:CC2=PUCCH-SCell、CC3=SCell
 このとき、PUCCHグループ1の場合、CC0でのみPUCCHを送信することが可能であり、CC1でPUCCHを送信することはできなかった。PUCCHグループ2の場合、CC2でのみPUCCHを送信することが可能であり、CC3でPUCCHを送信することはできなかった。また、PUCCH-SCellは、イントラバンドCAでは設定できないため、イントラバンドにおいていずれのCCでPUCCHを送信するか柔軟に変更することは困難であった。
 そこで、PUCCHを送信するCCを柔軟に選択して、いずれのCCでPUCCHを送信するかが規定されてもよい。例えば、PUCCHをスケジューリングするDCI(Downlink Control Information)による動的な通知に基づくPUCCHキャリアスイッチングがサポートされてもよい。また、例えば、セミスタティックな設定に基づくPUCCHキャリアスイッチングがサポートされてもよい。PUCCHキャリアスイッチングとは、PUCCHを送信するキャリア、CC又はセルを切り替えることを意味してもよい。
 例えば、当該セミスタティックな設定は、RRC(Radio Resource Control)により設定されるPUCCHセルのタイミングパターンに基づいてもよいし、異なるニューメロロジあるいはサブキャリア間隔を有するセル間におけるPUCCHキャリアスイッチングがサポートされてもよい。PUCCHセルとは、PUCCHを送信可能なセルであってもよい。
 また、PUCCHセルの最大数が規定されてもよい。また、動的な設定と、セミスタティックな設定とは、統合されてPUCCHキャリアスイッチングに適用されてもよい。また、PUCCHキャリアスイッチングと、SPS(Semi-persistent)HARQ-ACKの延期とは、統合されて適用されてもよい。
 図3は、本発明の実施の形態におけるPUCCH送信の例を説明するためのフローチャートである。ステップS1において、端末20は、DCI及びPDSCHを基地局10から受信する。続くステップS2において、端末20は、受信したPDSCHに対応するHARQ-ACKを送信するPUCCHを決定する。端末20は、PUCCHを送信するセル又はキャリア、PUCCHを送信するリソース及びPUCCHを送信するときの送信電力を、基地局10から受信した制御情報に基づいて決定してもよい。当該制御情報は、例えば、RRC、MAC-CE及び/又はDCIであってもよい。以下、RRC、MAC-CE及びDCIは、互いに置換されてもよい。続くステップS3において、端末20は、決定したPUCCHを基地局10に送信する。
 例えば、基地局10は、PUCCHの送信先CCを、RRC、MAC-CE(Medium Access Control - Control Element)又はDCIを用いて指示してもよい。端末20は、指示されたCCでPUCCHを送信してもよい。
 例えば、RRC、MAC-CE又はDCIによって、PCell又はPSCellで送信されるPUCCH#1と、PUCCH-SCellで送信されるPUCCH#2とが、切り替えられてもよい。
 図4は、本発明の実施の形態におけるPUCCH送信の例(1)を示す図である。図4に示されるように、PCell、PSCell又はPUCCH-SCellに限定されず、PUCCHを送信するCCの切り替えが、RRC、MAC-CE及び/又はDCIによって指示されてもよい。例えば、設定された全CCから、RRC、MAC-CE及び/又はDCIによって、PUCCHを送信するCCが指示されてもよい。また、例えば、設定された全CCのうち、一部のCCを含む所定の1又は複数のCCリストを予め選択又は設定し、選択又は設定したCCリストに含まれるCCの中から、RRC、MAC-CE及び/又はDCIによってPUCCHを送信するCCが指示されてもよい。
 設定された全CCのうち、一部のCCを含む所定の1又は複数のCCリストは、所定のルールに基づいて選択又は設定されてもよい。例えば、当該所定のルールは、CCIDの小さいものから所定数のCCを一つのリストとしてもよい。当該所定数は、仕様により規定されてもよいし、上位レイヤにより設定されてもよいし、UE能力報告により端末20から基地局10に通知されてもよい。
 また、例えば、設定された全CCのうち、一部のCCを含む所定の1又は複数のCCリストは、上位レイヤにより設定されてもよい。CCリストあたりの設定可能な最大CC数は、UE能力報告により端末20から基地局10に通知されてもよい。
 なお、PUCCHキャリアスイッチングに関して、以下に示される1)及び2)の双方を想定してもよい。
1)PUCCHを送信するキャリアが動的(dynamic)に指示される場合。
2)PUCCHを送信するキャリアがセミスタティック(Semi-static)に指示される場合。例えば、HARQフィードバックタイミングインジケータで指示されるPUCCHを送信するスロットでPUCCHが送信できない場合のみPUCCHキャリアスイッチングを行う場合。
 上述のようにPUCCHを送信することで、CCごとにUEが使用するリソースの混雑度合いは異なるため、リソース分散が可能となる。また、CCごとにTDD設定が異なる場合があるため、より柔軟なタイミングでPUCCHを送信することができる。
 図5は、本発明の実施の形態におけるPUCCH送信の例(2)を示す図である。UCIをまとめて送信するPUCCHのCCが、MAC-CE及び/又はDCIによって、所定のCC候補例えば図5に示される第1のCCリストから指示又は選択されてもよい。第1のCCリストを設定又は規定することで、MAC-CE及び/又はDCIによって指示可能なCCの候補を制限することができるため、シグナリングのオーバヘッドを削減し、UEの複雑さを低減することができる。
 また、図5に示されるように、いずれのCCのUCI(例えばHARQ、CSI等)をまとめてPUCCHで送信するかを通知する第2のCCリストが基地局10から端末20に通知されてもよいし、通知されなくてもよい。第2のリストが通知されない場合、端末20は、全CCのUCIをまとめてPUCCHで送信してもよい。当該全CCは、SpCell及びSCellを含む全CCであってもよいし、PUCCHセルグループ内の全CCであってもよい。
 図6は、本発明の実施の形態におけるPUCCH送信の例(3)を示す図である。図6に示されるように、CCごとにTDD設定が異なる場合がある。HARQタイミングとして指示されるスロットがDLの場合、当該スロットにおいて他のCCにULが存在すれば、当該他のCCにおいてHARQ-ACKを送信することで、従来よりもHARQ遅延を低減することが可能となり、URLLC性能を向上させることができる。
 例えば、図6に示されるように、PUCCHを送信するSpCellにおいて、DCIに含まれるHARQフィードバックタイミングインジケータ(PDSCH to HARQ feedback timing indicator)により指示されるスロットが利用不可の場合、PUCCHを送信するCCをSCell#1に切り替えてもよい。当該利用不可の条件は、例えば、DLスロットであること、スペシャルサブフレームでPUCCHのULシンボルが利用不可であること、ULスロットであるが他のチャネルに既に割り当てられている等であってもよい。
 本発明の実施の形態において、PUCCHを送信するCCをRRCにより予め設定するか、又は端末20が利用可能なCCを探索することで、MAC-CE又はDCIによるPUCCHキャリアスイッチングの指示がない場合であっても、PUCCHを送信するCCを切り替えることができる。また、HARQフィードバックタイミングインジケータによって指示されるスロットと同一のスロット又は異なるSCSの場合の少なくとも一部が重複するスロットにおいて、PUCCHを送信してもよい。複数のCCが利用可能である場合、CCに予め優先順位が規定又は設定されてもよい。例えば、CCインデックスの小さいほうが優先されて、PUCCHが送信されてもよい。切り替えられるPUCCHを送信するCCの候補は、予め上位レイヤにより設定されてもよい。これにより、端末20に送信して欲しくないCCにおいてPUCCHが送信されることを防ぐことができる。
