WO2023276016A1 - 発電装置、上昇気流発生装置、発電方法及び上昇気流増速方法 - Google Patents

発電装置、上昇気流発生装置、発電方法及び上昇気流増速方法 Download PDF

Info

Publication number
WO2023276016A1
WO2023276016A1 PCT/JP2021/024647 JP2021024647W WO2023276016A1 WO 2023276016 A1 WO2023276016 A1 WO 2023276016A1 JP 2021024647 W JP2021024647 W JP 2021024647W WO 2023276016 A1 WO2023276016 A1 WO 2023276016A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical body
end opening
power
impeller
space
Prior art date
Application number
PCT/JP2021/024647
Other languages
English (en)
French (fr)
Inventor
裕二 大屋
康一 渡邉
Original Assignee
株式会社リアムウィンド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リアムウィンド filed Critical 株式会社リアムウィンド
Priority to JP2023531216A priority Critical patent/JPWO2023276016A1/ja
Priority to PCT/JP2021/024647 priority patent/WO2023276016A1/ja
Publication of WO2023276016A1 publication Critical patent/WO2023276016A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/34Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures
    • F03D9/35Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures within towers, e.g. using chimney effects
    • F03D9/37Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures within towers, e.g. using chimney effects with means for enhancing the air flow within the tower, e.g. by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a power generation device, an updraft generating device, a power generation method, and an updraft acceleration method, and more particularly to a power generation device or the like that generates or accelerates an airflow inside a cylinder by using renewable energy. It is.
  • a power generation device called a so-called solar tower, solar chimney, or the like (hereinafter referred to as a solar tower) has been proposed.
  • a solar tower generates wind power by generating artificial air currents inside by using the physical phenomenon that air with a rise in temperature loses its density and becomes a thermal ascending wind.
  • the mechanism by which the artificial air current is generated is as follows.
  • FIG. 15 is a reference cross-sectional view showing the basic configuration of such a conventional solar tower P100.
  • the solar tower P100 includes a cylindrical body 101, a translucent heat collector 102 laid with a predetermined distance from the ground G in a region around a lower end opening 101a of the cylindrical body 101, and the cylindrical body 101. and an impeller 103 disposed around the lower end opening 101a of the rotor 101a. Rotation of the impeller 103 generates power.
  • the space inside the cylindrical body 101 communicates with the space between the surface of the heat collecting part 102 and the ground G, and the impeller 103 is arranged in this communicated space.
  • the heat collecting part 102 when the heat collecting part 102 is irradiated with sunlight, the air existing between the heat collecting part 102 and the ground G is heated.
  • the height of the ceiling of the heat collecting portion 102 gradually increases toward the central portion, that is, toward the cylindrical body 101, so that the air whose temperature is increased by being heated becomes a thermal ascending air and rises to the lower end of the cylindrical body 101. They gather at the opening 101a.
  • the air that has reached the lower end opening 101a of the cylinder 101 rises inside the cylinder 101 due to the chimney effect and is discharged upward through the upper end opening 101b of the cylinder 101 .
  • the solar tower P100 is a device that uses the energy of air currents artificially generated based on this principle to rotate the impeller 103 to generate wind power. Therefore, in order to make the solar tower P100 a power generator with as high output as possible, the heat collecting part 102 and the ground G should It is effective to raise the temperature of the air existing between and to make the height of the cylinder 101 as high as possible.
  • the inventors of the present invention have developed a solar tower-type power generator that artificially accelerates the airflow by generating an airflow with a vortex at the upper end of the cylindrical body facing the flow direction of the natural airflow to form a low-pressure region. etc. have been proposed (see, for example, Patent Document 1).
  • an object of the present invention is to provide a solar tower type power generation device or the like with higher power generation efficiency than conventional ones.
  • a first aspect of the present invention is a cylindrical body having an upper end opening and a lower end opening, an impeller provided in a gas path passing through the cylindrical body, and a blade that generates power in conjunction with the rotation of the impeller.
  • a power generator for a vehicle wherein the gas rotates the impeller to generate power
  • the low-pressure region is formed in the cylinder in order to increase the rising speed of the rising air current inside the cylinder.
  • a low pressure generating means formed in the internal space of the cylindrical body is provided on the side surface of the cylindrical body.
  • a second aspect of the present invention is the power generator according to the first aspect, wherein the low pressure forming means spatially connects the inner space and the outside of the tubular body to the side surface of the tubular body. It has side openings.
  • a third aspect of the present invention is the power generator according to the second aspect, wherein the side opening includes the internal space and a boundary layer or a peeling shear layer around the side surface outside the cylindrical body. spatially connected with the low-pressure portion formed by the external flow based on .
  • a fourth aspect of the present invention is the power generation device according to the third aspect, wherein the cross-sectional shape of the cylindrical body including the side opening has a corner, and the external flow downstream of the corner has the side opening.
  • a fifth aspect of the present invention is the power generation device according to any one of the second to fourth aspects, wherein the upper end of the tubular body is connected in the circumferential direction.
  • a sixth aspect of the present invention is the power generator according to any one of the first to fifth aspects, wherein a spiral flow is formed in a peripheral region of the lower end opening of the cylindrical body to turn the ascending airflow into a spiral flow. Have the means.
  • a seventh aspect of the present invention is the power generator according to the sixth aspect, wherein the spiral flow forming means is a plurality of guide plates erected toward the cylindrical body, and the plurality of guide plates are: Adjacent guide plates are installed inclined at substantially the same angle in the same rotational direction.
  • An eighth aspect of the present invention is the power generator according to the sixth or seventh aspect, in which the rotational direction of the impeller and the rotational direction of the spiral flow match.
  • a ninth aspect of the present invention is the power generator according to any one of the sixth to eighth aspects, wherein the height of the cylindrical body is lower than the height of the generated spiral flow.
  • a tenth aspect of the present invention is the power generation device according to any one of the first to ninth aspects, wherein a A heat collector is further provided.
  • An eleventh aspect of the present invention is the power generator according to the tenth aspect, wherein the heat collecting section is laid so as to spread asymmetrically from the central axis of the cylindrical body.
  • a twelfth aspect of the present invention is the power generation device according to the tenth or eleventh aspect, further comprising a reflector that reflects sunlight, and the reflector heats the air inside the heat collecting section. .
  • a thirteenth aspect of the present invention is the power generation device according to any one of the tenth to twelfth aspects, wherein the cylindrical body has a translucent portion at least a part of which is translucent;
  • the apparatus further includes a reflecting portion that heats the air under the impeller through the light-transmitting portion.
  • a fourteenth aspect of the present invention is the power generation device according to any one of the tenth to thirteenth aspects, wherein the heat collector has a translucent body through which sunlight passes, and It further has a solar panel installed in contact with the heat collecting part, or has the solar panel as part or all of the ceiling of the heat collecting part, and the heat of the solar panel is transferred to the heat collecting part heats the air inside the
  • a fifteenth aspect of the present invention is the power generation device according to any one of the first to fourteenth aspects, comprising a plurality of the cylinders.
  • a sixteenth aspect of the present invention is the power generation device according to any one of the first to fifteenth aspects, wherein the tubular body is integrated with a building and built adjacent to or adjacent to the building.
  • a seventeenth aspect of the present invention is the power generator according to any one of the first to fifteenth aspects, comprising: a rotating shaft coaxial with the cylindrical body; and a plurality of blades around the side surface of the cylindrical body. and a wind turbine generator that generates power in conjunction with the rotation of the rotating shaft.
  • An eighteenth aspect of the present invention is a cylindrical body having an upper end opening and a lower end opening; , an updraft generating device for generating an updraft by causing gas in a first space, which is a space between the ground and the lower end opening, to flow into a second space, which is an internal space of the cylindrical body,
  • a low-pressure forming means for forming a low-pressure region in the second space is provided on the side surface of the cylindrical body in order to increase the rising speed of the updraft.
  • a nineteenth aspect of the present invention is a cylinder having an upper end opening and a lower end opening, an impeller provided in a gas path passing through the cylinder, and a blade that generates power in conjunction with the rotation of the impeller and a power generator for a vehicle, wherein the gas rotates the impeller to generate power, wherein the power generator accelerates the rising speed of the updraft inside the cylindrical body.
  • a low pressure forming means for forming a low pressure region in the inner space of the cylindrical body is provided on the side surface of the cylindrical body, and the low pressure forming means forms the low pressure region in the inner space. power generation method.
