WO2023275979A1 - Processing head and additive manufacturing device - Google Patents

Processing head and additive manufacturing device Download PDF

Info

Publication number
WO2023275979A1
WO2023275979A1 PCT/JP2021/024519 JP2021024519W WO2023275979A1 WO 2023275979 A1 WO2023275979 A1 WO 2023275979A1 JP 2021024519 W JP2021024519 W JP 2021024519W WO 2023275979 A1 WO2023275979 A1 WO 2023275979A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing head
lens array
head according
optical
laser beams
Prior art date
Application number
PCT/JP2021/024519
Other languages
French (fr)
Japanese (ja)
Inventor
潤 近藤
陽子 井上
宏昌 藤井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/024519 priority Critical patent/WO2023275979A1/en
Priority to JP2023531188A priority patent/JP7515722B2/en
Publication of WO2023275979A1 publication Critical patent/WO2023275979A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates to processing heads and additive manufacturing equipment.
  • An additive manufacturing device that manufactures a modeled object through additive processing is known.
  • the processing head for the additive manufacturing apparatus melts the supplied additive material (for example, metal material) in the vicinity of the condensed point (hereinafter also referred to as the "condensed spot") where the heating laser beam is condensed. Then, the melted addition material is added.
  • the condensed spot where the heating laser beam is condensed.
  • the material supply unit that supplies the additional material to the position to be processed blocks the laser light, the light utilization efficiency is lowered.
  • a processing head is known that prevents a decrease in light utilization efficiency. See, for example, US Pat.
  • Patent Document 1 in addition to an optical system that circularizes the light intensity distribution of laser light, a split optical element composed of a V-shaped groove-shaped convex mirror and an optical path split by the split optical element are recombined. and a condensing mechanism composed of a concave mirror. This avoids shielding of the laser light by the material supply section.
  • Patent Document 2 by controlling the polarization state of laser light split by a polarizing beam splitter, the heat distribution of each of the additive material and the additive object at the condensing point is controlled, and the processing quality is improved.
  • Patent No. 6756695 Japanese Patent Application Laid-Open No. 2018-202450
  • Patent Document 1 a concave mirror or a convex mirror is provided in addition to a condensing optical system for condensing laser light in order to avoid light shielding by the material supply unit. Therefore, when manufacturing these mirrors, high processing accuracy and high-precision adjustment of the optical system are required compared to conventional flat mirrors.
  • the polarization beam splitter splits the laser beam, but depending on the specifications of the laser light source or the configuration (for example, fiber) that guides the laser beam, unevenness occurs in the polarized component, and the split laser beam A difference occurs in the light intensity of the light. Therefore, in Patent Document 2, an additional optical element for controlling the polarization state is required. Moreover, among the optical elements for controlling the polarization state, there are very few optical elements that can handle high-power laser light, the cost is high, and the configuration is complicated.
  • An object of the present disclosure is to increase the utilization efficiency of laser light with a simple configuration.
  • a processing head is a processing head that processes a material supplied from a material supply unit to a position to be processed, and includes a light source unit that emits a first laser beam, and the first laser beam. to form a plurality of second laser beams by branching, a condensing optical element for condensing the plurality of second laser beams; and a first and an optical unit.
  • FIG. 1 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus according to Embodiment 1;
  • FIG. 2 is an external perspective view showing the configuration of a lens array of the processing head shown in FIG. 1;
  • FIG. FIG. 4 is an explanatory diagram for explaining the optical function of the lens array of the machining head according to Embodiment 1;
  • FIG. 2 is a view of the periphery of the reflecting optical portion of the processing head shown in FIG. 1 as viewed in the ⁇ z-axis direction;
  • FIG. 11 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus according to a modification of Embodiment 1;
  • FIG. 9 is a block diagram showing the configuration of an additional manufacturing apparatus according to Embodiment 2;
  • FIG. 11 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus according to Embodiment 2;
  • FIG. 11 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus according to Embodiment 3;
  • (A) and (B) are explanatory diagrams for explaining changes in positions of condensed spots of a plurality of second laser beams in the processing head according to Embodiment 3.
  • FIG. FIG. 11 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus according to Embodiment 4;
  • FIG. 11 is a view of the lens array and the lens array driver shown in FIG. 10 as viewed in the ⁇ x-axis direction;
  • (A) and (B) are operation explanatory diagrams for explaining the operation of the lens array of the processing head according to the fourth embodiment.
  • FIG. 11 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus according to Embodiment 5;
  • (A) and (B) are explanatory diagrams for explaining changes in positions of condensed spots of a plurality of second laser beams in the processing head according to Embodiment 5.
  • FIG. 11 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus according to Embodiment 5;
  • (A) and (B) are explanatory diagrams for explaining changes in positions of condensed spots of a plurality of second laser beams in the processing head according to Embodiment 5.
  • the coordinate axes of the xyz orthogonal coordinate system are used in the drawings to facilitate understanding of the explanation.
  • the x-axis and y-axis are coordinate axes parallel to the stage 7 of the additive manufacturing apparatus.
  • the z-axis is a coordinate axis orthogonal to the x-axis and the y-axis.
  • the z-axis is an axis parallel to the reference line S passing through the position to be processed 70 .
  • FIG. 1 is a configuration diagram showing a schematic configuration of an additive manufacturing apparatus 100 according to Embodiment 1.
  • the additive manufacturing apparatus 100 is a machine tool that manufactures a modeled object by adding molten additive material to an object to be added (hereinafter also referred to as a "workpiece") placed on the stage 7.
  • the additive manufacturing apparatus 100 has a processing head 1 , a stage 7 and a stage driving section 8 .
  • the stage 7 is used to install and fix additional objects (not shown).
  • the stage 7 has a position to be processed (specifically, a position to be processed 70 shown in FIG. 4 to be described later) and is movable in a predetermined direction.
  • a stage drive unit 8 drives the stage 7 .
  • the stage drive unit 8 has, for example, a motor and a transmission mechanism (for example, gears) that transmits the driving force of the motor to the stage 7 .
  • the stage driving unit 8 can move the stage 7 in, for example, the x-axis direction, the y-axis direction, and the z-axis direction, and rotate it around each axis. As a result, it is possible to manufacture a modeled object having a desired shape.
  • the driving direction of the stage 7 is not limited to the direction described above.
  • the processing head 1 has a material supply section 6 .
  • the processing head 1 processes the additional material supplied from the material supply unit 6 to the position to be processed.
  • the material supply unit 6 is a material supply pipe that supplies the additional material to the position to be processed.
  • the position to be processed is a position in the vicinity of a condensed spot 80, which is a spot where laser light (a second laser light L21 described later) irradiated from the processing head 1 toward the stage 7 converges.
  • the material supply unit 6 is arranged along a reference line S that passes through the position to be processed and is perpendicular to the stage 7 .
  • the additional material is, for example, a powder-like or wire-like metal material.
  • the material supply unit 6 is configured by a tubular housing or the like. Thereby, scattering of the additional material can be prevented.
  • the additional material is a wire-shaped metal material, the metal material can be supplied to the position to be processed by providing the material supply unit 6 with a mechanism for supplying the additional material in the +z-axis direction.
  • the additional material may be the powder-like metal material described above.
  • the processing head 1 further has a light source section 10, a lens array 20 as a condensing optical element, a reflecting optical section 30 as a first optical section, and a plane mirror 40 as a second optical section.
  • the light source unit 10 emits a first laser beam L11.
  • the light source unit 10 has a laser beam irradiation unit 11 and a collimator unit 12 .
  • the laser beam irradiation unit 11 emits a laser beam L1.
  • the laser beam L1 is divergent light.
  • the laser beam irradiation unit 11 has, for example, a laser oscillator, a light guiding optical element (for example, a fiber), and a coupling lens that guides the laser beam L1 emitted from the laser oscillator to the light guiding optical element (not shown). .
  • laser light L1 emitted from the light guiding optical element is schematically shown.
  • the laser beam irradiation unit 11 can be realized without the light guide optical element.
  • the first laser beam L11 shown in FIG. 1 may be a laser beam emitted from a laser oscillator.
  • the collimating section 12 shapes the laser light L1 emitted from the laser light irradiation section 11 into substantially parallel light. Thereby, the first laser beam L11 is formed.
  • the collimating section 12 is composed of, for example, a lens. In the example shown in FIG. 1, the collimator 12 is composed of one lens. The number of lenses provided in the collimating section 12 is not limited, and the collimating section 12 may be composed of a plurality of lenses. Moreover, when the laser beam L1 emitted from the laser beam irradiation unit 11 is already substantially parallel light, the light source unit 10 can be realized without the collimator unit 12 .
  • the lens array 20 splits the first laser beam L11 to form a plurality of second laser beams L21.
  • FIG. 2 is an external perspective view showing the configuration of the lens array 20 shown in FIG.
  • the lens array 20 is integrally formed with a plurality of (for example, four) lenses 20a, 20b, 20c, and 20d.
  • the plurality of lenses 20a, 20b, 20c, and 20d respectively form the plurality of second laser beams L21.
  • Each of the plurality of lenses 20a, 20b, 20c, and 20d is, for example, a plano-convex lens.
  • FIG. 3 is an explanatory diagram for explaining the optical function of the lens array 20 of the machining head 1 according to the first embodiment.
  • a plurality of lenses 201a and 201b are integrally formed in the lens array 20 shown in FIG.
  • the shape of the lens array 20 shown in FIG. 3 is different from the shape of the lens array 20 shown in FIGS. 1 and 2, the lens arrays 20 shown in FIGS. 1-3 have the same optical function as each other.
  • the focused spot Q1 is arranged at a position spatially shifted from the focused spot Q2. It is Therefore, since the processing head 1 is provided with the lens array 20, the first laser beam L11 emitted from the light source unit 10 can avoid the material supply unit 6 located on the optical axis C, and A plurality of focused spots can be formed on the stage 7 . In this case, the focal length of the lenses forming the lens array 20 must be designed to be the same as the optical path length from the lens array 20 to the position to be processed.
  • the reflective optical unit 30, which will be described later also has the light-collecting properties of the plurality of second laser beams L21 split by the lens array 20, the respective light-collecting properties of the lens array 20 and the reflective optical unit 30 are synthesized. Therefore, it is necessary to design so that the plurality of second laser beams L21 are condensed at the position to be processed.
  • the number of lenses constituting the lens array 20 is four, but the number of lenses is not limited to four. It is preferable that the number of lenses constituting the lens array 20 is three or more in order to prevent unevenness in the heat distribution of each of the additional material and the additional object.
  • FIG. FIG. 4 is a view of the processing head 1 shown in FIG. 1, in which the periphery of the reflecting optical section 30 is viewed in the ⁇ z-axis direction.
  • the reflecting optical section 30 directs the plurality of second laser beams L21 branched by the lens array 20 to the position 70 to be processed.
  • the reflecting optical unit 30 directs a plurality of second laser beams L21 branched by the lens array 20 and reflected by a plane mirror 40, which will be described later, toward the processing position 70.
  • the reflective optical section 30 has a plurality of condensing mirrors 31 as a plurality of condensing members having a plurality of reflecting surfaces 31a.
  • the collecting mirror 31 is, for example, a plane mirror.
  • the plurality of reflective surfaces 31a are arranged at a plurality of positions surrounding the processing position 70, respectively.
  • the plurality of reflecting surfaces 31a are arranged with the reference line S as the center at equal angular intervals.
  • the plurality of reflecting surfaces 31a direct the plurality of second laser beams L21 toward the processed position 70, respectively.
  • the plurality of reflecting surfaces 31 a isotropically irradiate the plurality of second laser beams L ⁇ b>21 toward the position to be processed 70 . As a result, it is possible to prevent unevenness in the heat distribution of the additive material and the additive object. Therefore, processing quality can be improved.
  • the number of reflective surfaces 31 a in the reflective optical section 30 corresponds to the number of lenses forming the lens array 20 . As shown in FIG. 2 described above, in the lens array 20 of Embodiment 1, four lenses 20a, 20b, 20c, and 20d are integrally formed. Therefore, the reflective optical section 30 has four reflective surfaces 31a arranged independently of each other. If the plurality of second laser beams L21 branched by the lens array 20 can be reflected toward the processed position 70, the number of the reflecting surfaces 31a in the reflecting optical section 30 is not limited to four, and may be two or more. I wish I had.
  • the surface shape of the condenser mirror 31 is flat, but is not limited to this. In order to improve the light gathering performance, the surface shape of the light gathering mirror 31 may be, for example, spherical, parabolic, or the like.
  • the collector mirror 31 is made of metal, for example.
  • the condenser mirror 31 may be either a dielectric multilayer mirror or a diffraction grating (for example, a reflective diffraction grating) that reflects light of a specific wavelength.
  • the plane mirror 40 guides the plurality of second laser beams L21 branched by the lens array 20 to the reflecting optical section 30 .
  • the plurality of second laser beams L21 travel in the +z-axis direction along the material supply section 6 and enter the reflecting optical section 30 .
  • the plurality of second laser beams L21 are reflected by the plane mirror 40 so as to be substantially rotationally symmetrical about the reference line S passing through the position to be processed 70 (see FIG. 4), and isotropically toward the position to be processed 70. Concentrate. This heats the add-on material supplied to the work position 70 .
  • the plane mirror 40 has a through hole 40a.
  • the material supply part 6 is arranged through the through-hole 40a. Thereby, interference between the material supply unit 6 and the plane mirror 40 can be prevented. It should be noted that the processing head 1A can be realized without the flat mirror 40, as shown in FIG. 5, which will be described later.
  • the lens array 20 splits the first laser beam L11 emitted from the light source unit 10 to form a plurality of second laser beams L21, and the second laser beam L21 to focus.
  • the reflecting optical section 30 directs the plurality of second laser beams L21 branched by the lens array 20 to the positions 70 to be processed. This makes it possible to avoid light shielding by the material supply unit 6 with a simple configuration. Therefore, it is possible to improve the utilization efficiency of laser light with a simple configuration.
  • the reflective optical section 30 has a plurality of reflecting surfaces 31a arranged at a plurality of positions surrounding the position to be processed 70, and the plurality of reflecting surfaces 31a includes a plurality of second of laser beams L21 are directed to the position to be processed 70 respectively.
  • the processing head 1 further has a plane mirror 40 that guides the plurality of second laser beams L21 branched by the lens array 20 to the reflecting optical section 30.
  • the second laser beam L21 branched by the lens array 20 is isotropically applied to the position 70 to be processed. Thereby, processing quality can be improved.
  • the plane mirror 40 has the through hole 40a, and the material supply unit 6 is arranged through the through hole 40a. Thereby, interference between the material supply unit 6 and the plane mirror 40 can be prevented.
  • FIG. 5 is a diagram showing a schematic configuration of a processing head 1A according to a modification of the first embodiment. 5, the same or corresponding components as those shown in FIG. 1 are given the same reference numerals as those shown in FIG.
  • the processing head 1A according to the modification of the first embodiment does not have the plane mirror 40 shown in FIG. It is different from the processing head 1. Except for this point, the processing head 1A according to the modification of the first embodiment is the same as the processing head 1 according to the first embodiment. Therefore, FIG. 4 will be referred to in the following description.
  • the additional manufacturing apparatus 100A has a processing head 1A, a stage 7, and a stage driving section 8.
  • the processing head 1A has a material supply section 6, a light source section 10, a lens array 20, and a reflecting optical section 30.
  • the lens array 20 and the reflective optical section 30 are arranged at a position where the second laser light L21 split by the lens array 20 directly enters the reflective optical section 30 .
  • the lens array 20 is arranged on the -z-axis side of the material supply section 6 and the reflecting optical section 30.
  • the lens array 20 is arranged at a position facing the stage 7 with the material supply section 6 and the reflecting optical section 30 interposed therebetween.
  • the lens array 20 splits the first laser beam L11 emitted from the light source unit 10 to form a plurality of second laser beams L21,
  • the laser beam L21 is condensed.
  • the reflecting optical section 30 directs the plurality of second laser beams L21 branched by the lens array 20 to the positions 70 to be processed. This makes it possible to avoid light shielding by the material supply unit 6 with a simple configuration. Therefore, it is possible to improve the utilization efficiency of laser light with a simple configuration.
  • the lens array 20 and the reflecting optical section 30 are positioned so that the plurality of second laser beams L21 branched by the lens array 20 directly enter the reflecting optical section 30. are placed.
