WO2023274816A1 - Transformatorloses on-board-ladegerät für elektro-fahrzeuge und verfahren zur ansteuerung einer dc/dc-stufe in einem transformatorlosen on-board-ladegerät für elektrofahrzeuge - Google Patents

Transformatorloses on-board-ladegerät für elektro-fahrzeuge und verfahren zur ansteuerung einer dc/dc-stufe in einem transformatorlosen on-board-ladegerät für elektrofahrzeuge Download PDF

Info

Publication number
WO2023274816A1
WO2023274816A1 PCT/EP2022/067070 EP2022067070W WO2023274816A1 WO 2023274816 A1 WO2023274816 A1 WO 2023274816A1 EP 2022067070 W EP2022067070 W EP 2022067070W WO 2023274816 A1 WO2023274816 A1 WO 2023274816A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
batt
transformerless
stages
frequency
Prior art date
Application number
PCT/EP2022/067070
Other languages
English (en)
French (fr)
Inventor
Frank Schafmeister
Original Assignee
Universität Paderborn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universität Paderborn filed Critical Universität Paderborn
Priority to EP22734614.5A priority Critical patent/EP4363263A1/de
Publication of WO2023274816A1 publication Critical patent/WO2023274816A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • the invention relates to a transformerless on-board charger for electric vehicles and a method for controlling a DC/DC stage in a transformerless on-board charger for electric vehicles.
  • the drive batteries of electrified cars especially all-electric battery vehicles (EVs), must be charged with high power from the generally available alternating current (AC) grid in order to shorten the charging times and further increase the acceptance of the EVs.
  • AC alternating current
  • High outputs (e.g. 10 kW and more, in particular 11 kW, 22 kW, 7) are mainly achieved by three-phase (in the EU) or single/two-phase (in North America, also: "split-phase") working , built-in on-board charger (OBL) in the EV.
  • OBL built-in on-board charger
  • the input stage of such an OBL is a network-friendly pulse rectifier (PFC: Power Factor Corrector), whereas a DC/DC converter as the output stage manages the connection to the drive battery.
  • PFC Power Factor Corrector
  • the omission of the transformer also entails a number of technical challenges that are currently difficult to solve in a way that is suitable for everyday use.
  • FIG. 2 an arrangement with an embodiment of the invention when connected to a three-phase network
  • 3 shows a similar arrangement with an embodiment of the invention when connected to a split-phase network
  • FIG. 4 shows a simulation created using SIMPLORER in relation to FIG. 3,
  • FIG. 9 a representation of exemplary voltage levels during operation on the US split-phase grid in embodiments of the invention.
  • FIG. 11 shows a schematic basic representation of the regulation in embodiments of the invention.
  • FIG. 1A shows a typical charging situation for an (electric) vehicle with a rechargeable battery BAT.
  • the battery BAT can either be charged from a DC source, such as a charging station LS, or the battery BAT can use an on-board charger (OBL) to obtain AC voltage from a MAINS and convert it to DC voltage.
  • OLB on-board charger
  • Different network configurations are conceivable or known.
  • a three-phase supply with phases L1, L2, L3 that are phase-shifted by 120° currently dominates in Europe, as shown in FIG. 1B.
  • the so-called US split-phase supply currently dominates in residential areas, in which two opposing phases (each 180° out of phase) are made available.
  • the devices of the invention are used to deliver electrical energy from the battery BAT back to an AC voltage network or an AC voltage consumer (vehicle-to-grid or vehicle-to-load).
  • the aim of the present invention is to compensate for the unwanted leakage currents described above using the DC/DC stages of the OBL that are present anyway. With suitable control (with almost unchanged dimensioning), these can stabilize the otherwise pulsating battery potential and keep it more or less constant, so that practically no or significantly lower leakage currents through (parasitic) battery capacities or explicit filter capacities of the high-voltage on-board network are driven against vehicle ground.
  • FIG. shows a transformerless OBL.
  • this has an exemplary PFC circuit-other circuits can replace this, an intermediate circuit ZK, a DC/DC stage arrangement relating to the invention and—indicated by the ellipse—an exemplary (parasitic) leakage capacitance or its leakage current.
  • This exemplary capacitance represents, for example, the relatively high parasitic electrical capacitance of the battery connections in relation to the vehicle mass, which is caused by the large-area drive battery. This can assume considerable values in the ⁇ F range (shown asymmetrically - obviously a similar (parasitic) leakage capacitance can also be present against the positive potential V Batt,p of the battery).
  • a B6-PFC stage with a symmetrical DC/DC double stage is used against the midpoint of the capacitive voltage divider of the intermediate circuit N'.
  • V Batt,n like the positive V Batt,p
  • the leakage current i CM through CCM can be adjusted via the DC/DC stage.
  • V M of the midpoint M of the intermediate circuit ZK connected to N' oscillates at a low frequency (typically 50...150 Hz), for example because N' is switched on in the interest of a high power yield when operating on the US split-phase network is placed on the negative conductor LI- oscillating at 60 Hz:
  • FIG. 5 a variant of the Vienna rectifier PFC (cf. PCT/DE2020/100377, called ViennaM for short below) is considered on a US split-phase network, which is again assumed to have 120V RM s at 60 Flz.
  • Figures 6A-D and 7A-D are to be seen in relation to this circuit.
  • the connection to the network is analogous to FIG. 3, ie LI- can be understood as an inverted voltage signal or one that is phase-shifted by 180° with respect to L1+.
  • the voltage fluctuation (ripple) at the intermediate circuit capacitors of the OBL can be significantly reduced - see the comparison between Figure 7A and 6A.
  • the voltage change at the capacitors decreases and the current load on the intermediate circuit capacitors I C RMS is also reduced.
  • the capacity requirement in the intermediate circuit for operation according to the invention on a split-phase network is reduced, which means that costs and installation space can be saved.
  • a reduction of 36% based on ⁇ U ZK1/2 ie 36% lower capacity requirement on the US split-phase grid, can be achieved and the current load I C,RMS can also be reduced by 32% be reduced.
  • /CM CCM dV Batt ,n /dt
  • the interfering leakage currents for a given capacitance CCM are determined by the rate of change over time (slope dV Batt ,n /dt, or dV Bat,p /dt) of the battery potential. This rate of change is greatest for the typical sinusoidal, mains-frequency time curves of the potentials under consideration just at the zero crossing.
  • the advantage of the arrangement and method according to the invention is above all the fact that the measurement and control concept appears to be significantly simpler and more robust than that of the complex and error-prone additional compensation circuits, as they are conventionally developed, especially since these neither have to differentiate between the specified leakage currents and safety-relevant fault currents (these must not be compensated).
  • the efficiency of the proposed method does not appear to be any less than that of the conventional compensation circuits mentioned above.
  • Another advantage of the method is that, depending on the type of network, the changed control of the DC/DC stages can also lead to savings in intermediate circuit capacitance, ie typically voluminous electrolytic capacitors.
  • the present invention enables inherent compensation of low-frequency leakage currents without additional compensation effort.
  • This also enables the operation of a transformerless OBL on the US split-phase grid. Furthermore, the invention also allows the international use of OBL in a wide variety of AC networks.
  • the invention is based on a simple, robust regulation of the inherent DC/DC stages and can also significantly improve the EMC behavior of a transformerless OBL by reducing the leakage currents.
  • the invention allows capacity to be saved in the intermediate circuit.
  • the invention presented here can, for example, also compensate for the low-frequency common-mode voltage that remains at the battery terminals (e.g. around 150 Hz) with the PFC topologies of the German patent application DE 102020214265.3.
  • the invention can also reduce the low-frequency common-mode voltage at the battery terminals (e.g. around 60 Hz), which arises during the operation of other three-phase PFC stages (e.g. six-switch full bridge (B6) with intermediate circuit center point connection or Vienna rectifier Intermediate circuit center connection (ViennaM, see, for example, international patent publication WO 2020/233 741 A1) on the US American split-phase network (ie when conductor L1- is connected to the n-terminal of the OBL), compensate.
  • other three-phase PFC stages e.g. six-switch full bridge (B6) with intermediate circuit center point connection or Vienna rectifier Intermediate circuit center connection (ViennaM, see, for example, international patent publication WO 2020/233 741 A1) on the US American split-phase network (ie when conductor L1- is connected to the n-terminal of the OBL), compensate.
  • active, dedicated compensation stages are used, which first measure low-frequency leakage currents and, if necessary, have to separate a residual current component from them, in order then to try to compensate for the regular leakage current component by injecting current in the opposite direction (or injecting common-mode voltage in opposite directions) (with the dynamics that are then possible).
  • the invention relates in particular to a transformerless on-board charger for electric vehicles for charging a drive battery BAT with low leakage current, having a first DC/DC stage and a second DC/DC stage, the two DC/DC stages on the intermediate circuit side as a double stage in are connected in series, i.e. both sub-stages, each consisting of at least 2 switching elements (transistor and diode, or transistor and transistor), at least one choke coil and at least one output capacitor, are arranged symmetrically to the capacitive center point of the intermediate circuit. In this way, each DC/DC stage is connected to a sub-intermediate circuit. On the battery side, the two DC/DC stages are also connected in series and connected to the same capacitive midpoint on the intermediate circuit side.
