WO2023274041A1 - 一种变焦镜头、摄像头模组及移动终端 - Google Patents

一种变焦镜头、摄像头模组及移动终端 Download PDF

Info

Publication number
WO2023274041A1
WO2023274041A1 PCT/CN2022/100934 CN2022100934W WO2023274041A1 WO 2023274041 A1 WO2023274041 A1 WO 2023274041A1 CN 2022100934 W CN2022100934 W CN 2022100934W WO 2023274041 A1 WO2023274041 A1 WO 2023274041A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
zoom lens
lens group
zoom
light
Prior art date
Application number
PCT/CN2022/100934
Other languages
English (en)
French (fr)
Inventor
张凯元
肖流长
封荣凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22831855.6A priority Critical patent/EP4343402A1/en
Publication of WO2023274041A1 publication Critical patent/WO2023274041A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • G02B15/1421Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the present application relates to the technical field of photography, and in particular to a zoom lens, a camera module and a mobile terminal.
  • the camera as one of the important means of information acquisition, is widely used in portable devices such as mobile phones and tablets.
  • the camera needs to achieve high-quality shooting effects in different scenes at the same time.
  • the telephoto lens (the focal length becomes longer) can shoot distant objects, while providing high magnification, it also ensures good imaging quality.
  • the macro lens can show a strong ability in shooting close-range macro scenes, but the quality of the captured images in shooting long-distance scenes has always been poor.
  • small portable devices such as mobile phones and tablets need to have a large space for accommodating cameras.
  • the current small portable devices such as mobile phones and tablets are affected by the size, resulting in camera assembly
  • the space is relatively small, and the assembled lens cannot take into account both telephoto and macro.
  • the application provides a zoom lens, a camera module and a mobile terminal, which are used to improve the shooting effect of the mobile terminal.
  • a zoom lens in the first aspect, includes a first lens group and a second lens group arranged from the object side to the image side: the first lens group is fixed, and the second lens group can move along the light Axial sliding; wherein, the first lens group has positive refractive power; the second lens group has negative refractive power; wherein, the focal length EFLG1 of the first lens group is equal to the focal length EFLG2 of the second lens group
  • the ratio of is satisfied: 0.4 ⁇
  • the first lens group includes at least one lens, and the lens closest to the object side in the first lens group has positive refractive power. Ensure that the zoom lens has a good imaging effect.
  • the lens closest to the object side in the first lens group is a lens made of optical glass. Ensure that the zoom lens has a good imaging effect.
  • the first lens group includes a first lens and a second lens arranged from the object side to the image side; the second lens has negative refractive power. Ensure that the zoom lens has a good imaging effect.
  • the zoom lens when the zoom lens changes from the telephoto state to the macro state, the second lens group moves from the object side to the image side, and the second lens group
  • the ratio of the moving stroke ⁇ to the total optical length TTL of the zoom lens satisfies ⁇ /TTL ⁇ 0.4. Ensure that the zoom lens meets the needs of long-distance and macro shooting in a small size.
  • the moving stroke of the second lens group is ⁇ 4 mm. Ensuring miniaturization of the zoom lens.
  • the second lens group includes at least one lens; wherein, the surface of the lens closest to the object side in the second lens group facing the image side is a concave surface. Ensure that the zoom lens has a good imaging effect.
  • the aperture of the zoom lens satisfies 2.8>F#. To ensure that enough light can enter the zoom lens to ensure the imaging effect.
  • the second lens group moves to the object side, and the focusing distance ODt of the zoom lens satisfies: 1m ⁇ ODt ⁇ . Provides better telephoto effects.
  • the second lens group moves to the image side, and the focusing distance Odm of the zoom lens satisfies: 0.03m ⁇ Odm ⁇ 0.2m. Provide better macro shooting effect.
  • the macro vertical axis magnification of the zoom lens is 0.3 ⁇ 0.7.
  • a prism or a mirror is also included, wherein,
  • the prism or mirror is located on the object side of the first lens group
  • the prism or mirror is used to reflect light to the first lens group.
  • a zoom lens in a second aspect, includes a first lens group and a second lens group arranged from the object side to the image side: the second lens group is fixed, and the first lens group can be arranged along the optical axis.
  • Direction sliding wherein, the first lens group has positive refractive power; the second lens group has negative refractive power; wherein, the focal length EFLG1 of the first lens group is equal to the focal length EFLG2 of the second lens group
  • the ratio satisfies: 0.4 ⁇
  • the first lens group includes at least one lens, and the lens closest to the object side in the first lens group has positive refractive power. Ensure that the zoom lens has a good imaging effect.
  • the lens closest to the object side in the first lens group is a lens made of optical glass. Ensure that the zoom lens has a good imaging effect.
  • the first lens group includes a first lens and a second lens arranged from the object side to the image side; the second lens has negative refractive power. Ensure that the zoom lens has a good imaging effect.
  • the zoom lens when the zoom lens changes from the telephoto state to the macro state, the second lens group moves from the object side to the image side, and the second lens group
  • the ratio of the moving stroke ⁇ to the total optical length TTL of the zoom lens satisfies ⁇ /TTL ⁇ 0.4. Ensure that the zoom lens meets the needs of long-distance and macro shooting in a small size.
  • the moving stroke of the second lens group is ⁇ 4mm. Ensuring miniaturization of the zoom lens.
  • the second lens group includes at least one lens; wherein, the surface of the lens closest to the object side in the second lens group facing the image side is a concave surface. Ensure that the zoom lens has a good imaging effect.
  • the aperture of the zoom lens satisfies 2.8>F#. To ensure that enough light can enter the zoom lens to ensure the imaging effect.
  • the second lens group moves to the object side, and the focusing distance ODt of the zoom lens satisfies: 1m ⁇ ODt ⁇ . Provides better telephoto effects.
  • the second lens group moves to the image side, and the focusing distance Odm of the zoom lens satisfies: 0.03m ⁇ Odm ⁇ 0.2m. Provide better macro shooting effect.
  • the macro vertical axis magnification of the zoom lens is 0.3 ⁇ 0.7.
  • a camera module in a third aspect, includes a photosensitive element and the zoom lens described in any one of the above, and the photosensitive element is located on the image side of the zoom lens, wherein the zoom lens uses To receive the light reflected by the object to be photographed and project it to the photosensitive element, and the photosensitive element is used to convert the light into an image signal.
  • the zoom lens uses To receive the light reflected by the object to be photographed and project it to the photosensitive element, and the photosensitive element is used to convert the light into an image signal.
  • a mobile terminal includes a casing, and the zoom lens described in any one of the above-mentioned casings is arranged in the casing.
  • the mobile terminal includes a casing, and the zoom lens described in any one of the above-mentioned casings is arranged in the casing.
  • Fig. 1 is the application schematic diagram of zoom lens in the prior art
  • FIG. 2 is a schematic structural diagram of a zoom lens provided in an embodiment of the present application.
  • FIG. 3 is a zoom schematic diagram of a zoom lens provided in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a first zoom lens provided in an embodiment of the present application.
  • FIG. 5 is a spherical chromatic aberration diagram of the first zoom lens provided in the embodiment of the present application in a long-distance state;
  • FIG. 6 is an astigmatism diagram of the first zoom lens provided in the embodiment of the present application in a telephoto state
  • FIG. 7 is a distortion diagram of the first zoom lens provided in the embodiment of the present application in a long-distance state
  • FIG. 8 is a spherical chromatic aberration diagram of the first zoom lens provided in the embodiment of the present application in a macro state;
  • FIG. 9 is an astigmatism diagram of the first zoom lens provided in the embodiment of the present application in a macro state
  • FIG. 10 is a distortion diagram of the first zoom lens provided in the embodiment of the present application in a macro state
  • FIG. 11 is a schematic structural diagram of a second zoom lens provided in an embodiment of the present application.
  • FIG. 12 is a spherical chromatic aberration diagram of the second zoom lens provided in the embodiment of the present application in the long-distance state;
  • FIG. 13 is an astigmatism diagram of the second zoom lens provided in the embodiment of the present application in the telephoto state
  • FIG. 14 is a distortion diagram of the second zoom lens provided in the embodiment of the present application in a long-distance state
  • FIG. 15 is a spherical chromatic aberration diagram of the second zoom lens provided in the embodiment of the present application under the macro state;
  • FIG. 16 is an astigmatism diagram of the second zoom lens provided in the embodiment of the present application in a macro state
  • FIG. 17 is a distortion diagram of the second zoom lens provided in the embodiment of the present application in a macro state
  • FIG. 18 is a schematic structural diagram of a third zoom lens provided in an embodiment of the present application.
  • FIG. 19 is a spherical chromatic aberration diagram of the third zoom lens provided in the embodiment of the present application in the long-distance state;
  • FIG. 20 is an astigmatism diagram of the third zoom lens provided in the embodiment of the present application in the telephoto state
  • FIG. 21 is a distortion diagram of the third zoom lens provided in the embodiment of the present application in a long-distance state
  • Fig. 22 is a spherical chromatic aberration diagram of the third zoom lens in the macro state provided by the embodiment of the present application;
  • FIG. 23 is an astigmatism diagram of the third zoom lens provided in the embodiment of the present application in a macro state
  • FIG. 24 is a distortion diagram of the third zoom lens provided in the embodiment of the present application in a macro state
  • FIG. 25 is a schematic structural diagram of a fourth zoom lens provided by an embodiment of the present application.
  • Fig. 26 is a spherical chromatic aberration diagram of the fourth zoom lens provided in the embodiment of the present application under the telephoto state;
  • Fig. 27 is an astigmatism diagram of the fourth zoom lens provided in the embodiment of the present application under the telephoto state;
  • FIG. 28 is a distortion diagram of the fourth zoom lens provided in the embodiment of the present application in a long-distance state
  • Fig. 29 is a spherical chromatic aberration diagram of the fourth zoom lens provided in the embodiment of the present application in the macro state;
  • FIG. 30 is an astigmatism diagram of the fourth zoom lens provided in the embodiment of the present application in a macro state
  • FIG. 31 is a distortion diagram of the fourth zoom lens provided in the embodiment of the present application in a macro state
  • FIG. 32 is a schematic structural diagram of a fifth zoom lens provided by an embodiment of the present application.
  • Fig. 33 is a spherical chromatic aberration diagram of the fifth zoom lens provided in the embodiment of the present application under the telephoto state;
  • Fig. 34 is an astigmatism diagram of the fifth zoom lens provided in the embodiment of the present application in the telephoto state;
  • Fig. 35 is a distortion diagram of the fifth zoom lens provided in the embodiment of the present application in the telephoto state
  • Fig. 36 is a spherical chromatic aberration diagram of the fifth zoom lens provided in the embodiment of the present application in the macro state;
  • FIG. 37 is an astigmatism diagram of the fifth zoom lens provided in the embodiment of the present application under the macro state
  • FIG. 38 is a distortion diagram of the fifth zoom lens provided in the embodiment of the present application in a macro state
  • FIG. 39 shows a schematic structural diagram of a sixth zoom lens provided by an embodiment of the present application.
  • FIG. 40 shows a schematic diagram of an application scenario of a zoom lens provided in an embodiment of the present application in a mobile phone.
  • F# F-number F number/aperture
  • F# is the relative value obtained from the focal length of the lens/lens light diameter (the reciprocal of the relative aperture), the smaller the aperture F value, the more light entering in the same unit time.
  • EFL Effective Focal Length, effective focal length
  • Total Track Length refers to the distance from the first surface of the lens in the lens to the image surface, also known as the total optical length.
  • IH Image Height, the radius of the imaging circle, half image height
  • CCD Charge-couplerevice, charge-coupled device
  • CMOS Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Semiconductor
  • OD Object distance
  • the distance from the subject to the optical center of the lens can be approximated by the distance from the subject to the front surface of the first lens
  • Lens Group lens group, a lens combination composed of several relatively fixed lenses
  • the lens or lens group has a positive focal length and has the effect of focusing light
  • Negative power a lens or lens group that has a negative focal length and diverges light rays.
  • Focus distance the distance from the object to the vertex of the first lens of the lens
  • Object plane the plane where the imaged object is located
  • Image plane the plane on which the image of an object is located
  • Aperture an entity that constrains light in an optical system
  • Object side the side of the zoom lens close to the imaged object is the object side;
  • Image side the side of the image formed by the zoom lens close to the object is the image side
  • Movement stroke the distance that the moving lens group moves when the zoom lens changes from the telephoto state to the macro state.
  • the zoom lens provided by the embodiment of the present application is applied to the camera module of the mobile terminal, and the mobile terminal can be a mobile phone , tablet, monitoring, vehicle and other portable terminal equipment.
  • the zoom lens can be used to shoot and record images, and its shooting scenes include various complex and diverse shooting application scenes, such as indoor, outdoor, people, environment and other different scenes.
  • the lens 201 of the camera module 200 is fixed on the housing 100 of the mobile terminal, and the photosensitive element 202 is fixed in the housing 100.
  • the photosensitive element 202 converts the light signal into an electrical signal and forms an image to achieve the effect of taking pictures.
  • the camera module 200 in the prior art cannot take into account the two different shooting modes of telephoto and micro-focus, so this embodiment of the present application provides a zoom lens.
  • an embodiment of the present application provides a zoom lens, and the zoom lens includes a first lens group G1 and a second lens group G2 arranged from the object side to the image side.
  • a diaphragm 30 may also be provided in the zoom lens, and the diaphragm 30 is located on the side of the first lens group G1 close to the object side, so as to restrict the light incident into the first lens group G1.
  • the first lens group G1 has 1-3 lenses, and the first lens group G1 has positive refractive power; the first lens of the first lens group G1 has positive refractive power.
  • the second lens group G2 has 1-2 lenses, and the second lens group G2 has negative refractive power.
  • the first lens group G1 and the second lens group G2 can slide relative to each other along the optical axis, and the zoom lens achieves focusing by moving the first lens group G1 or the second lens group G2 along the optical axis.
  • the second lens group G1 may be fixed and the first lens group G1 slides along the optical axis to achieve focusing, or the first lens group G1 may be fixed and the second lens group G2 slides along the optical axis to achieve focusing.
  • Figure 3 illustrates an example in which the second lens group G2 slides relative to the first lens group G1.
  • the second lens group G2 can move back and forth along the optical axis to realize the adjustment of the zoom lens. the focus.
  • the zoom lens has a telephoto state and a macro state.
  • the second lens group G2 When the zoom lens is in the telephoto state, the second lens group G2 is close to the object side, and at this time the zoom lens can shoot objects that are far away from the zoom lens.
  • the zoom lens When the zoom lens is in a macro state, the second lens group G2 is close to the image side, and at this time, the zoom lens can shoot objects that are closer to the zoom lens.
  • the focal length EFLG1 of the first lens group G1 and the focal length EFLG2 of the second lens group G2 meet the following conditions: the focal length EFLG1 of the first lens group is the same as the focal length of the second lens group
  • the ratio of EFLG2 satisfies: 0.4 ⁇
  • the second lens group G2 in the telephoto state, the second lens group G2 is close to the object side, and the focusing distance ODt of the zoom lens satisfies: 1m ⁇ ODt ⁇ ; in the macro state, the second lens group G2 is close to the image side, and the zoom lens
  • the focus distance Odm meets: 0.03m ⁇ Odm ⁇ 0.2m.
  • the first lens group G1 may include at least one lens; the first lens closest to the object side is made of optical glass, and the first lens has positive refractive power.
  • the first lens group G1 includes a first lens and a second lens arranged from the object side to the image side; the first lens has a positive refractive power, and the second lens has a negative refractive power.
  • the second lens group G2 includes at least one lens; wherein, the surface of the lens closest to the object side in the second lens group G2 facing the image side is a concave surface. It should be understood that the above-mentioned lenses in the first lens group G1 and the second lens group G2 may be spherical or aspheric.
