WO2023273786A1 - 一种可穿戴设备 - Google Patents

一种可穿戴设备 Download PDF

Info

Publication number
WO2023273786A1
WO2023273786A1 PCT/CN2022/096763 CN2022096763W WO2023273786A1 WO 2023273786 A1 WO2023273786 A1 WO 2023273786A1 CN 2022096763 W CN2022096763 W CN 2022096763W WO 2023273786 A1 WO2023273786 A1 WO 2023273786A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
antenna
wearable device
metal part
radiator
Prior art date
Application number
PCT/CN2022/096763
Other languages
English (en)
French (fr)
Inventor
卢妍溢
孟博
范毅
席宝坤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22831607.1A priority Critical patent/EP4343962A1/en
Publication of WO2023273786A1 publication Critical patent/WO2023273786A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/04Multimode antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present application relates to the field of wireless communication, in particular to a wearable device.
  • wireless earphones Due to its convenience and miniaturization, wireless earphones are becoming more and more popular among users, especially true wireless (true wireless stereo, TWS) Bluetooth (blue tooth, BT) earphones.
  • TWS trusted wireless stereo
  • BT blue tooth
  • the TWS headset is directly worn on the user's ear, its antenna performance is more easily affected by the user's head, so it is difficult to achieve excellent antenna performance.
  • the same problem will be faced with other wearable devices worn by users, such as smart watches and smart glasses.
  • the present application provides a wearable device.
  • the metal part of the wearable device casing is used as an antenna radiator, and different working modes of the antenna radiator in the same working frequency band are realized by switching a switch.
  • a wearable device comprising: a casing including a metal part, the metal part serving as an antenna radiator; a printed circuit board PCB arranged in the casing, and the PCB and all parts of the casing The metal parts are arranged opposite to each other; a feed unit is electrically connected to the first end of the metal part and feeds power to the antenna radiator; and a first switch, one end of the first switch is connected to the metal part The second end is electrically connected, and the other end of the first switch is grounded; when the first switch is switched to the first switch state or the second switch state, the working frequency band of the wearable device includes the first frequency band.
  • the antenna radiator can be regarded as corresponding to different antenna units, for example, including a first antenna unit and a second antenna unit.
  • the first antenna unit and the second antenna unit share a radiator.
  • the first switch When the first switch is connected, the second end of the metal part is grounded to form the first antenna unit.
  • the feeding unit feeds power, the electromagnetic field generated by the first antenna unit is similar to the electromagnetic field generated by differential feeding.
  • the first switch When the first switch is turned off, the second end of the metal part is not in communication with the floor, forming the second antenna unit.
  • the electromagnetic field generated by the second antenna unit is similar to that generated by in-phase feed. Therefore, by controlling the state of the first switch, the first antenna unit and the second antenna unit are switched. Since differential feeding and in-phase feeding use the same radiator to generate radiation, the pattern of the first antenna unit and the second antenna unit are complementary, and the pattern can be performed by switching the two antenna units when the packet loss rate is lower than the threshold. switching, so as to increase the coverage of the antenna structure 201 pattern (for example, realize 360° omnidirectional coverage), realize stable connection, and improve user experience. At the same time, using the metal part of the housing as the antenna radiator can ensure that the antenna in the wearable device obtains a large headroom (away from the PCB/floor/battery/components), resulting in good radiation performance.
  • the distance between the connection between the feed unit and the metal part and the connection between one end of the first switch and the metal part is greater than Or equal to one-eighth of the first wavelength, where the first wavelength is the wavelength corresponding to the first frequency band.
  • the working mode of the antenna can be controlled to switch between the first antenna unit and the second antenna unit.
  • the first switch is a single pole single throw switch, a single pole double throw switch, a single pole four throw switch or a four pole single throw switch.
  • the switch can be a single-pole single-throw switch, or other types of switches, such as a single-pole double-throw switch, a single-pole four-throw switch or a four-pole single-throw switch, and the same technical effect can also be achieved. .
  • the first switch may also be other types of components, the first switch may be a variable capacitor, and the metal layer 221 is switched by changing the capacitance value of the variable capacitor.
  • the variable capacitor includes a first capacitance state and a second capacitance state, respectively corresponding to the first switch state and the second switch state of the first switch, and the first capacitance state corresponds to a first capacitance value, so The second capacitance state corresponds to a second capacitance value, and settings of the first capacitance value and the second capacitance value are related to the working frequency of the antenna radiator.
  • the first capacitance value corresponding to the first capacitance state is less than or equal to 0.2pF, and the second capacitance value corresponding to the second capacitance state is greater than or equal to 10pF .
  • the capacitance value of the variable capacitor when the capacitance value of the variable capacitor is 0.2pF, it can be considered that the second end of the metal part is not connected to the metal layer.
  • the capacitance value of the variable capacitor is 10 pF, it can be considered that the second end of the metal part is electrically connected to the metal layer.
  • the PCB includes a metal layer, and the metal layer is disposed opposite to the metal part of the housing, wherein the other end of the first switch is connected to the The metal layers are electrically connected and grounded through the metal layers.
  • One end of the feeding unit is electrically connected to the first end of the metal part, and the other end of the feeding unit is electrically connected to the metal layer.
  • the metal layer in the PCB can be used as the ground layer/floor in the wearable device, or can be electrically connected to the floor, which is equivalent to the floor.
  • the feed unit and/or the first switch are arranged on the PCB.
  • the feed unit and the first switch can be arranged on the same substrate (for example, PCB), or can also be arranged on two or more different substrates according to the layout requirements, for example It is arranged on different PCBs and/or flexible printed circuits (Flexible Printed Circuit, referred to as FPC).
  • FPC Flexible Printed Circuit
  • the wearable device includes a matching network; the first end of the metal part includes a first feeding point and a second feeding point; the matching network It includes a first radio frequency circuit, a second radio frequency circuit and a second switch; one end of the first radio frequency circuit is electrically connected to the metal part at the first feeding point, and the other end of the first radio frequency circuit is connected to the The second switch is electrically connected; one end of the second radio frequency circuit is electrically connected to the metal part at the second feeding point, and the other end of the second radio frequency circuit is electrically connected to the second switch ; The second switch is electrically connected to the feed unit.
  • the matching network further includes a third radio frequency circuit; one end of the third radio frequency circuit is arranged between the second switch and the feeding unit , the other end of the third radio frequency circuit is grounded.
  • the first switch is used to switch between the ungrounded state and the grounded state of the second end of the metal part
  • the second switch can be used to switch the matching between the first antenna unit and the second antenna unit, such as frequency tuning.
  • the second switch can be used to switch the series reactances corresponding to the two antenna units (the reactance of the first radio frequency circuit and the reactance of the second radio frequency circuit).
  • the parallel reactance (the reactance of the third radio frequency circuit) can be placed between the second switch and the feed unit instead of between the feed point and the second switch, which not only ensures the switching of the second switch to the matching network It also prevents the reactances of different matching networks corresponding to the first antenna unit and the second antenna unit from influencing each other, and at the same time can reduce the layout of electronic components.
  • the first radio frequency circuit includes a first capacitor; the second radio frequency circuit includes a first inductor; and the third radio frequency circuit includes a second inductor.
  • the first capacitance and the second inductance may be used to match the first antenna unit, so as to optimize the radiation characteristics of the first antenna unit.
  • the first inductance and the second inductance can be used to match the second antenna unit for optimizing the radiation characteristics of the second antenna unit.
  • the capacitance value of the first capacitor is between 0.5pF and 1.5pF, and the inductance value of the first inductor is between 1nH and 2nH,
  • the inductance value of the second inductor is between 1nH and 2nH.
  • the capacitance value of the first capacitor is 1pF
  • the inductance value of the first inductor is 1.5nH
  • the inductance value of the second inductor is 1.5nH .
  • the specific data of the first capacitance, the first inductance and the second inductance can be adjusted according to different electromagnetic environments.
  • This application only takes the above values as an example. There is no limit to this.
  • the first frequency band is a Bluetooth frequency band.
  • the wearable device can support the Bluetooth frequency band through the antenna radiator. Regardless of whether the first switch is in the first switch state or the second switch state, the wearable device can support the Bluetooth frequency band through the antenna radiator.
  • the frequency band supported by the wearable device through the antenna radiator may also correspond to global positioning system (global positioning system, GPS) communication technology, wireless fidelity (wireless fidelity, WiFi) communication technology, Global system for mobile communications (GSM) communication technology, wideband code division multiple access (WCDMA) communication technology, long term evolution (LTE) communication technology, (5 th generation, 5G) communication technology and other communication technologies in the future.
  • global positioning system global positioning system
  • GPS global positioning system
  • wireless fidelity wireless fidelity
  • WiFi Global system for mobile communications
  • GSM Global system for mobile communications
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • 5G 5 th generation
  • the wearable device is a true wireless TWS earphone, a smart watch or smart glasses.
  • an antenna including: a radiator, a printed circuit board PCB, a feed unit, and a first switch; wherein, the radiator is arranged opposite to the PCB; the feed unit is connected to the radiation
  • the first end of the first switch is electrically connected to the radiator and feeds power to the radiator; one end of the first switch is electrically connected to the second end of the radiator, and the other end of the first switch is grounded; the first When the switch is switched to the first switch state or the second switch state, the working frequency band of the antenna includes the first frequency band.
  • the radiator may be a metal radiator.
  • the radiator can be regarded as corresponding to different antenna units, for example, including a first antenna unit and a second antenna unit.
  • the first antenna unit and the second antenna unit share a radiator.
  • the first switch When the first switch is connected, the second end of the radiator is grounded to form the first antenna unit.
  • the feeding unit feeds power, the electromagnetic field generated by the first antenna unit is similar to the electromagnetic field generated by differential feeding.
  • the first switch When the first switch is turned off, the second end of the radiator does not communicate with the floor, forming a second antenna unit.
  • the electromagnetic field generated by the second antenna unit is similar to that generated by in-phase feed. Therefore, by controlling the state of the first switch, the first antenna unit and the second antenna unit are switched. Since differential feeding and in-phase feeding use the same radiator to generate radiation, the pattern of the first antenna unit and the second antenna unit are complementary, and the pattern can be performed by switching the two antenna units when the packet loss rate is lower than the threshold. switching, thereby increasing the coverage of the antenna pattern (for example, achieving 360° omnidirectional coverage), achieving stable connection, and improving user experience.
  • the antenna can be used in wearable devices, wherein the radiator can be formed by using the metal shell part of the wearable device, so as to ensure that the antenna radiator of the wearable device obtains a large headroom (away from PCB/floor/battery/components) , resulting in good radiation performance.
  • connection between the feed unit and the metal radiator and the connection between one end of the first switch and the metal radiator The distance is greater than or equal to one-eighth of the first wavelength, and the first wavelength is the wavelength corresponding to the first frequency band.
  • the second end of the metal radiator when the first switch is in the first switch state, the second end of the metal radiator is grounded through the first switch; When a switch is in the second switch state, the second end of the metal radiator is not grounded through the first switch.
  • the first switch is a single-pole single-throw switch, a single-pole double-throw switch, a single-pole four-throw switch or a four-pole single-throw switch.
  • the first switch is a variable capacitor
  • the variable capacitor includes a first capacitance state and a second capacitance state, respectively corresponding to the first switch
  • the first switch state and the second switch state the first capacitance state corresponds to a first capacitance value
  • the second capacitance state corresponds to a second capacitance value
  • the first capacitance value and the second capacitance value capacitance value and The working frequency of the antenna is related.
  • the first capacitance value corresponding to the first capacitance state is less than or equal to 0.2pF, and the second capacitance value corresponding to the second capacitance state is greater than or equal to 10pF .
  • the PCB includes a metal layer, and the metal layer is disposed opposite to the metal radiator, wherein the other end of the first switch is connected to the metal radiator. layers are electrically connected and grounded through the metal layer. One end of the feeding unit is electrically connected to the first end of the metal radiator, and the other end of the feeding unit is electrically connected to the metal layer.
  • the feed unit and/or the first switch are arranged on the PCB.
  • the wearable device includes a matching network; the first end of the metal part includes a first feeding point and a second feeding point; the matching network It includes a first radio frequency circuit, a second radio frequency circuit and a second switch; one end of the first radio frequency circuit is electrically connected to the metal part at the first feeding point, and the other end of the first radio frequency circuit is connected to the The second switch is electrically connected; one end of the second radio frequency circuit is electrically connected to the metal part at the second feeding point, and the other end of the second radio frequency circuit is electrically connected to the second switch ; The second switch is electrically connected to the feed unit.
  • the matching network further includes a third radio frequency circuit; one end of the third radio frequency circuit is arranged between the second switch and the feeding unit , the other end of the third radio frequency circuit is grounded.
  • the first radio frequency circuit includes a first capacitor; the second radio frequency circuit includes a first inductor; and the third radio frequency circuit includes a second inductor.
  • the capacitance value of the first capacitor is between 0.5pF and 1.5pF
  • the inductance value of the first inductor is between 1nH and 2nH
  • the inductance value of the second inductor is between 1nH and 2nH.
  • the capacitance value of the first capacitor is 1pF
  • the inductance value of the first inductor is 1.5nH
  • the inductance value of the second inductor is 1.5nH .
  • the feed unit and the first switch may be disposed on the same substrate, or disposed on two or more different substrates.
  • the matching network can be arranged on the same substrate as the feed unit and/or the first switch, or on two or more different substrates.
  • Different substrates may include PCBs and/or FPCs, which are not limited in the present application and may be adjusted according to actual designs.
  • the first frequency band is a Bluetooth frequency band.
  • the antenna can be used in a wearable device, and the wearable device supports a Bluetooth frequency band through the antenna. Regardless of whether the first switch is in the first switch state or the second switch state, the wearable device can support the Bluetooth frequency band through the antenna.
  • the wearable device is a true wireless TWS earphone, a smart watch or smart glasses.
  • the first frequency band may also correspond to global positioning system (global positioning system, GPS) communication technology, wireless fidelity (wireless fidelity, WiFi) communication technology, global system for mobile communications (global system for mobile communications, GSM) communication technology, broadband code Frequency bands for wideband code division multiple access (WCDMA) communication technology, long term evolution (LTE) communication technology, 5th generation (5G) communication technology and other future communication technologies.
  • global positioning system global positioning system
  • wireless fidelity wireless fidelity
  • GSM global system for mobile communications
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • 5G 5th generation
  • Fig. 1 is a schematic structural diagram of a wearable device provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the comparison of the antenna structure of the TWS earphone in different situations.
  • FIG. 3 is a schematic diagram of switching of the radiation pattern of the antenna structure provided by the embodiment of the present application.
  • Fig. 4 is a schematic diagram of an equivalent principle of opposite charges provided by the present application.
  • Fig. 5 is a schematic diagram of an equivalent principle of the same charge provided by the present application.
  • FIG. 6 is a schematic diagram of an equivalent principle of a reverse current source provided by the present application.
  • FIG. 7 is a schematic diagram of an equivalent principle of a non-directional current source provided by the present application.
  • Fig. 8 is a schematic diagram of an antenna structure provided by the present application.
  • Fig. 9 is a schematic diagram of a differential feeding principle provided by the present application.
  • Fig. 10 is a schematic diagram of a principle of in-phase feeding provided by the present application.
  • FIG. 11 is a schematic diagram of an equivalent principle using a reverse current source.
  • FIG. 12 is a schematic diagram of an equivalent principle using a non-directional current source.
  • Fig. 13 is a schematic diagram of a simulation of differential feeding.
  • Fig. 14 is a schematic diagram of a simulation of in-phase feeding.
  • FIG. 15 is a schematic structural diagram of a wearable device 200 provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of an antenna structure 201 provided by an embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of a metal shrapnel provided by an embodiment of the present application.
  • Fig. 18 is a schematic diagram of the electric field distribution of the control group provided by the present application when in-phase feeding is used.
  • Fig. 19 is a directional diagram of the control group provided by the present application when in-phase feeding is used.
  • FIG. 20 is a schematic diagram of electric field distribution when the switch in the antenna structure shown in FIG. 16 is in the second switch state provided by the present application.
  • FIG. 21 is a directional diagram when the switch in the antenna structure shown in FIG. 16 is in a second switch state provided by the present application.
  • Fig. 22 is a schematic diagram of the electric field distribution when the control group provided by the present application adopts differential feeding.
  • Fig. 23 is a directional diagram of the control group provided by the present application when differential feeding is used.
  • FIG. 24 is a schematic diagram of electric field distribution when the switch in the antenna structure shown in FIG. 16 is in the first switching state provided by the present application.
  • FIG. 25 is a directional diagram when the switch in the antenna structure shown in FIG. 16 is in a first switch state provided by the present application.
  • FIG. 26 is a schematic diagram of an antenna structure 300 provided by an embodiment of the present application.
  • Fig. 27 is a Smith chart of the first antenna unit and the second antenna unit provided by the embodiment of the present application.
  • FIG. 28 is a graph of S-parameter simulation results of the antenna structure shown in FIG. 26 .
  • Fig. 29 is a simulation result diagram of the system efficiency (total efficiency) of the antenna structure shown in Fig. 26 .
  • Fig. 30 is a schematic diagram of the coordinates of the polarization mode provided by the embodiment of the present application.
  • Fig. 31 is a directional diagram of the headform horizontal plane of the antenna structure shown in Fig. 26 .
  • Fig. 32 is a directional diagram of the side of the headform of the antenna structure shown in Fig. 26 .
  • Fig. 33 is a directional diagram of the front of the headform with the antenna structure shown in Fig. 26 .
  • Fig. 34 is another wearable device provided by the embodiment of this application.
  • Fig. 35 is another wearable device provided by the embodiment of this application.
  • connection in this application can be understood as the physical contact and electrical conduction of components; it can also be understood as the connection between different components in the circuit structure through printed circuit board (printed circuit board, PCB) copper foil or wires The form of connecting with physical lines that can transmit electrical signals; or, it can also be understood as the electrical conduction between components through indirect coupling without physical contact.
  • Communication connection may refer to electrical signal transmission, including wireless communication connection and wired communication connection. A wireless communication connection does not require a physical medium and does not belong to a connection relationship that defines a product configuration. Both "connection” and “connection” can refer to a mechanical connection relationship or a physical connection relationship.
  • connection between A and B or the connection between A and B can mean that there are fastening components (such as screws, bolts, rivets, etc.) between A and B. etc.), or A and B are in contact with each other and A and B are difficult to be separated.
  • fastening components such as screws, bolts, rivets, etc.
  • the technical solution provided by this application is applicable to wearable devices using one or more of the following communication technologies: BT communication technology, global positioning system (global positioning system, GPS) communication technology, wireless fidelity (wireless fidelity, WiFi) communication technology , global system for mobile communications (GSM) communication technology, wideband code division multiple access (WCDMA) communication technology, long term evolution (LTE) communication technology, (5 th generation , 5G) communication technology and other communication technologies in the future.
  • GSM global positioning system
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • FIG. 1 is a schematic structural diagram of a wearable device provided by an embodiment of the present application, and a wireless earphone is taken as an example for illustration.
  • FIG. 1 it is a structural diagram of a wireless earphone 100 , and the wireless earphone 100 may be, for example, a TWS Bluetooth earphone.
  • the wireless earphone 100 can be divided into an earbud part 1 and an ear stem part 2 .
  • the earplug part 1 is connected to one end of the ear handle part 2 .