  • Both DC/DC stages are set up to generate a time-variable output voltage during operation by simultaneous switching, with the (variable) frequency being between the mains frequency and three times the mains frequency. This means that the frequency of the output voltage to be generated is typically between the mains frequency and three times the mains frequency.
  • the battery generally has only two terminals and is connected to the two outer terminals of the output capacitors of the two DC/DC stages.
  • both of the at least 2 switching elements of the individual DC/DC stage are designed as transistors.
  • each DC/DC stage can carry currents in both directions (bidirectional) from and to the intermediate circuit, see Figure 2 for example.
  • the outside of the at least 2 switching elements of the individual DC/DC stage is designed as a transistor and the inside of the at least 2 switching elements is designed as a diode.
  • each DC/DC stage can only carry currents from the intermediate circuit to the battery side (unidirectional), see for example Figure 3 and Figure 5.
  • the transistor switching elements are implemented as GaN (gallium nitride) based transistors, see also Figure 10.
  • the transistor switching elements are designed as SiC (silicon carbide) based MOS field effect transistors (MOSFET), see also Figure 10.
  • the transistor switching elements are Si (silicon) based MOS field effect transistors (MOSFET) or SiC (silicon carbide) based MOS field effect transistors (MOSFET) or GaN (gallium nitride) based flea electrons mobility transistors (FIEMT) or as Si (silicon) based insulated gate bipolar transistors (IGBT), see also Figure 10.
  • both DC/DC stages generate a time-variable output voltage, the frequency of which is typically between the mains frequency and three times the mains frequency, e.g. in the magnitude of the mains frequency (typically 50 - 150 Flz).
  • At least one of the two DC/DC stages adjusts the phase position of its time-variable output voltage so that it is in phase opposition to the low-frequency oscillating midpoint potential (V M ), with the (variable) frequency of the time-variable output voltage between the mains frequency and is three times the mains frequency, for example in the order of magnitude of the mains frequency (typically 50 - 150 Hz).
  • V M low-frequency oscillating midpoint potential
  • one of the two DC/DC stages adjusts the phase position of its time-varying output voltage so that it is in opposite phase to the low-frequency (typically mains frequency up to three times the mains frequency) oscillating mid-point potential (V M ).
  • At least one of the two DC/DC stages adjusts the amplitude of its time-varying output voltage in such a way that it corresponds to the amplitude of the low-frequency oscillating midpoint potential (V M ), and thus for a constant battery terminal potential (V Batt,p and/or V Batt,n ), whereby the (variable) frequency of the time-varying output voltage is between the mains frequency and three times the mains frequency (typically 50 - 150 Hz).
  • one of the two DC/DC stages adjusts the amplitude of its time-varying output voltage in such a way that it corresponds to the amplitude of the low-frequency (typically mains frequency up to three times the mains frequency) oscillating midpoint potential (V M ), and thus for a constant battery terminal potential (V Batt ,p and/or V Batt,n ).
  • V M low-frequency oscillating midpoint potential
  • a control device ensures the appropriate, time-variable output voltage of at least one of the DC/DC stages and thus inherently ensures at least one constant battery terminal potential (V Batt,p and/or V Batt,n )
  • a control device is constructed in a cascade structure and controls the battery terminal potential V Batt,P and/or V Batt,n to a constant desired value in the superimposed control loop.
  • the time-varying inductor current of the respective DC/DC stage is controlled in the subordinate control circuit.
  • PE protective earth
  • a buck function is shown in figures.
  • the invention is not limited to this. Rather, a braid setting function can also be provided by arranging switching elements downstream of the chokes.
  • a further switching device S A1 , S B1 or S A2 , S B2 can be connected to the capacitive center point of the intermediate circuit and to the outer Connection of the respective output capacitor can be provided.
  • S B1 , S B2 can be designed as diodes if a unidirectional current flow (from the intermediate circuit to the battery) is sufficient for the charging operation.
  • S B1 , S B2 are to be designed as transistors (as shown in FIG. 8).
  • the previous DC/DC stages are supplemented by a step-up function by means of the additional switching devices S A1 , S B1 , or S A2 , S B2 shown, so that the entire DC/DC stage now has a step-down function (buck-boost), while the embodiments without these additional switching devices S A1 , S B1 , or S A , S on the right-hand side of the choke coils essentially only provide a step-down function.
  • the first DC/DC stage In order to be able to keep the battery potential V Batt,P constant at a high level (eg at +400V), according to FIG. 9, the first DC/DC stage would have to have an output voltage of generate, but only an input voltage of U ZK1 450V is available at the DC/DC stage. The same applies to the second DC/DC stage. However, due to the step-up function of the further switching devices SA1 , SB1 , or SA2 , SB2 , the output voltage, which is increased compared to the input voltage, can now be provided for each DC/DC stage. With the step-up function, the following can now apply for the positive battery potential: V Batt,p > U ZK1 -V M,ampl .
  • Typical mains frequencies are e.g. 162/3 Hz, 50 Hz, 60 Hz as well as in the range 200 Hz - 400 Hz.
  • FIG. 11 shows an exemplary control loop according to specific embodiments of the invention.
  • two independent, each cascaded control circuits with superimposed battery potential and subordinate inductor current regulation are provided for the at least two DC/DC stages.
  • the controlled variable of the superimposed potential controller is the respective terminal potential of the drive battery V Batt,P (positive potential, e.g. +200V) or V Batt,n (negative potential, e.g. -200V), which is offset against the neutral potential N (OV ) of the supply network is measured.
  • the neutral potential N can also be available as a signal contact in the on-board charging socket for US split-phase operation, which can be used by high-impedance voltage measuring circuits as a reference variable for battery terminal potential measurement. (However, a power connection for the neutral potential N is not available there.)
  • the target value for the potential controller is half the target value of the battery voltage U Batt (cf. also
  • the controlled variable of the subordinate current controllers is the respective inductor current (i L4 or i L5 ) of the DC/DC stages, which must be set with the correct sign and consists of a mains-frequency alternating component for recharging the output capacitors (C 3 or C 4 , cf. Fig. 8) and a largely constant battery charging current component.
  • the set value of the battery charging current component i L4,BattCharge * or i L5,BattCharge *
  • the subordinate current controllers output the pulse duty factor for the transistors of the DC/DC stages, if necessary after suitable limiting measures. These duty cycles are converted into the switching signals for the respective transistors, for example by pulse width modulation (PWM) taking into account the specified switching frequency.
  • PWM pulse width modulation
  • the (additional) switching elements according to the invention can be configured differently. Exemplary embodiments can be taken from FIG. 10, but without being limited to this. Exemplary illustrated embodiments are, for example, a (silicon) MOSFET or a (SiC) MOSFET or a (GaN) FIEMT or a (silicon) IGBT with (SiC) diode. It should be noted that in the first 3 examples, a diode is intrinsically connected to the transistor in each case.
  • the invention differs in all embodiments from the prior art in particular by its symmetrical DC/DC stage with respect to the reference point M, which is controlled in such a way that the respective battery potentials V Batt,P and V Bat,n ( essentially) be kept constant.
  • This means that there is no significant mains-frequency common-mode current i cm C CM dV Batt,n /dt (see FIG. 7c).
  • low-frequency common-mode currents or voltages are already compensated for by the DC/DC stage, so that further specific compensation devices can be dispensed with.
  • the invention also differs from the prior art in particular in that no electrical connection is required between the center point of the batteries and the center potential of the DC/DC stage to provide the charging function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Transformatorloses On-Board-Ladegerät für Elektrofahrzeuge zum ableitstromarmen Laden einer Antriebsbatterie (BAT) aufweisend eine erste DC/DC-Stufe und eine zweite DC/DC-Stufe, wobei die beiden DC/DC-Stufen als Doppelstufe in Reihe geschaltet sind, wobei sowohl die erste DC/DC-Stufe als auch die zweite DC/DC-Stufe jeweils • mindestens zwei Schaltelemente, insbesondere einen Transistor und eine Diode oder zwei Transistoren • mindestens eine Drosselspule, und • mindestens einem Ausgangskondensator aufweist, wobei sowohl die erste DC/DC-Stufe als auch die zweite DC/DC-Stufe symmetrisch zu einem kapazitiven Mittelpunkt eines Zwischenkreises angeordnet sind, wobei jeweils eine DC/DC-Stufe mit einem Teilzwischenkreis verbunden ist, wobei batterieseitig die beiden DC/DC-Stufen in Reihe geschaltet sind und wobei auch dort die beiden DC/DC-Stufen mit dem gleichen kapazitiven Mittelpunkt der Zwischenkreisseite verbunden sind, wobei beide DC/DC-Stufen dazu eingerichtet sind, im Betrieb durch zeitgleiches Schalten jeweils eine zeitvariable Ausgangsspannung zu generieren, wobei deren Frequenz zwischen der Netzfrequenz und dem 3-fachen der Netzfrequenz beträgt. Weiterhin betrifft die Erfindung ein zugehöriges Verfahren zur Ansteuerung einer DC/DC-Stufe in einem transformatorlosen On-Board-Ladegerät für Elektrofahrzeuge.

