WO2023273680A1 - 一种单电源多电极电弧点火装置及方法 - Google Patents

一种单电源多电极电弧点火装置及方法 Download PDF

Info

Publication number
WO2023273680A1
WO2023273680A1 PCT/CN2022/093818 CN2022093818W WO2023273680A1 WO 2023273680 A1 WO2023273680 A1 WO 2023273680A1 CN 2022093818 W CN2022093818 W CN 2022093818W WO 2023273680 A1 WO2023273680 A1 WO 2023273680A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
voltage
arc ignition
ignition
arc
Prior art date
Application number
PCT/CN2022/093818
Other languages
English (en)
French (fr)
Inventor
陈杰
李陈莹
费益军
谭笑
张伟
曹京荥
刘洋
杨景刚
刘建
袁栋
李鸿泽
刘利国
Original Assignee
国网江苏省电力有限公司电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网江苏省电力有限公司电力科学研究院 filed Critical 国网江苏省电力有限公司电力科学研究院
Priority to DE112022000188.7T priority Critical patent/DE112022000188T5/de
Publication of WO2023273680A1 publication Critical patent/WO2023273680A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q3/00Igniters using electrically-produced sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q3/00Igniters using electrically-produced sparks
    • F23Q3/01Hand-held lighters, e.g. for cigarettes