 図7は、本発明の実施の形態におけるPUCCH送信の例(4)を示す図である。図8は、本発明の実施の形態におけるPUCCH送信の例(5)を示す図である。PUCCHを送信するCCにおいて、HARQフィードバックタイミングインジケータで指示されるスロットが利用不可である場合、端末20はPUCCHを送信するCCを切り替えてもよい。さらに、図7又は図8に示されるように、他に利用可能なCCが同一のスロット又は少なくとも一部が重複するスロットにない場合、端末20はHARQ-ACKを送信するスロットを変更してもよい。図7は時間領域で早い利用可能なスロットに変更する例であり、図8は時間領域で遅い利用可能なスロットに変更する例である。または、他に利用可能なCCがないケースを端末20は想定しなくてもよい。
 また、基地局10がRRC、MAC-CE及び/又はDCIによりPUCCHを送信するCCを端末20に指示する場合、基地局10及び端末20は、先にPUCCHを送信するCCを決定して、その後PUCCHを送信するスロットを決定してもよい。また、基地局10がRRC、MAC-CE及び/又はDCIによりPUCCHを送信するCCを端末20に指示する場合、基地局10及び端末20は、先にPUCCHを送信するスロットを決定して、その後PUCCHを送信するCCを決定してもよい。
 図9は、本発明の実施の形態におけるPUCCH送信の例(6)を示す図である。図9に示されるように、端末20は、PDSCHを受信後、所定時間経過後に最も早くPUCCHを送信可能なスロット及びCCにおいて、HARQ-ACKを送信してもよい。なお、HARQ-ACKは、HARQフィードバックを意味してもよいし、ACKすなわち肯定的応答又はNACKすなわち否定的応答を含んでもよい。UEは、上位レイヤから動作が設定された場合、DCIフォーマット1_0、DCIフォーマット1_1及びDCIフォーマット1_2の一部又は全部のHARQフィードバックタイミングインジケータフィールドが存在しないとしてもよい。HARQフィードバックタイミングインジケータフィールドが存在しないDCIでスケジューリングされたPDSCHのHARQ-ACKは、PDSCHを受信後、所定時間経過後に最も早くPUCCHを送信可能なスロット及びCCにおいて、HARQ-ACKを送信してもよい。図9のような方法では、HARQフィードバックの遅延が最小化され、HARQフィードバックタイミングインジケータ等のシグナリングも不要となるので、DCIオーバヘッドを削減できる。
 図9に示される例では、PDSCHを受信後、所定時間経過後の直近のスロットで送信可能なSCell#1においてPUCCHを端末20は送信している。なお、複数のCCが利用可能である場合、予めCC間の優先順位が規定又は設定されてもよい。例えば、CCインデックスの小さいCCを優先してPUCCH送信に使用してもよい。また、PUCCHの切り替え先のCCの候補は、予め上位レイヤにより設定されてもよい。これにより、端末20に送信して欲しくないCCにおいてPUCCHが送信されることを防ぐことができる。
 例えば、基地局10は、PUCCHを送信するCCをDCIで端末20に指示又は選択してもよい。以下1)-3)に示されるようにDCIの所定フィールドを用いて、PUCCHを送信するCCを指示してもよい。
1)PUCCHを送信するCCを指示する新たなCC指示フィールドが規定されてもよい。例えば、DLをスケジューリングするDCIである、DCIフォーマット1_0、DCIフォーマット1_1及びDCIフォーマット1_2の一部又は全部に、新たなCC指示フィールドが規定されてもよい。表1は、新たなCC指示フィールドの例である。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、DCIコードポイントによって、PUCCHを送信するCCが指定される。表1は、CC指示フィールドは2ビットの例を示す。各DCIコードポイントに関連付けられるCCインデックスは、RRC又はMAC-CEにより通知されてもよい。
2)PUCCHを送信するCCを既存のDCIフィールドで指示してもよい。例えば、PRI(PUCCH resource indicator)フィールドにより指示されてもよい。表2は、PRIフィールドによりPUCCHを送信するCCを指示する例である。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、各PUCCHリソースに、PUCCHを送信するCCが関連付けられてもよい。上位レイヤによって、各PUCCHリソースに関連付けられる送信先CCが設定されてもよい。
3)PUCCHを送信するCCを指示するため、既存のDCIフィールドを利用してもよい。例えば、キャリアインジケータフィールド(CIF, Carrier indicator field)を用いて、PUCCHを送信するCCが指示されてもよい。例えば、PDSCHがクロスキャリアスケジューリングされるか否かによらず、PUCCHキャリアスイッチングが設定される場合、CIFが存在するとしてもよい。基地局10は、CIFを用いて、PUCCHを送信するCCを端末20に指示してもよい。
 なお、クロスキャリアスケジューリングが設定される場合、共通のCIFを使用して、PDSCHがスケジューリングされるCCと、PUCCHを送信するCCとが指示されてもよい。あるいは、CIFを使用してPDSCHがスケジューリングされるCCが指示され、PUCCHを送信するCCは上記1)又は上記2)の方法で指示されてもよい。または、CIFを拡張し、第1のCIFを使用してPDSCHがスケジューリングされるCCを指示し、第2のCIFを使用してPUCCHを送信するCCが指示されてもよい。
 図10は、本発明の実施の形態におけるPUCCH送信の例(7)を示す図である。複数のDCIによりトリガ又はスケジューリングされる複数のPDSCHに対応するHARQ-ACKをPUCCHで送信する場合、いずれのDCIで指示されたPUSCHを送信するCCを使用するかが設定又は予め規定されてもよい。例えば、図10に示されるように、時間及び周波数方向のラストDCI(last DCI)に基づいて、PUCCHを送信するCC(図10ではCC0)を決定してもよい。
 図11は、本発明の実施の形態におけるMAC-CEの例を示す図である。基地局10は、PUCCHを送信するCCをMAC-CEで端末20に指示してもよい。図11に示されるように、PUCCHを送信するCCを指示するMAC-CEが規定されてもよい。端末20は、当該MAC-CEで指示されたCCでPUCCHを送信してもよい。セルグループあたり1つの当該MAC-CEによりPUCCHを送信するセルが指示されてもよいし、UEあたり1つの当該MAC-CEによりPUCCHを送信するセルが指示されてもよい。
 図10に示される例では、当該MAC-CEはセルグループインデックスを含んでもよく、セルグループインデックスを示すビットのサイズはセルグループ数に応じて決定されてもよい。また、セルグループ単位でPUCCHを送信するセルを指示しない場合、セルグループインデックスは当該MAC-CEに含まれなくてもよい。例えば、図10に示される例では、最大8セルからPUCCHを送信するセル1つを指示する。端末20は、Cn=1のセルでPUCCHを送信してもよい。また、当該MAC-CEにおいて、セルはビットマップではなく、セルインデックスにより通知されてもよい。例えば、8セルから1つのPUCCHを送信するセルを通知する場合、当該MAC-CEのうち対応するビット幅は3ビットで構成されてもよい。
 図12は、本発明の実施の形態におけるPUCCH送信の例(8)を示す図である。PUCCHキャリアスイッチングを実行するとき、図12に示されるように、MAC-CE及び/又はDCIにより指示されたPUCCHを送信するCCのPUCCHリソースを端末20は使用してもよい。例えば、PRI又はPUCCHを送信するCCを示す情報で指示されたスケジューリングされるセルのPUCCHリソースを端末20は使用してもよい。
