WO2023273324A1 - 步态事件驱动的分时相、多模态足部康复系统及使用方法 - Google Patents

步态事件驱动的分时相、多模态足部康复系统及使用方法 Download PDF

Info

Publication number
WO2023273324A1
WO2023273324A1 PCT/CN2022/073495 CN2022073495W WO2023273324A1 WO 2023273324 A1 WO2023273324 A1 WO 2023273324A1 CN 2022073495 W CN2022073495 W CN 2022073495W WO 2023273324 A1 WO2023273324 A1 WO 2023273324A1
Authority
WO
WIPO (PCT)
Prior art keywords
foot
module
pressure sensor
electrical stimulation
rehabilitation system
Prior art date
Application number
PCT/CN2022/073495
Other languages
English (en)
French (fr)
Inventor
胡晓翎
叶富强
李伟明
荣威
王帼婷
张芷晴
彭民杰
卫汉华
Original Assignee
香港理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港理工大学 filed Critical 香港理工大学
Priority to EP22831158.5A priority Critical patent/EP4364710A1/en
Publication of WO2023273324A1 publication Critical patent/WO2023273324A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0266Foot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/375Electroencephalography [EEG] using biofeedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • A61B5/1038Measuring plantar pressure during gait
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • A61B5/6807Footwear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6829Foot or ankle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7455Details of notification to user or communication with user or patient ; user input means characterised by tactile indication, e.g. vibration or electrical stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0255Both knee and hip of a patient, e.g. in supine or sitting position, the feet being moved together in a plane substantially parallel to the body-symmetrical plane
    • A61H1/0262Walking movement; Appliances for aiding disabled persons to walk
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36031Control systems using physiological parameters for adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/14Special force transmission means, i.e. between the driving means and the interface with the user
    • A61H2201/1409Hydraulic or pneumatic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/164Feet or leg, e.g. pedal
    • A61H2201/1642Holding means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5071Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/10Leg
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/12Feet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/08Other bio-electrical signals
    • A61H2230/085Other bio-electrical signals used as a control parameter for the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/62Posture
    • A61H2230/625Posture used as a control parameter for the apparatus