Definitions

  • the present invention relates to the technical field of AC arc test devices, and more specifically, to a single-power multi-electrode arc ignition device and method.
  • cables play a vital role in every link of power generation, transmission, transformation, distribution, and power consumption, and are one of the important infrastructures for social production and people's lives.
  • problems such as overload, short circuit, and leakage may occur due to line faults, and even fires may occur.
  • frequent large-scale power outages caused by cable fires have caused serious adverse social impacts.
  • Simulating cable combustion is the basis for predicting the risk of cable fires, and it is also the most direct and effective means of evaluating cable combustion characteristics, which can prevent cable fires more effectively.
  • the traditional method of simulating the fire source of cable combustion is mainly external open flame ignition, including gas blowtorch method, radiation heating method, electric heating method and fuel oil ignition method.
  • the fire simulation or cable burning test carried out by these external open flame ignition methods is completely different from the ignition by fault arc method, and it is difficult to satisfy the in-depth quantitative analysis of the cable fault arc fire behavior.
  • the arc ignition source generated by the arc ignition method can more realistically simulate a cable fire caused by a cable fault arc.
  • the arc temperature is very high, and the central part can maintain a temperature above 5000°C.
  • the arc power can be precisely controlled by the power supply, and it can be used as long as there is a power supply, so it has good sustainability; the arc generator only needs metal electrodes.
  • the combustion process will not introduce other chemical impurities, which is convenient for quantitative testing and analysis of combustion characteristics, which has important guiding significance for understanding the fire behavior of cables under fault arcs.
  • the arc generation principle in the arc ignition method is to apply a high voltage between two metal electrodes, and the air closest to the two electrodes is first broken down to form a large number of positive and negative plasmas, that is, an arc discharge is generated. Driven by arc air convection and electromagnetic field force, the arc rises to the top. As the arc is elongated, the resistance that the arc passes through increases, and the heat dissipation to the air also increases. When the energy sent by the current to the arc is equal to the heat emitted from the arc to the surrounding air, the arc will remain stable.
  • the arc is usually relatively small, with a diameter of the order of mm, so the fire source is very concentrated and the area is small, which will make the cable and the surrounding environment of the cable dissipate heat rapidly, making it difficult to ignite the cable.
  • multiple arc generators or multi-point arc generators can be used to generate arcs with a larger area.
  • the gap capacitance C j2 is used as the equivalent circuit element of the gap between the cutting tool electrode and the workpiece, and it is assumed that each gap capacitance is equal; the isolation capacitor C j1 is used to eliminate the mutual influence between the parallel discharge circuits, and set the same value; the feedback capacitance C f can uniformly change the discharge energy of the parallel discharge circuit so that all gap capacitances can be charged with the same capacitance charge.
  • the compensation capacitor C 0 can charge the isolation capacitor and shorten the balance recovery time of the discharge circuit.
  • the compensation capacitor C 0 can also increase the discharge current and improve the removal rate of electric sparks.
  • the gap capacitance is very small, so when a certain gap is discharged, the voltage between other gaps can still be maintained at a high value, forming multiple parallel discharge circuits, and realizing a single pulse generator in each The increase in the number of discharges in the discharge cycle.
  • the Chinese invention patent (200510090547.6) "Multi-arc welding system", as shown in Figure 2, includes the positive output terminal 32 of the power supply, the negative output terminal 34 of the power supply, the center tap 82, the magnetic core 120, the first Terminal 32a, second terminal 32b, first coil portion 112, second coil portion 110, first arc A1, second arc A2, first electrode 10, second electrode 12, first inductor 402, second Inductor 410 , first freewheeling diode 404 , second freewheeling diode 412 .
  • the positive output end of a single power supply is connected to the choke coil 100, and the center tap 82 of the choke coil 100 is divided into two terminals to form two branches, each branch is connected in series with an electrode and an inductor, and then connected in parallel with a freewheeling diode. In this way, when one electrode and the workpiece break down, the arc on the other branch remains for a period of time, and the retention time is determined by the inductance value of the inductor.
  • Both the above-mentioned documents and the Chinese invention patent (200510090547.6) can use a single power supply to realize multi-electrode ignition.
  • the literature uses a pulse power supply to realize spark ignition, and uses a capacitor as an energy storage element. After a certain electrode breaks down, the rest of the shock energy is provided by the capacitor. By changing the size of the capacitor, the number of ignition electrodes can be increased, and the scalability is high.
  • the electrode breakdown frequency of this device is limited by the power pulse cycle and the size of the capacitor, and its energy release time is extremely short, so it cannot release heat continuously and has poor stability, so it cannot be used as an ignition source for cable combustion tests.
  • the Chinese invention patent (200510090547.6) forms two loops by connecting the center taps of the choke coil, each branch is connected with an inductance element, and the duration of the arc is extended through the inductance to realize multi-arc ignition.
  • This method is affected by the structure of the center tap of the choke coil, and cannot further increase the number of ignition electrodes, and the scalability is poor.
  • the inductance element connected in series in the circuit of this scheme increases the reactive part in the output power of the power supply and reduces the output efficiency of the power supply.
  • this scheme can generate an electric arc, the electric arc still periodically generates and extinguishes, cannot burn stably, and does not meet the needs of the arc ignition cable experiment.
  • the object of the present invention is to provide a single power supply multi-electrode arc ignition device and method, which only uses a single power supply to realize multi-electrode simultaneous generation of a continuous and stable arc that will not be extinguished periodically to meet the Experimental requirements, and the active power of each electrode is the same, the reactive power of all electrodes is 0, the power output efficiency is improved, and the power of the ignition device is improved by extending the electrodes, thus effectively solving the arc ignition method in the cable combustion test.
  • the present invention adopts the following technical solutions.
  • a multi-electrode arc ignition device with a single power supply including a power supply, a high-voltage pack, a switch connecting the high-voltage pack and the power supply, and a multi-electrode ignition group, wherein the positive electrode access port of the multi-electrode ignition group is electrically connected to the high-voltage side of the high-voltage pack, and multiple The negative access port of the electrode ignition group is grounded.
  • the multi-electrode ignition group includes 2n arc ignition branches connected in parallel between the positive access port and the negative access port.
  • the 2i-1 arc ignition branch includes a capacitor group and the claw electrode; the positive pole of the claw electrode in the 2i-1 arc ignition branch is connected to the positive access port of the multi-electrode ignition group, and the 2i-1
  • the negative electrode of the claw electrode in the arc ignition branch circuit is first connected in series with the capacitor group, and then connected to the negative electrode access port of the multi-electrode ignition group.
  • the 2i arc ignition branch includes an inductance coil group and a claw electrode; the positive pole of the claw electrode in the 2i arc ignition branch is connected to the positive access port of the multi-electrode ignition group, and the The negative electrode of the claw electrode is first connected in series with the inductance coil group, and then connected to the negative electrode access port of the multi-electrode ignition group.
  • the arc ignition branch When the claw electrode in any arc ignition branch is not broken down, the arc ignition branch is in an open state, and the voltage at both ends of the claw electrode is less than the breakdown voltage of the electrode at this time.
  • the claw electrode in the 2i-1 arc ignition branch When the terminal voltage of the claw electrode in the 2i-1 arc ignition branch is greater than the electrode breakdown voltage, the claw electrode in the branch is broken down, and the arc ignition branch is in the conduction state. At this time, the claw electrode The voltage at both ends of the electrode drops to the electrode voltage; among them, the electrode voltage is the voltage determined by the resistance of the electrode arc after the horn electrode is turned on.
  • the voltage across the horn electrode in the 2i-th arc ignition branch is the sum of the electrode voltage of the horn electrode in the 2i-1 arc ignition branch and the voltage of the capacitor group, and the 2i-1 arc is ignited
  • the voltage of the capacitor group in the branch compensates the electrode voltage of the claw electrode, so that when the voltage across the claw electrode in the 2i arc ignition branch is greater than the breakdown voltage of the claw electrode, the 2i arc ignition branch The claw electrode is broken down.
  • the number of capacitor groups and inductance coil groups is the same, both of which are half of the total number of arc ignition branches, and n times the sum of the capacitance values of all the capacitor groups is less than or equal to the first set value, The sum of the inductance values of all the inductance coil groups is greater than or equal to n times the second set value.
  • the active power on the 2i-1 arc ignition branch and the active power on the 2i arc ignition branch respectively satisfy the following relationship:
  • P 2i-1 is the active power on the 2i-1 arc ignition branch
  • P 2i is the active power on the 2i arc ignition branch
  • R 2i-1 is the arc characteristic resistance on the 2i-1 arc ignition branch
  • R 2i is the arc characteristic resistance on the 2ith arc ignition branch
  • I 2i-1 is the input current of arc ignition branch 2i-1, which satisfies the following relationship:
  • I 2i is the input current of the 2ith arc ignition branch, which satisfies the following relationship:
  • L is the inductance value of the inductor coil group
  • C is the capacitance value of the capacitor group
  • I s is the output current of the power supply
  • the active power on each arc ignition branch is equal, and the reactive power emitted by the capacitor group on the 2i-1 arc ignition branch is equal to the reactive power absorbed by the inductance coil group on the 2i arc ignition branch, that is, the power
  • the power is the sum of active power output to each arc ignition branch.
  • the power supply in the device is a DC voltage source; the output voltage and maximum output current of the DC voltage source are both adjustable; wherein, the adjustment range of the output voltage is 0 to 50V, and the adjustment range of the maximum output current is 0 to 50A.
  • the device also includes an inverter; the output end of the DC voltage source is connected to the input end of the inverter device through the switch connecting the high voltage pack and the power supply, and the output end of the inverter device is connected to the low voltage side of the high voltage pack.
  • the inverter device inverts the DC voltage and current output by the DC voltage source into a sinusoidal alternating voltage and current, and the frequency of the sinusoidal alternating voltage and current is the frequency of the power supply itself.
  • the inverter device also includes a voltage and current feedback control unit; the voltage and current feedback control unit uses the sinusoidal alternating voltage and current to control the direct current voltage source to adjust the direct current voltage and current output by it, so as to obtain a constant sinusoidal alternating current.
  • the inverter device is an LC oscillation circuit.
  • the high voltage package includes a horizontal output transformer, and the transformation ratio of the horizontal output transformer is not lower than 500.
  • the capacitor bank includes two series-connected high-voltage polystyrene film capacitors capable of withstanding a voltage level of 50 kV, and the capacitance of each high-voltage polystyrene film capacitor is twice the capacity of the capacitor bank.