  • the second lens group G2 moves from the object side to the image side, and the ratio of the moving distance ⁇ of the second lens group to the total optical length TTL of the zoom lens satisfies ⁇ /TTL ⁇ 0.4.
  • the movement stroke ⁇ of the second lens group is ⁇ 4 mm, for example, the movement stroke ⁇ is different distances such as 1 mm, 2 mm, 3 mm, and 4 mm.
  • the aperture of the zoom lens provided in the embodiment of the present application satisfies 2.8>F#. To ensure that enough light can enter the zoom lens to ensure the imaging effect.
  • the macro vertical axis magnification of the zoom lens is 0.3 ⁇ 0.7.
  • FIG. 4 shows a schematic structural diagram of a first type of zoom lens provided by an embodiment of the present application.
  • the zoom lens includes a first lens group G1 and a second lens group G2 arranged in sequence.
  • the first lens group G1 has two lenses, which are the first lens LG11 and the second lens LG12 from the object side to the image side;
  • the second lens group G2 has two lenses, and the third lens is from the object side to the image side.
  • Lens LG21, fourth lens LG22 This embodiment uses the second lens group G2 to focus along the direction of the optical axis, and is suitable for macro and long-distance shooting scenes of optical lenses.
  • the zoom lens may also include a filter 10 .
  • the second lens group G2 is followed by a filter for correcting color deviation or a flat glass L1 for protecting the imaging photosensitive element, and the imaging sensor 20 is located at the image plane,
  • the imaging sensor 20 can be a CCD or a CMOS.
  • the first lens group G1 has a positive refractive power
  • the second lens group G2 has a negative refractive power.
  • the focal length EFLG1 of the first lens group G1 8.15 mm
  • the focal length EFLG2 of the second lens group G2 ⁇ 12.45 mm.
  • the ratio of the focal length EFLG1 of the first lens group G1 to the focal length EFLG2 of the second lens group G2 is
  • 0.65
  • the ratio of the focal length EFL of the second lens G2 to the focal length EFLG1 of the zoom lens is
  • 0.86.
  • the first lens group G1 includes two lenses, respectively a first lens LG11 and a second lens LG12, wherein the first lens LG11 has a positive refractive power, and the second lens LG12 has a negative refractive power.
  • the material of the first lens LG11 is optical glass, specifically an optical glass convex lens; the second lens LG12 is optical glass or optical plastic.
  • the second lens group G2 includes two lenses, which are respectively the third lens LG21 and the fourth lens LG22, wherein the third lens LG21 and the fourth lens LG22 can have positive or negative refractive powers, which are not mentioned here. Be specific.
  • the material of the third lens LG21 and the fourth lens LG22 may be optical glass or optical plastic, which is not specifically limited in this application.
  • the vertical axis magnification ⁇ 0.3.
  • LG11S1 refers to the side of the first lens LG11 facing the object side
  • LG11S2 refers to the side of the first lens LG11 facing the image side
  • LG12S1 refers to the side of the second lens LG12 facing the object side
  • LG12S2 refers to the side of the second lens LG12 facing the image side
  • LG21S1 refers to the side of the third lens LG21 facing the object side
  • LG21S2 refers to the side of the third lens LG21 facing the image side
  • LG22S1 refers to the side of the fourth lens LG22 facing the object side
  • One side LG22S2 refers to the side of the fourth lens LG22 facing the image side.
  • Table 1a shows aspheric coefficients of various aspheric lenses; wherein, A4 to A30 are aspheric coefficients.
  • all aspherical surface types can be defined by but not limited to the following aspheric surface formulas:
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the curvature of the vertex of the aspheric surface
  • K is the constant of the quadric surface
  • A2, A4, ..., A30 are the coefficients of the aspheric surface.
  • Table 1b is the basic parameters of the zoom lens in the long-distance state, where R is the radius of curvature, Th is the surface thickness, Nd is the material refractive index, Vd is the Abbe number of the material, and SA (Semi-Aperture) is Radial aperture, Conic is the conic coefficient, inf means infinity, Object is the object plane, Stop is the aperture 30, Sphere is the spherical surface, Asphere is the aspheric surface, and Image is the image plane.
  • L1S1 means the surface of the plate glass L1 facing the object side
  • L1S2 means the surface of the plate glass L1 facing the image side.
  • Table 1c shows the basic parameters of the zoom lens in the macro state, where R is the radius of curvature, Th is the surface thickness, Nd is the refractive index of the material, Vd is the Abbe number of the material, SA (Semi-Aperture ) is the radial aperture, Conic is the cone factor, and inf means infinity.
  • R is the radius of curvature
  • Th is the surface thickness
  • Nd is the refractive index of the material
  • Vd is the Abbe number of the material
  • SA Semi-Aperture
  • Conic cone factor
  • inf means infinity.
  • Table 1d is the parameters of the zoom lens.
  • the macro magnification ⁇ is the vertical axis magnification of the zoom lens in the macro state
  • infinity F# is the aperture number of the zoom lens in the long-distance state
  • EFLG1 is the focal length of the first lens group G1
  • EFLG2 is the second lens
  • infinity EFL is the focal length of the zoom lens in the telephoto state
  • ⁇ /TTL is the ratio of the zoom stroke to the optical length.
  • the zoom lens shown in FIG. 4 is used as an example for simulation.
  • the specific parameters of the zoom lens can refer to Table 1a, Table 1b, Table 1c, and Table 1d.
  • Table 1a Table 1a, Table 1b, Table 1c, and Table 1d.
  • FIG. 5 shows a diagram of spherical aberration of the zoom lens in a telephoto state.
  • the simulation is carried out by taking light of different frequencies as an example, and several common frequencies of light in imaging are illustrated in Fig. 5 .
  • the five solid curves in FIG. 5 are light rays with wavelengths of 650nm, 587nm, 546nm, 486nm and 435nm respectively.
  • FIG. 5 shows a diagram of spherical aberration of the zoom lens in a telephoto state.
  • the simulation is carried out by taking light of different frequencies as an example, and several common frequencies of light in imaging are illustrated in Fig. 5 .
  • the five solid curves in FIG. 5 are light rays with wavelengths of 650nm, 587nm, 546nm, 486nm and 435nm respectively.
  • FIG. 5 shows a diagram of spherical aberration of the zoom lens in a telephoto state.
  • A represents light with a wavelength of 650nm
  • B represents light with a wavelength of 587nm
  • C represents light with a wavelength of 546nm
  • E represents light with a wavelength of 435nm.
  • FIG. 6 shows an astigmatism diagram of the zoom lens in a telephoto state.
  • the solid line in the astigmatism diagram represents the field curvature value of light at the central wavelength (555nm) on the meridional image plane, and the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • FIG. 7 shows a distortion diagram of the zoom lens in a telephoto state.
  • the solid line in the distortion graph represents the distortion value of the central wavelength (555nm) light passing through the zoom lens. It can be seen from FIG. 7 that the distortion of the light is small, less than 2% of the image distortion threshold that can be perceived by human eyes.
  • FIG. 8 shows a diagram of spherical aberration of the zoom lens in a macro state.
  • the simulation is carried out by taking light of different frequencies as an example, and several common frequencies of light in imaging are illustrated in FIG. 8 .
  • the five solid curves in FIG. 8 are light rays with wavelengths of 650nm, 587nm, 546nm, 486nm and 435nm respectively.
  • A represents light with a wavelength of 650nm
  • B represents light with a wavelength of 587nm
  • C represents light with a wavelength of 546nm
  • E represents light with a wavelength of 435nm.
  • FIG. 9 shows an astigmatism diagram of the zoom lens in a macro state.
  • the solid line in the astigmatism diagram represents the field curvature value of light at the central wavelength (555nm) on the meridional image plane, and the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • FIG. 10 shows a distortion diagram of the zoom lens in a macro state.
  • the solid line in the distortion graph represents the distortion value of the central wavelength (555nm) light passing through the zoom lens. It can be seen from FIG. 10 that the distortion of the light is small, less than 2% of the image distortion threshold that can be perceived by human eyes.
  • FIG. 11 shows a schematic structural diagram of a second zoom lens provided by an embodiment of the present application.
  • the zoom lens includes a first lens group G1 and a second lens group G2 arranged in sequence.
  • the first lens group G1 has one lens; the second lens group G2 has two lenses.
  • This embodiment uses the second lens group G2 to focus along the direction of the optical axis, and is suitable for macro and long-distance shooting scenes of optical lenses.
  • a diaphragm 30 may also be provided in the zoom lens, and the diaphragm 30 is located on the side of the first lens group close to the object side, so as to restrict the light incident into the first lens group G1.
  • the zoom lens may also include a filter 10 .
  • the second lens group G2 is followed by a filter 10 for correcting color deviation or a flat glass L1 for protecting the imaging photosensitive element, and the imaging sensor 20 is located at the image plane , the imaging sensor 20 may be a CCD or a CMOS.
  • the first lens group G1 has a positive refractive power
  • the second lens group G2 has a negative refractive power.
  • the focal length EFLG1 of the first lens group G1 5.80 mm
  • the focal length EFLG2 of the second lens group G2 ⁇ 4.75 mm.
  • the ratio of the focal length EFLG1 of the first lens group G1 to the focal length EFLG2 of the second lens group G2 is
  • 1.22
  • the ratio of the focal length EFL of the second lens G2 to the focal length EFLG1 of the zoom lens is
  • 0.4.
  • the first lens group G1 includes a first lens LG11, and the first lens LG11 has positive refractive power.
  • the material of the first lens LG11 is optical glass, specifically an optical glass convex lens.
  • the second lens group G2 includes two lenses, namely a third lens LG21 and a fourth lens LG22, wherein the third lens LG21 and the fourth lens LG22 have negative refractive power.
  • the material of the third lens LG21 and the fourth lens LG22 can be optical glass or optical plastic.
  • the vertical axis magnification ⁇ 0.3.
  • LG11S1 refers to the side of the first lens LG11 facing the object side
  • LG11S2 refers to the side of the first lens LG11 facing the image side
  • LG21S1 refers to the side of the third lens LG21 facing the object side
  • LG21S2 refers to the side of the third lens LG21 facing the image side
  • LG22S1 refers to the side of the fourth lens LG22 facing the object side
  • LG22S2 refers to the side of the fourth lens LG22 facing the image side.
  • Table 2a the aspheric coefficients of various aspheric lenses are shown in Table 2a.
  • A4 to A30 are aspheric coefficients.
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the curvature of the vertex of the aspheric surface
  • K is the constant of the quadric surface
  • A2, A4, ..., A30 are the coefficients of the aspheric surface.
  • Table 2b shows the basic parameters of the zoom lens in the telephoto state.
  • Table 2c shows the basic parameters of the zoom lens in the macro state.
  • Table 2d shows the parameters of the zoom lens.
  • the parameters of the corresponding zoom lens are shown in Table 2d.
  • the zoom lens shown in FIG. 11 is used as an example for simulation.
  • the specific parameters of the zoom lens can refer to Table 2a, Table 2b, Table 2c, and Table 2d.
  • Table 2a Table 2a, Table 2b, Table 2c, and Table 2d.
  • FIG. 12 shows a spherical aberration diagram of a zoom lens in a telephoto state.
  • the simulation is performed by taking light of different frequencies as an example, and several common frequencies of light in imaging are illustrated in FIG. 12 .
  • the five solid curves in FIG. 12 are light rays with wavelengths of 650nm, 587nm, 546nm, 486nm and 435nm respectively.
  • A represents light with a wavelength of 650nm
  • B represents light with a wavelength of 587nm
  • C represents light with a wavelength of 546nm
  • D represents light with a wavelength of 486m
  • E represents light with a wavelength of 435nm.
  • FIG. 13 shows an astigmatism diagram of the zoom lens in a telephoto state.
  • the solid line in the astigmatism diagram represents the field curvature value of light at the central wavelength (555nm) on the meridional image plane, and the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane. It can be seen from Figure 13 that there are sharply focused images throughout the field of view.
  • FIG. 14 shows a distortion diagram of a zoom lens in a telephoto state.
  • the solid line in the distortion graph represents the distortion value of the central wavelength (555nm) light passing through the zoom lens. It can be seen from FIG. 14 that the distortion of the light is small, less than 2% of the image distortion threshold that can be perceived by human eyes.
  • FIG. 15 shows a diagram of spherical aberration of the zoom lens in a macro state.
  • the simulation is carried out by taking light of different frequencies as an example, and several common frequencies of light in imaging are illustrated in Fig. 15 .
  • the five solid curves in FIG. 15 are light rays with wavelengths of 650nm, 587nm, 546nm, 486nm and 435nm respectively.
  • A represents light with a wavelength of 650nm
  • B represents light with a wavelength of 587nm
  • C represents light with a wavelength of 546nm
  • E represents light with a wavelength of 435nm.
  • FIG. 16 shows an astigmatism diagram of the zoom lens in a macro state.
  • the solid line in the astigmatism diagram represents the field curvature value of light at the central wavelength (555nm) on the meridional image plane, and the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • FIG. 17 shows a distortion diagram of a zoom lens in a macro state.
  • the solid line in the distortion graph represents the distortion value of the central wavelength (555nm) light passing through the zoom lens. It can be seen from FIG. 17 that the distortion of the light is small, less than 2% of the image distortion threshold that can be perceived by human eyes.
  • FIG. 18 shows a schematic structural diagram of a third zoom lens provided by an embodiment of the present application.
  • the zoom lens includes a first lens group G1 and a second lens group G2 arranged in sequence.
  • the first lens group G1 has two lenses; the second lens group G2 has one lens.
  • This embodiment uses the second lens group G2 to focus along the direction of the optical axis, and is suitable for macro and long-distance shooting scenes of optical lenses.
  • a diaphragm 30 may also be provided in the zoom lens, and the diaphragm 30 is located on the side of the first lens group close to the object side, so as to restrict the light incident into the first lens group G1.
  • the zoom lens may also include a filter 10 .
  • the second lens group G2 is followed by a filter 10 for correcting color deviation or a flat glass L1 for protecting the imaging photosensitive element, and the imaging sensor 20 is located at the image plane , the imaging sensor 20 may be a CCD or a CMOS.
  • the first lens group G1 has a positive refractive power
  • the second lens group G2 has a negative refractive power.
  • the focal length EFLG1 of the first lens group G1 10.27 mm
  • the focal length EFLG2 of the second lens group G2 ⁇ 16.4 mm.
  • the ratio of the focal length EFLG1 of the first lens group G1 to the focal length EFLG2 of the second lens group G2 is
  • 0.63
  • the ratio of the focal length EFL of the second lens G2 to the focal length EFLG1 of the zoom lens is
  • 0.99.
  • the first lens group G1 includes a first lens LG11 and a second lens LG12, the first lens LG11 has a positive refractive power; the second lens LG12 has a negative refractive power.
  • the material of the first lens LG11 is optical glass, specifically an optical glass convex lens.
  • the second lens group G2 includes a third lens LG21, and the third lens LG21 may have a positive refractive power or a negative refractive power, which is not specifically limited herein.
  • the material of the third lens LG21 may be optical glass or optical plastic, which is not specifically limited in this application.
  • the vertical axis magnification ⁇ 0.3.
  • LG11S1 refers to the side of the first lens LG11 facing the object side
  • LG11S2 refers to the side of the first lens LG11 facing the image side
  • LG12S1 refers to the side of the second lens LG12 facing the object side
  • LG12S2 refers to the side of the second lens LG12 facing the image side
  • LG21S1 refers to the side of the third lens LG21 facing the object side
  • LG21S2 refers to the side of the third lens LG21 facing the image side.
  • Table 3a the aspheric coefficients of various aspheric lenses are shown in Table 3a.
  • A4 to A30 are aspheric coefficients.
  • all aspherical surface types can be defined by but not limited to the following aspheric surface formulas:
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the curvature of the vertex of the aspheric surface
  • K is the quadratic surface constant
  • A2, A4, A6, A8, A10, A12 are the aspheric surface coefficients.
  • Table 3b shows the basic parameters of the zoom lens in the telephoto state.
  • Table 3c shows the basic parameters of the zoom lens in the macro state.
  • Table 3d shows the parameters of the zoom lens.
  • the parameters of the corresponding zoom lens are shown in Table 3d.
  • the zoom lens shown in FIG. 18 is used as an example for simulation.
  • the specific parameters of the zoom lens can refer to Table 3a, Table 3b, Table 3c and Table 3d.
  • the effect of the zoom lens in the simulation will be described in detail below in conjunction with the accompanying drawings.
  • FIG. 19 shows a spherical aberration diagram of a zoom lens in a telephoto state.
  • the simulation is performed by taking light of different frequencies as an example, and several common frequencies of light in imaging are illustrated in FIG. 19 .
  • the five solid curves in FIG. 19 are light rays with wavelengths of 650nm, 587nm, 546nm, 486nm and 435nm respectively.
  • A represents light with a wavelength of 650nm
  • B represents light with a wavelength of 587nm
  • C represents light with a wavelength of 546nm
  • E represents light with a wavelength of 435nm.
  • FIG. 20 shows an astigmatism diagram of a zoom lens in a telephoto state.