  • a twentieth aspect of the present invention is a cylindrical body having an upper end opening and a lower end opening; , an updraft using an updraft generating device that causes the gas in the first space, which is the space between the ground and the lower end opening, to flow into the second space, which is the internal space of the cylindrical body, to generate an updraft.
  • the rising airflow generating device includes low pressure forming means for forming a low pressure region in the second space on a side surface of the cylindrical body, and the low pressure forming means forms the low pressure region in the second space.
  • the updraft accelerating method includes a low pressure forming step of forming a second space and a speed increasing step of increasing the rising speed of the updraft in the low pressure region.
  • power generation efficiency can be increased by forming a low-pressure region on the side surface of the cylinder to increase the rising speed of the updraft. Therefore, it is possible to provide a solar tower type power generation device that can stably supply electric power even with a relatively small structure.
  • the fourth aspect of the present invention it is possible to easily generate a low-pressure region that occurs downstream of the corner due to the flow of the separation shear layer. Therefore, it becomes easy to realize a low pressure forming means and to increase the speed of the updraft.
  • the cylinder can be made shorter than before because it is difficult for the cylinder to collapse even if the ascending airflow exits from the upper end opening of the cylinder. .
  • the distance of the airflow passing through the space (first space) between the ground and the lower end opening is increased by moving the cylindrical body to the end of the heat collecting part instead of the center. do. Therefore, the distance over which the air in the heat collecting section is warmed from the surroundings such as the ground increases. At least for this reason, the buoyancy effect due to the increased temperature difference increases the wind speed of the updraft, making it possible to further improve the power generation efficiency.
  • any one of the twelfth to fourteenth aspects of the present invention it is possible to heat the air under the heat collecting part and/or the impeller to further accelerate the ascending airflow.
  • the 16th aspect of the present invention it becomes easy to utilize exhaust heat from buildings. Moreover, by integrating a part of the cylindrical body with the building, it is possible to significantly reduce the construction cost of the solar tower.
  • the seventeenth aspect of the present invention it is also possible to generate power using a vertical axis wind turbine, so it is possible to further increase power generation efficiency.
  • the present invention it is also possible to regard the present invention as an updraft generating device or an updraft acceleration method. This makes it possible to reduce energy for exhaust and ventilation that consumes several megawatts of power, such as factory exhaust chimneys and ventilation towers.
  • FIG. 1 is a diagram showing an example of an external perspective view of a power generator according to Embodiment 1.
  • FIG. 1 is a diagram showing an example of a partial cross-sectional view of a power generator according to Example 1.
  • FIG. FIG. 4 is a diagram showing an example of the arrangement of guide plates in a heat collecting section; It is a figure which shows an example of the experimental apparatus which investigates the relationship between the existence of a guide plate and an overhead wind, and generation
  • FIG. 10 is a diagram showing an example of an external perspective view of a power generator according to Example 2;
  • FIG. 10 is a diagram showing an example of results of an output performance test of the power generator according to Example 2;
  • It is a figure which shows an example of the structure which one heat collection part has several cylinders.
  • It is a figure which shows an example which makes an electric power generating apparatus adjoin a building, and constructs it. It is a reference sectional view of a conventional solar tower.
  • FIG. 1 is an external perspective view of the power generation device P1
  • FIG. 2 is a diagram showing an example of a partial cross-sectional view of the power generation device P1.
  • a solar tower type power generator P1 includes an upwardly expanding cylindrical body 1 erected with an upper end opening 1b and a lower end opening 1a, and a peripheral region of the lower end opening 1a of the cylindrical body 1. , a heat collecting part Hc including a transparent body 2 laid with a gap from the ground G, a first space S1 that is a space between the ground G and the transparent body 2 in the peripheral area, and a cylindrical body 1 (an example of the “internal space” and the “second space” described in the present invention) communicate with each other. ”), the impeller 4 provided in the air flow passage 3, and the generator 5 that generates power in conjunction with the rotation of the impeller 4 (an example of the “impeller generator” described in the present invention ) and
  • the cylindrical body 1 is supported by a cylindrical body support portion 7 provided below the lower end opening 1a.
  • the cylindrical body support portion 7 is formed of a structure capable of sufficiently supporting the weight of the cylindrical body 1, and is configured so that the first space S1 and the second space S2 are communicated with each other.
  • the cylinder support part 7 has a shape that does not hinder the flow of the artificial airflow Fa as much as possible.
  • the cylindrical body support portion 7 is composed of a plurality of pillars and the cross-sectional shape of each cylindrical body support portion 7 composed of the pillars is a streamlined shape with respect to the flow of the artificial airflow Fa, It is possible to smoothen the flow of the artificial airflow Fa from the first space S1 toward the second space S2.
  • the power generator P generates power by rotating the impeller 4 using the wind energy of the generated artificial airflow Fa.
  • the impeller 4 can be installed at any place as long as it is in the airflow passage 3 through which the artificial airflow Fa passes, and a plurality of impellers 4 may be installed. Since the velocity of the artificial airflow Fa increases as it approaches the center, it is preferable to provide the impeller 4 at a position as close as possible to the lower end opening 1a of the cylindrical body 1 .
  • the cylindrical body 1 has a notched portion 9 (an example of a "low pressure forming means" and a “side opening” in the claims of the present application) that spatially connects the second space S2, which is the internal space of the cylindrical body 1, to the outside.
  • the notch 9 spatially connects the second space S2 and the low-pressure portion L1 outside the cylindrical body 1 and formed around the side surface by an external flow based on a boundary layer or a separation shear layer. .
  • a low-pressure region L2 is formed in the side surface of the cylindrical body 1 and the second space S2 spatially connected to the side surface.
  • power generation efficiency can be enhanced by accelerating the artificial airflow Fa, which is an ascending airflow.
  • the upper end opening 1b of the cylindrical body 1 according to Example 1 is continuous in the circumferential direction without any notch. This facilitates maintaining the structural strength of the cylinder.
  • the cylindrical body 1 has a narrow throat portion 1c serving as a constriction at the lower end opening portion 1a, and is formed in an upwardly expanding type (diffuser type) that expands upward from the throat portion 1c. . That is, the horizontal cross-sectional area of the internal space of the cylindrical body 1 is the smallest at the throat portion 1c and gradually increases upward from the throat portion 1c.
  • the shape of the cylindrical body 1 open upward in this manner, a diffuser effect is exhibited, and the pressure at the throat portion 1c where the horizontal cross-sectional area of the internal space is the smallest becomes low. As a result, the flow velocity of the artificial airflow Fa flowing through the throat portion 1c is greatly increased.
  • the impeller 4 rotatable around the central axis of the cylindrical body 1 in the throat portion 1c, it is possible to effectively increase the power generation amount.
  • a predetermined clearance is provided between the blade tip of the impeller 4 and the inner wall of the throat portion 1c, and the diameter of the rotor of the impeller 4 is made as large as possible according to the size of the cross section of the throat portion 1c. is good.
  • the spreading angle ⁇ of the cylindrical body 1 is preferably about 4 to 10 degrees.
  • the spread angle ⁇ refers to the inclination angle of the inner peripheral surface of the cylinder 1 with respect to the vertical direction.
  • the divergence angle is less than 4 degrees, the loss due to friction between the inner wall of the cylindrical body 1 and the artificial airflow Fa becomes dominant, so the effect of accelerating the artificial airflow Fa at the throat portion 1c is insufficient. I can't get it.
  • the impeller 4 is actually provided in the air flow passage 3, and it is considered that the impeller 4 serves as a resistance to the flow of the artificial airflow Fa.
  • the impeller 4 serves as a resistance to the flow of the artificial airflow Fa.
  • there may be other elements such as low-pressure forming means that can act as a resistance to the flow of the artificial airflow Fa. Therefore, since the optimum value of the divergence angle .theta. differs depending on the design of the power generator P, it is preferable to obtain the optimum value of the divergence angle .theta. according to the design.
  • the cylindrical body 1 has a translucent part, at least a part of which is translucent, near the lower end opening 1a, for example.
  • the power generation device P further includes, outside the cylindrical body 1, a reflecting portion in which the reflected light of sunlight passes through the translucent portion and heats the air under the impeller. By heating the air under the impeller, the updraft can be further accelerated.
  • the heat collecting part Hc is configured to heat the air existing between the translucent body 2 and the ground G using renewable energy such as solar energy, exhaust heat from factories, and geothermal heat.