  • the inductance coil set includes five series-connected high-voltage large-inductance coils capable of withstanding a voltage level of 20kV, each high-voltage-resistant large-inductance coil is made of amorphous ferromagnetic material, and the wire is wound with high-voltage tape for more than 5 turns.
  • the claw-shaped electrode is rod-shaped, made of copper, stainless steel or tungsten alloy, the diameter of the electrode rod is 2mm-4mm, the inner distance between the bottom of the claw-horn electrode is 0.7cm-1cm, and the distance between the top is 1.2cm-2cm.
  • a single-power multi-electrode arc ignition method includes:
  • Step 1 Determine the number of arc ignition branches in the multi-electrode ignition group according to the power data required for the simulated cable combustion experiment, and adjust the output voltage and current of the DC voltage source;
  • Step 2 using the LC oscillating circuit to invert the constant voltage and current output by the DC voltage source to obtain a sinusoidal alternating voltage and current;
  • Step 3 using the row output transformer to step up the sinusoidal alternating voltage and current;
  • Step 4 use the boosted AC voltage current to energize the multi-electrode ignition group to start the arc.
  • step 1 according to the power data required for the experiment, it is also necessary to adjust the arrangement of the claw electrodes and the size of the claw electrodes.
  • the arrangement of claw electrodes includes: the horizontal distance between each electrode, and the vertical distance between each electrode and the experimental ignition object.
  • the size of the horn electrode includes: electrode diameter, the inner distance between the two poles at the lower end of the electrode, the inner distance between the two poles at the upper end of the electrode, and the vertical height between the upper end of the electrode and the lower end of the electrode. And the final stable combustion end in the process of energizing and arcing.
  • the beneficial effect of the present invention is that, compared with the prior art, capacitor groups are connected in series on odd-numbered arc ignition branches, and inductance coil groups are connected in series on even-number arc ignition branches, and the arc duration is extended by using capacitor groups and inductance coil groups. At the same time of multi-arc ignition, the total reactive power on all arc ignition branches is made zero through resonance, thereby improving the power output efficiency.
  • the present invention realizes the simultaneous ignition of multiple electrodes, and the ignition time difference between the electrodes is extremely small; moreover, the ignited arc can continue to burn, has strong stability, and meets the requirements of the test cable fire resistance test;
  • the invention realizes the average distribution of the power of each electrode, and the power of each electrode is the same after arcing and has stability, thereby ensuring reliable experimental results;
  • inductance groups or capacitor groups are respectively connected in series on two adjacent arc ignition branches.
  • the impedance of the capacitor group and the inductance group By changing the impedance of the capacitor group and the inductance group, the mutual cancellation of reactive power is realized, thereby reducing the reactive power output by the power supply. , which effectively improves the power supply efficiency, and the working efficiency of the whole ignition device is high;
  • the number of arc ignition branches in the present invention can be increased according to the experimental power requirements, and the scalability is strong;
  • the present invention also realizes controllable arc power. By adjusting the output voltage of the DC voltage source, the arc power can be controlled and has flexibility.
  • Fig. 1 is the schematic diagram of the experimental device of "a multi-channel EDM method based on capacitive coupling" in the background technology
  • Fig. 2 is the schematic diagram of the experimental device of the Chinese invention patent (200510090547.6) "multi-arc welding system" in the background technology;
  • Fig. 3 is a schematic structural view of a single-power multi-electrode arc ignition device of the present invention
  • Fig. 4 is a schematic structural view of a single-power multi-electrode arc ignition device in an embodiment of the present invention
  • FIG. 5 is a schematic diagram of two-electrode ignition of a single-power multi-electrode arc ignition device in an embodiment of the present invention
  • FIG. 6 is a voltage and current waveform diagram at the moment of ignition of two electrodes of a single-power multi-electrode arc ignition device in an embodiment of the present invention
  • Fig. 7 is a voltage and current waveform diagram of a two-electrode ignition steady state of a single-power multi-electrode arc ignition device in an embodiment of the present invention
  • Fig. 8 is a schematic diagram of four-electrode ignition of a single-power multi-electrode arc ignition device in an embodiment of the present invention
  • Fig. 9 is a schematic flow chart of the single-power multi-electrode arc ignition method of the present invention.
  • a single-power multi-electrode arc ignition device includes a power supply 10, a high-voltage pack 30, a switch 20 connecting the high-voltage pack 30 and the power source 10, and a multi-electrode ignition group 40.
  • the core components of the single-power multi-electrode arc ignition device are The multi-electrode ignition group 40 ; the positive access port 50 of the multi-electrode ignition group 40 is electrically connected to the high voltage side of the high voltage pack 30 , and the negative access port 60 of the multi-electrode ignition group 40 is grounded.
  • the multi-electrode ignition group includes 2n arc ignition branches connected in parallel between the positive access port and the negative access port, where n is a natural number.
  • the arc ignition branches are preferably 2 and 4 respectively. It should be noted that those skilled in the art can select the number of arc ignition branches according to experimental conditions and power requirements, and the number of arc ignition branches must be Even number, the selection in this preferred embodiment is a non-limiting preferred selection.
  • the 2i-1 arc ignition branch includes a capacitor group and the claw electrode; the positive pole of the claw electrode in the 2i-1 arc ignition branch is connected to the positive access port of the multi-electrode ignition group, and the 2i-1
  • the negative electrode of the claw electrode in the arc ignition branch circuit is first connected in series with the capacitor group, and then connected to the negative electrode access port of the multi-electrode ignition group.
  • the 2i arc ignition branch includes an inductance coil group and a claw electrode; the positive pole of the claw electrode in the 2i arc ignition branch is connected to the positive access port of the multi-electrode ignition group, and the The negative electrode of the claw electrode is first connected in series with the inductance coil group, and then connected to the negative electrode access port of the multi-electrode ignition group.
  • the arc ignition device includes at least one group of discharge electrode groups, each group of discharge electrode groups includes two discharge electrodes that cooperate with each other, and each group of discharge electrodes is electrically connected to the output end of the high voltage generator.
  • the power supply supplies power to the discharge electrode group by controlling the switch, using the principle of high-voltage discharge to generate an arc, and using the arc to ignite.
  • the arc ignition branch When the claw electrode in any arc ignition branch is not broken down, the arc ignition branch is in an open circuit state. At this time, the voltage at both ends of the claw electrode is the port voltage, and the port voltage is high voltage, but less than the electrode breakdown. Voltage.
  • the claw electrode in the 2i-1 arc ignition branch When the terminal voltage of the claw electrode in the 2i-1 arc ignition branch is greater than the electrode breakdown voltage, the claw electrode in the branch is broken down, and the arc ignition branch is in the conduction state. At this time, the claw electrode The voltage at both ends of the electrode drops to the electrode voltage; among them, the electrode voltage is the voltage determined by the resistance of the electrode arc after the horn electrode is turned on.
  • the voltage across the horn electrode in the 2i-th arc ignition branch is the sum of the electrode voltage of the horn electrode in the 2i-1 arc ignition branch and the voltage of the capacitor group, and the 2i-1 arc is ignited
  • the voltage of the capacitor group in the branch compensates the electrode voltage of the claw electrode, so that when the voltage across the claw electrode in the 2i arc ignition branch is greater than the breakdown voltage of the claw electrode, the 2i arc ignition branch The claw electrode is broken down.
  • the electrode voltage is about 10K to 20K times of the branch current, and the voltage at both ends of the claw electrode drops to the electrode voltage very quickly, and the time point of the sudden drop coincides with the breakdown time point. Therefore, the device proposed by the present invention realizes the simultaneous ignition of multiple electrodes, and the ignition time difference between the electrodes is extremely small.
  • the number of capacitor groups and inductance coil groups is the same, both of which are half of the total number of arc ignition branches, and n times the sum of the capacitance values of all the capacitor groups is less than or equal to the first set value, The sum of the inductance values of all the inductance coil groups is greater than or equal to n times the second set value.
  • the breakdown voltage of the electrode is about 25kV peak-to-peak, and the resistance on the electrode after conduction is about 15k ⁇ .
  • the electrode voltage is at 6kV peak-to-peak. If the voltage is to reach The breakdown voltage of the next electrode requires That is to say, the reactance value of the reactive component is about 60k ⁇ , and at a frequency of 20kHz, the corresponding capacitance value is 80pF, that is, two 160pF are connected in series, and the inductance value is 0.5mH.
  • first set value in this preferred embodiment is preferably 160pF
  • second set value is preferably 0.35mH, which is a non-limiting preferred choice, and those skilled in the art can choose according to the actual application parameters Select preferred values for the first setpoint and the second setpoint.
  • the active power on the 2i-1 arc ignition branch and the active power on the 2i arc ignition branch respectively satisfy the following relationship:
  • P 2i-1 is the active power on the 2i-1 arc ignition branch
  • P 2i is the active power on the 2i arc ignition branch
  • R 2i-1 is the arc characteristic resistance on the 2i-1 arc ignition branch
  • R 2i is the arc characteristic resistance on the 2ith arc ignition branch
  • I 2i-1 is the input current of arc ignition branch 2i-1, which satisfies the following relationship:
  • I 2i is the input current of the 2ith arc ignition branch, which satisfies the following relationship:
  • L is the inductance value of the inductor coil group
  • C is the capacitance value of the capacitor group
  • I s is the output current of the power supply
  • the arc power on each arc ignition branch is equal, and the reactive power emitted by the capacitor group on the 2i-1 arc ignition branch is equal to the reactive power absorbed by the inductance coil group on the 2i arc ignition branch. Therefore, the whole The sum of reactive power in the arc device is 0, which realizes the mutual cancellation of reactive power.
  • the power of the power supply is the sum of the active power output to each arc ignition branch, which effectively improves the efficiency of the power supply and the working efficiency of the entire ignition device. high.
  • the power supply in the device is a DC voltage source; the output voltage and the maximum output current of the DC voltage source are both adjustable, wherein the adjustment range of the output voltage is 0 to 50V, and the adjustment range of the maximum output current is 0 to 50A.
  • the device also includes an inverter; the output end of the DC voltage source is connected to the input end of the inverter device through a switch connecting the high-voltage pack and the power supply, and the output end of the inverter device is connected to the low-voltage side of the high-voltage pack.
  • the inverter device inverts the DC voltage and current output by the DC voltage source into a sinusoidal alternating voltage and current, and the frequency of the sinusoidal alternating voltage and current is the frequency of the power supply itself. In the preferred embodiment, this frequency is 20 kHz.
  • the inverter device also includes a voltage and current feedback control unit; the voltage and current feedback control unit uses the sinusoidal alternating voltage and current to control the DC voltage source to adjust the output DC voltage and current to obtain a constant sinusoidal alternating current.
  • the inverter device is an LC oscillator circuit.
  • LC oscillating circuit as the inverter device in the preferred embodiment of the present invention is a non-restrictive preferred choice, and those skilled in the art can select different inverter devices according to device design requirements and experimental conditions.