  • the earplug 1 can be accommodated or embedded in the user's auricle, and the ear handle 2 can be hung on the edge of the user's auricle and located on the periphery of the user's auricle.
  • the ear handle part 2 can be further divided into a connecting section 21 connected with the earplug part 1, and a top section 22 and a bottom section 23 located on both sides of the connecting section 21 .
  • the top section 22, the connecting section 21 and the bottom section 23 of the ear handle part 2 are arranged in sequence along the longitudinal direction of the wireless earphone.
  • the longitudinal direction may be the extension direction of the ear stem part 2 (the Y axis shown in (a) in FIG. 1 ), which is also the length direction of the ear stem part 2 .
  • the two ends in the longitudinal direction may be the top end and the bottom end, respectively.
  • the top section 22 , the connecting section 21 and the bottom section 23 can be a one-piece structure or a split structure.
  • the ear handle part 2 can also be divided into a connection section 21 connected to the earplug part 1 , and a bottom section 23 located on the side of the connection section 21 .
  • the connection end 21 is connected between the earplug part 1 and the bottom section 23 .
  • the connection section 21 and the bottom section 23 are distributed along the longitudinal direction of the wireless earphone 100 . That is to say, in this application, the wireless earphone 100 may or may not have the top section 22 as shown in (a) and (c) of FIG. 1 .
  • the wireless earphone 100 may include a housing 10 .
  • the housing 10 can be used to house various components of the wireless earphone 100 .
  • the case 10 may include a main case 101 , a bottom case 102 and a side case 103 .
  • the main housing 101 can cover part of the bottom section 23 of the ear handle 2 , the connection section 21 of the ear handle 2 , the top section 22 of the ear handle 2 , and the part of the earplug 1 connected to the connection section 21 .
  • the main housing 101 may form a first opening 1011 at the bottom section 23 of the ear handle part 2 , and may form a second opening 1012 at the earplug part 1 .
  • the first opening 1011 and the second opening 1012 may be used to accommodate components inside the wireless earphone 100 .
  • the bottom shell 102 may be located at the very bottom of the bottom section 23 of the ear stem part 2 .
  • the bottom case 102 can be fixedly connected with the main case 101 through the first opening 1011 .
  • the connection between the bottom housing 102 and the main housing 101 is a detachable connection (such as snap-fit connection, screw connection, etc.), so as to facilitate subsequent repair (or maintenance) of the wireless earphone 100 .
  • the connection between the bottom shell 102 and the main shell 101 can be a non-detachable connection (such as glued), so as to reduce the risk of the bottom shell 102 accidentally falling off, which is beneficial to improve the wireless headset. 100% reliability.
  • the side housing 103 may be located on a side of the earplug part 1 away from the ear handle part 2 .
  • the side housing 103 can be fixedly connected to the main housing 101 through the second opening 1012 .
  • the connection between the side housing 103 and the main housing 101 is a detachable connection (such as snap-fit connection, screw connection, etc.), so as to facilitate the subsequent repair (or maintenance) of the wireless earphone 100 .
  • the connection between the side housing 103 and the main housing 101 can also be a non-detachable connection (such as glue joint), so as to reduce the risk of the side housing 103 accidentally falling off, which is beneficial to Improve the reliability of the wireless headset 100.
  • One or more sound outlet holes 1031 may be provided on the side shell 103 , so that the sound inside the housing 10 can be transmitted to the outside of the housing 10 through the sound outlet holes 1031 .
  • the present application may not limit the shape, position, quantity, etc. of the sound holes 1031 .
  • the present application may not limit the number and positions of the openings on the housing 10 .
  • Different wireless earphones 100 may have different opening numbers and/or different opening positions.
  • the housing 10 may include a first shell 104 and a second shell 105 .
  • a third opening 1041 may be formed on the first housing 104 .
  • the first housing 104 can be fixedly connected with the second housing 105 through the third opening 1041 .
  • the wireless earphone 100 may have a smaller number of openings.
  • the structure of the wireless earphone 100 shown in FIG. 1 is only some examples, and the wireless earphone 100 may also have other different embodiments. The following only takes the wireless earphone 100 shown in FIG. 1 as an example to describe in detail.
  • FIG. 2 is a schematic diagram of the comparison of the antenna structure of the TWS earphone in different situations. Among them, (a) in FIG. 2 is the directional diagram of the antenna structure when the user is not wearing the TWS headset, and (b) in FIG. 2 is the directional diagram of the antenna structure when the user is wearing the TWS headset.
  • the TWS earphones are worn on the user's ears and close to the user's head, the human body absorbs the energy radiated by the earphone's antenna structure seriously, and its pattern will change, and due to the reflection effect, the earphone's antenna structure is close to the head
  • One side will produce a zero point with extremely poor radiation performance, as shown in (b) in Figure 2, which will cause a freeze problem during the user's use and reduce the user experience.
  • the zero point of the radiation pattern of the antenna structure can be considered as a small value of the gain in the radiation pattern of the antenna structure, or it can also be considered as a region where the gain is less than a certain threshold. Due to the difference in the antenna structure and the environment, The pattern of an antenna structure may also have multiple nulls.
  • the antenna structure of the earphone has an urgent need for pattern switching.
  • the antenna structure provided by the embodiment of the present application may include an antenna unit 1 and an antenna unit 2, wherein the antenna unit 1 has a radiation pattern when the user wears it as the radiation pattern 1 in FIG. 3 , and the antenna unit 2 has a radiation pattern when the user wears it as Pattern 2 in FIG. 3 , pattern 1 and pattern 2 are two complementary patterns.
  • the headset can switch between antenna unit 1 and antenna unit 2 when the packet loss rate is lower than the threshold through the sensitivity of the antenna unit, thereby switching between two complementary patterns.
  • the zero point position of the original single antenna pattern is replaced by Complementary, the synthesized dual-antenna pattern makes up for the small gain of any single-antenna pattern at the zero point, thereby improving the over-the-air (OTA) performance of the overall antenna structure.
  • OTA over-the-air
  • the two complementary directional patterns can be understood as zero points of the two directional patterns are not in the same direction, that is, the zero points do not coincide.
  • the packet loss rate can be understood as the rate at which electronic devices lose data packets during the process of receiving data packets. When the packet loss rate is greater than the threshold, it can be judged that the current antenna structure is greatly affected by the environment and its radiation characteristics are poor.
  • the synthetic directional diagram is formed by combining at least two directional diagrams for ease of understanding, and the synthetic directional diagram can be understood as having a gain at any angle that is greater than the gain corresponding to the angle in the at least two directional diagrams value. It should be understood that the composite pattern of two complementary patterns can at least increase the gain of any pattern at the zero point
  • the industrial design (ID) trend of TWS earphones on the market is based on the metal shell architecture.
  • the metal casing is more attractive in appearance, but it is a big challenge for the antenna design.
  • the metal shell is not used as a radiator, the formed outer metal layer will shield the radiation of the antenna structure inside the earphone, and the performance of the antenna structure will deteriorate seriously.
  • the metal casing is used as a radiator, the product ID defines the routing form of the antenna structure, and the antenna structure does not have any optimization variables except for adjusting the matching network. And under the limitation of the metal casing, it is even more challenging to realize the switching of the antenna structure's pattern.
  • This application provides a wearable device, which may include an intelligent dual-antenna structure.
  • the antenna structure is based on the metal shell design of the wearable device, and can switch the direction pattern on the basis of ensuring its good radiation characteristics, reducing The number of freezes when the user is wearing it improves the user experience.
  • FIG. 4 is a schematic diagram of an equivalent principle of an opposite charge provided in the present application.
  • Fig. 5 is a schematic diagram of an equivalent principle of the same charge provided by the present application.
  • FIG. 6 is a schematic diagram of an equivalent principle of a reverse current source provided by the present application.
  • FIG. 7 is a schematic diagram of an equivalent principle of a non-directional current source provided by the present application.
  • Fig. 8 is a schematic diagram of an antenna structure provided by the present application.
  • Fig. 9 is a schematic diagram of a differential feeding principle provided by the present application.
  • Fig. 10 is a schematic diagram of a principle of in-phase feeding provided by the present application.
  • the electromagnetic field generated by two charges in the space (X>0) (or in the space X ⁇ 0, not shown) as shown in (a) in Figure 4 can be equivalent to (b) in Figure 4
  • the electric field generated by the two charges in space is shown in (a) in Figure 5 .
  • the ideal magnetic conductor (perfect magnetic conductor, PMC) is defined as: On the surface of the ideal magnetic conductor, all magnetic fields are perpendicular to the PMC (electric fields are parallel to the PMC), as shown in (b) in Figure 5.
  • the electromagnetic field generated by the two charges in the space (X>0) (or in the space X ⁇ 0, not shown) as shown in (a) in Figure 5 can be equivalent to (b) in Figure 5
  • the principle of differential/in-phase feeding is schematically shown in Figure 9 and Figure 10 .
  • the differential/in-phase feeding principle shown in Fig. 9 and Fig. 10 is based on the antenna structure shown in Fig. 8, and the antenna structure shown in Fig. 8 is a patch antenna whose electrical length of the radiation patch is 1/2 ⁇ , The current sources are respectively fed at the two ends of the antenna structure to be electrically connected thereto.
  • the feeding mode shown in Figure 9 is differential feeding, wherein the current sources at both ends of the antenna structure are reversed (the electrical signal amplitude is the same, and the phase difference is 180°), and the radiation pattern of the antenna structure is radiated in the y-axis direction Maximum, a zero point is generated in the z-axis direction.
  • the feeding mode shown in Figure 10 is in-phase feeding, wherein the current sources at both ends of the antenna structure are in the same direction (the electrical signal amplitude is the same, and the phase difference is 0°), and the radiation pattern of the antenna structure radiates in the z-axis direction At maximum, a zero point is generated in the y-axis direction.
  • the corresponding pattern when it adopts in-phase feeding or differential feeding, the corresponding pattern is orthogonal and complementary.
  • the pattern orthogonality can be understood as that the directions of the maximum radiation of the two pattern patterns are orthogonal
  • the pattern complementarity can be understood as that the directions of the zero points of the two pattern patterns are different.
  • FIG. 11 to 14 are schematic diagrams of equivalent/simulated electromagnetic fields provided by the embodiments of the present application.
  • FIG. 11 is a schematic diagram of an equivalent principle using a reverse current source.
  • FIG. 12 is a schematic diagram of an equivalent principle using a non-directional current source.
  • Fig. 13 is a schematic diagram of a simulation of differential feeding.
  • Fig. 14 is a schematic diagram of a simulation of in-phase feeding.
  • the patch antenna with an electrical length of 1/4 ⁇ of the radiating patch is electrically connected to the current source at one end, and a PEC is set at the other end, and its electromagnetic field can be compared with that in Figure 9
  • the electromagnetic fields generated by the differential feed shown are equivalent.
  • one end of the patch antenna PEC can be electrically connected to the floor for electromagnetic field simulation, and a similar effect can be obtained.
  • the electric field distribution is shown in Figure 13.
  • the patch antenna with an electrical length of 1/4 ⁇ of the radiating patch is electrically connected to the current source at one end, and a PMC is set at the other end, and its electromagnetic field can be compared with that in Figure 10
  • the electromagnetic field generated by the in-phase feed shown is equivalent.
  • the PMC cannot be obtained in practical applications, it is possible to set the patch antenna at one end of the PMC not to be electrically connected to the floor (open circuit) and perform electromagnetic field simulation to obtain a similar effect.
  • the electric field distribution is shown in Figure 14 .
  • FIG. 15 is a schematic structural diagram of a wearable device 200 provided by an embodiment of the present application, and the wearable device is an earphone as an example for illustration.
  • the housing 210 of the wearable device 200 may include a metal part 211 and a non-metal part 212 .
  • the wearable device 200 may be a wearable device designed on the basis of a metal shell architecture solution.
  • the shell 210 may be a shell formed by splicing metal and insulating materials. .
  • the metal part 211 can be disposed on the outside of the casing 210 (the side of the casing 210 away from the user when the user wears it).
  • the metal part 211 can be used as a radiator of the antenna structure 201 . Utilizing the metal part of the housing 210 as the radiator of the antenna structure 201 can ensure that the antenna structure 201 in the wearable device 200 obtains a larger clearance (away from PCB/floor/battery/components), resulting in good radiation performance.
  • the cavity formed by the casing 210 may further include multiple components, for example, a battery, a printed circuit board (printed circuit board, PCB), a speaker, and the like.
  • the battery and PCB can be arranged on the ear handle of the wearable device 200 , and the speaker can be arranged on the earplug part of the wearable device 200 .
  • the PCB may use a flame-resistant material (FR-4) dielectric board, or a Rogers (Rogers) dielectric board, or a mixed media board of Rogers and FR-4, and so on.
  • FR-4 is a code name for a flame-resistant material grade
  • Rogers dielectric board is a high-frequency board.
  • a metal layer may be provided in the printed circuit board PCB, and the metal layer may be formed by etching metal on the surface of the PCB. This metal layer can be used to ground the electronic components carried on the PCB to prevent electric shock to the user or damage to the equipment. This metal layer may be referred to as a floor.
  • FIG. 16 is a schematic diagram of an antenna structure 201 (also referred to as an antenna 201 ) provided by an embodiment of the present application.
  • the antenna structure 201 may include a radiator 211 , a PCB 220 , a feeding unit 230 and a switch 240 .
  • the radiator 211 may be formed by the metal part 211 .
  • the metal part 211 can be arranged opposite to the PCB 220 , and the opposite arrangement can be understood as the metal part 211 and the PCB 220 are arranged face to face.
  • One end of the feeding unit 230 is electrically connected to the first end 2111 of the metal part 211 , and feeds the radiator of the antenna structure 201 .
  • One end of the switch 240 is electrically connected to the second end 2112 of the metal part 211, and the other end of the switch 240 is grounded.
  • the switch 240 has a first switch state and a second switch state.
  • the switch 240 is switchable between a first switch state and a second switch state. When the switch 240 is in the first switch state or the second switch state, the working frequency band of the antenna structure 201 includes the first frequency band.
  • the PCB 220 may include a metal layer 221 as the ground layer/floor of the antenna structure 201 , or the metal layer 221 may be electrically connected to the ground, which is equivalent to the ground of the antenna structure.
  • the other end of the feeding unit 230 is electrically connected to the metal layer 221 to be grounded.
  • the grounding of the other end of the switch 240 may mean that the other end of the switch 240 is electrically connected to the metal layer 221 .
  • the feed unit 230 and the switch 240 may be arranged on the same substrate (for example, PCB220), or may also be arranged on two or more different substrates according to layout requirements, for example, arranged on On another PCB different from PCB220 and/or a flexible printed circuit (FPC for short), this application does not limit this, and it can be adjusted according to the actual design.
  • PCB220 for example, PCB220
  • FPC flexible printed circuit
  • the antenna 201 can be used in a wearable device.
  • the face-to-face arrangement of the metal part 211 and the PCB 220 of the wearable device may include that the PCB 220 and the metal part 211 are facing and arranged at intervals, and in a direction perpendicular to the plane where the PCB 220 is located, the entire projection of the PCB 220 is on the metal part 211, or the entire metal part 211 is projected on the on the PCB220.
  • the PCB 220 and the metal part 211 are facing and arranged at intervals, and the PCB 220 or the metal part 211 are not completely projected on each other, and the metal part 211 and the PCB 220 can be partially projected in a direction perpendicular to the plane where the PCB 220 is located, or Partially overlapping, for example, the overlapping area may exceed 75% of the total area.
  • the length direction of the metal part 211 and/or the length direction of the PCB 220 may be parallel to the length direction of the housing of the wearable device, or offset by ⁇ 45° in the length direction of the housing of the wearable device, for example, the length direction of the metal part 211
  • the length direction and/or the length direction of the PCB 220 may be parallel to the length direction of the main housing 101 of the TWS earphone shown in FIG. 1 , or offset by ⁇ 45°.
  • the length of the metal part 211 and the length of the PCB220 can be the same or close, for example, the length of the metal part 211 and the length of the PCB220 are all within the range of (1/4 ⁇ 1/16) of the first wavelength or the length of the metal part 211 and the length of the PCB 220 may differ within a certain range, for example, the difference between the lengths of the two may be less than one-eighth of the first wavelength.
  • the length of the metal part 211 may be a physical length in a first direction, and the first direction is the extension direction of the virtual connection line between the connection of the feed unit 230 and the metal part 211 and the connection of the switch 240 and the metal part 211 .
  • the length of the PCB 220 may be the physical length in the first direction, or may be the extending direction of the virtual connection line between the connection of the PCB 220 and the metal part 211 . As the lengths of the metal part 211 and the PCB 220 get closer, the radiation characteristics of the antenna structure will be better.
  • the first wavelength is the wavelength corresponding to the working frequency band of the antenna structure 201.
  • the first wavelength can be the wavelength corresponding to the resonance point in the working frequency band.
  • the wavelength may also be the wavelength corresponding to the center frequency of the working frequency band or the supported frequency band, or the wavelength corresponding to the first frequency band.
  • the first wavelength may be the wavelength corresponding to the center frequency of the first frequency band.
  • the first end 2111 of the metal part 211 can not be understood as a point in a narrow sense, and can also be considered as including the first end point on the metal part 211 (the end point of the metal part 211 can be a metal any point on the edge of part 211), for example, it can be considered that the first end 2111 is a radiator within one-eighth of the first wavelength from the first end point, or it can also be considered as a radiation body within one-eighth of the first wavelength from the first end point. The radiator within 5mm of the end point.
  • the second end 2112 of the metal part 211 can also be understood accordingly.
  • the radiator 211 in different working modes may be regarded as corresponding to different antenna units, for example, including a first antenna unit and a second antenna unit.
  • the first antenna unit and the second antenna unit share the radiator 211 .
  • the switch 240 is in the first switch state (for example, connected)
  • the second end 2112 of the metal part 211 is in the first connection state (for example, an electrical connection state) with the metal layer 221, and the second end of the metal part passes through the first switch.
  • the metal portion 211 acts as a radiator of the first antenna unit, in this case, the first unit may be a left-hand antenna or a loop antenna.
  • the electromagnetic field generated by the first antenna unit is similar to the electromagnetic field generated by the differential feeding shown in FIG. 9 .
  • the second end 2112 of the metal part 211 and the metal layer 221 are in a second connection state (for example, between the second end 2112 of the metal part 211 and the metal layer 221 is not connected, that is, no electrical connection is formed, and the electrical signal is not transmitted), the second end of the metal part is not grounded through the first switch, and part or all of the metal part 211 is used as the radiator of the second antenna unit, in this case , the second element may be a monopole antenna.
  • the feeding unit 230 feeds power
  • the electromagnetic field generated by the second antenna unit is similar to the electromagnetic field generated by the in-phase feeding shown in FIG. 10 .
  • the antenna structure 201 can be controlled to switch between the first antenna unit and the second antenna unit. Both the first antenna unit and the second antenna unit use the metal part 211 as a radiator to generate radiation. Since the pattern of the first antenna unit and the second antenna unit are complementary, when the packet loss rate is lower than the threshold, the pattern can be switched by switching the two antenna units, thereby increasing the coverage of the pattern of the antenna structure 201 ( For example, achieve 360° omnidirectional coverage), realize stable connection of antenna signals, and improve user experience.
  • the working frequency band of the antenna structure 201 includes the first frequency band, that is, the resonance generated by the first antenna unit and the second antenna unit can support the wearable device in the Communication in the first frequency band.
  • the working frequency bands of the first antenna unit and the second antenna unit are the same frequency.
  • the directivity patterns of the first antenna unit and the second antenna unit are different. By switching the state of the first switch, the pattern of the antenna structure 201 can be changed.
  • the working frequency band of the first antenna unit and the working frequency band of the second antenna unit include the same communication frequency band.
  • the working frequency band of the first antenna unit and the working frequency band of the second antenna unit both include the first frequency band.
  • the first antenna unit and the second antenna unit have the same frequency.
  • the first frequency band may be a Bluetooth frequency band.
  • the first frequency band may also be a sub6G frequency band in 5G.
  • the working frequency band of the first antenna unit and the working frequency band of the second antenna unit have some overlapping frequency bands.
  • the working frequency band of the first antenna unit includes B35 (1.85-1.91GHz) in LTE
  • the working frequency band of the second antenna unit Including B39 (1.88-1.92GHz) in LTE, if the working frequency band of the first antenna unit and the working frequency band of the second antenna unit partly overlap, it can be considered that the first antenna unit and the second antenna unit have the same frequency.
  • the first antenna unit and the second unit reduce the volume of the antenna structure by means of a common radiator.
  • the antenna unit formed by the common radiator may be a monopole, a dipole, a loop antenna, an inverted F antenna (invertedF antenna, IFA), etc., which is not limited in this application.
  • the metal part 211 can be used as a part of the housing, or can be separated from the housing, for example, the metal part 211 can be arranged or formed on the inner/outer surface of the housing, or the metal part 211 can be arranged inside the housing, And separate from the shell.