  • the solid line in the astigmatism diagram represents the field curvature value of light at the central wavelength (555nm) on the meridional image plane, and the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • 555nm central wavelength
  • dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • FIG. 21 shows a distortion diagram of a zoom lens in a telephoto state.
  • the solid line in the distortion graph represents the distortion value of the central wavelength (555nm) light passing through the zoom lens. It can be seen from FIG. 21 that the distortion of the light is small, less than 2% of the image distortion threshold that can be perceived by human eyes.
  • FIG. 22 shows a diagram of spherical aberration of the zoom lens in a macro state.
  • the simulation is carried out by taking light of different frequencies as an example, and several common frequencies of light in imaging are illustrated in Fig. 22 .
  • the five solid curves in FIG. 22 are light rays with wavelengths of 650nm, 587nm, 546nm, 486nm and 435nm respectively.
  • A represents light with a wavelength of 650nm
  • B represents light with a wavelength of 587nm
  • C represents light with a wavelength of 546nm
  • E represents light with a wavelength of 435nm.
  • FIG. 23 shows an astigmatism diagram of the zoom lens in a macro state.
  • the solid line in the astigmatism diagram represents the field curvature value of light at the central wavelength (555nm) on the meridional image plane, and the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • FIG. 24 shows a distortion diagram of a zoom lens in a macro state.
  • the solid line in the distortion graph represents the distortion value of the central wavelength (555nm) light passing through the zoom lens. It can be seen from FIG. 24 that the distortion of the light is small, less than 2% of the image distortion threshold that can be perceived by the human eye.
  • FIG. 25 shows a schematic structural diagram of a fourth zoom lens provided by an embodiment of the present application.
  • the zoom lens includes a first lens group G1 and a second lens group G2 arranged in sequence.
  • the first lens group G1 has three lenses; the second lens group G2 has two lenses.
  • This embodiment uses the second lens group G2 to focus along the direction of the optical axis, and is suitable for macro and long-distance shooting scenes of optical lenses.
  • a diaphragm 30 may also be provided in the zoom lens, and the diaphragm 30 is located on the side of the first lens group close to the object side, so as to restrict the light incident into the first lens group G1.
  • the zoom lens may also include a filter 10 .
  • the second lens group G2 is followed by a filter 10 for correcting color deviation or a flat glass L1 for protecting the imaging photosensitive element, and the imaging sensor 20 is located at the image plane , the imaging sensor 20 may be a CCD or a CMOS.
  • the first lens group G1 has a positive refractive power
  • the second lens group G2 has a negative refractive power.
  • the focal length EFLG1 of the first lens group G1 8.03 mm
  • the focal length EFLG2 of the second lens group G2 ⁇ 10.14 mm.
  • the ratio of the focal length EFLG1 of the first lens group G1 to the focal length EFLG2 of the second lens group G2 is
  • 0.79
  • the ratio of the focal length EFL of the second lens G2 to the focal length EFLG1 of the zoom lens is
  • 0.70.
  • the first lens group G1 includes a first lens LG11 , a second lens LG12 and a third lens LG13 .
  • the first lens LG11 has positive refractive power
  • the second lens LG12 has negative refractive power
  • the third lens LG13 has positive refractive power.
  • the material of the first lens LG11 is optical glass, specifically an optical glass convex lens.
  • the second lens group G2 includes a fourth lens LG21 and a fifth lens LG22.
  • the fourth lens LG21 has a negative refractive power
  • the fifth lens LG22 can have a positive or negative refractive power, which is not specifically limited here.
  • the material of the fourth lens LG21 and the fifth lens LG22 may be optical glass or optical plastic, which is not specifically limited in this application.
  • the vertical axis magnification ⁇ 0.3.
  • LG11S1 refers to the side of the first lens LG11 facing the object side
  • LG11S2 refers to the side of the first lens LG11 facing the image side
  • LG12S1 refers to the side of the second lens LG12 facing the object side
  • LG12S2 refers to the side of the second lens LG12 facing the image side
  • LG13S1 refers to the side of the third lens LG13 facing the object side
  • LG13S2 refers to the side of the third lens LG13 facing the image side
  • LG21S1 refers to the side of the fourth lens LG21 facing the object side
  • LG21S2 refers to the side of the fourth lens LG21 facing the image side
  • LG22S1 refers to the side of the fifth lens LG22 facing the object side
  • LG22S2 refers to the side of the fifth lens LG22 facing the image side.
  • Table 4a the aspheric coefficients of various aspheric lenses are shown in Table 4a.
  • A4 to A30 are aspheric coefficients.
  • all aspherical surface types can be defined by but not limited to the following aspheric surface formulas:
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the spherical curvature of the vertex of the aspheric surface
  • K is the quadratic surface constant
  • A2, A4, A6, A8, ..., A28, A30 are the aspheric surface coefficients .
  • Table 4b shows the basic parameters of the zoom lens in the telephoto state.
  • Table 4c shows the basic parameters of the zoom lens in the macro state.
  • Table 4d shows the parameters of the zoom lens.
  • the parameters of the corresponding zoom lens are shown in Table 4d.
  • the zoom lens shown in FIG. 25 is used as an example for simulation.
  • the specific parameters of the zoom lens can refer to Table 4a, Table 4b, Table 4c, and Table 4d.
  • Table 4a Table 4a, Table 4b, Table 4c, and Table 4d.
  • FIG. 26 shows a spherical aberration diagram of a zoom lens in a telephoto state.
  • the simulation is carried out by taking light of different frequencies as an example, and several common frequencies of light in imaging are illustrated in FIG. 26 .
  • the five solid curves in FIG. 26 are light rays with wavelengths of 650nm, 587nm, 546nm, 486nm and 435nm respectively.
  • FIG. 26 shows a spherical aberration diagram of a zoom lens in a telephoto state.
  • the simulation is carried out by taking light of different frequencies as an example, and several common frequencies of light in imaging are illustrated in FIG. 26 .
  • the five solid curves in FIG. 26 are light rays with wavelengths of 650nm, 587nm, 546nm, 486nm and 435nm respectively.
  • FIG. 26 shows a spherical aberration diagram of a zoom lens in a telephoto state.
  • A represents light with a wavelength of 650nm
  • B represents light with a wavelength of 587nm
  • C represents light with a wavelength of 546nm
  • E represents light with a wavelength of 435nm.
  • FIG. 27 shows an astigmatism diagram of the zoom lens in the telephoto state.
  • the solid line in the astigmatism diagram represents the field curvature value of light at the central wavelength (555nm) on the meridional image plane, and the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • FIG. 28 shows a distortion diagram of the zoom lens in a telephoto state.
  • the solid line in the distortion graph represents the distortion value of the central wavelength (555nm) light passing through the zoom lens. It can be seen from FIG. 28 that the distortion of the light is small, less than 2% of the image distortion threshold that can be perceived by the human eye.
  • FIG. 29 shows a diagram of spherical aberration of the zoom lens in a macro state.
  • the simulation is carried out by taking light of different frequencies as an example, and several common frequencies of light in imaging are illustrated in FIG. 29 .
  • the five solid curves in FIG. 29 are light rays with wavelengths of 650nm, 587nm, 546nm, 486nm and 435nm respectively.
  • A represents light with a wavelength of 650nm
  • B represents light with a wavelength of 587nm
  • C represents light with a wavelength of 546nm
  • E represents light with a wavelength of 435nm.
  • FIG. 30 shows an astigmatism diagram of the zoom lens in a macro state.
  • the solid line in the astigmatism diagram represents the field curvature value of light at the central wavelength (555nm) on the meridional image plane, and the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • the solid line in FIG. 31 represents the distortion value of light with a central wavelength (555 nm) passing through the zoom lens. It can be seen from FIG. 31 that the light distortion is small, less than 2% of the image distortion threshold that can be perceived by human eyes.
  • FIG. 32 shows a schematic structural diagram of a fifth zoom lens provided by an embodiment of the present application.
  • the zoom lens includes a first lens group G1 and a second lens group G2 arranged in sequence.
  • the first lens group G1 has three lenses; the second lens group G2 has two lenses.
  • This embodiment uses the second lens group G2 to focus along the direction of the optical axis, and is suitable for macro and long-distance shooting scenes of optical lenses.
  • a diaphragm 30 may also be provided in the zoom lens, and the diaphragm 30 is located on the side of the first lens group close to the object side, so as to restrict the light incident into the first lens group G1.
  • the zoom lens may also include a filter 10 .
  • the second lens group G2 is followed by a filter 10 for correcting color deviation or a flat glass L1 for protecting the imaging photosensitive element, and the imaging sensor 20 is located at the image plane , the imaging sensor 20 may be a CCD or a CMOS.
  • the first lens group G1 has a positive refractive power
  • the second lens group G2 has a negative refractive power.
  • the focal length EFLG1 of the first lens group G1 8.03 mmmm
  • the focal length EFLG2 of the second lens group G2 ⁇ 10.14.
  • the ratio of the focal length EFLG1 of the first lens group G1 to the focal length EFLG2 of the second lens group G2 is
  • 0.79
  • the ratio of the focal length EFL of the second lens G2 to the focal length EFLG1 of the zoom lens is
  • 0.70.
  • the first lens group G1 includes a first lens LG11 , a second lens LG12 and a third lens LG13 .
  • the first lens LG11 has positive refractive power
  • the second lens LG12 has negative refractive power
  • the third lens LG13 has positive refractive power.
  • the material of the first lens LG11 is optical glass, specifically an optical glass convex lens.
  • the second lens group G2 includes a fourth lens LG21 and a fifth lens LG22.
  • the fourth lens LG21 has a negative refractive power
  • the fifth lens LG22 can have a positive or negative refractive power, which is not specifically limited here.
  • the material of the fourth lens LG21 and the fifth lens LG22 may be optical glass or optical plastic, which is not specifically limited in this application.
  • the vertical axis magnification ⁇ 0.3.
  • LG11S1 refers to the side of the first lens LG11 facing the object side
  • LG11S2 refers to the side of the first lens LG11 facing the image side
  • LG12S1 refers to the side of the second lens LG12 facing the object side
  • LG12S2 refers to the side of the second lens LG12 facing the image side
  • LG13S1 refers to the side of the third lens LG13 facing the object side
  • LG13S2 refers to the side of the third lens LG13 facing the image side
  • LG21S1 refers to the side of the fourth lens LG21 facing the object side
  • LG21S2 refers to the side of the fourth lens LG21 facing the image side
  • LG22S1 refers to the side of the fifth lens LG22 facing the object side
  • LG22S2 refers to the side of the fifth lens LG22 facing the image side.
  • Table 5a the aspheric coefficients of various aspheric lenses are shown in Table 5a.
  • A4 to A30 are aspheric coefficients.
  • all aspherical surface types can be defined by but not limited to the following aspheric surface formulas:
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the curvature of the vertex of the aspheric surface
  • K is the quadratic surface constant
  • A2, A4, A6, A8, A10, A12 are the aspheric surface coefficients.
  • Table 5b shows the basic parameters of the zoom lens in the telephoto state.
  • Table 5c shows the basic parameters of the zoom lens in the macro state.
  • Table 5d shows the parameters of the zoom lens.
  • the parameters of the corresponding zoom lens are shown in Table 5d.
  • the zoom lens shown in FIG. 32 is used as an example for simulation.
  • the specific parameters of the zoom lens can refer to Table 5a, Table 5b, Table 5c and Table 5d.
  • the effect of the zoom lens in the simulation will be described in detail below in conjunction with the accompanying drawings.
  • FIG. 33 shows a spherical aberration diagram of a zoom lens in a telephoto state.
  • the simulation is carried out by taking light of different frequencies as an example, and several common frequencies of light in imaging are illustrated in Fig. 33 .
  • the five solid curves in FIG. 33 are light rays with wavelengths of 650nm, 587nm, 546nm, 486nm and 435nm respectively.
  • FIG. 33 shows a spherical aberration diagram of a zoom lens in a telephoto state.
  • the simulation is carried out by taking light of different frequencies as an example, and several common frequencies of light in imaging are illustrated in Fig. 33 .
  • the five solid curves in FIG. 33 are light rays with wavelengths of 650nm, 587nm, 546nm, 486nm and 435nm respectively.
  • FIG. 33 shows a spherical aberration diagram of a zoom lens in a telephoto state.
  • A represents light with a wavelength of 650nm
  • B represents light with a wavelength of 587nm
  • C represents light with a wavelength of 546nm
  • E represents light with a wavelength of 435nm.
  • FIG. 34 shows an astigmatism diagram of a zoom lens in a telephoto state.
  • the solid line in the astigmatism diagram represents the field curvature value of light at the central wavelength (555nm) on the meridional image plane, and the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • FIG. 35 shows a distortion diagram of the zoom lens in the telephoto state.
  • the solid line in the distortion graph represents the distortion value of the central wavelength (555nm) light passing through the zoom lens. It can be seen from FIG. 35 that the light distortion is small, less than 2% of the image distortion threshold that can be perceived by human eyes.
  • FIG. 36 shows a diagram of spherical aberration of the zoom lens in a macro state.
  • the simulation is carried out by taking light of different frequencies as an example, and several common frequencies of light in imaging are illustrated in Fig. 36 .
  • the five solid curves in FIG. 36 are light rays with wavelengths of 650nm, 587nm, 546nm, 486nm and 435nm respectively.
  • A represents light with a wavelength of 650nm
  • B represents light with a wavelength of 587nm
  • C represents light with a wavelength of 546nm
  • E represents light with a wavelength of 435nm.
  • FIG. 37 shows an astigmatism diagram of the zoom lens in a macro state.
  • the solid line in the astigmatism diagram represents the field curvature value of light at the central wavelength (555nm) on the meridional image plane, and the dotted line represents the field curvature value of light at the central wavelength (555nm) on the sagittal image plane.
  • FIG. 37 there are sharply focused images throughout the entire field of view.
  • the solid line in FIG. 38 represents the distortion value of light with a central wavelength (555 nm) passing through the zoom lens. It can be seen from FIG. 31 that the light distortion is small, less than 2% of the image distortion threshold that can be perceived by human eyes.
  • FIG. 39 shows another zoom lens provided by the embodiment of the present application.
  • the zoom lens further includes a reflector 40.
  • the reflector 40 is located near the object side of the first lens group G1 and is used to reflect light to the first lens group G1. , so that periscope shooting can be realized, and the space for lens placement can be improved.
  • prisms can also be used. The prisms are arranged on the object side of the first lens group G1 and can also reflect light to the first lens group G1 to achieve the same effect.
  • the zoom lens provided by the embodiment of the present application can adopt the technical solution of combining the first lens group and the second lens group, and introduce the focusing method of the second lens group, which can be applied to long-distance and shooting scenes under macro distance, and meet the requirement of a compact optical system, and improve the shooting effect of the mobile terminal.
  • Figure 40 shows the application scenario of the zoom lens in the mobile phone.
  • the arrangement direction of the lens groups 301 in the zoom lens 300 can be parallel to the length direction of the mobile phone casing 400, and the lens group 301 is arranged between the mobile phone casing 400 and the middle frame 500, it should be understood
  • FIG. 40 only exemplifies the arrangement position and arrangement method of the lens group 301 , and the lens group 301 in FIG. 40 does not represent the actual number of lenses in the lens group 301 .
  • the zoom lens adopts the periscope type the impact on the thickness of the mobile phone can be reduced.
  • the embodiment of the present application also provides a camera module.
  • a camera module is provided.
  • the camera module includes a photosensitive element and the zoom lens described in any one of the above, and the photosensitive element is located on the image of the zoom lens.
  • the zoom lens is used to receive the light reflected by the object to be photographed and project it to the photosensitive element, and the photosensitive element is used to convert the light into an image signal.
  • the present application provides a mobile terminal, which may be a mobile phone, a tablet computer, a notebook, and the like.
  • the mobile terminal includes a casing, and any one of the above zoom lenses arranged in the casing.
  • the periscope zoom lens is arranged in the mobile phone.
  • the zoom lens shown in Figure 32 The zoom lens can be applied to shooting scenes under long-distance and macro-distance by adopting the technical scheme of combining two lens groups. Compared with the existing telephoto and macro-compatible The lens meets the miniaturization requirements, and achieves higher resolution and better aberration control.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种变焦镜头、摄像头模组及移动终端,变焦镜头包括沿物侧到像侧排列的第一透镜组(G1)和第二透镜组(G2):第一透镜组(G1)固定,第二透镜组(G2)可沿光轴方向滑动;其中,第一透镜组(G1)具有正光焦度;第二透镜组(G2)具有负光焦度;其中,第一透镜组(G1)的焦距EFLG1与第二透镜组(G2)的焦距EFLG2的比值满足:0.4<|EFLG1/EFLG2|<1.22;第二透镜组(G2)的焦距EFLG2与光学镜头的焦距EFL的比值满足:0.4<|EFLG2/EFL|<1。通过采用两个透镜组相结合,能够适用于远距和微距下的拍摄场景,相对于现有兼容远距和微距的镜头,实现小型化需求,并且达成较高分辨率,较佳的像差控制。