Description

Transformatorloses On-Board -Ladegerät für Elektrofahrzeuge und Verfahren zur Ansteuerung einer DC/DC-Stufe in einem transformatorlosen On-Board-Ladegerät für
Elektrofahrzeuge
Die Erfindung betrifft ein transformatorloses On-Board-Ladegerät für Elektrofahrzeuge und Verfahren zur Ansteuerung einer DC/DC-Stufe in einem transformatorlosen On-Board-Ladegerät für Elektrofahrzeuge. Hintergrund
Die Antriebsbatterien elektrifizierter PKWs, insb. vollelektrischer Batteriefahrzeuge (EVs) müssen mit hohen Leistungen aus dem allg. verfügbaren Wechselspannungsnetz (AC) geladen werden, um die Ladezeiten zu verkürzen und die Akzeptanz der EVs weiter zu erhöhen.
Hohe Leistungen (z.B. 10 kW und mehr, insbesondere 11 kW, 22 kW, ...) werden vor allem durch dreiphasig (im EU-Raum) oder ein-/zweiphasig (im Nordamerikanischen Raum, auch: „Split-Phase") arbeitende, im EV eingebaute On-Board -Lader (OBL) erreicht. Die Eingangsstufe eines solchen OBL bildet ein netzfreundlicher Pulsgleichrichter (PFC: Power Factor Corrector), wohingegen ein DC/DC-Konverter als Ausgangsstufe die Anbindung zur Antriebsbatterie bewerkstelligt.
Seit kurzer Zeit gibt es Tendenzen, den OBL ohne einen potentialtrennenden Leistungstransformator auszuführen, da dies grundsätzlich zu Kosten-, Gewichts- und weiterhin im Betrieb auch zu elektrischen Verlusteinsparungen führt. Noch deutlicher werden diese Einsparungen bei rückspeisefähigen, bidirektionalen OBL, die z.B. für die sog. Vehicle-To-Grid- (V2G-) Funktionalität benötigt werden.
Die Weglassung des Transformators birgt aber auch einige technische Herausforderungen, die derzeit kaum alltagstauglich gelöst sind.
Durch Wahl geeigneter PFC-Grundschaltungen lassen sich zwar hochfrequent-pulsierende Batteriepotentiale trotz Transformatorverzicht vermeiden, aber je nach PFC-Schaltung und vor allem Form des AC-Versorgungsnetzes (typisch: das US-Split-Phase Netz), liegt ein niederfrequent pulsierendes Batteriepotential vor, welches zu störenden und unerlaubten Ableitströmen führt.
Diese niederfrequenten Ableitströme (50-150 Hz) können und müssen i.d.R. aktiv kompensiert werden. Hierzu wird gegenwärtig konventionell an dedizierten, zusätzlichen Kompensationsschaltungen gearbeitet (hauptsächlich in industrieller Forschung & Entwicklung), die dem OBL vorgeschaltet werden.
Die Anmelderin hat bereits in der Vergangenheit auf diesem Feld geforscht. Dabei wurden z.B. Anordnungen entwickelt (Deutsche Patentanmeldung 102020214265.3 bzw. Internationale Patentanmeldung PCT/EP2021/081496, Deutsche Patentanmeldung DE102019129754.0, bzw. Internationale Patentanmeldung PCT/DE2020/100377), die sich auf neue transformatorlose PFC- Topologien bezogen, welche sich durch gleichtaktarme oder gleichtaktfreie Ausgangsspannungen auszeichneten.
Insbesondere gegenüber der deutschen Patentanmeldung 102020214265.3 bzw. der internationalen Patentanmeldung PCT/EP2021/081496 sei angemerkt, dass dort zwar ein für den Notbetrieb konzipierter Einphasen-Ladebetrieb am europäischen Versorgungsnetz ermöglicht wird, bei dem die Zwischenkreiskapazitäten klein gewählt werden können. Allerdings wird nur in diesem einphasigen Betrieb am europäischen Netz - d.h. der Neutralleiter liegt dann am kapazitiven Zwischenkreis- Mittelpunkt an - eine erste Zwischenkreisteilspannung während einer vollen positiven Netzhalbperiode und eine zweite Zwischenkreisteilspannung während einer vollen negativen Netzhalbperiode ausschließlich zu der Batterie durchgeschaltet, wobei somit, jeweils mit fester Netzfrequenz alternierend, eine DC/DC-Stufe hochfrequent getaktet und die andere DC/DC-Stufe ausgeschaltet wird.
Gleichtaktfrei, d.h. insbesondere auch ohne niederfrequente Ableitströme, sind diese Topologien jedoch nur, wenn sie z.B. nicht mit dem Ziel einer ähnlicher Leistungsausbeute am einphasigen Split- Phase Netz Nordamerikas angeschlossen werden. Wird dies allerdings getan, so verbleibt ein niederfrequent pulsierender (im US-Split-Phase Netz: 60 Hz-) Potential-Anteil an beiden Batterieanschlüssen, der dann einen entsprechenden Ableitstrom treibt.
Kurzdarstellung der Erfindung
Im Rahmen der Erfindung wird jedoch nun eine neue zu einer derartigen oder einer anderen PFC- Topologie nachfolgende DC/DC-Stufe und deren Betriebsweise beschrieben werden.
Kurzdarstellung der Figuren
Im Folgenden wird die Erfindung anhand einer Zeichnung und Ausführungsbeispielen näher erläutert. Die Abbildungen sind schematische Darstellungen und nicht maßstabsgetreu. Die Abbildungen schränken die Erfindung in keiner Weise ein. Es zeigen:
Fig. 1A-1C eine Übersichtsdarstellung zur Motivierung der Erfindung, Fig.2 eine Anordnung mit einer Ausführungsform der Erfindung bei einer Anschaltung an ein Drei-Phasen Netz, Fig.3 eine ähnliche Anordnung mit einer Ausführungsform der Erfindung bei einer Anschaltung an ein Split-Phasen Netz,
Fig.4 eine mittels SIMPLORER erstellte Simulation in Bezug auf Figur 3,
Fig.5 eine weitere Anordnung mit einer Ausführungsform der Erfindung bei einer Anschaltung an ein Split-Phasen Netz,
Fig. 6A-D Kurven zur Schaltung der Figur 5 mit symmetrischer Belastung der DC/DC-Stufen, Fig. 7A-D Kurven zur Schaltung der Figur 5 mit erfindungsgemäß wechselnder Belastung der DC/DC-Stufen,
Fig. 8 einen weiteren Aspekt gemäß Ausführungsformen der Erfindung, Fig. 9 eine Darstellung beispielhafter Spannungs-Niveaus bei Betrieb am US-Split-Phase Netz in Ausführungsformen der Erfindung,
Fig. 10 unterschiedliche beispielhafte Ausgestaltungen von Schaltelementen zur Verwendung im Rahmen der Erfindung, und
Fig. 11 eine schematische Prinzipdarstellung der Regelung in Ausführungsformen der Erfindung.
Ausführliche Darstellung der Erfindung
Nachfolgend wird die Erfindung, unter Bezugnahme auf die Abbildungen, eingehender dargestellt. Dabei ist anzumerken, dass unterschiedliche Aspekte beschrieben werden, die jeweils einzeln oder in Kombination zum Einsatz kommen können. D.h. jeglicher Aspekt kann mit unterschiedlichen Ausführungsformen der Erfindung verwendet werden, soweit nicht explizit als reine Alternative dargestellt. Weiterhin wird nachfolgend der Einfachheit halber in aller Regel immer nur auf eine Entität Bezug genommen. Soweit nicht explizit vermerkt, kann die Erfindung aber auch jeweils mehrere der betroffenen Entitäten aufweisen. Insofern ist die Verwendung der Wörter "ein", "eine" und "eines" nur als Flinweis darauf zu verstehen, dass in einer einfachen Ausführungsform zumindest eine Entität verwendet wird. Soweit nachfolgend Verfahren beschrieben werden, sind die einzelnen Schritte eines Verfahrens in beliebiger Reihenfolge anordbar und/oder kombinierbar, soweit sich durch den Zusammenhang nicht explizit etwas Abweichendes ergibt. Weiterhin sind die Verfahren - soweit nicht ausdrücklich anderweitig gekennzeichnet - untereinander kombinierbar.
Soweit in dieser Anmeldung Normen, Spezifikationen oder dergleichen benannt werden, werden zumindest immer die am Anmeldetag anwendbaren Normen, Spezifikationen oder dergleichen in Bezug genommen. D.h. wird eine Norm / Spezifikation etc. aktualisiert oder durch einen Nachfolger ersetzt, so ist die Erfindung auch hierauf anwendbar.
In Figur 1A ist eine typische Ladesituation für ein (Elektro-)Fahrzeug mit einer wiederaufladbaren Batterie BAT gezeigt. Typischerweise kann die Batterie BAT entweder von einer Gleichstromquelle, wie einer Ladestation LS aufgeladen werden, oder aber, die Batterie BAT kann mittels eines On-Board- Ladegeräts (OBL) aus einem NETZ Wechselspannung AC beziehen und diese in Gleichspannung DC umwandeln. Dabei sind unterschiedliche Netzkonfigurationen denkbar bzw. bekannt. Im europäischen Raum dominiert gegenwärtig eine dreiphasige Versorgung mit um 120° phasenversetzten Phasen L1, L2, L3, wie in Figur 1B gezeigt. Auf dem nordamerikanischen Kontinent dominiert gegenwärtig in den Wohngebieten die sogenannte US-Split-Phase Versorgung, bei der zwei gegenläufige Phasen (jeweils 180° phasenversetzt) zur Verfügung gestellt werden.