  • the translucent body 2 is made of a translucent material such as glass or plastic through which sunlight can pass. It can be efficiently heated by solar energy. In this case, the larger the installation area of the translucent body 2, the larger the solar energy that can be used, and the more the amount of power generated by the power generator P increases.
  • the translucent body 2 is laid in a substantially circular shape, but the laying shape may be appropriately designed according to the conditions of the land where the power generating device P is installed.
  • the translucent body 2 is laid without gaps on a plurality of supports 6 erected on the ground G in the area around the lower end opening 1a of the cylindrical body 1, and a predetermined distance between the translucent body 2 and the ground G intervals are provided.
  • the height of the translucent body 2 is constructed so as to gradually increase toward the cylindrical body 1 at the center.
  • a lower end opening 1a of the cylindrical body 1 expands downward in a trumpet shape and is smoothly connected to the central portion of the translucent body 2. As shown in FIG.
  • FIG. 3 is a diagram showing an example of the arrangement of the guide plate 15.
  • FIG. 3(a) is a perspective view of a heat collector having a cylinder and a guide plate.
  • FIG. 3(b) is a side view of a heat collector having a cylinder and a guide plate.
  • FIG.3(c) is a top view of the heat collection part which has a cylinder and a guide plate.
  • the cylinder is drawn as a transparent body so that the arrangement of the guide plate is easy to understand.
  • FIG. 3(d) is a perspective view of only the guide plate.
  • the guide plate 15 is vertically erected toward the cylindrical body 1.
  • these guide plates 15 are installed so that the adjacent guide plates 15 are inclined in the same direction by substantially the same angle.
  • the guide plate 15 is erected at an angle of 45 degrees with respect to the direction facing the central axis of the cylindrical body 1 .
  • the ascending air current generated in the cylindrical body 1 becomes a spiral flow, and the cylindrical body 1 is less likely to collapse even above the upper end opening 1b. Due to this characteristic, it is possible to reduce the construction cost by making the height of the cylinder 1 lower than the height of the assumed updraft.
  • the direction of inclination of the guide plate 15 coincides with the direction of rotation of the impeller 4 . For this reason, the direction of rotation of the spiral flow does not interfere with the rotation of the impeller 4, but rather allows it to be accelerated.
  • FIG. 4 is a diagram showing an example of an experimental apparatus for examining the relationship between the presence of the guide plate 15 and the upward wind and the generation of the spiral flow.
  • FIG. 4(a) is a diagram showing the measuring section of the experimental device
  • FIG. 4(b) is an enlarged view of the measuring device.
  • wind was generated in a predetermined direction above the cylindrical body.
  • the velocity of the updraft was controlled by controlling the wind velocity of this updraft.
  • the temperature and wind speed inside the cylinder were measured using a thermocouple and an ultrasonic current meter inside the cylinder.
  • the origin was the center of the tower, and the wind speed was measured every 0.02m in the range of -0.08m ⁇ x ⁇ 0.08m.
  • the height of the tower was 1.5m.
  • Eight guide plates were prepared and vertically placed under the cylindrical body. Here, the guide plates were measured with (1) all guide plates facing the center of the tower and (2) all guide plates tilted in the same direction by 45 degrees from (1). .
  • FIG. 5 is an example of a graph showing the horizontal wind speed distribution inside the cylinder.
  • FIG. 5(a) shows the horizontal wind speed distribution inside the cylinder when all the guide plates are directed toward the center of the tower.
  • FIG. 5(b) shows the horizontal wind speed distribution inside the cylinder when all the guide plates are tilted in the same direction by 45 degrees.
  • FIG. 6 is a diagram showing an example of the arrangement of reflectors and heat storage bodies.
  • the power generation device P includes a reflector 11 that reflects sunlight as a light collector.
  • the reflector 11 reflects sunlight to heat the air inside the heat collector Hc. Therefore, it becomes easy to heat the air in the heat collecting portion Hc.
  • the reflector 11 can be installed anywhere, such as the upper part of the transparent body 2, the outside of the heat collecting part Hc, the inside of the heat collecting part Hc, etc., as long as the air in the heat collecting part Hc can be effectively heated. may
  • the power generation device P includes a heat storage body 13 in the lower part of the cylindrical body 1 in the heat collecting part Hc.
  • the heat accumulator 13 absorbs sunlight, stores heat, and radiates heat over time. Therefore, it is possible to radiate the heat stored in the daytime also in the nighttime and to accelerate the rising air current inside the cylindrical body 1 even in the nighttime.
  • the reflector 11 reflects the sunlight and concentrates it on the heat storage body 13, it becomes easy to efficiently store heat in the heat storage body 13.
  • the heat storage body 13 is not limited to the lower portion of the cylindrical body 1, and may have a plate-like shape that extends inside the first space S1.
  • FIG. 7 is a diagram showing an example of the arrangement of solar panels.
  • the power generation device P includes a solar cell panel 8 on and in contact with the translucent body 2 . Therefore, the heat of the solar cell panel 8 is transmitted to the translucent body 2, making it easier to heat the air in the heat collecting portion Hc.
  • the solar cell panel 8 contributes not only to power supply by photovoltaic power generation but also to power supply by wind power generation. It is desirable that the solar cell panel efficiently conducts heat even when the translucent body 2 has a curved surface, and may be of a film type.
  • FIG. 8 is a diagram showing an example of changing the position of the cylindrical body 1.
  • FIG. FIG. 8(a) is a diagram showing a case where the cylindrical body 1 is provided in the center of the heat collecting portion Hc.
  • FIG. 8(b) is a diagram showing a case where the cylindrical body 1 is provided at the end of the heat collecting portion Hc.
  • the power generator of the present invention may have a configuration in which the cylindrical body 1 is moved toward the end of the heat collecting portion Hc.
  • the heat collecting portion Hc shown in FIG. By moving the cylindrical body 1 to the edge of the heat collecting part Hc instead of the center, the distance through which the airflow passes through the first space S1 increases. At least partly because of this, it becomes easier to accelerate the artificial airflow Fa.
  • FIG. 9 shows (a) a power generation device (type A) in which the cylindrical body 1 is provided in the center of the heat collecting part Hc, and (b) a power generating device (type B) in which the cylindrical body 1 is provided at the end of the heat collecting part Hc. and (c) the wind velocity of the updraft inside the cylindrical body 1.
  • FIG. 9(c) when (b) the cylinder was provided at the end of the heat collecting part, the wind velocity was higher than when (a) the cylinder was provided at the center of the heat collecting part.
  • FIG. 10 is an external perspective view of the power generator P of the present invention, which further includes a Darrieus windmill, which is a type of vertical axis windmill.
  • the power generation device P of the present invention includes a vertical axis wind turbine having a rotating shaft coaxial with a cylindrical body and a plurality of blades around the side surface of the cylindrical body, and a wind turbine power generator that generates power in conjunction with the rotation of the rotating shaft. It may be configured to further include a machine. According to the power generation device P of FIG. 10, it is possible to generate power using a Darrieus windmill, so it is possible to further increase power generation efficiency.
  • FIG. 11 is a diagram showing an example of a perspective view of the power generator P2 according to the second embodiment.
  • the power generating device P2 according to the present embodiment has a low pressure forming means provided on the side surface of the cylindrical body 21, and a notch 29 ("low pressure forming means" and “side surface Another example of "opening”) may have one or more.
  • FIG. 12 is a diagram showing an example of the results of an output performance test by the power generator P2.
  • the crown-shaped power generator P2 provided with a plurality of cuts 29 had a higher power generation capacity than the case without the cuts.
  • the performance is comparable to that of a power generator equipped with a vortex generating plate that exhibits high power generation capacity.
  • the cylindrical body is not limited to a cylindrical shape with a circular cross section.
  • the cross-section of the cylinder may be elliptical, polygonal, or other shapes.
  • the cross-sectional shape including the cut portion of the cylinder has a corner, and the cut portion may be formed on the downstream side of the wind flow (external flow) outside the cylinder as viewed from the corner.
  • one heat collector may have a plurality of cylinders.
  • FIG. 14 is a diagram showing an example of constructing a power generation device close to a building.
  • the power generator according to the embodiment of the present invention may be constructed by integrating the tubular body 1 with the building 16 and adjoining or adjoining it.
  • FIG. 14 shows a configuration example in which the cylindrical body 1 is brought close to a building 16 and supported by a support 17. As shown in FIG. This facilitates utilization of waste heat from the heat-generating section 18 inside the building 16 .
  • the construction cost of the solar tower can be significantly reduced.
  • the WST (Wind-Solar Tower) power generation technology which is a hybrid technology of wind power generation and solar power generation shown in this example, can also be used as an energy saving technology.
  • Exhaust chimneys in factories and ventilation towers in undersea or underground tunnels are often equipped with fans for forced exhaust. These fans often consume megawatts of power to create wind inside the chimney.
  • WST's diffuser-type tower and high-airflow technology can also be used in ventilation systems that do not have an exhaust fan, and are expected to contribute to improving the efficiency of creating air and reducing the size of the tower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