  • the high-voltage package includes a horizontal output transformer, and the transformation ratio of the horizontal output transformer is not lower than 500.
  • the capacitor bank includes two series-connected high-voltage polystyrene film capacitors capable of withstanding a voltage level of 50 kV, and the capacitance of each high-voltage polystyrene film capacitor is twice that of the capacitor bank.
  • this preferred embodiment selects the withstand voltage level of the capacitor as 50kV voltage, which is a non-limiting preferred choice , the selection of the withstand voltage level and the number of capacitors connected in series determined according to different withstand voltage levels all fall into the inventive concept of the present invention.
  • the inductance coil group includes five series-connected high-voltage large inductance coils that can withstand a voltage level of 20kV.
  • Each high-voltage high-voltage large inductance coil is made of amorphous ferromagnetic material, and the wires are wrapped with high-voltage tape for more than 5 turns.
  • this preferred embodiment selects the withstand voltage level of the inductor as 20kV voltage, which is a non-limiting preferred choice , the selection of the withstand voltage level and the number of inductors connected in series determined according to different withstand voltage levels all fall into the inventive concept of the present invention.
  • the horn electrode is rod-shaped, made of copper, stainless steel or tungsten alloy, the diameter of the electrode rod ranges from 2mm to 4mm, the inner distance between the bottom of the horn electrode is 0.7cm-1cm, and the distance between the top is 1.2cm-2cm.
  • the single-power multi-electrode arc ignition device in the preferred embodiment of the present invention is shown in FIG. 4 , including a DC voltage power supply 1 , an air switch 2 , an LC oscillation circuit 3 , a high-voltage pack 4 , and a multi-electrode ignition group 5 .
  • the DC voltage source 1 is electrically connected to the input terminal of the LC oscillator circuit 3 through the air switch 2, so that the DC voltage source 1 provides a constant input voltage and current for the LC oscillator circuit 3; the LC oscillator circuit 3 reverses the DC voltage and current input by the DC voltage source 1 It becomes 20kHz AC voltage and current, and outputs it to the low-voltage side of the high-voltage pack 4; the high-voltage pack 4 boosts the alternating voltage transmitted by the LC oscillation circuit 3, and the high-voltage side of the high-voltage pack 4 outputs the boosted alternating voltage To the multi-electrode ignition group 5; the positive access port of the multi-electrode ignition group 5 is connected to the high voltage side of the high voltage pack 4, and the negative access port of the multi-electrode ignition group 5 is grounded.
  • the output voltage and maximum output current of the DC voltage source 1 are adjustable, the output voltage adjustment range is 0 to 50V, and the maximum output current adjustment range is 0 to 50A.
  • the output end of the LC oscillation circuit 3 contains feedback, which can control the output of a constant current.
  • the high-voltage package 4 is a horizontal output transformer, and the transformation ratio is not less than 500, so as to ensure that the voltage output from the high-voltage side of the transformer can smoothly penetrate the claw electrodes in the multi-electrode ignition group 5, so that it can smoothly generate a stable arc.
  • the multi-electrode ignition group includes an even number of horn electrodes, a high-voltage capacitor group and a large inductance coil group, wherein the number of the high-voltage capacitor group and the large inductance coil group is equal.
  • the multi-electrode ignition group includes two arc ignition branches, that is, the multi-electrode ignition group includes two sets of arc electrodes; the two arc ignition branches respectively include A claw electrode 6 and B claw electrode 7, the first high voltage The capacitor group 8 and the first large inductance coil group 9.
  • the anodes of the horn electrode A 6 and the horn electrode B 7 are connected to each other, and are electrically connected to the high voltage side of the high voltage pack 4 .
  • the negative pole of the A horn electrode 6 is electrically connected to one end of the first high-voltage capacitor group 8
  • the negative pole of the B horn electrode 7 is electrically connected to one end of the first large inductance coil set 9 .
  • the other end of the first large inductance coil group 9 is electrically connected to the other end of the first high voltage withstand capacitor group 8 and grounded.
  • the capacitance of the first high-voltage capacitor group 8 should be less than or equal to 160pF, and the inductance of the first large inductance coil group 9 should be greater than or equal to 0.35mH.
  • the first high-voltage capacitor group 8 is composed of two high-voltage polystyrene film capacitors that can withstand a voltage of 50kV in series, and the capacity of each high-voltage polystyrene film capacitor is twice the capacity of the high-voltage capacitor group, thereby realizing voltage division To ensure that the capacitor is not broken down.
  • the first large inductance coil group 9 is composed of five large inductance coils withstanding high voltage in series, the large inductance coil with high voltage resistance is made of amorphous ferromagnetic material, and the wire is wrapped with high voltage tape for more than 5 turns.
  • each arc ignition branch is in an open circuit state.
  • the voltage at both ends of the A horn electrode 6 and the B horn electrode 7 is the port voltage; assuming that the A horn electrode 6 is broken down first, the voltage on the electrode drops suddenly, from the peak-to-peak value of the original port voltage of 30kV to below the peak-to-peak value of 5kV, the first arc ignition branch is in a conductive state, and the current flows through the first arc ignition branch
  • the reactive element that is, the first high-voltage capacitor group 8; the voltage generated at both ends of the reactive element on the first arc ignition branch is about 30kV, thereby compensating the voltage drop caused by the conduction of the horn electrode 6 of A, so that it is not struck
  • the two ends of the worn B horn electrode 7 still maintain a high voltage, and then the B horn electrode 7 is broken down, and the second arc ignition branch is turned on; when the two arc ignition branches are all turned on
  • Fig. 6 is a waveform diagram of the port voltage and current at the moment of ignition of the two electrodes in the preferred embodiment of the present invention. It can be seen from the figure that the voltage at the electrode port has two obvious drops, which means that the two electrodes are respectively turned on. According to the simulation calculation, it is concluded that the ignition time difference between the two electrodes is about 5 ⁇ s, and the simultaneous breakdown of the two electrodes is basically realized.
  • Fig. 7 is a port voltage and current waveform diagram after the ignition of the two electrodes is stable in a preferred embodiment of the present invention. It can be seen from the figure that the output waveform of the current power supply presents a sinusoidal shape, and the port voltage and current phase are similar, basically in the same phase. It can be seen that this The arc generated by the ignition device proposed by the invention is close to pure resistance, that is, the reactive power is close to zero. In addition, the waveforms of current and voltage are stable, so stable output of long-term arc can be realized.
  • the multi-electrode ignition group includes four arc ignition branches, that is, the multi-electrode ignition group includes four sets of arc electrodes; the four arc ignition branches respectively include A claw electrode 6, B claw electrode 7, C claw electrode 10, and D claw electrode
  • the electrode 11 also includes a first large inductance coil group 9 and a second large inductance coil group 12 , a first high voltage capacitor group 8 and a second high voltage capacitor group 13 .
  • the positive poles of the A horn electrode 6 , B horn electrode 7 , C horn electrode 10 , and D horn electrode 11 are connected to each other and electrically connected to one end of the high voltage side of the high voltage pack 4 .
  • the negative pole of A claw electrode 6 is electrically connected with one end of the first high voltage capacitor group 8
  • the negative pole of B claw electrode 7 is electrically connected with one end of the first large inductance coil group 9
  • the negative pole of C claw electrode 10 is connected with the second high voltage capacitor
  • One end of the group 13 is electrically connected
  • the negative pole of the D horn electrode 11 is electrically connected to one end of the second large inductance coil group 12 .
  • the other end of the first large inductive coil group 9, the other end of the first high voltage capacitor group 8, the other end of the second large inductive coil group 12, and the other end of the second high voltage capacitor group 13 are all electrically connected and grounded.
  • first large inductance coil group 9 has the same structure as the second large inductance coil group 12, and the first high-voltage capacitor group 8 and the second high-voltage capacitor group 13 have the same structure.
  • the circuit structure adopted is the same as that of Embodiment 1, but because the number of the high-voltage capacitor group and the large inductance coil group are each two, the double of the capacitance value of the high-voltage capacitor group should be less than or equal to 160pF, that is, the high-voltage
  • the capacitance value of the capacitor group should be less than or equal to 80pF; the inductance value of the large inductance coil group should be greater than or equal to twice of 0.35mH, that is, the inductance value of the large inductance coil group should be greater than 0.7mH.
  • the number of high-voltage capacitor groups and large-inductance coil groups are respectively n, among which, the capacitance of the high-voltage capacitor group should be less than or equal to 160/npF, and the large inductance The inductance of the coil group should be greater than or equal to 0.35nmH.
  • the shape and material of the horn electrodes are all the same, they are all rod-shaped, the material is copper, stainless steel or tungsten alloy, the diameter of the electrode rod is 2mm-4mm, the distance between the bottom of the horn electrodes is 0.7cm-1cm, and the distance between the top is 1.2cm-2cm .
  • a single-power multi-electrode arc ignition method includes:
  • Step 1 Determine the number of arc ignition branches in the multi-electrode ignition group and adjust the output voltage and current of the DC voltage source according to the power data required for the simulated cable combustion experiment.
  • step 1 according to the power data required for the experiment, it is also necessary to adjust the arrangement of the horn electrodes and the size of the horn electrodes.
  • the arrangement of claw electrodes includes: the horizontal distance between each electrode, and the vertical distance between each electrode and the experimental ignition object.
  • the size of the horn electrode includes: electrode diameter, the inner distance between the two poles at the lower end of the electrode, the inner distance between the two poles at the upper end of the electrode, and the vertical height between the upper end of the electrode and the lower end of the electrode. And the final stable combustion end in the process of energizing and arcing.
  • Step 2 using the LC oscillating circuit to invert the constant voltage and current output by the DC voltage source to obtain a 20 kHz sinusoidal alternating voltage and current.
  • Step 3 using the horizontal output transformer to boost the 20kHz sinusoidal alternating voltage and current.
  • Step 4 use the boosted AC voltage current to energize the multi-electrode ignition group to start the arc.
  • the specific implementation process of the multi-electrode arc ignition method is as follows:
  • the present invention realizes the simultaneous ignition of multiple electrodes, and the ignition time difference between the electrodes is extremely small; moreover, the ignited arc can continue to burn, has strong stability, and meets the requirements of the test cable fire resistance test;
  • the invention realizes the average distribution of the power of each electrode, and the power of each electrode is the same after arcing and has stability, thereby ensuring reliable experimental results;
  • inductance groups or capacitor groups are respectively connected in series on two adjacent arc ignition branches.
  • the impedance of the capacitor group and the inductance group By changing the impedance of the capacitor group and the inductance group, the mutual cancellation of reactive power is realized, thereby reducing the reactive power output by the power supply. , which effectively improves the power supply efficiency, and the working efficiency of the whole ignition device is high;
  • the number of arc ignition branches in the present invention can be increased according to the experimental power requirements, and the scalability is strong;
  • the present invention also realizes controllable arc power. By adjusting the output voltage of the DC voltage source, the arc power can be controlled and has flexibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