Description

一种变焦镜头、摄像头模组及移动终端
相关申请的交叉引用
本申请要求在2021年06月30日提交中国专利局、申请号为202110738449.8、申请名称为“一种变焦镜头、摄像头模组及移动终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到摄像技术领域,尤其涉及到一种变焦镜头、摄像头模组及移动终端。
背景技术
目前摄像头作为信息获取的重要手段之一,被广泛应用于手机、平板等便携式设备上。同时,随着人们对摄像头拍摄场景的要求越来越多元和复杂,摄像头需要同时在不同的场景下都完成高质量的拍摄效果。其中,在摄影镜头中,远距镜头(焦距变长)能够拍摄远距离物体,在提供高放大率的同时,也保证好的成像质量。然而,当用户使用远距镜头去拍摄近景微距的场景时,例如去拍摄食物、书本、玩偶及昆虫等场景时,目前商业化的远距摄像镜头的能力较差,无法满足用户的拍摄要求。与之相对应,微距镜头在拍摄近景微距场景中能够展现出极强的能力,但是在拍摄远距离场景中拍摄图像的质量一直很差。
为了实现拍摄较远距离和拍摄近景微距的效果,需要手机、平板等小型便携设备具有较大的容纳摄像头的空间,但是目前的手机、平板等小型便携设备,受到尺寸的影响,造成摄像头装配空间比较小,装配的镜头无法兼顾远距以及微距。
发明内容
本申请提供了一种变焦镜头、摄像头模组及移动终端,用以改善移动终端的拍摄效果。
第一方面,提供了一种变焦镜头,该变焦镜头包括沿物侧到像侧排列的第一透镜组和第二透镜组:所述第一透镜组固定,所述第二透镜组可沿光轴方向滑动;其中,所述第一透镜组具有正光焦度;所述第二透镜组具有负光焦度;其中,所述第一透镜组的焦距EFLG1与所述第二透镜组的焦距EFLG2的比值满足:0.4<|EFLG1/EFLG2|<1.22;所述第二透镜组的焦距EFLG2与所述光学镜头的焦距EFL的比值满足:0.4<|EFLG2/EFL|<1。在上述技术方案中,通过采用两个透镜组相结合的技术方案,能够适用于远距和微距下的拍摄场景,相对于现有兼容远距和微距的镜头,实现小型化需求,并且达成较高分辨率,较佳的像差控制。
在一个具体的可实施方案中,所述第一透镜组包括至少一个透镜,所述第一透镜组中最靠近所述物侧的透镜具有正光焦度。保证变焦镜头具有较好的成像效果。
在一个具体的可实施方案中,所述第一镜头组中最靠近所述物侧的透镜为光学玻璃制备而成的透镜。保证变焦镜头具有较好的成像效果。
在一个具体的可实施方案中,所述第一透镜组包括,沿物侧到像侧排列的第一透镜和第二透镜;所述第二透镜具有负光焦度。保证变焦镜头具有较好的成像效果。
在一个具体的可实施方案中,在所述变焦镜头由远距状态到微距状态过程中,所述第二透镜组由所述物侧向所述像侧方向移动,所述第二透镜组的移动行程△与所述变焦镜头的光学总长TTL的比满足△/TTL<0.4。保证变焦镜头在较小的尺寸下满足远距和微距的拍摄。
在一个具体的可实施方案中,所述第二透镜组的移动行程△<4mm。保证变焦镜头实现小型化。
在一个具体的可实施方案中,所述第二透镜组包含有至少一个透镜;其中,所述第二透镜组中最靠近所述物侧的透镜朝向所述像侧的表面为凹面。保证变焦镜头具有较好的成像效果。
在一个具体的可实施方案中,所述变焦镜头的光圈满足2.8>F#。以保证有足够的光线可进入到变焦镜头中,保证成像效果。
在一个具体的可实施方案中,在远距状态下,所述第二透镜组移动至所述物侧,所述变焦镜头的对焦距离ODt满足:1m<ODt<∞。提供较好的远距拍摄效果。
在一个具体的可实施方案中,在微距状态下,所述第二透镜组移动至所述像侧,所述变焦镜头的对焦距离Odm满足:0.03m<Odm<0.2m。提供较好的微距拍摄效果。
在一个具体的可实施方案中,所述变焦镜头的微距垂轴放大倍率为0.3<β<0.7。
在一个具体的可实施方案中,还包括棱镜或反射镜,其中,
所述棱镜或反射镜位于所述第一透镜组的物侧;
所述棱镜或反射镜用于将光线反射到所述第一透镜组。
第二方面,提供了一种变焦镜头,变焦镜头包括沿物侧到像侧排列的第一透镜组和第二透镜组:所述第二透镜组固定,所述第一透镜组可沿光轴方向滑动;其中,所述第一透镜组具有正光焦度;所述第二透镜组具有负光焦度;其中,所述第一透镜组的焦距EFLG1与所述第二透镜组的焦距EFLG2的比值满足:0.4<|EFLG1/EFLG2|<1.22;所述第二透镜组的焦距EFLG2与所述光学镜头的焦距EFL的比值满足:0.4<|EFLG2/EFL|<1。在上述技术方案中,通过采用两个透镜组相结合的技术方案,能够适用于远距和微距下的拍摄场景,相对于现有兼容远距和微距的镜头,实现小型化需求,并且达成较高分辨率,较佳的像差控制。
在一个具体的可实施方案中,所述第一透镜组包括至少一个透镜,所述第一透镜组中最靠近所述物侧的透镜具有正光焦度。保证变焦镜头具有较好的成像效果。
在一个具体的可实施方案中,所述第一镜头组中最靠近所述物侧的透镜为光学玻璃制备而成的透镜。保证变焦镜头具有较好的成像效果。
在一个具体的可实施方案中,所述第一透镜组包括,沿物侧到像侧排列的第一透镜和第二透镜;所述第二透镜具有负光焦度。保证变焦镜头具有较好的成像效果。
在一个具体的可实施方案中,在所述变焦镜头由远距状态到微距状态过程中,所述第二透镜组由所述物侧向所述像侧方向移动,所述第二透镜组的移动行程△与所述变焦镜头的光学总长TTL的比满足△/TTL<0.4。保证变焦镜头在较小的尺寸下满足远距和微距的拍摄。
在一个具体的可实施方案中,所述第二透镜组的移动行程△<4mm。保证变焦镜头实现小型化。
在一个具体的可实施方案中,所述第二透镜组包含有至少一个透镜;其中,所述第二 透镜组中最靠近所述物侧的透镜朝向所述像侧的表面为凹面。保证变焦镜头具有较好的成像效果。
在一个具体的可实施方案中,所述变焦镜头的光圈满足2.8>F#。以保证有足够的光线可进入到变焦镜头中,保证成像效果。
在一个具体的可实施方案中,在远距状态下,所述第二透镜组移动至所述物侧,所述变焦镜头的对焦距离ODt满足:1m<ODt<∞。提供较好的远距拍摄效果。
在一个具体的可实施方案中,在微距状态下,所述第二透镜组移动至所述像侧,所述变焦镜头的对焦距离Odm满足:0.03m<Odm<0.2m。提供较好的微距拍摄效果。
在一个具体的可实施方案中,所述变焦镜头的微距垂轴放大倍率为0.3<β<0.7。
第三方面,提供了一种摄像头模组,该摄像头模组包括感光元件和上述任一项所述的变焦镜头,所述感光元件位于所述变焦镜头的像侧,其中,所述变焦镜头用于接收被拍摄物体所反射的光线并投射至所述感光元件,所述感光元件用于将所述光线转化成图像信号。在上述技术方案中,通过采用两个透镜组相结合的技术方案,能够适用于远距和微距下的拍摄场景,相对于现有兼容远距和微距的镜头,实现小型化需求,并且达成较高分辨率,较佳的像差控制。
第四方面,提供了一种移动终端,该移动终端包括壳体,以及设置在所述壳体内的上述任一项所述的变焦镜头。在上述技术方案中,通过采用两个透镜组相结合的技术方案,能够适用于远距和微距下的拍摄场景,相对于现有兼容远距和微距的镜头,实现小型化需求,并且达成较高分辨率,较佳的像差控制。
附图说明
图1为现有技术中的变焦镜头的应用示意图;
图2为本申请实施例提供的变焦镜头的结构示意图;
图3为本申请实施例提供的变焦镜头的变焦示意图;
图4为本申请实施例提供的第一种变焦镜头的结构示意图;
图5为本申请实施例提供的第一种变焦镜头在远距状态下的球色差图;
图6为本申请实施例提供的第一种变焦镜头在远距状态下的像散图;
图7为本申请实施例提供的第一种变焦镜头在远距状态下的畸变图;
图8为本申请实施例提供的第一种变焦镜头在微距状态下的球色差图;
图9为本申请实施例提供的第一种变焦镜头在微距状态下的像散图;
图10为本申请实施例提供的第一种变焦镜头在微距状态下的畸变图;
图11为本申请实施例提供的第二种变焦镜头的结构示意图;
图12为本申请实施例提供的第二种变焦镜头在远距状态下的球色差图;
图13为本申请实施例提供的第二种变焦镜头在远距状态下的像散图;
图14为本申请实施例提供的第二种变焦镜头在远距状态下的畸变图;
图15为本申请实施例提供的第二种变焦镜头在微距状态下的球色差图;
图16为本申请实施例提供的第二种变焦镜头在微距状态下的像散图;
图17为本申请实施例提供的第二种变焦镜头在微距状态下的畸变图;
图18为本申请实施例提供的第三种变焦镜头的结构示意图;
图19为本申请实施例提供的第三种变焦镜头在远距状态下的球色差图;
图20为本申请实施例提供的第三种变焦镜头在远距状态下的像散图;
图21为本申请实施例提供的第三种变焦镜头在远距状态下的畸变图;
图22为本申请实施例提供的第三种变焦镜头在微距状态下的球色差图;
图23为本申请实施例提供的第三种变焦镜头在微距状态下的像散图;
图24为本申请实施例提供的第三种变焦镜头在微距状态下的畸变图;
图25为本申请实施例提供的第四种变焦镜头的结构示意图;
图26为本申请实施例提供的第四种变焦镜头在远距状态下的球色差图;
图27为本申请实施例提供的第四种变焦镜头在远距状态下的像散图;
图28为本申请实施例提供的第四种变焦镜头在远距状态下的畸变图;
图29为本申请实施例提供的第四种变焦镜头在微距状态下的球色差图;
图30为本申请实施例提供的第四种变焦镜头在微距状态下的像散图;
图31为本申请实施例提供的第四种变焦镜头在微距状态下的畸变图;
图32为本申请实施例提供的第五种变焦镜头的结构示意图;
图33为本申请实施例提供的第五种变焦镜头在远距状态下的球色差图;
图34为本申请实施例提供的第五种变焦镜头在远距状态下的像散图;
图35为本申请实施例提供的第五种变焦镜头在远距状态下的畸变图;
图36为本申请实施例提供的第五种变焦镜头在微距状态下的球色差图;
图37为本申请实施例提供的第五种变焦镜头在微距状态下的像散图;
图38为本申请实施例提供的第五种变焦镜头在微距状态下的畸变图;
图39示出了本申请实施例提供的第六种变焦镜头的结构示意图;
图40示出了本申请实施例提供的变焦镜头在手机的应用场景示意图。
具体实施方式
名词解释:
F#,F-number F数/光圈,是镜头的焦距/镜头通光直径得出的相对值(相对孔径的倒数),光圈F值愈小,在同一单位时间内的进光量便愈多。光圈F值越大,景深越小,拍照的背景内容将会虚化。类似远距镜头的效果;
β,Horizontal Magnification,垂轴放大倍率;
EFL,Effective Focal Length,有效焦距;
TTL,Total Track Length,是指由镜头中镜片的第一面到像面的距离,也称光学总长。
IH,Image Height,成像圆的半径,半像高;
CCD,Charge-couplerevice,电荷耦合器件;
CMOS,Complementary Metal Oxide Semiconductor,互补金属氧化物半导体;
OD,Objectistance物距,被摄物体到透镜光心的距离,可以用被摄物体到第一个透镜前表面的距离近似表示;
Lens Group,透镜组,几片相对固定不动的透镜组成的透镜组合;
正光焦度,透镜或透镜组有正的焦距、有聚光线的效果;
负光焦度,透镜或透镜组有负的焦距、将光线发散。
对焦距离:物体到镜头第一片透镜顶点的距离;
物面:被成像物体所在的平面;
像面:物体成的像所在的平面;
光阑:光学系统中对光线起约束作用的实体;
物侧:变焦镜头靠近被成像物体的一侧为物侧;
像侧:变焦镜头靠近物体所成的像的一侧为像侧;
移动行程;变焦镜头由远距状态到微距状态过程中,移动透镜组移动的距离。
为方便理解本申请实施例提供的变焦镜头,首先说明一下本申请实施例提供的变焦镜头的应用场景,本申请实施例提供的变焦镜头应用于移动终端的摄像头模组中,移动终端可为手机、平板、监控、车载等便携式终端设备。变焦镜头可用于拍摄及录制影像,其拍摄场景包括了各种复杂和多元的拍摄应用场景,例如室内、室外、人物、环境等不同的场景。以手机为例,如图1所示的手机剖视图,摄像头模组200的镜头201固定在移动终端的壳体100,感光元件202固定在壳体100内,在使用时,光线穿过镜头201照射到感光元件202,感光元件202将光信号转换成电信号并成像,实现拍照的效果。现有技术中的摄像头模组200无法兼顾远距和微焦两种不同的拍摄模式,为此本申请实施例提供了一种变焦镜头。
参考图2,本申请实施例提供了一种变焦镜头,变焦镜头包括沿物侧到像侧排列的第一透镜组G1和第二透镜组G2。另外,还可在变焦镜头内设置光阑30,光阑30位于第一透镜组G1靠近物侧的一侧,以约束射入到第一透镜组G1中的光线。
第一透镜组G1具有1~3个透镜,第一透镜组G1具有正光焦度;第一透镜组G1的第一透镜为正光焦度。第二透镜组G2具有1~2个透镜,第二透镜组G2为负光焦度。第一镜头组G1与第二镜头组G2可沿光轴相对滑动,变焦镜头通过第一透镜组G1或第二透镜组G2沿光轴方向移动实现对焦。示例性的,既可采用第二透镜组G1固定,第一透镜组G1沿光轴滑动实现对焦,也可采用第一透镜组G1固定,第二透镜组G2沿光轴滑动实现对焦。如图3所示,图3中示例出了第二透镜组G2相对第一透镜组G1滑动的示例,在调焦时,可通过第二透镜组G2沿光轴往返运动,以实现对变焦镜头的调焦。
为实现不同的拍摄场景,变焦镜头具有远距状态和微距状态。变焦镜头处于远距状态时,第二透镜组G2靠近物侧,此时变焦镜头可拍摄距离变焦镜头较远的物体。变焦镜头处于微距状态时,第二透镜组G2靠近像侧,此时变焦镜头可拍摄距离变焦镜头较近的物体。