  • the processing head 1A according to the modification of the first embodiment can be realized without having the plane mirror 40 shown in FIG. 1 described above. Therefore, the number of parts in the machining head 1A can be reduced. Therefore, it is possible to improve the utilization efficiency of laser light with a simpler configuration.
  • FIG. 6 is a block diagram showing the configuration of an additional manufacturing apparatus 200 according to Embodiment 2.
  • FIG. 7 is a configuration diagram showing a schematic configuration of an additive manufacturing apparatus 200 according to Embodiment 2.
  • the additional manufacturing apparatus 200 according to Embodiment 2 differs from the additional manufacturing apparatus 100 according to Embodiment 1 in the configuration of the reflective optical section 230 of the processing head 2 .
  • the additional manufacturing apparatus 200 according to the second embodiment is the same as the additional manufacturing apparatus 100 according to the first embodiment. Therefore, FIG. 4 will be referred to in the following description.
  • the additional manufacturing device 200 has a processing head 2, a stage 7, a stage driving section 8, and a control section 9.
  • the processing head 2 has a material supply section 6, a light source section 10, a lens array 20, a reflecting optical section 230, and a plane mirror 40.
  • the reflective optical section 230 has a plurality of collecting mirrors 231 having a plurality of reflecting surfaces 31a, and a plurality of reflecting surface driving sections 232 that drive the plurality of collecting mirrors 231, respectively.
  • the reflecting surface driving section 232 drives the collecting mirror 231 based on the control signal output from the control section 9 . Thereby, the reflecting surface driving section 232 can change the positions of the condensed spots 80 of the plurality of second laser beams L21 at the processing position 70 (see FIG. 4). Therefore, it is possible to optimize the heat distribution of the focused spot 80 and improve the processing quality.
  • the reflective surface driver 232 scans the focused spot of the second laser beam L21 on the xy plane.
  • the reflecting optical section 230 is a focusing position adjusting optical section that changes the positions of the focused spots 80 of the plurality of second laser beams L21.
  • the control unit 9 drives the reflective surface driving unit 232 based on at least one of the movement direction and movement speed of the stage 7 and the characteristics of the additional material. Thereby, the positions of the focused spots 80 of the plurality of second laser beams L21 can be changed based on at least one of the moving direction and moving speed of the stage 7 and the characteristics of the additional material.
  • the collecting mirror 231 is a galvano-mirror, and the reflecting surface driving section 232 rotates the galvano-mirror about an axis perpendicular to the reference line S.
  • the condensing mirror 231 rotates, for example, around two axes (for example, ⁇ Ry direction and ⁇ Rz direction shown in FIG. 7), so that the tilt angle of the condensing mirror 231 is modulated at high speed.
  • the collecting mirror 231 is not limited to a galvanomirror, and may be another mirror.
  • the reflective surface driver 232 may be a piezo element that drives the condenser mirror 231 .
  • the collecting mirror 231 is a plane mirror as in the first embodiment. Therefore, the reflecting surface driving section 232 is a rotation driving section capable of varying the tilt angle of the collecting mirror 231 as described above.
  • the collecting mirror 231 is a curved mirror, if the positions of the collecting spots 80 of the plurality of second laser beams L21 can be controlled, the reflecting surface driving section 232 moves the collecting mirror 231 to z It may also be a translational drive unit that translates in the axial direction.
  • the lens array 20 splits the first laser beam L11 emitted from the light source unit 10 to form a plurality of second laser beams L21, and the second laser beam L21 to focus.
  • the reflecting optical section 230 directs the plurality of second laser beams L21 branched by the lens array 20 to the positions to be processed 70, respectively. This makes it possible to avoid light shielding by the material supply unit 6 with a simple configuration. Therefore, it is possible to improve the utilization efficiency of laser light with a simple configuration.
  • the reflective optical unit 230 has the reflective surface driving unit 232 that drives the plurality of reflective surfaces 31a, and the condensed spots of the plurality of second laser beams L21 at the processing position 70 change the position 80 of .
  • the heat distribution of the focused spot 80 can be optimized, and the processing quality can be improved. Therefore, according to the second embodiment, it is possible to improve the processing quality while improving the utilization efficiency of laser light with a simple configuration.
  • FIG. 8 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus 300 according to Embodiment 3.
  • the additional manufacturing apparatus 300 according to the third embodiment differs from the additional manufacturing apparatus 100 according to the first embodiment in that the processing head 3 is provided with a lens array driving section 350 that drives the lens array 20 to rotate. Except for this point, the additional manufacturing apparatus 300 according to the third embodiment is the same as the additional manufacturing apparatuses 100 and 200 according to the first or second embodiment. 3, 4 and 6 are therefore referred to in the following description.
  • the additional manufacturing device 300 has a processing head 3, a stage 7, a stage driving section 8, and a control section 9 (see FIG. 6).
  • the processing head 3 has a material supply section 6, a light source section 10, a lens array 20, a reflecting optical section 30, a plane mirror 40, and a lens array driving section 350 as a first optical element driving section.
  • the lens array driver 350 rotates the lens array 20 around the x-axis.
  • the x-axis is the center axis
  • the clockwise rotation is the +Rx direction
  • the counterclockwise rotation is the ⁇ Rx direction.
  • the lens array driving section 350 has, for example, a motor and a transmission mechanism (for example, gears) that transmits the driving force of the motor to the lens array 20 .
  • the lens array driving section 350 drives the lens array 20 based on the control signal output from the control section 9 .
  • the control unit 9 controls the lens array driving unit 350 based on the moving direction of the stage 7, the properties of the additional material, and the like.
  • FIGS. 9A and 9B show changes in the positions of condensed spots 80a, 80b, 80c, and 80d of the plurality of second laser beams L21 (see FIG. 8) of the processing head 3 according to Embodiment 3. It is an explanatory view explaining.
  • the lens array 20 has four lenses 20a, 20b, 20c, and 20d, so in FIGS. Spots 80a, 80b, 80c, 80d are shown.
  • FIGS. Spots 80a, 80b, 80c, 80d are shown.
  • the moving direction of the stage 7 that is, the processing direction of the object to be added is defined as processing direction A.
  • FIG. 9A is a diagram of a plurality of condensed light spots 80a, 80b, 80c, and 80d at the processing position 70 before the lens array 20 rotates, viewed in the -z-axis direction.
  • the processing direction A is the +x-axis direction.
  • one focused spot 80 a is formed on the +x-axis side of the reference line S passing through the material supply section 6 .
  • the focused spot 80b is formed at a position rotated 90 degrees clockwise from the focused spot 80a
  • the focused spot 80c is formed at a position rotated 90 degrees clockwise from the focused spot 80b.
  • the focused spot 80d is formed at a position rotated 90 degrees clockwise from the focused spot 80c.
  • the plurality of condensed spots 80a, 80b, 80c, and 80d are formed at equal angular intervals of 90 degrees around the reference line S, for example.
  • FIG. 9(B) is a view of a plurality of condensed spots 80a, 80b, 80c, and 80d at the processing position 70 after the lens array 20 has been rotated, viewed in the -z-axis direction.
  • FIG. 9B is a diagram showing positions of a plurality of condensed spots 80a, 80b, 80c, and 80d when the processing direction A is inclined by 45 degrees so as to approach the -y-axis direction.
  • the lens array driving unit 350 shown in FIG.
  • the positions of the condensed spots 80a, 80b, 80c, and 80d are varied.
  • the positions of the plurality of condensed spots 80a, 80b, 80c, and 80d can be changed according to the processing direction A of the object to be added.
  • the positions of the plurality of condensed spots 80a, 80b, 80c, and 80d can also be changed by driving the condensing mirror 231 by the reflecting surface driving section 232.
  • the irradiation position of the second laser beam L21 applied to the additional material and the intensity distribution of the second laser beam L21 on the additional material are different in the vicinity of the position to be processed 70. may be restricted. Therefore, as in Embodiment 3, the control unit 9 controls the lens array driving unit 350 based on the processing direction A and the properties of the additional material, thereby improving processing quality.
  • the positional relationship between the processing direction A and the focused spots 80a, 80b, 80c, and 80d is not limited to the examples shown in FIGS.
  • the lens array 20 splits the first laser beam L11 emitted from the light source unit 10 to form a plurality of second laser beams L21, and the second laser beams L21 to focus.
  • the reflecting optical section 30 directs the plurality of second laser beams L21 branched by the lens array 20 to the positions 70 to be processed. This makes it possible to avoid light shielding by the material supply unit 6 with a simple configuration. Therefore, it is possible to improve the utilization efficiency of laser light with a simple configuration.
  • the processing head 3 further has a lens array driving section 350 that rotates the lens array 20 around the optical axis C of the first laser beam L11.
  • a lens array driving section 350 that rotates the lens array 20 around the optical axis C of the first laser beam L11.
  • FIG. 10 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus 400 according to Embodiment 4.
  • the same or corresponding components as those shown in FIG. 1 are given the same reference numerals as those shown in FIG.
  • An additional manufacturing apparatus 400 according to Embodiment 4 differs from the additional manufacturing apparatuses 100, 200, and 300 according to Embodiments 1 to 3 in that a lens array driving section 450 is provided in the processing head 4.
  • FIG. Except for this point, the additional manufacturing apparatus 400 according to the fourth embodiment is the same as the additional manufacturing apparatuses 100, 200, and 300 according to the first to third embodiments. 4 and 6 are therefore referred to in the following description.
  • the additional manufacturing device 400 has a processing head 4, a stage 7, a stage driving section 8, and a control section 9 (see FIG. 6).
  • the processing head 4 has a material supply section 6, a light source section 10, a lens array 20, a plane mirror 40, a reflecting optical section 30, and a lens array driving section 450 as a second optical element driving section.
  • FIG. 11 is a diagram of the lens array 20 and the lens array driving section 450 shown in FIG. 10 viewed in the -x-axis direction.
  • the lens array driver 450 moves the lens array 20 in a direction perpendicular to the optical axis direction (that is, x-axis direction) of the first laser beam L11.
  • the lens array driver 450 translates the lens array 20 in the y-axis direction and the z-axis direction.
  • the processing head 4 may have the lens array driving section 350 of Embodiment 3 in addition to the lens array driving section 450 .
  • FIG. 12A is a diagram showing the lens array 20 before being driven by the lens array driving section 450 and the first laser light L11 incident on the lens array 20.
  • FIG. 12A the center of the lens array 20 is positioned on the optical axis C of the first laser beam L11, which is parallel light. In other words, in the example shown in FIG. 12A, the center of the lens array 20 is not decentered with respect to the optical axis C of the first laser beam L11.
  • FIG. 12B is a diagram showing the lens array 20 after being driven by the lens array driving section 450 and the first laser light L11 incident on the lens array 20.
  • the lens array driving section 450 moves the center of the lens array 20 in the ⁇ y-axis direction with respect to the optical axis C of the first laser beam L11.
  • the lens array driving section 450 is a lens array decentering moving section that decenters the center of the lens array 20 with respect to the optical axis C of the first laser beam L11.
  • the lens array driver 450 when the lens array driver 450 translates the lens array 20 in the -y-axis direction, the lenses 20a and 20b located on the +y-axis side of the center of the lens array 20 The incident amount of the first laser beam L11 increases. As a result, the light intensity at each condensed spot of the plurality of second laser beams L21 (see FIG. 10) split by the lenses 20a and 20b increases. In this manner, the lens array driver 450 translates the lens array 20 in the ⁇ y-axis direction, thereby controlling the light intensity at the processing position 70 (see FIG. 4).
  • the lens array driver 450 translates the lens array 20 in the ⁇ y-axis direction, but the lens array driver 450 moves the lens array 20 in the +y-axis direction. Alternatively, it may be translated in the ⁇ z-axis direction. In this manner, the lens array 20 is translated in the direction perpendicular to the optical axis C of the first laser beam L11, so that each of the plurality of second laser beams L21 split by the lens array 20 is focused.
  • the light intensity of the spot can be controlled.
  • the controller 9 controls the light intensity distribution of the focused spot 80 in the vicinity of the position to be processed 70 (see FIG. 4), based on at least one of the processing direction and processing speed of the stage 7, for example. Thereby, processing quality can be improved.
  • the lens array 20 splits the first laser beam L11 emitted from the light source unit 10 to form a plurality of second laser beams L21, and the second laser beam L21 to focus.
  • the reflecting optical section 30 directs the plurality of second laser beams L21 branched by the lens array 20 to the positions 70 to be processed. This makes it possible to avoid light shielding by the material supply unit 6 with a simple configuration. Therefore, it is possible to improve the utilization efficiency of laser light with a simple configuration.
  • the processing head 4 has a lens array driving section 450 that moves the lens array 20 in a direction perpendicular to the optical axis direction of the first laser beam L11.
  • the lens array driving section 450 moves the lens array 20 in a direction perpendicular to the optical axis direction of the first laser beam L11.
  • the light intensity of each focused spot of the plurality of second laser beams L21 split by the lens array 20 can be controlled. Therefore, the light intensity distribution of the focused spot 80 in the vicinity of the position to be processed 70 is controlled, so that the processing quality can be improved. Therefore, according to Embodiment 4, it is possible to improve the processing quality while improving the utilization efficiency of laser light with a simple configuration.
  • FIG. 13 is a configuration diagram showing a schematic configuration of an additive manufacturing apparatus 500 according to Embodiment 5. As shown in FIG. 13, the same or corresponding components as those shown in FIG. 1 are given the same reference numerals as those shown in FIG.
  • An additional manufacturing apparatus 500 according to Embodiment 5 differs from the additional manufacturing apparatuses 100, 200, 300, and 400 according to Embodiments 1 to 4 in that a lens array driving section 550 is provided in the processing head 5. . Except for this point, the additional manufacturing apparatus 500 according to the fifth embodiment is the same as the additional manufacturing apparatuses 100, 200, 300, and 400 according to the first to fourth embodiments. 4 and 6 are therefore referred to in the following description.
  • the additional manufacturing device 500 has a processing head 5, a stage 7, a stage driving section 8, and a control section 9 (see FIG. 6).
  • the processing head 5 has a light source section 10, a lens array 20, a plane mirror 40, a reflecting optical section 30, and a lens array driving section 550 as a third optical element driving section.
  • the lens array driver 550 moves the lens array 20 in the optical axis direction of the first laser beam L11. That is, the lens array driving section 550 is a lens array translation section that translates the lens array 20 in the ⁇ x-axis directions. In addition to the lens array driving section 550, the processing head 5 may have at least one of the lens array driving section 350 of the third embodiment and the lens array driving section 450 of the fourth embodiment. .
  • FIGS. 14A and 14B are explanatory diagrams explaining changes in the positions of the focused spots of the plurality of second laser beams L21 in the processing head 5 according to Embodiment 5.
  • FIG. FIG. 14(A) is a ray diagram showing the second laser beam L21 focused on the focused spot 80a when the lens array 20 shown in FIG. 13 is stopped.
  • the position of the condensed spot 80a in the z-axis direction when the lens array 20 is stopped is the position z1.
  • the distance between the lens array 20 and the light-collecting spot 80a is It matches the focal length of the lens that makes up 20 .
  • FIG. 14(B) is a ray diagram showing the second laser light L21 focused on the focused spots 80aa and 80ab when the lens array 20 shown in FIG. 13 moves in the -x-axis direction.
  • the position z2 is the position of the focused spots 80aa and 80ab in the z-axis direction.
  • the position z2 moves to the ⁇ z-axis side from the position z1 shown in FIG. 14(A).
  • the diameter of the focused spot of the second laser beam L21 with which the additional material is irradiated is increased. That is, in Embodiment 5, the diameter of the focused spot of the second laser beam L21 can be changed by moving the lens array 20 in the ⁇ x-axis directions.
  • the control unit 9 drives the lens array driving unit 550 based on at least one of the diameter of the wire and the properties of the additional material. In this way, by varying the diameter of the focused spot according to the diameter of the wire and the characteristics of the additional material, it is possible to control the heat distribution of each of the additional material and the object to be added, thereby improving the processing quality. can.
  • the lens array 20 splits the first laser beam L11 emitted from the light source unit 10 to form a plurality of second laser beams L21, and the second laser beams L21 to focus.
  • the reflecting optical section 30 directs the plurality of second laser beams L21 branched by the lens array 20 to the positions 70 to be processed. This makes it possible to avoid light shielding by the material supply unit 6 with a simple configuration. Therefore, it is possible to improve the utilization efficiency of laser light with a simple configuration.
  • the processing head 5 has the lens array driving section 550 that moves the lens array 20 in the optical axis direction of the first laser beam L11.
  • the lens array driving section 550 can change the diameters of the focused spots 80aa and 80ab of the plurality of second laser beams L21 split by the lens array 20.
  • FIG. The lens array driver 550 can change the diameters of the focused spots 80aa and 80ab according to, for example, the diameter of the additional material and the properties of the additional material. Therefore, it is possible to control the heat distribution of each of the addition material and the addition target, thereby improving the processing quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