一种单电源多电极电弧点火装置及方法,点火装置包括直流电压源、空气开关、LC振荡电路、高压包、多电极点火组;多电极点火组包括2n条并联连接在正极接入端口与负极接入端口之间的电弧点火支路;每条电弧点火支路包括无功器件、羊角电极;其中,羊角电极的正极接入多电极点火组的正极接入端口,羊角电极的负极先串联连接无功器件、再接入多电极点火组的负极接入端口。本发明提出的点火装置和方法,仅使用单个电源实现多电极同时产生不会周期性熄灭、持续稳定的电弧来满足实验需求,并且每个电极的功率相同,通过扩展电极实现点火装置功率的提升,从而有效解决电缆燃烧试验中电弧引燃法所需的多电极点火装置缺乏的问题。

Description

一种单电源多电极电弧点火装置及方法 技术领域
本发明涉及交流电弧试验装置技术领域,更具体地,涉及一种单电源多电极电弧点火装置及方法。
背景技术
随着电力工业的发展,电缆在发电、输电、变电、配电、用电的每一个环节都发挥着至关重要的作用,是社会生产和人民生活的重要基础设施之一。然而,电缆在发挥其正常工作效益的同时,也会因线路故障导致出现过载、短路、漏电等问题,甚至引起火灾。近年来,因电缆火灾造成的大面积停电事故频发,造成了严重的不良社会影响。据我国消防部门统计发现,近年来电气火灾约占我国全部火灾的30%;在2006~2015年较大火灾、重大火灾、特别重大火灾的电气火灾直接原因分布中,由于电气线路故障引起的火灾占比高达72%,一般城市火灾中亦有2/3以上是由电线电缆燃烧引起的,并且由故障电弧引起的电缆火灾在所有电缆火灾中占相当大的比重。
模拟电缆燃烧是预测电缆火灾危险性的基础,也是评估电缆燃烧特性最直接有效的手段,能够更有效的预防电缆火灾的发生。对电缆燃烧火源模拟的传统方法主要为外部明火引燃,包括燃气喷灯法、辐射加热法、电加热法以及燃油点火法。然而,采用这些外部明火引燃方法进行的火灾模拟或电缆燃烧试验,与由故障电弧引燃方法截然不同,难以满足对电缆故障电弧火灾行为的深入定量分析。
现有技术中,相对于外部明火引燃法,电弧引燃法产生的电弧火源能够较真实的模拟电缆故障电弧造成的电缆火灾。而且,电弧温度很高,中心部分维持温度可达5000℃以上,并且,电弧功率能够通过电源精确可控,只要有电源就可一直使用,因此可持续使用性好;电弧发生装置仅需要金属电极,可移动性也好;同时,燃烧过程不会引入其它化学杂质,方便定量进行燃烧特性的测试和分析,从而对了解故障电弧下的电缆火灾行为具有重要的指导意义。
与故障电弧产生机理相似,电弧引燃法中的电弧产生原理为在两金属电极间施加高电压,两电极最近处的空气首先被击穿,形成大量的正负等离子体,即产生电弧放电。在电弧空气对流加上电磁场力的驱使下,使电弧向上升直到顶端。随着电弧被拉长,电弧通过的电阻加大、对空气的散热也增强,当电流送给电弧的能量等于弧道向周围空气散出的热量时,电弧就会维持稳定。
但是,电弧通常较细小,直径为mm量级,因此导致火源十分集中、面积很小,这会使得电缆以及电缆周围环境散热迅速,难以点燃电缆。针对电弧火源集中、面积小的问题,可使用多个电弧发生装置或者设计多点电弧发生器,从而产生较大面积的电弧。
国内外现有的多电极点火装置研究,主要集中在火花加工方面。“一种基于电容耦合的多路电火花加工方法”(Chen HR,Liu ZD,Huang SJ,Pan HJ,Qiu MB(2015)Study of the mechanism of multi-channel discharge in semiconductor processing by WEDM.Mater Sci Semicond Process 32:125–130), 该研究的实验装置原理图如图1所示,图中包含脉冲电源V、间隙电容C j2、隔离电容C j1、反馈电容C f以及补偿电容C 0,其中,j=1,2,…,m。其中,间隙电容C j2作为切割刀具电极与工件间隙的等效电路元件,并假设各间隙电容相等;隔离电容C j1用于消除并联放电回路之间的互相影响,并设置相同的值;反馈电容C f可以均匀地改变并联放电电路的放电能量,使所有间隙电容可以用相同的电容电荷进行充电,。在放电回路产生放电时,补偿电容C 0可以对隔离电容进行充电,缩短放电回路平衡回复时间,此外,补偿电容C 0还可以增加放电电流,提电火花的去除率。与反馈电容以及隔离电容相比,间隙电容非常小,因此当某间隙发生放电时,其他间隙间电压依旧可以维持在很高的值,形成多个并联放电回路,实现单个脉冲发生器在每个放电周期的放电次数的增加。
在多电弧放电的研究中,中国发明专利(200510090547.6)“多电弧焊接系统”,如图2所示,包括电源正输出端32、电源负输出端34、中心抽头82、磁芯120、第一接线端32a、第二接线端32b、第一线圈部分112、第二线圈部分110、第一电弧A1、第二电弧A2、第一电极10、第二电极12、第一电感器402、第二电感器410、第一续流二极管404、第二续流二极管412。单个电源的正输出端连接扼流线圈100,扼流线圈100的中心抽头82处分出两个接线端形成两个支路,每条支路上串联电极与电感器,然后与续流二极管并联。用这种方法,当一个电极与工件击穿时,另一支路上电弧保留一段时间,保留时间与电感器的感值决定。
上述文献与中国发明专利(200510090547.6)都能够使用单个电源实现多电极点火。文献采用脉冲电源实现火花点火,将电容作为储能元件,某个电极击穿后其余电击能量由电容提供,通过改变电容大小可增加点火电极数量,可扩展性较高。但该装置电极击穿频率受电源脉冲周期以及电容大小限制,且其能量的释放时间极短,无法做到持续的释放热量,稳定性差,不能够作为电缆燃烧试验的点火源使用。
中国发明专利(200510090547.6)通过连接扼流线圈中心抽头的方式形成两个回路,每条支路上串有电感元件,通过电感延长电弧持续时间,实现多电弧点火。此方法受扼流线圈中心抽头的结构影响,并不能进一步增加点火电极数量,可扩展性差。并且该方案电路中串联的电感元件,增加了电源输出功率中的无功部分,降低了电源的输出效率。而且该方案尽管能够产生电弧,但电弧依旧是周期性的产生与熄灭,不能稳定燃烧,亦不符合电弧引燃电缆实验的需要。
发明内容
为解决现有技术中存在的不足,本发明的目的在于,提供一种单电源多电极电弧点火装置及方法,仅使用单个电源实现多电极同时产生不会周期性熄灭、持续稳定的电弧来满足实验需求,并且每个电极的有功功率相同,全部电极的无功功率为0,提高了电源输出效率,通过扩展电极实现点火装置功 率的提升,从而有效解决电缆燃烧试验中电弧引燃法所需的多电极点火装置缺乏的问题。
本发明采用如下的技术方案。
一种单电源多电极电弧点火装置,包括电源、高压包、连接高压包与电源的开关和多电极点火组,其中,多电极点火组的正极接入端口与高压包的高压侧电连接,多电极点火组的负极接入端口接地。
多电极点火组包括2n条并联连接在正极接入端口与负极接入端口之间的电弧点火支路。
其中,第2i-1条电弧点火支路包括电容组、羊角电极;第2i-1条电弧点火支路中的羊角电极的正极接入多电极点火组的正极接入端口,第2i-1条电弧点火支路中的羊角电极的负极先串联连接电容组、再接入多电极点火组的负极接入端口。
其中,第2i条电弧点火支路包括电感线圈组、羊角电极;第2i条电弧点火支路中的羊角电极的正极接入多电极点火组的正极接入端口,第2i条电弧点火支路中的羊角电极的负极先串联连接电感线圈组、再接入多电极点火组的负极接入端口。
并且,第2i-1条电弧点火支路上的电容组和第2i条电弧点火支路上的电感线圈组的阻抗模值相同;其中,i=1,2,…,n,n为多电极点火组中电弧点火支路总数量的一半。
任一条电弧点火支路中的羊角电极在未击穿时,该条电弧点火支路为开路状态,此时羊角电极的两端电压小于电极击穿电压。
当第2i-1条电弧点火支路中的羊角电极的端口电压大于电极击穿电压时,该支路中的羊角电极被击穿,该条电弧点火支路为导通状态,此时羊角电极的两端电压降至电极电压;其中,电极电压是羊角电极导通后受电极电弧阻性决定的电压。此时,第2i条电弧点火支路中的羊角电极的两端电压为第2i-1条电弧点火支路中的羊角电极的电极电压与电容组电压之和,并且第2i-1条电弧点火支路中的电容组电压对羊角电极的电极电压进行补偿,使得第2i条电弧点火支路中的羊角电极的两端电压大于该羊角电极的击穿电压时,第2i条电弧点火支路中的羊角电极被击穿。
在多电极点火组中,电容组和电感线圈组的数量相同,均为电弧点火支路总数量的一半,并且全部所述电容组的容值之和的n倍小于等于第一设定值,全部所述电感线圈组的感值之和大于等于第二设定值的n倍。
当全部电弧点火支路均为导通状态时,第2i-1条电弧点火支路上的有功功率和第2i条电弧点火支路上的有功功率,分别满足如下关系式:
P 2i-1=R 2i-1×I 2i-1 2
P 2i=R 2i×I 2i 2
式中,
P 2i-1为第2i-1条电弧点火支路上的有功功率;
P 2i为第2i条电弧点火支路上的有功功率;
R 2i-1为第2i-1条电弧点火支路上的电弧特性电阻;
R 2i为第2i条电弧点火支路上的电弧特性电阻;
I 2i-1为第2i-1条电弧点火支路的输入电流,满足如下关系式:
Figure PCTCN2022093818-appb-000001
I 2i为第2i条电弧点火支路的输入电流,满足如下关系式:
Figure PCTCN2022093818-appb-000002
两个输入电流的关系式中,L为电感线圈组感值,C为电容组容值,并且当
Figure PCTCN2022093818-appb-000003
时,电感线圈组的感抗与电容组的容抗幅值相等,在各羊角电极材质和尺寸一致的情况下,各条电弧点火支路上的电弧特性电阻相等,即R 2i-1=R 2i,从而各条电弧点火支路上的输入电流幅值均相等,且满足如下关系式:
Figure PCTCN2022093818-appb-000004
