WO2023273992A1 - 无线传输系统、方法及装置 - Google Patents

无线传输系统、方法及装置 Download PDF

Info

Publication number
WO2023273992A1
WO2023273992A1 PCT/CN2022/100487 CN2022100487W WO2023273992A1 WO 2023273992 A1 WO2023273992 A1 WO 2023273992A1 CN 2022100487 W CN2022100487 W CN 2022100487W WO 2023273992 A1 WO2023273992 A1 WO 2023273992A1
Authority
WO
WIPO (PCT)
Prior art keywords
fso
signal
wireless transmission
receiving device
link
Prior art date
Application number
PCT/CN2022/100487
Other languages
English (en)
French (fr)
Inventor
刘念
王婧
黄茵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023273992A1 publication Critical patent/WO2023273992A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/22Adaptations for optical transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1123Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video stream to a specific local network, e.g. a Bluetooth® network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video stream to a specific local network, e.g. a Bluetooth® network
    • H04N21/43637Adapting the video stream to a specific local network, e.g. a Bluetooth® network involving a wireless protocol, e.g. Bluetooth, RF or wireless LAN [IEEE 802.11]

Definitions

  • the present application relates to the technical field of communication, and in particular to a wireless transmission system, method and device.
  • Screen projection technology can project the video data of a terminal device to the display screens of other terminal devices for display. Users can use screen projection technology to meet the needs of "small screen content, large screen viewing". For example, a video in a mobile phone can be placed on a TV for playback, so that users can watch the delivered video on the TV to obtain a better video viewing experience.
  • Embodiments of the present application provide a wireless transmission system, method, and device, which are conducive to realizing on-demand screen projection with high-fidelity playback effects.
  • the present application provides a wireless transmission system, where the wireless transmission system includes a sending device and a receiving device.
  • the receiving device is used to send the first information on the wireless transmission link, and the first information is used to indicate that the receiving device has connected to the display device;
  • the sending device is used to receive the first information on the wireless transmission link, and according to the first information
  • a message sends the first free space optical (Free Space Optical, FSO) signal on the optical link, and the first FSO signal carries the video data to be played by the display device;
  • the receiving device is also used to receive the first optical link on the optical link FSO signal.
  • FSO Free Space Optical
  • the first information that the receiving device has connected to the display device can be transmitted through a wireless transmission link to inform the sending device that the FSO signal carrying video data is transmitted to the receiving device through an optical link, thereby realizing the display.
  • the wireless, uncompressed high-speed transmission of video data to be played on the device is conducive to the realization of on-demand screen projection with high-fidelity playback effects.
  • the wireless transmission link and the optical link are conducive to realizing the user's demand for on-demand screen projection, and the transmission rate of the FSO signal can reach 10-100Gbps, which can meet the uncompressed video data transmission and is conducive to Realize high-fidelity playback effect.
  • the wireless transmission link is a low-speed communication link.
  • Using the low-speed communication link as the wireless transmission link can meet the transmission requirements of the first information and other content in the embodiment of the present application, and at the same time save the power consumption of the sending device and the receiving device.
  • the low-speed communication link may be a link using wireless communication technologies such as Bluetooth and wireless fidelity (Wireless Fidelity, Wi-Fi).
  • wireless communication technologies such as Bluetooth and wireless fidelity (Wireless Fidelity, Wi-Fi).
  • the sending device is further configured to, before sending the first FSO signal, acquire an electrical signal carrying video data from the video source device, and convert the electrical signal into the first FSO signal.
  • the wireless transmission system further includes a video source device, configured to input an electrical signal carrying video data to the sending device.
  • the receiving device is further configured to, after receiving the first FSO signal, convert the first FSO signal into an electrical signal carrying video data, and output the electrical signal to a display device for display.
  • the wireless transmission system further includes a display device configured to display video data according to the electrical signal carrying the video data.
  • the sending device is further configured to, after receiving the first information, send the first information to the video source device. Since the first information is used to indicate that the receiving device has connected to the display device, this embodiment is beneficial to enable the video source device to know that the receiving device has connected to the display device, and then actively input an electrical signal carrying video data to the sending device.
  • the video source device is further configured to receive the first information, and input an electrical signal carrying video data to the sending device according to the first information.
  • the wireless transmission system is beneficial for the video source device to actively input an electrical signal carrying video data to the sending device.
  • the sending device is further configured to send a second FSO signal to the receiving device before sending the first FSO signal; the receiving device is also configured to detect the optical power of the received second FSO signal, and The optical power is sent to the sending device through the wireless transmission link; the sending device is also used for aligning the optical link between the sending device and the receiving device according to the optical power sent by the receiving device.
  • This embodiment enables the sending device to send the first FSO signal on the aligned optical link, so that the receiving device can receive the first FSO signal more accurately.
  • the sending device is configured to align the optical link between the sending device and the receiving device according to the optical power sent by the receiving device, including: when the optical power of the sending device satisfies a preset condition , make sure the optical link is aligned. Alternatively, when the optical power does not meet the preset condition, the sending device determines that the optical link is not aligned, adjusts the pan/tilt equipped with the sending device, and executes the step of sending the second FSO signal to the receiving device again. It can be seen that this embodiment can realize the optical link alignment between the sending device and the receiving device.
  • the sending device is further configured to send second information to the receiving device on the wireless transmission link when the optical link between the sending device and the receiving device is aligned, and the second information is used for Indicates that the optical link is aligned. It can be seen that this embodiment can inform the receiving device that the optical link has been aligned, thereby facilitating the receiving device to connect to the display device in time.
  • the first FSO signal and/or the second FSO signal are sent using a large beam divergence angle, and the value of the large beam divergence angle belongs to the first angle interval; the first FSO signal and/or the second FSO signal The second FSO signal is received with a large field of view, and the value of the large field of view belongs to the second angle range.
  • This embodiment is beneficial to expand the receiving range of the receiving device, and is more suitable for indoor scenes. Therefore, it is beneficial to improve the transmission effect of the first FSO signal and/or the second FSO signal.
  • the first angle interval and the second angle interval may be predefined, or determined through negotiation between the sending device and the receiving device.
  • the embodiment of the present application provides a wireless transmission method, which can be described from the perspective of a sending device.
  • the method includes: the sending device acquires an electrical signal from a video source device, the electrical signal carrying video data to be played by a display device; the sending device converts the electrical signal into a first FSO signal, and the first FSO signal carries video data; Then, the sending device sends the first FSO signal on the optical link.
  • the sending device transmits the first FSO signal carrying video data through an optical link, thereby facilitating the realization of wireless, uncompressed high-speed transmission of video data to be played on the display device, and further facilitating the realization of On-demand screencasting with high-fidelity playback.
  • the optical link is conducive to realizing the user's demand for on-demand screen projection, and the transmission rate of the FSO signal can reach 10-100Gbps, which can meet the uncompressed video data transmission and is conducive to the realization of high-fidelity Play effects.
  • the method further includes: the sending device receives first information on a wireless transmission link, where the first information is used to indicate that the receiving device has connected to the display device.
  • the sending device sending the first FSO signal on the optical link includes: the sending device sends the first FSO signal to the receiving device on the optical link according to the first information. It can be seen that this embodiment enables the sending device to know that the receiving device has connected to the display device, and then send the first FSO signal carrying video data to the receiving device in time.
  • the wireless transmission link is a low-speed communication link.
  • Using the low-speed communication link as the wireless transmission link can meet the transmission requirements of the first information and other content in the embodiment of the present application, and at the same time save the power consumption of the sending device.
  • the low-speed communication link may be a link using wireless communication technologies such as Bluetooth and Wi-Fi.
  • the method further includes: after receiving the first information, the sending device sends the first information to the video source device. Since the first information is used to indicate that the receiving device has connected to the display device, this embodiment is beneficial to enable the video source device to know that the receiving device has connected to the display device, and then actively input an electrical signal carrying video data to the sending device.
  • the method before the sending device sends the first FSO signal on the optical link, the method further includes: the sending device sends the second FSO signal to the receiving device; then, the sending device transmits the second FSO signal on the wireless transmission link Receive the optical power sent by the receiving device, which is the optical power of the second FSO signal detected by the receiving device; then, the sending device performs an optical link between the sending device and the receiving device according to the optical power sent by the receiving device alignment.
  • This implementation manner enables the sending device to send the first FSO signal on the aligned optical link, thereby facilitating the receiving device to receive the first FSO signal more accurately.
  • the sending device aligns the optical link between the sending device and the receiving device according to the optical power sent by the receiving device, including: when the optical power meets a preset condition, the sending device determines Optical link is aligned. Alternatively, when the optical power does not meet the preset condition, the sending device determines that the optical link is not aligned, adjusts the pan/tilt equipped with the sending device, and executes the step of sending the second FSO signal to the receiving device again. It can be seen that this embodiment can realize the optical link alignment between the sending device and the receiving device.
  • the method further includes: when the optical link is aligned, the sending device sends second information to the receiving device on the wireless transmission link, where the second information is used to indicate that the optical link has been aligned. alignment. It can be seen that this embodiment can inform the receiving device that the optical link has been aligned, thereby facilitating the receiving device to connect to the display device in time.
  • the first FSO signal and/or the second FSO signal are sent using a large beam divergence angle, and the value of the large beam divergence angle belongs to the first angle interval.
  • This embodiment is beneficial to expand the receiving range of the receiving device, and is more suitable for indoor scenes. Therefore, it is beneficial to improve the transmission effect of the first FSO signal and/or the second FSO signal.
  • the first angle interval may be predefined, or determined through negotiation between the receiving device and the sending device.
  • the embodiment of the present application provides another wireless transmission method, which can be described from the perspective of a receiving device.
  • the method includes: the receiving device receives the first FSO signal from the sending device on the optical link, the first FSO signal carries the video data to be played by the display device; the receiving device can convert the first FSO signal to carry the video data The electrical signal; furthermore, the receiving device outputs the electrical signal to the display device for display.
  • the receiving device receives the first FSO signal carrying video data through an optical link, which is conducive to realizing wireless, uncompressed high-speed transmission of video data to be played on the display device, and is conducive to realizing On-demand screencasting with high-fidelity playback.
  • the optical link is conducive to realizing the user's demand for on-demand screen projection, and the transmission rate of the FSO signal can reach 10-100Gbps, which can meet the uncompressed video data transmission and is conducive to the realization of high-fidelity Play effects.
  • the method before the receiving device receives the first FSO signal from the sending device on the optical link, the method further includes: the receiving device sends first information on the wireless transmission link, the first information It is used to indicate that the receiving device has connected to the display device. It can be seen that this embodiment is beneficial for the sending device to know that the receiving device has connected to the display device, so as to timely send the first FSO signal carrying video data to the receiving device, and then the receiving device can receive the first FSO signal in time.
  • the wireless transmission link is a low-speed communication link.
  • Using a low-speed communication link as the wireless transmission link can meet the transmission requirements of the first information and other content in the embodiment of the present application while saving power consumption of the receiving device.
  • the low-speed communication link may be a link using wireless communication technologies such as Bluetooth and Wi-Fi.
  • the method before the receiving device receives the first FSO signal from the sending device on the optical link, the method further includes: the receiving device receives the second FSO signal from the sending device; the receiving device can detect the first FSO signal from the sending device The optical power of the FSO signal; then, the receiving device sends the optical power to the sending device on the wireless transmission link, and the optical power is used by the sending device to align the optical link between the sending device and the receiving device.
  • This embodiment is beneficial to enable the sending device to send the first FSO signal on the aligned optical link, thereby facilitating the receiving device to receive the first FSO signal more accurately.
  • the method further includes: the receiving device receives second information from the sending device on the wireless transmission link, where the second information is used to indicate that the optical link has been aligned. It can be seen that this implementation mode is beneficial for the receiving device to know that the optical link has been aligned, and thus can access the display device in time.
  • the first FSO signal and/or the second FSO signal are received using a large field of view, and the value of the large field of view belongs to the second angle range.
  • This embodiment is beneficial to expand the receiving range of the receiving device, and is more suitable for indoor scenes. Therefore, it is beneficial to improve the transmission effect of the first FSO signal and/or the second FSO signal.
  • the second angle interval may be predefined, or determined through negotiation between the receiving device and the sending device.
  • the embodiment of the present application provides a sending device, which includes a high-definition multimedia interface HDMI female seat, an HDMI-to-free-space optical FSO module, and an optical emission port; the HDMI-to-FSO module is connected to the HDMI and the optical emission port respectively. Port connection, the HDMI female socket is also connected to the HDMI male in the video source device.
  • the HDMI to FSO module is used to obtain the HDMI signal from the HDMI male in the video source device through the HDMI female socket, convert the HDMI signal into a first FSO signal, and output the first FSO signal to the optical transmission port;
  • the optical transmit port is used for sending the first FSO signal on the optical link.
  • the aforementioned HDMI signal and the first FSO signal respectively carry video data to be played by the display device.
  • the sending device transmits the first FSO signal carrying video data through an optical link, which is conducive to realizing the wireless, uncompressed high-speed transmission of the video data to be played on the display device, and thus is conducive to realizing a high-fidelity playback effect. on-demand screencasting.
  • the sending device can not only convert HDMI signals to FSO signals, but also convert high-definition digital display interface DP signals or other video signals to FSO signals.
  • the sending device can include DP female socket, DP to FSO module and optical launch port.
  • the sending device can not only convert HDMI signals to FSO signals, but also convert USB signals from Universal Serial Bus to FSO signals.
  • the sending device may include a USB interface socket, a USB to FSO module, and an optical transmitting port.
  • the functions of each module or device in the sending device may refer to the above relevant content, and will not be described in detail here.
  • the sending device further includes a wireless transmission module connected to the HDMI socket; the wireless transmission module is used to receive the first information on the wireless transmission link, and transmit the second information to the A piece of information is output to the HDMI female socket, and the first information is used to indicate that the receiving device has been connected to the display device; the HDMI female socket outputs the first information to the video source device through the HDMI male connector; wherein, the HDMI to FSO module passes The HDMI signal obtained by the HDMI female socket from the HDMI male socket in the video source device is associated with the first information.
  • the wireless transmission module may be a low-speed transmission module, and correspondingly, the wireless transmission link may be a low-speed communication link.
  • the wireless transmission module may be a wireless communication module such as Bluetooth or Wi-Fi
  • the low-speed communication link may be a link using wireless communication technologies such as Bluetooth or Wi-Fi.
  • the HDMI to FSO module may include a photoelectric conversion unit and an FSO transmitter, and the photoelectric conversion unit is connected to the FSO transmitter; the photoelectric conversion unit is used to convert an HDMI signal into a first FSO signal , and couple the first FSO signal to the FSO transmitting end, and the FSO transmitting end is used to process the first FSO signal and output it to the optical transmitting port.
  • the FSO transmitting end processes the first FSO signal by setting the value of the beam spread angle of the first FSO signal as the first angle interval.
  • the wireless transmission module is also used to trigger the FSO transmitter to generate a second FSO signal, and the FSO transmitter outputs the second FSO signal to the optical transmission port, and the optical transmission port is on the optical link Send the second FSO signal.
  • the wireless transmission module is also used to receive the optical power sent by the receiving device on the wireless transmission link, so that the sending device determines whether the optical link between the sending device and the receiving device is aligned according to the optical power.
  • the optical power is the optical power of the second FSO signal detected by the receiving device.
  • the sending device further includes a pan-tilt control module and a pan-tilt actuator, and the pan-tilt control module is connected to the wireless transmission module and the pan-tilt actuator respectively.
  • the wireless transmission module is also used to output the optical power to the pan-tilt control module;
  • the pan-tilt control module is used to output the second information to the wireless transmission module when the optical power meets the preset condition, and the second The information is used to indicate that the optical link between the sending device and the receiving device has been aligned;
  • the PTZ control module is also used to output the PTZ control signal to the cloud when the optical power does not meet the preset condition a platform actuator, and the platform actuator controls the platform according to the control signal of the platform.
  • pan/tilt actuator is also used to send a trigger message to the wireless transmission module through the pan/tilt control module, and the wireless transmission module responds to the trigger message to trigger the FSO transmitter to generate the second FSO signal again, and send the signal through the optical transmission port.
  • the second FSO signal so that the above modules perform related operations again, so that the optical links are aligned.
  • this embodiment can automatically adjust the optical link between the sending device and the receiving device for alignment according to the optical power sent by the receiving device, and then inform the receiving device that the optical link has been aligned through the second information, so as to facilitate The receiving device is connected to the display device in time.
  • the embodiment of the present application provides a receiving device, which includes an optical receiving port, a free space optical FSO to high-definition multimedia interface HDMI module, and an HDMI male head; the FSO to HDMI module is respectively connected to the optical transmitting port and The HDMI male head is connected, and the HDMI male head is also connected with the HDMI female seat in the display device.
  • the optical receiving port is used to receive the first FSO signal on the optical link, and output the first FSO signal to the FSO to HDMI module;
  • the FSO to HDMI module is used to convert the first FSO signal to an HDMI signal, and Output the HDMI signal to the HDMI male head;
  • the HDMI male head outputs the HDMI signal to the display device through the HDMI female socket.
  • the above-mentioned first FSO signal and HDMI signal respectively carry video data to be played by the display device.
  • the receiving device receives the first FSO signal carrying video data through an optical link, which is beneficial to realize the wireless, uncompressed high-speed transmission of the video data to be played on the display device, and further facilitates the realization of a high-fidelity playback effect. on-demand screencasting.
  • the receiving device can not only convert FSO signals to HDMI signals, but also convert FSO signals to high-definition digital display interface DP signals.
  • the receiving device can include an optical transmission port, an FSO to DP module, and a DP male head.
  • the receiving device can not only convert FSO signals to HDMI signals, but also convert FSO signals to USB signals.
  • the receiving device can include an optical transmission port, an FSO-to-USB module, and a USB interface male.
  • the functions of each module or device in the receiving device may refer to the above relevant content, and will not be described in detail here.
  • the receiving device further includes a wireless transmission module, and the wireless transmission module is connected to the HDMI male connector.
  • the FSO to HDMI module is also used to connect to the display device through the HDMI male head to determine the first information, which is used to indicate that the receiving device has connected to the display device; the HDMI male head is also used to output the first information to the wireless A transmission module; the wireless transmission module is used to send the first information on the wireless transmission link.
  • the FSO to HDMI module may include an FSO receiving end and a photoelectric conversion unit, and the photoelectric conversion unit is respectively connected to the FSO receiving end and the HDMI male head; the FSO receiving end is used to convert the first FSO The signal is coupled to the photoelectric conversion unit; the photoelectric conversion unit is used to convert the first FSO signal into an HDMI signal, and output the HDMI signal to the HDMI male head.
  • the FSO receiving end is further configured to set the field of view used when receiving the first FSO signal as a second angle interval, so that the light receiving port can use the field of view to receive the first FSO signal.
  • the optical receiving port is also used to receive the second FSO signal, and output the second FSO signal to the FSO receiving end.
  • the FSO receiving end detects the optical power of the second FSO signal, and sends the optical power to the wireless transmission module; the wireless transmission module is also used to send the optical power on the wireless transmission link.
  • the above optical power is used by the transmitting device to align the optical link between the transmitting device and the receiving device. This embodiment is beneficial for the sending device to adjust the optical link between the sending device and the receiving device according to the optical power, so that the receiving device can receive the first FSO signal more accurately.
  • the wireless transmission module is further configured to receive second information on the wireless transmission link, where the second information is used to indicate that the optical link between the sending device and the receiving device has been aligned, so that It is beneficial for the receiving device to connect to the display device in time. It can be seen that in the embodiment of the present application, the structure of the receiving device is asymmetrical to that of the sending device, which facilitates the structure of the receiving device to be more miniaturized and portable.
  • the embodiment of the present application provides a wireless transmission device, the wireless transmission device includes:
  • an acquisition unit configured to acquire an electrical signal from the video source device, the electrical signal carrying video data to be played by the display device;
  • a conversion unit configured to convert the electrical signal into a first FSO signal, the first FSO signal carrying video data
  • a sending unit configured to send the first FSO signal on the optical link.
  • the wireless transmission device may also be used to execute the method described in the fourth aspect.
  • the embodiment of the present application provides a wireless transmission device, which includes:
  • the receiving unit is used to receive the first FSO signal from the sending device on the optical link, and the first FSO signal carries the video data to be played by the display device;
  • a converting unit configured to convert the first FSO signal into an electrical signal carrying video data
  • the output unit is used to output the electric signal to the display device for display.
  • the wireless transmission device can also be used to implement the method described in the fifth aspect.
  • the embodiment of the present application provides a wireless transmission device, including a transceiver, a memory, and a processor;
  • transceiver used to receive signals or send signals
  • memory used to store instructions or computer programs
  • processor used to execute the computer programs or instructions stored in the memory, so that the wireless transmission device performs the method described in the fourth aspect, Or execute the method described in the fifth aspect.
  • the embodiment of the present application provides a computer-readable storage medium for storing a computer program, and when the computer program is run on the computer, the computer executes the method described in the second aspect, or causes the computer to execute the third aspect the method described.
  • the embodiment of the present application provides a chip or a chip system, the chip or chip system includes at least one processor and an interface, the interface and the at least one processor are interconnected through a line, and the at least one processor is used to run computer programs or instructions, To implement the method described in the fourth aspect or the fifth aspect.
  • the interface in the chip may be an input/output interface, a pin or a circuit, and the like.
  • the chip system in the above aspect can be a system on chip (system on chip, SOC), and can also be a baseband chip, etc., wherein the baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • SOC system on chip
  • baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • the chip or the chip system described above in the present application further includes at least one memory, and instructions are stored in the at least one memory.
  • the memory may be a storage unit inside the chip, such as a register, a cache, etc., or a storage unit of the chip (eg, a read-only memory, a random access memory, etc.).
  • the embodiment of the present application provides a computer program or a computer program product, which includes computer instructions.
  • the computer instructions When the computer instructions are run on the computer, the computer is made to execute the method described in the fourth aspect, or the computer is made to execute the fifth aspect. method described in the aspect.
  • FIG. 1 is a schematic structural diagram of an HDMI cable
  • FIG. 2 is a schematic flow diagram of a Wi-Fi wireless screen projection
  • FIG. 3 is a schematic structural diagram of a wireless transmission system 100 provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a wireless transmission system 200 provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a wireless transmission method 100 provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a sending device 301 provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a receiving device 302 provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a wireless transmission method 200 provided in an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a wireless transmission method 300 provided in an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a wireless transmission method 400 provided in an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a wireless transmission device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another wireless transmission device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another wireless transmission device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an HDMI cable, which includes an HDMI sending end (HDMI Source) and an HDMI receiving end (HDMI Sink).