【課題】 ソーラータワーは、建設する上で多大なコストを要するため、発電効率をさらに高めるニーズが大きかった。本発明は、従来よりも発電効率が高いソーラータワー型の発電装置等を提供することを目的とする。 【解決手段】 上端開口部と下端開口部を有する筒体と、前記筒体を通る気体の経路に設けられた羽根車と、前記羽根車の回転に連動して発電する羽根車用発電機とを備え、前記気体が前記羽根車を回転させて発電する発電装置であって、前記筒体の内部の上昇気流の上昇速度を増速させるために、低圧領域を前記筒体の内部空間に形成する低圧形成手段を前記筒体の側面に備える、発電装置である。

Description

発電装置、上昇気流発生装置、発電方法及び上昇気流増速方法
 本発明は、発電装置、上昇気流発生装置、発電方法及び上昇気流増速方法に関し、特に、再生可能エネルギーを利用することにより筒体の内部の気流を発生させて又は増速させる発電装置等に関するものである。
 風力発電を従来の原子力発電や火力発電等に取って代わる技術とするためには、発電装置の高出力化および安定化に向けた技術開発が必須となる。そこで、いわゆるソーラータワーやソーラーチムニー等と称される発電装置(以下、ソーラータワーと呼ぶ。)が提案されている。
 ソーラータワーは、温度が上昇した空気は密度が低下して熱上昇風となるという物理現象を利用することにより、人工的な気流を内部に発生させて風力発電を行うものである。人工的な気流が発生する仕組みは以下の通りである。
 図15は、このような従来のソーラータワーP100の基本構成を示した参考断面図である。ソーラータワーP100は、筒体101と、筒体101の下端開口部101aの周辺領域において地面Gとの間に所定の間隔を設けて布設された透光性の集熱部102と、筒体101の下端開口部101a周辺に配設された羽根車103とを備えており、羽根車103の回転により発電を行うよう構成されている。筒体101内部の空間と、集熱部102表面と地面Gとの間の空間とは連通させており、羽根車103はこの連通させた空間内に配設されている。
 まず、集熱部102に太陽光が照射されると、集熱部102と地面Gとの間に存在する空気が加熱される。ここで、集熱部102天井の高さは、中央部、すなわち筒体101に向かって次第に高くなっているため、加熱されて温度が上昇した空気は熱上昇風となって筒体101の下端開口部101aに集まる。そして、筒体101の下端開口部101aに到達した空気は、煙突効果により上昇気流となって筒体101内部を上昇し、筒体101の上端開口部101bから上空へと排出される。
 ソーラータワーP100は、このような原理で人工的に発生させた気流のエネルギーを利用し、羽根車103を回転させて風力発電を行う装置である。従って、ソーラータワーP100をできるだけ高出力の発電装置とするためには、筒体内部と外部の空気の温度差を利用した筒体101による強い煙突効果を得るべく、集熱部102と地面Gとの間に存在する空気をできるだけ高温とし、かつ、筒体101の高さをできるだけ高くすることが有効である。
 本発明者らは、筒体の上端で自然気流の流れ方向に正対して渦を伴う気流を生起することで低圧領域を形成して、人工的に気流を増速させるソーラータワー型の発電装置等を提案してきた(例えば、特許文献1参照)。
特許第5551748号公報
 しかしながら、ソーラータワーは、建設する上で多大なコストを要するため、発電効率をさらに高めるニーズが大きかった。
 そこで本発明は、従来よりも発電効率が高いソーラータワー型の発電装置等を提供することを目的とする。
 本発明の第1の観点は、上端開口部と下端開口部を有する筒体と、前記筒体を通る気体の経路に設けられた羽根車と、前記羽根車の回転に連動して発電する羽根車用発電機とを備え、前記気体が前記羽根車を回転させて発電する発電装置であって、前記筒体の内部の上昇気流の上昇速度を増速させるために、低圧領域を前記筒体の内部空間に形成する低圧形成手段を前記筒体の側面に備える、発電装置である。
 本発明の第2の観点は、第1の観点の発電装置であって、前記低圧形成手段は、前記筒体の前記側面に、前記内部空間と前記筒体の外部とを空間的に接続させる側面開口部を有する。
 本発明の第3の観点は、第2の観点の発電装置であって、前記側面開口部は、前記内部空間と、前記筒体の外部であって前記側面の周囲に境界層又は剥離せん断層に基づく外部流れによって形成される低圧部分とを空間的に接続させる。
 本発明の第4の観点は、第3の観点の発電装置であって、前記側面開口部を含む前記筒体の断面形状は、角を有するものであり、前記外部流れの前記角の下流側に前記側面開口部を有するものである。
 本発明の第5の観点は、第2から第4のいずれかの観点の発電装置であって、前記筒体の上端は、周囲方向につながっている。
 本発明の第6の観点は、第1から第5のいずれかの観点の発電装置であって、前記筒体の前記下端開口部の周辺領域において、前記上昇気流を螺旋流にする螺旋流形成手段を備える。
 本発明の第7の観点は、第6の観点の発電装置であって、前記螺旋流形成手段は、前記筒体に向けて立てられた複数のガイド板であり、複数の前記ガイド板は、隣接する当該ガイド板がお互いに同じ回転方向に略同じ角度で傾いて設置されている。
 本発明の第8の観点は、第6又は第7の観点の発電装置であって、前記羽根車の回転方向と前記螺旋流の回転方向とが一致する。
 本発明の第9の観点は、第6から第8のいずれかの観点の発電装置であって、前記筒体の高さは、生成される前記螺旋流の高さよりも低いものである。
 本発明の第10の観点は、第1から第9のいずれかの観点の発電装置であって、前記筒体の前記下端開口部の周辺領域において地面との間に間隔を設けて布設された集熱部をさらに備える。
 本発明の第11の観点は、第10の観点の発電装置であって、前記集熱部は、前記筒体の中心軸から非対称に広がるように布設されている。
 本発明の第12の観点は、第10又は第11の観点の発電装置であって、太陽光を反射する反射体をさらに備え、前記反射体は、前記集熱部の内部の空気を加熱する。
 本発明の第13の観点は、第10から第12のいずれかの観点の発電装置であって、前記筒体は、少なくとも一部が透光性である透光部を有するものであり、太陽光を反射した反射光が前記透光部を通って前記羽根車の下の空気を加熱する反射部をさらに備える。
 本発明の第14の観点は、第10から第13のいずれかの観点の発電装置であって、前記集熱部は、太陽光を透す透光体を有し、前記透光体の上に接して設置された太陽電池パネルをさらに有するものであり、又は、太陽電池パネルを当該集熱部の天井の一部若しくは全部として有するものであり、前記太陽電池パネルの熱が前記集熱部の内部の空気を加熱する。
 本発明の第15の観点は、第1から第14のいずれかの観点の発電装置であって、前記筒体を複数備える。
 本発明の第16の観点は、第1から第15のいずれかの観点の発電装置であって、前記筒体を建築物に一体化させて、隣接させて又は近接させて建設する。
 本発明の第17の観点は、第1から第15のいずれかの観点の発電装置であって、前記筒体と同軸上の回転軸と、前記筒体の前記側面の周囲に複数のブレードとを有する垂直軸型風車と、前記回転軸の回転に連動して発電する風車用発電機とをさらに備える。
 本発明の第18の観点は、上端開口部と下端開口部を有する筒体と、前記筒体の前記下端開口部の周辺領域において地面との間に間隔を設けて布設された集熱部と、前記地面と前記下端開口部との間の空間である第1空間の気体を前記筒体の内部空間である第2空間へ流入させて上昇気流を発生させる上昇気流発生装置であって、前記上昇気流の上昇速度を増速させるために、低圧領域を前記第2空間に形成する低圧形成手段を前記筒体の側面に備える、上昇気流発生装置である。
 本発明の第19の観点は、上端開口部と下端開口部を有する筒体と、前記筒体を通る気体の経路に設けられた羽根車と、前記羽根車の回転に連動して発電する羽根車用発電機とを備え、前記気体が前記羽根車を回転させて発電する発電装置を用いた発電方法であって、前記発電装置は、前記筒体の内部の上昇気流の上昇速度を増速させるために、低圧領域を前記筒体の内部空間に形成する低圧形成手段を前記筒体の側面に備え、前記低圧形成手段が、前記低圧領域を前記内部空間に形成する低圧形成ステップを含む、発電方法である。
 本発明の第20の観点は、上端開口部と下端開口部を有する筒体と、前記筒体の前記下端開口部の周辺領域において地面との間に間隔を設けて布設された集熱部と、前記地面と前記下端開口部との間の空間である第1空間の気体を前記筒体の内部空間である第2空間へ流入させて上昇気流を発生させる上昇気流発生装置を用いた上昇気流増速方法であって、前記上昇気流発生装置は、低圧領域を前記第2空間に形成する低圧形成手段を前記筒体の側面に備えるものであり、前記低圧形成手段が、前記低圧領域を前記第2空間に形成する低圧形成ステップと、前記低圧領域が、前記上昇気流の上昇速度を増速させる増速ステップとを含む、上昇気流増速方法である。
 本発明の各観点によれば、筒体の側面に低圧領域を形成して上昇気流の上昇速度を増速させることにより、発電効率を高めることができる。そのため、比較的小さな構造物であっても電力を安定的に供給することが可能なソーラータワー型の発電装置を提供することができる。
 また、本発明の第2及び第3の観点によれば、構造的に簡易な工夫で低圧形成手段を実現し、上昇気流を増速させることが可能となる。
 さらに、本発明の第4の観点によれば、剥離せん断層の流れに由来して角の下流側に発生する低圧領域を発生させやすくすることが可能となる。そのため、低圧形成手段を実現し、上昇気流を増速させることが容易となる。