Definitions

  • the present invention relates to the field of auxiliary medical rehabilitation training equipment, in particular to gait event-driven, in different gait time phases, respectively composed of neuromuscular electrical stimulation, pneumatic musculoskeletal complex and sensory biofeedback in different combinations (i.e. multiple Modal) provides a foot dynamic assisted rehabilitation system to correct the problems of foot drop, foot inversion and muscle compensation for users with lower limb motor function impairments (such as stroke and spinal cord injury).
  • auxiliary medical rehabilitation training equipment in particular to gait event-driven, in different gait time phases, respectively composed of neuromuscular electrical stimulation, pneumatic musculoskeletal complex and sensory biofeedback in different combinations (i.e. multiple Modal) provides a foot dynamic assisted rehabilitation system to correct the problems of foot drop, foot inversion and muscle compensation for users with lower limb motor function impairments (such as stroke and spinal cord injury).
  • Traditional assistive medical devices such as the ankle-foot orthosis shown in Figure 1
  • Traditional assistive medical devices employ passive and fixed-joint-angle orthoses that provide constant mechanical support and immobilization to prevent foot drop and inversion, but such orthoses do not help
  • the user exercises the target muscles of the ankle joint on the affected side. Excessive use may cause muscle atrophy and affect the stability of the ankle joint.
  • the existing robots for lower limb rehabilitation provide a single mechanical external force assistance during the gait process, leading the affected limb to complete the specified gait (such as a specific trajectory). During this process, even if the joint movement produced by the user's own muscles is inconsistent with the gait set by the robot, it will be forcibly led by the robot's motor, resulting in involuntary passive movement.
  • the auxiliary method of this type of robot cannot guide the user how to use the target muscle to correctly exert force and complete the corresponding action during the exercise, and cannot give feedback signals in time during the exercise to make the user realize the error and correct it, resulting in the user’s Muscle compensatory problems in dynamic gait cannot be corrected, nor can the normal gait be effectively reshaped (i.e., the user can return to normal walking without the assistance of the system).
  • the musculoskeletal complex which combines pneumatic muscles (which work by filling air cells with pressurized air) with an exoskeleton (an externally rigid skeletal structure that protects a creature's soft internal organs), is lighter and more flexible than traditional rigid exoskeletons , suitable for unilateral wear on the lower limb of the affected side, and can provide sufficient mechanical assistance.
  • Neuromuscular electrical stimulation can correct foot drop in the swing phase of gait by inducing calf muscle contraction through transcutaneous stimulation; meanwhile, multichannel neuromuscular electrical stimulation can correct muscle group compensation.
  • the current single neuromuscular electrical stimulation technology cannot be used to correct the pronation problem in the stance phase of gait.
  • the sensor perceives the force balance of the plantar horizontal plane at the beginning of the gait stand phase or the gait step phase, and provides immediate sensory feedback to the user, such as vibration, sound, light or temperature prompts, etc.
  • the user can independently correct the force distribution of the plantar Reach the desired balance range to correct pronation.
  • a single plantar sensory balance feedback cannot solve the problems of foot drop and muscle compensation in the complete gait at the same time.
  • the present invention integrates multi-channel neuromuscular electrical stimulation, pneumatic musculoskeletal complex and plantar sensory biological Feedback is integrated and used for mutual coordination in each gait phase.
  • the realized rehabilitation system can be used to correct the problems of foot drop and inversion at the same time, and can provide real-time feedback signals to realize the user's self-correction. It can also improve the coordination ability of the lower limb muscles and improve muscle compensation and atrophy.
  • the existing foot and ankle rehabilitation system does not have the ability to correct foot drop and foot inversion in real time while walking, and to improve muscle compensation and muscle atrophy.
  • existing various foot and ankle rehabilitation systems have the following problems:
  • Lower limb rehabilitation robot The design of the foot and ankle is too simple, and it is supported and driven by a single mechanical moment in different gait phases. Generally, a motor with one degree of freedom rotates to realize the foot on the sagittal plane. Dorsiflexion and plantarflexion. Foot drop and foot varus cannot be corrected at the same time.
  • Neuromuscular electrical stimulator At present, a single neuromuscular electrical stimulation technology cannot be used to correct the pronation problem in the stance phase of gait.
  • the present invention provides a time-limited, multi-modal foot control and feedback rehabilitation system driven by gait events.
  • the light weight of the system of the present invention is favorable for unilateral use (such as for hemiplegic users), and does not affect bilateral balance; and compared with traditional lower limb rehabilitation robots, the system is cheaper and has better rehabilitation effects.
  • a gait event-driven time-sharing, multimodal foot rehabilitation system comprising:
  • a pressure sensor module the pressure sensor module is connected to the sole of the user's foot, and measures the pressure distribution values of different regions of the sole of the foot in real time;
  • a micro-control module that receives measured pressure values, compares the measured pressure values with preset thresholds to identify different gait events in dynamic gait and pressure balance on the medial and lateral sides of the plantar, and controls the nerves in real time
  • the muscle electrical stimulation module, the pneumatic musculoskeletal complex module, and/or the vibration biofeedback module perform corresponding operations;