  • HDMI sending end includes: HDMI transmitter (HDMI Transmitter), consumer electronics control (consumer electronics control, CEC), HDMI-Ethernet and audio return channel (HDMI Ethernet and audio return channel, HEAC), query (detcet) module.
  • the HDMI receiving end includes: HDMI Receiver (HDMI Receiver), extended display identification data (extended display identification data, EDID) read-only memory (read-only memory, ROM), CEC, HEAC.
  • HDMI Receiver HDMI Receiver
  • extended display identification data extended display identification data
  • EDID extended display identification data
  • read-only memory read-only memory
  • CEC CEC
  • HEAC HEAC
  • there are four wired channels for transmitting signals between the HDMI transmitter and the HDMI receiver including: transition-minimized differential signaling (TMDS) channel (Channel) 0, TDMS Channel 1, TDMS Channel 2, TDMS Clock Channel.
  • TMDS transition-minimized differential signaling
  • a display data channel (display data channel, DDC) between the HDMI sending end and the EDID ROM to obtain the attribute information of the display device connected to the HDMI receiving end.
  • the CEC at the HDMI sending end and the CEC at the HDMI receiving end are connected through a CEC cable (CEC Line) to support the user to use the remote control to command and control the device connected to the HDMI cable.
  • the HEAC at the HDMI sending end and the HEAC at the HDMI receiving end are connected through a utility line.
  • the HEAC channel is added in the HDMI 1.4 version to achieve sound return and can also be used to transmit network signals.
  • a hot plug detect (HPD) cable exists between the query module of the HDMI sending end and the HDMI receiving end.
  • the HDMI receiving end can be connected with the display device.
  • the HDMI sending end can monitor the status of the HPD cable. When the HPD cable is at a low (Low) level, it means that the connection between the HDMI receiving end and the display device has been disconnected; when the HPD cable is at a high (High) level, It means that the HDMI receiver has been connected to the display device.
  • the HDMI sender can be connected to a video source device that has buffered video data.
  • the HDMI sender can acquire a video (Video) signal and/or an audio (Audio) signal from a video source device, and convert it into TMDS.
  • the HDMI sender transmits TDMS to the HDMI receiver through TMDS Channel 0, TMDS Channel 1, and TMDS Channel 2.
  • the HDMI receiver can convert TMDS into video and/or audio signals, and output them to a display device for playback.
  • the transmission rate supported by the HDMI cable can reach 10.2Gbps to 18Gbps. Therefore, there is no need to compress and transmit the video and/or audio when transmitting it through the HDMI cable, so that wired projection with high-fidelity playback effect can be realized.
  • this method of screen projection is realized by using wired cables such as HDMI cables, which may cause inconvenience to users, and cannot meet the needs of screen projection anytime, anywhere.
  • FIG. 2 is a schematic flow chart of Wi-Fi wireless screen projection.
  • the wireless display transmitter can compress the acquired image into a file in H264 format (a digital video compression format), and compress the acquired audio into an advanced audio coding (AAC) format ( A file compression format designed for sound data).
  • H264 format a digital video compression format
  • AAC advanced audio coding
  • the wireless display sender mixes the above-mentioned H264 format file and the AAC format file into a transport stream (transport stream, TS), and transmits the TS based on a real time streaming protocol (real time streaming protocol, RTSP) to send to Wireless display receiver (Miracast Sink).
  • TS transport stream
  • RTSP real time streaming protocol
  • the wireless display receiving end receives TS based on RTSP, and then performs audio and video decoding on the TS to obtain pictures (images) and sounds (audio), and transmit them to the display device for display.
  • this wireless projection method can realize on-demand projection anytime and anywhere, since the wireless display sender compresses the video and audio and then sends it to the wireless display receiver, the lossy compression process may affect the video quality. /The quality of the audio is greatly lost, and the high-fidelity playback effect cannot be achieved.
  • the embodiment of the present application provides a wireless transmission system, which can use a wireless transmission link to transmit the control signal between the sending device and the receiving device, and use an optical link of free space light to transmit the control signal between the sending device and the receiving device.
  • Video data which is conducive to the realization of on-demand screen projection with high-fidelity playback effect.
  • FIG. 3 is a schematic structural diagram of a wireless transmission system 100 provided by an embodiment of the present application.
  • the wireless transmission system 100 includes a sending device 301 and a receiving device 302 .
  • a wireless transmission link is used between the sending device 301 and the receiving device 302 to transmit control signals, and an optical link of free space light is used to transmit video data.
  • the optical link is an optical link of free space optical (free space optical, FSO).
  • the receiving means 302 is used to send the first information on the wireless transmission link, and the first information is used to indicate that the receiving means 302 has connected to the display device; the sending means 301 is used to receive the first information on the wireless transmission link The first information, and send the first FSO signal on the optical link according to the first information, the first FSO signal carries the video data to be played by the display device; correspondingly, the receiving device 302 is also used to A first FSO signal is received.
  • the FSO signal is a signal transmitted by free-space light as a carrier, wherein the light wave of the free-space light can be generated by a laser diode.
  • the light wave frequency of free space light is 3 to 5 orders of magnitude higher. Therefore, the data bit rate of free space light transmission can reach more than 10Gbps, even 100Gbps, and after the subsequent upgrade and expansion, the free space light
  • the transmitted data code rate can be improved greatly. It can be seen that the wireless transmission system can satisfy uncompressed video data transmission.
  • the FSO signal can be transmitted and received by the space optical antenna.
  • the gain of the spatial optical antenna is increased by 60dBi to 90dBi. Therefore, in this wireless transmission system, the transmitting device 301 can transmit FSO signals with a lower transmission power, which can realize high-speed communication, thereby reducing The power consumption of the sending device 301.
  • the FSO signal is transmitted through an optical link, which can realize the wireless transmission of video data, which is conducive to meeting the needs of on-demand projection.
  • the wireless transmission system 100 has the advantages of large bandwidth and wireless screen projection, and can meet the needs of users for emergency high-speed links that can be connected anywhere, and is conducive to realizing on-demand screen projection with high-fidelity playback effects.
  • the wireless transmission system 100 also avoids the poor projection effect caused by signal attenuation when using an overly long cable (such as using an HDMI cable, a DP cable or a USB cable exceeding about 5 meters) to transmit a signal. The problem.
  • the wireless transmission system 100 can be applied in various screen projection scenarios.
  • the wireless transmission system 100 can be applied to screen-casting scenarios in the home, realizing the integration of mobile phones, tablets, portable game consoles, augmented reality (augmented reality, AR), virtual reality (Virtual Reality, VR), game consoles with screens, etc.
  • the video in the "small screen” device is displayed on the display screen of "big screen” devices such as TVs and home projectors, which is conducive to the realization of home entertainment scenes with diverse screens and multi-screen interaction, which in turn can improve the user's family experience. entertainment experience.
  • the wireless transmission system 100 can be applied to a screen projection scene in a conference room, and can realize video data in an office terminal or a portable terminal to be displayed on a "big screen" display device, thereby improving work efficiency.
  • the wireless transmission system 100 can be applied to screen projection scenarios in entertainment venues and/or shopping malls to realize projected games, projected videos, etc., thereby providing users with new entertainment experiences on the basis of cost-effective displays.
  • the wireless transmission link may be a low-speed communication link.
  • a low-speed communication link as the wireless transmission link can meet the transmission requirements of the first information and other content in the embodiment of the present application while saving power consumption of the sending device 301 and the receiving device 302 .
  • the low-speed communication link may be a link using wireless communication technologies such as Bluetooth and Wi-Fi (the scheme in FIG. 2 ).
  • the sending device 301 is further configured to obtain an electrical signal carrying video data from the video source device before sending the first FSO signal, and convert the electrical signal into the first FSO signal.
  • the sending device 301 may be a video source device that has buffered video data. In this way, the sending device 301 may generate an electrical signal carrying video data, and then convert the electrical signal into the first an FSO signal.
  • the sending device 301 sends the first FSO signal on the optical link according to the first information, which may include: the sending device 301 determines the first FSO signal to be sent according to the first information, and then, the sending device 301 Send the first FSO signal on an optical link. It can be seen that this embodiment is beneficial for the sending device 301 to send the first FSO signal in time.
  • the first information may include attributes of the display device.
  • the properties of the display device may include information such as the model, size, and resolution of the display device.
  • the receiving device 302 is further configured to convert the first FSO signal into an electrical signal carrying video data after receiving the first FSO signal, and output the electrical signal to a display device for display .
  • the wireless transmission system 100 combined with the video source device and the display device connected to the receiving device 302 can realize on-demand screen projection anytime and anywhere and high-fidelity playback effect.
  • FIG. 4 is a schematic structural diagram of a wireless transmission system 200 provided by an embodiment of the present application. The difference between the wireless transmission system 200 and the wireless transmission system 100 shown in FIG.
  • the sending device 301 can be connected to the video source device 303 through a high-speed data transmission cable; the receiving device 302 can be connected to the display device 304 through a high-speed data transmission cable.
  • the high-speed data transmission cable between the sending device 301 and the video source device 303 may be of the same type as the high-speed data transmission cable connecting the receiving device 302 and the display device 304 .
  • the high-speed data transmission cable may include an HDMI cable, a DP cable or a USB cable, etc.
  • the electrical signal mentioned above may be an HDMI signal, a DP signal or a USB signal.
  • the sending device 301 can be connected to the video source device 303 through the HDMI female socket; the receiving device 302 can be connected to the display device 304 through the HDMI male connector.
  • the video source device 303 is used for buffering video data, and providing an electrical signal carrying video data to the sending device 301 .
  • the sending device 301 may also send the received first information to the video source device 303, and the video source device 303 may receive the first information, and determine an electrical signal carrying video data according to the first information. Since the above-mentioned first information is used to indicate that the receiving device 302 has connected to the display device 304, the video source device 303 can know that the receiving device 302 has connected to the display device 304, and can actively input the video data carrying the video data to the sending device 301. Signal.
  • this embodiment also facilitates that the electrical signal provided by the video source device 303 to the sending device 301 is an electrical signal associated with the first information, that is, the video data carried by the electrical signal is the display device identified by the first information to be Played video data.
  • the video source device 303 may also output the first information on the display interface, and the user determines the video data to be played by the display device 304 according to the first information, and then the video source device 303 sends the electrical signal carrying the video data sent to the sending device 301.
  • the display device 304 is configured to obtain an electrical signal carrying video data from the receiving device 302, and play the video data according to the electrical signal.
  • the sending device 301 may access the video source device 303 when receiving the first information, so as to obtain an electrical signal carrying video data.
  • the receiving means 302 may send the first information to the sending means 301 after accessing the display device 304 .
  • the sending device 301 can also turn on the prompt light and/or flash the prompt light to inform the user that the sending device 301 is connected to the video source device 303. source device 303 .
  • the video source device 303 may be a smart phone (mobile phone), a smart watch, a tablet computer (Pad), a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, wireless Wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart home, wireless terminals in V2X Internet of Vehicles, etc.
  • a smart phone mobile phone
  • a smart watch a tablet computer
  • a virtual reality (virtual reality, VR) terminal device an augmented reality (augmented reality, AR) terminal device
  • wireless Wireless terminals in self driving wireless terminals in remote medical, wireless terminals in smart home, wireless terminals in V2X Internet of Vehicles, etc.
  • the display device 304 may be a TV, a projector, a computer, a tablet computer (Pad), a wireless terminal in self driving, a wireless terminal in remote medical, or a smart home ), wireless terminals in V2X Internet of Vehicles, etc.
  • the optical link of the FSO is a narrow beam from one point to another point, before transmitting the first FSO signal on the optical link , the optical link between the sending device 301 and the receiving device 302 also needs to be aligned.
  • the related operations of the alignment phase between the sending device 301 and the receiving device 302 are described below.
  • Sending device 301 is also used for sending the second FSO signal to receiving device 302 before sending the first FSO signal;
  • the device 301 sends optical power;
  • the sending device 301 is also configured to align the optical link between the sending device 301 and the receiving device 302 according to the optical power sent by the receiving device 302 . Therefore, the sending device 301 can send the first FSO signal on the aligned optical link, and then the receiving device 302 can receive the first FSO signal more accurately.
  • the sending device 301 aligns the optical link between the sending device 301 and the receiving device 302 according to the optical power sent by the receiving device 302, which may include: the sending device 301 When the condition is set, it is determined that the optical link has been aligned; or, when the optical power does not meet the preset condition, the sending device 301 determines that the optical link is not aligned, adjusts the pan/tilt equipped with the sending device 301, and executes the direction to the receiving device again. The step of the device 302 sending the second FSO signal.
  • the sending device 301 sends the second FSO signal to the receiving device 302 again after adjusting the pan/tilt; the receiving device 302 detects the optical power of the second FSO signal, and sends the optical power; the sending device 301 checks again whether the optical power meets preset conditions, until the optical power meets the preset conditions, and determine that the optical link has been aligned.
  • the sending device 301 adjusts the pan-tilt on which the sending device 301 is mounted, which can be realized by adjusting the deflection angle of the pan-tilt.
  • the sending device 301 can align the optical link by adjusting the pan/tilt, and the receiving device 302 does not need to perform an adjustment operation. Then, the receiving device 302 does not need to be equipped with components for performing adjustment operations such as a pan/tilt, which can reduce the structure of the receiving device 302 , thereby making the receiving device 302 more convenient and cost-effective.
  • the preset condition may be that the optical power belongs to the first power range.
  • the sending device 301 determines that the optical link is aligned; when the optical power does not belong to the first power range, the sending device 301 determines that the optical link is not aligned.
  • the foregoing first power range may be predefined, or determined through negotiation between the sending device 301 and the receiving device 302 .
  • the preset condition may be that the optical power is greater than or equal to a first power threshold.
  • the sending device 301 determines that the optical link is aligned; when the optical power is less than the first power threshold, the sending device 301 determines that the optical link is not aligned.
  • the foregoing first power threshold may be predefined, or determined through negotiation between the sending device 301 and the receiving device 302 .
  • the sending device 301 is further configured to send second information to the receiving device 302 on the wireless transmission link when the optical link between the sending device 301 and the receiving device 302 is aligned, the The second information is used to indicate that the optical link is aligned.
  • the receiving device 302 is further configured to receive the second information from the sending device 301 on the wireless transmission link. Therefore, the receiving device 302 can know that the optical link has been aligned, which is beneficial for the receiving device 302 to connect to the display device in time.
  • the sending device 301 is also used to turn on the indicator light and/or blink the indicator light in the sending device 301 when the optical link between the sending device 301 and the receiving device 302 is aligned, To inform the user that the optical link is aligned. It can be seen that this embodiment is beneficial for the user to connect the receiving device 302 to the display device in time.
  • optical link alignment related operations performed by the sending device 301 may be performed before it is connected to the video source device, or after it is connected to the video source device.
  • optical link alignment is beneficial to enable the first FSO signal carrying video data to be transmitted through the aligned optical link, so that the receiving device 302 can receive the first FSO signal more accurately.
  • the related operations between the sending device 301 and the receiving device 302 can be divided into an alignment phase, a link building phase, and a transmission phase.
  • the schematic diagram is explained.
  • the alignment phase includes: the sending device 301 sends the second FSO signal to the receiving device 302; the receiving device 302 detects the optical power of the received second FSO signal, and sends the optical power on the wireless transmission link; the sending device 301 When determining that the optical link is not aligned according to the optical power, adjust the pan/tilt equipped with the transmitting device 301, and perform the step of sending the second FSO signal to the receiving device 302 again; the transmitting device 301 determines that the optical link is aligned according to the optical power On time, sending second information on the wireless transmission link, where the second information is used to indicate that the optical link is aligned.
  • the link building stage includes: after receiving the second information, the receiving device 302 accesses the display device, and sends the first information on the wireless transmission link, and the first information is used to indicate that the receiving device 302 has connected to the display device; Device 301 sends the received first information to the video source device.
  • the transmission phase includes: the sending device 301 acquires an electrical signal carrying video data from the video source device, converts the electrical signal into a first FSO signal, and then sends the first FSO signal over an optical link.
  • the receiving device 302 converts the received first FSO signal into an electrical signal and outputs it to a display device for display.
  • the link establishment stage shown in FIG. 5 may also include: the video source device 303 receives the first information from the sending device 301; the transmission stage shown in FIG. 5 may also include: The video source device 303 sends an electrical signal carrying video data to the sending device 301 according to the first information; the display device 304 receives the electrical signal from the receiving device 302 and plays the video data according to the electrical signal.
  • the control signal/management signal carrying the first information or the second information can be transmitted through the wireless transmission link, and the FSO carrying the video data
  • the signal can be transmitted through the aligned optical link, so as to realize the wireless, uncompressed and high-speed transmission of the video data to be played on the display device, which is conducive to the realization of on-demand screen projection with high-fidelity playback effect.
  • the possible structures of the sending device 301 and the receiving device 302 are introduced below by taking the sending device connected to the video source device through the HDMI cable and the receiving device connected to the display device through the HDMI cable as an example.
  • the control signal or management signal transmitted by the wireless transmission link may be an HDMI control signal or an HDMI management signal.
  • FIG. 6 is a schematic structural diagram of a sending device 301 provided in an embodiment of the present application.
  • the transmitting device 301 may include an HDMI female seat 3011, an HDMI to FSO module 3012 and an optical emission port 3013; the HDMI to FSO module 3012 is respectively connected to the HDMI female seat 3011 and the optical emission port 3013, and the HDMI female seat 3011 is also connected to the video source device The HDMI male in the mating connection.
  • the HDMI to FSO module 3012 is used to obtain the HDMI signal from the HDMI male in the video source device through the HDMI female socket 3011, convert the HDMI signal into a first FSO signal, and output the first FSO signal to the optical transmitter Port 3013; the optical transmit port 3013 is used to send the first FSO signal on the optical link.
  • the aforementioned HDMI signal and the first FSO signal respectively carry video data to be played by the display device.
  • the sending device 301 transmits the first FSO signal carrying video data through an optical link, which is beneficial to realize the wireless, uncompressed high-speed transmission of the video data to be played on the display device, and further facilitates the realization of high-fidelity playback. Effect on-demand screencasting.
  • the sending device 301 can not only convert HDMI signals to FSO signals, but also convert high-definition digital display interface DP signals to FSO signals.
  • Module and light emission port 3013 The DP-to-FSO module is respectively connected with the DP female socket and the light emitting port 3013, and the DP female socket is also connected with the DP male connector in the video source device.
  • the DP to FSO module is used to obtain the DP signal from the DP male in the video source device through the DP female socket, convert the DP signal into a first FSO signal, and output the first FSO signal to the optical transmission port;
  • the optical transmit port 3013 is used to transmit the first FSO signal on the optical link.
  • each module or device in the sending device 301 may refer to the relevant content described in FIG. 6 , and will not be described in detail here.
  • the sending device 301 can not only convert HDMI signals to FSO signals, but also convert USB signals from Universal Serial Bus to FSO signals.
  • the USB-to-FSO module is respectively connected with the USB interface socket and the light emitting port, and the USB interface socket is also connected with the USB interface male in the video source device.
  • the USB to FSO module is used to obtain the USB signal from the USB interface male in the video source device through the USB interface female socket, convert the USB signal into the first FSO signal, and output the first FSO signal to the optical transmitter Port 3013; the optical transmit port 3013 is used to send the first FSO signal on the optical link.
  • USB signal and the first FSO signal respectively carry video data to be played by the display device.
  • functions of each module or device in the sending device 301 may refer to the relevant content described in FIG. 6 , and will not be described in detail here.
  • the structure of the sending device 301 will be further described by taking the sending device 301 as an example for converting an HDMI signal to an FSO signal.
  • the sending device 301 also includes a wireless transmission module 3014, the wireless transmission module 3014 is connected to the HDMI socket 3011; the wireless transmission module 3014 is used to receive the first information on the wireless transmission link, and output the first information to the HDMI female socket 3011, the first information is used to indicate that the receiving device has been connected to the display device; the HDMI female socket 3011 outputs the first information to the video source device through the HDMI male head of the video source device; wherein, the HDMI to FSO module 3012 Associate the HDMI signal obtained from the HDMI male connector of the video source device through the HDMI female socket 3011 with the first information.
  • the wireless transmission module 3014 may be a low-speed transmission module, and correspondingly, the wireless transmission link may be a low-speed communication link.
  • the wireless transmission module 3014 may be a wireless communication module such as Bluetooth or Wi-Fi, and the low-speed communication link may be a link using wireless communication technologies such as Bluetooth or Wi-Fi.
  • the HDMI to FSO module 3012 may include a photoelectric conversion unit 30121 and an FSO transmitter 30122, the photoelectric conversion unit 30121 is connected to the FSO transmitter 30122; the photoelectric conversion unit 30121 is used to convert the HDMI signal convert to a first FSO signal, and couple the first FSO signal to the FSO transmitting end 30122 , and the FSO transmitting end 30122 is used to process the first FSO signal and output it to the optical transmitting port 3013 .
  • the FSO transmitter 30122 may process the first FSO signal by setting the value of the beam spread angle of the first FSO signal as the first angle interval.
  • the FSO transmitting end 30122 may include a laser diode, and the laser diode may generate an FSO signal.
  • the light emitting port 3013 may be a device such as a prism.
  • the wireless transmission module 3014 is also used to trigger the FSO transmitting end 30122 to generate a second FSO signal, and the FSO transmitting end 30122 outputs the second FSO signal to the optical transmitting port 3013, and the optical transmitting port 3013
  • the second FSO signal is sent over the optical link.
  • the wireless transmission module 3014 is also configured to receive the optical power sent by the receiving device on the wireless transmission link, so that the sending device 301 determines whether the optical link between the sending device 301 and the receiving device is aligned according to the optical power.
  • the optical power is the optical power of the second FSO signal detected by the receiving device.
  • the sending device 301 also includes a pan-tilt control module 3015 and a pan-tilt actuator 3016, and the pan-tilt control module 3015 communicates with the wireless transmission module 3014 and the pan-tilt actuator respectively. 3016 connections.
  • the wireless transmission module 3014 is also used to output the optical power to the pan-tilt control module 3015; the pan-tilt control module 3015 is used to output the second information to the wireless transmission module when the optical power meets a preset condition 3014, the second information is used to indicate that the optical link between the sending device 301 and the receiving device has been aligned; the pan/tilt control module 3015 is also used to control the pan/tilt to The signal is output to the pan-tilt actuator 3016, and the pan-tilt actuator 3016 controls the pan-tilt according to the pan-tilt control signal.
  • pan/tilt actuator 3016 is also used to send a trigger message to the wireless transmission module 3014 through the pan/tilt control module 3015, and the wireless transmission module 3014 responds to the trigger message to trigger the FSO transmitter 30122 to generate the second FSO signal again, and pass The optical transmitting port 3013 sends the second FSO signal, so that the above-mentioned modules perform related operations again to align the optical links.
  • this embodiment can automatically adjust the optical link between the transmitting device 301 and the receiving device for alignment according to the optical power sent by the receiving device, and then inform the receiving device that the optical link has been aligned through the second information, so that The receiving device is connected to the display device in time.
  • FIG. 7 is a schematic structural diagram of a receiving device 302 provided by an embodiment of the present application.
  • the receiving device 302 may include an optical receiving port 3021, an FSO to HDMI module 3022, and an HDMI male head 3023; the FSO to HDMI module 3022 is respectively connected to the optical receiving port 3021 and the HDMI male head 3023, and the HDMI male head 3023 is also connected to the display device.
  • the HDMI female socket is matched with the connection.
  • the optical receiving port 3021 is used to receive the first FSO signal on the optical link, and output the first FSO signal to the FSO to HDMI module 3022;
  • the FSO to HDMI module 3022 is used to convert the first FSO signal to HDMI signal, and output the HDMI signal to the HDMI male 3023;
  • the HDMI male 3023 outputs the HDMI signal to the display device through the HDMI female socket in the display device.
  • the above-mentioned first FSO signal and HDMI signal respectively carry video data to be played by the display device.
  • the receiving device 302 receives the first FSO signal carrying video data through an optical link, which is beneficial to realize the wireless, uncompressed high-speed transmission of the video data to be played on the display device, and further facilitates the realization of high-fidelity playback. Effect on-demand screencasting.
  • the receiving device 302 can not only convert FSO signals to HDMI signals, but also convert FSO signals to high-definition digital display interface DP signals.
  • the receiving device 302 can include optical receiving ports 3021, FSO Transfer to DP module and DP male head.
  • the FSO to DP module is respectively connected with the light receiving port 3021 and the DP male head, and the DP male head is also connected with the DP female socket in the display device.