 さらに、本発明の第5の観点によれば、筒体の構造強度を保つことが容易となる。
 さらに、本発明の第6から第9のいずれかの観点によれば、上昇気流が筒体の上端開口部から出ても崩壊しにくいため、従来よりも筒体を短くすることが可能になる。
 特に、本発明の第8の観点によれば、羽根車の回転効率を上昇させ、発電効率をさらに高めることが可能となる。
 本発明の第10の観点によれば、下端開口部の周辺の空気を加熱することにより、筒体の内部に上昇気流を発生させ加速することが容易となる。
 本発明の第11の観点によれば、筒体を集熱部の中央ではなく端に寄せることにより、地面と下端開口部との間の空間(第1空間)を通過する気流の距離が増加する。このため、集熱部の空気が地面等の周囲から温められる距離が増加する。少なくともこのことが一因となって、温度差増大による浮力効果で上昇気流の風速が増加し、発電効率をさらに高めることが可能になる。
 本発明の第12から第14のいずれかの観点によれば、集熱部及び/又は羽根車の下の空気を加熱して上昇気流をさらに増速させることが可能となる。
 本発明の第15の観点によれば、熱源及び/又は強い風が得られる場所が複数存在する場合に、それぞれの場所に近いところに筒体を備えることにより、効率的に発電することが容易となる。
 本発明の第16の観点によれば、建築物からの排熱を利用することが容易になる。しかも、筒体の一部を建築物と一体化させることにより、ソーラータワーの建設コストを大幅に削減することも可能となる。
 本発明の第17の観点によれば、垂直軸型風車による発電もできるため、発電効率をさらに高めることが可能になる。
 さらに、本発明の第18又は第20の観点によれば、本発明を上昇気流発生装置又は上昇気流増速方法として捉えることも可能である。これにより、工場の排気用煙突や換気塔のように、数メガワットもの電力を消費する排気や換気のためのエネルギーを削減することが可能となる。
実施例1に係る発電装置の外観斜視図の一例を示す図である。 実施例1に係る発電装置の一部断面図の一例を示す図である。 集熱部におけるガイド板の配置の一例を示す図である。 ガイド板及び上空風の存在と螺旋流の発生の関係を調べる実験装置の一例を示す図である。 筒体の内部の水平方向の風速分布を示すグラフの一例である。 反射体及び蓄熱体の配置の一例を示す図である。 太陽電池パネルの配置の一例を示す図である。 筒体の位置を変える一例を示す図である。 筒体の位置と上昇気流の風速の関係の一例を示す図である。 ダリウス型風車を備える本発明による発電装置の外観斜視図の一例を示す図である。 実施例2に係る発電装置の外観斜視図の一例を示す図である。 実施例2に係る発電装置の出力性能試験の結果の一例を示す図である。 1つの集熱部が複数の筒体を有する構成の一例を示す図である。 発電装置を建築物に近接させて建設する一例を示す図である。 従来のソーラータワーの参考断面図である。
 以下、図面を参照しつつ本発明の実施形態について説明する。但し、本発明はこの実施形態に限定されるものではない。
 本発明によるソーラータワー型の発電装置P1の一例を図1に示す。図1は発電装置P1の外観斜視図であり、図2は発電装置P1の一部断面図の一例を示す図である。
 本発明によるソーラータワー型の発電装置P1は、上端開口部1bと下端開口部1aを有して立設された上方拡開型の筒体1と、筒体1の下端開口部1aの周辺領域において地面Gとの間に間隔を設けて布設された透光体2を備える集熱部Hcと、周辺領域の地面Gと透光体2との間の空間である第1空間S1および筒体1の内部空間である第2空間S2(本願発明に記載の「内部空間」及び「第2空間」の一例である)を連通させて形成された空気流通路3(本願発明に記載の「経路」の一例である)と、空気流通路3に設けられた羽根車4と、羽根車4の回転に連動して発電する発電機5(本願発明に記載の「羽根車用発電機」の一例である)と、を備えている。
 筒体1は下端開口部1aの下部に設けられた筒体支持部7によって支持されている。筒体支持部7は、筒体1の重量を十分に支持可能な構造体で形成されると共に、第1空間S1および第2空間S2が連通するように構成されている。第1空間S1および第2空間S2を連通させて空気流通路3を形成することにより、太陽エネルギーによって暖められた透光体2下方の空気(本願発明に記載の「気体」及び「空気」の一例である)は透光体2の下面に沿って上昇して中央に集まり、煙突効果により筒体1内部を上昇して上端開口部1bから上空へと排出される。このように、空気流通路3には、透光体2の周縁2aの下方から筒体1の上端開口部1bに向けて流れる人工気流Faが発生する。
 筒体支持部7は人工気流Faの流れをできるだけ妨げない形状とするのが好ましい。例えば、筒体支持部7を複数の柱で構成すると共に、当該柱で構成された各筒体支持部7の横断面形状を人工気流Faの流れに対して流線形の形状とすれば、第1空間S1から第2空間S2に向けての人工気流Faの流れをスムーズにすることができる。
 本発明による発電装置Pは、発生させた人工気流Faの風力エネルギーを利用して羽根車4を回転させることにより発電を行う。羽根車4は、人工気流Faが通過する空気流通路3であれば任意の場所に設置することが可能であり、複数設置しても良い。人工気流Faの流速は中央部に近いほど速くなるため、羽根車4は筒体1の下端開口部1aにできるだけ近い位置に設けるのが良い。
 筒体1は、側面に筒体1の内部空間である第2空間S2と外部とを空間的に接続させる切り込み部9(本願請求項における「低圧形成手段」及び「側面開口部」の一例)を備える。切り込み部9は、第2空間S2と、筒体1の外部であって側面の周囲に境界層又は剥離せん断層に基づく外部流れによって形成される低圧部分L1とを空間的に接続させるものである。これにより、筒体1の側面、及び、側面に空間的に接続している第2空間S2に低圧領域L2を形成する。結果として、上昇気流である人工気流Faを加速させることにより、発電効率を高めることができる。
 また、実施例1に係る筒体1の上端開口部1bは、切り込みがなく周囲方向につながっている。これにより、筒体の構造強度を保つことが容易となる。
 また、筒体1は、くびれとなる狭小のスロート部1cを下端開口部1aに有しており、スロート部1cから上方に向かって拡開する上方拡開型(ディフューザ型)に形成されている。すなわち、筒体1の内部空間の水平断面面積は、スロート部1cにおいて最小となり、スロート部1cから上方に向かって次第に大きくなっている。このように筒体1の形状を上方拡開型とすることによりディフューザ効果が発現し、内部空間の水平断面面積が最小となるスロート部1cは低圧となる。その結果、スロート部1cを流れる人工気流Faの流速が大きく増速する。
 従って、スロート部1cにおいて筒体1の中心軸回りに回転自在の羽根車4を配設することにより、発電量を効果的に増加させることができる。その際、羽根車4の翼端とスロート部1cの内壁との間に所定のクリアランスを設け、羽根車4のローター径をスロート部1cの横断面の大きさに合わせてできるだけ大径とするのが良い。
 筒体1の広がり角θは4~10度程度とするのが良い。なお、本明細書において広がり角θとは、筒体1の内周面の鉛直方向に対する傾斜角度のことを指す。広がり角θを4~10度程度とすることにより、筒体1のスロート部1cにおける人工気流Faの流速を十分に増速させることができる。非粘性流体の場合は広がり角θが大きいほど圧力回復率が大きくなるため、スロート部1cがより低圧となってスロート部1cを流れる人工気流Faはより増速する。しかしながら粘性流体である空気の場合、広がり角θが10度を超えると境界層はく離が生じ易くなるため、スロート部1cにおける人工気流Faの増速効果が十分に得られない。一方、広がり角を4度未満とすると筒体1の内壁と人工気流Faとの間に生じる摩擦による損失が支配的となってしまうため、スロート部1cにおける人工気流Faの増速効果が十分に得られない。
 なお、実際は空気流通路3に羽根車4が設けられており、羽根車4は人工気流Faの流れに対する抵抗体となるものと考えられる。また、その他にも、低圧形成手段等、人工気流Faの流れに対する抵抗体となり得るものが存在する場合がある。従って、発電装置Pの設計の違いにより広がり角θの最適値は異なってくるため、設計に従って広がり角θの最適値を求めることが好ましい。
 筒体1は、例えば下端開口部1aの付近に、少なくとも一部が透光性である透光部を有する。また、発電装置Pは、太陽光を反射した反射光がこの透光部を通って羽根車の下の空気を加熱する反射部を筒体1の外部にさらに備える。羽根車の下の空気を加熱することにより、上昇気流をさらに加速することが可能となる。
 集熱部Hcは、再生可能エネルギーである太陽エネルギーや、工場からの排熱や地熱を利用して、透光体2と地面Gとの間に存在する空気を加熱できるよう構成されている。透光体2はガラスやプラスチック等の太陽光が透過可能な透光性材料で構成されており、集熱部Hcが温室となって透光体2と地面Gとの間に存在する空気を太陽エネルギーにより効率的に加熱することができる。この場合、透光体2の布設面積を広くするほど利用できる太陽エネルギーは大きくなり、発電装置Pの発電量は増加する。なお、図1において透光体2は略円形状に布設されているが、布設形状は発電装置Pを設置する土地の状況等に合わせて適宜設計しても良い。
 透光体2は筒体1の下端開口部1a周辺領域の地面Gに立設された複数の支柱6上に隙間無く布設されており、透光体2と地面Gとの間には所定の間隔が設けられている。透光体2の高さは中央の筒体1に向けて次第に高くなるよう構成されている。筒体1の下端開口部1aは下方に向けてラッパ状に拡開しており、透光体2の中央部となめらかに連続させている。