A processing head (1) processes a material to be supplied from a material supply unit (6) to a processing position (70). The processing head (1) comprises: a light source unit (10) that emits a first laser beam (L11); a light-condensing optical element (20) that branches the first laser beam (L11) so as to form a plurality of second laser beams (L21) and condenses the plurality of second laser beams (L21); and a first optical unit (30) that directs the plurality of second laser beams (L21) to the processing position (70). An additive manufacturing device (100) has the processing head (1) and a stage (7).

Description

加工ヘッド及び付加製造装置Machining head and additive manufacturing equipment
 本開示は、加工ヘッド及び付加製造装置に関する。 The present disclosure relates to processing heads and additive manufacturing equipment.
 付加加工によって造形物を製造する付加製造装置が知られている。付加製造装置用の加工ヘッドは、加熱用のレーザー光が集光した集光点(以下、「集光スポット」とも呼ぶ。)の近傍において、供給された付加材料(例えば、金属材料)を溶融し、溶融した付加材料の付加を行う。ここで、加工品質を向上するためには、付加材料に対して、等方的にレーザー光を集光して加熱することが望ましい。しかしながら、被加工位置に付加材料を供給する材料供給部がレーザー光を遮光した場合、光利用効率が低下する。光利用効率の低下を防止する加工ヘッドが知られている。例えば、特許文献1及び2を参照。 An additive manufacturing device that manufactures a modeled object through additive processing is known. The processing head for the additive manufacturing apparatus melts the supplied additive material (for example, metal material) in the vicinity of the condensed point (hereinafter also referred to as the "condensed spot") where the heating laser beam is condensed. Then, the melted addition material is added. Here, in order to improve the processing quality, it is desirable to isotropically focus the laser beam on the additional material to heat it. However, when the material supply unit that supplies the additional material to the position to be processed blocks the laser light, the light utilization efficiency is lowered. A processing head is known that prevents a decrease in light utilization efficiency. See, for example, US Pat.
 例えば、特許文献1では、レーザー光の光強度分布を環状にする光学系に加えて、V字の溝状の凸面ミラーからなる分割光学素子と、分割光学素子によって分割された光路を再合成する凹面ミラーからなる集光機構部とが備えられている。これにより、材料供給部によるレーザー光の遮光が回避される。 For example, in Patent Document 1, in addition to an optical system that circularizes the light intensity distribution of laser light, a split optical element composed of a V-shaped groove-shaped convex mirror and an optical path split by the split optical element are recombined. and a condensing mechanism composed of a concave mirror. This avoids shielding of the laser light by the material supply section.
 加工品質の向上のためには、付加材料に対して、等方的にレーザー光を集光して加熱することに加えて、付加材料及び付加対象物のそれぞれの熱分布を制御することも重要である。特許文献2では、偏光ビームスプリッタによって分岐されたレーザー光の偏光状態を制御することで、集光点における付加材料及び付加対象物のそれぞれの熱分布を制御し、加工品質を高めている。 In order to improve the processing quality, it is important to control the heat distribution of the additive material and the object to be added, in addition to heating the additive material by isotropically focusing the laser beam. is. In Patent Document 2, by controlling the polarization state of laser light split by a polarizing beam splitter, the heat distribution of each of the additive material and the additive object at the condensing point is controlled, and the processing quality is improved.
特許第6756695号Patent No. 6756695 特開2018-202450号公報Japanese Patent Application Laid-Open No. 2018-202450
 しかしながら、特許文献1では、材料供給部による遮光を回避するために、レーザー光を集光させる集光光学系に加えて、凹面ミラー又は凸面ミラーなどが設けられている。そのため、これらのミラーを製造する際に、従来の平面ミラーに比べて高い加工精度及び光学系の高精度な調整が求められる。 However, in Patent Document 1, a concave mirror or a convex mirror is provided in addition to a condensing optical system for condensing laser light in order to avoid light shielding by the material supply unit. Therefore, when manufacturing these mirrors, high processing accuracy and high-precision adjustment of the optical system are required compared to conventional flat mirrors.
 また、特許文献2では、偏光ビームスプリッタがレーザー光を分岐しているが、レーザー光源の仕様又はレーザー光を導光させる構成(例えば、ファイバ)によって、偏光成分にムラが発生し、分岐したレーザー光の光強度に違いが生じる。そのため、特許文献2では、偏光状態を制御する光学素子が別途、必要になる。また、偏光状態を制御する光学素子のうち、高出力のレーザー光に対応できる光学素子は非常に少なく、高額であり、且つ構成が複雑化する。 In addition, in Patent Document 2, the polarization beam splitter splits the laser beam, but depending on the specifications of the laser light source or the configuration (for example, fiber) that guides the laser beam, unevenness occurs in the polarized component, and the split laser beam A difference occurs in the light intensity of the light. Therefore, in Patent Document 2, an additional optical element for controlling the polarization state is required. Moreover, among the optical elements for controlling the polarization state, there are very few optical elements that can handle high-power laser light, the cost is high, and the configuration is complicated.
 本開示は、簡易な構成でレーザー光の利用効率を高めることを目的とする。 An object of the present disclosure is to increase the utilization efficiency of laser light with a simple configuration.
 本開示の一態様に係る加工ヘッドは、材料供給部から被加工位置に供給される材料を加工する加工ヘッドであって、第1のレーザー光を出射する光源部と、前記第1のレーザー光を分岐して複数の第2のレーザー光を形成し、前記複数の第2のレーザー光を集光させる集光光学素子と、前記複数の第2のレーザー光を前記被加工位置に向ける第1の光学部とを有する、ことを特徴とする。 A processing head according to an aspect of the present disclosure is a processing head that processes a material supplied from a material supply unit to a position to be processed, and includes a light source unit that emits a first laser beam, and the first laser beam. to form a plurality of second laser beams by branching, a condensing optical element for condensing the plurality of second laser beams; and a first and an optical unit.
 本開示によれば、簡易な構成でレーザー光の利用効率を高めることができる。 According to the present disclosure, it is possible to increase the utilization efficiency of laser light with a simple configuration.
実施の形態1に係る付加製造装置の概略的な構成を示す構成図である。1 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus according to Embodiment 1; FIG. 図1に示される加工ヘッドのレンズアレイの構成を示す外観斜視図である。2 is an external perspective view showing the configuration of a lens array of the processing head shown in FIG. 1; FIG. 実施の形態1に係る加工ヘッドのレンズアレイの光学機能を説明する説明図である。FIG. 4 is an explanatory diagram for explaining the optical function of the lens array of the machining head according to Embodiment 1; 図1に示される加工ヘッドのうち反射光学部周辺を-z軸方向に見た図である。FIG. 2 is a view of the periphery of the reflecting optical portion of the processing head shown in FIG. 1 as viewed in the −z-axis direction; 実施の形態1の変形例に係る付加製造装置の概略的な構成を示す構成図である。FIG. 11 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus according to a modification of Embodiment 1; 実施の形態2に係る付加製造装置の構成を示すブロック図である。FIG. 9 is a block diagram showing the configuration of an additional manufacturing apparatus according to Embodiment 2; 実施の形態2に係る付加製造装置の概略的な構成を示す構成図である。FIG. 11 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus according to Embodiment 2; 実施の形態3に係る付加製造装置の概略的な構成を示す構成図である。FIG. 11 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus according to Embodiment 3; (A)及び(B)は、実施の形態3に係る加工ヘッドにおける複数の第2のレーザー光の集光スポットの位置の変化を説明する説明図である。(A) and (B) are explanatory diagrams for explaining changes in positions of condensed spots of a plurality of second laser beams in the processing head according to Embodiment 3. FIG. 実施の形態4に係る付加製造装置の概略的な構成を示す構成図である。FIG. 11 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus according to Embodiment 4; 図10に示されるレンズアレイ及びレンズアレイ駆動部を-x軸方向に見た図である。FIG. 11 is a view of the lens array and the lens array driver shown in FIG. 10 as viewed in the −x-axis direction; (A)及び(B)は、実施の形態4に係る加工ヘッドのレンズアレイの動作を説明する動作説明図である。(A) and (B) are operation explanatory diagrams for explaining the operation of the lens array of the processing head according to the fourth embodiment. 実施の形態5に係る付加製造装置の概略的な構成を示す構成図である。FIG. 11 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus according to Embodiment 5; (A)及び(B)は、実施の形態5に係る加工ヘッドにおける複数の第2のレーザー光の集光スポットの位置の変化を説明する説明図である。(A) and (B) are explanatory diagrams for explaining changes in positions of condensed spots of a plurality of second laser beams in the processing head according to Embodiment 5. FIG.
 以下に、本開示の実施の形態に係る加工ヘッド及び付加製造装置を、図面を参照しながら説明する。以下の実施の形態は、例にすぎず、本開示の範囲内で種々の変更が可能である。 A processing head and an additional manufacturing apparatus according to an embodiment of the present disclosure will be described below with reference to the drawings. The following embodiments are merely examples, and various modifications are possible within the scope of the present disclosure.
 図面には、説明の理解を容易にするために、xyz直交座標系の座標軸が用いられている場合がある。xyz直交座標系において、x軸及びy軸は、付加製造装置のステージ7に平行な座標軸である。z軸は、x軸及びy軸に直交する座標軸である。また、z軸は、被加工位置70を通る基準線Sに平行な軸である。 In some cases, the coordinate axes of the xyz orthogonal coordinate system are used in the drawings to facilitate understanding of the explanation. In the xyz orthogonal coordinate system, the x-axis and y-axis are coordinate axes parallel to the stage 7 of the additive manufacturing apparatus. The z-axis is a coordinate axis orthogonal to the x-axis and the y-axis. Also, the z-axis is an axis parallel to the reference line S passing through the position to be processed 70 .
 《実施の形態1》
 〈付加製造装置100の構成〉
 図1は、実施の形態1に係る付加製造装置100の概略的な構成を示す構成図である。付加製造装置100は、ステージ7上に配置された付加対象物(以下、「被加工物」とも呼ぶ。)に、溶融した付加材料を付加することによって、造形物を製造する工作機械である。付加製造装置100は、加工ヘッド1と、ステージ7と、ステージ駆動部8とを有する。
<<Embodiment 1>>
<Configuration of Additive Manufacturing Device 100>
FIG. 1 is a configuration diagram showing a schematic configuration of an additive manufacturing apparatus 100 according to Embodiment 1. As shown in FIG. The additive manufacturing apparatus 100 is a machine tool that manufactures a modeled object by adding molten additive material to an object to be added (hereinafter also referred to as a "workpiece") placed on the stage 7. The additive manufacturing apparatus 100 has a processing head 1 , a stage 7 and a stage driving section 8 .
 ステージ7は、付加対象物(図示せず)を設置して且つ固定するために用いられる。ステージ7は、被加工位置(具体的には、後述する図4に示される被加工位置70)を有し、予め決められた方向に移動可能である。ステージ駆動部8は、ステージ7を駆動する。ステージ駆動部8は、例えば、モータと、モータの駆動力をステージ7に伝達する伝達機構(例えば、ギヤ)とを有する。ステージ駆動部8は、例えば、ステージ7をx軸方向、y軸方向及びz軸方向に移動させること、及び各軸周りに回転させることが可能である。これにより、所望の形状に付加された造形物を製造することができる。なお、ステージ7の駆動方向は、上述した方向に限られない。 The stage 7 is used to install and fix additional objects (not shown). The stage 7 has a position to be processed (specifically, a position to be processed 70 shown in FIG. 4 to be described later) and is movable in a predetermined direction. A stage drive unit 8 drives the stage 7 . The stage drive unit 8 has, for example, a motor and a transmission mechanism (for example, gears) that transmits the driving force of the motor to the stage 7 . The stage driving unit 8 can move the stage 7 in, for example, the x-axis direction, the y-axis direction, and the z-axis direction, and rotate it around each axis. As a result, it is possible to manufacture a modeled object having a desired shape. Note that the driving direction of the stage 7 is not limited to the direction described above.
 〈加工ヘッド1の構成〉
 加工ヘッド1は、材料供給部6を有する。加工ヘッド1は、材料供給部6から被加工位置に供給される付加材料を加工する。
<Configuration of processing head 1>
The processing head 1 has a material supply section 6 . The processing head 1 processes the additional material supplied from the material supply unit 6 to the position to be processed.
 材料供給部6は、付加材料を被加工位置に供給する材料供給管である。被加工位置は、加工ヘッド1からステージ7に向けて照射されたレーザー光(後述する第2のレーザー光L21)が集光するスポットである集光スポット80近傍の位置である。材料供給部6は、被加工位置を通ってステージ7に垂直な基準線Sに沿って配置されている。 The material supply unit 6 is a material supply pipe that supplies the additional material to the position to be processed. The position to be processed is a position in the vicinity of a condensed spot 80, which is a spot where laser light (a second laser light L21 described later) irradiated from the processing head 1 toward the stage 7 converges. The material supply unit 6 is arranged along a reference line S that passes through the position to be processed and is perpendicular to the stage 7 .
 付加材料は、例えば、パウダー状又はワイヤ状の金属材料などである。付加材料がパウダー状の金属材料である場合、材料供給部6は、管状の筐体などから構成される。これにより、付加材料の飛散を防止することができる。また、付加材料がワイヤ状の金属材料である場合、+z軸方向に付加材料を供給する機構部が材料供給部6に備えられることによって、当該金属材料を被加工位置に供給することができる。以下の説明では、付加材料がワイヤ状の金属材料である例を説明するが、付加材料は上述したパウダー状の金属材料であってもよい。 The additional material is, for example, a powder-like or wire-like metal material. When the additional material is a powdery metal material, the material supply unit 6 is configured by a tubular housing or the like. Thereby, scattering of the additional material can be prevented. In addition, when the additional material is a wire-shaped metal material, the metal material can be supplied to the position to be processed by providing the material supply unit 6 with a mechanism for supplying the additional material in the +z-axis direction. In the following description, an example in which the additional material is a wire-like metal material will be described, but the additional material may be the powder-like metal material described above.
 加工ヘッド1は、光源部10と、集光光学素子としてのレンズアレイ20と、第1の光学部としての反射光学部30と、第2の光学部としての平面ミラー40とを更に有する。 The processing head 1 further has a light source section 10, a lens array 20 as a condensing optical element, a reflecting optical section 30 as a first optical section, and a plane mirror 40 as a second optical section.
 光源部10は、第1のレーザー光L11を発する。光源部10は、レーザー光照射部11と、コリメート部12とを有する。 The light source unit 10 emits a first laser beam L11. The light source unit 10 has a laser beam irradiation unit 11 and a collimator unit 12 .
 レーザー光照射部11は、レーザー光L1を出射する。レーザー光L1は、発散光である。レーザー光照射部11は、例えば、レーザー発振器と、導光光学素子(例えば、ファイバ)と、レーザー発振器から出射したレーザー光L1を導光光学素子に導くカップリングレンズとを有する(図示せず)。図1では、導光光学素子から出射されたレーザー光L1が、模式的に示されている。なお、レーザー光照射部11は、導光光学素子を有していなくても実現できる。この場合、図1に示される第1のレーザー光L11は、レーザー発振器から出射されたレーザー光であってもよい。 The laser beam irradiation unit 11 emits a laser beam L1. The laser beam L1 is divergent light. The laser beam irradiation unit 11 has, for example, a laser oscillator, a light guiding optical element (for example, a fiber), and a coupling lens that guides the laser beam L1 emitted from the laser oscillator to the light guiding optical element (not shown). . In FIG. 1, laser light L1 emitted from the light guiding optical element is schematically shown. Note that the laser beam irradiation unit 11 can be realized without the light guide optical element. In this case, the first laser beam L11 shown in FIG. 1 may be a laser beam emitted from a laser oscillator.
 コリメート部12は、レーザー光照射部11から出射されたレーザー光L1を、略平行光に整形する。これにより、第1のレーザー光L11が形成される。コリメート部12は、例えば、レンズなどから構成される。図1に示す例では、コリメート部12は、1枚のレンズで構成される。コリメート部12に備えられるレンズの枚数は限定されず、コリメート部12は、複数枚のレンズによって構成されていてもよい。また、レーザー光照射部11から照射されたレーザー光L1が既に略平行光である場合には、光源部10は、コリメート部12を有していなくても実現できる。 The collimating section 12 shapes the laser light L1 emitted from the laser light irradiation section 11 into substantially parallel light. Thereby, the first laser beam L11 is formed. The collimating section 12 is composed of, for example, a lens. In the example shown in FIG. 1, the collimator 12 is composed of one lens. The number of lenses provided in the collimating section 12 is not limited, and the collimating section 12 may be composed of a plurality of lenses. Moreover, when the laser beam L1 emitted from the laser beam irradiation unit 11 is already substantially parallel light, the light source unit 10 can be realized without the collimator unit 12 .
 レンズアレイ20は、第1のレーザー光L11を分岐して複数の第2のレーザー光L21を形成する。 The lens array 20 splits the first laser beam L11 to form a plurality of second laser beams L21.
 図2は、図1に示されるレンズアレイ20の構成を示す外観斜視図である。図2に示されるように、レンズアレイ20には、複数(例えば、4つ)のレンズ20a、20b、20c、20dが一体に形成されている。複数のレンズ20a、20b、20c、20dは、複数の第2のレーザー光L21をそれぞれ形成する。複数のレンズ20a、20b、20c、20dはそれぞれ、例えば、平凸レンズである。 FIG. 2 is an external perspective view showing the configuration of the lens array 20 shown in FIG. As shown in FIG. 2, the lens array 20 is integrally formed with a plurality of (for example, four) lenses 20a, 20b, 20c, and 20d. The plurality of lenses 20a, 20b, 20c, and 20d respectively form the plurality of second laser beams L21. Each of the plurality of lenses 20a, 20b, 20c, and 20d is, for example, a plano-convex lens.