  • the optical receiving port 3021 is used to receive the first FSO signal on the optical link, and output the first FSO signal to the FSO to DP module; the FSO to DP module is used to convert the first FSO signal to a DP signal, And output the DP signal to the DP male head; the DP male head outputs the DP signal to the display device through the DP female socket in the display device.
  • the above-mentioned first FSO signal and DP signal respectively carry video data to be played by the display device.
  • the functions of each module or device in the receiving device 302 may refer to the related content described in FIG. 7 , and will not be described in detail here.
  • the receiving device 302 can not only convert FSO signals to HDMI signals, but also convert FSO signals to Universal Serial Bus USB signals.
  • the receiving device 302 can include optical receiving ports 3021, FSO Convert USB module and USB interface male.
  • the FSO-to-USB module is respectively connected to the optical receiving port 3021 and the male USB interface, and the male USB interface is also connected to the female USB interface in the display device.
  • the optical receiving port 3021 is used to receive the first FSO signal on the optical link, and output the first FSO signal to the FSO to USB module;
  • the FSO to USB module is used to convert the first FSO signal into a USB signal, And output the USB signal to the USB interface male head;
  • the USB interface male head outputs the USB signal to the display device through the USB interface socket in the display device.
  • the above-mentioned first FSO signal and USB signal respectively carry video data to be played by the display device.
  • the functions of each module or device in the receiving device may refer to the related content described in FIG. 7 , and will not be described in detail here.
  • the structure of the receiving device 302 will be further described by taking the receiving device 302 as an example for converting an FSO signal to a DP signal.
  • the receiving device 302 further includes a wireless transmission module 3024 , and the wireless transmission module 3024 is connected to the HDMI male connector 3023 .
  • the FSO to HDMI module 3022 is also used to access the display device through the HDMI male 3023 to determine the first information, which is used to indicate that the receiving device 302 has been connected to the display device; the HDMI male 3023 is also used to connect the first The information is output to the wireless transmission module 3024; the wireless transmission module 3024 is used for sending the first information on the wireless transmission link.
  • the wireless transmission module 3024 may be a low-speed transmission module, and correspondingly, the wireless transmission link may be a low-speed communication link.
  • the wireless transmission module 3024 may be a wireless communication module such as Bluetooth or Wi-Fi, and the low-speed communication link may be a link using wireless communication technologies such as Bluetooth or Wi-Fi.
  • the FSO to HDMI module 3022 may include an FSO receiving end 30221 and a photoelectric conversion unit 30222, and the photoelectric conversion unit 30222 is respectively connected to the FSO receiving end 30221 and the HDMI male head 3023; the FSO receiving end 30221 is used to couple the first FSO signal to the photoelectric conversion unit 30222; the photoelectric conversion unit 30222 is used to convert the first FSO signal into an HDMI signal, and output the HDMI signal to the HDMI male head 3023.
  • the FSO receiving end 30221 is further configured to set the viewing angle used when receiving the first FSO signal as a second angle range, so that the light receiving port 3021 can receive the first FSO signal using the viewing angle.
  • the light receiving port 3021 may be a device such as a prism.
  • the optical receiving port 3021 is also used to receive the second FSO signal, and output the second FSO signal to the FSO receiving end 30221 .
  • the FSO receiving end 30221 detects the optical power of the second FSO signal, and sends the optical power to the wireless transmission module 3024; the wireless transmission module 3024 is also configured to send the optical power on the wireless transmission link.
  • the aforementioned optical power is used by the sending device to align the optical link between the sending device and the receiving device 302 . This implementation manner is beneficial to enable the sending device to send the first FSO signal on the aligned optical link, thereby facilitating the receiving device 302 to receive the first FSO signal more accurately.
  • the wireless transmission module 3024 is further configured to receive second information on the wireless transmission link, where the second information is used to indicate that the optical link between the sending device and the receiving device 302 has been aligned , so as to facilitate the receiving device 302 to access the display device in time.
  • the receiving device 302 receives the first FSO signal carrying video data through an optical link, which is beneficial to realize the wireless, uncompressed high-speed transmission of the video data to be played on the display device, and further facilitates the realization of high-fidelity playback. Effect on-demand screencasting.
  • the structure shown in the embodiment of the present invention does not constitute a specific limitation on the sending device and/or the receiving device.
  • the sending device and/or the receiving device may include more or fewer components than shown in the illustrations, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • FIG. 8 is a schematic diagram of a wireless transmission method 200 provided by an embodiment of the present application.
  • the first FSO signal and /or the second FSO signal is sent with a large beam divergence angle, which is beneficial to expand the receiving range of the receiving device 302 and is more suitable for indoor scenarios.
  • the first FSO signal and/or the second FSO signal are received with a large field of view. Therefore, it is beneficial to improve the transmission effect of the first FSO signal and/or the second FSO signal.
  • a large beam divergence angle of tens of degrees can be used to send FSO signals, which is more suitable for indoor scenarios.
  • the value of the above-mentioned large beam divergence angle belongs to the first angle interval, and the value of the large field of view angle belongs to the second angle interval.
  • the first angle interval and the second angle interval may be predefined, or determined through negotiation between the sending device 301 and the receiving device 302 .
  • the user may predefine the first angle interval as (0, 90°] and the second angle interval as (0, 180°] according to experience values.
  • the wireless transmission link between the wireless transmission module 3013 and the wireless transmission module 3023 can be used to transmit HDMI control signals, HDMI management signal and the optical power of the second FSO signal, etc.
  • the HDMI control signal and/or the HDMI management signal include a signal carrying first information or second information, the first information is used to indicate that the receiving device 302 has connected to the display device 304, and the second information is used to indicate that the optical link Aligned.
  • FIG. 9 is a schematic flowchart of a wireless transmission method 300 provided by an embodiment of the present application.
  • the wireless transmission method 300 can be applied to the wireless transmission system shown in FIG. 3 or FIG. 4, from the sending device and the receiving device From an interactive point of view.
  • the wireless transmission method includes the following steps:
  • the sending device acquires an electrical signal from a video source device, and the electrical signal carries video data to be played by a display device.
  • the sending device converts the electrical signal into a first FSO signal, where the first FSO signal carries video data.
  • the sending device sends the first FSO signal on the optical link.
  • the receiving device receives the first FSO signal from the sending device on the optical link.
  • the receiving device converts the first FSO signal into an electrical signal carrying video data.
  • the receiving device outputs the electrical signal to a display device for display.
  • the method before the receiving device receives the first FSO signal from the sending device on the optical link, the method further includes: the receiving device sends first information on the wireless transmission link, the first information It is used to indicate that the receiving device has connected to the display device.
  • the sending device receives the first information on the wireless transmission link.
  • the sending device sending the first FSO signal on the optical link includes: the sending device sending the first FSO signal to the receiving device on the optical link according to the first information.
  • the wireless transmission link is a low-speed communication link.
  • the low-speed communication link may be a link using wireless communication technologies such as Bluetooth and Wi-Fi.
  • wireless communication technologies such as Bluetooth and Wi-Fi.
  • the method further includes: after receiving the first information, the sending device sends the first information to the video source device.
  • the sending device sends the first information to the video source device.
  • the method before the sending device sends the first FSO signal on the optical link, the method further includes: the sending device sends the second FSO signal to the receiving device.
  • the receiving device receives the second FSO signal from the sending device, and detects the optical power of the second FSO signal.
  • the receiving device then sends optical power over the wireless transmission link to the sending device, the optical power being used by the sending device to align the optical link between the sending device and the receiving device.
  • the sending device receives the optical power from the receiving device on the wireless transmission link, and then aligns the optical link between the sending device and the receiving device according to the optical power sent by the receiving device.
  • this embodiment refer to relevant descriptions of the alignment phase between the sending device and the receiving device, and details are not repeated here.
  • the sending device aligns the optical link between the sending device and the receiving device according to the optical power sent by the receiving device, including: when the optical power meets a preset condition, the sending device determines Optical link is aligned. Alternatively, when the optical power does not meet the preset condition, the sending device determines that the optical link is not aligned, adjusts the pan/tilt equipped with the sending device, and executes the step of sending the second FSO signal to the receiving device again.
  • the method further includes: when the optical link is aligned, the sending device sends second information to the receiving device on the wireless transmission link, where the second information is used to indicate that the optical link has been aligned. alignment.
  • the receiving device receives the second information from the sending device on the wireless transmission link.
  • the preset condition may be that the optical power belongs to the first power range.
  • the sending device determines that the optical link is aligned when the optical power belongs to the first power range.
  • the sending device determines that the optical link is misaligned when the optical power does not belong to the first power range.
  • the foregoing first power range may be predefined, or determined through negotiation between the sending device and the receiving device 302 .
  • the preset condition may be that the optical power is greater than or equal to the first power threshold.
  • the sending device determines that the optical link is aligned when the optical power is greater than or equal to the first power threshold.
  • the sending device determines that the optical link is misaligned when the optical power is less than the first power threshold.
  • the foregoing first power threshold may be predefined, or determined through negotiation between the sending device 301 and the receiving device 302 .
  • the first FSO signal and/or the second FSO signal are sent using a large beam divergence angle, and the value of the large beam divergence angle belongs to the first angle range.
  • This embodiment is beneficial to expand the receiving range of the receiving device, and is more suitable for indoor scenes.
  • the first FSO signal and/or the second FSO signal are received with a large viewing angle, and the value of the large viewing angle belongs to the second angle range. Therefore, it is beneficial to improve the transmission effect of the first FSO signal and/or the second FSO signal.
  • first angle interval and second angle interval may be predefined, or determined through negotiation between the receiving device and the sending device.
  • the user may predefine the first angle interval as (0, 90°] and the second angle interval as (0, 180°] according to experience values.
  • the sending device obtains an electrical signal from the video source device, and the electrical signal carries the video data to be played by the display device; then converts the electrical signal into a first FSO signal, and the first FSO signal Video data is carried; then the first FSO signal is sent over the optical link.
  • the receiving device receives the first FSO signal from the sending device on the optical link; then converts the first FSO signal into an electrical signal carrying video data; and then outputs the electrical signal to a display device for display. It can be seen that the FSO signal carrying video data is transmitted through an optical link, thereby facilitating wireless transmission of video data to be played on a display device.
  • the transmission rate of the FSO signal can reach 10-100Gbps, which can meet the requirements of uncompressed video data transmission, thereby realizing the uncompressed high-speed transmission of video data, and the wireless transmission method is conducive to the realization of on-demand projection with high-fidelity playback effect. Screen.
  • FIG. 10 is a schematic flowchart of a wireless transmission method 400 provided by the embodiment of the present application.
  • the wireless transmission method 400 can be applied to the wireless transmission system shown in FIG. Elaborate from the perspective of interaction between devices and display devices.
  • the wireless transmission method includes the following steps:
  • the sending device sends a second FSO signal to the receiving device.
  • the receiving device receives the second FSO signal from the sending device.
  • the video source device may have been connected to the sending device, or it may not have been connected to the sending device.
  • the receiving device detects the optical power of the second FSO signal.
  • the receiving device sends optical power on the wireless transmission link.
  • the receiving device receives the optical power from the receiving device on the wireless transmission link.
  • the sending device judges whether the optical power satisfies a preset condition. When the optical power does not meet the preset condition, execute step S1005; when the optical power meets the preset condition, execute steps S1006-S1015.
  • the sending device adjusts the pan/tilt equipped with the sending device, and executes step S1001 again.
  • the sending device sends second information to the receiving device on the wireless transmission link, where the second information is used to indicate that the optical link has been aligned.
  • the receiving device receives the second information from the sending device on the wireless transmission link.
  • the receiving device accesses the display device, and determines first information, where the first information is used to indicate that the receiving device has connected to the display device.
  • the receiving device sends the first information on the wireless transmission link.
  • the sending device receives the first information from the receiving device on the wireless transmission link.
  • the sending device sends the first information to the video source device.
  • the video source device receives the first information from the sending device.
  • the video source device inputs an electrical signal carrying video data to the sending device.
  • the sending device receives the electrical signal.
  • the sending device converts the electrical signal into a first FSO signal, where the first FSO signal carries video data.
  • the sending device sends the first FSO signal on the optical link.
  • the receiving device receives the first FSO signal from the sending device on the optical link.
  • the receiving device converts the first FSO signal into an electrical signal, where the electrical signal carries video data.
  • the receiving device outputs the electrical signal carrying the video data to the display device.
  • the display device receives the electrical signal.
  • the display device displays video data according to the electrical signal.
  • step S1001 to step S1015 For specific implementation manners from step S1001 to step S1015, reference may be made to the corresponding description in the wireless transmission method shown in FIG. 9 , and details are not repeated here.
  • the FSO signal carrying the video data is transmitted to the receiving device through an optical link, thereby facilitating the wireless transmission of the video data to be played on the display device.
  • the transmission rate of the FSO signal can reach 10-100Gbps, which can meet the requirements of uncompressed video data transmission, thereby realizing the uncompressed high-speed transmission of video data, and the wireless transmission method is conducive to the realization of on-demand projection with high-fidelity playback effect. Screen.
  • FIG. 11 is a schematic structural diagram of a wireless transmission device provided by an embodiment of the present application.
  • the wireless transmission device 1100 includes: an acquiring unit 1101 , a converting unit 1102 , and a sending unit 1103 .
  • An acquiring unit 1101 configured to acquire an electrical signal from a video source device, the electrical signal carrying video data to be played by the display device;
  • a conversion unit 1102 configured to convert the electrical signal into a first free-space optical FSO signal, where the first FSO signal carries video data;
  • the sending unit 1103 is further configured to send the first FSO signal on the optical link.
  • the wireless transmission device further includes: a receiving unit 1104; the receiving unit 1104 is configured to receive first information on a wireless transmission link, and the first information is used to indicate that the receiving device has accessed display screen;
  • the sending unit 1103 When the sending unit 1103 is configured to send the first FSO signal over the optical link, it is specifically configured to perform: the sending device sends the first FSO signal to the receiving device over the optical link according to the first information.
  • the wireless transmission link is a low-speed communication link.
  • the low-speed communication link may be a link using wireless communication technologies such as Bluetooth and Wi-Fi.
  • the sending unit 1103 is further configured to, after receiving the first information, send the first information to the video source device.
  • the sending unit 1103 is further configured to send the second FSO signal to the receiving device before sending the first FSO signal on the optical link;
  • the receiving unit 1104 is also configured to receive the optical power sent by the receiving device on the wireless transmission link; the optical power is the optical power of the second FSO signal detected by the receiving device;
  • the alignment unit 1105 is configured to align the optical link between the sending device and the receiving device according to the optical power sent by the receiving device.
  • the alignment unit 1105 is configured to align the optical link between the sending device and the receiving device according to the optical power sent by the receiving device, and is specifically configured to perform:
  • the sending unit 1103 is further configured to send second information to the receiving device on the wireless transmission link when the optical link is aligned; the second information is used to indicate that the optical link has been aligned. alignment.
  • the first FSO signal and/or the second FSO signal are sent using a large beam divergence angle, and the value of the large beam divergence angle belongs to the first angle interval.
  • the foregoing wireless transmission apparatus 1100 may be configured to perform related operations in the foregoing method embodiments, which will not be described in detail here.
  • FIG. 12 is a schematic structural diagram of another wireless transmission device provided by an embodiment of the present application.
  • the wireless transmission device 1200 includes: a receiving unit 1201 , a converting unit 1202 , and an output unit 1203 .
  • the receiving unit 1201 is configured to receive a first FSO signal from the sending device on the optical link, the first FSO signal carrying video data to be played by the display device;
  • a conversion unit 1202 configured to convert the first FSO signal into an electrical signal carrying video data
  • the output unit 1203 is configured to output the electric signal to the display device for display.
  • the wireless transmission device further includes a sending unit 1204; the sending unit 1204 is configured to send first information on the wireless transmission link, where the first information is used to indicate that the receiving device has accessed the display equipment.
  • the wireless transmission link is a low-speed communication link.
  • the low-speed communication link may be a link using wireless communication technologies such as Bluetooth and Wi-Fi.
  • the receiving unit 1201 is further configured to receive a second FSO signal from the sending device before receiving the first FSO signal from the sending device on the optical link;
  • a detection unit 1205, configured to detect the optical power of the second FSO signal
  • the sending unit 1204 is further configured to send optical power to the sending device on the wireless transmission link, and the optical power is used by the sending device to align the optical link between the sending device and the receiving device.
  • the receiving unit 1201 is further configured to receive second information from the sending device on the wireless transmission link, where the second information is used to indicate that the optical link has been aligned.
  • the first FSO signal and/or the second FSO signal are received using a large field of view, and the value of the large field of view belongs to the second angle range.
  • the foregoing wireless transmission apparatus 1200 may be configured to perform related operations in the foregoing method embodiments, which will not be described in detail here.
  • FIG. 13 is a schematic structural diagram of another wireless transmission device provided by an embodiment of the present application.
  • the wireless transmission apparatus 1300 may be a device (such as a chip) capable of executing the wireless transmission method in the embodiment of FIG. 9 .
  • the wireless transmission device may include a transceiver 1301 , at least one processor 1302 and a memory 1303 .
  • the transceiver 1301, the processor 1302 and the memory 1303 may be connected to each other through one or more communication buses, or may be connected in other ways.
  • the transceiver 1301 may be used to send data or receive data. It can be understood that the transceiver 1301 is a general term and may include a receiver and a transmitter.
  • the processor 1302 may be configured to process data of the wireless transmission device 1300 .
  • the processor 1302 may include one or more processors, for example, the processor 1302 may be one or more central processing units (central processing unit, CPU), network processor (network processor, NP), hardware chips or any combination thereof .
  • the processor 1302 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the memory 1303 is used to store program codes and the like.
  • the memory 1303 may include a volatile memory (volatile memory), such as a random access memory (random access memory, RAM); the memory 1303 may also include a non-volatile memory (non-volatile memory), such as a read-only memory (read-only memory). only memory, ROM), flash memory (flash memory), hard disk (hard disk drive, HDD) or solid-state drive (solid-state drive, SSD); the memory 1303 may also include a combination of the above-mentioned types of memory.
  • processor 1302 and the memory 1303 may be coupled through an interface, or may be integrated together, which is not limited in this embodiment.
  • transceiver 1301 and processor 1302 can be used to perform related operations of the sending device in the wireless transmission method shown in FIG. 9 , wherein the specific implementation is as follows:
  • a transceiver 1301, configured to obtain an electrical signal from a video source device, the electrical signal carrying video data to be played by the display device;
  • a processor 1302 configured to convert the electrical signal into a first FSO signal, where the first FSO signal carries video data;
  • the transceiver 1301 is further configured to send the first FSO signal on the optical link.
  • the transceiver 1301 is further configured to receive first information on a wireless transmission link, where the first information is used to indicate that the receiving apparatus has connected to the display device;
  • the transceiver 1301 When the transceiver 1301 sends the first FSO signal on the optical link, it is specifically configured to: send the first FSO signal to the receiving device on the optical link according to the first information.
  • the wireless transmission link is a low-speed communication link.
  • the low-speed communication link may be a link using wireless communication technologies such as Bluetooth and Wi-Fi.
  • the transceiver 1301 is further configured to, after receiving the first information, send the first information to the video source device.
  • the transceiver 1301 is further configured to send the second FSO signal to the receiving device before sending the first FSO signal on the optical link;
  • the transceiver 1301 is also used to receive the optical power sent by the receiving device on the wireless transmission link, where the optical power is the optical power of the second FSO signal detected by the receiving device;
  • the processor 1302 is further configured to align the optical link between the wireless transmission device and the receiving device according to the optical power sent by the receiving device.
  • the processor 1302 when aligning the optical link between the wireless transmission device and the receiving device according to the optical power sent by the receiving device, is specifically configured to:
  • the transceiver 1301 is further configured to send second information to the receiving device on the wireless transmission link when the optical link is aligned, and the second information is used to indicate that the optical link has been aligned. alignment.
  • the first FSO signal and/or the second FSO signal are sent using a large beam divergence angle, and the value of the large beam divergence angle belongs to the first angle interval.
  • transceiver 1301 and processor 1302 may be used to perform related operations in the above-mentioned method embodiments, which will not be described in detail here.
  • the above-mentioned transceiver 1301 and processor 1302 can be used to perform related operations of the receiving device in the wireless transmission method shown in FIG. 9 , wherein the specific implementation manner is as follows:
  • a transceiver 1301, configured to receive a first free-space optical FSO signal from the sending device on an optical link, the first FSO signal carrying video data to be played by the display device;
  • a processor 1302 configured to convert the first FSO signal into an electrical signal carrying video data
  • the transceiver 1301 is also used to output electrical signals to a display device for display.
  • the transceiver 1301 is further configured to send the first information on the wireless transmission link before receiving the first FSO signal from the sending device on the optical link, and the first information is used for Indicates that the receiving device has been connected to the display device.
  • the wireless transmission link is a low-speed communication link.
  • the low-speed communication link may be a link using wireless communication technologies such as Bluetooth and Wi-Fi.
  • the transceiver 1301 is further configured to receive a second FSO signal from the sending device before receiving the first FSO signal from the sending device on the optical link;
  • the processor 1302 is also configured to detect the optical power of the second FSO signal
  • the transceiver 1301 is further configured to send optical power to the sending device on the wireless transmission link, and the optical power is used by the sending device to align the optical link between the sending device and the receiving device.
  • the transceiver 1301 is further configured to receive second information from the sending device on the wireless transmission link, where the second information is used to indicate that the optical link has been aligned.
  • the first FSO signal and/or the second FSO signal are received using a large field of view, and the value of the large field of view belongs to the second angle interval.
  • transceiver 1301 and processor 1302 may be used to perform related operations in the above-mentioned method embodiments, which will not be described in detail here.
  • An embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a program or an instruction, and when the program or instruction is run on a computer, the computer executes the wireless transmission method in the embodiment of the present application.
  • An embodiment of the present application provides a chip or a chip system, the chip or chip system includes at least one processor and an interface, the interface and the at least one processor are interconnected through lines, and the at least one processor is used to run computer programs or instructions to execute the present application The wireless transmission method in the embodiment.
  • the interface in the chip may be an input/output interface, a pin or a circuit, and the like.
  • the chip system in the above aspect can be a system on chip (system on chip, SOC), and can also be a baseband chip, etc., wherein the baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • SOC system on chip
  • baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • the chip or the chip system described above in this application further includes at least one memory, and instructions are stored in the at least one memory.
  • the memory may be a storage unit inside the chip, such as a register, a cache, etc., or a storage unit of the chip (eg, a read-only memory, a random access memory, etc.).
  • An embodiment of the present application provides a computer program or a computer program product, which includes codes or instructions, and when the codes or instructions are run on a computer, the computer executes the wireless transmission method in the embodiment of the present application.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted via a computer-readable storage medium.
  • the computer instructions may be transmitted from one web site, computer, server, or data center to another web site, computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)), etc.
  • the processes can be completed by computer programs to instruct related hardware.
  • the programs can be stored in computer-readable storage media.
  • When the programs are executed may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random access memory RAM, magnetic disk or optical disk, and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本申请实施例提供一种无线传输系统、方法及装置,该无线传输系统(100)包括发送装置(301)和接收装置(302),其中,接收装置用于在无线传输链路上发送第一信息,该第一信息用于指示接收装置已接入显示设备;发送装置用于在无线传输链路上接收第一信息,并根据第一信息在光链路上发送第一自由空间光FSO信号,该第一FSO信号携带了显示设备待播放的视频数据;接收装置还用于在光链路上接收该第一FSO信号。可见,该无线传输系统中,接收装置已接入显示设备的第一信息可通过无线传输链路传输,携带视频数据的FSO信号通过光链路传输,能够实现显示设备上待播放的视频数据的无线、无压缩高速传输,进而有利于实现具有高保真播放效果的随需投屏。