  • the entire casing can be used as the above-mentioned metal part, or a part or all of the casing surrounded by insulating materials can be used as the above-mentioned metal part 211 .
  • the main housing 101/second housing 105 of the TWS earphone shown in FIG. 1 can also be formed of a part of metal (as the metal part 211 ) and a part of insulating material. In order to ensure a uniform appearance, an insulating material of the same material can be provided outside the metal.
  • the metal part 211 can be the appearance surface (visible part of the user) of the wearable device, or it can also be directly formed by a patch or a laser (laser-direct- structuring, LDS) technology is set on the surface (inner surface or outer surface) of the wearable device casing.
  • LDS laser-direct- structuring
  • the metal part 211 can pass through the metal layer, metal patch, such as floating metal (floating metal, FLM), flexible printed circuit (flexible printed circuit, FPC), internal conductive It can be implemented in the form of on-board/structural parts or PCB, which is not limited in this application.
  • metal patch such as floating metal (floating metal, FLM), flexible printed circuit (flexible printed circuit, FPC), internal conductive
  • FLM floating metal
  • FLM flexible printed circuit
  • FPC flexible printed circuit
  • PCB on-board/structural parts
  • the electrical length of the metal part 211 can be a quarter of the first wavelength. In actual production, there may be processing errors or environmental interference. Therefore, the electrical length of the metal part 211 can be set as Near a quarter of the first wavelength, for example, it may be set within a range of plus or minus one sixteenth of the first wavelength. Meanwhile, the electrical length of the metal part 211 can be understood as the electrical length converted from the distance between the end point of the first end 2111 and the connection between the switch 240 and the metal part 211 .
  • the position of the connection between the switch 240 and the metal part 211 can affect the electrical length value of the metal part 211, and the capacitance and/or inductance loaded on the metal part 211 can also affect the electrical length value of the metal part 211
  • placing a capacitance or an inductance between the switch 240 and the metal portion 211 can change the electrical length of the metal portion 211 (for example, loading a capacitance increases the electrical length, and loading an inductance decreases the electrical length).
  • Electrical length can refer to the physical length (i.e. mechanical length or geometric length) multiplied by the transmission time of an electrical or electromagnetic signal in a medium and the time required for this signal to travel the same distance as the physical length of the medium in free space Ratio means that the electrical length can satisfy the following formula:
  • L is the physical length
  • a is the transmission time of the electric or electromagnetic signal in the medium
  • b is the medium transmission time in free space.
  • the electrical length can also refer to the ratio of the physical length (i.e. mechanical length or geometric length) to the wavelength of the transmitted electromagnetic wave, and the electrical length can satisfy the following formula:
  • L is the physical length
  • is the wavelength of the electromagnetic wave.
  • the electrical length of the radiator (metal part) of the antenna structure is compared to that without the equivalent principle
  • the antenna structure is reduced by half, which is more conducive to the miniaturization of the antenna structure, and is more suitable for increasingly thin and light wearable devices.
  • the distance between the connection between one end of the feeding unit 230 and the metal part 211 and the connection between the switch 240 and the metal part 211 may be greater than or equal to one-eighth of the first wavelength, so as to ensure that the antenna structure 201 radiation characteristics.
  • the working frequency band of the antenna structure 201 may include a communication frequency band that can be used for the wearable device to communicate with other electronic devices. It should be understood that the electrical length of the metal portion 211 can also be adjusted so that the working frequency band of the antenna structure 201 includes other communication frequency bands.
  • the power feeding unit 230 may be a radio frequency channel in a radio frequency chip inside the electronic device.
  • the switch 240 can be a single-pole single-throw switch, or other types of switches, such as a single-pole double-throw switch, a single-pole four-throw switch or a four-pole single-throw switch, which can also achieve the same technical effect, or It may be other types of components, such as an adjustable capacitor, and the electrical connection state between the metal layer 221 and the metal part 211 is switched by changing the capacitance value of the variable capacitor.
  • the variable capacitor may include a first capacitance state and a second capacitance state corresponding to the first switch state and the second switch state of the switch 240 respectively, the first capacitance state corresponds to a first capacitance value, and the second capacitance state corresponds to The setting of the second capacitance value, the first capacitance value and the second capacitance value is related to the working frequency of the antenna structure.
  • the Bluetooth frequency band 2.4-2.485GHz
  • the second capacitance of the variable capacitor in the second capacitance state is greater than or equal to 10 pF, it can be considered that the second end 2112 of the metal part 211 is electrically connected to the metal layer 221 .
  • the capacitance values corresponding to the electrical connection states (disconnected or connected) between the metal layer 221 and the metal part 211 are different, so for other frequency bands, the capacitance value of the variable capacitor can also be adjusted to achieve the same capacitance.
  • the effect of this application is not limited.
  • a variable capacitor is a variable capacitor whose capacitance value can be adjusted within a certain range.
  • the formula for calculating the capacitance value of a capacitor is as follows:
  • is the dielectric constant between the two polar plates
  • is the absolute dielectric constant in vacuum
  • k is the electrostatic force constant
  • S is the facing area of the two polar plates
  • d is the vertical distance between the two polar plates.
  • the principle of a variable capacitor is generally to change the capacitance value accordingly by changing the facing area of the two plates of the capacitor or the vertical distance between the two plates.
  • FIG. 16 is only a schematic diagram.
  • the feed unit 230 and the switch 240 can be arranged on the PCB 220, and are electrically connected to the first end 2111 and the second end 2112 of the metal part 211 through the metal springs 251 and 252, respectively.
  • the distance between the metal part 211 and the PCB220 can be about the height of the metal elastic pieces 251 and 252, for example, the distance between the metal part 211 and the PCB220 can be about 1.5 mm, which can be adjusted according to the actual design. This is not a limitation.
  • FIG. 18 to FIG. 25 are schematic diagrams and direction diagrams of electric field distribution provided by the embodiments of the present application.
  • Fig. 18 is a schematic diagram of electric field distribution when the control group provided by the present application adopts in-phase feeding.
  • Fig. 19 is a directional diagram of the control group provided by the present application when in-phase feeding is used.
  • FIG. 20 is a schematic diagram of electric field distribution when the switch in the antenna structure shown in FIG. 16 is in a second switching state, for example, turned off, according to the present application.
  • FIG. 21 is a direction diagram when the switch in the antenna structure shown in FIG. 16 is in a second switch state, for example, turned off, according to the present application.
  • Fig. 18 is a schematic diagram of electric field distribution when the control group provided by the present application adopts in-phase feeding.
  • Fig. 19 is a directional diagram of the control group provided by the present application when in-phase feeding is used.
  • FIG. 20 is a schematic diagram of electric field distribution when the switch
  • FIG. 22 is a schematic diagram of the electric field distribution when the control group provided by the present application adopts differential feeding.
  • Fig. 23 is a directional diagram of the control group provided by the present application when differential feeding is used.
  • FIG. 24 is a schematic diagram of electric field distribution when the switch in the antenna structure shown in FIG. 16 is in a first switch state, for example, connected, provided by the present application.
  • FIG. 25 is a directional diagram when the switch in the antenna structure shown in FIG. 16 is in a first switching state, for example, connected, according to the present application.
  • the antenna structure of the control group used in this embodiment is the antenna structure shown in Figure 8
  • the antenna structure shown in Figure 8 is a patch antenna whose electrical length of the radiation patch is 1/2 ⁇
  • the feed unit The (current source) feeds power at both ends of the antenna structure and is electrically connected thereto.
  • the electric field of the antenna structure is the smallest at the feeding unit and the largest at the switch.
  • FIG. 21 it is the pattern when the switch in the antenna structure is turned off, the gain along the z-axis direction is the smallest, and the gain along the y-axis direction is the largest.
  • the antenna structure is fed in the same phase, and its electric field distribution is shown in Figure 18. Since the antenna structure corresponding to Figure 18 is only one-half of the electrical length of the antenna structure of the control group, therefore, as shown in Figure 20
  • the electric field distribution of the antenna structure is similar to the left electric field distribution of the control group. As shown in Figure 19, the direction of the maximum gain and the zero point of the pattern of the control group are consistent with the corresponding antenna structure in Figure 21.
  • the antenna structure has the largest electric field at the feeding unit and the smallest electric field at the switch.
  • it is the directivity diagram when the switch in the antenna structure is connected.
  • the gain along the z-axis direction is the largest, and the gain along the y-axis direction is the smallest.
  • the wearable device the earplug part .
  • the antenna structure adopts differential feeding, and its electric field distribution is shown in Figure 22. Since the antenna structure corresponding to Figure 24 is only one-half of the electrical length of the antenna structure of the control group, therefore, as shown in Figure 24 The electric field distribution of the antenna structure is similar to the left electric field distribution of the control group. As shown in Figure 23, the direction of the maximum radiation gain and zero point of the pattern of the control group is similar to that of the corresponding antenna structure in Figure 25.
  • FIG. 26 is a schematic diagram of an antenna structure 300 provided by an embodiment of the present application.
  • the antenna structure 300 may further include a matching network 350 .
  • the matching network 350 may include a first radio frequency circuit 351 , a second radio frequency circuit 352 and a second switch 353 .
  • the first end 3111 of the metal part 311 may be provided with a first feeding point 3113 and a second feeding point 3114, and the distance between the first feeding point 3113 and the second feeding point 3114 may be less than sixteenth of the first wavelength. one-third.
  • the distance between the first feed point 3113 and the second feed point 3114 may be less than or equal to 2 mm, or less than or equal to 1 mm, for example, the shrapnel connecting the first feed point 3113 and the connection
  • the distance between the edges of the elastic pieces of the second feeding point 3114 may be less than or equal to 2 mm, or less than or equal to 1 mm.
  • the first feed point 3113 and the second feed point 3114 may be arranged at intervals along the length direction of the metal part 311, or may also be arranged at intervals along the width direction of the metal part 311, that is, the first feed point
  • the connection line between the electric point 3113 and the second feeding point 3114 may intersect with the length direction of the metal part 311 , or be approximately perpendicular (about 90°).
  • One end of the first radio frequency circuit 351 is electrically connected to the metal part 311 at the first feeding point 3113 , and the other end of the first radio frequency circuit 351 is electrically connected to the second switch 353 .
  • the second radio frequency circuit 352 is electrically connected to the metal part 311 at the second feeding point 3114 , and the other end of the second radio frequency circuit 352 is electrically connected to the second switch 353 .
  • the second switch 353 can be electrically connected with the feeding unit 330 , and the second switch 353 is used for switching the first radio frequency circuit 351 and the second radio frequency circuit 352 .
  • the matching network 350 further includes a third radio frequency circuit 354 .
  • One end of the third radio frequency circuit 354 is connected between the second switch 353 and the feeding unit 330 , and the other end of the third radio frequency circuit 354 is electrically connected to the metal layer (floor).
  • the first switch 340 when the first switch 340 is connected, the second end 3112 of the metal part 311 is electrically connected to the metal layer (floor) to form the first antenna unit.
  • the first switch 340 When the first switch 340 is turned off, the second end 3112 of the metal part 311 is not in communication with the metal layer (floor), forming a second antenna unit.
  • the first switch 340 is used to switch the second end 3112 of the metal part 311 from disconnected and grounded.
  • the second switch 353 can be used to switch the matching between the first antenna unit and the second antenna unit, such as frequency tuning.
  • the second switch 353 can be used to switch the corresponding series reactances of the two antenna units (the reactance of the first radio frequency circuit 351 and the reactance of the second radio frequency circuit 352 ).
  • the parallel reactance (the reactance of the third radio frequency circuit 354) can be placed between the second switch 353 and the feeding unit 330 instead of between the feeding point and the second switch 353, thus ensuring that the second switch 353
  • the switching function of the matching network prevents the reactances of different matching networks corresponding to the first antenna unit and the second antenna unit from influencing each other, and at the same time, the layout of electronic components can be reduced.
  • the first radio frequency circuit 351 can be electrically connected to the metal part 311 at the first feeding point 3113 through a metal shrapnel.
  • the second radio frequency circuit 352 can be electrically connected to the metal part 311 at the second feeding point 3114 through the metal shrapnel.
  • the matching network can be disposed on the same substrate as the feed unit 230 and/or the switch 240 , for example, the PCB 220 , or disposed on two or more different substrates.
  • Different substrates may include PCBs and/or FPCs, which are not limited in the present application and may be adjusted according to actual designs.
  • the first radio frequency circuit 351 includes a first capacitor
  • the second radio frequency circuit 352 includes a first inductor
  • the third radio frequency circuit 354 includes a second inductor.
  • the first capacitance is connected in series between the first end 3111 of the metal part 311 and the second switch 353
  • the first inductance is connected in series between the first end 3111 of the metal part 311 and the second switch 353
  • the second The two inductors are connected in parallel between the second switch 353 and the power feeding unit 330 .
  • first capacitance and the second inductance can be used to match the first antenna unit, so as to optimize the radiation characteristics of the first antenna unit.
  • the first inductance and the second inductance can be used to match the second antenna unit for optimizing the radiation characteristics of the second antenna unit.
  • the reflection coefficients of the first antenna unit and the second antenna unit are in the initial position of the Smith circle diagram when no matching network is added, respectively in the second quadrant and the fourth quadrant .
  • the position of the frequency band is adjusted to the equal impedance circle, and the position is shown in the circle diagram (b) of Figure 27.
  • the positions of the operating frequency bands of the first antenna unit and the second antenna unit can be adjusted to the vicinity of the center of the circle through the second inductance (third radio frequency circuit) connected in parallel, as shown in the circle diagram (c) of FIG. 27 . Since the first antenna unit and the second antenna unit share the second inductance (the third radio frequency circuit) as matching, the layout of electronic components is reduced.
  • the capacitance of the first capacitor is between 0.5pF and 1.5pF
  • the inductance of the first inductor is between 1nH and 2nH
  • the inductance of the second inductor is between 1nH and 2nH.
  • the Bluetooth frequency band is used as an example in this application.
  • the capacitance of the first capacitor may be 1pF
  • the inductance of the first inductor may be 1.5nH
  • the inductance of the second inductor may be 1.5nH. It should be understood that in actual production design, the specific data of the first capacitor, first inductance and second inductance can be adjusted according to different electromagnetic environments or operating frequency bands, which is not limited in this application.
  • the first capacitance, the first inductance, and the second inductance are only a possible schematic diagram of the first radio frequency circuit 351, the second radio frequency circuit 352 and the third radio frequency circuit 354, in actual In the production design, there may also be other design forms, which are not limited in this application.
  • FIG. 28 is a diagram of S-parameter simulation results of the antenna structure shown in FIG. 26 .
  • Fig. 29 is a simulation result diagram of the system efficiency (total efficiency) of the antenna structure shown in Fig. 26 .
  • the resonance point of the first antenna unit and the resonance point of the second antenna unit cannot be adjusted to be exactly the same, but The resonance point of one of the antenna units can be adjusted to a lower frequency, and the resonance point of the other antenna unit can be adjusted to a higher frequency, but both the first antenna unit and the second antenna unit can resonate in a bandwidth that can support the Bluetooth frequency band (for example, 2.4 -2.485GHz).
  • the system efficiency of the first antenna unit and the second antenna unit is greater than -13.5dB, which can meet the needs of communication.
  • the wearable device can support the Bluetooth frequency band through the antenna radiator. Regardless of whether the switch is in the first switch state or the second switch state, the wearable device can support the Bluetooth frequency band through the same antenna radiator.
  • the embodiment of the present application only uses the resonant frequency band including the Bluetooth frequency band as an example for illustration, and in actual production design, it can also be applied to other communication frequency bands, which is not limited in the present application.
  • FIG. 30 to Fig. 33 are directional diagrams of the antenna structure shown in Fig. 26 under the headform.
  • FIG. 30 is a schematic diagram of the coordinates of the polarization mode provided by the embodiment of the present application.
  • Fig. 31 is a directional diagram of the headform horizontal plane of the antenna structure shown in Fig. 26 .
  • Fig. 32 is a directional diagram of the side of the headform of the antenna structure shown in Fig. 26 .
  • Fig. 33 is a directional diagram of the front of the headform with the antenna structure shown in Fig. 26 .
  • a circle is made with the origin O as the center and the distance from the origin O to point P as the radius.
  • Theta polarization is the polarization along the tangent to the meridian of the circle where point P is located.
  • the phi polarization is the polarization along the tangent direction of the latitude of the circle where point P is located. Abs polarization is the combination of theta polarization and phi polarization, abs is the total polarization, theta polarization and phi polarization are its two polarization components.
  • FIG. 31 it is the directivity diagram of the first antenna unit and the second antenna unit at the level of the headform.
  • (a), (b) and (c) in Figure 31 show the abs polarization, Theta polarization and Phi polarization pattern respectively, it can be seen that the first antenna unit and the second antenna unit have good radiation characteristics, as well as complementary patterns, can be used in pattern-switched antenna structures.
  • FIG. 32 it is a directional diagram of the first antenna unit and the second antenna unit on the side of the headform.
  • (a), (b) and (c) in Figure 32 show the abs polarization, Theta polarization and Phi polarization pattern respectively, it can be seen that the first antenna unit and the second antenna unit have good radiation characteristics, as well as complementary patterns, can be used in pattern-switched antenna structures.
  • FIG. 33 it is the directional diagram of the first antenna unit and the second antenna unit on the front of the headform.
  • (a), (b) and (c) in Figure 33 show the abs polarization, Theta polarization and Phi polarization pattern respectively, it can be seen that the first antenna unit and the second antenna unit have good radiation characteristics, as well as complementary patterns, can be used in pattern-switched antenna structures.
  • the present application provides a wearable device, which may include an antenna structure, and the antenna structure may be designed based on a metal casing of the wearable device.
  • the working frequency of the antenna structure can support the communication connection between the wearable device and another electronic device, no matter whether the electronic device connected to the wearable device is placed in a bag or pocket, or the user is in an airport where signal interference is relatively low.
  • On the strong side by switching the working mode of the antenna structure through the switch of the antenna structure, a stable communication connection between the wearable device and the electronic device can be realized.
  • the wearable device with this antenna structure can increase the coverage of the antenna structure 201 pattern by switching the switch of the antenna structure (for example, realize 360° omnidirectional coverage), and realize a stable connection of signals.
  • the communication link may be a Bluetooth connection.
  • Figure 34 and Figure 35 are another wearable device provided by the embodiment of this application.
  • the antenna structure provided in the embodiments of the present application can be applied to wearable devices other than TWS earphones, for example, smart watches or smart glasses.
  • the antenna structure in the above embodiment can be designed using the metal shell of the smart watch, or can also be adjusted according to the actual production design requirements.
  • This application does not limit the specific location of the antenna structure, which is only used as an example.
  • the bezel in the metal case includes a metal part, which can be used as the radiator of the antenna structure
  • the PCB can be set in the space surrounded by the metal case
  • the feed unit can be set on the PCB and connected with the metal part in the bezel
  • One end of the switch is electrically connected to feed the antenna structure.
  • the switch can also be set on the PCB and electrically connected to the other end of the metal part of the bezel. Its design position can be shown in Figure 34.
  • the antenna radiator can also be Set inside the casing of the smart watch.
  • the antenna structure can be designed using the temples of smart glasses, and its design position is shown in the figure, or it can also be designed using the frame design of smart glasses, or it can also be adjusted according to actual production design requirements.
  • the mirror leg or mirror frame of smart glasses includes a metal part (as shown in Figure 35), which can be used as the radiator of the antenna structure.
  • One end of the switch is electrically connected to feed the antenna structure.
  • the switch can also be set on the PCB and electrically connected to the other end of the metal part. Its design position is shown in Figure 35.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical or other forms.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种可穿戴设备,包括外壳,印刷电路板PCB,馈电单元和开关。外壳包括作为天线辐射体的金属部分,印刷电路板PCB设置于外壳内,并与金属部分相向设置,馈电单元与金属部分的第一端电连接,并为天线辐射体馈电,开关的一端与金属部分的第二端电连接,开关的另一端接地。该开关处于第一开关状态或第二开关状态时,天线辐射体的工作频段均包括第一频段。