 次に、図3を用いて、加工ヘッド1にレンズアレイ20が備えられていることによる効果について説明する。図3は、実施の形態1に係る加工ヘッド1のレンズアレイ20の光学機能を説明する説明図である。図3に示されるレンズアレイ20には、複数のレンズ201a、201bが一体に形成されている。図3に示されるレンズアレイ20の形状は、図1及び2に示されるレンズアレイ20の形状と異なるが、図1から3に示されるレンズアレイ20は、互いに同じ光学機能を有する。 Next, with reference to FIG. 3, the effect of providing the lens array 20 in the processing head 1 will be described. FIG. 3 is an explanatory diagram for explaining the optical function of the lens array 20 of the machining head 1 according to the first embodiment. A plurality of lenses 201a and 201b are integrally formed in the lens array 20 shown in FIG. Although the shape of the lens array 20 shown in FIG. 3 is different from the shape of the lens array 20 shown in FIGS. 1 and 2, the lens arrays 20 shown in FIGS. 1-3 have the same optical function as each other.
 図3において、複数のレンズ201a、201bのそれぞれの中心軸をP1、P2とし、コリメート部12から出射した平行光である第1のレーザー光L11の光軸をCとする。中心軸P1、P2は、光軸Cに対して偏心している。これにより、レンズアレイ20を構成するレンズ201a、201bの数に応じて、コリメート部12から出射した第1のレーザー光L11が、複数の第2のレーザー光L21a、L21bに分岐される。レンズアレイ20は、分岐された複数の第2のレーザー光L21a、L21bを集光させる。 In FIG. 3, let P1 and P2 be the central axes of the plurality of lenses 201a and 201b, respectively, and let C be the optical axis of the first laser light L11, which is the parallel light emitted from the collimator 12. The central axes P1 and P2 are eccentric with respect to the optical axis C. As shown in FIG. As a result, the first laser beam L11 emitted from the collimator 12 is branched into a plurality of second laser beams L21a and L21b according to the number of lenses 201a and 201b forming the lens array 20 . The lens array 20 converges the plurality of split second laser beams L21a and L21b.
 第2のレーザー光L21aの集光スポットをQ1、第2のレーザー光L21bの集光スポットをQ2としたとき、集光スポットQ1は、集光スポットQ2に対して空間的にずれた位置に配置されている。そのため、加工ヘッド1にレンズアレイ20が備えられていることによって、光源部10から出射した第1のレーザー光L11が、光軸C上に位置する材料供給部6を回避することができ、且つステージ7上に複数の集光スポットを形成することができる。この場合、レンズアレイ20を構成するレンズの焦点距離は、レンズアレイ20から被加工位置までの光路長と同じなるように設計する必要がある。また、後述する反射光学部30も、レンズアレイ20によって分岐された複数の第2のレーザー光L21の集光特性を有する場合、レンズアレイ20及び反射光学部30のそれぞれの集光特性を合成して、複数の第2のレーザー光L21が被加工位置において集光するように設計する必要がある。また、上述した図2に示す例では、レンズアレイ20を構成するレンズの数は4つであるが、レンズの数は4つに限られない。付加材料及び付加対象物のそれぞれの熱分布におけるムラの発生を防止するために、レンズアレイ20を構成するレンズの数は、3つ以上であることが好ましい。 When the focused spot of the second laser beam L21a is Q1 and the focused spot of the second laser beam L21b is Q2, the focused spot Q1 is arranged at a position spatially shifted from the focused spot Q2. It is Therefore, since the processing head 1 is provided with the lens array 20, the first laser beam L11 emitted from the light source unit 10 can avoid the material supply unit 6 located on the optical axis C, and A plurality of focused spots can be formed on the stage 7 . In this case, the focal length of the lenses forming the lens array 20 must be designed to be the same as the optical path length from the lens array 20 to the position to be processed. Further, when the reflective optical unit 30, which will be described later, also has the light-collecting properties of the plurality of second laser beams L21 split by the lens array 20, the respective light-collecting properties of the lens array 20 and the reflective optical unit 30 are synthesized. Therefore, it is necessary to design so that the plurality of second laser beams L21 are condensed at the position to be processed. Further, in the example shown in FIG. 2 described above, the number of lenses constituting the lens array 20 is four, but the number of lenses is not limited to four. It is preferable that the number of lenses constituting the lens array 20 is three or more in order to prevent unevenness in the heat distribution of each of the additional material and the additional object.
 次に、図1及び図4を用いて、反射光学部30の構成について説明する。図4は、図1に示される加工ヘッド1のうち反射光学部30周辺を-z軸方向に見た図である。図1及び4に示されるように、反射光学部30は、レンズアレイ20によって分岐された複数の第2のレーザー光L21を被加工位置70に向ける。実施の形態1では、反射光学部30は、レンズアレイ20によって分岐され、且つ後述する平面ミラー40で反射した複数の第2のレーザー光L21を被加工位置70に向ける。 Next, the configuration of the reflecting optical section 30 will be described with reference to FIGS. 1 and 4. FIG. FIG. 4 is a view of the processing head 1 shown in FIG. 1, in which the periphery of the reflecting optical section 30 is viewed in the −z-axis direction. As shown in FIGS. 1 and 4 , the reflecting optical section 30 directs the plurality of second laser beams L21 branched by the lens array 20 to the position 70 to be processed. In Embodiment 1, the reflecting optical unit 30 directs a plurality of second laser beams L21 branched by the lens array 20 and reflected by a plane mirror 40, which will be described later, toward the processing position 70. FIG.
 反射光学部30は、複数の反射面31aを持つ複数の集光部材としての複数の集光ミラー31を有する。集光ミラー31は、例えば、平面ミラーである。 The reflective optical section 30 has a plurality of condensing mirrors 31 as a plurality of condensing members having a plurality of reflecting surfaces 31a. The collecting mirror 31 is, for example, a plane mirror.
 複数の反射面31aは、被加工位置70を囲う複数の位置にそれぞれ配置されている。複数の反射面31aは、基準線Sを中心に等しい角度間隔で配置されている。複数の反射面31aは、複数の第2のレーザー光L21をそれぞれ被加工位置70に向ける。複数の反射面31aは、複数の第2のレーザー光L21を被加工位置70に向けて等方的に照射する。これにより、付加材料及び付加対象物の熱分布におけるムラの発生を防止することができる。よって、加工品質を向上させることができる。 The plurality of reflective surfaces 31a are arranged at a plurality of positions surrounding the processing position 70, respectively. The plurality of reflecting surfaces 31a are arranged with the reference line S as the center at equal angular intervals. The plurality of reflecting surfaces 31a direct the plurality of second laser beams L21 toward the processed position 70, respectively. The plurality of reflecting surfaces 31 a isotropically irradiate the plurality of second laser beams L<b>21 toward the position to be processed 70 . As a result, it is possible to prevent unevenness in the heat distribution of the additive material and the additive object. Therefore, processing quality can be improved.
 反射光学部30における反射面31aの数は、レンズアレイ20を構成するレンズの数に対応する。上述した図2に示されるように、実施の形態1のレンズアレイ20では、4つのレンズ20a、20b、20c、20dが一体に形成されている。そのため、反射光学部30は、互いに独立して配置された4つの反射面31aを有している。なお、レンズアレイ20によって分岐された複数の第2のレーザー光L21を被加工位置70に向けて反射できれば、反射光学部30における反射面31aの数は、4つに限られず、2つ以上であればよい。 The number of reflective surfaces 31 a in the reflective optical section 30 corresponds to the number of lenses forming the lens array 20 . As shown in FIG. 2 described above, in the lens array 20 of Embodiment 1, four lenses 20a, 20b, 20c, and 20d are integrally formed. Therefore, the reflective optical section 30 has four reflective surfaces 31a arranged independently of each other. If the plurality of second laser beams L21 branched by the lens array 20 can be reflected toward the processed position 70, the number of the reflecting surfaces 31a in the reflecting optical section 30 is not limited to four, and may be two or more. I wish I had.
 集光ミラー31の表面形状は、平面であるが、これに限られない。集光性能を向上させるために、集光ミラー31の表面形状は、例えば、球面、放物面などであってもよい。集光ミラー31は、例えば、金属から形成される。集光ミラー31は、特定の波長の光を反射する誘電体多層膜ミラー及び回折格子(例えば、反射型回折格子)のうちのいずれかであってもよい。 The surface shape of the condenser mirror 31 is flat, but is not limited to this. In order to improve the light gathering performance, the surface shape of the light gathering mirror 31 may be, for example, spherical, parabolic, or the like. The collector mirror 31 is made of metal, for example. The condenser mirror 31 may be either a dielectric multilayer mirror or a diffraction grating (for example, a reflective diffraction grating) that reflects light of a specific wavelength.
 次に、平面ミラー40の構成について説明する。図1に示されるように、平面ミラー40は、レンズアレイ20によって分岐された複数の第2のレーザー光L21を反射光学部30に導く。これにより、複数の第2のレーザー光L21は、材料供給部6に沿って+z軸方向に進み、反射光学部30に入射する。複数の第2のレーザー光L21は、被加工位置70(図4参照)を通る基準線Sを中心として略回転対称となるように平面ミラー40で反射し、被加工位置70に等方的に集光する。これにより、被加工位置70に供給される付加材料が加熱される。 Next, the configuration of the plane mirror 40 will be described. As shown in FIG. 1 , the plane mirror 40 guides the plurality of second laser beams L21 branched by the lens array 20 to the reflecting optical section 30 . Thereby, the plurality of second laser beams L21 travel in the +z-axis direction along the material supply section 6 and enter the reflecting optical section 30 . The plurality of second laser beams L21 are reflected by the plane mirror 40 so as to be substantially rotationally symmetrical about the reference line S passing through the position to be processed 70 (see FIG. 4), and isotropically toward the position to be processed 70. Concentrate. This heats the add-on material supplied to the work position 70 .
 平面ミラー40は、貫通孔40aを有する。材料供給部6は、貫通孔40aを通して配置される。これにより、材料供給部6と平面ミラー40との干渉を防止することができる。なお、後述する図5に示されるように、加工ヘッド1Aは、平面ミラー40を有していなくても実現することができる。 The plane mirror 40 has a through hole 40a. The material supply part 6 is arranged through the through-hole 40a. Thereby, interference between the material supply unit 6 and the plane mirror 40 can be prevented. It should be noted that the processing head 1A can be realized without the flat mirror 40, as shown in FIG. 5, which will be described later.
 〈実施の形態1の効果〉
 以上に説明した実施の形態1によれば、レンズアレイ20が、光源部10から出射した第1のレーザー光L11を分岐した複数の第2のレーザー光L21を形成し、第2のレーザー光L21を集光させる。また、反射光学部30は、レンズアレイ20によって分岐された複数の第2のレーザー光L21を被加工位置70にそれぞれ向ける。これにより、簡易な構成で材料供給部6による遮光を回避することができる。よって、簡易な構成でレーザー光の利用効率を向上させることができる。
<Effect of Embodiment 1>
According to the first embodiment described above, the lens array 20 splits the first laser beam L11 emitted from the light source unit 10 to form a plurality of second laser beams L21, and the second laser beam L21 to focus. In addition, the reflecting optical section 30 directs the plurality of second laser beams L21 branched by the lens array 20 to the positions 70 to be processed. This makes it possible to avoid light shielding by the material supply unit 6 with a simple configuration. Therefore, it is possible to improve the utilization efficiency of laser light with a simple configuration.
 また、実施の形態1によれば、反射光学部30は、被加工位置70を囲う複数の位置にそれぞれ配置された複数の反射面31aを有し、複数の反射面31aは、複数の第2のレーザー光L21をそれぞれ被加工位置70に向ける。これにより、付加材料及び付加対象物のそれぞれの熱分布におけるムラの発生を防止することができる。よって、加工品質を向上させることができる。 Further, according to Embodiment 1, the reflective optical section 30 has a plurality of reflecting surfaces 31a arranged at a plurality of positions surrounding the position to be processed 70, and the plurality of reflecting surfaces 31a includes a plurality of second of laser beams L21 are directed to the position to be processed 70 respectively. As a result, it is possible to prevent unevenness in the heat distribution of the addition material and the addition target. Therefore, processing quality can be improved.
 また、実施の形態1によれば、加工ヘッド1は、レンズアレイ20によって分岐された複数の第2のレーザー光L21を反射光学部30に導く平面ミラー40を更に有する。これにより、レンズアレイ20によって分岐された第2のレーザー光L21が被加工位置70に等方的に照射される。これにより、加工品質を向上させることができる。 Further, according to Embodiment 1, the processing head 1 further has a plane mirror 40 that guides the plurality of second laser beams L21 branched by the lens array 20 to the reflecting optical section 30. As a result, the second laser beam L21 branched by the lens array 20 is isotropically applied to the position 70 to be processed. Thereby, processing quality can be improved.
 また、実施の形態1によれば、平面ミラー40は、貫通孔40aを有し、材料供給部6は、貫通孔40aを通して配置される。これにより、材料供給部6と平面ミラー40との干渉を防止することができる。 Further, according to Embodiment 1, the plane mirror 40 has the through hole 40a, and the material supply unit 6 is arranged through the through hole 40a. Thereby, interference between the material supply unit 6 and the plane mirror 40 can be prevented.
 《実施の形態1の変形例》
 図5は、実施の形態1の変形例に係る加工ヘッド1Aの概略的な構成を示す図である。図5において、図1に示される構成要素と同一又は対応する構成要素には、図1に示される符号と同じ符号が付される。実施の形態1の変形例に係る加工ヘッド1Aは、図1に示される平面ミラー40を有していない点、光源部10の位置及びレンズアレイ20の位置の点で、実施の形態1に係る加工ヘッド1と相違する。これ以外の点については、実施の形態1の変形例に係る加工ヘッド1Aは、実施の形態1に係る加工ヘッド1と同じである。そのため、以下の説明では、図4を参照する。
<<Modification of Embodiment 1>>
FIG. 5 is a diagram showing a schematic configuration of a processing head 1A according to a modification of the first embodiment. 5, the same or corresponding components as those shown in FIG. 1 are given the same reference numerals as those shown in FIG. The processing head 1A according to the modification of the first embodiment does not have the plane mirror 40 shown in FIG. It is different from the processing head 1. Except for this point, the processing head 1A according to the modification of the first embodiment is the same as the processing head 1 according to the first embodiment. Therefore, FIG. 4 will be referred to in the following description.
 図5に示されるように、実施の形態1の変形例に係る付加製造装置100Aは、加工ヘッド1Aと、ステージ7と、ステージ駆動部8とを有する。 As shown in FIG. 5, the additional manufacturing apparatus 100A according to the modification of Embodiment 1 has a processing head 1A, a stage 7, and a stage driving section 8.
 加工ヘッド1Aは、材料供給部6と、光源部10と、レンズアレイ20と、反射光学部30とを有する。実施の形態1の変形例では、レンズアレイ20及び反射光学部30は、レンズアレイ20によって分岐された第2のレーザー光L21が、直接反射光学部30に入射する位置に配置されている。 The processing head 1A has a material supply section 6, a light source section 10, a lens array 20, and a reflecting optical section 30. In the modification of Embodiment 1, the lens array 20 and the reflective optical section 30 are arranged at a position where the second laser light L21 split by the lens array 20 directly enters the reflective optical section 30 .
 図5に示す例では、レンズアレイ20は、材料供給部6及び反射光学部30より-z軸側に配置されている。言い換えれば、実施の形態1の変形例では、レンズアレイ20は、材料供給部6及び反射光学部30を挟んでステージ7と向き合う位置に配置されている。 In the example shown in FIG. 5, the lens array 20 is arranged on the -z-axis side of the material supply section 6 and the reflecting optical section 30. In the example shown in FIG. In other words, in the modification of Embodiment 1, the lens array 20 is arranged at a position facing the stage 7 with the material supply section 6 and the reflecting optical section 30 interposed therebetween.
 〈実施の形態1の変形例の効果〉
 以上に説明した実施の形態1の変形例によれば、レンズアレイ20が、光源部10から出射した第1のレーザー光L11を分岐した複数の第2のレーザー光L21を形成し、第2のレーザー光L21を集光させる。また、反射光学部30は、レンズアレイ20によって分岐された複数の第2のレーザー光L21を被加工位置70にそれぞれ向ける。これにより、簡易な構成で材料供給部6による遮光を回避することができる。よって、簡易な構成でレーザー光の利用効率を向上させることができる。
<Effects of Modification of Embodiment 1>
According to the modification of the first embodiment described above, the lens array 20 splits the first laser beam L11 emitted from the light source unit 10 to form a plurality of second laser beams L21, The laser beam L21 is condensed. In addition, the reflecting optical section 30 directs the plurality of second laser beams L21 branched by the lens array 20 to the positions 70 to be processed. This makes it possible to avoid light shielding by the material supply unit 6 with a simple configuration. Therefore, it is possible to improve the utilization efficiency of laser light with a simple configuration.
 また、実施の形態1の変形例によれば、レンズアレイ20及び反射光学部30は、レンズアレイ20によって分岐された複数の第2のレーザー光L21が、直接反射光学部30に入射する位置に配置されている。これにより、実施の形態1の変形例に係る加工ヘッド1Aは、上述した図1に示される平面ミラー40を有していなくても実現できる。よって、加工ヘッド1Aにおける部品点数を削減することができる。したがって、一層簡易な構成でレーザー光の利用効率を向上させることができる。 Further, according to the modified example of Embodiment 1, the lens array 20 and the reflecting optical section 30 are positioned so that the plurality of second laser beams L21 branched by the lens array 20 directly enter the reflecting optical section 30. are placed. Thereby, the processing head 1A according to the modification of the first embodiment can be realized without having the plane mirror 40 shown in FIG. 1 described above. Therefore, the number of parts in the machining head 1A can be reduced. Therefore, it is possible to improve the utilization efficiency of laser light with a simpler configuration.
 《実施の形態2》
 図6は、実施の形態2に係る付加製造装置200の構成を示すブロック図である。図7は、実施の形態2に係る付加製造装置200の概略的な構成を示す構成図である。図6及び7において、図1に示される構成要素と同一又は対応する構成要素には、図1に示される符号と同じ符号が付される。実施の形態2に係る付加製造装置200は、加工ヘッド2の反射光学部230の構成の点で、実施の形態1に係る付加製造装置100と相違する。これ以外の点については、実施の形態2に係る付加製造装置200は、実施の形態1に係る付加製造装置100と同じである。そのため、以下の説明では、図4を参照する。
<<Embodiment 2>>