 図13は、本発明の実施の形態におけるPUCCH送信の例(9)を示す図である。PUCCHキャリアスイッチングを実行するとき、図13に示されるように、PRI又はPUCCHを送信するCCを示す情報を指示するDCIを受信したCCに設定されるPUCCHリソースを端末20は使用してもよい。例えば、PRI又はPUCCHを送信するCCを示す情報を指示するスケジューリングするセルのPUCCHリソースを端末20は使用してもよい。また、図13に示されるように複数のCCからスケジューリングされたPUCCHを送信する場合、時間及び周波数方向で最後のDCI(ラストDCI)を受信したCCに設定されるPUCCHリソースを端末20は使用してもよい。
 また、PUCCHキャリアスイッチングを実行するとき、ラストDCIがスケジューリングするPDSCHを受信したCCに配置されるPUCCHリソースを端末20は使用してもよい。
 なお、PUCCH-configは、BWP(Bandwidth Part)ごとに設定されてもよい。上述した「CC」は、「CC内のBWP」に置換されてもよい。なお、本発明の実施の形態は、PUCCHキャリアスイッチングが設定された場合に動作するものとしてもよい。また、「PUCCHキャリアスイッチング」は、「RRC、MAC-CE及び/又はDCIでPUCCHを送信するCCを指示されること」と読み替えてもよい。なお、スロットと、サブスロットとは、互いに読み替えてもよい。なお、SUL(Supplementary Uplink)をPUCCHキャリアスイッチングの対象CCに含めてもよいし、含めなくてもよい。SULをPUCCHキャリアスイッチングの対象CCに含まれるか否かを、UE能力報告により端末20から基地局10に報告してもよい。
 本発明の実施の形態は、以下1)及び/又は2)に示されるUE能力を報告した端末20に限定して適用してもよい。
1)PUCCHキャリアスイッチングをサポートするか否かを示すUE能力。例えば、RRC、MAC-CE及び/又はDCIでPUCCHを送信するCCを指示されるか否かを示すUE能力であってもよい。また、MAC-CEでPUCCHを送信するCCを指示されるか否かを示すUE能力であってもよい。また、DCIでPUCCHを送信するCCを指示されるか否かを示すUE能力であってもよい。
2)PUCCHキャリアスイッチングの切り替え先となるCC数。PUCCHキャリアスイッチングの切り替え先となるCCリストあたりの設定可能な最大CC数であってもよい。
 また、UE能力として、PUCCHキャリアスイッチングの切り替え先となるCCを、下記の1又は複数のNRキャリアタイプとして設定してもよい。例えば、PUCCH送信が可能なキャリアタイプを端末20が報告し、当該キャリアタイプにのみPUCCHキャリアがスイッチングされ得るとしてもよい。
 当該1又は複数のNRキャリアタイプは、{FR1 licensed TDD (fr1-NonSharedTDD-r16), FR1 unlicensed TDD (fr1-SharedTDD-r16), FR1 licensed FDD (fr1-NonSharedFDD-r16), FR2(fr2-r16)}であってもよい。
 また、当該1又は複数のNRキャリアタイプは、{FR1-NonSharedTDD, FR1-SharedTDD, FR1-NonSharedFDD, FR2}であってもよい。
 PUCCHを送信するCCの指示の適用タイミング(activation timing)が規定されてもよい。例えば、RRC、MAC-CE及び/又はDCIによりPUCCHを送信するCCが指示されてから、実際にPUCCHキャリアスイッチングが適用されるまでの時間が規定されもよい。
 PUCCHを送信するCCについて、基地局10と端末20は共通認識を有する必要がある。PUCCHを送信するCCの指示の適用タイミングが規定されることにより、例えば、端末20が当該指示の受信に失敗した場合に、基地局10は当該指示が有効になっていないことを認識することができる。
 なお、PUCCHキャリアスイッチングに有効又は無効の状態が存在してもよい。PUCCHを送信するCCの指示を、有効化コマンド(activation command)と呼んでもよいし、当該指示とは別途、当該指示を有効とする有効化コマンドが規定されてもよい。また、当該指示を無効とする無効化コマンド(deactivation command)が規定されてもよい。
 図14は、本発明の実施の形態におけるPUCCHキャリアスイッチングの例(1)を示す図である。図14に示されるように、PUCCHを送信するCCを指示するMAC-CEに対するACKが送信された時点から所定時間経過後、PUCCHを送信するCCの想定が切り替わるとしてもよい。当該所定時間は、例えば、3ms後であってもよいし、3ms後経過後の次のスロットの開始時点までであってもよい。なお、MAC-CEで指示するとは、MAC-CEのみでPUCCHを送信するCCを指示することであってもよいし、MAC-CEで複数のCCを含むCCリストを指示し、DCIで1つのCCが指示されることであってもよい。
 図15は、本発明の実施の形態におけるPUCCHキャリアスイッチングの例(2)を示す図である。図15に示されるように、PUCCHを送信するCCを指示するDCIに対するACK/NACKが送信されるPUCCH/PUSCHの送信以前に、PUCCHを送信するCCの想定が切り替わるとしてもよい。
 図16は、本発明の実施の形態におけるPUCCHキャリアスイッチングの例(3)を示す図である。図16に示されるように、PUCCHを送信するCCを指示するDCIに対するACKが送信された時点から所定時間経過後、PUCCHを送信するCCの想定が切り替わるとしてもよい。当該所定時間は、例えば、3ms後であってもよいし、3ms後経過後の次のスロットの開始時点までであってもよい。
 また、無効化タイミング(deactivation timing)が規定されてもよい。過去に有効化されたPUCCHを送信するCCについて、次にPUCCHを送信するCCが有効化された時点で、過去に有効化されたPUCCHを送信するCCは無効化されたとしてもよい。
 図17は、本発明の実施の形態におけるPUCCHキャリアスイッチング無効化の例を示す図である。無効化コマンドが規定され、無効化コマンドを受信した端末20は、PUCCHキャリアスイッチングが無効化されてもよい。無効化コマンドは、MAC-CEで通知されてもよいし、DCIで指示されてもよい。有効化コマンドを受信後又はMAC-CE及び/DCIでPUCCHを送信するCCの指示後、所定時間又は所定期間経過後に無効化されるとしてもよい。図17に示されるように、無効化期間中は、PCell、PSCell又はPUCCH-SCellでPUCCHを送信する動作にフォールバックしてもよい。
 なお、図14に示されるPUCCHを送信するCCの指示が無効化を示すMAC-CEであった場合、当該MAC-CEに対するACKが送信された時点から所定時間経過後、PUCCHを送信するCCの想定が切り替わるとしてもよい。当該所定時間は、例えば、3ms後であってもよいし、3ms後経過後の次のスロットの開始時点までであってもよい。
 なお、図15に示されるPUCCHを送信するCCの指示が無効化を示すDCIであった場合、当該DCIに対するACK/NACKが送信されるPUCCH/PUSCHの送信以前に、PUCCHを送信するCCの想定が切り替わるとしてもよい。
 なお、図16に示されるPUCCHを送信するCCの指示が無効化を示すDCIであった場合、当該DCIに対するACKが送信された時点から所定時間経過後、PUCCHを送信するCCの想定が切り替わるとしてもよい。当該所定時間は、例えば、3ms後であってもよいし、3ms後経過後の次のスロットの開始時点までであってもよい。
 PUCCH電力制御は、RRC情報要素であるPUCCH-Configに含まれる、pucch-PowerControlと、PUCCH resourceに含まれる、PUCCH spatial relationにより設定される。pucch-PowerControlで、P0、α、パスロスRSのセットを複数設定し、PUCCH spatial relationでいずれかのセットを示すIDを指示してもよい。