Description

无线传输系统、方法及装置
本申请要求于2021年6月30日提交中国国家知识产权局、申请号202110745455.6、申请名称为“无线传输系统、方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种无线传输系统、方法及装置。
背景技术
投屏技术可将终端设备的视频数据投放到其他终端设备的显示屏上进行显示。用户利用投屏技术可以满足“小屏内容,大屏观看”的需求。例如,手机中的视频可投放到电视上进行播放,这样,用户可以在电视上观看所投放的视频,获得更好的视频观看体验。
随着投屏技术的不断发展,随需投屏的用户需求也愈加强烈,同时,用户对于投屏效果的要求也越来越高。例如,针对视频的高保真播放效果的要求,即投屏在其他终端设备上的视频在播放时,能够尽可能地维持原终端设备上的播放效果。因此,如何实现具有高保真播放效果的随需投屏成为一个亟待解决的问题。
发明内容
本申请实施例提供一种无线传输系统、方法及装置,有利于实现具有高保真播放效果的随需投屏。
第一方面,本申请提供一种无线传输系统,该无线传输系统包括发送装置和接收装置。其中,接收装置用于在无线传输链路上发送第一信息,该第一信息用于指示接收装置已接入显示设备;发送装置用于在无线传输链路上接收第一信息,并根据第一信息在光链路上发送第一自由空间光(Free Space Optical,FSO)信号,该第一FSO信号携带了显示设备待播放的视频数据;接收装置还用于在光链路上接收第一FSO信号。
可见,该无线传输系统中,接收装置已接入显示设备的第一信息可通过无线传输链路传输以告知发送装置,携带视频数据的FSO信号通过光链路传输给接收装置,从而实现该显示设备上待播放的视频数据的无线、无压缩高速传输,进而有利于实现具有高保真播放效果的随需投屏。
也就是说,该无线传输系统中,无线传输链路和光链路有利于实现用户随需投屏的需求,FSO信号的传输速率可达10~100Gbps,可满足无压缩的视频数据传输,有利于实现高保真的播放效果。
在一种可选的实施方式中,无线传输链路是低速通信链路。采用低速通信链路作为无线传输链路,可以满足本申请实施例中第一信息等内容的传输需求的同时,节省发送装置和接收装置的功耗。
可选地,低速通信链路可以是采用蓝牙、无线保真(Wireless Fidelity,Wi-Fi)等无线通信技术的链路。
在一种可选的实施方式中,发送装置还用于在发送第一FSO信号之前,从视频源装置获取携带了视频数据的电信号,以及将电信号转换为第一FSO信号。
在另一种可选的实施方式中,该无线传输系统还包括视频源装置,视频源装置用于向发送装置输入携带了视频数据的电信号。
在一种可选的实施方式中,接收装置还用于在接收第一FSO信号之后,将第一FSO信号转换为携带了视频数据的电信号,并将电信号输出至显示设备进行显示。
在另一种可选的实施方式中,该无线传输系统还包括显示设备,显示设备用于根据携带了视频数据的电信号,显示视频数据。
在一种可选的实施方式中,发送装置还用于在接收第一信息之后,将第一信息发送给视频源装置。由于该第一信息用于指示接收装置已接入显示设备,从而该实施方式有利于使得视频源装置获知接收装置已接入显示设备,进而可主动向发送装置输入携带了视频数据的电信号。
相应的,视频源装置还用于接收该第一信息,并根据第一信息向发送装置输入携带了视频数据的电信号。这样,该无线传输系统有利于视频源装置可主动向发送装置输入携带了视频数据的电信号。
在一种可选的实施方式中,发送装置还用于在发送第一FSO信号之前,向接收装置发送第二FSO信号;接收装置还用于检测接收到的第二FSO信号的光功率,并通过无线传输链路向发送装置发送光功率;发送装置还用于根据接收装置发送的光功率对发送装置与接收装置之间的光链路进行对准。该实施方式使得发送装置能够在已对准的光链路上发送第一FSO信号,使得接收装置能更加准确地接收到第一FSO信号。
在一种可选的实施方式中,发送装置用于根据接收装置发送的光功率,对发送装置与接收装置之间的光链路进行对准,包括:发送装置在光功率满足预设条件时,确定光链路已对准。或者,发送装置在光功率不满足预设条件时,确定光链路未对准,调整搭载了发送装置的云台,并再次执行向接收装置发送第二FSO信号的步骤。可见,该实施方式可实现发送装置与接收装置之间的光链路对准。
在一种可选的实施方式中,发送装置还用于在发送装置与接收装置之间的光链路已对准时,在无线传输链路上向接收装置发送第二信息,第二信息用于指示该光链路已对准。可见,该实施方式可告知接收装置,该光链路已对准,进而有利于接收装置及时接入显示设备。
在一种可选的实施方式中,第一FSO信号和/或第二FSO信号是采用大束散角发送的,该大束散角的取值属于第一角度区间;第一FSO信号和/或第二FSO信号是采用大视场角接收的,该大视场角的取值属于第二角度区间。该实施方式有利于扩大接收装置的接收范围,更适应于室内场景。从而,有利于改善第一FSO信号和/或第二FSO信号的传输效果。
可选的,该第一角度区间和第二角度区间可以是预定义的,或是由发送装置和接收装置协商确定的。
第二方面,本申请实施例提供一种无线传输方法,该方法可从发送装置的角度进行阐述。该方法包括:发送装置从视频源装置获取电信号,该电信号携带了显示设备待播放的视频数 据;发送装置再将电信号转换为第一FSO信号,该第一FSO信号携带了视频数据;然后,发送装置在光链路上发送第一FSO信号。
可见,该无线传输方法中,发送装置通过光链路传输携带了视频数据的第一FSO信号,从而有利于实现该显示设备上待播放的视频数据的无线、无压缩高速传输,进而有利于实现具有高保真播放效果的随需投屏。
也就是说,该无线传输方法中,光链路有利于实现用户随需投屏的需求,FSO信号的传输速率可达10~100Gbps,可满足无压缩的视频数据传输,有利于实现高保真的播放效果。
在一种可选的实施方式中,该方法还包括:发送装置在无线传输链路上接收第一信息,该第一信息用于指示接收装置已接入显示设备。相应的,发送装置在光链路上发送第一FSO信号,包括:发送装置根据第一信息,在光链路上向接收装置发送第一FSO信号。可见,该实施方式使得发送装置获知接收装置已接入显示设备,进而及时向接收装置发送携带了视频数据的第一FSO信号。
在一种可选的实施方式中,无线传输链路是低速通信链路。采用低速通信链路作为无线传输链路,可以满足本申请实施例中第一信息等内容的传输需求的同时,节省发送装置的功耗。
可选地,低速通信链路可以是采用蓝牙、Wi-Fi等无线通信技术的链路。
在一种可选的实施方式中,该方法还包括:发送装置在接收第一信息之后,将第一信息发送给视频源装置。由于该第一信息用于指示接收装置已接入显示设备,从而该实施方式有利于使得视频源装置获知接收装置已接入显示设备,进而可主动向发送装置输入携带了视频数据的电信号。
在一种可选的实施方式中,发送装置在光链路上发送第一FSO信号之前,该方法还包括:发送装置向接收装置发送第二FSO信号;然后,发送装置在无线传输链路上接收接收装置发送的光功率,该光功率是接收装置检测到的第二FSO信号的光功率;接着,发送装置根据接收装置发送的光功率,对发送装置与接收装置之间的光链路进行对准。该实施方式使得发送装置能够在已对准的光链路上发送第一FSO信号,从而有利于使得接收装置更加准确地接收到第一FSO信号。
在一种可选的实施方式中,发送装置根据接收装置发送的光功率,对发送装置与接收装置之间的光链路进行对准,包括:发送装置在光功率满足预设条件时,确定光链路已对准。或者,发送装置在光功率不满足预设条件时,确定光链路未对准,调整搭载了发送装置的云台,并再次执行向接收装置发送第二FSO信号的步骤。可见,该实施方式可实现发送装置与接收装置之间的光链路对准。
在一种可选的实施方式中,该方法还包括:发送装置在光链路已对准时,在无线传输链路上向接收装置发送第二信息,该第二信息用于指示光链路已对准。可见,该实施方式可告知接收装置,该光链路已对准,进而有利于接收装置及时接入显示设备。
在一种可选的实施方式中,第一FSO信号和/或第二FSO信号是采用大束散角发送的,该大束散角的取值属于第一角度区间。该实施方式有利于扩大接收装置的接收范围,更适应于室内场景。从而,有利于改善第一FSO信号和/或第二FSO信号的传输效果。
可选的,该第一角度区间可以是预定义的,或是由接收装置和发送装置协商确定的。
第三方面,本申请实施例提供另一种无线传输方法,该方法可从接收装置的角度进行阐述。该方法包括:接收装置在光链路上接收来自发送装置的第一FSO信号,该第一FSO信号携带了显示设备待播放的视频数据;接收装置可将第一FSO信号转换为携带了视频数据的电信号;进而,接收装置将电信号输出至显示设备进行显示。
可见,该无线传输方法中,接收装置通过光链路接收携带了视频数据的第一FSO信号,进而有利于实现该显示设备上待播放的视频数据的无线、无压缩高速传输,有利于实现具有高保真播放效果的随需投屏。
也就是说,该无线传输方法中,光链路有利于实现用户随需投屏的需求,FSO信号的传输速率可达10~100Gbps,可满足无压缩的视频数据传输,有利于实现高保真的播放效果。
在一种可选的实施方式中,接收装置在光链路上接收来自发送装置的第一FSO信号之前,该方法还包括:接收装置在无线传输链路上发送第一信息,该第一信息用于指示接收装置已接入显示设备。可见,该实施方式有利于使得发送装置获知接收装置已接入显示设备,从而及时向接收装置发送携带了视频数据的第一FSO信号,进而接收装置能够及时接收第一FSO信号。
在一种可选的实施方式中,无线传输链路是低速通信链路。采用低速通信链路作为无线传输链路,可以满足本申请实施例中第一信息等内容的传输需求的同时,节省接收装置的功耗。
可选地,低速通信链路可以是采用蓝牙、Wi-Fi等无线通信技术的链路。
在一种可选的实施方式中,接收装置在光链路上接收来自发送装置的第一FSO信号之前,该方法还包括:接收装置接收来自发送装置的第二FSO信号;接收装置可检测第二FSO信号的光功率;然后,接收装置在无线传输链路上向发送装置发送光功率,该光功率用于发送装置对发送装置与接收装置之间的光链路进行对准。该实施方式有利于使得发送装置可在已对准的光链路上发送第一FSO信号,从而有利于接收装置能更加准确地接收到第一FSO信号。
在一种可选的实施方式中,该方法还包括:接收装置在无线传输链路上,接收来自发送装置的第二信息,该第二信息用于指示光链路已对准。可见,该实施方式有利于接收装置获知光链路已对准,进而可及时接入显示设备。
在一种可选的实施方式中,第一FSO信号和/或第二FSO信号是采用大视场角接收的,该大视场角的取值属于第二角度区间。该实施方式有利于扩大接收装置的接收范围,更适应于室内场景。从而,有利于改善第一FSO信号和/或第二FSO信号的传输效果。
可选的,该第二角度区间可以是预定义的,或是由接收装置和发送装置协商确定的。
第四方面,本申请实施例提供一种发送装置,该发送装置包括高清晰度多媒体接口HDMI母座、HDMI转自由空间光FSO模块以及光发射端口;该HDMI转FSO模块分别与HDMI以及光发射端口连接,HDMI母座还与视频源装置中的HDMI公头连接。
其中,HDMI转FSO模块用于通过HDMI母座,从视频源装置中的HDMI公头获得HDMI信号,将该HDMI信号转换为第一FSO信号,并将该第一FSO信号输出至光发射端口;光发射端口用于在光链路上发送该第一FSO信号。上述的HDMI信号和第一FSO信号分别携 带了显示设备待播放的视频数据。
可见,该发送装置通过光链路传输携带了视频数据的第一FSO信号,从而有利于实现该显示设备上待播放的视频数据的无线、无压缩高速传输,进而有利于实现具有高保真播放效果的随需投屏。
可选的,该发送装置不仅可以实现HDMI信号转FSO信号,还可以实现高清数字显示接口DP信号或其他视频信号转FSO信号,这样,该发送装置可包括DP母座、DP转FSO模块以及光发射端口。可选的,该发送装置不仅可以实现HDMI信号转FSO信号,还可以实现通用串行总线USB信号转FSO信号,这样,该发送装置可包括USB接口母座、USB转FSO模块以及光发射端口。相应的,该发送装置中各模块或器件的功能可参见上述相关内容所述,此处不再详述。
在一种可选的实施方式中,该发送装置还包括无线传输模块,该无线传输模块与HDMI母座连接;该无线传输模块用于在无线传输链路上接收第一信息,并将该第一信息输出至该HDMI母座,该第一信息用于指示接收装置已接入显示设备;该HDMI母座通过HDMI公头将第一信息输出至视频源装置;其中,该HDMI转FSO模块通过HDMI母座从视频源装置中HDMI公头获得的HDMI信号与第一信息关联。
在一种可选的实施方式中,该无线传输模块可以是低速传输模块,相应的,无线传输链路可以是低速通信链路。采用低速通信链路作为无线传输链路,可以满足本申请实施例中第一信息等内容的传输需求的同时,节省发送装置的功耗。可选地,该无线传输模块可以是蓝牙、Wi-Fi等无线通信模块,低速通信链路可以是采用蓝牙、Wi-Fi等无线通信技术的链路。
在一种可选的实施方式中,该HDMI转FSO模块可包括光电转换单元和FSO发射端,该光电转换单元与FSO发射端连接;该光电转换单元用于将HDMI信号转换为第一FSO信号,并将该第一FSO信号耦合至FSO发射端,FSO发射端用于将该第一FSO信号处理后,输出至光发射端口。其中,FSO发射端对该第一FSO信号进行处理可为将该第一FSO信号的束散角的取值设置为第一角度区间。
在一种可选的实施方式中,无线传输模块还用于触发FSO发射端生成第二FSO信号,并FSO发射端将该第二FSO信号输出至光发射端口,光发射端口在光链路上发送该第二FSO信号。无线传输模块还用于在无线传输链路上接收接收装置发送的光功率,以使得发送装置根据该光功率确定发送装置与接收装置之间的光链路是否已对准。该光功率是接收装置检测到的第二FSO信号的光功率。
在一种可选的实施方式中,该发送装置还包括云台控制模块和云台执行机构,所述云台控制模块分别与所述无线传输模块和所述云台执行机构连接。所述无线传输模块还用于将该光功率输出至云台控制模块;所述云台控制模块用于在所述光功率满足预设条件时,将第二信息输出至无线传输模块,第二信息用于指示发送装置与接收装置之间的光链路已对准;所述云台控制模块还用于在所述光功率不满足预设条件时,将云台控制信号输出至所述云台执行机构,所述云台执行机构根据所述云台控制信号,操控云台。
进一步的,云台执行机构还用于通过云台控制模块,向无线传输模块发送触发消息,无线传输模块响应该触发消息,触发FSO发射端再次生成第二FSO信号,并通过光发射端口发送该第二FSO信号,从而使得上述模块再次执行相关操作,使得光链路对准。
可见,该实施方式可根据接收装置发送的光功率,自动调整发送装置与接收装置之间的光链路进行对准,进而,通过第二信息告知接收装置该光链路已对准,以便于接收装置及时接入显示设备。
第五方面,本申请实施例提供一种接收装置,该接收装置包括光接收端口、自由空间光FSO转高清晰度多媒体接口HDMI模块以及HDMI公头;该FSO转HDMI模块分别与光发射端口以及HDMI公头连接,HDMI公头还与显示设备中的HDMI母座配合连接。
其中,光接收端口用于在光链路上接收第一FSO信号,并将该第一FSO信号输出至FSO转HDMI模块;FSO转HDMI模块用于将该第一FSO信号转换为HDMI信号,并将该HDMI信号输出至HDMI公头;HDMI公头通过HDMI母座将该HDMI信号输出至显示设备。上述的第一FSO信号和HDMI信号分别携带了显示设备待播放的视频数据。
可见,该接收装置通过光链路接收携带了视频数据的第一FSO信号,从而有利于实现该显示设备上待播放的视频数据的无线、无压缩高速传输,进而有利于实现具有高保真播放效果的随需投屏。
可选的,该接收装置不仅可以实现FSO信号转HDMI信号,还可以实现FSO信号转高清数字显示接口DP信号,这样,该接收装置可包括光发射端口、FSO转DP模块以及DP公头。可选的,该接收装置不仅可以实现FSO信号转HDMI信号,还可以实现FSO信号转通用串行总线USB信号,这样,该接收装置可包括光发射端口、FSO转USB模块以及USB接口公头。相应的,该接收装置中各模块或器件的功能可参见上述相关内容所述,此处不再详述。
在一种可选的实施方式中,该接收装置还包括无线传输模块,该无线传输模块与HDMI公头连接。FSO转HDMI模块还用于通过HDMI公头接入显示设备,确定第一信息,该第一信息用于指示接收装置已接入显示设备;该HDMI公头还用于将第一信息输出至无线传输模块;该无线传输模块用于在无线传输链路上发送第一信息。
无线传输模块与无线传输链路的可选的实施方式可参见上述第四方面的相关阐述,此处不再详述。
在一种可选的实施方式中,该FSO转HDMI模块可包括FSO接收端和光电转换单元,该光电转换单元分别与FSO接收端以及HDMI公头连接;该FSO接收端用于将第一FSO信号耦合至光电转换单元;该光电转换单元用于将第一FSO信号转换为HDMI信号,并将该HDMI信号输出至HDMI公头。
可选的,FSO接收端还用于将接收第一FSO信号时采用的视场角设置为第二角度区间,从而使得光接收端口可采用该视场角接收第一FSO信号。
在一种可选的实施方式中,光接收端口还用于接收第二FSO信号,并将该第二FSO信号输出至FSO接收端。该FSO接收端检测该第二FSO信号的光功率,并将该光功率发送给无线传输模块;该无线传输模块还用于在无线传输链路上发送该光功率。上述的光功率用于发送装置对发送装置与接收装置之间的光链路进行对准。该实施方式有利于使得发送装置根据该光功率调整发送装置以及接收装置之间的光链路,从而有利于接收装置能更加准确地接收到第一FSO信号。
在一种可选的实施方式中,无线传输模块还用于在无线传输链路上接收第二信息,该第二信息用于指示发送装置与接收装置之间的光链路已对准,从而有利于接收装置及时接入显示设备。可见,本申请实施例中,接收装置的结构与发送装置的结构不对称,便于接收装置的结构更加小型化,便于携带。
第六方面,本申请实施例提供一种无线传输装置,该无线传输装置包括:
获取单元,用于从视频源装置获取电信号,该电信号携带了显示设备待播放的视频数据;
转换单元,用于将电信号转换为第一FSO信号,该第一FSO信号携带了视频数据;
发送单元,用于在光链路上发送第一FSO信号。
可选地,该无线传输装置还可用于执行第四方面所述的方法。
第七方面,本申请实施例提供一种无线传输装置,该无线传输装置包括:
接收单元,用于在光链路上接收来自发送装置的第一FSO信号,该第一FSO信号携带了显示设备待播放的视频数据;
转换单元,用于将第一FSO信号转换为携带了视频数据的电信号;
输出单元,用于将电信号输出至显示设备进行显示。
可选地,该无线传输装置还可用于执行第五方面所述的方法。
第八方面,本申请实施例提供一种无线传输装置,包括收发器、存储器和处理器;
收发器,用于接收信号或者发送信号;存储器,用于存储指令或计算机程序;处理器,用于执行存储器所存储的计算机程序或指令,以使无线传输装置执行第四方面所述的方法,或执行第五方面所述的方法。
第九方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当计算机程序在计算机上运行时,使得计算机执行第二方面所述的方法,或使得计算机执行第三方面所述的方法。
第十方面,本申请实施例提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行第四方面或第五方面所述的方法。
其中,芯片中的接口可以为输入/输出接口、管脚或电路等。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
在一种可能的实现中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
第十一方面,本申请实施例提供一种计算机程序或计算机程序产品,其包括计算机指令,当计算机指令在计算机上运行时,使得计算机执行第四方面所述的方法,或使得计算机执行第五方面所述的方法。
附图说明
图1是一种HDMI线缆的结构示意图;
图2是一种Wi-Fi无线投屏的流程示意图;
图3是本申请实施例提供的一种无线传输系统100的结构示意图;
图4是本申请实施例提供的一种无线传输系统200的结构示意图;
图5是本申请实施例提供的一种无线传输方法100的示意图;
图6是本申请实施例提供的一种发送装置301的结构示意图;
图7是本申请实施例提供的一种接收装置302的结构示意图;
图8是本申请实施例提供的一种无线传输方法200的示意图;
图9是本申请实施例提供的一种无线传输方法300的流程示意图;
图10是本申请实施例提供的一种无线传输方法400的流程示意图;
图11是本申请实施例提供的一种无线传输装置的结构示意图;
图12是本申请实施例提供的另一种无线传输装置的结构示意图;
图13是本申请实施例提供的又一种无线传输装置的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
随着投屏技术的不断发展,随需投屏的用户需求也愈加强烈,同时,用户对于投屏效果的要求也越来越高。例如,针对视频的高保真播放效果的要求,即投屏在其他终端设备上的视频在播放时,能够尽可能地维持原终端设备上的播放效果。
为了实现高保真的播放效果,一种投屏方式是通过高清晰度多媒体接口(high definition multimedia interface,HDMI)线缆、高清数字显示接口(display port,DP)线缆或通用串行总线(universal serial bus,USB)线缆传输视频数据的有线投屏。以通过HDMI线缆实现有线投屏为例,请参阅图1,图1是一种HDMI线缆的结构示意图,该HDMI线缆包括HDMI发送端(HDMI Source)和HDMI接收端(HDMI Sink)。其中,HDMI发送端包括:HDMI发射器(HDMI Transmitter)、消费电子控制(consumer electronics control,CEC)、HDMI-以太网和声音回传功能(HDMI Ethernet and audio return channel,HEAC)、查询(detcet)模块。HDMI接收端包括:HDMI接收器(HDMI Receiver)、扩展显示标识数据(extended display identification data,EDID)只读存储器(read-only memory,ROM)、CEC、HEAC。其中,HDMI发射器与HDMI接收器之间存在四条用于传输信号的有线通道,包括:过渡调制差分信号(transition-minimized differential signaling,TMDS)通道(Channel)0、TDMS Channel1、TDMS Channel 2、TDMS时钟(Clock)Channel。