在设置第一透镜组G1和第二透镜组G2时,第一透镜组G1的焦距EFLG1和第二透镜组G2的焦距EFLG2满足以下条件:第一透镜组的焦距EFLG1与第二透镜组的焦距EFLG2的比值满足:0.4<|EFLG1/EFLG2|<1.22;第二透镜组的焦距EFLG2与光学镜头的焦距EFL的比值满足:0.4<|EFLG2/EFL|<1。从而使得变焦镜头可满足远距和微距等不同的拍摄场景。示例性的,在远距状态下,第二透镜组G2靠近物侧,变焦镜头的对焦距离ODt满足:1m<ODt<∞;在微距状态下,第二透镜组G2靠近像侧,变焦镜头的对焦距离Odm满足:0.03m<Odm<0.2m。
在具体设置第一透镜组G1时,第一透镜组G1可包括至少一个透镜;最靠近物侧的第一透镜采用光学玻璃,且第一透镜具有正光焦度。示例性的,第一透镜组G1包括沿物侧到像侧排列的第一透镜和第二透镜;第一透镜具有正光焦度,第二透镜具有负光焦度。在设置第二透镜组G2时,第二透镜组G2包含有至少一个透镜;其中,第二透镜组G2中最靠近物侧的透镜朝向像侧的表面为凹面。应理解,上述第一透镜组G1和第二透镜组G2 中的透镜可使用球面面型或者非球面面型。
在变焦镜头由远距状态到微距状态过程中,第二透镜组G2由物侧向像侧方向移动,第二透镜组的移动行程△与变焦镜头的光学总长TTL的比满足△/TTL<0.4。示例性的,第二透镜组的移动行程△<4mm,如移动行程△为1mm、2mm、3mm、4mm等不同的距离。
另外,本申请实施例提供的变焦镜头的光圈满足2.8>F#。以保证有足够的光线可进入到变焦镜头中,保证成像效果。变焦镜头的微距垂轴放大倍率为0.3<β<0.7。
参考图4,图4示出了本申请实施例提供的第一种变焦镜头的结构示意图。从左到右为物侧到像侧,变焦镜头包括依次排列的第一透镜组G1,第二透镜组G2。其中,第一透镜组G1有二个透镜,从物侧到像侧依次为第一透镜LG11、第二透镜LG12;第二透镜组G2有两个透镜,从物侧到像侧依次为第三透镜LG21、第四透镜LG22。本实施例通过第二透镜组G2沿着光轴方向进行对焦,适用于光学镜头的在微距和远距下的拍摄场景。
作为一个可选的方案,该变焦镜头还可包含滤光片10。示例性的,从物侧到像侧方向,第二透镜组G2后为用于校正色彩偏差的滤光片或用于保护成像感光元件的平板玻璃L1,成像传感器20的位置位于像面处,该成像传感器20可以是CCD,也可以是CMOS。
本申请实施例提供的变焦镜头的第一透镜组G1具备正光焦度,第二透镜组G2具备负光焦度。示例性的,第一透镜组G1的焦距EFLG1=8.15mm,第二透镜组G2的焦距EFLG2=-12.45mm。第一透镜组G1的焦距EFLG1与第二透镜组G2的焦距EFLG2比值为|EFLG1/EFLG2|=0.65;第二透镜G2的焦距EFL与变焦镜头焦距EFLG1的比值|EFLG2/EFL|=0.86。
第一透镜组G1包含两个透镜,分别为第一透镜LG11和第二透镜LG12,其中,第一透镜LG11为正光焦度,第二透镜LG12为负光焦度。另外,第一透镜LG11的材料为光学玻璃,具体为光学玻璃凸透镜;第二透镜LG12为光学玻璃或光学塑料。第二透镜组G2包含有两个透镜,分别为第三透镜LG21和第四透镜LG22,其中,第三透镜LG21和第四透镜LG22可以为正光焦度也可为负光焦度,在此不做具体限定。第三透镜LG21和第四透镜LG22的材料可以为光学玻璃,也可为光学塑料,在本申请不做具体限定。
变焦镜头的焦距为14.45mm,光圈F#=3.42,光学长度TTL=14.94mm,像面高度的一半即半像高为IH=2.5mm。微距状态垂轴放大率β=0.3。
上述变焦镜头在远距状态到微距状态时,第二透镜组G2的移动行程△=2.4mm,移动行程△与光学总长的比值为△/TTL=0.16。为方便理解本申请实施例提供的变焦镜头,下面结合具体的表格,详细说明其各透镜以及变焦镜头的参数。
下面先说明后文表格中的标号含义:LG11S1是指第一透镜LG11朝向物侧的一面,LG11S2是指第一透镜LG11朝向像侧的一面;LG12S1是指第二透镜LG12朝向物侧的一面,LG12S2是指第二透镜LG12朝向像侧的一面;LG21S1是指第三透镜LG21朝向物侧的一面,LG21S2是指第三透镜LG21朝向像侧的一面;LG22S1是指第四透镜LG22朝向物侧的一面,LG22S2是指第四透镜LG22朝向像侧的一面。
首先参考表1a,表1a中示出了各个非球面透镜的非球面系数;其中,A4到A30为非球面系数。
表1a
Figure PCTCN2022100934-appb-000001
Figure PCTCN2022100934-appb-000002
在本实施例中,所有非球面面型可利用但不限于以下非球面公式进行限定:
Figure PCTCN2022100934-appb-000003
其中,z为非球面的矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数,A2、A4、…、A30为非球面系数。
参考表1b,表1b为变焦镜头在远距状态时的基本参数,其中,R为曲率半径,Th为面厚度,Nd为材料折射率,Vd为材料阿贝数,SA(Semi-Aperture)为径向孔径,Conic为圆锥系数,inf表示无穷大,Object为物面,Stop为光阑30,Sphere为球面,Asphere为非球面,Image为像面。L1S1是指平板玻璃L1朝向物侧的一面,L1S2是指平板玻璃L1朝向像侧的一面。后文表格中的相同英文可参考上述解释,不再赘述。
表1b
Figure PCTCN2022100934-appb-000004
参考表1c,表1c示出了变焦镜头在微距状态时的基本参数,其中,R为曲率半径,Th为面厚度,Nd为材料折射率,Vd为材料阿贝数,SA(Semi-Aperture)为径向孔径,Conic为圆锥系数,inf表示无穷大。后文表格中的相同英文可参考上述解释,不再赘述。
表1c
Figure PCTCN2022100934-appb-000005
参考表1d,表1d为变焦镜头的参数。在第一透镜组G1和第二透镜组G2中的透镜采用上述参数时,对应的变焦镜头的参数如表1d所示。其中,微距倍率β是变焦镜头在微距状态下的垂轴放大倍率;无穷远F#是变焦镜头在远距状态下的光圈数;EFLG1是第一 透镜组G1的焦距,EFLG2是第二透镜组G2的焦距;无穷远EFL是变焦镜头在远距状态下的焦距;Δ/TTL表示变焦行程与光学长度的比值。后文表格中的相同英文可参考上述解释,不再赘述。
表1d
微距倍率β 0.30
无穷远F# 3.42
EFLG1 8.15
EFLG2 -12.45
无穷远EFL 14.45
|EFLG1/EFLG2| 0.65
|EFLG2/EFL| 0.86
2.40
光学总长TTL 14.94
△/TTL 0.16
为方便理解本申请实施例提供的拍摄效果,以图4所示的变焦镜头为例进行仿真,变焦镜头的具体参数可参考表1a、表1b、表1c以及表1d。下面结合附图详细说明变焦镜头在仿真的效果。
首先参考图5,图5示出了变焦镜头在远距状态下的球色差图。为方便示例,以不同频率的光线为例进行仿真,在图5中示例出了成像时常见的几种频率的光线。示例性的,图5中的五条实线曲线分别为650nm、587nm、546nm、486nm、435nm波长的光线。为方便示例,在图5中分别以A代表波长为650nm的光,B代表波长为587nm的光,C代表波长为546nm的光,代表波长为486m的光,E代表波长为435nm的光。参考图5中所示的五条实线可看出,上述波长的光线的离焦量在一个很小的范围内,均位于-0.01~0.05mm之间,变焦镜头拍摄的图片可以避免出现颜色分离的问题,获取良好的拍摄效果。
参考图6,图6示出了变焦镜头在远距状态下的像散图。像散图中的实线表示中心波长(555nm)的光在子午像面的场曲值,虚线表示中心波长(555nm)的光在弧矢像面的场曲值。由图6可看出,整个视场范围都有聚焦清晰的图像。
参考图7,图7示出了变焦镜头在远距状态下的畸变图。畸变图中的实线表示中心波长(555nm)的光线经过变焦镜头的畸变值。由图7可看出,光线的畸变较小,小于人眼可以察觉的图像畸变阈值2%。
参考图8,图8示出了变焦镜头在微距状态下的球色差图。为方便示例,以不同频率的光线为例进行仿真,在图8中示例出了成像时常见的几种频率的光线。示例性的,图8中的五条实线曲线分别为650nm、587nm、546nm、486nm、435nm波长的光线。为方便示例,在图8中分别以A代表波长为650nm的光,B代表波长为587nm的光,C代表波长为546nm的光,代表波长为486m的光,E代表波长为435nm的光。参考图8中所示的五条实线可看出,上述波长的光线的离焦量在一个很小的范围内,均位于-0.03~0.08mm之间,变焦镜头拍摄的图片可以避免出现颜色分离的问题,获取良好的拍摄效果。
参考图9,图9示出了变焦镜头在微距状态下的像散图。像散图中的实线表示中心波长(555nm)的光在子午像面的场曲值,虚线表示中心波长(555nm)的光在弧矢像面的场曲值。由图9可看出,整个视场范围都有聚焦清晰的图像。
参考图10,图10示出了变焦镜头在微距状态下的畸变图。畸变图中的实线表示中心波长(555nm)的光线经过变焦镜头的畸变值。由图10可看出,光线的畸变较小,小于人眼可以察觉的图像畸变阈值2%。
参考图11,图11示出了本申请实施例提供的第二种变焦镜头的结构示意图。从左到右为物侧到像侧,变焦镜头包括依次排列的第一透镜组G1,第二透镜组G2。第一透镜组G1有一个透镜;第二透镜组G2有两个透镜。本实施例通过第二透镜组G2沿着光轴方向进行对焦,适用于光学镜头的在微距和远距下的拍摄场景。
作为一个可选的方案,该还可在变焦镜头内设置光阑30,光阑30位于第一透镜组靠近物侧的一侧,以约束射入到第一透镜组G1中的光线。
作为一个可选的方案,该变焦镜头还可包含滤光片10。示例性的,从物侧到像侧方向,第二透镜组G2后为用于校正色彩偏差的滤光片10或用于保护成像感光元件的平板玻璃L1,成像传感器20的位置位于像面处,该成像传感器20可以是CCD,也可以是CMOS。
本申请实施例提供的变焦镜头的第一透镜组G1具备正光焦度,第二透镜组G2具备负光焦度。示例性的,第一透镜组G1的焦距EFLG1=5.80mm,第二透镜组G2的焦距EFLG2=-4.75mm。第一透镜组G1的焦距EFLG1与第二透镜组G2的焦距EFLG2比值为|EFLG1/EFLG2|=1.22;第二透镜G2的焦距EFL与变焦镜头焦距EFLG1的比值|EFLG2/EFL|=0.4。
第一透镜组G1包含第一透镜LG11,第一透镜LG11为正光焦度。另外,第一透镜LG11的材料为光学玻璃,具体为光学玻璃凸透镜。第二透镜组G2包含有两个透镜,分别为第三透镜LG21和第四透镜LG22,其中,第三透镜LG21和第四透镜LG22为负光焦度。第三透镜LG21和第四透镜LG22的材料可以为光学玻璃,也可为光学塑料。
变焦镜头的焦距为12mm,光圈F#=3.11,光学长度TTL=13.41mm,像面高度的一半即半像高为IH=2.5mm。微距状态垂轴放大率β=0.3。
上述变焦镜头在远距状态到微距状态时,第二透镜组G2的移动行程△=1.31mm,移动行程△与光学总长的比值为△/TTL=0.1。为方便理解本申请实施例提供的变焦镜头,下面结合具体的表格,详细说明其各透镜以及变焦镜头的参数。
下面先说明后文表格中的标号含义:LG11S1是指第一透镜LG11朝向物侧的一面,LG11S2是指第一透镜LG11朝向像侧的一面;LG21S1是指第三透镜LG21朝向物侧的一面,LG21S2是指第三透镜LG21朝向像侧的一面;LG22S1是指第四透镜LG22朝向物侧的一面,LG22S2是指第四透镜LG22朝向像侧的一面。
首先参考表2a,表2a中示出了各个非球面透镜的非球面系数。其中,A4到A30为非球面系数。
表2a
Figure PCTCN2022100934-appb-000006
Figure PCTCN2022100934-appb-000007
表2a本实施例中,所有非球面面型可利用但不限于以下非球面公式进行限定:
Figure PCTCN2022100934-appb-000008
其中,z为非球面的矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数,A2、A4、…、A30为非球面系数。
参考表2b,表2b为变焦镜头在远距状态时的基本参数。
表2b
Figure PCTCN2022100934-appb-000009
Figure PCTCN2022100934-appb-000010
参考表2c,表2c示出了变焦镜头在微距状态时的基本参数。
表2c
Figure PCTCN2022100934-appb-000011
参考表2d,表2d为变焦镜头的参数,在第一透镜组G1和第二透镜组G2中的透镜采用上述参数时,对应的变焦镜头的参数如表2d所示。
表2d
微距倍率β 0.3
无穷远F# 3.42
EFLG1 5.80
EFLG2 -4.75
无穷远EFL 12.00
|EFLG1/EFLG2| 1.22
|EFLG2/EFL| 0.40
1.31
光学总长TTL 13.41
△/TTL 0.10
为方便理解本申请实施例提供的拍摄效果,以图11所示的变焦镜头为例进行仿真,变焦镜头的具体参数可参考表2a、表2b、表2c以及表2d。下面结合附图详细说明变焦镜头在仿真的效果。
首先参考图12,图12示出了变焦镜头在远距状态下的球色差图。为方便示例,以不同频率的光线为例进行仿真,在图12中示例出了成像时常见的几种频率的光线。示例性的,图12中的五条实线曲线分别为650nm、587nm、546nm、486nm、435nm波长的光线。为方便示例,在图12中分别以A代表波长为650nm的光,B代表波长为587nm的光,C 代表波长为546nm的光,D代表波长为486m的光,E代表波长为435nm的光。参考图12中所示的五条实线可看出,上述波长的光线的离焦量在一个很小的范围内,均位于-0.06~0.08mm之间,变焦镜头拍摄的图片可以避免出现颜色分离的问题,获取良好的拍摄效果。