FIG. 6 is a block diagram showing the configuration of an additional manufacturing apparatus 200 according to Embodiment 2. As shown in FIG. FIG. 7 is a configuration diagram showing a schematic configuration of an additive manufacturing apparatus 200 according to Embodiment 2. As shown in FIG. 6 and 7, the same reference numerals as those shown in FIG. 1 are attached to the same or corresponding components as those shown in FIG. The additional manufacturing apparatus 200 according to Embodiment 2 differs from the additional manufacturing apparatus 100 according to Embodiment 1 in the configuration of the reflective optical section 230 of the processing head 2 . Except for this point, the additional manufacturing apparatus 200 according to the second embodiment is the same as the additional manufacturing apparatus 100 according to the first embodiment. Therefore, FIG. 4 will be referred to in the following description.
 図6及び7に示されるように、付加製造装置200は、加工ヘッド2と、ステージ7と、ステージ駆動部8と、制御部9とを有する。 As shown in FIGS. 6 and 7, the additional manufacturing device 200 has a processing head 2, a stage 7, a stage driving section 8, and a control section 9.
 加工ヘッド2は、材料供給部6と、光源部10と、レンズアレイ20と、反射光学部230と、平面ミラー40とを有する。 The processing head 2 has a material supply section 6, a light source section 10, a lens array 20, a reflecting optical section 230, and a plane mirror 40.
 反射光学部230は、複数の反射面31aを持つ複数の集光ミラー231と、複数の集光ミラー231をそれぞれ駆動する複数の反射面駆動部232とを有する。 The reflective optical section 230 has a plurality of collecting mirrors 231 having a plurality of reflecting surfaces 31a, and a plurality of reflecting surface driving sections 232 that drive the plurality of collecting mirrors 231, respectively.
 反射面駆動部232は、制御部9から出力された制御信号に基づいて、集光ミラー231を駆動する。これにより、反射面駆動部232は、被加工位置70(図4参照)における複数の第2のレーザー光L21の集光スポット80の位置を変えることができる。よって、当該集光スポット80の熱分布を最適化し、加工品質を向上させることができる。言い換えれば、反射面駆動部232は、x-y平面上において、第2のレーザー光L21の集光スポットを走査する。このように、実施の形態2では、反射光学部230は、複数の第2のレーザー光L21の集光スポット80の位置を変える集光位置調整光学部である。 The reflecting surface driving section 232 drives the collecting mirror 231 based on the control signal output from the control section 9 . Thereby, the reflecting surface driving section 232 can change the positions of the condensed spots 80 of the plurality of second laser beams L21 at the processing position 70 (see FIG. 4). Therefore, it is possible to optimize the heat distribution of the focused spot 80 and improve the processing quality. In other words, the reflective surface driver 232 scans the focused spot of the second laser beam L21 on the xy plane. Thus, in Embodiment 2, the reflecting optical section 230 is a focusing position adjusting optical section that changes the positions of the focused spots 80 of the plurality of second laser beams L21.
 制御部9は、ステージ7の移動方向、移動速度及び付加材料の特性のうちの少なくとも1つに基づいて反射面駆動部232を駆動する。これにより、複数の第2のレーザー光L21の集光スポット80の位置を、ステージ7の移動方向、移動速度及び付加材料の特性のうちの少なくとも1つに基づいて変えることができる。 The control unit 9 drives the reflective surface driving unit 232 based on at least one of the movement direction and movement speed of the stage 7 and the characteristics of the additional material. Thereby, the positions of the focused spots 80 of the plurality of second laser beams L21 can be changed based on at least one of the moving direction and moving speed of the stage 7 and the characteristics of the additional material.
 実施の形態2では、集光ミラー231は、ガルバノミラーであり、反射面駆動部232は、当該ガルバノミラーを基準線Sに垂直な軸を中心にして回転させる。この場合、集光ミラー231は、例えば、2軸周り(例えば、図7に示される±Ry方向及び±Rz方向)に回転することで、集光ミラー231の傾斜角度が高速に変調する。なお、集光ミラー231は、ガルバノミラーに限られず、他のミラーであってもよい。この場合、反射面駆動部232は、集光ミラー231を駆動するピエゾ素子であってもよい。 In Embodiment 2, the collecting mirror 231 is a galvano-mirror, and the reflecting surface driving section 232 rotates the galvano-mirror about an axis perpendicular to the reference line S. In this case, the condensing mirror 231 rotates, for example, around two axes (for example, ±Ry direction and ±Rz direction shown in FIG. 7), so that the tilt angle of the condensing mirror 231 is modulated at high speed. Note that the collecting mirror 231 is not limited to a galvanomirror, and may be another mirror. In this case, the reflective surface driver 232 may be a piezo element that drives the condenser mirror 231 .
 図7に示す例では、集光ミラー231は、実施の形態1と同様に平面ミラーである。そのため、反射面駆動部232は、上述した通り、集光ミラー231の傾斜角度を可変可能な回転駆動部である。なお、集光ミラー231が曲面ミラーである場合には、複数の第2のレーザー光L21の集光スポット80の位置を制御することができれば、反射面駆動部232は、集光ミラー231をz軸方向に並進移動させる並進駆動部であってもよい。 In the example shown in FIG. 7, the collecting mirror 231 is a plane mirror as in the first embodiment. Therefore, the reflecting surface driving section 232 is a rotation driving section capable of varying the tilt angle of the collecting mirror 231 as described above. In addition, when the collecting mirror 231 is a curved mirror, if the positions of the collecting spots 80 of the plurality of second laser beams L21 can be controlled, the reflecting surface driving section 232 moves the collecting mirror 231 to z It may also be a translational drive unit that translates in the axial direction.
 〈実施の形態2の効果〉
 以上に説明した実施の形態2によれば、レンズアレイ20が、光源部10から出射した第1のレーザー光L11を分岐した複数の第2のレーザー光L21を形成し、第2のレーザー光L21を集光させる。また、反射光学部230は、レンズアレイ20によって分岐された複数の第2のレーザー光L21を被加工位置70にそれぞれ向ける。これにより、簡易な構成で材料供給部6による遮光を回避することができる。よって、簡易な構成でレーザー光の利用効率を向上させることができる。
<Effect of Embodiment 2>
According to the second embodiment described above, the lens array 20 splits the first laser beam L11 emitted from the light source unit 10 to form a plurality of second laser beams L21, and the second laser beam L21 to focus. In addition, the reflecting optical section 230 directs the plurality of second laser beams L21 branched by the lens array 20 to the positions to be processed 70, respectively. This makes it possible to avoid light shielding by the material supply unit 6 with a simple configuration. Therefore, it is possible to improve the utilization efficiency of laser light with a simple configuration.
 また、実施の形態2によれば、反射光学部230は、複数の反射面31aを駆動する反射面駆動部232を有し、被加工位置70における複数の第2のレーザー光L21の集光スポットの位置80を変える。これにより、集光スポット80の熱分布を最適化し、加工品質を向上させることができる。したがって、実施の形態2によれば、簡易な構成でレーザー光の利用効率を向上させつつ、且つ加工品質を向上させることができる。 Further, according to Embodiment 2, the reflective optical unit 230 has the reflective surface driving unit 232 that drives the plurality of reflective surfaces 31a, and the condensed spots of the plurality of second laser beams L21 at the processing position 70 change the position 80 of . Thereby, the heat distribution of the focused spot 80 can be optimized, and the processing quality can be improved. Therefore, according to the second embodiment, it is possible to improve the processing quality while improving the utilization efficiency of laser light with a simple configuration.
 《実施の形態3》
 図8は、実施の形態3に係る付加製造装置300の概略的な構成を示す構成図である。図8において、図1に示される構成要素と同一又は対応する構成要素には、図1に示される符号と同じ符号が付される。実施の形態3に係る付加製造装置300は、レンズアレイ20を回転駆動させるレンズアレイ駆動部350が加工ヘッド3に備えられている点で、実施の形態1に係る付加製造装置100と相違する。これ以外の点については、実施の形態3に係る付加製造装置300は、実施の形態1又は2に係る付加製造装置100、200と同じである。そのため、以下の説明では、図3、4及び6を参照する。
<<Embodiment 3>>
FIG. 8 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus 300 according to Embodiment 3. As shown in FIG. 8, the same or corresponding components as those shown in FIG. 1 are given the same reference numerals as those shown in FIG. The additional manufacturing apparatus 300 according to the third embodiment differs from the additional manufacturing apparatus 100 according to the first embodiment in that the processing head 3 is provided with a lens array driving section 350 that drives the lens array 20 to rotate. Except for this point, the additional manufacturing apparatus 300 according to the third embodiment is the same as the additional manufacturing apparatuses 100 and 200 according to the first or second embodiment. 3, 4 and 6 are therefore referred to in the following description.
 図8に示されるように、付加製造装置300は、加工ヘッド3と、ステージ7と、ステージ駆動部8と、制御部9(図6参照)とを有する。 As shown in FIG. 8, the additional manufacturing device 300 has a processing head 3, a stage 7, a stage driving section 8, and a control section 9 (see FIG. 6).
 加工ヘッド3は、材料供給部6と、光源部10と、レンズアレイ20と、反射光学部30と、平面ミラー40と、第1の光学素子駆動部としてレンズアレイ駆動部350とを有する。 The processing head 3 has a material supply section 6, a light source section 10, a lens array 20, a reflecting optical section 30, a plane mirror 40, and a lens array driving section 350 as a first optical element driving section.
 レンズアレイ駆動部350は、レンズアレイ20をx軸周りに回転させる。図8及び後述する図9において、x軸を中心軸として、時計周りを+Rx方向とし、反時計周りを-Rx方向とする。レンズアレイ駆動部350は、例えば、モータと、モータの駆動力をレンズアレイ20に伝達する伝達機構(例えば、ギヤ)とを有する。レンズアレイ駆動部350は、制御部9から出力された制御信号に基づいて、レンズアレイ20を駆動する。制御部9は、ステージ7の移動方向及び付加材料の特性などに基づいてレンズアレイ駆動部350を制御する。 The lens array driver 350 rotates the lens array 20 around the x-axis. In FIG. 8 and FIG. 9, which will be described later, the x-axis is the center axis, the clockwise rotation is the +Rx direction, and the counterclockwise rotation is the −Rx direction. The lens array driving section 350 has, for example, a motor and a transmission mechanism (for example, gears) that transmits the driving force of the motor to the lens array 20 . The lens array driving section 350 drives the lens array 20 based on the control signal output from the control section 9 . The control unit 9 controls the lens array driving unit 350 based on the moving direction of the stage 7, the properties of the additional material, and the like.
 以下に、加工ヘッド3にレンズアレイ駆動部350が備えられていることによる効果を説明する。 The effects of the lens array driving section 350 provided in the processing head 3 will be described below.
 図9(A)及び(B)は、実施の形態3に係る加工ヘッド3の複数の第2のレーザー光L21(図8参照)の集光スポット80a、80b、80c、80dの位置の変化を説明する説明図である。ここで、上述した図3に示されるように、レンズアレイ20は、4つのレンズ20a、20b、20c、20dを有しているため、図9(A)及び(B)では、4つの集光スポット80a、80b、80c、80dが示されている。また、図9(A)及び(B)では、ステージ7(図8参照)の移動方向、すなわち、付加対象物の加工方向を加工方向Aとする。 9A and 9B show changes in the positions of condensed spots 80a, 80b, 80c, and 80d of the plurality of second laser beams L21 (see FIG. 8) of the processing head 3 according to Embodiment 3. It is an explanatory view explaining. Here, as shown in FIG. 3 described above, the lens array 20 has four lenses 20a, 20b, 20c, and 20d, so in FIGS. Spots 80a, 80b, 80c, 80d are shown. 9A and 9B, the moving direction of the stage 7 (see FIG. 8), that is, the processing direction of the object to be added is defined as processing direction A. In FIG.
 図9(A)は、レンズアレイ20が回転する前の被加工位置70における複数の集光スポット80a、80b、80c、80dを-z軸方向に見た図である。図9(A)に示す例では、加工方向Aは、+x軸方向である。この場合、材料供給部6を通る基準線Sより+x軸側に1つの集光スポット80aが形成されている。集光スポット80bは、集光スポット80aより時計回りに90度回転した位置に形成され、集光スポット80cは、集光スポット80bより時計回りに90度回転した位置に形成されている。集光スポット80dは、集光スポット80cより時計回りに90度回転した位置に形成されている。このように、複数の集光スポット80a、80b、80c、80dは、例えば、基準線Sを中心にして90度の等角度間隔で形成されている。 FIG. 9A is a diagram of a plurality of condensed light spots 80a, 80b, 80c, and 80d at the processing position 70 before the lens array 20 rotates, viewed in the -z-axis direction. In the example shown in FIG. 9A, the processing direction A is the +x-axis direction. In this case, one focused spot 80 a is formed on the +x-axis side of the reference line S passing through the material supply section 6 . The focused spot 80b is formed at a position rotated 90 degrees clockwise from the focused spot 80a, and the focused spot 80c is formed at a position rotated 90 degrees clockwise from the focused spot 80b. The focused spot 80d is formed at a position rotated 90 degrees clockwise from the focused spot 80c. In this manner, the plurality of condensed spots 80a, 80b, 80c, and 80d are formed at equal angular intervals of 90 degrees around the reference line S, for example.
 図9(B)は、レンズアレイ20が回転した後の被加工位置70における複数の集光スポット80a、80b、80c、80dを-z軸方向に見た図である。図9(B)は、加工方向Aが-y軸方向に近づくように45度傾斜したときの複数の集光スポット80a、80b、80c、80dの位置を示す図である。図9(B)に示されるように、加工方向Aが45度傾斜している場合、図8に示されるレンズアレイ駆動部350によってレンズアレイ20を-Rx方向に45度回転させることで、複数の集光スポット80a、80b、80c、80dの位置を可変する。このように、実施の形態3では、付加対象物の加工方向Aに応じて、複数の集光スポット80a、80b、80c、80dの位置を変えることができる。 FIG. 9(B) is a view of a plurality of condensed spots 80a, 80b, 80c, and 80d at the processing position 70 after the lens array 20 has been rotated, viewed in the -z-axis direction. FIG. 9B is a diagram showing positions of a plurality of condensed spots 80a, 80b, 80c, and 80d when the processing direction A is inclined by 45 degrees so as to approach the -y-axis direction. As shown in FIG. 9B, when the processing direction A is inclined by 45 degrees, the lens array driving unit 350 shown in FIG. The positions of the condensed spots 80a, 80b, 80c, and 80d are varied. As described above, in Embodiment 3, the positions of the plurality of condensed spots 80a, 80b, 80c, and 80d can be changed according to the processing direction A of the object to be added.
 ここで、上述した図6に示されるように、反射面駆動部232が集光ミラー231を駆動させることによっても、複数の集光スポット80a、80b、80c、80dの位置を変えることができる。しかしながら、図6に示される構成では、被加工位置70の周辺において、付加材料に照射される第2のレーザー光L21の照射位置、及び付加材料上での第2のレーザー光L21の強度分布が制限される場合がある。そのため、実施の形態3のように、制御部9が、加工方向A及び付加材料の特性などに基づいてレンズアレイ駆動部350を制御することで、加工品質を向上させることができる。なお、加工方向Aと集光スポット80a、80b、80c、80dとの位置関係は、図9(A)及び(B)に示される例に限られない。 Here, as shown in FIG. 6 described above, the positions of the plurality of condensed spots 80a, 80b, 80c, and 80d can also be changed by driving the condensing mirror 231 by the reflecting surface driving section 232. However, in the configuration shown in FIG. 6, the irradiation position of the second laser beam L21 applied to the additional material and the intensity distribution of the second laser beam L21 on the additional material are different in the vicinity of the position to be processed 70. may be restricted. Therefore, as in Embodiment 3, the control unit 9 controls the lens array driving unit 350 based on the processing direction A and the properties of the additional material, thereby improving processing quality. Note that the positional relationship between the processing direction A and the focused spots 80a, 80b, 80c, and 80d is not limited to the examples shown in FIGS.
 〈実施の形態3の効果〉
 以上に説明した実施の形態3によれば、レンズアレイ20が、光源部10から出射した第1のレーザー光L11を分岐した複数の第2のレーザー光L21を形成し、第2のレーザー光L21を集光させる。また、反射光学部30は、レンズアレイ20によって分岐された複数の第2のレーザー光L21を被加工位置70にそれぞれ向ける。これにより、簡易な構成で材料供給部6による遮光を回避することができる。よって、簡易な構成でレーザー光の利用効率を向上させることができる。
<Effect of Embodiment 3>
According to the third embodiment described above, the lens array 20 splits the first laser beam L11 emitted from the light source unit 10 to form a plurality of second laser beams L21, and the second laser beams L21 to focus. In addition, the reflecting optical section 30 directs the plurality of second laser beams L21 branched by the lens array 20 to the positions 70 to be processed. This makes it possible to avoid light shielding by the material supply unit 6 with a simple configuration. Therefore, it is possible to improve the utilization efficiency of laser light with a simple configuration.
 また、実施の形態3によれば、加工ヘッド3は、レンズアレイ20を、第1のレーザー光L11の光軸C周りに回転させるレンズアレイ駆動部350を更に有する。これにより、被加工位置70における複数の集光スポット80a、80b、80c、80dの位置を変えることができる。よって、加工品質を向上させることができる。したがって、実施の形態3によれば、簡易な構成でレーザー光の利用効率を向上させつつ、且つ加工品質を向上させることができる。 Further, according to Embodiment 3, the processing head 3 further has a lens array driving section 350 that rotates the lens array 20 around the optical axis C of the first laser beam L11. Thereby, the positions of the plurality of condensed light spots 80a, 80b, 80c, and 80d at the processed position 70 can be changed. Therefore, processing quality can be improved. Therefore, according to Embodiment 3, it is possible to improve the processing quality while improving the utilization efficiency of laser light with a simple configuration.
 《実施の形態4》
 図10は、実施の形態4に係る付加製造装置400の概略的な構成を示す構成図である。図10において、図1に示される構成要素と同一又は対応する構成要素には、図1に示される符号と同じ符号が付される。実施の形態4に係る付加製造装置400は、レンズアレイ駆動部450が加工ヘッド4に備えられている点で、実施の形態1から3に係る付加製造装置100、200、300と相違する。これ以外の点については、実施の形態4に係る付加製造装置400は、実施の形態1から3に係る付加製造装置100、200、300と同じである。そのため、以下の説明では、図4及び6を参照する。
<<Embodiment 4>>