Prinzipiell wäre es vorteilhaft Einrichtungen bereitzustellen, die es ermöglich mit geringem Aufwand, bei geringen Kosten - sowohl für die Herstellung, als auch beim Betrieb - und bei geringem Gewicht ein Laden der Batterie BAT aus unterschiedlichen Netztopologien zu ermöglichen, insbesondere aus dem europäischen Dreiphasen- und dem US-Split-Phase- Netz.
Im Rahmen der Erfindung kann auch vorgesehen sein, dass die Einrichtungen der Erfindung dazu verwendet werden, elektrische Energie aus der Batterie BAT wieder an ein Wechselspannungsnetz bzw. einen Wechselspannungsverbraucher abzugeben (Vehicle-To-Grid, bzw. Vehicle-To-Load). Ansatz der vorliegenden Erfindung ist die Kompensation der vorangehend beschriebenen, unerwünschten Ableitstörströme mit den ohnehin vorhandenen DC/DC-Stufen des OBL. Diese können durch geeignete Ansteuerung (bei nahezu unveränderter Dimensionierung) das sonst pulsierende Batteriepotential stabilisieren und mehr oder weniger konstant halten, sodass praktisch keine oder deutlich geringere Ableitströme durch (parasitäre) Batteriekapazitäten, oder explizite Filterkapazitäten des Hochvolt-Bordnetzes gegen Fahrzeugmasse getrieben werden.
Eine solche Anordnung ist in Figur 2 gezeigt. In dieser ist ein transformatorloser OBL dargestellt. Dieser weist zum einen eine beispielhafte PFC-Schaltung- andere Schaltungen können diese ersetzen einen Zwischenkreis ZK, eine die Erfindung betreffende DC/DC-Stufen-Anordnung sowie - angedeutet durch die Ellipse - eine beispielhafte (parasitäre) Ableitkapazität bzw. deren Ableitstrom auf. Diese beispielhafte Kapazität repräsentiert z.B. die durch die großflächig ausgedehnte Antriebsbatterie gegebene, relativ hohe parasitäre elektrische Kapazität der Batterieanschlüsse in Bezug auf die Fahrzeugmasse. Diese kann erhebliche Werte im μF-Bereich annehmen (unsymmetrisch dargestellt - offensichtlich kann eine gleichartige (parasitäre) Ableitkapazität auch gegen das positive Potential VBatt,p der Batterie vorhanden sein).
Bei dieser Anordnung wird eine B6-PFC-Stufe mit symmetrischer DC/DC-Doppelstufe gegen den Mittelpunkt des kapazitiven Spannungsteilers des Zwischenkreises N' verwendet. Mittels dieser Anordnung ist das negative Batteriepotential VBatt ,n (wie auch das positive VBatt,p) und damit der Ableitstrom iCM durch CCM über die DC/DC-Stufe einstellbar. Gleiches gilt auch, wenn das Potential VM des mit N' verbundenen Mittelpunkts M des Zwischenkreises ZK niederfrequent (typ. 50...150 Hz) schwingt, z.B. weil N' im Interesse einer hohen Leistungsausbeute beim Betrieb am US Split-Phase Netz an den mit 60 Hz oszillierenden negativen Leiter LI- gelegt wird: Auch in diesem, sonst kritischen, Fall können die Batteriepotentiale VBatt,p und VBatt ,n erfindungsgemäß mit der symmetrischen DC/DC- Doppelstufe (nahezu) konstant gehalten („kompensiert") werden. Dadurch wird der störende Ableitstrom iCM durch die parasitäre Kapazität CCM idealerweise verhindert (da iCM = CCM dVBatt ,n / dt), bzw. real signifikant reduziert. Eine (nahezu) vollständige Kompensation lässt sich auch bei höheren Potentialamplituden von N' umso besser verwirklichen, je höher die Batteriespannungen sind, was dem aktuellen Trend zu 800 V- Batterien entgegenkommt. Eine exemplarische Anschaltung an ein Split-Phase Netz zeigt Figur 3 - L1+ liegt an den ersten drei Anschlussklemmen ( a,b,c ) des OBL und LI- liegt an der vierten Netzanschlussklemme (n). Bei konventioneller DC/DC-Stufe und/oder ebensolcher Betriebsweise würde in dieser Konfiguration ein hoher Ableitstrom entstehen. Figur 4 dokumentiert jedoch den erfindungsgemäßen Betrieb zur Anordnung nach Figur 3: Mit einer Netzspannung von +/- 120VRMs bei 60 Flz resultiert für das Potential am Punkt M die Amplitude
Figure imgf000009_0001
= √2120 V = 170V, dennoch stellen sich bei einer angenommenen Batteriespannung von UBatt= 470V für die Potentiale an den Batterieklemmen von BAT mit VBattp = 235V, bzw. VBatN = -235V symmetrische und konstante Werte ein. Bei einer DC/DC-Ausgangskapazität von C3/4= 1 μF ergibt sich dabei ein moderater Umladestrom von circa îL4/L5 = 1A und erfindungsgemäß eine gegensinnig zum Mittenpotential VM pulsierende DC/DC-Ausgangsspannung von uc3 = 58...410V
(symmetrieentsprechend gilt für Uc4 = -410...-58V). D.h., in einem solchen Betriebsfall - wie in Figur 4 gezeigt - schwingt das Mittenpotential VM mit der Frequenz und Amplitude des Split-Phase-Leiters Ll- (z.B. 60 Flz), jedoch werden die der Ableitkapazität zugänglichen Batterieklemmenpotentiale VBattp und VBattN durch die erfindungsgemäße Ausgangsspannungsregelung der DC/DC-Stufen quasi konstant gehalten (d VBatt,p/ dt = 0, dVBatt,N/ dt = 0). Flierdurch wird faktisch kein (bzw. nur noch ein sehr geringer) Ableitstrom dVBatt,N/ dt hervorgerufen.
In Figur 5 wird eine Variante des Vienna-Rectifier PFCs (vgl. PCT/DE2020/100377, im Folgenden kurz ViennaM genannt) an einem US-Split-Phase Netz betrachtet, welches wieder mit 120VRMs bei 60 Flz angenommen wird. Figuren 6A-D und 7A-D sind in Bezug auf diese Schaltung zu sehen. Die Anschaltung an das Netz ist analog zu Figur 3, d.h. LI- kann als invertiertes oder um 180° phasenverschobenes Spannungssignal zu L1+ verstanden werden. Für die Figuren 6A-D ergibt sich bei einem zeitlichen Spannungsverlauf von √2120V sin ( ωt) der Ableitstrom ICM.RMS = 120V · 2p · 60 Hz · 1μF = 45mA. Dies ist darin begründet, dass konventionell pDCDC.1 = pDCDC.2 gesteuert wird, woraus für UBatt = 400V (angenommen) uDCDC ,out ,1 = uDCDC ,out ,2 = 200V = konst. folgt. Die konstanten Ausgangsspannungen der DC/DC-Stufen führen zu einer 60 Flz-Schwankung des Batterieklemmenpotentials VBattN (VBattp ebenso), da das Mittenpotential VM ebenso schwankt. Somit wird der oben berechnete Ableitstrom mit Netzfrequenz (d.h. hier 60 Flz) verursacht (vgl. Figur 6C).
Werden jedoch -wie erfindungsgemäß vorgeschlagen - die Baterieklemmenpotentiale VBatt und VBatN auf einen konstanten Sollwert ± UBatt/2 geregelt, so ergeben sich zeitveränderliche DC/DC- Ausgangsspannungen UDCDC ,out ,1 = UBatt - uDCDC,out,2> wie auch über eine Netzperiode variierende Leistungen der DC/DC-Teilstufen pDCDC.1 und pDCDC,2. Dies führt vorteilhaft zu einem sehr geringem Ableitstrom von /CM,RMS < 0,65mA
Die entsprechenden Leistungskurven, Spannungen und Ableitströme sind den Figuren 7A-D zu entnehmen. Zwar sind die Leistungen der DC/DC-Teilstufen nicht mehr konstant, wohl aber die Summenleistung über beide Teilstufen. Da die Belastung zeitlich (periodisch mit circa 50-150 Flz) variiert, ergibt sich keine thermisch relevante Überlastung der DC/DC-Teilstufen.
Unter der Annahme, dass die Batteriespannung UBatt = 400V und die OBL-Ladeleistung 11kW sei, ergibt sich FbcDC,i,2 = 5.5kW + 4,8kW · sin( ωt). Es sei angemerkt, dass der periodische Anteil (hier 4,8kW) abhängig ist von der Batteriespannung UBatt.
Unter der Bedingung, dass: VM < UBatt/2 ist der Ableitstrom vollständig kompensierbar.
Zudem kann die Spannungsschwankung (Rippel) an den Zwischenkreiskondensatoren des OBL deutlich reduziert werden - siehe den Vergleich Figur 7A zu 6A. Dadurch sinkt die Spannungsänderung an den Kondensatoren und auch die Strombelastung der Zwischenkreiskondensatoren IC RMS reduziert sich. Dies führt dazu, dass sich der Kapazitätsbedarf im Zwischenkreis für den erfindungsgemäßen Betrieb an einem Split-Phase Netz verringert, wodurch Kosten und Bauraum gespart werden können. ln der beispielhaften Berechnung bezogen auf die zuvor genannten Werte kann eine Reduktion von 36% bezogen auf ΔUZK1/2 , d.h. 36% geringerer Kapazitätsbedarf am US-Split-Phase Netz, erzielt werden und auch die Strombelastung IC,RMS kann um 32% reduziert werden.
Bei einer Verpolung von Leiter (L1 oder L2 oder L3) und Neutralleiter (N) im europäischen 400/230V- Netz und der dann (unbeabsichtigt) realisierten Verbindung vom Leiter mit dem Mittelpunktpotential
Figure imgf000011_0001
kann der resultierende Ableitstrom zwar nur für UBatt > 650V = vollständig kompensiert werden, jedoch ist dies bei einer zu erwartenden Erhöhung der Batterienennspannung auf 800V weitgehend erfüllt.