 集熱部Hcは、上昇気流を螺旋流にする螺旋流形成手段として、筒体1の下端開口部1aの周辺領域に複数のガイド板15を有する。図3は、ガイド板15の配置の一例を示す図である。図3(a)は、筒体、及び、ガイド板を有する集熱部の斜視図である。図3(b)は、筒体、及び、ガイド板を有する集熱部の側面図である。図3(c)は、筒体、及び、ガイド板を有する集熱部の平面図である。ただし、ガイド板の配置が分かりやすいように筒体を透明体として描かれている。図3(d)は、ガイド板のみの斜視図である。
 ガイド板15は、筒体1に向けて鉛直に立てられている。また、これらのガイド板15は、隣接するガイド板15が互いに同じ方向にほぼ同じ角度だけ傾いて設置されている。具体的には、ガイド板15は、筒体1の中心軸に向く方向に対して45度だけ傾けた角度に立てられている。これにより、筒体1の中に発生する上昇気流が螺旋流となり、筒体1の上端開口部1bより上でも崩壊しにくくなる。この特性により、筒体1の高さを想定される上昇気流の高さよりも低くして、建設コストを抑えることが可能である。
 また、ガイド板15の傾きの方向は、羽根車4の回転方向と一致している。このため、螺旋流の回転方向は羽根車4の回転を邪魔せず、むしろ加速させることが可能となる。
 図4は、ガイド板15及び上空風の存在と螺旋流の発生の関係を調べる実験装置の一例を示す図である。図4(a)は、実験装置の測定部を示す図であり、図4(b)は、計測装置の拡大図である。図4(a)を参照して、筒体の上空(上方)の所定の方向に風を発生させた。この上空風の風速を制御することにより上昇気流の速度を制御した。筒体の内部において、図4(b)に示すように、筒体の内部の熱電対及び超音波流速計を用いて、筒体の内部の温度及び風速を計測した。なお、原点をタワー中心として、-0.08m≦x≦0.08mの範囲を0.02mごとに風速を計測した。タワーの高さは1.5mとした。ガイド板は8枚用意し、筒体の下に鉛直方向に立てた。ここで、ガイド板は、(1)ガイド板を全てタワー中心に向けた場合と、(2)全てのガイド板を(1)の向きから45度だけ同じ方向に傾けた場合とをそれぞれ計測した。
 図5は、筒体の内部の水平方向の風速分布を示すグラフの一例である。図5(a)は、ガイド板を全てタワー中心に向けた場合の筒体の内部の水平方向の風速分布を示す。図5(b)は、ガイド板を全て45度だけ同じ方向に傾けた場合の筒体の内部の水平方向の風速分布を示す。
 図5(a)を参照して、ガイド板を全て中心に向けた場合には、上空風速が速いときに多少の水平方向の速度成分が発生しているものの、わずかである。他方、図5(b)を参照して、ガイド板を全て45度だけ同じ方向に傾けた場合には、明らかに水平方向の旋回流が発生している。実際には、上昇気流の水平成分を計測しているため、上空風速が高いほど強い螺旋流が発生していることが分かる。
 図6は、反射体及び蓄熱体の配置の一例を示す図である。発電装置Pは、太陽光を反射する反射体11を集光部として備える。この反射体11は、太陽光を反射して、集熱部Hcの内部の空気を加熱する。このため、集熱部Hc内の空気を加熱することが容易となる。反射体11は、透光体2の上部、集熱部Hcの外部、集熱部Hcの内部等、集熱部Hc内の空気を効果的加熱することができれば、どこに設置されるものであってもよい。
 さらに、発電装置Pは、集熱部Hcに蓄熱体13を筒体1の下部に備える。この蓄熱体13は、太陽光を吸収し、蓄熱し、時間をかけて放熱する。そのため、昼間に蓄熱した熱を夜間も放熱して、夜間も筒体1の内部の上昇気流を加速することが可能となる。しかも、反射体11が太陽光を反射して蓄熱体13に集光するため、効率よく蓄熱体13に蓄熱することが容易となる。
 なお、蓄熱体13は、筒体1の下部に限らず、第1空間S1の内部に拡がる板状の形状であってもよい。
 図7は、太陽電池パネルの配置の一例を示す図である。発電装置Pは、透光体2の上に接する形で太陽電池パネル8を備える。このため、太陽電池パネル8の熱が透光体2に伝わり、集熱部Hc内の空気を加熱することがさらに容易となる。つまり、太陽電池パネル8は、太陽光発電による電力供給だけでなく、風力発電による電力供給にも寄与することとなる。太陽電池パネルは、透光体2が曲面であるときにも効率的に熱を伝えることが望ましく、フィルム型であってもよい。
 図8は、筒体1の位置を変える一例を示す図である。図8(a)は、筒体1を集熱部Hcの中央に設けた場合を示す図である。図8(b)は、筒体1を集熱部Hcの端に設けた場合を示す図である。本発明の発電装置は、図8(b)に示すように、筒体1を集熱部Hcの端に寄せる構成としても良い。言い換えれば、図8(b)に示す集熱部Hcは、筒体1の中心軸から非対称に広がるように布設されている。筒体1を集熱部Hcの中央ではなく端に寄せることにより、第1空間S1を気流が通過する距離が増加する。少なくともこのことが一因となって、人工気流Faを加速することがさらに容易となる。
 図9は、(a)筒体1を集熱部Hcの中央に設けた発電装置(タイプA)と、(b)筒体1を集熱部Hcの端に設けた発電装置(タイプB)と、(c)筒体1の内部の上昇気流の風速を示す図である。図9(c)に示す通り、(b)筒体を集熱部の端に設けた場合は、(a)筒体を集熱部の中央に設けた場合よりも、風速が高かった。
 図10は、垂直軸型風車の一種であるダリウス型風車をさらに備える本発明の発電装置Pの外観斜視図である。本発明の発電装置Pは、筒体と同軸上の回転軸と、筒体の側面の周囲に複数のブレードとを有する垂直軸型風車と、回転軸の回転に連動して発電する風車用発電機とをさらに備えるよう構成しても良い。図10の発電装置Pによれば、ダリウス型風車による発電もできるため、発電効率をさらに高めることが可能になる。
 図11は、実施例2に係る発電装置P2の斜視図の一例を示す図である。本実施例に係る発電装置P2は、筒体21の側面に備える低圧形成手段として、上端開口部1b側から軸方向に細く深く入った切り込み29(本願請求項における「低圧形成手段」及び「側面開口部」の別の例)を1つ又は複数有するものであってもよい。
 図12は、発電装置P2による出力性能試験の結果の一例を示す図である。切り込み29を複数備えるクラウン型の発電装置P2は、切り込み部がない場合に比べて、発電能力が高かった。また、高い発電能力を示す渦生成板を備える発電装置に匹敵する性能であることが明らかになった。
 また、筒体は、断面が円である円筒形状に限られない。筒体の断面が楕円若しくは多角形、又は、その他の形状であってもよい。例えば、筒体の切り込み部を含む断面形状は、角を有するものであり、この角から見て筒体の外部の風の流れ(外部流れ)の下流側に切り込み部を有する形状としてもよい。
 さらに、図13に示すように、1つの集熱部が、複数の筒体を有するものであってもよい。熱源及び/又は強い風が得られる場所が複数存在する場合に、それぞれの場所に近いところに筒体を備えることにより、効率的に発電することが容易となる。
 図14は、発電装置を建築物に近接させて建設する一例を示す図である。本発明の実施例にかかる発電装置は、筒体1を建築物16に一体化させて、隣接させて又は近接させて建設するものであってもよい。図14には、筒体1を建築物16に近接させて支持体17により支持する構成例を示す。これにより、建築物16の内部の発熱部18からの排熱利用が容易となる。特に、筒体1を建築物16の壁等の一部と一体化させて建設する場合、ソーラータワーの建設コストを大幅に削減することが可能となる。
 さらに、本実施例に示した風力発電と太陽光発電のハイブリッド技術であるWST(Wind-Solar Tower)発電の技術は、省エネルギー技術としても活用可能である。工場の排気用煙突や、海底又は地中トンネルの換気塔には、しばしば強制排気用のファンが設置されている。これらのファンは、煙突内部に風を作り出すために、数メガワットの電力を消費していることも少なくない。
 これらの煙突出口に、WST技術である低圧生成構造物を追加したり、煙突自体をディフューザ化することで、排気自体の熱や上空の自然風を効果的に利用して煙突内部に風を生み出す上昇気流発生装置とすることができる。この上昇気流発生装置を用いた上昇気流増速方法により、ファンの消費電力の削減が可能である。
 大気汚染が深刻な中国内陸の西安では、「空気清浄塔」と呼ばれる高さ60m、直径10mのソーラータワーを建設し、内部にフィルターを設置して大気汚染物質の除去を行っている。このような排気ファンが存在しない換気装置にも、WSTのディフューザ型タワーや上空風利用技術は活用可能であり、創風効率の向上やタワーの小型化に寄与すると予想される。
 以上、本発明の実施の形態を図面に基づいて詳細に説明したが、これらは例示であり、当業者の知識に基づき、様々な組み合わせの変更を行った形態や、種々の変形、改良等を施した他の形態で本発明を実施することが可能である。図面で示された構成や組み合わせに限られず、上記発明を実施するための形態で説明した趣旨や技術的思想を逸脱しない範囲内で、適宜変更することが可能であることは言うまでもない。
 1 筒体
 1a 下端開口部
 1b 上端開口部
 1c スロート部
 2 透光体
 3 空気流通路
 4 羽根車
 5 発電機
 8 太陽電池パネル
 9 切り込み部
 11 反射体
 13 蓄熱体
 15 ガイド板
 16 建築物
 17 支持体
 18 発熱部
 21 筒体
 21a 下端開口部
 21b 上端開口部
 29 切り込み部
 Fa 人工気流
 G 地面
 Hc 集熱部
 P1 発電装置
 P2 発電装置
 S1 第1空間
 S2 第2空間
 