参考图13,图13示出了变焦镜头在远距状态下的像散图。像散图中的实线表示中心波长(555nm)的光在子午像面的场曲值,虚线表示中心波长(555nm)的光在弧矢像面的场曲值。由图13可看出,整个视场范围都有聚焦清晰的图像。
参考图14,图14示出了变焦镜头在远距状态下的畸变图。畸变图中的实线表示中心波长(555nm)的光线经过变焦镜头的畸变值。由图14可看出,光线的畸变较小,小于人眼可以察觉的图像畸变阈值2%。
参考图15,图15示出了变焦镜头在微距状态下的球色差图。为方便示例,以不同频率的光线为例进行仿真,在图15中示例出了成像时常见的几种频率的光线。示例性的,图15中的五条实线曲线分别为650nm、587nm、546nm、486nm、435nm波长的光线。为方便示例,在图15中分别以A代表波长为650nm的光,B代表波长为587nm的光,C代表波长为546nm的光,代表波长为486m的光,E代表波长为435nm的光。参考图15中所示的五条实线可看出,上述波长的光线的离焦量在一个很小的范围内,均位于-0.02~0.1mm之间,变焦镜头拍摄的图片可以避免出现颜色分离的问题,获取良好的拍摄效果。
参考图16,图16示出了变焦镜头在微距状态下的像散图。像散图中的实线表示中心波长(555nm)的光在子午像面的场曲值,虚线表示中心波长(555nm)的光在弧矢像面的场曲值。由图16可看出,整个视场范围都有聚焦清晰的图像。
参考图17,图17示出了变焦镜头在微距状态下的畸变图。畸变图中的实线表示中心波长(555nm)的光线经过变焦镜头的畸变值。由图17可看出,光线的畸变较小,小于人眼可以察觉的图像畸变阈值2%。
参考图18,图18示出了本申请实施例提供的第三种变焦镜头的结构示意图。从左到右为物侧到像侧,变焦镜头包括依次排列的第一透镜组G1,第二透镜组G2。其中,第一透镜组G1有两个透镜;第二透镜组G2有一个透镜。本实施例通过第二透镜组G2沿着光轴方向进行对焦,适用于光学镜头的在微距和远距下的拍摄场景。
作为一个可选的方案,该还可在变焦镜头内设置光阑30,光阑30位于第一透镜组靠近物侧的一侧,以约束射入到第一透镜组G1中的光线。
作为一个可选的方案,该变焦镜头还可包含滤光片10。示例性的,从物侧到像侧方向,第二透镜组G2后为用于校正色彩偏差的滤光片10或用于保护成像感光元件的平板玻璃L1,成像传感器20的位置位于像面处,该成像传感器20可以是CCD,也可以是CMOS。
本申请实施例提供的变焦镜头的第一透镜组G1具备正光焦度,第二透镜组G2具备负光焦度。示例性的,第一透镜组G1的焦距EFLG1=10.27mm,第二透镜组G2的焦距EFLG2=-16.4mm。第一透镜组G1的焦距EFLG1与第二透镜组G2的焦距EFLG2比值为|EFLG1/EFLG2|=0.63;第二透镜G2的焦距EFL与变焦镜头焦距EFLG1的比值|EFLG2/EFL|=0.99。
第一透镜组G1包含第一透镜LG11和第二透镜LG12,第一透镜LG11为正光焦度;第二透镜LG12为负光焦度。另外,第一透镜LG11的材料为光学玻璃,具体为光学玻璃 凸透镜。第二透镜组G2包含有第三透镜LG21,第三透镜LG21可以为正光焦度也可为负光焦度,在此不做具体限定。第三透镜LG21的材料可以为光学玻璃,也可为光学塑料,在本申请不做具体限定。
变焦镜头的焦距为16.6mm,光圈F#=3.32,光学长度TTL=18mm,像面高度的一半即半像高为IH=2.5mm。微距状态垂轴放大率β=0.3。
上述变焦镜头在远距状态到微距状态时,第二透镜组G2的移动行程△=4mm,移动行程△与光学总长的比值为△/TTL=0.22。为方便理解本申请实施例提供的变焦镜头,下面结合具体的表格,详细说明其各透镜以及变焦镜头的参数。
下面先说明后文表格中的标号含义:LG11S1是指第一透镜LG11朝向物侧的一面,LG11S2是指第一透镜LG11朝向像侧的一面;LG12S1是指第二透镜LG12朝向物侧的一面,LG12S2是指第二透镜LG12朝向像侧的一面;LG21S1是指第三透镜LG21朝向物侧的一面,LG21S2是指第三透镜LG21朝向像侧的一面。
首先参考表3a,表3a中示出了各个非球面透镜的非球面系数。其中,A4到A30为非球面系数。
表3a
Figure PCTCN2022100934-appb-000012
Figure PCTCN2022100934-appb-000013
在本实施例中,所有非球面面型可利用但不限于以下非球面公式进行限定:
Figure PCTCN2022100934-appb-000014
其中,z为非球面的矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数,A2、A4、A6、A8、A10、A12为非球面系数。
参考表3b,表3b为变焦镜头在远距状态时的基本参数。
表3b
Figure PCTCN2022100934-appb-000015
参考表3c,表3c示出了变焦镜头在微距状态时的基本参数。
表3c
Figure PCTCN2022100934-appb-000016
Figure PCTCN2022100934-appb-000017
参考表3d,表3d为变焦镜头的参数,在第一透镜组G1和第二透镜组G2中的透镜采用上述参数时,对应的变焦镜头的参数如表3d所示。
表3d
微距倍率β 0.3
无穷远F# 3.42
EFLG1 10.27
EFLG2 -16.4
无穷远EFL 16.6
|EFLG1/EFLG2| 0.63
|EFLG2/EFL| 0.99
4
光学总长TTL 18
△/TTL 0.22
为方便理解本申请实施例提供的拍摄效果,以图18所示的变焦镜头为例进行仿真,变焦镜头的具体参数可参考表3a、表3b、表3c以及表3d。下面结合附图详细说明变焦镜头在仿真的效果。
首先参考图19,图19示出了变焦镜头在远距状态下的球色差图。为方便示例,以不同频率的光线为例进行仿真,在图19中示例出了成像时常见的几种频率的光线。示例性的,图19中的五条实线曲线分别为650nm、587nm、546nm、486nm、435nm波长的光线。为方便示例,在图19中分别以A代表波长为650nm的光,B代表波长为587nm的光,C代表波长为546nm的光,代表波长为486m的光,E代表波长为435nm的光。参考图19中所示的五条实线可看出,上述波长的光线的离焦量在一个很小的范围内,均位于-0.12~0.15mm之间,变焦镜头拍摄的图片可以避免出现颜色分离的问题,获取良好的拍摄效果。
参考图20,图20示出了变焦镜头在远距状态下的像散图。像散图中的实线表示中心波长(555nm)的光在子午像面的场曲值,虚线表示中心波长(555nm)的光在弧矢像面的场曲值。由图20可看出,整个视场范围都有聚焦清晰的图像。
参考图21,图21示出了变焦镜头在远距状态下的畸变图。畸变图中的实线表示中心波长(555nm)的光线经过变焦镜头的畸变值。由图21可看出,光线的畸变较小,小于人眼可以察觉的图像畸变阈值2%。
参考图22,图22示出了变焦镜头在微距状态下的球色差图。为方便示例,以不同频率的光线为例进行仿真,在图22中示例出了成像时常见的几种频率的光线。示例性的,图22中的五条实线曲线分别为650nm、587nm、546nm、486nm、435nm波长的光线。为方便示例,在图22中分别以A代表波长为650nm的光,B代表波长为587nm的光,C代表波长为546nm的光,代表波长为486m的光,E代表波长为435nm的光。参考图22中所示的五条实线可看出,上述波长的光线的离焦量在一个很小的范围内,均位于-0.02~0.01mm之间,变焦镜头拍摄的图片可以避免出现颜色分离的问题,获取良好的拍摄 效果。
参考图23,图23示出了变焦镜头在微距状态下的像散图。像散图中的实线表示中心波长(555nm)的光在子午像面的场曲值,虚线表示中心波长(555nm)的光在弧矢像面的场曲值。由图23可看出,整个视场范围都有聚焦清晰的图像。
参考图24,图24示出了变焦镜头在微距状态下的畸变图。畸变图中的实线表示中心波长(555nm)的光线经过变焦镜头的畸变值。由图24可看出,光线的畸变较小,小于人眼可以察觉的图像畸变阈值2%。
参考图25,图25示出了本申请实施例提供的第四种变焦镜头的结构示意图。从左到右为物侧到像侧,变焦镜头包括依次排列的第一透镜组G1,第二透镜组G2。其中,第一透镜组G1有三个透镜;第二透镜组G2有两个透镜。本实施例通过第二透镜组G2沿着光轴方向进行对焦,适用于光学镜头的在微距和远距下的拍摄场景。
作为一个可选的方案,该还可在变焦镜头内设置光阑30,光阑30位于第一透镜组靠近物侧的一侧,以约束射入到第一透镜组G1中的光线。
作为一个可选的方案,该变焦镜头还可包含滤光片10。示例性的,从物侧到像侧方向,第二透镜组G2后为用于校正色彩偏差的滤光片10或用于保护成像感光元件的平板玻璃L1,成像传感器20的位置位于像面处,该成像传感器20可以是CCD,也可以是CMOS。
本申请实施例提供的变焦镜头的第一透镜组G1具备正光焦度,第二透镜组G2具备负光焦度。示例性的,第一透镜组G1的焦距EFLG1=8.03mm,第二透镜组G2的焦距EFLG2=-10.14mm。第一透镜组G1的焦距EFLG1与第二透镜组G2的焦距EFLG2比值为|EFLG1/EFLG2|=0.79;第二透镜G2的焦距EFL与变焦镜头焦距EFLG1的比值|EFLG2/EFL|=0.70。
第一透镜组G1包含第一透镜LG11、第二透镜LG12和第三透镜LG13。第一透镜LG11为正光焦度、第二透镜LG12为负光焦度、第三透镜LG13为正光焦度。另外,第一透镜LG11的材料为光学玻璃,具体为光学玻璃凸透镜。第二透镜组G2包含第四透镜LG21和第五透镜LG22,第四透镜LG21为负光焦度,第五透镜LG22可以为正光焦度也可为负光焦度,在此不做具体限定。第四透镜LG21和第五透镜LG22的材料可以为光学玻璃,也可为光学塑料,在本申请不做具体限定。
变焦镜头的焦距为14.45mm,光圈F#=3.43,光学长度TTL=15.5mm,像面高度的一半即半像高为IH=2.5mm。微距状态垂轴放大率β=0.3。
上述变焦镜头在远距状态到微距状态时,第二透镜组G2的移动行程△=2.38mm,移动行程△与光学总长的比值为△/TTL=0.15。为方便理解本申请实施例提供的变焦镜头,下面结合具体的表格,详细说明其各透镜以及变焦镜头的参数。
下面先说明后文表格中的标号含义:LG11S1是指第一透镜LG11朝向物侧的一面,LG11S2是指第一透镜LG11朝向像侧的一面;LG12S1是指第二透镜LG12朝向物侧的一面,LG12S2是指第二透镜LG12朝向像侧的一面;LG13S1是指第三透镜LG13朝向物侧的一面,LG13S2是指第三透镜LG13朝向像侧的一面;LG21S1是指第四透镜LG21朝向物侧的一面,LG21S2是指第四透镜LG21朝向像侧的一面;LG22S1是指第五透镜LG22朝向物侧的一面,LG22S2是指第五透镜LG22朝向像侧的一面。
首先参考表4a,表4a中示出了各个非球面透镜的非球面系数。其中,A4到A30为非球面系数。
表4a
Figure PCTCN2022100934-appb-000018
在本实施例中,所有非球面面型可利用但不限于以下非球面公式进行限定:
Figure PCTCN2022100934-appb-000019
其中,z为非球面的矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数,A2、A4、A6、A8、…、A28、A30为非球面系数。
参考表4b,表4b为变焦镜头在远距状态时的基本参数。
表4b
Figure PCTCN2022100934-appb-000020
参考表4c,表4c示出了变焦镜头在微距状态时的基本参数。
表4c
Figure PCTCN2022100934-appb-000021
参考表4d,表4d为变焦镜头的参数,在第一透镜组G1和第二透镜组G2中的透镜采用上述参数时,对应的变焦镜头的参数如表4d所示。
表4d
微距倍率β 0.3
无穷远F# 3.34
EFLG1 8.03
EFLG2 -10.14
无穷远EFL 14.45
|EFLG1/EFLG2| 0.79
|EFLG2/EFL| 0.70
2.38
光学总长TTL 15.5
△/TTL 0.15
为方便理解本申请实施例提供的拍摄效果,以图25所示的变焦镜头为例进行仿真,变焦镜头的具体参数可参考表4a、表4b、表4c以及表4d。下面结合附图详细说明变焦镜头在仿真的效果。
首先参考图26,图26示出了变焦镜头在远距状态下的球色差图。为方便示例,以不同频率的光线为例进行仿真,在图26中示例出了成像时常见的几种频率的光线。示例性的,图26中的五条实线曲线分别为650nm、587nm、546nm、486nm、435nm波长的光线。 为方便示例,在图26中分别以A代表波长为650nm的光,B代表波长为587nm的光,C代表波长为546nm的光,代表波长为486m的光,E代表波长为435nm的光。参考图26中所示的五条实线可看出,上述波长的光线的离焦量在一个很小的范围内,均位于-0.01~0.05mm之间,变焦镜头拍摄的图片可以避免出现颜色分离的问题,获取良好的拍摄效果。
参考图27,图27示出了变焦镜头在远距状态下的像散图。像散图中的实线表示中心波长(555nm)的光在子午像面的场曲值,虚线表示中心波长(555nm)的光在弧矢像面的场曲值。由图27可看出,整个视场范围都有聚焦清晰的图像。