In diesem Zusammenhang ist zudem darauf hinzuweisen, dass auch eine nicht-vollständige, sondern teilweise Kompensation der niederfrequent schwingenden Batterieklemmenpotentiale eine lohnenswerte Maßnahme scheint. Gemäß /CM = CCM dVBatt ,n/dt werden die störenden Ableitströme für eine gegebene Kapazität CCM durch die zeitliche Änderungsrate (Steilheit dVBatt ,n /dt, bzw. dVBat,p/dt) der Batteriepotentiale bestimmt. Diese Änderungsrate ist für die typischen Sinus-förmigen, netzfrequenten Zeitverläufe der betrachteten Potentiale gerade im Nulldurchgang am größten. D.h., auch wenn bei sehr kleiner Batteriespannung VBatt die Potentiale VBatt,p bzw. nur um den Nulldurchgang des Mittelpunktpotentials VM herum kompensiert und konstant gehalten werden können, so ist der Effekt hinsichtlich der Verringerung des Ableitstroms genau an dieser Stelle am größten. Somit werden die verbleibenden Rest-Ableitströme auf jeden Fall einen nennenswert geringeren Effektivwert aufweisen. Diese Restströme können dann noch ggf. mit konventionellen, zusätzlichen Kompensationsstufen weiter verringert werden. Die Dynamik- und Leistungsanforderungen an letztgenannte sind damit reduziert.
Vorteil der erfindungsgemäßen Anordnung und Methode ist neben der Nutzung der inhärenten DC/DC-Stufen vor allem die Tatsache, dass das Mess- und Regelkonzept deutlich einfacher und robuster erscheint als das der komplexen und fehleranfälligen zusätzlichen Kompensationsschaltungen, wie sie konventionell entwickelt werden, zumal diese noch die genannten Ableitströme von sicherheitsrelevanten Fehlerströmen (diese dürfen nicht kompensiert werden) unterscheiden müssen. Der Wirkungsgrad der vorgeschlagenen Methode scheint auch keineswegs geringer als der der oben genannten konventionellen Kompensationsschaltungen. Ein weiterer Vorteil der Methode ist, dass je nach Netzform die geänderte Ansteuerung der DC/DC- Stufen auch zur Einsparung von Zwischenkreiskapazität, d.h. typisch von voluminösen Elektrolytkondensatoren, führen kann.
Die vorliegende Erfindung ermöglicht eine inhärente Kompensation niederfrequenter Ableitströme ohne zusätzlichen Kompensationsaufwand.
Damit wird auch der Betrieb eines transformatorlosen OBL am US-Split-Phase Netz ermöglicht. Weiterhin erlaubt die Erfindung auch den internationalen Einsatz von OBL an verschiedensten AC- Netzen.
Dier Erfindung basiert auf einer einfachen, robusten Regelung der inhärenten DC/DC-Stufen und kann durch Verringerung der Ableitströme auch das EMV-Verhalten eines transformatorlosen OBL deutlich verbessern. Zudem erlaubt die Erfindung die Einsparung von Kapazität im Zwischenkreis.
Die hier vorgestellte Erfindung kann dabei z.B. auch die mit den PFC-Topologien der deutschen Patentanmeldung DE 102020214265.3, verbleibende, niederfrequente Gleichtaktspannung an den Batterieklemmen (z.B. circa 150 Hz) kompensieren.
Vor allem kann die Erfindung auch die niederfrequente Gleichtaktspannung an den Batterieklemmen (z.B. circa 60 Hz), die sich beim Betrieb von anderen dreiphasigen PFC-Stufen (z.B. Six-Switch- Vollbrücke (B6) mit Zwischenkreismittelpunktanbindung oder Vienna-Rectifier mit Zwischenkreismittelpunktanbindung (ViennaM, siehe beispielsweise Internationale Patentveröffentlichung WO 2020 / 233 741 Al) am US-amerikanischen Split-Phase Netz ergibt, (d.h. dann wenn Leiter L1- an die n-Klemme des OBL gelegt wird), kompensieren.
Diese inhärente „Straight-Forward" Kompensation über die DC/DC-Stufen der Vorrichtung 1 kann durch eine relativ einfache und robuste Regelung derselben geschehen.
Konventionell wird dagegen an aktiven, dedizierten Kompensationsstufen gearbeitet, die niederfrequente Ableitströme erst messen, ggf. einen Fehlerstromanteil davon trennen müssen, um dann den regulären Ableitstromanteil durch gegensinnige Stromeinprägung (oder gegensinnige Gleichtaktspannungseinprägung) zu kompensieren versuchen (mit der dann möglichen Dynamik).
Die Erfindung betrifft insbesondere ein transformatorloses On-Board-Ladegerät für Elektrofahrzeuge zum ableitstromarmen Laden einer Antriebsbatterie BAT aufweisend eine erste DC/DC-Stufe und eine zweite DC/DC-Stufe, wobei die beiden DC/DC-Stufen auf der Zwischenkreisseite als Doppelstufe in Reihe geschaltet sind, d.h. beide Teilstufen, jeweils bestehend aus mind. 2 Schaltelementen (Transistor und Diode, bzw. Transistor und Transistor), mind. einer Drosselspule und mind. einem Ausgangskondensator, sind symmetrisch zum kapazitiven Mittelpunkt des Zwischenkreises angeordnet. Auf diese Weise ist je eine DC/DC-Stufe mit einem Teilzwischenkreis verbunden. Batterieseitig sind die beiden DC/DC-Stufe ebenfalls in Reihe geschaltet und mit dem gleichen kapazitiven Mittelpunkt der Zwischenkreisseite verbunden. Beide DC/DC-Stufen sind dazu eingerichtet im Betrieb durch zeitgleiches Schalten eine zeitvariable Ausgangsspannung zu generieren, wobei die (variable) Frequenz zwischen der Netzfrequenz und dem 3-fachen der Netzfrequenz beträgt. D.h. die Frequenz der zu generierenden Ausgangsspannung beträgt typischerweise zwischen der Netzfrequenz und der dreifachen Netzfrequenz. Die Batterie weist im Allg. nur zwei Anschlüsse auf und ist mit den beiden äußeren Anschlüssen der Ausgangskondensatoren der beiden DC/DC-Stufen verbunden.
In einer vorteilhaften Ausgestaltung sind beide der mind. 2 Schaltelemente der einzelnen DC/DC-Stufe als Transistoren ausgeführt. In diesem Fall kann jede DC/DC-Stufe Ströme in beide Richtungen (bidirektional) vom und zum Zwischenkreis führen, siehe beispielsweise Figur 2. ln einer vorteilhaften Ausgestaltung ist das äußere der mind. 2 Schaltelemente der einzelnen DC/DC- Stufe als Transistor und das innere der mind. 2 Schaltelemente als Diode ausgeführt. In diesem Fall kann jede DC/DC-Stufe nur Ströme vom Zwischenkreis zur Batterieseite führen (unidirektional), siehe beispielsweise Figur 3 und Figur 5.
In einer vorteilhaften Ausgestaltung sind die Transistorschaltelemente als GaN- (Gallium-Nitrid-) basierte Transistoren ausgeführt, siehe auch Figur 10.
In einer vorteilhaften Ausgestaltung sind die Transistorschaltelemente als SiC- (Silizium-Carbid-) basierte MOS Feldeffekt-Transistoren (MOSFET) ausgeführt, siehe auch Figur 10.
In einer vorteilhaften Ausgestaltung sind die Transistorschaltelemente als Si- (Silizium-) basierte MOS Feldeffekt-Transistoren (MOSFET) oder als SiC- (Siliziumkarbid-) basierte MOS Feldeffekt-Transistoren (MOSFET) oder als GaN- (Galliumnitrid-) basierte Flohe-Elektronen-Mobilitäts-Transistoren (FIEMT) oder als Si- (Silizium-) basierte Bipolartransistoren mit isoliertem Gate (IGBT) ausgeführt, siehe auch Figur 10.
In einer vorteilhaften Ausgestaltung generieren beide DC/DC-Stufen eine zeitvariable Ausgangsspannung, deren Frequenz typisch zwischen der Netzfrequenz und der dreifachen Netzfrequenz liegt, z.B. in der Größenordnung der Netzfrequenz (typisch 50 - 150 Flz).
In einer vorteilhaften Ausgestaltung stellt mindestens eine der beiden DC/DC-Stufen die Phasenlage ihrer zeitvariablen Ausgangsspannung so ein, dass sie sich in Gegenphase zum niederfrequent schwingenden Mittelpunktpotential (VM) befindet, wobei die (variable) Frequenz der zeitvariablen Ausgangsspannung zwischen der Netzfrequenz und dem 3-fachen der Netzfrequenz beträgt, z.B. in der Größenordnung der Netzfrequenz (typisch 50 - 150 Hz). D.h. eine der beiden DC/DC-Stufen stellt die Phasenlage ihrer zeitvariablen Ausgangsspannung so ein, dass sie sich in Gegenphase zum niederfrequent (typisch Netzfrequenz bis zur dreifachen Netzfrequenz) schwingenden Mittelpunktpotential (VM) befindet. ln einer vorteilhaften Ausgestaltung stellt mindestens eine der beiden DC/DC-Stufen die Amplitude ihrer zeitvariablen Ausgangsspannung so ein, dass sie der Amplitude des niederfrequent schwingenden Mittelpunktpotentials (VM) entspricht, und somit für ein konstantes Batterieklemmenpotential (VBatt,p und/oder VBatt,n) sorgt, wobei die (variable) Frequenz der zeitvariablen Ausgangsspannung zwischen der Netzfrequenz und dem 3-fachen der Netzfrequenz beträgt (typisch 50 - 150 Hz). D.h., eine der beiden DC/DC-Stufen stellt die Amplitude ihrer zeitvariablen Ausgangsspannung so ein, dass sie der Amplitude des niederfrequent (typisch Netzfrequenz bis zur dreifachen Netzfrequenz) schwingenden Mittelpunktpotentials (VM) entspricht, und somit für ein konstantes Batterieklemmenpotential (VBatt,p und/oder VBatt,n) sorgt.