Description

一种可穿戴设备
本申请要求于2021年6月30日提交中国专利局、申请号为202110745113.4、申请名称为“一种可穿戴设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种可穿戴设备。
背景技术
无线耳机因具有便捷性和迷你性,越来越受到用户的喜爱,特别是真无线(true wireless stereo,TWS)蓝牙(blue tooth,BT)耳机。然而,由于TWS耳机直接佩戴于用户耳部,其天线性能较易受到用户头部的影响,因此较难实现优良的天线性能。同样,对于用户佩戴的其他可穿戴设备也会面临同样的问题,例如,智能手表和智能眼镜等。
发明内容
本申请提供一种可穿戴设备,该可穿戴设备外壳的金属部分作为天线辐射体,通过开关的切换实现天线辐射体在同一工作频段下不同的工作模态。
第一方面,提供了一种可穿戴设备,包括:外壳,包括金属部分,所述金属部分作为天线辐射体;印刷电路板PCB,设置于所述外壳内,所述PCB与所述外壳的所述金属部分相向设置;馈电单元,与所述金属部分的第一端电连接,并为所述天线辐射体馈电;以及第一开关,所述第一开关的一端与所述金属部分的第二端电连接,所述第一开关的另一端接地;所述第一开关切换至第一开关状态或第二开关状态时,所述可穿戴设备的工作频段均包括第一频段。
根据本申请实施例的技术方案,通过第一开关切换金属部分的第二端与地板之间的电连接状态,可以实现天线辐射体在第一频段下不同的工作模态,不同工作模态下的该天线辐射体可以看作对应于不同的天线单元,例如,包括第一天线单元和第二天线单元。第一天线单元和第二天线单元共用辐射体。当第一开关连通时,金属部分的第二端接地,形成第一天线单元。馈电单元馈电时,第一天线单元产生的电磁场与差分馈电所产生的电磁场类似。当第一开关断开时,金属部分的第二端与地板不连通,形成第二天线单元。馈电单元馈电时,第二天线单元产生的电磁场与同相馈电所产生的电磁场类似。因此,通过控制第一开关的状态,从而切换第一天线单元和第二天线单元。由于差分馈电和同相馈电利用相同的辐射体产生辐射,第一天线单元和第二天线单元的方向图互补,可以在丢包率低于阈值时,通过切换两个天线单元而进行方向图的切换,从而增大天线结构201方向图的覆盖范围(例如实现360°的全向覆盖),实现稳定连接,提升用户体验。同时,利用外壳的金属部分作为天线辐射体,可以保证可穿戴设备中的天线获得较大的净空(远离PCB/地板/电池/元器件),产生良好的辐射性能。
结合第一方面,在第一方面的某些实现方式中,所述馈电单元与所述金属部分的连接处和所述第一开关的一端与所述金属部分的连接处之间的距离大于或等于第一波长的八分之一,所述第一波长为所述第一频段对应的波长。
结合第一方面,在第一方面的某些实现方式中,所述第一开关处于所述第一开关状态时,所述金属部分的第二端通过所述第一开关接地;
所述第一开关处于所述第二开关状态时,所述金属部分的第二端不通过所述第一开关接地。
根据本申请实施例的技术方案,通过控制第一开关的状态,可以控制天线的工作模态,在第一天线单元和第二天线单元之间切换。
结合第一方面,在第一方面的某些实现方式中,所述第一开关为单刀单掷开关,单刀双掷开关,单刀四掷开关或四刀单掷开关。
根据本申请实施例的技术方案,开关可以是单刀单掷的开关,或者其他类型的开关,例如,单刀双掷开关,单刀四掷开关或四刀单掷开关,也可以达到相同的技术效果。。
结合第一方面,在第一方面的某些实现方式中,第一开关还可以是其他类型的元件,所述第一开关可以是可变电容器,通过可变电容器的电容值变化切换金属层221与金属部分211之间的电连接状态。所述可变电容器包括第一电容状态和第二电容状态,分别对应于所述第一开关的所述第一开关状态和第二开关状态,所述第一电容状态对应第一电容值,所述第二电容状态对应第二电容值,该第一电容值和第二电容值的设置与所述天线辐射体的工作频率相关。
结合第一方面,在第一方面的某些实现方式中,所述第一电容状态对应的第一电容值小于或等于0.2pF,所述第二电容状态对应的第二电容值大于或等于10pF。
根据本申请实施例的技术方案,对于蓝牙频段(例如,2.4-2.485GHz)来说,可变电容器的电容值为0.2pF时,可以认为金属部分的第二端与金属层不连通。可变电容器的电容值为10pF时,可以认为金属部分的第二端与金属层电连接。
结合第一方面,在第一方面的某些实现方式中,所述PCB包括金属层,所述金属层与所述外壳的所述金属部分相向设置,其中,所述第一开关的另一端与所述金属层电连接,并通过所述金属层接地。所述馈电单元的一端与所述金属部分的第一端电连接,所述馈电单元的另一端与所述金属层电连接。
根据本申请实施例的技术方案,PCB中的金属层可以作为可穿戴设备中的接地层/地板,或者可以与地板电连接,等效为地板。
结合第一方面,在第一方面的某些实现方式中,所述馈电单元和/或所述第一开关设置在所述PCB上。
根据本申请实施例的技术方案,馈电单元和第一开关可以设置在相同的一个基板(例如,PCB)上,或,也可以根据布局的需要设置在两个或多个不同的基板,例如设置于不同的PCB、和/或柔性电路板(Flexible Printed Circuit,简称FPC)上,本申请对此并不做限制,可以根据实际的设计进行调整。
结合第一方面,在第一方面的某些实现方式中,所述可穿戴设备包括匹配网络;所述金属部分的第一端包括第一馈电点和第二馈电点;所述匹配网络包括第一射频电路,第二射频电路和第二开关;所述第一射频电路的一端在所述第一馈电点处与所述金属部分电连 接,所述第一射频电路的另一端与所述第二开关电连接;所述第二射频电路的一端在所述第二馈电点处与所述金属部分电连接,所述第二射频电路的另一端与所述第二开关电连接;所述第二开关与所述馈电单元电连接。
结合第一方面,在第一方面的某些实现方式中,所述匹配网络还包括第三射频电路;所述第三射频电路的一端设置在所述第二开关与所述馈电单元之间,所述第三射频电路的另一端接地。
根据本申请实施例的技术方案,第一开关用于切换金属部分的第二端不接地和接地两种状态,第二开关可以用于切换第一天线单元和第二天线单元的匹配,例如频率调谐。为了防止匹配网络的电抗在切换时互相影响,可以用第二开关切换两个天线单元对应的串联的电抗(第一射频电路的电抗和第二射频电路的电抗)。同时,可以将并联的电抗(第三射频电路的电抗)放置在第二开关和馈电单元之间而非馈电点与第二开关之间,这样既保证了第二开关对匹配网络的切换作用,又防止了第一天线单元和第二天线单元对应的不同的匹配网络的电抗相互影响,同时可以减少电子元件的布局。
结合第一方面,在第一方面的某些实现方式中,所述第一射频电路包括第一电容;所述第二射频电路包括第一电感;所述第三射频电路包括第二电感。
根据本申请实施例的技术方案,第一电容和第二电感可以用于匹配第一天线单元,用于优化第一天线单元的辐射特性。第一电感和第二电感可以用于匹配第二天线单元,用于优化第二天线单元的辐射特性。
结合第一方面,在第一方面的某些实现方式中,所述第一电容的电容值介于0.5pF至1.5pF之间,所述第一电感的电感值介于1nH至2nH之间,所述第二电感的电感值介于1nH至2nH之间。
结合第一方面,在第一方面的某些实现方式中,所述第一电容的电容值为1pF,所述第一电感的电感值为1.5nH,所述第二电感的电感值为1.5nH。
根据本申请实施例的技术方案,在实际的生产设计中,可以根据不同的电磁环境,对第一电容,第一电感和第二电感的具体数据进行调整,本申请仅以上述数值为例,对此并不做限制。
结合第一方面,在第一方面的某些实现方式中,所述第一频段为蓝牙频段。所述可穿戴设备可以通过所述天线辐射体,来支持蓝牙频段。无论第一开关处于第一开关状态还是第二开关状态,可穿戴设备均可以通过所述天线辐射体来支持蓝牙频段。
根据本申请实施例的技术方案,可穿戴设备通过所述天线辐射体支持的频段也可以对应于全球定位系统(global positioning system,GPS)通信技术、无线保真(wireless fidelity,WiFi)通信技术、全球移动通讯系统(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long term evolution,LTE)通信技术、(5 th generation,5G)通信技术以及未来其他通信技术等的频段。
结合第一方面,在第一方面的某些实现方式中,所述可穿戴设备为真无线TWS耳机,智能手表或智能眼镜。
根据本申请实施例的技术方案,可以应用于其他的可穿戴设备中,本申请对此并不做限制。
第二方面,提供了一种天线,包括:辐射体,印刷电路板PCB,馈电单元和第一开关;其中,所述辐射体与所述PCB相向设置;所述馈电单元与所述辐射体的第一端电连接,并为所述辐射体馈电;所述第一开关的一端与所述辐射体的第二端电连接,所述第一开关的另一端接地;所述第一开关切换至第一开关状态或第二开关状态时,所述天线的工作频段均包括第一频段。其中,辐射体可以是金属辐射体。
根据本申请实施例的技术方案,通过第一开关切换辐射体的第二端与地板之间的电连接状态,可以实现辐射体在第一频段下不同的工作模态,不同工作模态下的该辐射体可以看作对应于不同的天线单元,例如,包括第一天线单元和第二天线单元。第一天线单元和第二天线单元共用辐射体。当第一开关连通时辐射体的第二端接地,形成第一天线单元。馈电单元馈电时,第一天线单元产生的电磁场与差分馈电所产生的电磁场类似。当第一开关断开时,辐射体的第二端与地板不连通,形成第二天线单元。馈电单元馈电时,第二天线单元产生的电磁场与同相馈电所产生的电磁场类似。因此,通过控制第一开关的状态,从而切换第一天线单元和第二天线单元。由于差分馈电和同相馈电利用相同的辐射体产生辐射,第一天线单元和第二天线单元的方向图互补,可以在丢包率低于阈值时,通过切换两个天线单元而进行方向图的切换,从而增大天线方向图的覆盖范围(例如实现360°的全向覆盖),实现稳定连接,提升用户体验。该天线可以用于可穿戴设备,其中,辐射体可以利用可穿戴设备的金属外壳部分作形成,从而保证可穿戴设备的天线辐射体获得较大的净空(远离PCB/地板/电池/元器件),产生良好的辐射性能。
结合第二方面,在第二方面的某些实现方式中,所述馈电单元与所述金属辐射体的连接处和所述第一开关的一端与所述金属辐射体的连接处之间的距离大于或等于第一波长的八分之一,所述第一波长为所述第一频段对应的波长。
结合第二方面,在第二方面的某些实现方式中,所述第一开关处于所述第一开关状态时,所述金属辐射体的第二端通过所述第一开关接地;所述第一开关处于所述第二开关状态时,所述金属辐射体的第二端不通过所述第一开关接地。
结合第二方面,在第二方面的某些实现方式中,所述第一开关为单刀单掷开关,单刀双掷开关,单刀四掷开关或四刀单掷开关。
结合第二方面,在第二方面的某些实现方式中,所述第一开关为可变电容器,所述可变电容器包括第一电容状态和第二电容状态,分别对应于所述第一开关的所述第一开关状态和第二开关状态,所述第一电容状态对应第一电容值,所述第二电容状态对应第二电容值,该第一电容值和第二电容值电容值与所述天线的工作频率相关。
结合第二方面,在第二方面的某些实现方式中,所述第一电容状态对应的第一电容值小于或等于0.2pF,所述第二电容状态对应的第二电容值大于或等于10pF。
结合第二方面,在第二方面的某些实现方式中,所述PCB包括金属层,所述金属层与所述金属辐射体相向设置,其中,所述第一开关的另一端与所述金属层电连接,并通过所述金属层接地。所述馈电单元的一端与所述金属辐射体的第一端电连接,所述馈电单元的另一端与所述金属层电连接。
结合第二方面,在第二方面的某些实现方式中,所述馈电单元和/或所述第一开关设置在所述PCB上。结合第二方面,在第二方面的某些实现方式中,所述可穿戴设备包括匹配网络;所述金属部分的第一端包括第一馈电点和第二馈电点;所述匹配网络包括第一 射频电路,第二射频电路和第二开关;所述第一射频电路的一端在所述第一馈电点处与所述金属部分电连接,所述第一射频电路的另一端与所述第二开关电连接;所述第二射频电路的一端在所述第二馈电点处与所述金属部分电连接,所述第二射频电路的另一端与所述第二开关电连接;所述第二开关与所述馈电单元电连接。
结合第二方面,在第二方面的某些实现方式中,所述匹配网络还包括第三射频电路;所述第三射频电路的一端设置在所述第二开关与所述馈电单元之间,所述第三射频电路的另一端接地。
结合第二方面,在第二方面的某些实现方式中,所述第一射频电路包括第一电容;所述第二射频电路包括第一电感;所述第三射频电路包括第二电感。
结合第二方面,在第二方面的某些实现方式中,所述第一电容的电容值介于0.5pF至1.5pF之间,所述第一电感的电感值介于1nH至2nH之间,所述第二电感的电感值介于1nH至2nH之间。
结合第二方面,在第二方面的某些实现方式中,所述第一电容的电容值为1pF,所述第一电感的电感值为1.5nH,所述第二电感的电感值为1.5nH。
根据本申请实施例的技术方案,馈电单元和第一开关可以设置在相同的一个基板,或者设置在两个或多个不同的基板上。匹配网络可以与馈电单元和/或第一开关设置在相同的一个基板,或者设置在两个或多个不同的基板上。不同的基板可以包括PCB、和/或FPC上,本申请对此并不做限制,可以根据实际的设计进行调整。
结合第二方面,在第二方面的某些实现方式中,所述第一频段为蓝牙频段。所述天线可以用于可穿戴设备,该可穿戴设备通过所述天线支持蓝牙频段。无论第一开关处于第一开关状态还是第二开关状态,可穿戴设备均可以通过所述天线支持蓝牙频段。所述可穿戴设备为真无线TWS耳机,智能手表或智能眼镜。
第一频段也可以对应于全球定位系统(global positioning system,GPS)通信技术、无线保真(wireless fidelity,WiFi)通信技术、全球移动通讯系统(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long term evolution,LTE)通信技术、(5th generation,5G)通信技术以及未来其他通信技术等的频段。
附图说明
图1是本申请实施例提供的一种可穿戴设备的结构性示意图。
图2是TWS耳机的天线结构在不同情况下的方向图的对比示意图。
图3是本申请实施例提供的天线结构的方向图的切换示意图。
图4是本申请提供的一种异性电荷的等效原理的示意图。
图5是本申请提供的一种同性电荷的等效原理的示意图。
图6是本申请提供的一种反向电流源的等效原理的示意图。
图7是本申请提供的一种同向电流源的等效原理的示意图。
图8是本申请提供的一种天线结构的示意图。
图9是本申请提供的一种差分馈电原理的示意图。
图10是本申请提供的一种同相馈电原理的示意图。
图11是利用反向电流源的等效原理的示意图。
图12是利用同向电流源的等效原理的示意图。
图13是差分馈电的模拟示意图。
图14是同相馈电的模拟示意图。
图15是本申请实施例提供的一种可穿戴设备200的结构示意图。
图16是本申请实施例提供的天线结构201的示意图。
图17是本申请实施例提供的金属弹片的结构示意图。
图18是本申请提供的对照组采用同相馈电时的电场分布示意图。