参考图28,图28示出了变焦镜头在远距状态下的畸变图。畸变图中的实线表示中心波长(555nm)的光线经过变焦镜头的畸变值。由图28可看出,光线的畸变较小,小于人眼可以察觉的图像畸变阈值2%。
参考图29,图29示出了变焦镜头在微距状态下的球色差图。为方便示例,以不同频率的光线为例进行仿真,在图29中示例出了成像时常见的几种频率的光线。示例性的,图29中的五条实线曲线分别为650nm、587nm、546nm、486nm、435nm波长的光线。为方便示例,在图29中分别以A代表波长为650nm的光,B代表波长为587nm的光,C代表波长为546nm的光,代表波长为486m的光,E代表波长为435nm的光。参考图29中所示的五条实线可看出,上述波长的光线的离焦量在一个很小的范围内,均位于-0.04~0.05mm之间,变焦镜头拍摄的图片可以避免出现颜色分离的问题,获取良好的拍摄效果。
参考图30,图30示出了变焦镜头在微距状态下的像散图。像散图中的实线表示中心波长(555nm)的光在子午像面的场曲值,虚线表示中心波长(555nm)的光在弧矢像面的场曲值。由图30可看出,整个视场范围都有聚焦清晰的图像。
参考图31,图31的实线表示中心波长(555nm)的光线经过变焦镜头的畸变值。由图31可看出,光线的畸变较小,小于人眼可以察觉的图像畸变阈值2%。
参考图32,图32示出了本申请实施例提供的第五种变焦镜头的结构示意图。从左到右为物侧到像侧,变焦镜头包括依次排列的第一透镜组G1,第二透镜组G2。其中,第一透镜组G1有三个透镜;第二透镜组G2有两个透镜。本实施例通过第二透镜组G2沿着光轴方向进行对焦,适用于光学镜头的在微距和远距下的拍摄场景。
作为一个可选的方案,该还可在变焦镜头内设置光阑30,光阑30位于第一透镜组靠近物侧的一侧,以约束射入到第一透镜组G1中的光线。
作为一个可选的方案,该变焦镜头还可包含滤光片10。示例性的,从物侧到像侧方向,第二透镜组G2后为用于校正色彩偏差的滤光片10或用于保护成像感光元件的平板玻璃L1,成像传感器20的位置位于像面处,该成像传感器20可以是CCD,也可以是CMOS。
本申请实施例提供的变焦镜头的第一透镜组G1具备正光焦度,第二透镜组G2具备负光焦度。示例性的,第一透镜组G1的焦距EFLG1=8.03mmmm,第二透镜组G2的焦距EFLG2=-10.14。第一透镜组G1的焦距EFLG1与第二透镜组G2的焦距EFLG2比值为|EFLG1/EFLG2|=0.79;第二透镜G2的焦距EFL与变焦镜头焦距EFLG1的比值|EFLG2/EFL|=0.70。
第一透镜组G1包含第一透镜LG11、第二透镜LG12和第三透镜LG13。第一透镜LG11为正光焦度、第二透镜LG12为负光焦度、第三透镜LG13为正光焦度。另外,第一透镜 LG11的材料为光学玻璃,具体为光学玻璃凸透镜。第二透镜组G2包含第四透镜LG21和第五透镜LG22,第四透镜LG21为负光焦度,第五透镜LG22可以为正光焦度也可为负光焦度,在此不做具体限定。第四透镜LG21和第五透镜LG22的材料可以为光学玻璃,也可为光学塑料,在本申请不做具体限定。
变焦镜头的焦距为14.45mm,光圈F#=3.43,光学长度TTL=15.5mm,像面高度的一半即半像高为IH=2.5mm。微距状态垂轴放大率β=0.3。
上述变焦镜头在远距状态到微距状态时,第二透镜组G2的移动行程△=2.38mm,移动行程△与光学总长的比值为△/TTL=0.15。为方便理解本申请实施例提供的变焦镜头,下面结合具体的表格,详细说明其各透镜以及变焦镜头的参数。
下面先说明后文表格中的标号含义:LG11S1是指第一透镜LG11朝向物侧的一面,LG11S2是指第一透镜LG11朝向像侧的一面;LG12S1是指第二透镜LG12朝向物侧的一面,LG12S2是指第二透镜LG12朝向像侧的一面;LG13S1是指第三透镜LG13朝向物侧的一面,LG13S2是指第三透镜LG13朝向像侧的一面;LG21S1是指第四透镜LG21朝向物侧的一面,LG21S2是指第四透镜LG21朝向像侧的一面;LG22S1是指第五透镜LG22朝向物侧的一面,LG22S2是指第五透镜LG22朝向像侧的一面。
首先参考表5a,表5a中示出了各个非球面透镜的非球面系数。其中,A4到A30为非球面系数。
表5a
Figure PCTCN2022100934-appb-000022
Figure PCTCN2022100934-appb-000023
在本实施例中,所有非球面面型可利用但不限于以下非球面公式进行限定:
Figure PCTCN2022100934-appb-000024
其中,z为非球面的矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数,A2、A4、A6、A8、A10、A12为非球面系数。
参考表5b,表5b为变焦镜头在远距状态时的基本参数。
表5b
Figure PCTCN2022100934-appb-000025
参考表5c,表5c示出了变焦镜头在微距状态时的基本参数。
表5c
Figure PCTCN2022100934-appb-000026
Figure PCTCN2022100934-appb-000027
参考表5d,表5d为变焦镜头的参数,在第一透镜组G1和第二透镜组G2中的透镜采用上述参数时,对应的变焦镜头的参数如表5d所示。
表5d
微距倍率β 0.3
无穷远F# 3
EFLG1 9.6
EFLG2 -10.77
无穷远EFL 16.5
|EFLG1/EFLG2| 0.89
|EFLG2/EFL| 0.65
1.68
光学总长TTL 17.3
△/TTL 0.10
为方便理解本申请实施例提供的拍摄效果,以图32所示的变焦镜头为例进行仿真,变焦镜头的具体参数可参考表5a、表5b、表5c以及表5d。下面结合附图详细说明变焦镜头在仿真的效果。
首先参考图33,图33示出了变焦镜头在远距状态下的球色差图。为方便示例,以不同频率的光线为例进行仿真,在图33中示例出了成像时常见的几种频率的光线。示例性的,图33中的五条实线曲线分别为650nm、587nm、546nm、486nm、435nm波长的光线。为方便示例,在图33中分别以A代表波长为650nm的光,B代表波长为587nm的光,C代表波长为546nm的光,代表波长为486m的光,E代表波长为435nm的光。参考图33中所示的五条实线可看出,上述波长的光线的离焦量在一个很小的范围内,均位于-0.03~0.05mm之间,变焦镜头拍摄的图片可以避免出现颜色分离的问题,获取良好的拍摄效果。
参考图34,图34示出了变焦镜头在远距状态下的像散图。像散图中的实线表示中心波长(555nm)的光在子午像面的场曲值,虚线表示中心波长(555nm)的光在弧矢像面的场曲值。由图34可看出,整个视场范围都有聚焦清晰的图像。
参考图35,图35示出了变焦镜头在远距状态下的畸变图。畸变图中的实线表示中心波长(555nm)的光线经过变焦镜头的畸变值。由图35可看出,光线的畸变较小,小于人眼可以察觉的图像畸变阈值2%。
参考图36,图36示出了变焦镜头在微距状态下的球色差图。为方便示例,以不同频率的光线为例进行仿真,在图36中示例出了成像时常见的几种频率的光线。示例性的,图36中的五条实线曲线分别为650nm、587nm、546nm、486nm、435nm波长的光线。为 方便示例,在图36中分别以A代表波长为650nm的光,B代表波长为587nm的光,C代表波长为546nm的光,代表波长为486m的光,E代表波长为435nm的光。参考图36中所示的五条实线可看出,上述波长的光线的离焦量在一个很小的范围内,均位于-0.04~0.1mm之间,变焦镜头拍摄的图片可以避免出现颜色分离的问题,获取良好的拍摄效果。
参考图37,图37示出了变焦镜头在微距状态下的像散图。像散图中的实线表示中心波长(555nm)的光在子午像面的场曲值,虚线表示中心波长(555nm)的光在弧矢像面的场曲值。由图37可看出,整个视场范围都有聚焦清晰的图像。
参考图38,图38的实线表示中心波长(555nm)的光线经过变焦镜头的畸变值。由图31可看出,光线的畸变较小,小于人眼可以察觉的图像畸变阈值2%。
图39示出了本申请实施例提供的另一变焦镜头,变焦镜头还包括反射镜40,反射镜40位于第一透镜组G1靠近物侧的位置,并用于将光线反射到第一透镜组G1,从而可实现潜望式拍摄,改善了镜头放置的空间。当然除了采用反射镜外,还可采用棱镜,棱镜设置在第一透镜组G1的物侧,也可将光线反射到第一透镜组G1,可以达到同样的效果。
通过上述具体的实施例可看出,本申请实施例提供的变焦镜头可通过采用第一透镜组和第二透镜组相结合的技术方案,引入第二透镜组的对焦方式,能够适用于远距和微距下的拍摄场景,并且满足光学系统结构紧凑的需求,改善了移动终端的拍摄效果。
图40示出了变焦镜头在手机中的应用场景。在变焦镜头300采用潜望式时,变焦镜头300中的透镜组301的排列方向可以平行于手机壳体400的长度方向,透镜组301设置在手机壳体400与中框500之间,应当理解的是,图40中仅仅示例出了透镜组301的设置位置以及设置方式,图40中的透镜组301并不代表透镜组301的实际透镜个数。由图40可看出,变焦镜头采用潜望式时,而可降低对手机厚度的影响。
本申请实施例还提供了一种摄像头模组,提供了一种摄像头模组,该摄像头模组包括感光元件和上述任一项所述的变焦镜头,所述感光元件位于所述变焦镜头的像侧,其中,所述变焦镜头用于接收被拍摄物体所反射的光线并投射至所述感光元件,所述感光元件用于将所述光线转化成图像信号。在上述技术方案中,通过采用两个透镜组相结合的技术方案,能够适用于远距和微距下的拍摄场景,相对于现有兼容远距和微距的镜头,实现小型化需求,并且达成较高分辨率,较佳的像差控制。
本申请提供了一种移动终端,该移动终端可以为手机、平板电脑、笔记本等。移动终端包括壳体,以及设置在壳体内的上述任一项的变焦镜头。如图40所示的采用潜望式的变焦镜头设置在手机内。一并参考图32中所示的变焦镜头,变焦镜头通过采用两个透镜组相结合的技术方案,能够适用于远距和微距下的拍摄场景,相对于现有兼容远距和微距的镜头,实现小型化需求,并且达成较高分辨率,较佳的像差控制。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种变焦镜头,其特征在于,包括:沿物侧到像侧排列的第一透镜组和第二透镜组,所述第一透镜组固定,所述第二透镜组可沿光轴方向滑动;其中,
    所述第一透镜组具有正光焦度;
    所述第二透镜组具有负光焦度;
    所述第一透镜组的焦距EFLG1与所述第二透镜组的焦距EFLG2的比值满足:0.4<|EFLG1/EFLG2|<1.22;
    所述第二透镜组的焦距EFLG2与所述光学镜头的焦距EFL的比值满足:0.4<|EFLG2/EFL|<1。
  2. 如权利要求1所述的变焦镜头,其特征在于,所述第一透镜组包括至少一个透镜,且所述第一透镜组中最靠近所述物侧的透镜具有正光焦度。
  3. 如权利要求2所述的变焦镜头,其特征在于,所述第一透镜组中最靠近所述物侧的透镜为光学玻璃制备而成的透镜。
  4. 如权利要求2或3所述的变焦镜头,其特征在于,所述第一透镜组包括,沿物侧到像侧排列的第一透镜和第二透镜;所述第二透镜具有负光焦度。
  5. 如权利要求1~4任一项所述的变焦镜头,其特征在于,在所述变焦镜头由远距状态到微距状态过程中,所述第二透镜组由所述物侧向所述像侧方向移动,所述第二透镜组的移动行程△与所述变焦镜头的光学总长TTL的比满足△/TTL<0.4。
  6. 如权利要求5所述的变焦镜头,其特征在于,所述第二透镜组的移动行程△<4mm。
  7. 如权利要求1~6任一项所述的变焦镜头,其特征在于,所述第二透镜组包含有至少一个透镜;其中,
    所述第二透镜组中最靠近所述物侧的透镜朝向所述像侧的表面为凹面。
  8. 如权利要求1~7任一项所述的变焦镜头,其特征在于,所述变焦镜头的光圈满足2.8>F#。
  9. 如权利要求1~8任一项所述的变焦镜头,其特征在于,在远距状态下,所述第二透镜组移动至靠近所述物侧,所述变焦镜头的对焦距离ODt满足:
    1m<ODt<∞。
  10. 如权利要求1~9任一项所述的变焦镜头,其特征在于,在微距状态下,所述第二透镜组移动至靠近所述像侧,所述变焦镜头的对焦距离Odm满足:
    0.03m<Odm<0.2m。
  11. 如权利要求1~9任一项所述的变焦镜头,其特征在于,所述变焦镜头的微距垂轴放大倍率为0.3<β<0.7。
  12. 一种摄像头模组,其特征在于,包括感光元件和如权利要求1至11中任一项所述的变焦镜头,所述感光元件位于所述变焦镜头的像侧,其中,所述变焦镜头用于接收被拍摄物体所反射的光线并投射至所述感光元件,所述感光元件用于将所述光线转化成图像信号。
  13. 一种移动终端,其特征在于,包括壳体,以及设置在所述壳体内的如权利要求1~11任一项所述的变焦镜头。
PCT/CN2022/100934 2021-06-30 2022-06-23 一种变焦镜头、摄像头模组及移动终端 WO2023274041A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22831855.6A EP4343402A1 (en) 2021-06-30 2022-06-23 Zoom lens, camera module, and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110738449.8 2021-06-30
CN202110738449.8A CN115542522A (zh) 2021-06-30 2021-06-30 一种变焦镜头、摄像头模组及移动终端