另外,HDMI发送端与EDID ROM之间存在显示数据通道(display data channel,DDC),以获取HDMI接收端所连接的显示设备的属性信息。HDMI发送端的CEC与HDMI接收端的CEC之间通过CEC线缆(CEC Line)进行连接,以支持用户使用遥控器来命令和控制HDMI线缆连接的设备。HDMI发送端的HEAC与HDMI接收端的HEAC之间通过公用线缆(Utility Line)进行连接,另外,在HDMI 1.4版本中还增加了HEAC通道,以实现声音回传,还可用于传输网络信号。HDMI发送端的查询模块与HDMI接收端之间存在热插拔查询控制(hot plug detect,HPD)线缆。
其中,HDMI接收端可与显示设备进行连接。HDMI发送端可监测HPD线缆的状态,当 HPD线缆为低(Low)电平时,说明HDMI接收端已与显示设备之间的连接断开;当HPD线缆为高(High)电平时,说明HDMI接收端已与显示设备进行连接。HDMI发送端可与缓存了视频数据的视频源装置进行连接。HDMI发送端可以从视频源装置获取视频(Video)信号和/或音频(Audio)信号,并将其转换为TMDS。HDMI发送端通过TMDS Channel 0、TMDS Channel 1、TMDS Channel 2将TDMS传输至HDMI接收端。进而,HDMI接收端可将TMDS转换为视频和/或音频信号,输出至显示设备播放。
可见,该投屏方式中,由于HDMI线缆所支持的传输速率可达到10.2Gbps至18Gbps。因此,通过HDMI线缆传输视频和/或音频时无需对其进行压缩传输,从而可以实现具有高保真播放效果的有线投屏。然而,该投屏方式是通过使用HDMI线缆等有线线缆实现的,可能会导致用户使用不便,无法满足随时随地的随需投屏需求。
为了满足随时随地的随需投屏需求,另一种投屏方式是采用无线保真(Wireless Fidelity,Wi-Fi)技术实现无线投屏。请参阅图2,图2是一种Wi-Fi无线投屏的流程示意图。图2中,无线显示发送端(Miracast Source)可将获取的图像压缩成H264格式(一种数字视频压缩格式)的文件,将获取的音频压缩成高级音频编码(advanced audio coding,AAC)格式(一种专为声音数据设计的文件压缩格式)的文件。然后,无线显示发送端将上述的H264格式的文件和AAC格式的文件混合成传输流(transport stream,TS),并基于实时流传输协议(real time streaming protocol,RTSP)传输该TS,以发送至无线显示接收端(Miracast Sink)。无线显示接收端基于RTSP接收TS,然后针对该TS进行音视频解码,得到画面(图像)和声音(音频),并传输至显示设备显示。
可见,该无线投屏方式虽然能够实现随时随地的随需投屏,但是由于无线显示发送端是对视频和音频进行压缩之后再发送至无线显示接收端的,故该有损压缩过程可能会对视频/音频的质量造成较大损失,无法实现高保真播放效果。
因此,如何实现具有高保真播放效果的随需投屏成为一个亟待解决的问题。
本申请实施例提供了一种无线传输系统,该系统可采用无线传输链路来传输发送装置与接收装置之间的控制信号,以及采用自由空间光的光链路传输发送装置与接收装置之间的视频数据,有利于实现具有高保真播放效果的随需投屏。以下结合附图进行详细阐述。
请参阅图3,图3是本申请实施例提供的一种无线传输系统100的结构示意图。该无线传输系统100包括发送装置301和接收装置302。发送装置301与接收装置302之间采用无线传输链路来传输控制信号,以及采用自由空间光的光链路传输视频数据。其中,光链路是自由空间光(free space optical,FSO)的光链路。
如图3所示,接收装置302用于在无线传输链路上发送第一信息,该第一信息用于指示接收装置302已接入显示设备;发送装置301用于在无线传输链路上接收第一信息,并根据该第一信息在光链路上发送第一FSO信号,该第一FSO信号携带了显示设备待播放的视频数据;相应的,接收装置302还用于在光链路上接收第一FSO信号。
其中,FSO信号是以自由空间光作为载体传输的信号,其中,自由空间光的光波可以是通过激光二极管生成的。与微波频率相比,自由空间光的光波频率要高3至5个数量级,因此,自由空间光传输的数据码率可达到10Gbps以上,甚至可以达到100Gbps,且后续升级扩 容后,该自由空间光传输的数据码率可提高的空间大。可见,该无线传输系统可满足无压缩的视频数据传输。
另外,FSO信号可由空间光天线进行发射、接收。与微波天线的增益相比,空间光天线的增益提升了60dBi至90dBi,因此,该无线传输系统中,发送装置301可采用较低的发射功率发射FSO信号,即可实现高速通信,从而能够降低发送装置301的功耗。
另外,FSO信号通过光链路传输,可实现视频数据的无线传输,进而有利于满足随需投屏的需求。该无线传输系统100兼具大带宽和无线化投屏的优势,可满足应急式、随地可连接的高速链路的用户需求,进而有利于实现具有高保真播放效果的随需投屏。并且,该无线传输系统100还避免了使用过长线缆(如使用超过大约5米的HDMI线缆、DP线缆或USB线缆)传输信号时产生的信号衰减所导致的投屏效果不佳的问题。
该无线传输系统100可应用于多种投屏场景中。例如,该无线传输系统100可应用于家庭中的投屏场景,实现将手机、平板、便携式游戏主机、增强现实(augmented reality,AR)、虚拟现实(Virtual Reality,VR)、带屏游戏主机等“小屏”设备中的视频,投放到电视、家用投影仪等“大屏”设备的显示屏上进行显示,从而有利于实现屏幕多样、多屏互动的家庭娱乐场景,进而可提升用户的家庭娱乐体验。又例如,该无线传输系统100可应用于会议室中的投屏场景,可实现将办公终端或便携终端中的视频数据投放到“大屏”的显示设备上进行显示,从而可提高工作效率。又例如,该无线传输系统100可应用于娱乐场所和/或商场中的投屏场景,实现投影式游戏、投影式视频等,从而可在高性价比显示的基础上为用户提供新的娱乐体验。
在一种可选的实施方式中,无线传输链路可以是低速通信链路。采用低速通信链路作为无线传输链路,可以满足本申请实施例中第一信息等内容的传输需求的同时,节省发送装置301和接收装置302的功耗。可选地,该低速通信链路可以是采用蓝牙、Wi-Fi(图2方案)等无线通信技术的链路。
在一种可选的实施方式中,发送装置301还用于在发送第一FSO信号之前,从视频源装置获取携带了视频数据的电信号,以及将该电信号转换为第一FSO信号。
在另一种可选的实施方式中,该发送装置301可以是缓存了视频数据的视频源装置,这样,发送装置301可生成携带了视频数据的电信号,进而,将该电信号转换为第一FSO信号。
一种可选的实施方式中,发送装置301根据第一信息在光链路上发送第一FSO信号,可包括:发送装置301根据第一信息确定待发送的第一FSO信号,进而,发送装置301在光链路上发送该第一FSO信号。可见,该实施方式有利于发送装置301及时发送第一FSO信号。
可选的,第一信息可以包括显示设备的属性。例如,显示设备的属性可以包括显示设备的型号、尺寸、分辨率等信息。该实施方式有利于在接收装置302接入多个显示设备的情况下,发送装置301可根据第一信息中的显示设备的属性等内容,选择该显示设备对应的FSO信号进行发送。
在一种可选的实施方式中,接收装置302还用于在接收第一FSO信号之后,将第一FSO信号转换为携带了视频数据的电信号,并将该电信号输出至显示设备进行显示。
可见,该无线传输系统100结合视频源装置以及接收装置302接入的显示设备,能够实现随时随地的随需投屏以及高保真的播放效果。
请参阅图4,图4是本申请实施例提供的一种无线传输系统200的结构示意图。该无线传输系统200与图3所示的无线传输系统100的区别在于,该无线传输系统200除了包括发送装置301和接收装置302外,还包括视频源装置303和显示设备304。
其中,发送装置301可通过数据高速传输线缆接入视频源装置303;接收装置302可通过数据高速传输线缆接入显示设备304。可选的,发送装置301与视频源装置303之间的数据高速传输线缆的类型,可与连接接收装置302与显示设备304之间的数据高速传输线缆的类型相同。可选地,该数据高速传输线缆可包括HDMI线缆、DP线缆或USB线缆等,相应的,上述所述的电信号可为HDMI信号、DP信号或USB信号。可选地,发送装置301可通过HDMI母座接入视频源装置303;接收装置302可通过HDMI公头接入显示设备304。
视频源装置303用于缓存视频数据,并向发送装置301提供携带了视频数据的电信号。可选的,发送装置301还可将接收的第一信息发送给视频源装置303,视频源装置303可接收该第一信息,并根据第一信息确定携带视频数据的电信号。由于上述的第一信息用于指示接收装置302已接入显示设备304,从而视频源装置303可获知接收装置302已接入显示设备304,进而可主动向发送装置301输入携带了视频数据的电信号。并且,该实施方式还有利于视频源装置303为发送装置301提供的电信号是与第一信息关联的电信号,即该电信号所携带的视频数据是该第一信息所标识的显示设备待播放的视频数据。
可选地,视频源装置303还可在显示界面输出该第一信息,由用户根据该第一信息确定显示设备304待播放的视频数据,进而由视频源装置303将携带该视频数据的电信号发送给发送装置301。
显示设备304用于从接收装置302获取携带视频数据的电信号,并根据该电信号,播放该视频数据。
可选地,发送装置301可在接收到第一信息时接入视频源装置303,以获取携带了视频数据的电信号。接收装置302可在接入显示设备304后,向发送装置301发送第一信息。
可选地,若发送装置301在接收到第一信息时未接入视频源装置303,则发送装置301还可开启提示灯和/或闪烁提示灯,以告知用户,将发送装置301接入视频源装置303。
可选地,该视频源装置303可以是智能手机(mobile phone)、智能手表、平板电脑(Pad)、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智慧家庭(smart home)中的无线终端、V2X车联网中的无线终端等等。
可选地,显示设备304可以是电视、投影仪、电脑、平板电脑(Pad)、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智慧家庭(smart home)中的无线终端、V2X车联网中的无线终端等等。
本申请实施例中,图3和图4所示的无线传输系统中,由于FSO的光链路是从一个点到另一个点的窄光束,因此,在光链路上传输第一FSO信号之前,还需要对发送装置301与接收装置302之间的光链路进行对准。以下对发送装置301与接收装置302之间对准阶段的相关操作进行阐述。
发送装置301还用于在发送第一FSO信号之前,向接收装置302发送第二FSO信号; 接收装置302还用于检测接收到的第二FSO信号的光功率,并通过无线传输链路向发送装置301发送光功率;发送装置301还用于根据接收装置302发送的光功率对发送装置301与接收装置302之间的光链路进行对准。从而发送装置301可在已对准的光链路上发送第一FSO信号,进而接收装置302能更加准确地接收到第一FSO信号。
在一种可选的实施方式中,发送装置301根据接收装置302发送的光功率对发送装置301与接收装置302之间的光链路进行对准,可包括:发送装置301在光功率满足预设条件时,确定光链路已对准;或者,发送装置301在光功率不满足预设条件时,确定光链路未对准,调整搭载了发送装置301的云台,并再次执行向接收装置302发送第二FSO信号的步骤。例如,发送装置301在调整云台之后,再次向接收装置302发送第二FSO信号;接收装置302检测该第二FSO信号的光功率,并发送该光功率;发送装置301再次检测光功率是否满足预设条件,直至光功率满足预设条件,确定该光链路已对准。
可选地,发送装置301调整搭载了发送装置301的云台,可通过调整云台的偏转角度实现。
可见,该实施方式在光链路未对准时,发送装置301可通过调整云台来对光链路进行对准,而接收装置302无需执行调整操作。那么,接收装置302无需配置云台等用于执行调整操作的部件,这样可以使得接收装置302的结构小型化,从而使得接收装置302具有更加便捷,成本更低的效果。
一种可选的实施方式中,该预设条件可以是光功率属于第一功率范围。这样,发送装置301在光功率属于第一功率范围时,确定光链路已对准;发送装置301在光功率不属于第一功率范围时,确定光链路未对准。上述的第一功率范围可以是预定义的,或是由发送装置301和接收装置302协商确定的。
在另一种可选的实施方式中,该预设条件可以是光功率大于或等于第一功率阈值。这样,发送装置301在光功率大于或等于第一功率阈值时,确定光链路已对准;发送装置301在光功率小于第一功率阈值时,确定光链路未对准。上述的第一功率阈值可以是预定义的,或是由发送装置301和接收装置302协商确定的。
在一种可选的实施方式中,发送装置301还用于在发送装置301与接收装置302之间的光链路已对准时,在无线传输链路上向接收装置302发送第二信息,该第二信息用于指示光链路已对准。相应的,接收装置302还用于在无线传输链路上接收来自发送装置301的第二信息。从而接收装置302可知晓光链路已对准,进而有利于接收装置302及时接入显示设备。
在另一种可选的实施方式中,发送装置301还用于在发送装置301与接收装置302之间的光链路已对准时,开启发送装置301中的指示灯和/或闪烁指示灯,以告知用户光链路已对准。可见,该实施方式有利于用户及时将接收装置302接入显示设备。
另外,发送装置301所执行的上述光链路进行对准的相关操作,可在其接入视频源装置之前执行,也可在接入视频源装置之后执行。
可见,上述光链路进行对准的相关实施方式,有利于使得携带了视频数据的第一FSO信号可通过已对准的光链路传输,进而使得接收装置302更加准确的接收第一FSO信号。
图3和图4所示的无线传输系统中,发送装置301与接收装置302之间相关操作可划分 为对准阶段、建链阶段和传输阶段,下面结合图5所示的无线传输方法100的示意图进行阐述。
其中,对准阶段包括:发送装置301向接收装置302发送第二FSO信号;接收装置302检测接收到的第二FSO信号的光功率,并在无线传输链路上发送该光功率;发送装置301根据该光功率确定光链路未对准时,调整搭载了发送装置301的云台,并再次执行向接收装置302发送第二FSO信号的步骤;发送装置301根据该光功率确定光链路已对准时,在无线传输链路上发送第二信息,该第二信息用于指示光链路已对准。
建链阶段包括:接收装置302在接收到第二信息之后,接入显示设备,并在无线传输链路上发送第一信息,该第一信息用于指示接收装置302已接入显示设备;发送装置301将接收到的第一信息发给视频源装置。
传输阶段包括:发送装置301从视频源装置获取携带了视频数据的电信号,并将该电信号转换为第一FSO信号,然后在光链路上发送该第一FSO信号。接收装置302将接收的第一FSO信号转换为电信号输出至显示设备进行显示。
另外,基于图4所示的无线传输系统中,图5所示的建链阶段还可包括:视频源装置303接收来自发送装置301的第一信息;图5所示的传输阶段还可包括:视频源装置303根据该第一信息向发送装置301发送携带了视频数据的电信号;显示设备304接收来自接收装置302的电信号,并根据该电信号播放视频数据。
可见,发送装置301与接收装置302之间对准阶段、建链阶段和传输阶段中,携带第一信息或第二信息的控制信号/管理信号可通过无线传输链路传输,携带视频数据的FSO信号可通过已对准的光链路传输,从而实现显示设备上待播放的视频数据的无线、无压缩高速传输,进而有利于实现具有高保真播放效果的随需投屏。
下面以发送装置通过HDMI线缆接入视频源装置,以及接收装置通过HDMI线缆接入显示设备为例,对发送装置301和接收装置302可能的结构进行介绍。相应的,无线传输链路所传输的控制信号或管理信号可为HDMI控制信号或HDMI管理信号。
请参阅图6,图6是本申请实施例提供的一种发送装置301的结构示意图。该发送装置301可包括HDMI母座3011、HDMI转FSO模块3012以及光发射端口3013;该HDMI转FSO模块3012分别与HDMI母座3011以及光发射端口3013连接,HDMI母座3011还与视频源装置中的HDMI公头配合连接。
其中,HDMI转FSO模块3012用于通过HDMI母座3011,从视频源装置中的HDMI公头获得HDMI信号,将该HDMI信号转换为第一FSO信号,并将该第一FSO信号输出至光发射端口3013;光发射端口3013用于在光链路上发送该第一FSO信号。上述的HDMI信号和第一FSO信号分别携带了显示设备待播放的视频数据。
可见,该发送装置301通过光链路传输携带了视频数据的第一FSO信号,从而有利于实现该显示设备上待播放的视频数据的无线、无压缩高速传输,进而有利于实现具有高保真播放效果的随需投屏。
另一种可选的实施方式中,发送装置301不仅可以实现HDMI信号转FSO信号,还可以实现高清数字显示接口DP信号转FSO信号,这样,该发送装置301可包括DP母座、DP转 FSO模块以及光发射端口3013。该DP转FSO模块分别与DP母座以及光发射端口3013连接,DP母座还与视频源装置中的DP公头配合连接。其中,DP转FSO模块用于通过DP母座,从视频源装置中的DP公头获得DP信号,将该DP信号转换为第一FSO信号,并将该第一FSO信号输出至光发射端口;光发射端口3013用于在光链路上发送该第一FSO信号。上述的DP信号和第一FSO信号分别携带了显示设备待播放的视频数据。相应的,该发送装置301中各模块或器件的功能可参见图6所述的相关内容所述,此处不再详述。
又一种可选的实施方式中,发送装置301不仅可以实现HDMI信号转FSO信号,还可以实现通用串行总线USB信号转FSO信号,这样,该发送装置301可包括USB接口母座、USB转FSO模块以及光发射端口3013。该USB转FSO模块分别与USB接口母座以及光发射端口连接,USB接口母座还与视频源装置中的USB接口公头配合连接。其中,USB转FSO模块用于通过USB接口母座,从视频源装置中的USB接口公头获得USB信号,将该USB信号转换为第一FSO信号,并将该第一FSO信号输出至光发射端口3013;光发射端口3013用于在光链路上发送该第一FSO信号。上述的USB信号和第一FSO信号分别携带了显示设备待播放的视频数据。相应的,该发送装置301中各模块或器件的功能可参见图6所述的相关内容所述,此处不再详述。
下面以发送装置301实现HDMI信号转FSO信号为例,对发送装置301的结构进行进一步的阐述。
该发送装置301还包括无线传输模块3014,该无线传输模块3014与HDMI母座3011连接;该无线传输模块3014用于在无线传输链路上接收第一信息,并将该第一信息输出至该HDMI母座3011,该第一信息用于指示接收装置已接入显示设备;该HDMI母座3011通过视频源装置的HDMI公头将第一信息输出至视频源装置;其中,该HDMI转FSO模块3012通过HDMI母座3011从视频源装置中HDMI公头获得的HDMI信号与第一信息关联。
在一种可选的实施方式中,该无线传输模块3014可以是低速传输模块,相应的,无线传输链路可以是低速通信链路。采用低速通信链路作为无线传输链路,可以满足本申请实施例中第一信息等内容的传输需求的同时,节省发送装置的功耗。可选地,该无线传输模块3014可以是蓝牙、Wi-Fi等无线通信模块,低速通信链路可以是采用蓝牙、Wi-Fi等无线通信技术的链路。
在一种可选的实施方式中,该HDMI转FSO模块3012可包括光电转换单元30121和FSO发射端30122,该光电转换单元30121与FSO发射端30122连接;该光电转换单元30121用于将HDMI信号转换为第一FSO信号,并将该第一FSO信号耦合至FSO发射端30122,FSO发射端30122用于将该第一FSO信号处理后,输出至光发射端口3013。其中,FSO发射端30122对该第一FSO信号进行处理可为将该第一FSO信号的束散角的取值设置为第一角度区间。
可选的,该FSO发射端30122中可包括激光二极管,该激光二极管可生成FSO信号。可选的,光发射端口3013可以是棱镜等器件。
在一种可选的实施方式中,无线传输模块3014还用于触发FSO发射端30122生成第二FSO信号,并且FSO发射端30122将该第二FSO信号输出至光发射端口3013,光发射端口3013在光链路上发送该第二FSO信号。无线传输模块3014还用于在无线传输链路上接收接 收装置发送的光功率,以使得发送装置301根据该光功率确定发送装置301与接收装置之间的光链路是否已对准。该光功率是接收装置检测到的第二FSO信号的光功率。
在一种可选的实施方式中,该发送装置301还包括云台控制模块3015和云台执行机构3016,所述云台控制模块3015分别与所述无线传输模块3014和所述云台执行机构3016连接。所述无线传输模块3014还用于将该光功率输出至云台控制模块3015;所述云台控制模块3015用于在所述光功率满足预设条件时,将第二信息输出至无线传输模块3014,第二信息用于指示发送装置301与接收装置之间的光链路已对准;所述云台控制模块3015还用于在所述光功率不满足预设条件时,将云台控制信号输出至所述云台执行机构3016,所述云台执行机构3016根据所述云台控制信号,操控云台。
进一步的,云台执行机构3016还用于通过云台控制模块3015,向无线传输模块3014发送触发消息,无线传输模块3014响应该触发消息,触发FSO发射端30122再次生成第二FSO信号,并通过光发射端口3013发送该第二FSO信号,从而使得上述各模块再次执行相关操作,对光链路进行对准。
可见,该实施方式可根据接收装置发送的光功率,自动调整发送装置301与接收装置之间的光链路进行对准,进而,通过第二信息告知接收装置该光链路已对准,以便于接收装置及时接入显示设备。
请参阅图7,图7是本申请实施例提供的一种接收装置302的结构示意图。该接收装置302可包括光接收端口3021、FSO转HDMI模块3022以及HDMI公头3023;该FSO转HDMI模块3022分别与光接收端口3021以及HDMI公头3023连接,HDMI公头3023还与显示设备中的HDMI母座配合连接。
其中,光接收端口3021用于在光链路上接收第一FSO信号,并将该第一FSO信号输出至FSO转HDMI模块3022;FSO转HDMI模块3022用于将该第一FSO信号转换为HDMI信号,并将该HDMI信号输出至HDMI公头3023;HDMI公头3023通过显示设备中的HDMI母座将该HDMI信号输出至显示设备。上述的第一FSO信号和HDMI信号分别携带了显示设备待播放的视频数据。
可见,该接收装置302通过光链路接收携带了视频数据的第一FSO信号,从而有利于实现该显示设备上待播放的视频数据的无线、无压缩高速传输,进而有利于实现具有高保真播放效果的随需投屏。