图19是本申请提供的对照组采用同相馈电时的方向图。
图20是本申请提供的图16所示天线结构中开关处于第二开关状态时的电场分布示意图。
图21是本申请提供的图16所示天线结构中开关处于第二开关状态时的方向图。
图22是本申请提供的对照组采用差分馈电时的电场分布示意图。
图23是本申请提供的对照组采用差分馈电时的方向图。
图24是本申请提供的图16所示天线结构中开关处于第一开关状态时的电场分布示意图。
图25是本申请提供的图16所示天线结构中开关处于第一开关状态时的方向图。
图26是本申请实施例提供的天线结构300的示意图。
图27是本申请实施例提供的第一天线单元和第二天线单元的史密斯图。
图28是图26所示天线结构的S参数仿真结果图。
图29是图26所示天线结构的系统效率(total efficiency)的仿真结果图。
图30是本申请实施例提供的极化方式的坐标示意图。
图31是图26所示天线结构的头模水平面的方向图。
图32是图26所示天线结构的头模侧面的方向图。
图33是图26所示天线结构的头模正面的方向图。
图34是本申请实施例提供的另一个可穿戴设备。
图35是本申请实施例提供的另一个可穿戴设备。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,在本申请中“电连接”可理解为元器件物理接触并电导通;也可理解为线路构造中不同元器件之间通过印制电路板(printed circuit board,PCB)铜箔或导线等可传输电信号的实体线路进行连接的形式;或者,也可以理解为元件之间通过间接耦合并不进行物理接触的方式进行电导通。“通信连接”可以指电信号传输,包括无线通信连接和有线通信连接。无线通信连接不需要实体媒介,且不属于对产品构造进行限定的连接关系。“连接”、“相连”均可以指一种机械连接关系或物理连接关系,例如A与B连接或A与B相连可以指,A与B之间存在紧固的构件(如螺钉、螺栓、铆钉等),或者A与B相互接触且A与B难以被分离。
本申请提供的技术方案适用于采用以下一种或多种通信技术的可穿戴设备:BT通信 技术、全球定位系统(global positioning system,GPS)通信技术、无线保真(wireless fidelity,WiFi)通信技术、全球移动通讯系统(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long term evolution,LTE)通信技术、(5 th generation,5G)通信技术以及未来其他通信技术等。
图1是本申请实施例提供的一种可穿戴设备的结构性示意图,以无线耳机为例进行说明。
如图1所示,是一种无线耳机100的结构性示意图,无线耳机100可以例如是TWS蓝牙耳机。无线耳机100可以被划分为耳塞部1和耳柄部2。耳塞部1连接于耳柄部2的一端。耳塞1可以容置或嵌入于用户的耳廓内,耳柄部2可以挂接在用户耳廓的边缘,并位于用户耳廓的外周。
如图1中的(a)、(c)所示,耳柄部2可以被进一步划分为与耳塞部1相接的连接段21,以及位于连接段21两侧的顶段22和底段23。耳柄部2的顶段22、连接段21及底段23沿无线耳机的纵向依次排布。在本申请中,纵向可以是耳柄部2的延伸方向(如图1中的(a)所示的Y轴),也是耳柄部2的长度方向。纵向的两端可以分别为顶端和底端。顶段22、连接段21及底段23可以是一体式结构或分体式结构。
如图1中的(b)所示,耳柄部2还可以被划分为与耳塞部1相接的连接段21,以及位于连接段21一侧的底段23。连接端21连接在耳塞部1与底段23之间。连接段21与底段23沿无线耳机100的纵向分布。也就是说,在本申请中,无线耳机100可以具有也可以不具有如图1中的(a)、(c)所示的顶段22。
如图1中的(a)、(b)所示,无线耳机100可以包括外壳10。外壳10可以用于收容无线耳机100的各种部件。外壳10可以包括主壳体101、底部壳体102以及侧部壳体103。
主壳体101可以覆盖耳柄部2的部分底段23、耳柄部2的连接段21、耳柄部2的顶段22、耳塞部1中与连接段21相连的部分。主壳体101在耳柄部2的底段23可以形成第一开口1011,在耳塞部1可以形成第二开口1012。第一开口1011和第二开口1012可以用于装入无线耳机100内的部件。
底部壳体102可以位于耳柄部2的底段23的最底部。底部壳体102可以通过第一开口1011与主壳体101固定连接。在一种可能的实现方式中,底部壳体102与主壳体101之间的连接为可拆卸连接(例如扣合连接、螺纹连接等),以便于无线耳机100的后续维修(或维护)。在另一种可能的实现方式中,底部壳体102与主壳体101之间的连接可以为不可拆卸连接(例如胶接),以降低底部壳体102意外脱落的风险,有利于提高无线耳机100的可靠性。
侧部壳体103可以位于耳塞部1的远离耳柄部2的一侧。侧部壳体103可以通过第二开口1012与主壳体101固定连接。在一种可能的实现方式中,侧部壳体103与主壳体101之间的连接为可拆卸连接(例如扣合连接、螺纹连接等),以便于无线耳机100的后续维修(或维护)。在另一种可能的实现方式中,侧部壳体103与主壳体101之间的连接也可以为不可拆卸连接(例如胶接),以降低侧部壳体103意外脱落的风险,有利于提高无线耳机100的可靠性。
在侧部壳体103上可以设置有一个或多个出音孔1031,使得外壳10内部的声音可以经出音孔1031传输至外壳10外部。本申请可以不限定出音孔1031的形状、位置、数量等。
应理解,本申请可以不限定外壳10上的开口数量和开口位置。在不同的无线耳机100可以具有不同开口数量和/或不同开口位置。例如,如图1中的(c)所示,外壳10可以包括第一壳体104、第二壳体105。第一壳体104上可以形成第三开口1041。第一壳体104可以通过第三开口1041与第二壳体105固定连接。在图1中的(c)所示的示例中,无线耳机100可以具有更少的开口数量。
应理解,图1所示的无线耳机100的结构仅仅是一些示例,无线耳机100还可以有其他不同的实施例,以下仅以图1所示的无线耳机100为例进行详细说明等。
图2是TWS耳机的天线结构在不同情况下的方向图的对比示意图。其中,图2中的(a)是用户未佩戴TWS耳机时,其天线结构的方向图,图2中的(b)是用户佩戴TWS耳机时,其天线结构的方向图。
由于TWS耳机佩戴在用户的耳朵上,紧贴用户头部,因此,人体对耳机的天线结构辐射出来能量吸收严重,其方向图会发生改变,并且由于反射效应使得耳机的天线结构在靠近人头的一侧会产生辐射性能极差的零点,如图2中的(b)所示,在用户的使用过程中引起卡顿问题,降低了用户体验感。应理解,天线结构的方向图的零点可以认为是天线结构的方向图中的增益的较小值,或者,也可认为是其增益小于一定阈值的区域,由于天线结构及所处环境的不同,天线结构的方向图也可能具有多个零点。
由于上述问题,耳机的天线结构对方向图切换的需求十分迫切。本申请实施例提供的天线结构可以包括天线单元1和天线单元2,其中,天线单元1在用户佩戴时的方向图为图3中的方向图1,天线单元2在用户佩戴时的方向图为图3中的方向图2,方向图1和方向图2是互补的两个方向图。耳机可以通过天线单元的灵敏度,当丢包率低于阈值时,在天线单元1和天线单元2之间切换,从而在两个互补的方向图之间切换,原本单一天线方向图的零点位置被补齐,合成的双天线方向图弥补了任一单天线方向图在零点处的小增益,从而提升天线结构整体的空中下载技术测试(over the air,OTA)性能。应理解,两个互补的方向图可以理解为两个方向图的零点不在同一方向上,即零点不重合。丢包率可以理解为电子设备在接收数据包的过程中丢失数据包的比率,当丢包率大于阈值时,可以判断当前天线结构受环境影响较大,其辐射特征较差。合成的方向图是为了便于理解,而将至少两个方向图组合而形成,合成的方向图可以理解为在任意一个角度的增益为该至少两个方向图中在该角度对应的增益的较大值。应可理解,两个互补的方向图所合成的方向图至少可以增大任一方向图在零点处的增益
目前,市面上TWS耳机的工业设计(industrial design,ID)趋势是基于金属外壳的架构方案。金属外壳在外观上更具观赏性,但是对天线设计来说是一大挑战。首先,若金属外壳不作为辐射体,那么形成的外部金属层对耳机内部设置的天线结构的辐射形成屏蔽,天线结构的性能将恶化严重。其次,若金属外壳作为辐射体,那么产品ID限定了天线结构的走线形式,天线结构除了调节匹配网络外无任何优化变量。并且在金属外壳的限定下,想要实现天线结构的方向图切换,更是挑战巨大。
因此,随着TWS耳机中天线结构对方向图切换的需求以及金属ID对天线结构的方向 图切换带来的挑战,以及不断小型化的市场需求下,TWS耳机的天线结构的方向图切换设计难度越发增大。
本申请提供了一种可穿戴设备,可以包括一种智能的双天线结构,该天线结构基于可穿戴设备的金属外壳设计,可以在保证其良好的辐射特性的基础上进行方向图的切换,减少用户在佩戴时的卡顿次数,提升用户体验。
首先,由图4至图10来介绍本申请将涉及的两个基本原理。其中,图4是本申请提供的一种异性电荷的等效原理的示意图。图5是本申请提供的一种同性电荷的等效原理的示意图。图6是本申请提供的一种反向电流源的等效原理的示意图。图7是本申请提供的一种同向电流源的等效原理的示意图。图8是本申请提供的一种天线结构的示意图。图9是本申请提供的一种差分馈电原理的示意图。图10是本申请提供的一种同相馈电原理的示意图。
如图4至图7所示,本申请应用其中的同向电流源的等效原理和反向电流源的等效原理。为方便理解,先由图4和图5介绍异性电荷的等效原理和同性电荷的等效原理:
1、异性电荷的等效原理。
相距一定距离的异性电荷水平放置,分别设置直线X=0两侧,两个电荷与直线X=0之间的距离相同,两个电荷在空间产生的电场如图4中的(a)所示。两个电荷在空间产生的电场垂直于直线X=0。而理想电导体(perfect electric conductor,PEC)的定义为:在理想电导体表面,所有电场均与PEC垂直,如图4中的(b)所示。因此,如图4中的(a)所示的两个电荷在空间(X>0)(或者在空间X<0,图未示)产生的电磁场可以等效于如图4中的(b)所示的一个电荷与X=0处设置的PEC在空间产生的电磁场,可以称作镜像原理。
2、同性电荷的等效原理。
相距一定距离的同性电荷水平放置,分别设置直线X=0两侧,两个电荷与直线X=0之间的距离相同,两个电荷在空间产生的电场如图5中的(a)所示。两个电荷在空间产生的电场平行于直线X=0,由于电场与磁场垂直,因此两个电荷在空间中产生的磁场垂直于直线X=0。而理想磁导体(perfect magnetic conductor,PMC)的定义为:在理想磁导体表面,所有磁场均与PMC垂直(电场均与PMC平行),如图5中的(b)所示。因此,如图5中的(a)所示的两个电荷在空间(X>0)(或者在空间X<0,图未示)产生的电磁场可以等效于如图5中的(b)所示的一个电荷与X=0处设置的PMC在空间产生的电磁场,可以称作镜像原理。
类似于异性电荷的等效原理和同性电荷的等效原理,接下来由6和图7介绍反向电流源的等效原理和同向电流源的等效原理:
3、反向电流源的等效原理。
类似于异性电荷的等效原理,相距一定距离的反向电流源水平放置,分别设置直线X=0两侧,两个电流源与直线X=0之间的距离相同。根据镜像原理,反向电流源在空间(X>0)(或者在空间X<0,图未示)产生的电磁场等效于一个电流源与X=0处设置的PEC在空间产生的电磁场,如图6所示。
4、同向电流源的等效原理。
类似于同性电荷的等效原理,相距一定距离的同向电流源水平放置,分别设置直线 X=0两侧,两个电流源与直线X=0之间的距离相同。根据镜像原理,同向电流源在空间(X>0)(或者在空间X<0,图未示)产生的电磁场等效于一个电流源与X=0处设置的PMC在空间产生的电磁场,如图7所示。
差分/同相馈电原理如图9和图10所示的示意图。图9和图10所示的差分/同相馈电原理是基于图8所示的天线结构,图8所示的天线结构为辐射贴片的电长度为1/2λ的贴片(patch)天线,电流源分别在天线结构的两端与其电连接进行馈电。
1、差分馈电原理。
如图9所示的馈电方式为差分馈电,其中,天线结构两端的电流源反向(电信号幅值相同,相位相差180°),天线结构的辐射的方向图在y轴方向上辐射最大,z轴方向上产生零点。
2、同相馈电原理。
如图10所示的馈电方式为同相馈电,其中,天线结构两端的电流源同向(电信号幅值相同,相位相差0°),天线结构的辐射的方向图在z轴方向上辐射最大,y轴方向上产生零点。
因此,对于图8所示的天线结构来说,其采用同相馈电或差分馈电时对应的方向图正交且互补。其中,方向图正交可以理解为两个方向图的最大辐射所在方向正交,方向图互补可以理解为两个方向图的零点所在方向不同。
图11至图14是本申请实施例提供的等效/模拟的电磁场的示意图。其中,图11是利用反向电流源的等效原理的示意图。图12是利用同向电流源的等效原理的示意图。图13是差分馈电的模拟示意图。图14是同相馈电的模拟示意图。
如图11所示,利用反向电流源的等效原理,辐射贴片的电长度为1/4λ的贴片天线在其一端与电流源电连接,另一端设置PEC,其电磁场可以与图9所示的差分馈电所产生的电磁场等效。但是,由于在实际应用中,无法获取PEC,因此,可以将贴片天线设置PEC的一端与地板电连接,进行电磁场模拟,可以获得类似的效果,其电场分布如图13所示。
如图12所示,利用同向电流源的等效原理,辐射贴片的电长度为1/4λ的贴片天线在其一端与电流源电连接,另一端设置PMC,其电磁场可以与图10所示的同相馈电所产生的电磁场等效。但是,由于在实际应用中,无法获取PMC,因此,可以将贴片天线设置PMC的一端不与地板电连接(断路),进行电磁场模拟,可以获得类似的效果,其电场分布如图14所示。
图15是本申请实施例提供的一种可穿戴设备200的结构示意图,以可穿戴设备是耳机为例进行说明。
如图15所示,可穿戴设备200的外壳210可以包括金属部分211和非金属部分212。
应理解,可穿戴设备200可以是以金属外壳的架构方案为基础设计的可穿戴设备,为保证可穿戴设备200中天线结构的辐射特性,因此,外壳210可以是金属与绝缘材料拼接形成的外壳。
在一个实施例中,为保证可穿戴设备200的外观更具观赏性,可以将金属部分211设置于外壳210的外侧(用户佩戴时,外壳210远离用户的一侧)。
其中,金属部分211可以作为天线结构201的辐射体使用。利用外壳210的金属部分作为天线结构201的辐射体,可以保证可穿戴设备200中天线结构201获得较大的净空(远 离PCB/地板/电池/元器件),产生良好的辐射性能。
如图15所示,外壳210形成的腔体内还可以包括多个部件,例如,电池,印刷电路板(printed circuit board,PCB),喇叭等。电池和PCB可以设置在可穿戴设备200的耳柄部,喇叭可以设置在可穿戴设备200的耳塞部。
其中,PCB可以采用耐燃材料(FR-4)介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板一种高频板。印刷电路板PCB中可以设置一金属层,该金属层可以通过在PCB的表面蚀刻金属形成。该金属层可用于PCB上承载的电子元件接地,以防止用户触电或设备损坏。该金属层可以称为地板。