Claims (20)

  1.  上端開口部と下端開口部を有する筒体と、前記筒体を通る気体の経路に設けられた羽根車と、前記羽根車の回転に連動して発電する羽根車用発電機とを備え、前記気体が前記羽根車を回転させて発電する発電装置であって、
     前記筒体の内部の上昇気流の上昇速度を増速させるために、低圧領域を前記筒体の内部空間に形成する低圧形成手段を前記筒体の側面に備える、発電装置。
  2.  前記低圧形成手段は、前記筒体の前記側面に、前記内部空間と前記筒体の外部とを空間的に接続させる側面開口部を有する、請求項1記載の発電装置。
  3.  前記側面開口部は、前記内部空間と、前記筒体の外部であって前記側面の周囲に境界層又は剥離せん断層に基づく外部流れによって形成される低圧部分とを空間的に接続させる、請求項2記載の発電装置。
  4.  前記側面開口部を含む前記筒体の断面形状は、
      角を有するものであり、
      前記外部流れの前記角の下流側に前記側面開口部を有するものである、請求項3記載の発電装置。
  5.  前記筒体の上端は、周囲方向につながっている、請求項2から4のいずれかに記載の発電装置。
  6.  前記筒体の前記下端開口部の周辺領域において、前記上昇気流を螺旋流にする螺旋流形成手段を備える、請求項1から5のいずれかに記載の発電装置。
  7.  前記螺旋流形成手段は、前記筒体に向けて立てられた複数のガイド板であり、
     複数の前記ガイド板は、隣接する当該ガイド板がお互いに同じ回転方向に略同じ角度で傾いて設置されている、請求項6記載の発電装置。
  8.  前記羽根車の回転方向と前記螺旋流の回転方向とが一致する、請求項6又は7記載の発電装置。
  9.  前記筒体の高さは、生成される前記螺旋流の高さよりも低いものである、請求項6から8のいずれかに記載の発電装置。
  10.  前記筒体の前記下端開口部の周辺領域において地面との間に間隔を設けて布設された集熱部をさらに備える、請求項1から9のいずれかに記載の発電装置。
  11.  前記集熱部は、前記筒体の中心軸から非対称に広がるように布設されている、請求項10記載の発電装置。
  12.  太陽光を反射する反射体をさらに備え、
     前記反射体は、前記集熱部の内部の空気を加熱する、請求項10又は11記載の発電装置。
  13.  前記筒体は、少なくとも一部が透光性である透光部を有するものであり、
     太陽光を反射した反射光が前記透光部を通って前記羽根車の下の空気を加熱する反射部をさらに備える、請求項10から12のいずれかに記載の発電装置。
  14.  前記集熱部は、
      太陽光を透す透光体を有し、
     前記透光体の上に接して設置された太陽電池パネルをさらに有するものであり、又は、
      太陽電池パネルを当該集熱部の天井の一部若しくは全部として有するものであり、
     前記太陽電池パネルの熱が前記集熱部の内部の空気を加熱する、請求項10から13のいずれかに記載の発電装置。
  15.  前記筒体を複数備える、請求項1から14のいずれかに記載の発電装置。
  16.  前記筒体を建築物に一体化させて、隣接させて又は近接させて建設する、請求項1から15のいずれかに記載の発電装置。
  17.  前記筒体と同軸上の回転軸と、前記筒体の前記側面の周囲に複数のブレードとを有する垂直軸型風車と、
     前記回転軸の回転に連動して発電する風車用発電機とをさらに備える、請求項1から15のいずれかに記載の発電装置。
  18.  上端開口部と下端開口部を有する筒体と、前記筒体の前記下端開口部の周辺領域において地面との間に間隔を設けて布設された集熱部と、前記地面と前記下端開口部との間の空間である第1空間の気体を前記筒体の内部空間である第2空間へ流入させて上昇気流を発生させる上昇気流発生装置であって、
     前記上昇気流の上昇速度を増速させるために、低圧領域を前記第2空間に形成する低圧形成手段を前記筒体の側面に備える、上昇気流発生装置。
  19.  上端開口部と下端開口部を有する筒体と、前記筒体を通る気体の経路に設けられた羽根車と、前記羽根車の回転に連動して発電する羽根車用発電機とを備え、前記気体が前記羽根車を回転させて発電する発電装置を用いた発電方法であって、
     前記発電装置は、前記筒体の内部の上昇気流の上昇速度を増速させるために、低圧領域を前記筒体の内部空間に形成する低圧形成手段を前記筒体の側面に備え、
     前記低圧形成手段が、前記低圧領域を前記内部空間に形成する低圧形成ステップを含む、発電方法。
  20.  上端開口部と下端開口部を有する筒体と、前記筒体の前記下端開口部の周辺領域において地面との間に間隔を設けて布設された集熱部と、前記地面と前記下端開口部との間の空間である第1空間の気体を前記筒体の内部空間である第2空間へ流入させて上昇気流を発生させる上昇気流発生装置を用いた上昇気流増速方法であって、
     前記上昇気流発生装置は、低圧領域を前記第2空間に形成する低圧形成手段を前記筒体の側面に備えるものであり、
     前記低圧形成手段が、前記低圧領域を前記第2空間に形成する低圧形成ステップと、
     前記低圧領域が、前記上昇気流の上昇速度を増速させる増速ステップとを含む、上昇気流増速方法。
PCT/JP2021/024647 2021-06-29 2021-06-29 発電装置、上昇気流発生装置、発電方法及び上昇気流増速方法 WO2023276016A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023531216A JPWO2023276016A1 (ja) 2021-06-29 2021-06-29
PCT/JP2021/024647 WO2023276016A1 (ja) 2021-06-29 2021-06-29 発電装置、上昇気流発生装置、発電方法及び上昇気流増速方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024647 WO2023276016A1 (ja) 2021-06-29 2021-06-29 発電装置、上昇気流発生装置、発電方法及び上昇気流増速方法