式中,
I s为电源输出电流;
各条电弧点火支路上的有功功率相等,且第2i-1条电弧点火支路上的电容组发出的无功功率与第2i条电弧点火支路上电感线圈组吸收的无功功率相等,即电源的功率为输出到各电弧点火支路上的有功功率之和。
优选地,装置中的电源为直流电压源;直流电压源的输出电压与最大输出电流均可调;其中,输出电压的调节范围为0至50V,最大输出电流的调节范围为0至50A。
优选地,装置还包括逆变装置;直流电压源的输出端通过所述连接高压包与电源的开关与逆变装置的输入端连接,逆变装置的输出端与高压包的低压侧连接。
进一步,逆变装置将直流电压源输出的直流电压电流逆变为正弦交变电压电流,该正弦交变电压电流的频率为电源自带频率。
进一步,逆变装置还包括电压电流反馈控制单元;电压电流反馈控制单元,利用正弦交变的电压电流对控制直流电压源对其输出的直流电压电流进行调节,以获得恒定的正弦交变电流。
进一步,逆变装置是LC振荡电路。
优选地,高压包,包括行输出变压器,行输出变压器的变比不低于500。
优选地,电容组包括两个串联连接的可耐受50kV电压等级的高压聚苯乙烯薄膜电容,每个高压聚苯乙烯薄膜电容的容值均为电容组容值的两倍。
优选地,电感线圈组包括五个串联连接的可耐受20kV电压等级的高压大电感线圈,每个耐高压大电感线圈均采用非晶铁磁材料、且导线用高压胶带缠绕大于5圈。
优选地,羊角电极为棒状,材质为铜、不锈钢或钨合金,电极棒直径范围为2mm-4mm,羊角电极底部内间距范围为0.7cm-1cm,顶部间距为1.2cm-2cm。
一种单电源多电极电弧点火方法包括:
步骤1,根据模拟电缆燃烧实验所需的功率数据,确定多电极点火组中电弧点火支路数量,调节直流电压源输出电压和电流;
步骤2,利用LC振荡电路对直流电压源输出的恒定的电压电流进行逆变,以获得正弦交变的电压电流;
步骤3,利用行输出变压器对正弦交变的电压电流进行升压;
步骤4,利用升压后的交流电压电流向多电极点火组通电起弧。
优选地,步骤1中,根据实验所需的功率数据,还需要调整羊角电极排布、羊角电极尺寸。
羊角电极排布包括:各电极之间的水平距离,各电极与实验引燃物体之间的垂直距离。
羊角电极尺寸包括:电极直径,电极下端的两极内距、电极上端的两极内距,以及电极上端与电极下端的垂直高度;其中,电极下端是通电起弧过程中的初始放电端,电极上端是及通电起弧过程中的最终稳定燃烧端。
本发明的有益效果在于,与现有技术相比,在奇数条的电弧点火支路上串联电容组、偶数条的电弧点火支路上串联电感线圈组,利用电容组和电感线圈组延长电弧持续时间实现多电弧点火的同时,通过谐振使得全部电弧点火支路上的总无功功率为零,从而提高电源输出效率。
本发明的有益效果还在于:
1、本发明实现了多电极同时点火,各电极之间的点火时差极小;并且,所点燃的电弧能够持续燃烧,稳定性强,符合测试电缆耐火性能试验要求;
2、本发明实现了各电极功率的平均分配,各电极起弧后功率相同并且具备稳定性,从而确保实验结果可靠;
3、本发明中相邻两条电弧点火支路上分别串入电感组或电容组,通过改变电容组与电感组的阻抗大小,实现了无功功率的相互抵消,从而降低电源输出的无功功率,有效提高了电源效率,整个点火装置的工作效率高;
4、本发明中的电弧点火支路的数量可根据实验功率要求进行增加,可扩展性强;
5、本发明还实现了电弧功率可控,通过调节直流电压源输出电压大小,可控制电弧功率,具有灵活性。
附图说明
图1为背景技术中“一种基于电容耦合的多路电火花加工方法”的实验装置原理图;
图2为背景技术中中国发明专利(200510090547.6)“多电弧焊接系统”的实验装置原理图;
图3为本发明的单电源多电极电弧点火装置的结构示意图;
其中附图标记说明如下:
10-电源;20-开关;30-高压包;40-多电极点火组;50-正极接入端口;60-负极接入端口;
图4为本发明一实施例中单电源多电极电弧点火装置的结构示意图;
图5为本发明一实施例中单电源多电极电弧点火装置的两电极点火示意图;
图6为本发明一实施例中单电源多电极电弧点火装置的两电极点火瞬间的电压电流波形图;
图7为本发明一实施例中单电源多电极电弧点火装置的两电极点火稳态的电压电流波形图;
图8为本发明一实施例中单电源多电极电弧点火装置的四电极点火示意图;
图9为本发明的单电源多电极电弧点火方法的流程示意图。
具体实施方式
下面结合附图对本申请作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本申请的保护范围。
如图3,一种单电源多电极电弧点火装置,包括电源10、高压包30、连接高压包30与电源10的开关20和多电极点火组40,单电源多电极电弧点火装置的核心部件是多电极点火组40;多电极点火组40的正极接入端口50与高压包30的高压侧电连接,多电极点火组40的负极接入端口60接地。
多电极点火组包括2n条并联连接在正极接入端口与负极接入端口之间的电弧点火支路,其中n为自然数。本优选实施例中,电弧点火支路分别优选为2和4,值得注意的是,所属领域技术人员可以根据实验条件和功率要求选择电弧点火支路的数量,且电弧点火支路的数量必须为偶数,本优选实施例中的选择是一种非限制性的较优选择。
其中,第2i-1条电弧点火支路包括电容组、羊角电极;第2i-1条电弧点火支路中的羊角电极的正极接入多电极点火组的正极接入端口,第2i-1条电弧点火支路中的羊角电极的负极先串联连接电容组、再接入多电极点火组的负极接入端口。
其中,第2i条电弧点火支路包括电感线圈组、羊角电极;第2i条电弧点火支路中的羊角电极的正极接入多电极点火组的正极接入端口,第2i条电弧点火支路中的羊角电极的负极先串联连接电感线圈组、再接入多电极点火组的负极接入端口。
本优选实施例中,电弧点火装置包括有至少一组放电电极组,每组放电电极组均包括有相互放电配合的两只放电电极,每组放电电极均电连接于高压发生装置的输出端,通过控制开关使得电源向放电电极组供电,利用高压放电的原理产生电弧,利用电弧点火。
并且,第2i-1条电弧点火支路上的电容组和第2i条电弧点火支路上的电感线圈组的阻抗模值相同;其中,i=1,2,…,n,n为多电极点火组中电弧点火支路总数量的一半。
任一条电弧点火支路中的羊角电极在未击穿时,该条电弧点火支路为开路状态,此时羊角电极的两端电压为端口电压,该端口电压为高电压,但是小于电极击穿电压。
当第2i-1条电弧点火支路中的羊角电极的端口电压大于电极击穿电压时,该支路中的羊角电极被击穿,该条电弧点火支路为导通状态,此时羊角电极的两端电压降至电极电压;其中,电极电压是羊角电极导通后受电极电弧阻性决定的电压。此时,第2i条电弧点火支路中的羊角电极的两端电压为第2i-1条电弧点火支路中的羊角电极的电极电压与电容组电压之和,并且第2i-1条电弧点火支路中的电容组电压对羊角电极的电极电压进行补偿,使得第2i条电弧点火支路中的羊角电极的两端电压大于该羊角电极的击穿电压时,第2i条电弧点火支路中的羊角电极被击穿。
本优选实施例中,通过实验获得电极电压大约是支路电流的10K至20K倍,并且羊角电极两端电压降至电极电压的过程非常迅速,骤降的时间点与击穿时间点重合。因此,本发明提出的装置实现了多电极同时点火,各电极之间的点火时差极小。
在多电极点火组中,电容组和电感线圈组的数量相同,均为电弧点火支路总数量的一半,并且全部所述电容组的容值之和的n倍小于等于第一设定值,全部所述电感线圈组的感值之和大于等于第二设定值的n倍。
本优选实施例中,电极的击穿电压在峰峰值25kV左右,而导通后电极上的电阻约为15kΩ,当流入电流峰峰值为0.4A时,电极电压在6kV峰峰值,电压要想达到下一个电极的击穿电压需要
Figure PCTCN2022093818-appb-000005
Figure PCTCN2022093818-appb-000006
也就是说无功元件电抗值约为60kΩ,在20kHz的频率下,对应电容值为80pF,即两个160pF串联,对于电感值为0.5mH。值得注意的是,本优选实施例中的第一设定值优选为160pF,第二设定值优选为0.35mH,是一种非限制性的较优选择,所属领域技术人员可根据实际应用参数选择第一设定值和第二设定值的优选数值。
当全部电弧点火支路均为导通状态时,第2i-1条电弧点火支路上的有功功率和第2i条电弧点火支路上的有功功率,分别满足如下关系式:
P 2i-1=R 2i-1×I 2i-1 2
P 2i=R 2i×I 2i 2
式中,
P 2i-1为第2i-1条电弧点火支路上的有功功率,
P 2i为第2i条电弧点火支路上的有功功率,
R 2i-1为第2i-1条电弧点火支路上的电弧特性电阻,
R 2i为第2i条电弧点火支路上的电弧特性电阻,
I 2i-1为第2i-1条电弧点火支路的输入电流,满足如下关系式:
Figure PCTCN2022093818-appb-000007
I 2i为第2i条电弧点火支路的输入电流,满足如下关系式:
Figure PCTCN2022093818-appb-000008
两个输入电流的关系式中,L为电感线圈组感值,C为电容组容值,并且当
Figure PCTCN2022093818-appb-000009
时,电感线圈组的感抗与电容组的容抗幅值相等,由于电弧特性电阻取决于羊角电机材质和尺寸,因此各条电弧点火支路上的电弧特性电阻均近似相等,即R 2i-1=R 2i,从而各条电弧点火支路上的输入电流幅值均相等,且满足如下关系式:
Figure PCTCN2022093818-appb-000010
式中,
I s为电源输出电流;
各条电弧点火支路上的电弧功率相等,且第2i-1条电弧点火支路上的电容组发出的无功功率与第2i条电弧点火支路上电感线圈组吸收的无功功率相等,因此,整个电弧装置中的无功功率之和为0,实现了无功功率的相互抵消,电源的功率为输出到各电弧点火支路上的有功功率之和,有效提高了电源效率,整个点火装置的工作效率高。