另一种可选的实施方式中,该接收装置302不仅可以实现FSO信号转HDMI信号,还可以实现FSO信号转高清数字显示接口DP信号,这样,该接收装置302可包括光接收端口3021、FSO转DP模块以及DP公头。该FSO转DP模块分别与光接收端口3021以及DP公头连接,DP公头还与显示设备中的DP母座配合连接。其中,光接收端口3021用于在光链路上接收第一FSO信号,并将该第一FSO信号输出至FSO转DP模块;FSO转DP模块用于将该第一FSO信号转换为DP信号,并将该DP信号输出至DP公头;DP公头通过显示设备中的DP母座将该DP信号输出至显示设备。上述的第一FSO信号和DP信号分别携带了显示设备待播放的视频数据。相应的,该接收装置302中各模块或器件的功能可参见图7所述的相关内容所述,此处不再详述。
又一种可选的实施方式中,该接收装置302不仅可以实现FSO信号转HDMI信号,还可 以实现FSO信号转通用串行总线USB信号,这样,该接收装置302可包括光接收端口3021、FSO转USB模块以及USB接口公头。该FSO转USB模块分别与光接收端口3021以及USB接口公头连接,USB接口公头还与显示设备中的USB接口母座配合连接。其中,光接收端口3021用于在光链路上接收第一FSO信号,并将该第一FSO信号输出至FSO转USB模块;FSO转USB模块用于将该第一FSO信号转换为USB信号,并将该USB信号输出至USB接口公头;USB接口公头通过显示设备中的USB接口母座将该USB信号输出至显示设备。上述的第一FSO信号和USB信号分别携带了显示设备待播放的视频数据。相应的,该接收装置中各模块或器件的功能可参见图7所述的相关内容所述,此处不再详述。
下面以接收装置302实现FSO信号转DP信号为例,对接收装置302的结构进行进一步的阐述。
在一种可选的实施方式中,该接收装置302还包括无线传输模块3024,该无线传输模块3024与HDMI公头3023连接。FSO转HDMI模块3022还用于通过HDMI公头3023接入显示设备,确定第一信息,该第一信息用于指示接收装置302已接入显示设备;该HDMI公头3023还用于将第一信息输出至无线传输模块3024;该无线传输模块3024用于在无线传输链路上发送第一信息。
在一种可选的实施方式中,该无线传输模块3024可以是低速传输模块,相应的,无线传输链路可以是低速通信链路。采用低速通信链路作为无线传输链路,可以满足本申请实施例中第一信息等内容的传输需求的同时,节省发送装置的功耗。可选地,该无线传输模块3024可以是蓝牙、Wi-Fi等无线通信模块,低速通信链路可以是采用蓝牙、Wi-Fi等无线通信技术的链路。
在一种可选的实施方式中,该FSO转HDMI模块3022可包括FSO接收端30221和光电转换单元30222,该光电转换单元30222分别与FSO接收端30221以及HDMI公头3023连接;该FSO接收端30221用于将第一FSO信号耦合至光电转换单元30222;该光电转换单元30222用于将第一FSO信号转换为HDMI信号,并将该HDMI信号输出至HDMI公头3023。FSO接收端30221还用于将接收第一FSO信号时采用的视场角设置为第二角度区间,从而使得光接收端口3021可采用该视场角接收第一FSO信号。
可选的,光接收端口3021可以是棱镜等器件。
在一种可选的实施方式中,光接收端口3021还用于接收第二FSO信号,并将该第二FSO信号输出至FSO接收端30221。该FSO接收端30221检测该第二FSO信号的光功率,并将该光功率发送给无线传输模块3024;该无线传输模块3024还用于在无线传输链路上发送该光功率。上述的光功率用于发送装置对发送装置与接收装置302之间的光链路进行对准。该实施方式有利于使得发送装置可在已对准的光链路上发送第一FSO信号,从而有利于接收装置302能更加准确地接收到第一FSO信号。
在一种可选的实施方式中,无线传输模块3024还用于在无线传输链路上接收第二信息,该第二信息用于指示发送装置与接收装置302之间的光链路已对准,从而有利于接收装置302及时接入显示设备。
可见,该接收装置302通过光链路接收携带了视频数据的第一FSO信号,从而有利于实现该显示设备上待播放的视频数据的无线、无压缩高速传输,进而有利于实现具有高保真播 放效果的随需投屏。
可以理解的是,本发明实施例示意的结构并不构成对发送装置和/或接收装置的具体限定。在本申请另一些实施例中,发送装置和/或接收装置可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
请参阅图8,图8是本申请实施例提供的一种无线传输方法200的示意图。该无线传输方法200的示意图中,结合图6所示的发送装置的结构示意图以及图7所示的接收装置的结构示意图,FSO发射端30122与FSO接收端30221之间传输的第一FSO信号和/或第二FSO信号是采用大束散角发送的,从而有利于扩大接收装置302的接收范围,更适应于室内场景。相应的,该第一FSO信号和/或第二FSO信号是采用大视场角接收的。从而,有利于改善第一FSO信号和/或第二FSO信号的传输效果。例如,与目前采用500微弧度(约为0.03度)的束散角发送FSO信号相比,本申请实施例中可采用几十度的大束散角发送FSO信号,更适应于室内场景。
上述的大束散角的取值属于第一角度区间,大视场角的取值属于第二角度区间。可选的,该第一角度区间和第二角度区间可以是预定义的,或是由发送装置301和接收装置302协商确定的。例如,用户可根据经验值预定义第一角度区间为(0,90°]以及第二角度区间为(0,180°]。
另外,结合图6所示的发送装置的结构示意图以及图7所示的接收装置的结构示意图,无线传输模块3013与无线传输模块3023之间的无线传输链路可用于传输HDMI控制信号、HDMI管理信号以及第二FSO信号的光功率等。其中,HDMI控制信号和/或HDMI管理信号包括携带了第一信息或第二信息的信号,该第一信息用于指示接收装置302已接入显示设备304,第二信息用于指示光链路已对准。
请参阅图9,图9是本申请实施例提供的一种无线传输方法300的流程示意图,该无线传输方法300可应用于图3或图4所示的无线传输系统,从发送装置与接收装置交互的角度进行阐述。该无线传输方法包括以下步骤:
S901、发送装置从视频源装置获取电信号,该电信号携带了显示设备待播放的视频数据。
S902、发送装置将电信号转换为第一FSO信号,该第一FSO信号携带了视频数据。
S903、发送装置在光链路上发送第一FSO信号。相应的,接收装置在光链路上接收来自发送装置的第一FSO信号。
S904、接收装置将第一FSO信号转换为携带了视频数据的电信号。
S905、接收装置将电信号输出至显示设备进行显示。
在一种可选的实施方式中,接收装置在光链路上接收来自发送装置的第一FSO信号之前,该方法还包括:接收装置在无线传输链路上发送第一信息,该第一信息用于指示接收装置已接入显示设备。相应的,发送装置在无线传输链路上接收第一信息。可选地,发送装置在光链路上发送第一FSO信号,包括:发送装置根据第一信息,在光链路上向接收装置发送第一FSO信号。该实施方式的相关阐述可参见图3中的相关阐述,此处不再进行赘述。
在一种可选的实施方式中,无线传输链路是低速通信链路。可选地,低速通信链路可以是采用蓝牙、Wi-Fi等无线通信技术的链路。该实施方式的相关阐述可参见图3中的相关阐述,此处不再进行赘述。
在一种可选的实施方式中,该方法还包括:发送装置在接收第一信息之后,将第一信息发送给视频源装置。该实施方式的相关阐述可参见图4中的相关阐述,此处不再进行赘述。
在一种可选的实施方式中,发送装置在光链路上发送第一FSO信号之前,该方法还包括:发送装置向接收装置发送第二FSO信号。接收装置接收来自发送装置的第二FSO信号,并检测第二FSO信号的光功率。然后,接收装置在无线传输链路上向发送装置发送光功率,该光功率用于发送装置对发送装置与接收装置之间的光链路进行对准。相应的,发送装置在无线传输链路上接收来自接收装置的光功率,然后根据接收装置发送的光功率,对发送装置与接收装置之间的光链路进行对准。该实施方式的相关阐述可参见发送装置与接收装置之间对准阶段的相关阐述,此处不再进行赘述。
在一种可选的实施方式中,发送装置根据接收装置发送的光功率,对发送装置与接收装置之间的光链路进行对准,包括:发送装置在光功率满足预设条件时,确定光链路已对准。或者,发送装置在光功率不满足预设条件时,确定光链路未对准,调整搭载了发送装置的云台,并再次执行向接收装置发送第二FSO信号的步骤。
在一种可选的实施方式中,该方法还包括:发送装置在光链路已对准时,在无线传输链路上向接收装置发送第二信息,该第二信息用于指示光链路已对准。相应的,接收装置在无线传输链路上,接收来自发送装置的第二信息。
可选地,预设条件可以是光功率属于第一功率范围。相应的,发送装置在光功率属于第一功率范围时,确定光链路已对准。或者,发送装置在光功率不属于第一功率范围时,确定光链路未对准。上述的第一功率范围可以是预定义的,或由发送装置和接收装置302协商确定的。
可选地,预设条件可以是光功率大于或等于第一功率阈值。相应的,发送装置在光功率大于或等于第一功率阈值时,确定光链路已对准。或者,发送装置在光功率小于第一功率阈值时,确定光链路未对准。上述的第一功率阈值可以是预定义的,或由发送装置301和接收装置302协商确定的。
在一种可选的实施方式中,第一FSO信号和/或第二FSO信号是采用大束散角发送的,该大束散角的取值属于第一角度区间。该实施方式有利于扩大接收装置的接收范围,更适应于室内场景。相应的,第一FSO信号和/或第二FSO信号是采用大视场角接收的,该大视场角的取值属于第二角度区间。从而,有利于改善第一FSO信号和/或第二FSO信号的传输效果。
可选的,上述的第一角度区间和第二角度区间可以是预定义的,或是由接收装置和发送装置协商确定的。例如,用户可根据经验值预定义第一角度区间为(0,90°]以及第二角度区间为(0,180°]。
综上所述,该无线传输方法中,发送装置从视频源装置获取电信号,该电信号携带了显示设备待播放的视频数据;再将电信号转换为第一FSO信号,该第一FSO信号携带了视频数据;然后在光链路上发送第一FSO信号。相应的,接收装置在光链路上接收来自发送装置 的第一FSO信号;再将第一FSO信号转换为携带了视频数据的电信号;然后将电信号输出至显示设备进行显示。可见,携带视频数据的FSO信号通过光链路传输,从而有利于实现显示设备上待播放的视频数据的无线传输。并且,FSO信号的传输速率可达10~100Gbps,可满足无压缩的视频数据传输,从而可实现视频数据的无压缩高速传输,进而该无线传输方法有利于实现具有高保真播放效果的随需投屏。
请参阅图10,图10是本申请实施例提供的一种无线传输方法400的流程示意图,该无线传输方法400可应用于图4所示的无线传输系统,从发送装置、接收装置、视频源装置、显示设备之间交互的角度进行阐述。该无线传输方法包括以下步骤:
S1001、发送装置向接收装置发送第二FSO信号。相应的,接收装置接收来自发送装置的第二FSO信号。此时,视频源装置可是已接入发送装置,也可是还未接入发送装置。
S1002、接收装置检测第二FSO信号的光功率。
S1003、接收装置在无线传输链路上发送光功率。相应的,接收装置在无线传输链路上接收来自接收装置的光功率。
S1004、发送装置判断光功率是否满足预设条件。在光功率不满足预设条件时,执行步骤S1005;在光功率满足预设条件时,执行步骤S1006~S1015。
S1005、发送装置调整搭载了发送装置的云台,并再次执行步骤S1001。
S1006、发送装置在无线传输链路上向接收装置发送第二信息,该第二信息用于指示光链路已对准。相应的,接收装置在无线传输链路上接收来自发送装置的第二信息。
S1007、接收装置接入显示设备,确定第一信息,该第一信息用于指示接收装置已接入显示设备。
S1008、接收装置在无线传输链路上发送第一信息。相应的,发送装置在无线传输链路上接收来自接收装置的第一信息。
S1009、发送装置向视频源装置发送第一信息。相应的,视频源装置接收来自发送装置的第一信息。
S1010、视频源装置将携带了视频数据的电信号输入发送装置。相应的,发送装置接收该电信号。
S1011、发送装置将电信号转换为第一FSO信号,该第一FSO信号携带了视频数据。
S1012、发送装置在光链路上发送第一FSO信号。相应的,接收装置在光链路上接收来自发送装置的第一FSO信号。
S1013、接收装置将第一FSO信号转换为电信号,该电信号携带了视频数据。
S1014、接收装置将携带了视频数据的电信号输出至显示设备。相应的,显示设备接收该电信号。
S1015、显示设备根据电信号,显示视频数据。
步骤S1001至步骤S1015的具体实施方式可参见图9所示的无线传输方法中对应的描述,在此不再进行赘述。
可见,该无线传输方法中,携带视频数据的FSO信号通过光链路传输给接收装置,从而有利于实现显示设备上待播放的视频数据的无线传输。并且,FSO信号的传输速率可达 10~100Gbps,可满足无压缩的视频数据传输,从而可实现视频数据的无压缩高速传输,进而该无线传输方法有利于实现具有高保真播放效果的随需投屏。
请参阅图11,图11是本申请实施例提供的一种无线传输装置的结构示意图。该无线传输装置1100包括:获取单元1101、转换单元1102、发送单元1103。
获取单元1101,用于从视频源装置获取电信号,该电信号携带了显示设备待播放的视频数据;
转换单元1102,用于将电信号转换为第一自由空间光FSO信号,该第一FSO信号携带了视频数据;
发送单元1103,还用于在光链路上发送第一FSO信号。
在一种可选的实施方式中,该无线传输装置还包括:接收单元1104;接收单元1104,用于在无线传输链路上接收第一信息,该第一信息用于指示接收装置已接入显示设备;
发送单元1103用于在光链路上发送第一FSO信号时,具体用于执行:发送装置根据第一信息,在光链路上向接收装置发送第一FSO信号。
在一种可选的实施方式中,无线传输链路是低速通信链路。可选地,低速通信链路可以是采用蓝牙、Wi-Fi等无线通信技术的链路。
在一种可选的实施方式中,发送单元1103,还用于在接收第一信息之后,将第一信息发送给视频源装置。
在一种可选的实施方式中,发送单元1103,还用于在光链路上发送第一FSO信号之前,向接收装置发送第二FSO信号;
接收单元1104,还用于在无线传输链路上接收接收装置发送的光功率;该光功率是接收装置检测到的第二FSO信号的光功率;
对准单元1105,用于根据接收装置发送的光功率,对发送装置与接收装置之间的光链路进行对准。
在一种可选的实施方式中,对准单元1105用于根据接收装置发送的光功率,对发送装置与接收装置之间的光链路进行对准,具体用于执行:
在光功率满足预设条件时,确定光链路已对准;或者,在光功率不满足预设条件时,确定光链路未对准,调整搭载了无线传输装置的云台,并再次执行向接收装置发送第二FSO信号的操作。
在一种可选的实施方式中,发送单元1103,还用于在光链路已对准时,在无线传输链路上向接收装置发送第二信息;该第二信息用于指示光链路已对准。
在一种可选的实施方式中,第一FSO信号和/或第二FSO信号是采用大束散角发送的,该大束散角的取值属于第一角度区间。
可选的,上述的无线传输装置1100可以用于执行上述方法实施例中的相关操作,此处不再详述。
请参阅图12,图12是本申请实施例提供的另一种无线传输装置的结构示意图。该无线传输装置1200包括:接收单元1201、转换单元1202、输出单元1203。
接收单元1201,用于在光链路上接收来自发送装置的第一FSO信号,该第一FSO信号携带了显示设备待播放的视频数据;
转换单元1202,用于将第一FSO信号转换为携带了视频数据的电信号;
输出单元1203,用于将电信号输出至显示设备进行显示。
在一种可选的实施方式中,该无线传输装置还包括发送单元1204;发送单元1204,用于在无线传输链路上发送第一信息,该第一信息用于指示接收装置已接入显示设备。
在一种可选的实施方式中,无线传输链路是低速通信链路。可选地,低速通信链路可以是采用蓝牙、Wi-Fi等无线通信技术的链路。
在一种可选的实施方式中,接收单元1201,还用于在光链路上接收来自发送装置的第一FSO信号之前,接收来自发送装置的第二FSO信号;
检测单元1205,用于检测第二FSO信号的光功率;
发送单元1204,还用于在无线传输链路上向发送装置发送光功率,该光功率用于发送装置对发送装置与接收装置之间的光链路进行对准。
在一种可选的实施方式中,接收单元1201,还用于在无线传输链路上,接收来自发送装置的第二信息,该第二信息用于指示光链路已对准。
在一种可选的实施方式中,第一FSO信号和/或第二FSO信号是采用大视场角接收的,该大视场角的取值属于第二角度区间。
可选的,上述的无线传输装置1200可以用于执行上述方法实施例中的相关操作,此处不再详述。
请参阅图13,图13是本申请实施例提供的又一种无线传输装置的结构示意图。该无线传输装置1300可以为具有执行图9实施例中的无线传输方法的设备(例如芯片)。该无线传输装置可以包括收发器1301、至少一个处理器1302和存储器1303。其中,收发器1301、处理器1302和存储器1303可以通过一条或多条通信总线相互连接,也可以通过其它方式相连接。
其中,收发器1301可以用于发送数据,或者接收数据。可以理解的是,收发器1301是统称,可以包括接收器和发送器。
其中,处理器1302可以用于对无线传输装置1300的数据进行处理。处理器1302可以包括一个或多个处理器,例如该处理器1302可以是一个或多个中央处理器(central processing unit,CPU),网络处理器(network processor,NP),硬件芯片或者其任意组合。在处理器1302是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
其中,存储器1303用于存储程序代码等。存储器1303可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM);存储器1303也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器1303还可以包括上述种类的存储器的组合。
其中,上述处理器1302和存储器1303可以通过接口耦合,也可以集成在一起,本实施例不作限定。
上述收发器1301和处理器1302可用于执行图9所示的无线传输方法中发送装置的相关操作,其中,具体实现方式如下:
收发器1301,用于从视频源装置获取电信号,该电信号携带了显示设备待播放的视频数据;
处理器1302,用于将电信号转换为第一FSO信号,该第一FSO信号携带了视频数据;
收发器1301,还用于在光链路上发送第一FSO信号。
在一种可选的实施方式中,收发器1301,还用于在无线传输链路上接收第一信息,该第一信息用于指示接收装置已接入显示设备;
收发器1301在光链路上发送第一FSO信号时,具体用于:根据第一信息,在光链路上向接收装置发送第一FSO信号。
在一种可选的实施方式中,无线传输链路是低速通信链路。可选地,低速通信链路可以是采用蓝牙、Wi-Fi等无线通信技术的链路。
在一种可选的实施方式中,收发器1301,还用于在接收第一信息之后,将第一信息发送给视频源装置。
在一种可选的实施方式中,收发器1301,还用于在光链路上发送第一FSO信号之前,向接收装置发送第二FSO信号;
收发器1301,还用于在无线传输链路上接收接收装置发送的光功率,该光功率是接收装置检测到的第二FSO信号的光功率;
处理器1302,还用于根据接收装置发送的光功率,对无线传输装置与接收装置之间的光链路进行对准。
在一种可选的实施方式中,处理器1302,在根据接收装置发送的光功率,对无线传输装置与接收装置之间的光链路进行对准时,具体用于:
在光功率满足预设条件时,确定光链路已对准;或者,在光功率不满足预设条件时,确定光链路未对准,调整搭载了无线传输装置的云台,并再次执行向接收装置发送第二FSO信号的步骤。
在一种可选的实施方式中,收发器1301,还用于在光链路已对准时,在无线传输链路上向接收装置发送第二信息,该第二信息用于指示光链路已对准。
在一种可选的实施方式中,第一FSO信号和/或第二FSO信号是采用大束散角发送的,该大束散角的取值属于第一角度区间。
可选的,上述的收发器1301和处理器1302可以用于执行上述方法实施例中的相关操作,此处不再详述。
在另一种可选的实施方式中,上述收发器1301和处理器1302可用于执行图9所示的无线传输方法中接收装置的相关操作,其中,具体实现方式如下:
收发器1301,用于在光链路上接收来自发送装置的第一自由空间光FSO信号,该第一FSO信号携带了显示设备待播放的视频数据;
处理器1302,用于将第一FSO信号转换为携带了视频数据的电信号;
收发器1301,还用于将电信号输出至显示设备进行显示。
在一种可选的实施方式中,收发器1301,还用于在光链路上接收来自发送装置的第一FSO信号之前,在无线传输链路上发送第一信息,该第一信息用于指示接收装置已接入显示设备。
在一种可选的实施方式中,无线传输链路是低速通信链路。可选地,低速通信链路可以是采用蓝牙、Wi-Fi等无线通信技术的链路。
在一种可选的实施方式中,收发器1301,还用于在光链路上接收来自发送装置的第一FSO信号之前,接收来自发送装置的第二FSO信号;
处理器1302,还用于检测第二FSO信号的光功率;
收发器1301,还用于在无线传输链路上向发送装置发送光功率,该光功率用于发送装置对发送装置与接收装置之间的光链路进行对准。
在一种可选的实施方式中,收发器1301,还用于在无线传输链路上,接收来自发送装置的第二信息,该第二信息用于指示光链路已对准。
在一种可选的实施方式中,第一FSO信号和/或第二FSO信号是采用大视场角接收的,该大视场角的取值属于第二角度区间。
可选的,上述的收发器1301和处理器1302可以用于执行上述方法实施例中的相关操作,此处不再详述。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有程序或指令,当所述程序或指令在计算机上运行时,使得计算机执行本申请实施例中的无线传输方法。
本申请实施例提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行本申请实施例中的无线传输方法。
其中,芯片中的接口可以为输入/输出接口、管脚或电路等。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
在一种实现方式中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请实施例提供一种计算机程序或计算机程序产品,其包括代码或指令,当代码或指令在计算机上运行时,使得计算机执行本申请实施例中的无线传输方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、 数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (25)