In einer vorteilhaften Ausgestaltung sorgt eine Regeleinrichtung für die passende, zeitvariable Ausgangsspannung mindestens einer der DC/DC-Stufen und gewährleistet damit inhärent mindestens ein konstantes Batterieklemmenpotential (VBatt,p und/oder VBatt,n
In einer vorteilhaften Ausgestaltung ist eine Regeleinrichtung in Kaskadenstruktur aufgebaut und regelt im überlagerten Regelkreis das Batterieklemmenpotential VBatt,P und/oder VBatt,n auf einen konstanten Sollwert. Im unterlagerten Regelkreis wird der zeitvariable Drosselstrom der jeweiligen DC/DC-Stufe geregelt.
In einer vorteilhaften Ausgestaltung dienen für die Spannungsmessung des jeweiligen Batterieklemmenpotentials des überlagerten Regelkreises der Neutralleiter, bzw. die Schutzerde (PE), welche im Ladestecker bzw. in der fahrzeugseitigen Ladedose als Signalkontakte zur Verfügung stehen, als Bezugspotential.
Es sei angemerkt, dass in Figuren zwar eine Tiefsetzfunktion gezeigt ist. Gleichwohl ist die Erfindung nicht hierauf beschränkt. Vielmehr kann durch eine Anordnung von Schaltelementen nachfolgend zu den Drosseln auch eine Flochsetzfunktion bereitgestellt werden. Gemäß einem weiteren Aspekt der Erfindung - siehe Figur 8 - kann zwischen der Drosselspule und dem Ausgangskondensator der DC/DC-Stufen jeweils eine weitere Schalteinrichtung SA1, SB1, bzw. SA2, SB2 jeweils zum kapazitiven Mittelpunkt des Zwischenkreises und zum äußeren Anschluss des jeweiligen Ausgangskondensators vorgesehen sein. Dabei können SB1, SB2 als Dioden ausgeführt sein, falls ein unidirektionaler Stromfluss (vom Zwischenkreis zur Batterie) für den Ladebetrieb ausreichend ist. Soll das Ladegerät beispielsweise rückspeisefähig (Vehicle-to-Grid-, Vehicle-to-Load Anwendungen) ausgeführt sein, ist ein bidirektionaler Stromfluss erforderlich und SB1, SB2 sind als Transistoren auszuführen (so dargestellt in Figur 8).
Mittels der aufgezeigten zusätzlichen Schalteinrichtungen SA1, SB1, bzw. SA2, SB2 werden die bisherigen DC/DC-Stufen um eine Hochsetzfunktion ergänzt, sodass die gesamte DC/DC-Stufe nun eine tiefhochsetzende Funktion (Buck-Boost) hat, während die Ausführungsformen ohne diese zusätzlichen Schalteinrichtungen SA1, SB1, bzw. SA , S auf der rechten Seite der Drosselspulen im Wesentlichen nur eine tiefsetzende Funktion bereitstellen.
Die Hochsetzfunktion ist besonders vorteilhaft, wenn die Batteriespannungen hohe Werte annehmen, z.B. um UBatt = 800V. Die Zwischenkreisspannung UZK1/2 ist als Eingangsspannung der DC/DC-Stufen praktisch nach oben begrenzt, z.B. auf UZK1 + UZK2 = 450V + 450V = 900V. Herausfordernd ist nun der Betrieb am US-amerikanischen Split-Phase Netz, (d.h. dann, wenn US-Leiter LI- an die n-Klemme des OBL gelegt wird). Dann entspricht das Mittenpotential VM des OBL dem Potential des Leiters LI- und schwingt mit Netzfrequenz und der Amplitude VM,ampl= v2· 120V = 170V des Netzleiters.
Um das Batteriepotential VBatt,P auf hohem Niveau konstant halten zu können (z.B. auf +400V), müsste nach Figur 9 dann die erste DC/DC-Stufe im ungünstigsten Fall (im Netzscheitel) eine Ausgangsspannung von
Figure imgf000016_0001
generieren, wobei aber nur eine Eingangsspannung von UZK1 450V an der DC/DC-Stufe bereitsteht. Für die zweite DC/DC-Stufe gilt Analoges. Durch die hochsetzende Funktion der weiteren Schalteinrichtungen SA1, SB1, bzw. SA2, SB2 kann die gegenüber der Eingangsspannung erhöhte Ausgangsspannung je DC/DC-Stufe nun aber bereitgestellt werden. Mit der Hochsetzfunktion kann für das positive Batteriepotential nun gelten: VBatt,p > UZK1-VM,ampl. Analog gilt dies ebenso für das negative Batteriepotential: VBatt,n < - UZK2 + VM,ampl. Da sich die Batteriespannung allgemein zu UBatt = VBatt,p - VBatt,n ergibt, können die obigen Beziehungen auch durch die Batteriespannung ausgedrückt werden: UBatt, > 2 ( UZK1-VM,ampl ). Ohne die Hochsetzfunktion wäre die vollständige Kompensation der niederfrequenten common mode Spannungen (und Ströme, siehe unten) also nur für Batteriespannungen bis
Figure imgf000017_0001
2 (l/zki- VM,amPi) möglich.
Typische Netzfrequenzen betragen z.B. 162/3 Hz, 50 Hz, 60 Hz als auch im Bereich 200 Hz - 400 Hz.
In der Figur 11 ist ein beispielhafter Regelkreis gemäß Ausführungsformen der Erfindung dargestellt. Erfindungsgemäß werden dabei zwei unabhängige, jeweils kaskadierte Regelungskreise mit überlagerter Batteriepotential- und unterlagerter Drosselspulenstromregelung für die mindestens zwei DC/DC-Stufen bereitgestellt.
Die Regelgröße der überlagerten Potentialregler ist dabei das jeweilige Klemmenpotential der Antriebsbatterie VBatt,P (positives Potential, z.B. +200V), bzw. VBatt,n (negatives Potential, z.B. -200V), das jeweils gegen das Neutral-Pontential N (OV) des Versorgungsnetzes gemessen wird.
Es sei angemerkt, dass auch in der fahrzeugseitigen Ladedose für den US-Split-Phase Betrieb das Neutral-Potential N als Signalkontakt zur Verfügung stehen kann, welches von hochohmigen Spannungsmesskreisen als Referenzgröße zur Batterieklemmenpotentialmessung genutzt werden kann. (Ein Leistungsanschluss für das Neutral-Potential N steht dort jedoch nicht zur Verfügung.) Der Sollwert für die Potentialregler ist jeweils der halbierte Sollwert der Batteriespannung UBatt (vgl. auch
Fig.8).
Die Regelgröße der unterlagerten Stromregler ist der jeweilige Drosselstrom (iL4 bzw. iL5) der DC/DC- Stufen, der vorzeichenrichtig einzustellen ist und jeweils aus einer netzfrequenten Wechselkomponente zum Umladen der Ausgangskondensatoren (C3 bzw. C4, vgl. Fig.8), sowie einer weitgehend konstanten Batterieladestromkomponente besteht. Der Sollwert der Batterieladestromkomponente (iL4,BattCharge* bzw. iL5,BattCharge*) kann wahlweise (z.B. zur Dynamikerhöhung) auch durch eine Vorsteuermaßnahme am Eingang der Stromregler separat aufaddiert werden. Die unterlagerten Stromregler geben, ggf. nach geeigneter Begrenzungsmaßnahme, jeweils die Tastverhältnisse für die Transistoren der DC/DC-Stufen aus. Diese Tastverhältnisse werden beispielsweise durch Pulsbreitenmodulation (PWM) unter Berücksichtigung der spezifizierten Schaltfrequenz in die Schaltsignale für die jeweiligen Transistoren umgesetzt.
Abschließend sei angemerkt, dass die (weiteren) Schaltelemente gemäß der Erfindung unterschiedlich ausgestaltet sein können. Beispielhafte Ausführungsformen können der Figur 10 entnommen werden, ohne jedoch auf diese limitiert zu sein. Beispielhafte dargestellte Ausführungsformen sind z.B. ein (Silizium-) MOSFET oder ein (SiC-) MOSFET oder ein (GaN-) FIEMT oder ein (Silizium-) IGBT mit (SiC-) Diode. Es sei angemerkt, dass bei den ersten 3 Beispielen eine Diode jeweils intrinsisch mit dem Transistor verbunden ist.
Die Erfindung unterscheidet sich in allen Ausführungsformen vom Stand der Technik insbesondere durch ihre symmetrische DC/DC-Stufe in Bezug auf den Bezugspunkt M, die in einer Art und Weise gesteuert wird, dass die jeweiligen Batteriepotentiale VBatt,P und VBat,n (im Wesentlichen) konstant gehalten werden. D.h. es resultiert kein nennenswerter netzfrequenter common-mode Strom icm = CCM dVBatt,n /dt (siehe Figur 7c). Mit anderen Worten, niederfrequente common-mode Ströme bzw. Spannungen werden durch die DC/DC-Stufe bereits kompensiert, sodass auf weitere spezifische Kompensationseinrichtungen verzichtet werden kann.
Die Erfindung unterscheidet sich insbesondere auch dadurch vom Stand der Technik, dass für die Bereitstellung der Ladefunktion keine elektrische Verbindung zwischen dem Mittelpunkt der Batterien und dem Mittelpotential der DC/DC-Stufe benötigt wird.