具体地,装置中的电源为直流电压源;直流电压源的输出电压与最大输出电流均可调,其中,输出电压的调节范围为0至50V,最大输出电流的调节范围为0至50A。
具体地,装置还包括逆变装置;直流电压源的输出端通过连接高压包与电源的开关与逆变装置的输入端连接,逆变装置的输出端与高压包的低压侧连接。
逆变装置将直流电压源输出的直流电压电流逆变为正弦交变电压电流,该正弦交变电压电流的频率为电源自带频率。本优选实施例中,该频率为20kHz。
逆变装置还包括电压电流反馈控制单元;电压电流反馈控制单元,利用正弦交变的电压电流对控 制直流电压源对其输出的直流电压电流进行调节,以获得恒定的正弦交变电流。
具体地,逆变装置是LC振荡电路。
值得注意的是,本发明优选实施例中采用LC振荡电路作为逆变装置是一种非限制性的较优选择,所属领域技术人员可以根据装置设计需要以及实验条件选择不同的逆变装置。
具体地,高压包包括行输出变压器,行输出变压器的变比不低于500。
具体地,电容组包括两个串联连接的可耐受50kV电压等级的高压聚苯乙烯薄膜电容,每个高压聚苯乙烯薄膜电容的容值均为电容组的容值的两倍。
值得注意的是,为避免击穿现象耐压较低时可能会把无功元件打坏,本优选实施例选择电容的可耐受电压等级为50kV电压,是一种非限制性的较优选择,对于耐受电压等级的选择以及根据不同耐受电压水平而决定的电容串联数量,均落入本发明的发明构思中。
具体地,电感线圈组包括五个串联连接的可耐受20kV电压等级的高压大电感线圈,每个耐高压大电感线圈均采用非晶铁磁材料、且导线用高压胶带缠绕5圈以上。
值得注意的是,为避免击穿现象耐压较低时可能会把无功元件打坏,本优选实施例选择电感的可耐受电压等级为20kV电压,是一种非限制性的较优选择,对于耐受电压等级的选择以及根据不同耐受电压水平而决定的电感串联数量,均落入本发明的发明构思中。
具体地,羊角电极为棒状,材质为铜、不锈钢或钨合金,电极棒直径范围为2mm-4mm,羊角电极底部内间距范围为0.7cm-1cm,顶部间距为1.2cm-2cm。
实施例1。
本发明优选实施例中的单电源多电极电弧点火装置如图4所示,包括直流电压电源1、空气开关2、LC振荡电路3、高压包4、多电极点火组5。
直流电压源1通过空气开关2与LC振荡电路3输入端电连接,使得直流电压源1为LC振荡电路3提供恒定的输入电压电流;LC振荡电路3将直流电压源1输入的直流电压电流逆变为20kHz交流的电压电流,并输出给高压包4的低压侧;高压包4对LC振荡电路3传输的交变电压进行升压,高压包4的高压侧将升压后的交变电压输出给多电极点火组5;多电极点火组5的正极接入端口连接高压包4的高压侧,多电极点火组5的负极接入端口接地。
直流电压源1输出电压与最大输出电流可调,输出电压调节范围为0至50V,最大输出电流调节范围为0至50A。
LC振荡电路3输出端含有反馈,可控制输出恒定电流。
其中,高压包4为行输出变压器,且变比不低于500,以保证变压器高压侧输出的电压能顺利击穿多电极点火组5中的羊角电极,使其顺利产生稳定电弧。
多电极点火组包括偶数个羊角电极以及耐高压电容组与大电感线圈组,其中高压电容组与大电感线圈组数量相等。
如图5所示,多电极点火组包括两条电弧点火支路,即多电极点火组包括两组电弧电极;两条电弧点火支路分别包括A羊角电极6与B羊角电极7,第一高压电容组8与第一大电感线圈组9。
其中,A羊角电极6与B羊角电极7的正极相互连接,并且与高压包4的高压侧电连接。
进一步,A羊角电极6的负极与第一高压电容组8的一端电连接,B羊角电极7的负极与第一大电感线圈组9的一端电连接。
进一步,第一大电感线圈组9的另一端与第一耐高压电容组8的另一端电连接并且接地。
进一步,第一高压电容组8的容值应小于等于160pF,第一大电感线圈组9的感值应大于等于0.35mH。
进一步,第一高压电容组8为两个可耐受50kV电压的高压聚苯乙烯薄膜电容串联组成,每个高压聚苯乙烯薄膜电容容值为高压电容组容值的两倍,从而实现分压以保证电容不被击穿。
进一步,第一大电感线圈组9由五个耐受高压的大电感线圈串联组成,耐高压大电感线圈采用非晶铁磁材料,且导线用高压胶带缠绕5圈以上。
当A羊角电极6和B羊角电极7均未击穿时,各电弧点火支路均为开路状态,此时A羊角电极6和B羊角电极7的两端电压均为端口电压;假设A羊角电极6先被击穿,该电极上电压骤降,由原来端口电压的峰-峰值30kV下降到峰-峰值5kV以下,第一电弧点火支路呈导通状态,电流流过第一电弧点火支路上的无功元件,即第一高压电容组8;第一电弧点火支路上的无功元件两端产生电压,约为30kV,从而补偿了A羊角电极6导通引起的压降,使得未被击穿的B羊角电极7两端依旧保持高压,随后B羊角电极7被击穿,第二电弧点火支路导通;当两电弧点火支路均导通后,第一高压电容组8与第一大电感线圈组9产生谐振,实现发出和吸收的无功功率相互抵消,因此电源只输出有用功率,从而提高了电源效率,也提升了点火装置的工作效率。
图6为本发明优选实施例中两电极点火瞬间端口电压电流波形图,从图中可以看到,电极端口电压出现两次明显的下降,代表了两个电极分别导通。根据仿真计算,得出两电极点火时间差在5μs左右,基本实现了两电极的同时击穿。
图7为本发明优选实施例中两电极点火稳定后的端口电压电流波形图,从图中可以看到,电流电源输出波形呈现正弦状,端口电压与电流相位近似,基本为同相位,可见本发明提出的点火装置产生电弧接近于纯阻性,即无功功率趋近于零。并且,电流和电压的波形均稳定,因此可以实现长时间电弧的稳定输出。
实施例2。
如图8,多电极点火组包括四条电弧点火支路,即多电极点火组包括四组电弧电极;四条电弧点火支路分别包括A羊角电极6、B羊角电极7、C羊角电极10、D羊角电极11,还包括第一大电感线圈组9与第二大电感线圈组12,第一高压电容组8与第二高压电容组13。
其中,A羊角电极6、B羊角电极7、C羊角电极10、D羊角电极11的正极相互连接并且与高压包4的高压侧一端电连接。
进一步,A羊角电极6的负极与第一高压电容组8的一端电连接,B羊角电极7的负极与第一大电感线圈组9的一端电连接,C羊角电极10的负极与第二高压电容组13的一端电连接,D羊角电极11的负极与第二大电感线圈组12的一端电连接。
进一步,第一大电感线圈组9的另一端、第一高压电容组8的另一端、第二大电感线圈组12的另一端、第二高压电容组13的另一端均电连接并且接地。
进一步,第一大电感线圈组9与第二大电感线圈12组结构相同,第一高压电容组8与第二高压电容组13结构相同。
在本优选实施例中,采用的电路结构与实施例1相同,但是因为高压电容组与大电感线圈组的数量各为两个,因此高压电容组容值的两倍应小于等于160pF,即高压电容组容值应小于等于80pF;大电感线圈组感值应大于等于0.35mH的两倍,即大电感线圈组感值应大于0.7mH。
以此类推,若点火装置中包含的电弧电极数为2n的话,则高压电容组与大电感线圈组的数量分别为n个,其中,高压电容组的容值应小于等于160/npF,大电感线圈组的感值应大于等于0.35nmH。
进一步,羊角电极形状材质都相同,均为棒状,材质为铜、不锈钢或钨合金,电极棒直径范围为2mm-4mm,羊角电极底部内间距范围为0.7cm-1cm,顶部间距为1.2cm-2cm。
如图9,一种单电源多电极电弧点火方法包括:
步骤1,根据模拟电缆燃烧实验所需的功率数据,确定多电极点火组中电弧点火支路数量,调节直流电压源输出电压和电流。
进一步,步骤1中,根据实验所需的功率数据,还需要调整羊角电极排布、羊角电极尺寸。
羊角电极排布包括:各电极之间的水平距离,各电极与实验引燃物体之间的垂直距离。
羊角电极尺寸包括:电极直径,电极下端的两极内距、电极上端的两极内距,以及电极上端与电极下端的垂直高度;其中,电极下端是通电起弧过程中的初始放电端,电极上端是及通电起弧过程中的最终稳定燃烧端。
步骤2,利用LC振荡电路对直流电压源输出的恒定的电压电流进行逆变,以获得20kHz正弦交变的电压电流。
步骤3,利用行输出变压器对20kHz正弦交变的电压电流进行升压。
步骤4,利用升压后的交流电压电流向多电极点火组通电起弧。
本优选实施例中,多电极电弧点火方式的具体实施过程如下:
(1)首先按实验尺寸布置多电极点火组;
(2)然后打开直流电压源开关根据实验需要设置电源输出电压;
(3)当等待2s至5s保证直流电压源输出稳定后,打开空气开关使直流电压源与LC振荡电路连接,多电极点火组成功通电起弧;
(4)单次实验完成后,关闭空气开关,调整直流电压源输出电压以改变电弧功率、改变多电极点火组排布或者是羊角电极尺寸,再次打开空气开关进行下一次实验;
(5)最后实验结束后先关闭空气开关再关闭直流电压源,待实验设备冷却且检查现场无火灾隐患后撤离实验平台。
本发明的有益效果在于,与现有技术相比:
1、本发明实现了多电极同时点火,各电极之间的点火时差极小;并且,所点燃的电弧能够持续燃烧,稳定性强,符合测试电缆耐火性能试验要求;
2、本发明实现了各电极功率的平均分配,各电极起弧后功率相同并且具备稳定性,从而确保实验结果可靠;
3、本发明中相邻两条电弧点火支路上分别串入电感组或电容组,通过改变电容组与电感组的阻抗大小,实现了无功功率的相互抵消,从而降低电源输出的无功功率,有效提高了电源效率,整个点火装置的工作效率高;
4、本发明中的电弧点火支路的数量可根据实验功率要求进行增加,可扩展性强;
5、本发明还实现了电弧功率可控,通过调节直流电压源输出电压大小,可控制电弧功率,具有灵活性。
本发明申请人结合说明书附图对本发明的实施示例做了详细的说明与描述,但是本领域技术人员应该理解,以上实施示例仅为本发明的优选实施方案,详尽的说明只是为了帮助读者更好地理解本发明精神,而并非对本发明保护范围的限制,相反,任何基于本发明的发明精神所作的任何改进或修饰都应当落在本发明的保护范围之内。