 PUCCHキャリアスイッチングが設定された場合、PUCCH電力制御のためのパラメータは、PUCCHを送信するCC(又はBWP)において設定されたものを用いて、PUCCH送信電力を決定してもよい。当該パラメータは、PUCCH-Configに含まれるpucch-PowerControlと、PUCCH resourceに含まれるPUCCH spatial relationであってもよい。
 なお、PUCCHキャリアスイッチングにおけるOL-PC(Open loop power control)及びCL-PC(Closed loop power control)に関して、以下に示される1)及び2)の双方を想定してもよい。
1)PUCCHを送信するキャリアが動的に指示される場合。
2)PUCCHを送信するキャリアがセミスタティックに指示される場合。例えば、HARQフィードバックタイミングインジケータで指示されるPUCCHを送信するスロットでPUCCHが送信できない場合のみPUCCHキャリアスイッチングを行う場合。
 図18は、本発明の実施の形態におけるPUCCH送信電力制御の例(1)を示す図である。PUCCHキャリアスイッチングを実行するとき、図18に示されるように、MAC-CE及び/又はDCIにより指示されたPUCCHを送信するCCのPUCCH電力制御パラメータを端末20は使用してもよい。例えば、PRI又はPUCCHを送信するCCを示す情報で指示されたスケジューリングされるセルのPUCCH電力制御パラメータを端末20は使用してもよい。
 図19は、本発明の実施の形態におけるPUCCH送信電力制御の例(2)を示す図である。PUCCHキャリアスイッチングを実行するとき、図19に示されるように、PRI又はPUCCHを送信するCCを示す情報を指示するDCIを受信したCCに設定されるPUCCH電力制御パラメータを端末20は使用してもよい。例えば、PRI又はPUCCHを送信するCCを示す情報を指示するスケジューリングするセルのPUCCH電力制御パラメータを端末20は使用してもよい。また、図19に示されるように複数のCCからスケジューリングされたPUCCHを送信する場合、時間及び周波数方向で最後のDCI(ラストDCI)を受信したCCに設定されるPUCCH電力制御パラメータを端末20は使用してもよい。
 また、PUCCHキャリアスイッチングを実行するとき、ラストDCIがスケジューリングするPDSCHを受信したCCに配置されるPUCCH電力制御パラメータを端末20は使用してもよい。
 図20は、本発明の実施の形態におけるPUCCH送信電力制御の例(3)を示す図である。図20に示されるように、PUCCHキャリアスイッチングを実行する場合又は指示された場合、端末20はTPC(Transmission Power Control)コマンド累積値をリセットしてもよいし、値を0にしてもよい。例えば、CC0におけるPUCCHのTPCコマンド累積値は、CC1のPUCCHのTPCコマンド累積値とは、周波数及び伝播経路が異なるため、異なる値としてもよい。
 図21は、本発明の実施の形態におけるPUCCH送信電力制御の例(4)を示す図である。図21に示されるように、PUCCHキャリアスイッチングを実行する前後で又は指示される前後で、端末20はTPCコマンド累積値を積算してもよい。
 図22は、本発明の実施の形態におけるPUCCH送信電力制御の例(5)を示す図である。図22に示されるように、CCごとにCL-PCの累積値を保持してもよい。例えば、CC0のPUCCHリソースに対してTPCコマンドを指示された場合、CC0のPUCCHのTPCコマンドの累積値として保持してもよいし、CC1のPUCCHリソースに対してTPCコマンドを指示された場合、CC1のPUCCHのTPCコマンドの累積値として保持してもよい。図22に示される例では、CC1のPUCCHは送信されない。以降、PUCCHを送信するCCとしてCC1が指示された場合、CC1で累積したTPCコマンドの累積値を用いてPUCCHを送信してもよい。
 図23は、本発明の実施の形態における空間関係の例を示す図である。図23のように、1つの基地局10に送信する場合、ビームすなわち空間関係(SpatialRelation)が異なればパスロスは異なる。また、2つの基地局10に送信する場合、パスロスは異なる。そのため、端末20は、CL-PCの累積値を2通り保持することが可能となっている。
 各PUCCHリソースに対して、1つの空間関係が設定される。さらに、closedLoopIndex={i0,i1}が通知される。i0が通知されるPUCCHリソースと、i1が通知されるPUCCHリソースとは、CL-PCのTPCコマンド累積値を独立して保持する。
 図24は、本発明の実施の形態におけるPUCCH送信電力制御の例(6)を示す図である。PUCCHのclosedLoopIndexは、各PUCCHリソースのPUCCHのspatialRelationの中で設定されるため、上述の本発明の実施の形態により決定されたPUCCHリソースにおいて、当該決定されたPUCCHリソースに設定されたPUCCHのspatialRelationの中で設定されるPUCCHのclosedLoopIndex={i0,i1}を使用するとしてもよい。
 例えば、図24に示されるように、PUCCHキャリアスイッチングの前後のPUCCHリソース間で異なるPUCCHのclosedLoopIndexが設定されている場合、PUCCHキャリアスイッチングに伴い、PUCCHのclosedLoopIndexが切り替えられるとみなしてもよい。
 なお、closedLoopIndex等は、TPCパラメータの一例であり、P0、αの値、PL-RS等、その他のPUCCH電力制御に適用されるRRCパラメータも、上記closedLoopIndexと同様の仕組みで端末20に設定されてもよい。例えば、PUCCHキャリアスイッチングに伴いPUCCHリソースの切り替えが生じた場合は、当該同様の仕組みで、切り替え先のPUCCHリソースに紐づくTPCパラメータを適用してよい。
 図25は、本発明の実施の形態におけるUCI多重の例(1)を示す図である。図25に示されるように、複数のUCIを同一のスロット又はサブスロットで送信することが、HARQフィードバックタイミングインジケータフィールドにより指示された場合、当該複数のUCIは同一のPUCCHリソースに多重されて送信されてもよい。以下、「スロット」は、「サブスロット」に置換されてもよい。
 以下、PUCCHを送信するCCのニューメロロジあるいはサブキャリア間隔(SCS)を考慮して、PUCCHキャリアスイッチングを動的に実行する場合について説明する。
 図26は、本発明の実施の形態におけるUCI多重の例(2)を示す図である。図26に示されるように、CC0とCC1でSCSが異なり、PUCCHを送信するCCのSCSが小さい場合、2つのUCIは同一のスロットで送信されない。CC0ではスロット#nでHARQ-ACK送信が指示され、CC1ではスロット#mでHARQ-ACK送信が指示される。図26に示されるケースでは、CC0のスロット#nでPUCCHが送信されてもよい。
 図27は、本発明の実施の形態におけるUCI多重の例(3)を示す図である。図27に示されるように、CC0とCC1でSCSが異なり、PUCCHを送信するCCのSCSが小さい場合、2つのUCIは同一のスロットで送信されない。CC0ではスロット#nでHARQ-ACK送信が指示され、CC1ではスロット#m+1でHARQ-ACK送信が指示される。図27に示されるケースでは、CC0のスロット#nでPUCCHが送信されてもよい。
 図28は、本発明の実施の形態におけるUCI多重の例(4)を示す図である。図28に示されるように、CC0とCC1でSCSが異なり、PUCCHを送信するCCのSCSが大きい場合、2つのUCIは同一のスロットで送信されない。CC0ではスロット#nでHARQ-ACK送信が指示され、CC1ではスロット#mでHARQ-ACK送信が指示される。図28に示されるケースでは、CC1のスロット#mでPUCCHが送信されてもよい。
 図29は、本発明の実施の形態におけるUCI多重の例(5)を示す図である。図29に示されるように、CC0とCC1でSCSが異なり、PUCCHを送信するCCのSCSが大きい場合、2つのUCIは同一のスロットで送信されない。CC0ではスロット#nでHARQ-ACK送信が指示され、CC1ではスロット#m+1でHARQ-ACK送信が指示される。図29に示されるケースでは、CC1のスロット#m+1でPUCCHが送信されてもよい。