Claims

Ansprüche
1. Transformatorloses On-Board-Ladegerät für Elektrofahrzeuge zum ableitstromarmen Laden einer Antriebsbatterie BAT aufweisend eine erste DC/DC-Stufe und eine zweite DC/DC-Stufe, wobei die beiden DC/DC-Stufen als Doppelstufe in Reihe geschaltet sind, wobei sowohl die erste DC/DC-Stufe als auch die zweite DC/DC-Stufe jeweils
• mindestens zwei Schaltelemente, insbesondere einen Transistor und eine Diode oder zwei Transistoren,
• mindestens eine Drosselspule, und
• mindestens einem Ausgangskondensator aufweist, wobei sowohl die erste DC/DC-Stufe als auch die zweite DC/DC-Stufe symmetrisch zu einem kapazitiven Mittelpunkt eines Zwischenkreises angeordnet sind, wobei jeweils eine DC/DC-Stufe mit einem Teilzwischenkreis verbunden ist, wobei batterieseitig die beiden DC/DC-Stufen in Reihe geschaltet sind und wobei die beiden DC/DC-Stufen dort mit dem gleichen kapazitiven Mittelpunkt der Zwischenkreisseite verbunden sind, wobei beide DC/DC- Stufen dazu eingerichtet sind, im Betrieb durch zeitgleiches Schalten jeweils eine zeitvariable Ausgangsspannung zu generieren, wobei deren Frequenz zwischen der Netzfrequenz und dem 3-fachen der Netzfrequenz beträgt.
2. Transformatorloses On-Board-Ladegerät nach Anspruch 1, wobei die mindestens zwei Schaltelemente der einzelnen DC/DC-Stufe als Transistoren ausgeführt sind.
3. Transformatorloses On-Board-Ladegerät nach Anspruch 1, wobei das äußere der mindestens zwei Schaltelemente der einzelnen DC/DC-Stufe als Transistor und das innere der mindestens zwei Schaltelemente als Diode ausgeführt ist.
4. Transformatorloses On-Board-Ladegerät nach einem der vorhergehenden Ansprüche, wobei die Schaltelemente GaN-basierte Transistoren oder SiC-basierte MOS Feldeffekt-Transistoren (MOSFET) oder Si-basierte MOS Feldeffekt-Transistoren (MOSFET) oder Si-basierte Bipolartransistoren mit isoliertem Gate (IGBT) aufweisen.
5. Transformatorloses On-Board-Ladegerät nach einem der vorhergehenden Ansprüche, wobei mindestens eine der beiden DC/DC-Stufen dazu eingerichtet ist, im Betrieb die Phasenlage ihrer zeitvariablen Ausgangsspannung so einzustellen, dass sie sich in Gegenphase zum niederfrequent schwingenden Mittelpunktpotential (1/M) befindet, wobei die Frequenz der zeitvariablen Ausgangsspannung zwischen der Netzfrequenz und dem 3-fachen der Netzfrequenz beträgt.
6. Transformatorloses On-Board-Ladegerät nach einem der vorhergehenden Ansprüche, wobei mindestens eine der beiden DC/DC-Stufen dazu eingerichtet ist, im Betrieb die Amplitude ihrer zeitvariablen Ausgangsspannung so einzustellen, dass sie der Amplitude des niederfrequent schwingenden Mittelpunktpotentials (VM) entspricht, und somit für ein konstantes Batterieklemmenpotential (VBatt,P und/oder VBatt,n) sorgt, wobei die Frequenz der zeitvariablen Ausgangsspannung zwischen der Netzfrequenz und dem 3-fachen der Netzfrequenz beträgt.
7. Transformatorloses On-Board-Ladegerät nach einem der vorhergehenden Ansprüche, wobei das Transformatorlose On-Board-Ladegerät weiterhin eine Regeleinrichtung aufweist, die dazu eingerichtet ist, im Betrieb für die passende, zeitvariable Ausgangsspannung mindestens einer der DC/DC-Stufen zu sorgen und damit inhärent mindestens ein konstantes Batterieklemmenpotential (VBatt,p und/oder VBatt,n) gewährleistet.
8. Transformatorloses On-Board-Ladegerät nach Anspruch 7, wobei die Regeleinrichtung in Kaskadenstruktur aufgebaut ist und dazu eingerichtet ist, im Betrieb im überlagerten Regelkreis das Batterieklemmenpotential VBatt,P und/oder VBatt,n auf einen konstanten Sollwert (vorzugsweise: VBatt,P=+UBatt/2, VBatt,n=-UBatt/2) zu regeln, während im unterlagerten Regelkreis der zeitvariable Drosselstrom der jeweiligen DC/DC-Stufe geregelt werden kann.
9. Transformatorloses On-Board-Ladegerät nach Anspruch 8, in der für die Spannungsmessung des jeweiligen Batterieklemmenpotentials des überlagerten Regelkreises der Neutralleiter, bzw. die Schutzerde (PE), welche im Ladestecker bzw. in der fahrzeugseitigen Anschluss- Schnittstelle als Signalkontakte zur Verfügung stehen, als Bezugspotential dienen.
10. Transformatorloses On-Board-Ladegerät nach einem der vorhergehenden Ansprüche, wobei die DC/DC-Stufen des transformatorlosen On-Board-Ladegeräts zumindest zwei Drosselspulen und batterieseitig zwei Kondensatoren aufweisen, wobei zwischen den Drosseln der DC/DC- Stufen und den batterieseitigen Kondensatoren jeweils ein weiteres Schaltelement (SA1, SA2) zum kapazitiven Mittelpunkt des Zwischenkreises vorgesehen ist.
11. Verfahren zur Ansteuerung einer DC/DC-Stufe in einem transformatorlosen On-Board- Ladegerät für Elektrofahrzeuge nach einem der vorhergehenden Ansprüche, wobei die Batterieklemmenpotentiale VBatt,P und VBatt,n auf einen konstanten Sollwert ± UBatt/2 geregelt werden, so dass die DC/DC-Ausgangsspannungen UDCDC ,out ,1 = UBatt — UDCDC ,out ,2, als auch die über eine Netzperiode variierende Leistungen der DC/DC-Teilstufen pDCDC,1 und pDCDC,2 zeitveränderlich sind.
PCT/EP2022/067070 2021-07-02 2022-06-22 Transformatorloses on-board-ladegerät für elektro-fahrzeuge und verfahren zur ansteuerung einer dc/dc-stufe in einem transformatorlosen on-board-ladegerät für elektrofahrzeuge WO2023274816A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22734614.5A EP4363263A1 (de) 2021-07-02 2022-06-22 Transformatorloses on-board-ladegerät für elektro-fahrzeuge und verfahren zur ansteuerung einer dc/dc-stufe in einem transformatorlosen on-board-ladegerät für elektrofahrzeuge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021206982.7A DE102021206982A1 (de) 2021-07-02 2021-07-02 Transformatorloses On-Board -Ladegerät für Elektrofahrzeuge und Verfahren zur Ansteuerung einer DC/DC-Stufe in einem transformatorlosen On-Board-Ladegerät für Elektrofahrzeuge
DE102021206982.7 2021-07-02