Publications (1)

Publication Number Publication Date
WO2023276016A1 true WO2023276016A1 (ja) 2023-01-05

Family

ID=84689809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024647 WO2023276016A1 (ja) 2021-06-29 2021-06-29 発電装置、上昇気流発生装置、発電方法及び上昇気流増速方法

Country Status (2)

Country Link
JP (1) JPWO2023276016A1 (ja)
WO (1) WO2023276016A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452046A (en) * 1980-07-24 1984-06-05 Zapata Martinez Valentin System for the obtaining of energy by fluid flows resembling a natural cyclone or anti-cyclone
JPH0660774U (ja) * 1993-01-22 1994-08-23 株式会社イメージプラン 上昇気流発電
CN101338735A (zh) * 2007-07-02 2009-01-07 孟英志 一种多能源发电及海水淡化的装置
CN101629551A (zh) * 2009-08-04 2010-01-20 张瑞明 太阳能热气流发电装置
JP2012013002A (ja) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd 風力発電装置
CN102878019A (zh) * 2012-09-17 2013-01-16 太原科技大学 太阳能热风风力发电结合光伏发电结构及降温控制方法
JP2014070618A (ja) * 2012-10-01 2014-04-21 Yuji Oya 発電装置
US20150047352A1 (en) * 2009-08-31 2015-02-19 Georgia Tech Research Corporation Power generation using buoyancy-induced vortices
JP2016125430A (ja) * 2015-01-06 2016-07-11 日本テクニカ株式会社 風力発電装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452046A (en) * 1980-07-24 1984-06-05 Zapata Martinez Valentin System for the obtaining of energy by fluid flows resembling a natural cyclone or anti-cyclone
JPH0660774U (ja) * 1993-01-22 1994-08-23 株式会社イメージプラン 上昇気流発電
CN101338735A (zh) * 2007-07-02 2009-01-07 孟英志 一种多能源发电及海水淡化的装置
CN101629551A (zh) * 2009-08-04 2010-01-20 张瑞明 太阳能热气流发电装置
US20150047352A1 (en) * 2009-08-31 2015-02-19 Georgia Tech Research Corporation Power generation using buoyancy-induced vortices
JP2012013002A (ja) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd 風力発電装置
CN102878019A (zh) * 2012-09-17 2013-01-16 太原科技大学 太阳能热风风力发电结合光伏发电结构及降温控制方法
JP2014070618A (ja) * 2012-10-01 2014-04-21 Yuji Oya 発電装置
JP2016125430A (ja) * 2015-01-06 2016-07-11 日本テクニカ株式会社 風力発電装置

Also Published As

Publication number Publication date
JPWO2023276016A1 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
US8089173B2 (en) Wind power nozzle with optimized intake length
US7695242B2 (en) Wind turbine for generation of electric power
US7008171B1 (en) Modified Savonius rotor
AU2010359619B2 (en) Vertical axis turbine
EP2395234A2 (en) Tunnel Power Turbine System to generate potential energy from waste kinetic energy
KR101236347B1 (ko) 집풍 구조물의 수직 상승기류를 이용한 풍력발전 터빈
Karmakar et al. A review of augmentation methods to enhance the performance of vertical axis wind turbine
WO2006123951A1 (en) A wind turbine
KR101073897B1 (ko) 다단계 풍력 발전기
JP2012107612A (ja) 風洞体、垂直軸型風車、構造物、風力発電装置、油圧装置、ならびに建築物
JP5551748B2 (ja) 発電装置
US20110187114A1 (en) Wind driven turbine
JP2007211656A (ja) 円形筒型風車発電装置
WO2023276016A1 (ja) 発電装置、上昇気流発生装置、発電方法及び上昇気流増速方法
KR102126226B1 (ko) 돛 장치
WO2019206102A1 (zh) 一种高效风力发电装置
CN203248313U (zh) 一种新型的风力发电机
KR20110079794A (ko) 수평바람을 수직기류로 바꾸는 집풍관 이용 풍력발전장치
EP2626548A1 (en) Wind turbine
KR20140023118A (ko) 와풍유도형 풍력발전시스템
RU188712U1 (ru) Фотоветровая автономная электростанция
KR20240087969A (ko) 태양광과 풍력을 이용한 하이브리드 발전장치
Bhadra et al. Review of Experimental and Computational Analysis of Coaxial H-Savonius Vertical Axis Wind Rotor
WO2024005725A1 (en) Wind-solar chimney
CN103195649A (zh) 一种新型的风力发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023531216

Country of ref document: JP

Kind code of ref document: A