 UCIが、同一のPUCCHリソースで多重される条件は、以下1)-3)に示される条件であってもよい。
1)各CCで指示された時点のPUCCHのスロット又はサブスロットの少なくとも一部が重複する場合。指示された時点のPUCCHのCCにおいて、PUCCHリソースのスロット又はサブスロットの少なくとも一部が重複する場合、UCIは多重されてもよい。過去にPUCCHリソースが指示された時点のPUCCHのCCと、実際にPUCCHを送信するCCはPUCCHキャリアスイッチングが発生する場合異なることも想定されるが、端末20は、PUCCHリソースを指示したあるいはトリガした時点のPUCCHのCCのSCS及びスロット又はサブスロットを、UCIが同一のPUCCHリソースで多重される条件の判定及びUCIの送信タイミングの決定に使用してもよい。
2)実際に送信される時点のPUCCHのスロット又はサブスロットの少なくとも一部が重複する場合。PUCCHを送信するCCが指示され、PUCCHを送信するCCが決定されてから、すなわちPUCCHキャリアスイッチングが実行された後、PUCCHを送信するCCのスロット又はサブスロットと少なくとも一部が重複する場合、UCIは多重されてもよい。PUCCHを送信するCCのスロット又はサブスロットと重複しない場合、UCIは多重されずに送信されてもよい。
3)各CCで指示されるPUCCHリソースのHARQフィードバックタイミングインジケータのスロット又はサブスロットのインデックス値が同一である場合。
 なお、上記では、PUCCHスロット又はサブスロットが重複するか否かによってPUCCHの多重有無を決定したが、PUCCHリソースが時間領域で少なくとも1シンボル重複するか否かでPUCCHの多重有無を端末20は決定してもよい。
 図30は、本発明の実施の形態におけるHARQ-ACKオフセットの例(1)を示す図である。HARQ-ACKを送信するタイミングは、PDSCH受信スロットのオフセットkで通知される。各CCのUCIは、PCell、PSCell又はPUCCH-SCellのいずれかで送信され、いずれのCCのUCIがいずれのCCのPUCCHで送信されるかは予め決定されていてもよい。すなわち、PUCCHを送信するCCは、RRC、MAC-CE又はDCIによって更新されなくてもよい。
 図30に示されるように、PDSCHの受信スロットと同一のPUCCHを送信するCCのスロットあるいはオーバラップするPUCCHを送信するCCのスロットが、k=0に相当し、k=K1となるまで、PUCCHを送信するCCのスロットでカウントしてもよい。例えば、PUCCH-SCellが設定されず、かつPUCCHキャリアスイッチングがされない場合、PDSCHの受信スロットと同一のSpCellのスロットでk値をカウントしてもよい。
 例えば、PUCCH-SCellが設定されない場合、全CCのUCIはSpCellのPUCCHで送信されるため、全CCのHARQ-ACKを送信するタイミングは、SpCellすなわちPUCCHを送信するCCにおけるHARQ-ACKのスロット又はサブスロットのオフセットを指示してもよい。
 例えば、PCellのDCIでスケジューリングされるPCellのPDSCHのHARQ-ACKのタイミングは、PCellにおけるHARQ-ACKのスロット又はサブスロットのオフセットで指示されてもよい。また、SCellのDCIでスケジューリングされるSCellのPDSCHのHARQ-ACKのタイミングは、PCellにおけるHARQ-ACKのスロット又はサブスロットのオフセットで指示されてもよい。
 PUCCHキャリアスイッチングにおいて、PUCCHを送信するCCは、RRC、MAC-CE及び/又はDCIで更新され得る。HARQ-ACKを送信するタイミングの数え方及び指示方法について、以下1)-4)に示されるように、いずれのCCにおけるスロット又はサブスロットとしてHARQ-ACKを送信するタイミングを指示するかが実行されてもよい。
1)各CCのUCIがPCell、PSCell又はPUCCH-SCellのいずれかにおけるPUCCHで送信されると仮定し、HARQフィードバックタイミングインジケータフィールドでスロット又はサブスロットが指示されてもよい。例えば、HARQフィードバックタイミングインジケータフィールドで、スロット又はサブスロットのオフセットを指示するとき、PUCCHキャリアスイッチングを考慮せずにオフセット値が決定されてもよい。
 図31は、本発明の実施の形態におけるHARQ-ACKオフセットの例(2)を示す図である。例えば、PUCCH-SCellが設定されない場合、図31に示されるように、各CCにおいてPCell又はPSCellすなわちSpCellでPUCCHが送信されると仮定してHARQ-ACKを送信するスロット又はサブスロットのオフセットが指示されてもよい。
 なお、図31に示される例では、SCSの異なるSCellにおいてm=0のスロットでPUCCHが送信されるが、m=1のスロットでPUCCHが送信されてもよい。m=0とするかm=1とするかは、仕様により規定されてもよいし、上位レイヤにより指示されてもよい。端末20は、大きいSCSのCCから小さいSCSのCCにおいて送信されるPUCCHのスロットを特定する場合、大きいSCSのスロットが一部でも重複する狭いSCSのスロットでPUCCHを送信してもよい。以下、SCSがCC間で異なる場合、同様にスロットが特定されてもよい。
 また、例えば、PUCCH-SCellが設定される場合、PCell又はPSCellのHARQ-ACKに関して、PCell又はPSCellでPUCCHが送信されると仮定してHARQ-ACKを送信するスロット又はサブスロットが指示されてもよい。PCell及びPSCell以外のCCのHARQ-ACKに関して、PUCCH-SCellでPUCCHが送信されると仮定してHARQ-ACKを送信するスロット又はサブスロットが指示されてもよい。
2)図32は、本発明の実施の形態におけるHARQ-ACKオフセットの例(3)を示す図である。図32に示されるように、PUCCH送信先CCを仮定してHARQ-ACKを送信するスロット又はサブスロットが指示されてもよい。PUCCH送信先CCの決定方法は、本発明の実施の形態におけるPUCCHスイッチングによる方法で決定されてよい。また、UCIをトリガしたDCIの受信時点、PDSCH受信時点、PUCCH送信時点のうち、いずれかの時点におけるPUCCH送信先CCを仮定してHARQ-ACKを送信するスロット又はサブスロットが指示されてもよい。いずれの時点とするかは、仕様で規定されてもよいし、上位レイヤで設定されてもよいし、UE能力報告で通知した時点であってもよい。
3)図33は、本発明の実施の形態におけるHARQ-ACKオフセットの例(4)を示す図である。図33に示されるように、各CCのUCIは、PDSCHを受信したCCを仮定してHARQ-ACKを送信するスロット又はサブスロットが指示されてもよい。
4)UCIをトリガしたDCIを受信したCCを仮定して、HARQ-ACKを送信するスロット又はサブスロットが指示されてもよい。
 図34は、本発明の実施の形態におけるHARQ-ACKオフセットの例(5)を示す図である。図34に示されるように、DCI受信時点又はPDSCH受信時点で送信することになっていたPUCCHを送信するCCを仮定して、HARQ-ACKを送信するタイミングを決定し、当該タイミングと重複するスロット又はサブスロットでPUCCHを送信してもよい。図34では、PUCCHを送信するCCが、SCell#2からSpCellに更新された場合の、HARQ-ACKを送信するタイミングの例を示す。k値のカウントは、SCell#2におけるスロットで行われる。
 図35は、本発明の実施の形態におけるHARQ-ACKオフセットの例(6)を示す図である。図35に示されるように、実際にPUCCHを送信するCCを仮定して、HARQ-ACKを送信するタイミングを決定し、当該タイミングと重複するスロット又はサブスロットでPUCCHを送信してもよい。図35では、PUCCHを送信するCCが、SCell#2からSpCellに更新された場合の、HARQ-ACKを送信するタイミングの例を示す。k値のカウントは、SpCellにおけるスロットで行われる。