Claims (15)

  1. 一种单电源多电极电弧点火装置,所述装置包括电源、高压包、连接高压包与电源的开关和多电极点火组,其中,所述多电极点火组的正极接入端口与高压包的高压侧电连接,多电极点火组的负极接入端口接地;其特征在于,
    所述多电极点火组包括2n条并联连接在正极接入端口与负极接入端口之间的电弧点火支路;
    其中,第2i-1条所述电弧点火支路包括电容组、羊角电极;第2i-1条电弧点火支路中的羊角电极的正极接入多电极点火组的正极接入端口,第2i-1条电弧点火支路中的羊角电极的负极先串联连接电容组、再接入多电极点火组的负极接入端口;
    其中,第2i条所述电弧点火支路包括电感线圈组、羊角电极;第2i条电弧点火支路中的羊角电极的正极接入多电极点火组的正极接入端口,第2i条电弧点火支路中的羊角电极的负极先串联连接电感线圈组、再接入多电极点火组的负极接入端口;
    并且,第2i-1条电弧点火支路上的电容组和第2i条电弧点火支路上的电感线圈组的阻抗模值相同;其中,i=1,2,…,n,n为多电极点火组中电弧点火支路总数量的一半。
  2. 根据权利要求1所述的单电源多电极电弧点火装置,其特征在于,
    任一条所述电弧点火支路中的羊角电极在未击穿时,该条电弧点火支路为开路状态,此时羊角电极的两端电压小于电极击穿电压。
  3. 根据权利要求1或2所述的单电源多电极电弧点火装置,其特征在于,
    当所述第2i-1条电弧点火支路中的羊角电极的两端电压大于电极击穿电压时,该支路中的羊角电极被击穿,该条电弧点火支路为导通状态,此时羊角电极的两端电压降至电极电压;其中,电极电压是羊角电极导通后受电极电弧阻性决定的电压;
    此时,第2i条电弧点火支路中的羊角电极的两端电压为第2i-1条电弧点火支路中的羊角电极的电极电压与电容组电压之和,并且第2i-1条电弧点火支路中的电容组电压对羊角电极的电极电压进行补偿,使得第2i条电弧点火支路中的羊角电极的两端电压大于该羊角电极的击穿电压时,第2i条电弧点火支路中的羊角电极被击穿。
  4. 根据权利要求1所述的单电源多电极电弧点火装置,其特征在于,
    在多电极点火组中,所述电容组和所述电感线圈组的数量相同,均为电弧点火支路总数量的一半,并且全部所述电容组的容值之和的n倍小于等于第一设定值,全部所述电感线圈组的感值之和大于等于第二设定值的n倍。
  5. 根据权利要求1所述的单电源多电极电弧点火装置,其特征在于,
    当全部电弧点火支路均为导通状态时,第2i-1条电弧点火支路上的有功功率和第2i条电弧点火支路上的有功功率,分别满足如下关系式:
    P 2i-1=R 2i-1×I 2i-1 2
    P 2i=R 2i×I 2i 2
    式中,
    P 2i-1为第2i-1条电弧点火支路上的有功功率,
    P 2i为第2i条电弧点火支路上的有功功率,
    R 2i-1为第2i-1条电弧点火支路上的电弧特性电阻,
    R 2i为第2i条电弧点火支路上的电弧特性电阻,
    I 2i-1为第2i-1条电弧点火支路的输入电流,满足如下关系式:
    Figure PCTCN2022093818-appb-100001
    I 2i为第2i条电弧点火支路的输入电流,满足如下关系式:
    Figure PCTCN2022093818-appb-100002
    两个输入电流的关系式中,L为电感线圈组感值,C为电容组容值,并且当
    Figure PCTCN2022093818-appb-100003
    时,电感线圈组的感抗与电容组的容抗幅值相等,在各羊角电极材质和尺寸一致的情况下,各条电弧点火支路上的电弧特性电阻相等,即R 2i-1=R 2i,从而各条电弧点火支路上的输入电流幅值均相等,且满足如下关系式:
    Figure PCTCN2022093818-appb-100004
    式中,
    I s为电源输出电流;
    各条电弧点火支路上的有功功率相等,且第2i-1条电弧点火支路上的电容组发出的无功功率与第2i条电弧点火支路上电感线圈组吸收的无功功率相等,即电源的功率为输出到各电弧点火支路上的有功功率之和。
  6. 根据权利要求1所述的单电源多电极电弧点火装置,其特征在于,
    所述装置中的电源为直流电压源;所述直流电压源的输出电压与最大输出电流均可调;其中,输出电压的调节范围为0至50V,最大输出电流的调节范围为0至50A。
  7. 根据权利要求6所述的单电源多电极电弧点火装置,其特征在于,
    所述装置还包括逆变装置;所述直流电压源的输出端通过所述连接高压包与电源的开关与所述逆变装置的输入端连接,所述逆变装置的输出端与所述高压包的低压侧连接;
    所述逆变装置将直流电压源输出的直流电压电流逆变为正弦交变电压电流,该正弦交变电压电流的频率为电源自带频率。
  8. 根据权利要求7所述的单电源多电极电弧点火装置,其特征在于,
    所述逆变装置还包括电压电流反馈控制单元;所述电压电流反馈控制单元,利用所述正弦交变的电压电流对控制直流电压源对其输出的直流电压电流进行调节,以获得恒定的正弦交变电流。
  9. 根据权利要求8所述的单电源多电极电弧点火装置,其特征在于,
    所述逆变装置是LC振荡电路。
  10. 根据权利要求1所述的单电源多电极电弧点火装置,其特征在于,
    所述高压包,包括行输出变压器,所述行输出变压器的变比不低于500。
  11. 根据权利要求4所述的单电源多电极电弧点火装置,其特征在于,
    所述电容组包括两个串联连接的可耐受50kV电压等级的高压聚苯乙烯薄膜电容,每个高压聚苯乙烯薄膜电容的容值均为电容组容值的两倍。
  12. 根据权利要求4所述的单电源多电极电弧点火装置,其特征在于,
    所述电感线圈组包括五个串联连接的可耐受20kV电压等级的高压大电感线圈,每个耐高压大电感线圈均采用非晶铁磁材料、且导线用高压胶带缠绕大于5圈。
  13. 根据权利要求3所述的单电源多电极电弧点火装置,其特征在于,
    所述羊角电极为棒状,材质为铜、不锈钢或钨合金,电极棒直径范围为2mm-4mm,羊角电极底部内间距范围为0.7cm-1cm,顶部间距为1.2cm-2cm。
  14. 利用权利要求1至13任一项所述的单电源多电极电弧点火装置而实现的一种单电源多电极电弧点火方法,其特征在于,
    所述方法包括:
    步骤1,根据模拟电缆燃烧实验所需的功率数据,确定多电极点火组中电弧点火支路数量,调节直流电压源输出电压和电流;
    步骤2,利用LC振荡电路对直流电压源输出的恒定的电压电流进行逆变,以获得正弦交变的电压电流;
    步骤3,利用行输出变压器对正弦交变的电压电流进行升压;
    步骤4,利用升压后的交流电压电流向多电极点火组通电起弧。
  15. 根据权利要求14所述的单电源多电极电弧点火方法,其特征在于,
    步骤1中,根据实验所需的功率数据,还需要调整羊角电极排布、羊角电极尺寸;
    所述羊角电极排布包括:各电极之间的水平距离,各电极与实验引燃物体之间的垂直距离;
    所述羊角电极尺寸包括:电极直径,电极下端的两极内距、电极上端的两极内距,以及电极上端与电极下端的垂直高度;其中,电极下端是通电起弧过程中的初始放电端,电极上端是及通电起弧过程中的最终稳定燃烧端。
PCT/CN2022/093818 2021-06-30 2022-05-19 一种单电源多电极电弧点火装置及方法 WO2023273680A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022000188.7T DE112022000188T5 (de) 2021-06-30 2022-05-19 Eine Lichtbogenzündvorrichtung mit einer einzigen Stromversorgung und mehreren Elektroden und ein Zündverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110730876.1 2021-06-30
CN202110730876.1A CN113251437B (zh) 2021-06-30 2021-06-30 一种单电源多电极电弧点火装置及方法

Publications (1)

Publication Number Publication Date
WO2023273680A1 true WO2023273680A1 (zh) 2023-01-05

Family

ID=77190172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093818 WO2023273680A1 (zh) 2021-06-30 2022-05-19 一种单电源多电极电弧点火装置及方法

Country Status (3)

Country Link
CN (1) CN113251437B (zh)
DE (1) DE112022000188T5 (zh)
WO (1) WO2023273680A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113251437B (zh) * 2021-06-30 2021-09-07 国网江苏省电力有限公司电力科学研究院 一种单电源多电极电弧点火装置及方法
CN113727483B (zh) * 2021-09-02 2022-12-20 合肥爱普利等离子体有限责任公司 一种多电极交流电弧放电装置、设备及交流电源
CN115264526B (zh) * 2022-06-17 2024-03-26 东南大学 一种远程密闭空间的无源点火装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103121A (ja) * 1991-03-26 1995-04-18 Ryoda Sato エンジンの点火装置
CN2400595Y (zh) * 1999-06-02 2000-10-11 冯惠祥 多火花点火器
CN105201657A (zh) * 2015-09-06 2015-12-30 北京大学 一种低温等离子体点火电源及点火系统
CN208728212U (zh) * 2018-07-02 2019-04-12 北京金都源泉科技发展有限公司 一种分布式多电极真空电弧处理装置
CN109802662A (zh) * 2018-12-21 2019-05-24 中国人民解放军空军工程大学 一种实现半导体表面多路放电的系统和方法
CN110500222A (zh) * 2019-09-20 2019-11-26 韦伟平 一种稀薄燃烧发动机的高频谐振点火电路及其工作、控制方法
CN111863566A (zh) * 2020-06-11 2020-10-30 北京交通大学 一种多电极真空弧离子源
CN113251437A (zh) * 2021-06-30 2021-08-13 国网江苏省电力有限公司电力科学研究院 一种单电源多电极电弧点火装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289868B1 (en) * 2000-02-11 2001-09-18 Michael E. Jayne Plasma ignition for direct injected internal combustion engines
CN105275710B (zh) * 2014-07-11 2018-05-18 明·郑 点火装置和点火系统
CN207729648U (zh) * 2017-12-11 2018-08-14 瑞安市百盛电子有限公司 单双火两用点火枪
CN111706877B (zh) * 2020-05-29 2022-07-15 中国人民解放军空军工程大学 滑动弧等离子体激励式凹腔火焰稳定器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103121A (ja) * 1991-03-26 1995-04-18 Ryoda Sato エンジンの点火装置
CN2400595Y (zh) * 1999-06-02 2000-10-11 冯惠祥 多火花点火器
CN105201657A (zh) * 2015-09-06 2015-12-30 北京大学 一种低温等离子体点火电源及点火系统
CN208728212U (zh) * 2018-07-02 2019-04-12 北京金都源泉科技发展有限公司 一种分布式多电极真空电弧处理装置
CN109802662A (zh) * 2018-12-21 2019-05-24 中国人民解放军空军工程大学 一种实现半导体表面多路放电的系统和方法
CN110500222A (zh) * 2019-09-20 2019-11-26 韦伟平 一种稀薄燃烧发动机的高频谐振点火电路及其工作、控制方法
CN111863566A (zh) * 2020-06-11 2020-10-30 北京交通大学 一种多电极真空弧离子源
CN113251437A (zh) * 2021-06-30 2021-08-13 国网江苏省电力有限公司电力科学研究院 一种单电源多电极电弧点火装置及方法

Also Published As

Publication number Publication date
CN113251437A (zh) 2021-08-13
DE112022000188T5 (de) 2023-09-14
CN113251437B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2023273680A1 (zh) 一种单电源多电极电弧点火装置及方法
US6924608B2 (en) System and method for ignition and reignition of unstable electrical discharges
WO2007056190A3 (en) Method and apparatus of providing power to ignite and sustain a plasma in a reactive gas generator
CN102435800A (zh) 一种高压脉冲发生器
CN109959030A (zh) 一种低电压等离子灶原理和喷火头
JP4727111B2 (ja) アーク炉の再点弧を促進する方法および装置
CN207340267U (zh) 用于等离子体点火设备的引弧装置
CN105057822A (zh) 高压脉冲除毛刺装置
CN102126067A (zh) Tig焊及等离子切割机的引弧装置
US6687284B1 (en) Method and apparatus to facilitate restriking in an arc-furnace
CN201234398Y (zh) 一种不间断交流等离子电弧供电装置
CN101636034A (zh) 一种交流不间断电弧供电装置及方法
CN210958194U (zh) 一种用于直流电弧炉、矿热炉的大功率二极管整流电路
CN207430529U (zh) 静电除尘脉冲电源
CN102026456B (zh) 一种电子镇流器及一种供电装置
CN109382211B (zh) 静电除尘脉冲电源
CN102933017B (zh) 内置火花塞式交流等离子体发生器
CN208083631U (zh) 一种智能调节焊接电流的装置
CN104942403A (zh) 市电同步50hz高压脉冲引弧装置
CN111697870A (zh) 一种低电压、低功率和低电磁干扰的脉冲-交流组合式纳秒脉冲放电产生装置和产生方法
CN204929372U (zh) 用于等离子体点火装置引弧的高频高压脉冲电路
CN217307939U (zh) 一种三阳极等离子炬引弧电源装置
CN214338188U (zh) 一种用于两电极等离子体炬的起弧电路
CN208752166U (zh) 一种火花放电局部放电模拟装置
CA2391385C (en) Method and apparatus to facilitate restriking in an arc-furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831505

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022000188

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831505

Country of ref document: EP

Kind code of ref document: A1