  1. 一种无线传输系统,其特征在于,所述无线传输系统包括发送装置和接收装置;
    所述接收装置,用于在无线传输链路上发送第一信息,所述第一信息用于指示所述接收装置已接入显示设备;
    所述发送装置,用于在所述无线传输链路上接收所述第一信息,并根据所述第一信息在光链路上发送第一自由空间光FSO信号,所述第一FSO信号携带了所述显示设备待播放的视频数据;
    所述接收装置,还用于在所述光链路上接收所述第一FSO信号。
  2. 根据权利要求1所述的系统,其特征在于,所述无线传输链路是低速通信链路。
  3. 根据权利要求1或2所述的系统,其特征在于,
    所述发送装置,还用于在发送所述第一FSO信号之前,从视频源装置获取携带了所述视频数据的电信号,以及将所述电信号转换为所述第一FSO信号。
  4. 根据权利要求1至3任一项所述的系统,其特征在于,
    所述接收装置,还用于在接收所述第一FSO信号之后,将所述第一FSO信号转换为携带了所述视频数据的电信号,并将所述电信号输出至所述显示设备进行显示。
  5. 根据权利要求3或4所述的系统,其特征在于,
    所述发送装置,还用于在接收所述第一信息之后,将所述第一信息发送给所述视频源装置。
  6. 根据权利要求2至5任一项所述的系统,其特征在于,
    所述发送装置,还用于在发送所述第一FSO信号之前,向所述接收装置发送第二FSO信号;
    所述接收装置,还用于检测接收到的所述第二FSO信号的光功率,并通过所述无线传输链路向所述发送装置发送所述光功率;
    所述发送装置,还用于根据所述接收装置发送的光功率对所述发送装置与所述接收装置之间的光链路进行对准。
  7. 根据权利要求6所述的系统,其特征在于,
    所述发送装置,还用于在所述发送装置与所述接收装置之间的光链路已对准时,在所述无线传输链路上向所述接收装置发送第二信息,所述第二信息用于指示所述光链路已对准。
  8. 根据权利要求1至6任一项所述的系统,其特征在于,
    所述第一FSO信号和/或所述第二FSO信号是采用大束散角发送的,所述大束散角的取值属于第一角度区间;
    所述第一FSO信号和/或所述第二FSO信号是采用大视场角接收的,所述大视场角的取值属于第二角度区间。
  9. 一种无线传输方法,其特征在于,所述方法包括:
    发送装置从视频源装置获取电信号,所述电信号携带了显示设备待播放的视频数据;
    所述发送装置将所述电信号转换为第一自由空间光FSO信号,所述第一FSO信号携带了所述视频数据;
    所述发送装置在光链路上发送所述第一FSO信号。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述发送装置在无线传输链路上接收第一信息,所述第一信息用于指示接收装置已接入所述显示设备;
    所述发送装置在光链路上发送所述第一FSO信号,包括:
    所述发送装置根据所述第一信息,在光链路上向所述接收装置发送所述第一FSO信号。
  11. 根据权利要求10所述的方法,其特征在于,所述无线传输链路是低速通信链路。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述发送装置在接收所述第一信息之后,将所述第一信息发送给所述视频源装置。
  13. 根据权利要求9至12任一项所述的方法,其特征在于,所述发送装置在光链路上发送所述第一FSO信号之前,所述方法还包括:
    所述发送装置向接收装置发送第二FSO信号;
    所述发送装置在所述无线传输链路上接收所述接收装置发送的光功率;所述光功率是所述接收装置检测到的所述第二FSO信号的光功率;
    所述发送装置根据所述接收装置发送的光功率,对所述发送装置与所述接收装置之间的光链路进行对准。
  14. 根据权利要求13所述的方法,其特征在于,所述发送装置根据所述接收装置发送的光功率,对所述发送装置与所述接收装置之间的光链路进行对准,包括:
    所述发送装置在所述光功率满足预设条件时,确定所述光链路已对准;或者,
    所述发送装置在所述光功率不满足预设条件时,确定所述光链路未对准,调整搭载了所述发送装置的云台,并再次执行所述向接收装置发送第二FSO信号的步骤。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    所述发送装置在所述光链路已对准时,在所述无线传输链路上向所述接收装置发送第二信息;所述第二信息用于指示所述光链路已对准。
  16. 根据权利要求9至15任一项所述的方法,其特征在于,所述第一FSO信号和/或所述第二FSO信号是采用大束散角发送的,所述大束散角的取值属于第一角度区间。
  17. 一种无线传输方法,其特征在于,所述方法包括:
    接收装置在光链路上接收来自发送装置的第一自由空间光FSO信号,所述第一FSO信号携带了显示设备待播放的视频数据;
    所述接收装置将所述第一FSO信号转换为携带了所述视频数据的电信号;
    所述接收装置将所述电信号输出至所述显示设备进行显示。
  18. 根据权利要求17所述的方法,其特征在于,所述接收装置在光链路上接收来自发送装置的第一FSO信号之前,所述方法还包括:
    所述接收装置在无线传输链路上发送第一信息,所述第一信息用于指示所述接收装置已接入所述显示设备。
  19. 根据权利要求18所述的方法,其特征在于,所述无线传输链路是低速通信链路。
  20. 根据权利要求17至19任一项所述的方法,其特征在于,所述接收装置在光链路上接收来自发送装置的第一FSO信号之前,所述方法还包括:
    所述接收装置接收来自所述发送装置的第二FSO信号;
    所述接收装置检测所述第二FSO信号的光功率;
    所述接收装置在所述无线传输链路上向所述发送装置发送所述光功率,所述光功率用于所述发送装置对所述发送装置与所述接收装置之间的光链路进行对准。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述接收装置在所述无线传输链路上接收来自所述发送装置的第二信息,所述第二信息用于指示所述光链路已对准。
  22. 根据权利要求17至21任一项所述的方法,其特征在于,所述第一FSO信号和/或所述第二FSO信号是采用大视场角接收的,所述大视场角的取值属于第二角度区间。
  23. 一种无线传输装置,其特征在于,包括存储器和处理器;
    所述存储器,用于存储指令或计算机程序;
    所述处理器,用于执行所述存储器所存储的计算机程序或指令,以使所述无线传输装置执行权利要求9至16任一项所述的方法,或执行权利要求17至22任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行权利要求9至16任一项所述的方法,或使得所述计算机执行权利要求17至22中任一项所述的方法。
  25. 一种计算机程序产品,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行权利要求9至16任一项所述的方法,或使得所述计算机执行权利要求17至22中任一项所述的方法。
PCT/CN2022/100487 2021-06-30 2022-06-22 无线传输系统、方法及装置 WO2023273992A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110745455.6A CN115550616A (zh) 2021-06-30 2021-06-30 无线传输系统、方法及装置
CN202110745455.6 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023273992A1 true WO2023273992A1 (zh) 2023-01-05