 ここで、従来、SpCell及びPUCCH-SCellについてのみ、PUCCH-Configを設定することが可能であった。そこで、PUCCHキャリアスイッチングの遷移先のセルにおいて、SpCell及びPUCCH-SCellのうちいずれかの設定を適用してもよい。
 また、PUCCHキャリアスイッチング(RRC、MAC-CE及び/又はDCIでPUCCHを送信するCCを指示されること)が設定された端末20に限定し、SpCell及びPUCCH-SCell以外のSCellに対してPUCCH-Configを設定してもよい。ただし、上位レイヤで設定されたPUCCHキャリアスイッチングの遷移先となるCCリストに含まれるCCに対応するSCellに限定されてもよい。
 なお、PUCCHキャリアスイッチング(RRC、MAC-CE及び/又はDCIでPUCCHを送信するCCを指示されること)が設定されない場合、最大1つの追加のSCellにPUCCH-Configを設定してもよいし、FRごとに最大1つのサービングセルにPUCCH-Configを設定してもよい。
 上述の実施例により、端末20において、PUCCHキャリアスイッチングの遷移先のキャリアを柔軟に設定することができる。また、PUCCHキャリアスイッチングが実行されるときのPUCCH送信電力制御を明確にすることができる。また、PUCCHキャリアスイッチングが実行されるときのHARQ-ACKを送信するタイミングをSCSが異なる場合であっても明確にすることができる。
 すなわち、無線通信システムにおいて、上り制御チャネルの送信に係る設定の柔軟性を向上させることができる。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実行する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例のうちのいずれかの提案の機能のみを備えることとしてもよい。
 <基地局10>
 図36は、基地局10の機能構成の一例を示す図である。図36に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図36に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部110と受信部120とを通信部と呼んでもよい。
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DLデータ等を送信する機能を有する。また、送信部110は、実施例で説明した設定情報等を送信する。
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。制御部140は、例えば、信号送受信に係る制御を含む基地局10全体の制御等を行う。なお、制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110、受信部120をそれぞれ送信機、受信機と呼んでもよい。
 <端末20>
 図37は、端末20の機能構成の一例を示す図である。図37に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図37に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と受信部220とを通信部と呼んでもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、送信部210はHARQ-ACKを送信し、受信部220は、実施例で説明した設定情報等を受信する。
 設定部230は、受信部220により基地局10から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。制御部240は、信号送受信に係る制御を含む端末20全体の制御等を行う。なお、制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210、受信部220をそれぞれ送信機、受信機と呼んでもよい。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図36及び図37)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図38は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図36に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図37に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、制御情報及びデータを基地局から受信する受信部と、上り制御チャネルを送信するキャリアを、前記制御情報に基づいて決定する制御部と、前記決定されたキャリアにおいて前記データの再送制御に係る情報を前記上り制御チャネルを介して前記基地局に送信する送信部とを有し、前記制御部は、設定されたすべてのキャリアのうちいずれかのキャリアを、前記上り制御チャネルを送信するキャリアとして決定する端末が提供される。
 上記の構成により、端末20において、PUCCHキャリアスイッチングの遷移先のキャリアを柔軟に設定することができる。すなわち、無線通信システムにおいて、上り制御チャネルの送信に係る設定の柔軟性を向上させることができる。
 前記制御部は、設定されたすべてのキャリアのうち、リストに含まれるキャリアの中から、前記上り制御チャネルを送信するキャリアを決定してもよい。当該構成により、端末20において、PUCCHキャリアスイッチングの遷移先のキャリアを柔軟に設定し、シグナリングを削減することができる。
 前記制御部は、前記受信部が前記制御情報及び前記データを受信した時点からある時間が経過した後、最も早く前記上り制御チャネルを送信可能なキャリアを前記上り制御チャネルを送信するキャリアとして決定してもよい。当該構成により、端末20において、PUCCHキャリアスイッチングの遷移先のキャリアを柔軟に設定し、シグナリングを削減することができる。
 前記制御部は、前記受信部が複数の制御情報及び複数のデータを受信した場合、時間及び周波数方向で最後となる制御情報に基づいて、前記上り制御チャネルを送信するキャリアを決定してもよい。当該構成により、端末20において、PUCCHキャリアスイッチングの遷移先のキャリアを柔軟に設定することができる。
 前記制御部は、前記制御情報により指示されたキャリアを前記上り制御チャネルを送信するキャリアとして決定してもよい。当該構成により、端末20において、PUCCHキャリアスイッチングの遷移先のキャリアを柔軟に設定することができる。
 また、本発明の実施の形態によれば、制御情報及びデータを基地局から受信する受信手順と、上り制御チャネルを送信するキャリアを、前記制御情報に基づいて決定する制御手順と、前記決定されたキャリアにおいて前記データの再送制御に係る情報を前記上り制御チャネルを介して前記基地局に送信する送信手順と、設定されたすべてのキャリアのうちいずれかのキャリアを、前記上り制御チャネルを送信するキャリアとして決定する手順とを端末が実行する通信方法が提供される。
 上記の構成により、端末20において、PUCCHキャリアスイッチングの遷移先のキャリアを柔軟に設定することができる。すなわち、無線通信システムにおいて、上り制御チャネルの送信に係る設定の柔軟性を向上させることができる。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末20に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、端末20は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
30    コアネットワーク
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置