Publications (1)

Publication Number Publication Date
WO2023274816A1 true WO2023274816A1 (de) 2023-01-05

Family

ID=82270708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/067070 WO2023274816A1 (de) 2021-07-02 2022-06-22 Transformatorloses on-board-ladegerät für elektro-fahrzeuge und verfahren zur ansteuerung einer dc/dc-stufe in einem transformatorlosen on-board-ladegerät für elektrofahrzeuge

Country Status (3)

Country Link
EP (1) EP4363263A1 (de)
DE (1) DE102021206982A1 (de)
WO (1) WO2023274816A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116827148A (zh) * 2023-06-07 2023-09-29 广州工程技术职业学院 维也纳整流器优化调制方法、装置、终端及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020233741A1 (de) * 2019-05-23 2020-11-26 Universität Paderborn Vorrichtung und verfahren zur ladung eines elektrischen batteriefahrzeugs
US20210159784A1 (en) * 2018-07-06 2021-05-27 HELLA GmbH & Co. KGaA Device for coupling electrical grids

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3113345B1 (de) 2015-07-01 2022-02-23 ABB Schweiz AG Elektrischer wandler und steuerungsverfahren
EP3566283B1 (de) 2017-01-05 2023-03-01 General Electric Company Gleichstromschnellladestation für elektrofahrzeuge
US11639142B2 (en) 2019-01-11 2023-05-02 Ford Global Technologies, Llc Electronic control module wake monitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210159784A1 (en) * 2018-07-06 2021-05-27 HELLA GmbH & Co. KGaA Device for coupling electrical grids
WO2020233741A1 (de) * 2019-05-23 2020-11-26 Universität Paderborn Vorrichtung und verfahren zur ladung eines elektrischen batteriefahrzeugs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG YUE ET AL: "Development of a WBG-based Transformerless Electric Vehicle Charger with Semiconductor Isolation", 2018 IEEE 4TH SOUTHERN POWER ELECTRONICS CONFERENCE (SPEC), IEEE, 10 December 2018 (2018-12-10), pages 1 - 6, XP033515763, DOI: 10.1109/SPEC.2018.8636011 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116827148A (zh) * 2023-06-07 2023-09-29 广州工程技术职业学院 维也纳整流器优化调制方法、装置、终端及介质
CN116827148B (zh) * 2023-06-07 2023-12-05 广州工程技术职业学院 维也纳整流器优化调制方法、装置、终端及介质

Also Published As

Publication number Publication date
EP4363263A1 (de) 2024-05-08
DE102021206982A1 (de) 2023-01-05

Similar Documents

Publication Publication Date Title
DE112014002478B4 (de) Vorrichtung und Verfahren zum Laden einer Fahrzeugbatterie aus dem Stromnetz
EP2391522B1 (de) DC/DC-Wandler und AC/DC-WANDLER
WO2012113442A1 (de) Gleichspannungswandler und verfahren zum betreiben eines gleichspannungswandlers
DE102014103566A1 (de) Elektrisches antriebssystem
EP2623363B1 (de) Vorrichtung und Verfahren zum Laden einer Traktionsbatterie eines Elektrofahrzeugs
WO2020233741A1 (de) Vorrichtung und verfahren zur ladung eines elektrischen batteriefahrzeugs
DE102012216691A1 (de) Stromrichterschaltung und Verfahren zur Steuerung der Stromrichterschaltung
DE102017212462A1 (de) Galvanisch gekoppelter elektrischer Wandler
EP4363263A1 (de) Transformatorloses on-board-ladegerät für elektro-fahrzeuge und verfahren zur ansteuerung einer dc/dc-stufe in einem transformatorlosen on-board-ladegerät für elektrofahrzeuge
EP3602762B1 (de) Wechselrichter
WO2020064432A1 (de) Ladeschaltung für einen fahrzeugseitigen elektrischen energiespeicher
DE102013211121A1 (de) Wechselrichter
DE102017216468A1 (de) Aufladen eines elektrischen Energiespeichers eines Kraftfahrzeugs
CH704553A2 (de) Hybrider dreiphasiger AC/DC-Konverter und Verfahren zu dessen Steuerung.
DE102018221519B4 (de) Fahrzeugseitige Ladevorrichtung
DE102012206801A1 (de) Schaltung mit einer stromrichterschaltung und verfahren zur leistungsanpassung
DE102020122458B3 (de) Vorrichtung und Verfahren für den Betrieb eines Drei- oder Mehrpunktumrichters
EP2820752A2 (de) Semi-aktiver einspeiseumrichter mit blindleistungsvektorregelung
DE102013212229A1 (de) Spannungsumsetzer und Verfahren zum Betreiben eines Spannungsumsetzers
AT512409B1 (de) Ac/dc-spannungswandler und betriebsverfahren hierfür
EP3291433A1 (de) Gleichspannungswandler mit transformator
CH712011B1 (de) Konverter zur potentialgetrennten Übertragung elektrischer Energie.
WO2022207512A1 (de) Dc/dc-wandlervorrichtung für eine windkraftanlage, ein elektrisches antriebsystem, oder für ein industrielles dc-versorgungsnetz und betriebsverfahren
CH714079B1 (de) Verfahren und Konverter zur potentialfreien elektrischen Energieübertragung.
EP4308403A1 (de) Ladestation und verfahren zum betreiben einer ladestation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22734614

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022734614

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022734614

Country of ref document: EP

Effective date: 20240202