FIG. 10 is a configuration diagram showing a schematic configuration of an additional manufacturing apparatus 400 according to Embodiment 4. As shown in FIG. 10, the same or corresponding components as those shown in FIG. 1 are given the same reference numerals as those shown in FIG. An additional manufacturing apparatus 400 according to Embodiment 4 differs from the additional manufacturing apparatuses 100, 200, and 300 according to Embodiments 1 to 3 in that a lens array driving section 450 is provided in the processing head 4. FIG. Except for this point, the additional manufacturing apparatus 400 according to the fourth embodiment is the same as the additional manufacturing apparatuses 100, 200, and 300 according to the first to third embodiments. 4 and 6 are therefore referred to in the following description.
 図10に示されるように、付加製造装置400は、加工ヘッド4と、ステージ7と、ステージ駆動部8と、制御部9(図6参照)とを有する。 As shown in FIG. 10, the additional manufacturing device 400 has a processing head 4, a stage 7, a stage driving section 8, and a control section 9 (see FIG. 6).
 加工ヘッド4は、材料供給部6と、光源部10と、レンズアレイ20と、平面ミラー40と、反射光学部30と、第2の光学素子駆動部としてのレンズアレイ駆動部450とを有する。 The processing head 4 has a material supply section 6, a light source section 10, a lens array 20, a plane mirror 40, a reflecting optical section 30, and a lens array driving section 450 as a second optical element driving section.
 図11は、図10に示されるレンズアレイ20及びレンズアレイ駆動部450を-x軸方向に見た図である。図10及び11に示されるように、レンズアレイ駆動部450は、レンズアレイ20を、第1のレーザー光L11の光軸方向(すなわち、x軸方向)に垂直な方向に移動させる。具体的には、レンズアレイ駆動部450は、レンズアレイ20をy軸方向及びz軸方向に並進移動させる。なお、加工ヘッド4は、レンズアレイ駆動部450に加えて、実施の形態3のレンズアレイ駆動部350を有していてもよい。 FIG. 11 is a diagram of the lens array 20 and the lens array driving section 450 shown in FIG. 10 viewed in the -x-axis direction. As shown in FIGS. 10 and 11, the lens array driver 450 moves the lens array 20 in a direction perpendicular to the optical axis direction (that is, x-axis direction) of the first laser beam L11. Specifically, the lens array driver 450 translates the lens array 20 in the y-axis direction and the z-axis direction. The processing head 4 may have the lens array driving section 350 of Embodiment 3 in addition to the lens array driving section 450 .
 以下に、加工ヘッド4にレンズアレイ駆動部450が備えられていることによる効果を説明する。 The effects of the lens array driving section 450 provided in the processing head 4 will be described below.
 図12(A)及び(B)は、実施の形態4に係る加工ヘッド4のレンズアレイ20の動作を説明する動作説明図である。図12(A)は、レンズアレイ駆動部450によって駆動される前のレンズアレイ20、及び当該レンズアレイ20に入射する第1のレーザー光L11を示す図である。図12(A)に示されるように、レンズアレイ20の中心は、平行光である第1のレーザー光L11の光軸C上に位置している。言い換えれば、図12(A)に示す例では、レンズアレイ20の中心は、第1のレーザー光L11の光軸Cに対して偏心していない。 12(A) and (B) are operation explanatory diagrams for explaining the operation of the lens array 20 of the processing head 4 according to the fourth embodiment. FIG. 12A is a diagram showing the lens array 20 before being driven by the lens array driving section 450 and the first laser light L11 incident on the lens array 20. FIG. As shown in FIG. 12A, the center of the lens array 20 is positioned on the optical axis C of the first laser beam L11, which is parallel light. In other words, in the example shown in FIG. 12A, the center of the lens array 20 is not decentered with respect to the optical axis C of the first laser beam L11.
 図12(B)は、レンズアレイ駆動部450によって駆動した後のレンズアレイ20、及び当該レンズアレイ20に入射する第1のレーザー光L11を示す図である。図12(B)に示す例では、レンズアレイ駆動部450によって、レンズアレイ20の中心が、第1のレーザー光L11の光軸Cに対して-y軸方向に移動している。このように、レンズアレイ駆動部450は、レンズアレイ20の中心を、第1のレーザー光L11の光軸Cに対して偏心させるレンズアレイ偏心可動部である。 FIG. 12B is a diagram showing the lens array 20 after being driven by the lens array driving section 450 and the first laser light L11 incident on the lens array 20. FIG. In the example shown in FIG. 12B, the lens array driving section 450 moves the center of the lens array 20 in the −y-axis direction with respect to the optical axis C of the first laser beam L11. In this way, the lens array driving section 450 is a lens array decentering moving section that decenters the center of the lens array 20 with respect to the optical axis C of the first laser beam L11.
 図12(B)に示されるように、レンズアレイ駆動部450が、レンズアレイ20を-y軸方向に並進移動させた場合、レンズアレイ20の中心より+y軸側に位置するレンズ20a、20bにおける第1のレーザー光L11の入射量が増加する。これにより、レンズ20a、20bによって分岐された複数の第2のレーザー光L21(図10参照)のそれぞれの集光スポットにおける光強度が増加する。このように、レンズアレイ駆動部450が、レンズアレイ20を-y軸方向に並進移動させることで、被加工位置70(図4参照)における光強度を制御することができる。 As shown in FIG. 12B, when the lens array driver 450 translates the lens array 20 in the -y-axis direction, the lenses 20a and 20b located on the +y-axis side of the center of the lens array 20 The incident amount of the first laser beam L11 increases. As a result, the light intensity at each condensed spot of the plurality of second laser beams L21 (see FIG. 10) split by the lenses 20a and 20b increases. In this manner, the lens array driver 450 translates the lens array 20 in the −y-axis direction, thereby controlling the light intensity at the processing position 70 (see FIG. 4).
 図12(A)及び(B)では、レンズアレイ駆動部450が、レンズアレイ20を-y軸方向に並進移動させる例を示したが、レンズアレイ駆動部450は、レンズアレイ20を+y軸方向又は±z軸方向に並進移動させてもよい。このように、レンズアレイ20が、第1のレーザー光L11の光軸Cに垂直な方向に並進移動させることにより、レンズアレイ20によって分岐された複数の第2のレーザー光L21のそれぞれの集光スポットの光強度を制御することができる。制御部9は、例えば、ステージ7の加工方向及び加工速度のうちの少なくとも1つに基づいて、被加工位置70(図4参照)近傍の集光スポット80の光強度分布を制御する。これにより、加工品質を向上させることができる。 12A and 12B show an example in which the lens array driver 450 translates the lens array 20 in the −y-axis direction, but the lens array driver 450 moves the lens array 20 in the +y-axis direction. Alternatively, it may be translated in the ±z-axis direction. In this manner, the lens array 20 is translated in the direction perpendicular to the optical axis C of the first laser beam L11, so that each of the plurality of second laser beams L21 split by the lens array 20 is focused. The light intensity of the spot can be controlled. The controller 9 controls the light intensity distribution of the focused spot 80 in the vicinity of the position to be processed 70 (see FIG. 4), based on at least one of the processing direction and processing speed of the stage 7, for example. Thereby, processing quality can be improved.
 〈実施の形態4の効果〉
 以上に説明した実施の形態4によれば、レンズアレイ20が、光源部10から出射した第1のレーザー光L11を分岐した複数の第2のレーザー光L21を形成し、第2のレーザー光L21を集光させる。また、反射光学部30は、レンズアレイ20によって分岐された複数の第2のレーザー光L21を被加工位置70にそれぞれ向ける。これにより、簡易な構成で材料供給部6による遮光を回避することができる。よって、簡易な構成でレーザー光の利用効率を向上させることができる。
<Effect of Embodiment 4>
According to the fourth embodiment described above, the lens array 20 splits the first laser beam L11 emitted from the light source unit 10 to form a plurality of second laser beams L21, and the second laser beam L21 to focus. In addition, the reflecting optical section 30 directs the plurality of second laser beams L21 branched by the lens array 20 to the positions 70 to be processed. This makes it possible to avoid light shielding by the material supply unit 6 with a simple configuration. Therefore, it is possible to improve the utilization efficiency of laser light with a simple configuration.
 また、実施の形態4によれば、加工ヘッド4は、レンズアレイ20を、第1のレーザー光L11の光軸方向に垂直な方向に移動させるレンズアレイ駆動部450を有する。これにより、レンズアレイ20によって分岐された複数の第2のレーザー光L21のそれぞれの集光スポットの光強度を制御することができる。よって、被加工位置70近傍の集光スポット80の光強度分布が制御されるため、加工品質を向上させることができる。したがって、実施の形態4によれば、簡易な構成でレーザー光の利用効率を向上させつつ、且つ加工品質を向上させることができる。 Further, according to Embodiment 4, the processing head 4 has a lens array driving section 450 that moves the lens array 20 in a direction perpendicular to the optical axis direction of the first laser beam L11. Thereby, the light intensity of each focused spot of the plurality of second laser beams L21 split by the lens array 20 can be controlled. Therefore, the light intensity distribution of the focused spot 80 in the vicinity of the position to be processed 70 is controlled, so that the processing quality can be improved. Therefore, according to Embodiment 4, it is possible to improve the processing quality while improving the utilization efficiency of laser light with a simple configuration.
 《実施の形態5》
 図13は、実施の形態5に係る付加製造装置500の概略的な構成を示す構成図である。図13において、図1に示される構成要素と同一又は対応する構成要素には、図1に示される符号と同じ符号が付される。実施の形態5に係る付加製造装置500は、レンズアレイ駆動部550が加工ヘッド5に備えられている点で、実施の形態1から4に係る付加製造装置100、200、300、400と相違する。これ以外の点については、実施の形態5に係る付加製造装置500は、実施の形態1から4に係る付加製造装置100、200、300、400と同じである。そのため、以下の説明では、図4及び6を参照する。
<<Embodiment 5>>
FIG. 13 is a configuration diagram showing a schematic configuration of an additive manufacturing apparatus 500 according to Embodiment 5. As shown in FIG. 13, the same or corresponding components as those shown in FIG. 1 are given the same reference numerals as those shown in FIG. An additional manufacturing apparatus 500 according to Embodiment 5 differs from the additional manufacturing apparatuses 100, 200, 300, and 400 according to Embodiments 1 to 4 in that a lens array driving section 550 is provided in the processing head 5. . Except for this point, the additional manufacturing apparatus 500 according to the fifth embodiment is the same as the additional manufacturing apparatuses 100, 200, 300, and 400 according to the first to fourth embodiments. 4 and 6 are therefore referred to in the following description.
 図13に示されるように、付加製造装置500は、加工ヘッド5と、ステージ7と、ステージ駆動部8と、制御部9(図6参照)とを有する。 As shown in FIG. 13, the additional manufacturing device 500 has a processing head 5, a stage 7, a stage driving section 8, and a control section 9 (see FIG. 6).
 加工ヘッド5は、光源部10と、レンズアレイ20と、平面ミラー40と、反射光学部30と、第3の光学素子駆動部としてのレンズアレイ駆動部550とを有する。 The processing head 5 has a light source section 10, a lens array 20, a plane mirror 40, a reflecting optical section 30, and a lens array driving section 550 as a third optical element driving section.
 レンズアレイ駆動部550は、レンズアレイ20を、第1のレーザー光L11の光軸方向に移動させる。すなわち、レンズアレイ駆動部550は、レンズアレイ20を±x軸方向に並進移動させるレンズアレイ並進移動部である。なお、加工ヘッド5は、レンズアレイ駆動部550に加えて、実施の形態3のレンズアレイ駆動部350及び実施の形態4のレンズアレイ駆動部450のうちの少なくとも1つを有していてもよい。 The lens array driver 550 moves the lens array 20 in the optical axis direction of the first laser beam L11. That is, the lens array driving section 550 is a lens array translation section that translates the lens array 20 in the ±x-axis directions. In addition to the lens array driving section 550, the processing head 5 may have at least one of the lens array driving section 350 of the third embodiment and the lens array driving section 450 of the fourth embodiment. .
 以下に、加工ヘッド5にレンズアレイ駆動部550が備えられていることによる効果を説明する。 The effect of the lens array drive unit 550 provided in the processing head 5 will be described below.
 図14(A)及び(B)は、実施の形態5に係る加工ヘッド5における複数の第2のレーザー光L21の集光スポットの位置の変化を説明する説明図である。図14(A)は、図13に示されるレンズアレイ20が停止しているときに集光スポット80aに集光する第2のレーザー光L21を示す光線図である。図14(A)において、レンズアレイ20が停止しているときの集光スポット80aのz軸方向の位置を位置z1とする。また、加工ヘッド5において、レンズアレイ20のみが集光機能を有し、反射光学部30が集光機能を有しない場合、レンズアレイ20と集光スポット80aとの間の距離が、当該レンズアレイ20を構成するレンズの焦点距離と一致する。 FIGS. 14A and 14B are explanatory diagrams explaining changes in the positions of the focused spots of the plurality of second laser beams L21 in the processing head 5 according to Embodiment 5. FIG. FIG. 14(A) is a ray diagram showing the second laser beam L21 focused on the focused spot 80a when the lens array 20 shown in FIG. 13 is stopped. In FIG. 14A, the position of the condensed spot 80a in the z-axis direction when the lens array 20 is stopped is the position z1. Further, in the processing head 5, when only the lens array 20 has a light-collecting function and the reflective optical section 30 does not have a light-collecting function, the distance between the lens array 20 and the light-collecting spot 80a is It matches the focal length of the lens that makes up 20 .
 図14(B)は、図13に示されるレンズアレイ20が-x軸方向に移動したときに集光スポット80aa、80abに集光する第2のレーザー光L21を示す光線図である。図14(B)において、集光スポット80aa、80abのz軸方向の位置を位置z2とする。図14(B)に示されるように、レンズアレイ20が-x軸方向に移動した場合、位置z2は、図14(A)に示される位置z1より-z軸側に移動する。これにより、付加材料に照射される第2のレーザー光L21の集光スポットの径が大きくなる。すなわち、実施の形態5では、レンズアレイ20を±x軸方向に移動させることによって、第2のレーザー光L21の集光スポットの径を変えることができる。 FIG. 14(B) is a ray diagram showing the second laser light L21 focused on the focused spots 80aa and 80ab when the lens array 20 shown in FIG. 13 moves in the -x-axis direction. In FIG. 14B, the position z2 is the position of the focused spots 80aa and 80ab in the z-axis direction. As shown in FIG. 14(B), when the lens array 20 moves in the −x-axis direction, the position z2 moves to the −z-axis side from the position z1 shown in FIG. 14(A). As a result, the diameter of the focused spot of the second laser beam L21 with which the additional material is irradiated is increased. That is, in Embodiment 5, the diameter of the focused spot of the second laser beam L21 can be changed by moving the lens array 20 in the ±x-axis directions.
 付加材料がワイヤ状の金属材料である場合、制御部9は、当該ワイヤの径及び付加材料の特性のうちの少なくとも1つに基づいて、レンズアレイ駆動部550を駆動する。このように、ワイヤの径及び付加材料の特性などに応じて、集光スポットの径を可変することで、付加材料と付加対象物のそれぞれの熱分布を制御し、加工品質を向上させることができる。 When the additional material is a wire-shaped metal material, the control unit 9 drives the lens array driving unit 550 based on at least one of the diameter of the wire and the properties of the additional material. In this way, by varying the diameter of the focused spot according to the diameter of the wire and the characteristics of the additional material, it is possible to control the heat distribution of each of the additional material and the object to be added, thereby improving the processing quality. can.
 〈実施の形態5の効果〉
 以上に説明した実施の形態5によれば、レンズアレイ20が、光源部10から出射した第1のレーザー光L11を分岐した複数の第2のレーザー光L21を形成し、第2のレーザー光L21を集光させる。また、反射光学部30は、レンズアレイ20によって分岐された複数の第2のレーザー光L21を被加工位置70にそれぞれ向ける。これにより、簡易な構成で材料供給部6による遮光を回避することができる。よって、簡易な構成でレーザー光の利用効率を向上させることができる。
<Effect of Embodiment 5>
According to the fifth embodiment described above, the lens array 20 splits the first laser beam L11 emitted from the light source unit 10 to form a plurality of second laser beams L21, and the second laser beams L21 to focus. In addition, the reflecting optical section 30 directs the plurality of second laser beams L21 branched by the lens array 20 to the positions 70 to be processed. This makes it possible to avoid light shielding by the material supply unit 6 with a simple configuration. Therefore, it is possible to improve the utilization efficiency of laser light with a simple configuration.
 また、実施の形態5によれば、加工ヘッド5は、レンズアレイ20を、第1のレーザー光L11の光軸方向に移動させるレンズアレイ駆動部550を有する。これにより、レンズアレイ駆動部550は、レンズアレイ20によって分岐された複数の第2のレーザー光L21の集光スポット80aa、80abの径を変えることができる。レンズアレイ駆動部550は、例えば、付加材料の径及び付加材料の特性に応じて、集光スポット80aa、80abの径を変えることができる。よって、付加材料と付加対象物のそれぞれの熱分布を制御し、加工品質を向上させることができる。 Further, according to Embodiment 5, the processing head 5 has the lens array driving section 550 that moves the lens array 20 in the optical axis direction of the first laser beam L11. Thereby, the lens array driving section 550 can change the diameters of the focused spots 80aa and 80ab of the plurality of second laser beams L21 split by the lens array 20. FIG. The lens array driver 550 can change the diameters of the focused spots 80aa and 80ab according to, for example, the diameter of the additional material and the properties of the additional material. Therefore, it is possible to control the heat distribution of each of the addition material and the addition target, thereby improving the processing quality.
 1、1A、2、3、4、5 加工ヘッド、 6 材料供給部、 7 ステージ、 10 光源部、 20 レンズアレイ、 20a、20b、20c、20d レンズ、 30、230 反射光学部、 31a 反射面、 40 平面ミラー、 40a 貫通孔、 70 被加工位置、 80、80a、80b、80c、80d、80aa、80ab 集光スポット、 100、100A、200、300、400、500 付加製造装置、 232 反射面駆動部、 350、450、550 レンズアレイ駆動部、 C 光軸、 L11 第1のレーザー光、 L21 第2のレーザー光、 S 基準線。 1, 1A, 2, 3, 4, 5 processing head, 6 material supply unit, 7 stage, 10 light source unit, 20 lens array, 20a, 20b, 20c, 20d lens, 30, 230 reflective optical unit, 31a reflective surface, 40 Flat mirror 40a Through hole 70 Work position 80, 80a, 80b, 80c, 80d, 80aa, 80ab Focused spot 100, 100A, 200, 300, 400, 500 Additional manufacturing device 232 Reflective surface driving unit , 350, 450, 550 lens array drive unit, C optical axis, L11 first laser light, L21 second laser light, S reference line.