Claims (6)

  1.  制御情報及びデータを基地局から受信する受信部と、
     上り制御チャネルを送信するキャリアを、前記制御情報に基づいて決定する制御部と、
     前記決定されたキャリアにおいて前記データの再送制御に係る情報を前記上り制御チャネルを介して前記基地局に送信する送信部とを有し、
     前記制御部は、設定されたすべてのキャリアのうちいずれかのキャリアを、前記上り制御チャネルを送信するキャリアとして決定する端末。
  2.  前記制御部は、設定されたすべてのキャリアのうち、リストに含まれるキャリアの中から、前記上り制御チャネルを送信するキャリアを決定する請求項1記載の端末。
  3.  前記制御部は、前記受信部が前記制御情報及び前記データを受信した時点からある時間が経過した後、最も早く前記上り制御チャネルを送信可能なキャリアを前記上り制御チャネルを送信するキャリアとして決定する請求項1記載の端末。
  4.  前記制御部は、前記受信部が複数の制御情報及び複数のデータを受信した場合、時間及び周波数方向で最後となる制御情報に基づいて、前記上り制御チャネルを送信するキャリアを決定する請求項1記載の端末。
  5.  前記制御部は、前記制御情報により指示されたキャリアを前記上り制御チャネルを送信するキャリアとして決定する請求項1記載の端末。
  6.  制御情報及びデータを基地局から受信する受信手順と、
     上り制御チャネルを送信するキャリアを、前記制御情報に基づいて決定する制御手順と、
     前記決定されたキャリアにおいて前記データの再送制御に係る情報を前記上り制御チャネルを介して前記基地局に送信する送信手順と、
     設定されたすべてのキャリアのうちいずれかのキャリアを、前記上り制御チャネルを送信するキャリアとして決定する手順とを端末が実行する通信方法。
PCT/JP2021/025221 2021-07-02 2021-07-02 端末及び通信方法 WO2023276163A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21948467.2A EP4366417A1 (en) 2021-07-02 2021-07-02 Terminal and communication method
JP2023531338A JPWO2023276163A1 (ja) 2021-07-02 2021-07-02
CN202180099300.8A CN117480833A (zh) 2021-07-02 2021-07-02 终端和通信方法
PCT/JP2021/025221 WO2023276163A1 (ja) 2021-07-02 2021-07-02 端末及び通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025221 WO2023276163A1 (ja) 2021-07-02 2021-07-02 端末及び通信方法