图16是本申请实施例提供的天线结构201(也可称为天线201)的示意图。
如图16所示,天线结构201可以包括辐射体211,PCB220,馈电单元230和开关240。
其中,辐射体211可以由金属部分211形成。金属部分211可以与PCB220相向设置,相向设置可以理解为金属部分211与PCB220面对面设置。馈电单元230的一端与金属部分211的第一端2111电连接,并为天线结构201的辐射体馈电。开关240的一端与金属部分211的第二端2112电连接,开关240的另一端接地。开关240具有第一开关状态和第二开关状态。开关240可以在第一开关状态和第二开关状态之间切换。开关240处于第一开关状态或第二开关状态时,天线结构201的工作频段均包括第一频段。
在本申请一个实施例中,PCB220可以包括金属层221,作为天线结构201的接地层/地板,或者金属层221可以与地板电连接,等效为天线结构的地板。馈电单元230的另一端与金属层221电连接进行接地。开关240的另一端接地可以理解为开关240的另一端与金属层221电连接。
在本申请一个实施例中,馈电单元230和开关240可以设置在相同的基板(例如,PCB220)上,或,也可以根据布局的需要设置在两个或多个不同的基板,例如设置于不同与PCB220的另一PCB、和/或柔性电路板(Flexible Printed Circuit,简称FPC)上,本申请对此并不做限制,可以根据实际的设计进行调整。
在本申请的一个实施例中,天线201可以用于可穿戴设备。可穿戴设备的金属部分211与PCB220面对面设置可以包括PCB220与金属部分211相向并间隔设置,并在垂直于PCB220所在平面的方向上,PCB220全部投影在金属部分211上,或者金属部分211全部投影在PCB220上。在本申请另一实施例中,PCB220与金属部分211相向并间隔设置,且PCB220或金属部分211不完全投影于对方,金属部分211与PCB220可以在垂直于PCB220所在平面的方向上部分投影,或部分重合,例如,其重合的面积可以超过总面积的75%。同时,金属部分211的长度方向和/或PCB220的长度方向可以和可穿戴设备的外壳的长度方向平行,或者在可穿戴设备的外壳的长度方向上偏移±45°,例如,金属部分211的长度方向和/或PCB220的长度方向可以和图1中所示的TWS耳机的主壳体101的长度方向平行,或偏移±45°。
在本申请的一个实施例中,金属部分211的长度和PCB220的长度可以相同或相近,例如金属部分211的长度和PCB220的长度都在第一波长的(1/4±1/16)范围内;或者金属部分211的长度和PCB220的长度可以相差在一定范围内,例如两者长度相差可以小于第一波长的八分之一。金属部分211的长度可以是在第一方向上的物理长度,第一方向是 馈电单元230与金属部分211的连接处,和开关240与金属部分211的连接处之间虚拟连接线的延伸方向。PCB220的长度可以是在第一方向上的物理长度,或者可以是PCB220与金属部分211的连接处之间虚拟连接线的延伸方向。随着金属部分211和PCB220的长度的接近,天线结构的辐射特性也会更优,第一波长为天线结构201的工作频段对应的波长,例如,第一波长可以是工作频段中谐振点对应的波长,或者,也可以是工作频段或所支持频段的中心频率对应的波长,或者,第一频段对应的波长,例如,第一波长可以是第一频段的中心频率对应的波长。
根据本申请实施例的技术方案,金属部分211的第一端2111并不能狭义的理解为一定是一个点,还可以认为是金属部分211上包括第一端点(金属部分211的端点可以是金属部分211的边缘上的任一点)的一段辐射体,例如,可以认为第一端2111是距离第一端点第一波长的八分之一以内的辐射体,或者,也可以认为是距离第一端点5mm以内的辐射体。金属部分211的第二端2112也可以相应理解。
应理解,在本申请提供的技术方案中,通过开关240切换金属层221与金属部分211的第二端之间的电连接状态,可以实现天线辐射体在第一频段下不同的工作模态,不同工作模态下的辐射体211可以看作对应于不同的天线单元,例如,包括第一天线单元和第二天线单元。第一天线单元和第二天线单元共用辐射体211。当开关240在第一开关状态(例如,连通)时,金属部分211的第二端2112与金属层221处于第一连接状态(例如,电连接状态),金属部分的第二端通过第一开关接地,金属部分211的部分或全部作为第一天线单元的辐射体,在这种情况下,第一单元可以是左手天线或者环(loop)天线。馈电单元230馈电时,第一天线单元产生的电磁场与图9所示的差分馈电所产生的电磁场类似。当开关240在第二开关状态(例如,断开)时,金属部分211的第二端2112与金属层221处于第二连接状态(例如,金属部分211的第二端2112与金属层221之间不连通,即不形成电连接,电信号不进行传输),金属部分的第二端不通过第一开关接地,金属部分211的部分或全部作为第二天线单元的辐射体,在这种情况下,第二单元可以是单极子天线。馈电单元230馈电时,第二天线单元产生的电磁场与图10所示的同相馈电所产生的电磁场类似。因此,通过控制开关240的状态,可以控制天线结构201在第一天线单元和第二天线单元之间切换。第一天线单元和第二天线单元均利用金属部分211作为辐射体产生辐射。由于第一天线单元和第二天线单元的方向图互补,可以在丢包率低于阈值时,通过切换两个天线单元而进行方向图的切换,从而增大天线结构201方向图的覆盖范围(例如实现360°的全向覆盖),实现天线信号的稳定连接,提升用户体验。
因此,第一开关切换至第一开关状态或第二开关状态时,天线结构201的工作频段均包括第一频段,即第一天线单元和第二天线单元产生的谐振均可以支持可穿戴设备在第一频段内进行通信。在本申请一个实施例中,第一天线单元和第二天线单元的工作频段同频。在本申请一个实施例中,第一天线单元和第二天线单元的方向图不同。通过第一开关的状态切换,可以改变天线结构201的方向图。
应理解,第一天线单元和第二天线单元的工作频段同频可以理解为下列情况中的任意一种:
1、第一天线单元的工作频段和第二天线单元的工作频段包括相同的通信频段,例如,第一天线单元的工作频段和第二天线单元的工作频段均包括第一频段,则可以认为第一天 线单元和第二天线单元同频。第一频段可以是蓝牙频段。第一频段也可以是5G中的sub6G频段。
2、第一天线单元的工作频段和第二天线单元的工作频段存在部分频段重合,例如,第一天线单元的工作频段包括LTE中的B35(1.85-1.91GHz),第二天线单元的工作频段包括LTE中的B39(1.88-1.92GHz),第一天线单元的工作频段和第二天线单元的工作频段的部分重合,则可以认为第一天线单元和第二天线单元同频。
在本申请实施例中,第一天线单元和第二单元通过共辐射体的方式,减小天线结构的体积。在实际应用中,其共辐射体形成的天线单元可以是单极子,偶极子,环天线,倒置的F型天线(invertedF antenna,IFA)等,本申请对此并不做限制。
在本申请一个实施例中,金属部分211可以作为外壳的一部分,也可以与外壳分离,例如,金属部分211可以设置或形成于外壳的内/外表面,或者金属部分211可以设置在外壳内部,并与外壳分开。
当金属部分211作为外壳的一部分且外壳为金属时,外壳的整体可以作为上述金属部分,或者外壳上由绝缘材料围出的一部分或全部可以作为上述金属部分211。例如,图1中所示的TWS耳机的主壳体101/第二壳体105。外壳还可以是一部分为金属(作为金属部分211),一部分为绝缘材质形成,为保证外观面的统一,可以在金属的外部设置有相同材质的绝缘材料。
当金属部分211设置或形成于外壳的内/外表面时,金属部分211可以为可穿戴设备的外观面(用户可视部分),或者,也可以通过贴片或激光直接成型(laser-direct-structuring,LDS)技术设置在可穿戴设备外壳的表面(内表面或外表面)。
当金属部分设置于外壳围成的内部空间中时,金属部分211可以通过金属层、金属贴片,例如浮动金属(floating metal,FLM),柔性电路板(flexible printed circuit,FPC),内部的导电/结构件或者PCB的板载等形式实现,本申请对此并不做限制。
在一个实施例中,金属部分211的电长度可以是第一波长的四分之一,对于实际的生产中,可能会存在加工误差,或者环境干扰,因此,金属部分211的电长度可以设置为第一波长的四分之一附近,例如,其可以设置在正负第一波长的十六分之一的范围内。同时,金属部分211的电长度可以理解为第一端2111的端点与开关240和金属部分211连接处之间的距离所转换的电长度。对于金属部分211的电长度来说,开关240和金属部分211连接处位置可以影响金属部分211的电长度值,金属部分211上加载的电容和/或电感也可以影响金属部分211的电长度值,例如,在开关240和金属部分211之间设置电容或电感可以改变金属部分211的电长度(例如,加载电容增加电长度,加载电感则减少电长度)。电长度可以是指,物理长度(即机械长度或几何长度)乘以电或电磁信号在媒介中的传输时间与这一信号在自由空间中通过跟媒介物理长度一样的距离时所需的时间的比来表示,电长度可以满足以下公式:
Figure PCTCN2022096763-appb-000001
其中,L为物理长度,a为电或电磁信号在媒介中的传输时间,b为在自由空间中的中传输时间。
或者,电长度也可以是指物理长度(即机械长度或几何长度)与所传输电磁波的波长之 比,电长度可以满足以下公式:
Figure PCTCN2022096763-appb-000002
其中,L为物理长度,λ为电磁波的波长。
应理解,由于本申请采用的技术方案利用了反向电流源的等效原理和同向电流源的等效原理,天线结构的辐射体(金属部分)的电长度相较于未采用等效原理的天线结构缩减一半,更有利于天线结构的小型化,更适用于日益轻薄的可穿戴设备。
在一个实施例中,馈电单元230的一端与金属部分211的连接处与开关240和金属部分211连接处之间的距离可以大于或等于第一波长的八分之一,以保证天线结构201的辐射特性。
在一个实施例中,天线结构201的工作频段可以包括可以用于可穿戴设备与其他电子设备进行通信连接的通信频段。应理解,也可以调整金属部分211的电长度,使天线结构201的工作频段包括其他通信频段。
在一个实施例中,馈电单元230可以是电子设备内部的射频芯片中的一条射频通道。
在一个实施例中,开关240可以是单刀单掷的开关,或者其他类型的开关,例如,单刀双掷开关,单刀四掷开关或四刀单掷开关,也可以达到相同的技术效果,或者也可以是其他类型的元件,例如,可变电容器(adjustable capacitor),通过可变电容器的电容值变化切换金属层221与金属部分211之间的电连接状态。可变电容器可以包括第一电容状态和第二电容状态,分别对应于开关240的第一开关状态和第二开关状态,所述第一电容状态对应第一电容值,所述第二电容状态对应第二电容值,第一电容值和第二电容值的设置与所述天线结构的工作频率相关。对于蓝牙频段(2.4-2.485GHz)来说,第一电容状态的可变电容器的第一电容值小于或等于0.2pF时,可以认为金属部分211的第二端2112与金属层221不连通。第二电容状态的可变电容器的第二电容值大于或等于10pF时,可以认为金属部分211的第二端2112与金属层221电连接。应理解,在不同的频段,金属层221与金属部分211之间的电连接状态(断开或连接)对应的电容值不同,因此对于其他频段,也可以通过调整可变电容器的容值达到相同的效果,本申请对此并不做限制。
可变电容器是一种电容值可以在一定范围内调节的可变的电容器。电容器的电容值的计算公式如下:
Figure PCTCN2022096763-appb-000003
其中,ε为两极板间的介电常数;δ为真空中的绝对介电常数;k为静电力常量;S为两极板正对面积;d为两极板间垂直距离。
因此,可变电容器的原理一般是通过改变电容器的两极板正对面积或两极板间垂直距离,使其电容值相应地变化。
应理解,图16仅为示意图,在实际应用中,馈电单元230和开关240可以设置在PCB220上,通过金属弹片251和252分别与金属部分211的第一端2111和第二端2112电连接,如图17所示。因此,金属部分211与PCB220之间的距离可以约为金属弹片251和252的高度,例如,金属部分211与PCB220之间的距离可以约为1.5mm,可以根据实际的设计进行调整,本申请对此并不做限制。
图18至图25是本申请实施例提供的电场分布示意图和方向图。其中,图18是本申 请提供的对照组采用同相馈电时的电场分布示意图。图19是本申请提供的对照组采用同相馈电时的方向图。图20是本申请提供的图16所示天线结构中开关处于第二开关状态,例如断开时的电场分布示意图。图21是本申请提供的图16所示天线结构中开关处于第二开关状态,例如断开时的方向图。图22是本申请提供的对照组采用差分馈电时的电场分布示意图。图23是本申请提供的对照组采用差分馈电时的方向图。图24是本申请提供的图16所示天线结构中开关处于第一开关状态,例如连通时的电场分布示意图。图25是本申请提供的图16所示天线结构中开关处于第一开关状态,例如连通时的方向图。
应理解,在该实施例中采用的对照组的天线结构为图8所示的天线结构,图8所示的天线结构为辐射贴片的电长度为1/2λ的贴片天线,馈电单元(电流源)分别在天线结构的两端与其电连接进行馈电。
如图20所示,天线结构在馈电单元处的电场最小,在开关处电场最大。如图21所示,为天线结构中开关断开时的方向图,沿z轴方向的增益最小,沿y轴方向的增益最大。
在对照组中,天线结构采用同相馈电,其电场分布如图18所示,由于图18对应的天线结构仅为对照组的天线结构的电长度的二分之一,因此,图20所示的天线结构的电场分布与对照组的左侧电场分布相似。如图19所示,对照组的方向图的增益最大值和零点所在方向与图21对应的天线结构均一致。
如图24所示,天线结构在馈电单元处的电场最大,在开关处电场最小。如图25所示,为天线结构中开关连通时的方向图,在原本的设计中,沿z轴方向的增益最大,沿y轴方向的增益最小,但是由于可穿戴设备的不对称(耳塞部),其增益最大值和零点所在方向产生了偏移。
在对照组中,天线结构采用差分馈电,其电场分布如图22所示,由于图24对应的天线结构仅为对照组的天线结构的电长度的二分之一,因此,图24所示的天线结构的电场分布与对照组的左侧电场分布相似。如图23所示,对照组的方向图的辐射增益最大值和零点所在方向与图25对应的天线结构类似。
图26是本申请实施例提供的天线结构300的示意图。