Family

ID=84690764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100487 WO2023273992A1 (zh) 2021-06-30 2022-06-22 无线传输系统、方法及装置

Country Status (2)

Country Link
CN (1) CN115550616A (zh)
WO (1) WO2023273992A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105897968A (zh) * 2016-05-31 2016-08-24 京东方科技集团股份有限公司 移动终端
CN108093263A (zh) * 2017-12-11 2018-05-29 西安交通大学 一种自由空间光通信中基于最小失真优化的视频传输方法
CN109618220A (zh) * 2018-12-25 2019-04-12 三星电子(中国)研发中心 无线投屏方法及无线投屏系统
US20190155372A1 (en) * 2017-11-17 2019-05-23 Microsoft Technology Licensing, Llc Mixed reality offload using free space optics
US20200049989A1 (en) * 2018-08-10 2020-02-13 8 Rivers Capital, Llc System for optical wireless communication to extended reality immersion device
CN210609498U (zh) * 2019-12-09 2020-05-22 Oppo广东移动通信有限公司 Lifi装置和具有其的投屏系统
CN111601120A (zh) * 2020-04-21 2020-08-28 江苏大学 一种无线传屏显示系统与显示方法
CN214042301U (zh) * 2020-11-23 2021-08-24 Oppo广东移动通信有限公司 光保真数据传输装置及光保真投屏设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105897968A (zh) * 2016-05-31 2016-08-24 京东方科技集团股份有限公司 移动终端
US20190155372A1 (en) * 2017-11-17 2019-05-23 Microsoft Technology Licensing, Llc Mixed reality offload using free space optics
CN108093263A (zh) * 2017-12-11 2018-05-29 西安交通大学 一种自由空间光通信中基于最小失真优化的视频传输方法
US20200049989A1 (en) * 2018-08-10 2020-02-13 8 Rivers Capital, Llc System for optical wireless communication to extended reality immersion device
CN109618220A (zh) * 2018-12-25 2019-04-12 三星电子(中国)研发中心 无线投屏方法及无线投屏系统
CN210609498U (zh) * 2019-12-09 2020-05-22 Oppo广东移动通信有限公司 Lifi装置和具有其的投屏系统
CN111601120A (zh) * 2020-04-21 2020-08-28 江苏大学 一种无线传屏显示系统与显示方法
CN214042301U (zh) * 2020-11-23 2021-08-24 Oppo广东移动通信有限公司 光保真数据传输装置及光保真投屏设备

Also Published As

Publication number Publication date
CN115550616A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
US10637894B2 (en) Real-time placeshifting of media content to paired devices
JP6702455B2 (ja) 表示装置及び表示制御方法、並びにコンピューター・プログラム
WO2020103326A1 (zh) 一种一对多同屏方法、装置和系统、同屏设备及存储介质
KR101633100B1 (ko) 정보 처리 시스템, 정보 처리 장치, 정보 처리 방법 및 기록 매체
CN104125434B (zh) 一种长距离高清传输的系统
US20150350288A1 (en) Media agnostic display for wi-fi display
WO2007065350A1 (fr) Systeme d'affichage sans fil et procede associe
TWI528827B (zh) 於複製模式中作無線多播的方法與設備及電腦可讀取媒體
KR20150026947A (ko) 디스플레이 포워딩 기능에 대한 호환성 통지를 이용하는 컨텐트 공유 방법 및 연관 디바이스
WO2021168649A1 (zh) 多功能接收设备和会议系统
WO2016200520A1 (en) Tunneling hdmi data over wireless connections
TWM536380U (zh) Hdmi智能播放系統
TW202004417A (zh) 無線影音傳輸系統及方法
GB2486425A (en) Rendering multimedia content from a mobile device onto an external display device
CN102638726B (zh) 一种基于太赫兹无线通信的多媒体流传输方法及系统
WO2023273992A1 (zh) 无线传输系统、方法及装置
WO2023240896A1 (zh) 超高清视频信号处理设备、方法以及超高清视频管理系统
US20190028522A1 (en) Transmission of subtitle data for wireless display
TWI816071B (zh) 音訊轉換裝置及音訊處理方法
WO2016173455A1 (zh) 辅视频互通方法及装置
CN215499319U (zh) 开放式ip网络界面协议通讯装置
TW201427400A (zh) 多媒體訊號控制裝置及其控制方法
CN105913626A (zh) 一种实现从源端显示屏到目的端显示屏的镜像功能的设备
KR101337952B1 (ko) 개인용컴퓨터와 텔레비젼을 연결하는 연결장치
CN105898458A (zh) 基于dp的视频输出无线适配方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831808

Country of ref document: EP

Kind code of ref document: A1