Publications (1)

Publication Number Publication Date
WO2023276163A1 true WO2023276163A1 (ja) 2023-01-05

Family

ID=84691088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025221 WO2023276163A1 (ja) 2021-07-02 2021-07-02 端末及び通信方法

Country Status (4)

Country Link
EP (1) EP4366417A1 (ja)
JP (1) JPWO2023276163A1 (ja)
CN (1) CN117480833A (ja)
WO (1) WO2023276163A1 (ja)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.300, December 2020 (2020-12-01)
3GPP TSG RAN MEETING #88E, RP-201310, 3 July 2020 (2020-07-03)
LENOVO, MOTOROLA MOBILITY: "HARQ-ACK feedback enhancement for IIoT/URLLC", 3GPP DRAFT; R1-2105766, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052011691 *
LG ELECTRONICS: "Discussion on Intra-UE multiplexing/prioritization", 3GPP DRAFT; R1-2105428, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052011441 *
NOKIA: "Enhanced Industrial Internet of Things (IoT) and ultra-reliable and low latency communication (URLLC) support for NR", 3GPP DRAFT; RP-211111, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210614 - 20210618, 7 June 2021 (2021-06-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052025115 *
NTT DOCOMO, INC.: "Discussion on HARQ-ACK feedback enhancements for Rel.17 URLLC", 3GPP DRAFT; R1-2107851, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 6 August 2021 (2021-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052033648 *

Also Published As

Publication number Publication date
CN117480833A (zh) 2024-01-30
JPWO2023276163A1 (ja) 2023-01-05
EP4366417A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
WO2022130645A1 (ja) 端末、基地局及び通信方法
JP7193551B2 (ja) 端末、基地局、通信システム及び通信方法
JP7170842B2 (ja) ユーザ装置及び基地局装置
WO2022259556A1 (ja) 端末及び通信方法
WO2022149286A1 (ja) 端末、基地局及び通信方法
WO2022029983A1 (ja) 端末、基地局装置、及び受信方法
JP7301957B2 (ja) 端末、通信システム及び通信方法
JP7248709B2 (ja) 端末、基地局、通信方法及び無線通信システム
WO2023276163A1 (ja) 端末及び通信方法
WO2023276165A1 (ja) 端末及び通信方法
WO2023276164A1 (ja) 端末及び通信方法
WO2021064973A1 (ja) 端末及び基地局
WO2023276011A1 (ja) 端末及び通信方法
WO2022091561A1 (ja) 端末、及び基地局
WO2022239087A1 (ja) 端末及び通信方法
WO2022244458A1 (ja) 端末及び通信方法
WO2022220040A1 (ja) 端末及び通信方法
WO2022091556A1 (ja) 端末、基地局、及び通信方法
WO2022239089A1 (ja) 端末及び通信方法
WO2022220028A1 (ja) 端末、及び無線通信システム
WO2022264293A1 (ja) 端末及び通信方法
US20240172054A1 (en) Radio base station and terminal
WO2022130644A1 (ja) 端末、基地局及び通信方法
WO2022137472A1 (ja) 端末及び通信方法
WO2022219737A1 (ja) 送信ノード及び送信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948467

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531338

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180099300.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021948467

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021948467

Country of ref document: EP

Effective date: 20240202