如图26所示,天线结构300还可以包括匹配网络350。匹配网络350可以包括第一射频电路351,第二射频电路352和第二开关353。金属部分311的第一端3111可以设置有第一馈电点3113和第二馈电点3114,第一馈电点3113和第二馈电点3114之间的距离可以小于第一波长的十六分之一。在本申请一个实施例中,第一馈电点3113和第二馈电点3114之间的距离可以小于或等于2mm,或者小于或等于1mm,例如,连接第一馈电点3113的弹片和连接第二馈电点3114的弹片的边缘与边缘之间的距离可以为小于或等于2mm,或者小于或等于1mm。在本申请一个实施例中,第一馈电点3113和第二馈电点3114可以沿金属部分311的长度方向间隔设置,或者,也可以沿金属部分311的宽度方向间隔设置,即第一馈电点3113和第二馈电点3114之间的连线可以与金属部分311的长度方向相交,或者近似垂直(约为90°)。第一射频电路351的一端在第一馈电点处3113与金属部分311电连接,第一射频电路351的另一端与第二开关353电连接。第二射频电路352的一端在第二馈电点3114处与金属部分311电连接,第二射频电路352的另一端与第二开关353电连接。第二开关353可以与馈电单元330电连接,第二开关353用于切换第一射频电路351和第二射频电路352。
在一个实施例中,匹配网络350还包括第三射频电路354。第三射频电路354的一端连接在第二开关353与馈电单元330之间,第三射频电路354的另一端与金属层(地板)电连接。
应理解,当第一开关340连通时,金属部分311的第二端3112与金属层(地板)电连接,形成第一天线单元。当第一开关340断开时,金属部分311的第二端3112与金属层(地板)不连通,形成第二天线单元。第一开关340用于切换金属部分311的第二端3112断开和接地两种状态,第二开关353可以用于切换第一天线单元和第二天线单元的匹配,例如频率调谐。为了防止匹配网络的电抗在切换时互相影响,可以用第二开关353切换两个天线单元对应的串联的电抗(第一射频电路351的电抗和第二射频电路352的电抗)。同时,可以将并联的电抗(第三射频电路354的电抗)放置在第二开关353和馈电单元330之间而非馈电点与第二开关353之间,这样既保证了第二开关353对匹配网络的切换作用,又防止了第一天线单元和第二天线单元对应的不同的匹配网络的电抗相互影响,同时可以减少电子元件的布局。
在一个实施例中,第一射频电路351可以通过金属弹片在第一馈电点处3113与金属部分311电连接。第二射频电路352可以通过金属弹片在第二馈电点处3114与金属部分311电连接。
在一个实施例中,匹配网络可以与馈电单元230和/或开关240设置在相同的一个基板,例如,PCB220上,或者设置在两个或多个不同的基板上。不同的基板可以包括PCB、和/或FPC上,本申请对此并不做限制,可以根据实际的设计进行调整。
在一个实施例中,第一射频电路351包括第一电容,第二射频电路352包括第一电感;第三射频电路354包括第二电感。对于天线结构300来说,第一电容串联在金属部分311的第一端3111与第二开关353之间,第一电感串联在金属部分311的第一端3111与第二开关353之间,第二电感并联在第二开关353和馈电单元330之间。
应理解,第一电容和第二电感可以用于匹配第一天线单元,用于优化第一天线单元的辐射特性。第一电感和第二电感可以用于匹配第二天线单元,用于优化第二天线单元的辐射特性。如图27的圆图(a)所示,为不加匹配网络时第一天线单元和第二天线单元的反射系数在史密斯(Smith)圆图的初始位置,分别在第二象限和第四象限。分别对第一天线单元串联合适的第一电容(第一射频电路),对第二天线单元串联合适的第一电感(第二射频电路),可以将第一天线单元和第二天线单元的工作频段的位置调至等阻抗圆上,位置如图27的圆图(b)所示。最后,可以通过并联的第二电感(第三射频电路)将第一天线单元和第二天线单元的工作频段的位置调至圆心附近,位置如图27的圆图(c)所示。由于第一天线单元和第二天线单元共用了第二电感(第三射频电路)作为匹配,减少电子元件的布局。
在一个实施例中,第一电容的电容值介于0.5pF至1.5pF之间,第一电感的电感值介于1nH至2nH之间,第二电感的电感值介于1nH至2nH之间。应理解,在本申请中仅以蓝牙频段进行举例,当天线结构的工作频段发生变化时,可以对第一电容的电容值,第一电感的电感值和第二电感的电感值进行调整。
在一个实施例中,第一电容的电容值可以为1pF,第一电感的电感值可以为1.5nH,第二电感的电感值可以为1.5nH。应理解,在实际的生产设计中,可以根据不同的电磁环 境或者工作频段,对第一电容,第一电感和第二电感的具体数据进行调整,本申请对此并不做限制。
对于上述实施例中的匹配网络而言,第一电容,第一电感,第二电感仅为第一射频电路351,第二射频电路352和第三射频电路354的一种可能的示意图,在实际的生产设计中,还可以有其他的设计形式,本申请对此并不做限制。
图28和图29是图26所示天线结构在头模下的仿真结果图。其中,图28是图26所示天线结构的S参数仿真结果图。图29是图26所示天线结构的系统效率(total efficiency)的仿真结果图。
如图28所示,由于第一天线单元和第二天线单元的匹配网络需要共用第三射频电路,因此无法将第一天线单元的谐振点和第二天线单元的谐振点调整至完全相同,但是可以将其中一个天线单元的谐振点调整至较低频率,另一个天线单元的谐振点调整至较高频率,但第一天线单元和第二天线单元谐振的带宽均可以支持蓝牙频段(例如,2.4-2.485GHz)。
如图29所示,在蓝牙频段(例如,2.4-2.485GHz)内,第一天线单元和第二天线单元的系统效率大于-13.5dB,可以满足通信的需要。
在本申请的实施例中,可穿戴设备通过天线辐射体,可以支持蓝牙频段。无论开关处于第一开关状态还是第二开关状态,可穿戴设备均可以通过该同一天线辐射体来支持蓝牙频段。
应理解,本申请实施例仅以谐振频段包括蓝牙频段为例进行说明,在实际的生产设计中,还可以应用于其他通信频段,本申请对此并不做限制。
图30至图33是图26所示天线结构在头模下的方向图。其中,图30是本申请实施例提供的极化方式的坐标示意图。图31是图26所示天线结构的头模水平面的方向图。图32是图26所示天线结构的头模侧面的方向图。图33是图26所示天线结构的头模正面的方向图。
如图30所示,在三维空间中任何一个点P,以原点O为圆心,原点O到P点的距离为半径做圆。theta极化是沿P点所处圆的经线的切线方向的极化。phi极化是沿P点所处圆的纬线的切线方向的极化。abs极化就是theta极化和的phi极化合成,abs是总极化,theta极化和phi极化是它的两个极化分量。
如图31所示,为第一天线单元和第二天线单元的在头模水平面的方向图。图31中的(a),(b)和(c)分别示出了abs极化,Theta极化和Phi极化的方向图,可见,第一天线单元和第二天线单元的具有良好的辐射特性,以及互补的方向图,可以使用在方向图切换的天线结构中。
如图32所示,为第一天线单元和第二天线单元的在头模侧面的方向图。图32中的(a),(b)和(c)分别示出了abs极化,Theta极化和Phi极化的方向图,可见,第一天线单元和第二天线单元的具有良好的辐射特性,以及互补的方向图,可以使用在方向图切换的天线结构中。
如图33所示,为第一天线单元和第二天线单元的在头模正面的方向图。图33中的(a),(b)和(c)分别示出了abs极化,Theta极化和Phi极化的方向图,可见,第一天线单元和第二天线单元的具有良好的辐射特性,以及互补的方向图,可以使用在方向图切换的天 线结构中。
本申请提供了一种可穿戴设备,可以包括一种天线结构,该天线结构可以基于可穿戴设备的金属外壳设计。该天线结构的工作频率可以支持可穿戴设备与另一电子设备之间的通信连接,无论与可穿戴设备连接的这一电子设备放在包中、口袋中,还是用户身处机场等信号干扰较强的地方,通过天线结构的开关切换该天线结构的工作模态,就可以实现可穿戴设备与该电子设备稳定的通信连接。具体的,具有该天线结构的可穿戴设备可以通过切换天线结构的开关,从而增大天线结构201方向图的覆盖范围(例如实现360°的全向覆盖),实现信号的稳定连接。通信连接可以是蓝牙连接。
图34和图35是本申请实施例提供的另一个可穿戴设备。
应理解,本申请实施例提供的天线结构可以应用于除了TWS耳机以外的可穿戴设备,例如,智能手表或智能眼镜等。
如图34所示,上述实施例中的天线结构可以利用智能手表的金属外壳设计,或者,也可以根据实际的生产设计需求进行调整,本申请并不限制天线结构的具体位置,仅作为举例使用。例如,金属外壳中的表圈中包括金属部分,可以作为天线结构的辐射体,PCB可以设置于金属外壳所围成的空间中,馈电单元可以设置在PCB上,并与表圈中金属部分的一端电连接,为天线结构馈电,开关也可以设置在PCB上,并与表圈中金属部分的另一端电连接,其设计位置可以如图34所示,应可理解天线辐射体也可以设置在智能手表的外壳内部。
如图35所示,天线结构可以利用智能眼镜的镜腿设计,其设计位置如图所示,或者,也可以设计利用智能眼镜的镜框设计,或者,也可以根据实际的生产设计需求进行调整。例如,智能眼镜的镜腿或镜框中包括金属部分(如图35所示),可以作为天线结构的辐射体,PCB可以设置于镜腿中,馈电单元可以设置在PCB上,并与金属部分的一端电连接,为天线结构馈电,开关也可以设置在PCB上,并与金属部分的另一端电连接,其设计位置如图35所示。
本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种可穿戴设备,其特征在于,包括:
    外壳,包括金属部分,所述金属部分作为天线辐射体;
    印刷电路板PCB,设置于所述外壳内,所述PCB与所述外壳的所述金属部分相向设置;
    馈电单元,与所述金属部分的第一端电连接,并为所述天线辐射体馈电;以及
    第一开关,所述第一开关的一端与所述金属部分的第二端电连接,所述第一开关的另一端接地;
    其中,所述第一开关处于第一开关状态或第二开关状态时,所述天线辐射体的工作频段均包括第一频段。
  2. 根据权利要求1所述的可穿戴设备,其特征在于,
    所述馈电单元与所述金属部分的连接处,和所述第一开关的一端与所述金属部分的连接处之间的距离大于或等于第一波长的八分之一,所述第一波长为所述第一频段对应的波长。
  3. 根据权利要求1所述的可穿戴设备,其特征在于,
    所述第一开关处于所述第一开关状态时,所述金属部分的第二端通过所述第一开关接地;
    所述第一开关处于所述第二开关状态时,所述金属部分的第二端不通过所述第一开关接地。
  4. 根据权利要求3所述的可穿戴设备,其特征在于,所述第一开关为单刀单掷开关,单刀双掷开关,单刀四掷开关或四刀单掷开关。
  5. 根据权利要求3所述的可穿戴设备,其特征在于,所述第一开关为可变电容器,所述第一开关状态对应于所述可变电容器的第一电容值,所述第二开关状态对应于所述可变电容器的第二电容值。
  6. 根据权利要求4所述的可穿戴设备,其特征在于,所述第一电容值小于或等于0.2pF,所述第二电容值大于或等于10pF。
  7. 根据权利要求1所述的可穿戴设备,其特征在于,
    所述PCB包括金属层,所述金属层与所述外壳的所述金属部分相向设置,
    其中,
    所述第一开关的另一端与所述金属层电连接,并通过所述金属层接地。
  8. 根据权利要求1所述的可穿戴设备,其特征在于,
    所述馈电单元和/或所述第一开关设置在所述PCB上。
  9. 根据权利要求1所述的可穿戴设备,其特征在于,所述可穿戴设备包括匹配网络;
    所述金属部分的第一端包括第一馈电点和第二馈电点;
    所述匹配网络包括第一射频电路,第二射频电路和第二开关;
    所述第一射频电路的一端在所述第一馈电点处与所述金属部分电连接,所述第一射频电路的另一端与所述第二开关电连接;
    所述第二射频电路的一端在所述第二馈电点处与所述金属部分电连接,所述第二射频电路的另一端与所述第二开关电连接;
    所述第二开关与所述馈电单元电连接。
  10. 根据权利要求9所述的可穿戴设备,其特征在于,
    所述匹配网络还包括第三射频电路;
    所述第三射频电路的一端设置在所述第二开关与所述馈电单元之间,所述第三射频电路的另一端接地。
  11. 根据权利要求10所述的可穿戴设备,其特征在于,
    所述第一射频电路包括第一电容;
    所述第二射频电路包括第一电感;
    所述第三射频电路包括第二电感。
  12. 根据权利要求11所述的可穿戴设备,其特征在于,所述第一电容的电容值介于0.5pF至1.5pF之间,所述第一电感的电感值介于1nH至2nH之间,所述第二电感的电感值介于1nH至2nH之间。
  13. 根据权利要求11所述的可穿戴设备,其特征在于,所述第一电容的电容值为1pF,所述第一电感的电感值为1.5nH,所述第二电感的电感值为1.5nH。
  14. 根据权利要求1所述的可穿戴设备,其特征在于,所述第一频段为蓝牙频段。
  15. 根据权利要求1至14中任一项所述的可穿戴设备,其特征在于,所述可穿戴设备为真无线TWS耳机,智能手表或智能眼镜。
  16. 一种天线,其特征在于,包括:辐射体,印刷电路板PCB,馈电单元和第一开关;
    其中,所述辐射体与所述PCB相向设置;
    所述馈电单元与所述辐射体的第一端电连接,并为所述辐射体馈电;
    所述第一开关的一端与所述辐射体的第二端电连接,所述第一开关的另一端接地;
    其中,所述第一开关处于第一开关状态或第二开关状态时,所述天线的工作频段均包括第一频段。
  17. 根据权利要求16所述的天线,其特征在于,
    所述馈电单元与所述辐射体的连接处,和所述第一开关的一端与所述辐射体的连接处之间的距离大于或等于第一波长的八分之一,所述第一波长为所述第一频段对应的波长。
  18. 根据权利要求16所述的天线,其特征在于,
    所述第一开关处于所述第一开关状态时,所述辐射体的第二端通过所述第一开关接地;
    所述第一开关处于所述第二开关状态时,所述辐射体的第二端不通过所述第一开关接地。
  19. 根据权利要求18所述的天线,其特征在于,所述第一开关为单刀单掷开关,单刀双掷开关,单刀四掷开关,四刀单掷开关,或可变电容器。
  20. 根据权利要求16至19中任一项所述的天线,其特征在于,所述第一频段为蓝牙频段。
PCT/CN2022/096763 2021-06-30 2022-06-02 一种可穿戴设备 WO2023273786A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22831607.1A EP4343962A1 (en) 2021-06-30 2022-06-02 Wearable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110745113.4A CN115548648A (zh) 2021-06-30 2021-06-30 一种可穿戴设备
CN202110745113.4 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023273786A1 true WO2023273786A1 (zh) 2023-01-05