Publications (1)

Publication Number Publication Date
WO2023274041A1 true WO2023274041A1 (zh) 2023-01-05

Family

ID=84690047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100934 WO2023274041A1 (zh) 2021-06-30 2022-06-23 一种变焦镜头、摄像头模组及移动终端

Country Status (3)

Country Link
EP (1) EP4343402A1 (zh)
CN (1) CN115542522A (zh)
WO (1) WO2023274041A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116774408B (zh) * 2023-08-25 2024-01-09 江西欧菲光学有限公司 光学系统、镜头模组和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004240074A (ja) * 2003-02-05 2004-08-26 Minolta Co Ltd 撮像レンズ
CN101236294A (zh) * 2007-02-01 2008-08-06 玉晶光电(厦门)有限公司 可调式光学系统
JP2015163927A (ja) * 2014-02-28 2015-09-10 株式会社タムロン インナーフォーカス式レンズ
CN114384668A (zh) * 2020-10-22 2022-04-22 华为技术有限公司 光学系统及终端设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3397363B2 (ja) * 1992-04-06 2003-04-14 ペンタックス株式会社 ズームレンズ
KR100256207B1 (ko) * 1994-08-19 2000-05-15 유무성 줌렌즈
JP3495622B2 (ja) * 1998-12-22 2004-02-09 ペンタックス株式会社 ズームレンズ系
JP2002221660A (ja) * 2001-01-24 2002-08-09 Asahi Optical Co Ltd ズームレンズ系
JP5417006B2 (ja) * 2009-03-26 2014-02-12 株式会社タムロン ズームレンズ
JP2016136213A (ja) * 2015-01-23 2016-07-28 株式会社ニコン 光学系、この光学系を有する光学機器、及び、光学系の製造方法
KR102436510B1 (ko) * 2017-06-30 2022-08-25 삼성전자주식회사 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004240074A (ja) * 2003-02-05 2004-08-26 Minolta Co Ltd 撮像レンズ
CN101236294A (zh) * 2007-02-01 2008-08-06 玉晶光电(厦门)有限公司 可调式光学系统
JP2015163927A (ja) * 2014-02-28 2015-09-10 株式会社タムロン インナーフォーカス式レンズ
CN114384668A (zh) * 2020-10-22 2022-04-22 华为技术有限公司 光学系统及终端设备

Also Published As

Publication number Publication date
CN115542522A (zh) 2022-12-30
EP4343402A1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
KR101811570B1 (ko) 촬영 렌즈 광학계
TW201937226A (zh) 成像光學鏡頭、取像裝置及電子裝置
TWI424190B (zh) 取像透鏡系統
TW201942630A (zh) 攝像用光學鏡頭、取像裝置及電子裝置
TW201901222A (zh) 光學影像擷取鏡片組、取像裝置及電子裝置
TW201932901A (zh) 光學攝像鏡組、取像裝置及電子裝置
KR20160019236A (ko) 촬영 렌즈 광학계
US10048464B2 (en) Optical image capturing system
WO2021185185A1 (zh) 变焦镜头、摄像头模组及移动终端
KR20160112306A (ko) 초광각 렌즈 및 이를 포함한 촬영 장치
US10859799B2 (en) Optical image capturing system
US10139593B2 (en) Optical image capturing system
WO2021169245A1 (zh) 一种变焦镜头、摄像头模组及移动终端
WO2022179632A1 (zh) 长焦镜头、摄像头模组及电子设备
WO2023274041A1 (zh) 一种变焦镜头、摄像头模组及移动终端
US9995907B2 (en) Optical image capturing system
WO2021185201A1 (zh) 变焦镜头, 摄像头模组及移动终端
US11561366B2 (en) Optical image capturing system
US10073240B2 (en) Optical image capturing system
US20170276908A1 (en) Optical image capturing system
KR102378519B1 (ko) 단초점 렌즈 및 이를 포함한 촬영 장치
WO2022228189A1 (zh) 光学镜头、摄像头模组和电子设备
CN113625420B (zh) 光学镜头、镜头模组和终端
TW202234114A (zh) 光學成像系統、取像模組及電子裝置
CN111971603A (zh) 光学成像系统及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022831855

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18575452

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022831855

Country of ref document: EP

Effective date: 20231220

NENP Non-entry into the national phase

Ref country code: DE