Claims (16)

  1.  材料供給部から被加工位置に供給される材料を加工する加工ヘッドであって、
     第1のレーザー光を出射する光源部と、
     前記第1のレーザー光を分岐して複数の第2のレーザー光を形成し、前記複数の第2のレーザー光を集光させる集光光学素子と、
     前記複数の第2のレーザー光を前記被加工位置に向ける第1の光学部と
     を有する、ことを特徴とする加工ヘッド。
    A processing head for processing a material supplied from a material supply unit to a processing position,
    a light source unit that emits a first laser beam;
    a condensing optical element for branching the first laser beam to form a plurality of second laser beams and condensing the plurality of second laser beams;
    and a first optical section for directing the plurality of second laser beams to the position to be processed.
  2.  前記集光光学素子は、複数のレンズが一体に形成されたレンズアレイを有し、
     前記複数のレンズは、前記複数の第2のレーザー光をそれぞれ形成する、
     ことを特徴とする請求項1に記載の加工ヘッド。
    The condensing optical element has a lens array in which a plurality of lenses are integrally formed,
    the plurality of lenses respectively form the plurality of second laser beams;
    The processing head according to claim 1, characterized by:
  3.  前記集光光学素子によって分岐された前記複数の第2のレーザー光を前記第1の光学部に導く第2の光学部を更に有する、
     ことを特徴とする請求項1又は2に記載の加工ヘッド。
    further comprising a second optical unit that guides the plurality of second laser beams branched by the condensing optical element to the first optical unit;
    3. The processing head according to claim 1 or 2, characterized in that:
  4.  前記第2の光学部は、貫通孔を有し、
     前記材料供給部は、前記貫通孔を通して配置される、
     ことを特徴とする請求項3に記載の加工ヘッド。
    The second optical section has a through hole,
    The material supply unit is arranged through the through hole,
    4. The processing head according to claim 3, characterized in that:
  5.  前記集光光学素子及び前記第1の光学部は、前記集光光学素子によって分岐された前記複数の第2のレーザー光が、直接前記第1の光学部に入射する位置に配置されている、
     ことを特徴とする請求項1又は2に記載の加工ヘッド。
    The condensing optical element and the first optical section are arranged at a position where the plurality of second laser beams branched by the condensing optical element directly enter the first optical section,
    3. The processing head according to claim 1 or 2, characterized in that:
  6.  前記第1の光学部は、前記被加工位置を囲う複数の位置にそれぞれ配置された複数の反射面を有し、
     前記複数の反射面は、前記複数の第2のレーザー光をそれぞれ前記被加工位置に向ける、
     ことを特徴とする請求項1から5のいずれか1項に記載の加工ヘッド。
    The first optical section has a plurality of reflective surfaces arranged at a plurality of positions surrounding the position to be processed,
    the plurality of reflective surfaces respectively direct the plurality of second laser beams toward the position to be processed;
    The processing head according to any one of claims 1 to 5, characterized in that:
  7.  前記第1の光学部は、前記被加工位置における前記複数の第2のレーザー光のそれぞれの集光点の位置を変える、
     ことを特徴とする請求項6に記載の加工ヘッド。
    The first optical unit changes the position of each focal point of the plurality of second laser beams at the position to be processed,
    The processing head according to claim 6, characterized in that:
  8.  前記第1の光学部は、前記複数の反射面を駆動させる反射面駆動部を更に有する、
     ことを特徴とする請求項6又は7に記載の加工ヘッド。
    The first optical unit further has a reflective surface driving unit that drives the plurality of reflective surfaces,
    The processing head according to claim 6 or 7, characterized in that:
  9.  前記反射面駆動部は、前記複数の反射面を、前記被加工位置を通る基準線に垂直な軸を中心にして回転させる、
     ことを特徴とする請求項8に記載の加工ヘッド。
    The reflective surface driving unit rotates the plurality of reflective surfaces around an axis perpendicular to a reference line passing through the position to be processed.
    The processing head according to claim 8, characterized in that:
  10.  前記複数の反射面は、前記基準線を中心に等しい角度間隔で配置されている、
     ことを特徴とする請求項9に記載の加工ヘッド。
    The plurality of reflective surfaces are arranged at equal angular intervals around the reference line,
    The processing head according to claim 9, characterized in that:
  11.  前記集光光学素子を、前記第1のレーザー光の光軸周りに回転させる第1の光学素子駆動部を更に有する、
     ことを特徴とする請求項1から10のいずれか1項に記載の加工ヘッド。
    Further comprising a first optical element driving unit that rotates the condensing optical element around the optical axis of the first laser beam,
    The processing head according to any one of claims 1 to 10, characterized in that:
  12.  前記集光光学素子を、前記第1のレーザー光の光軸方向に垂直な方向に移動させる第2の光学素子駆動部を更に有する、
     ことを特徴とする請求項1から11のいずれか1項に記載の加工ヘッド。
    Further comprising a second optical element driving unit that moves the condensing optical element in a direction perpendicular to the optical axis direction of the first laser beam,
    The processing head according to any one of claims 1 to 11, characterized in that:
  13.  前記集光光学素子を、前記第1のレーザー光の光軸方向に移動させる第3の光学素子駆動部を更に有する、
     ことを特徴とする請求項1から12のいずれか1項に記載の加工ヘッド。
    further comprising a third optical element driving unit that moves the condensing optical element in the optical axis direction of the first laser beam,
    The processing head according to any one of claims 1 to 12, characterized in that:
  14.  前記材料供給部を更に有する、
     ことを特徴とする請求項1から13のいずれか1項に記載の加工ヘッド。
    further comprising the material supply unit;
    The processing head according to any one of claims 1 to 13, characterized in that:
  15.  前記材料供給部は、前記第1のレーザー光の光軸上に配置されている、
     ことを特徴とする請求項14に記載の加工ヘッド。
    The material supply unit is arranged on the optical axis of the first laser beam,
    15. The processing head according to claim 14, characterized in that:
  16.  請求項1から15のいずれか1項に記載の加工ヘッドと、
     前記被加工位置を有し、予め決められた方向に移動可能なステージと
     を有する、ことを特徴とする付加製造装置。
    A processing head according to any one of claims 1 to 15;
    and a stage that has the position to be processed and is movable in a predetermined direction.
PCT/JP2021/024519 2021-06-29 2021-06-29 Processing head and additive manufacturing device WO2023275979A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/024519 WO2023275979A1 (en) 2021-06-29 2021-06-29 Processing head and additive manufacturing device
JP2023531188A JP7515722B2 (en) 2021-06-29 Processing head and additive manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024519 WO2023275979A1 (en) 2021-06-29 2021-06-29 Processing head and additive manufacturing device