Family

ID=84692528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096763 WO2023273786A1 (zh) 2021-06-30 2022-06-02 一种可穿戴设备

Country Status (3)

Country Link
EP (1) EP4343962A1 (zh)
CN (1) CN115548648A (zh)
WO (1) WO2023273786A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2219265A1 (en) * 2009-02-12 2010-08-18 Laird Technologies AB An antenna device, an antenna system and a portable radio communication device comprising such an antenna device
CN105161844A (zh) * 2015-07-31 2015-12-16 瑞声声学科技(苏州)有限公司 移动终端
CN105576340A (zh) * 2014-09-16 2016-05-11 宏达国际电子股份有限公司 移动装置及其制造方法
CN105789827A (zh) * 2016-03-18 2016-07-20 广东欧珀移动通信有限公司 天线装置及移动终端
CN110233346A (zh) * 2019-06-18 2019-09-13 青岛海信移动通信技术股份有限公司 移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2219265A1 (en) * 2009-02-12 2010-08-18 Laird Technologies AB An antenna device, an antenna system and a portable radio communication device comprising such an antenna device
CN105576340A (zh) * 2014-09-16 2016-05-11 宏达国际电子股份有限公司 移动装置及其制造方法
CN105161844A (zh) * 2015-07-31 2015-12-16 瑞声声学科技(苏州)有限公司 移动终端
CN105789827A (zh) * 2016-03-18 2016-07-20 广东欧珀移动通信有限公司 天线装置及移动终端
CN110233346A (zh) * 2019-06-18 2019-09-13 青岛海信移动通信技术股份有限公司 移动终端

Also Published As

Publication number Publication date
EP4343962A1 (en) 2024-03-27
CN115548648A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
CN107645041B (zh) 天线结构及具有该天线结构的无线通信装置
WO2022206237A1 (zh) 天线组件及电子设备
TWI650900B (zh) 天線結構及具有該天線結構之無線通訊裝置
WO2019090690A1 (zh) 一种移动终端的天线及移动终端
WO2021238347A1 (zh) 天线和电子设备
JP6008352B2 (ja) マルチモードブロードバンドアンテナモジュールおよびワイヤレス端末
CN106450752B (zh) 一种用于智能手机实现高隔离度的mimo天线
CN107666036A (zh) 天线结构及具有该天线结构的无线通信装置
CN114122712A (zh) 一种天线结构及电子设备
CN114824749B (zh) 一种电子设备
WO2022143320A1 (zh) 一种电子设备
TW201834311A (zh) 天線結構
US20230048914A1 (en) Antenna Apparatus and Electronic Device
US11342653B2 (en) Antenna structure and wireless communication device using same
US20210210837A1 (en) Antenna structure and wireless communication device using same
CN113809510B (zh) 天线结构及具有该天线结构的电子设备
WO2023273786A1 (zh) 一种可穿戴设备
CN214797717U (zh) 天线结构及电子设备
EP3514886B1 (en) Conductive plane antenna
WO2024055868A1 (zh) 一种可穿戴设备
CN218351715U (zh) 无线耳机
EP4283783A1 (en) Terminal monopole antenna
WO2023273604A1 (zh) 天线模组及电子设备
WO2023274192A1 (zh) 微带天线及电子设备
WO2023173834A1 (zh) 一种mimo天线系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831607

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022831607

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022831607

Country of ref document: EP

Effective date: 20231220