Publications (1)

Publication Number Publication Date
WO2023275979A1 true WO2023275979A1 (en) 2023-01-05

Family

ID=84691606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024519 WO2023275979A1 (en) 2021-06-29 2021-06-29 Processing head and additive manufacturing device

Country Status (1)

Country Link
WO (1) WO2023275979A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119491A (en) * 2007-11-14 2009-06-04 Toshiba Corp Light beam splitting device, irradiation device, splitting method of light beam, method for manufacturing electronic device, and method for manufacturing precision component
WO2018181344A1 (en) * 2017-03-31 2018-10-04 株式会社ニコン Processing method and processing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119491A (en) * 2007-11-14 2009-06-04 Toshiba Corp Light beam splitting device, irradiation device, splitting method of light beam, method for manufacturing electronic device, and method for manufacturing precision component
WO2018181344A1 (en) * 2017-03-31 2018-10-04 株式会社ニコン Processing method and processing system

Also Published As

Publication number Publication date
JPWO2023275979A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
KR100500343B1 (en) Laser machining apparatus
JP4204810B2 (en) Laser beam delivery system
US7961407B2 (en) Techniques for steering an optical beam
US7570407B2 (en) Scanning mechanism, method of machining workpiece, and machine tool
KR100817825B1 (en) Laser machining apparatus
US20050247682A1 (en) Laser beam machine
JP2009520995A (en) Scanner head and processing equipment using the scanner head
US4636611A (en) Quiescent circle and arc generator
CN1617784A (en) Laser machining device
JPWO2019176502A1 (en) Laser oscillator, laser processing equipment using it, and laser oscillation method
CN104379296B (en) Laser processing device
JP3468660B2 (en) Laser beam splitter
WO2023275979A1 (en) Processing head and additive manufacturing device
JP7515722B2 (en) Processing head and additive manufacturing device
CN101878089B (en) Device for machining a workpiece by means of parallel laser beams
CN116038104A (en) Laser processing device
JP2019005802A (en) Laser processing method, laser processing device and laser emission unit
WO2022253172A1 (en) Method for compensating ultrafast laser light path rotation error, apparatus thereof, and machine tool
WO2022185721A1 (en) Laser processing device
US20220063017A1 (en) Dynamic beam deflection and shaping for laser process
KR100809361B1 (en) Laser machining apparatus
RU2283738C1 (en) Device for laser working
KR20150047008A (en) System for securing pointing stability of laser and laser processing apparatus applied the same
WO2023053543A1 (en) Laser processing device
WO2021145205A1 (en) Laser device, and laser processing device in which same is used

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023531188

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948288

Country of ref document: EP

Kind code of ref document: A1