  • a neuromuscular electrical stimulation module configured to apply or stop suprathreshold electrical stimulation to target muscles of the foot based on gait events identified by the micro-control module;
  • a pneumatic musculoskeletal complex module comprising a musculoskeletal complex for providing mechanical support to the foot and configured to, based on gait events identified by the microcontroller module, The pneumatic muscles of the complex deflate or inflate to immobilize the ankle during the stance phase of the gait cycle or to relax the ankle during the swing phase;
  • a vibration biofeedback module configured to provide biofeedback to correct force balance on the bottom of the user's foot when the micro-control module identifies an imbalance in pressure on the inside and outside of the bottom of the foot
  • the gait events include heel strike, heel off the ground and sole of the foot off the ground.
  • the pressure sensor module may include a first pressure sensor placed at the first metatarsal head of the sole of the foot, a second pressure sensor placed at the fifth metatarsal head of the sole of the foot, and a third pressure sensor placed at the heel.
  • the microcontroller module can recognize gait events for real-time control by:
  • E is the gait event recognized in real time
  • FSR 1 (t), FSR 5 (t), and FSR heel (t) are the real-time pressure data measured by the first pressure sensor, the second pressure sensor, and the third pressure sensor, respectively
  • T 1 , T 5 , and T heel are preset thresholds of the first pressure sensor, the second pressure sensor, and the third pressure sensor, respectively.
  • the micro-control module can identify the gait event as heel off the ground, control the deflation of the pneumatic muscles and stop the mechanical support, and at the same time control the neuromuscular electrical stimulation module to Target muscles are suprathreshold electrically stimulated.
  • the micro-control module can identify the gait event as the sole of the ground, control the inflation of the pneumatic muscles, and control the neuromuscular electrical
  • the stimulation module implements suprathreshold electrical stimulation to the target muscle.
  • the vibration biofeedback module can provide biofeedback to correct the force balance on the bottom of the user's foot.
  • the micro-control module can identify the gait event as a heel touch, control the neuromuscular electrical stimulation module to stop the suprathreshold electrical stimulation of the target muscle, and control the vibration biological
  • the feedback module stops biofeedback.
  • the neuromuscular electrical stimulation module may include a stimulation generator and an electrode array, and the electrode array may be connected to the stimulation generator through wires, so as to implement suprathreshold electrical stimulation to target muscles.
  • the electrode array may be a dual-channel stimulating electrode array connected to target muscles, wherein the target muscles are tibialis anterior muscle and gastrocnemius muscle.
  • the rehabilitation system may also include a myoelectric signal amplifier, which may be configured to feed back the myoelectric signals collected by the electrode array to the micro control module for calculating muscle dynamic coordination.
  • a myoelectric signal amplifier which may be configured to feed back the myoelectric signals collected by the electrode array to the micro control module for calculating muscle dynamic coordination.
  • the suprathreshold electrical stimulation of the neuromuscular electrical stimulation module can be as follows:
  • ES 1 and ES 2 are the suprathreshold electrical stimulation implemented on the tibialis anterior muscle and gastrocnemius respectively, E is the gait event recognized in real time, 1 indicates that the suprathreshold electrical stimulation is implemented, and 0 indicates that the suprathreshold electrical stimulation is stopped.
  • the suprathreshold electrical stimulation can be a symmetrical square wave electrical stimulation with an amplitude of 70V, a frequency of 40Hz, and a bandwidth of 50us.
  • the pneumatic musculoskeletal complex module may also include an electric air pump, an electric air valve, and an air pressure sensor.
  • the pneumatic musculoskeletal complex module may be further configured to determine inflation or deflation of the pneumatic muscle based on a comparison of the air pressure value in the pneumatic muscle measured by the air pressure sensor with a preset pressure threshold.
  • the musculoskeletal complex may also include an exoskeleton that acts as a container for all electronics, control circuit boards, and batteries.
  • Exoskeletons can be 3D printed from polylactide material.
  • the exoskeleton can be connected to the pneumatic muscles via exoskeleton extensions.
  • the vibrating biofeedback module may include a vibrating motor located between the first toe and the second toe on the sole of the foot.
  • the vibration motor can be controlled as follows:
  • Z represents the control of the vibration motor
  • FSR 1max and FSR 5max are respectively the first pressure sensor at the first metatarsal head during the timing period after the heel off the ground and the maximum value of the second pressure sensor at the fifth metatarsal head
  • b% is the preset balance threshold
  • E is the gait event recognized in real time.
  • the rehabilitation system may also include a fastening integration module for securing the rehabilitation system to the foot.
  • the fastening integration module may include connectors for connecting and securing the exoskeleton and position fixtures for securing and cushioning the position of the pneumatic muscles.
  • the fastening integrated module can adopt breathable and elastic textile materials.
  • the pneumatic muscles are polyvinyl chloride films.
  • a method for using the time-sharing, multi-modal foot rehabilitation system driven by the aforementioned gait events is provided.
  • Figure 1 shows a picture of a conventional ankle foot orthosis in the prior art.
  • Fig. 2 shows a structural block diagram of the control components of the rehabilitation system of the present invention.
  • Fig. 3 shows a schematic diagram of a mechanical assembly structure of a pneumatic musculoskeletal complex module and a neuromuscular electrical stimulation module according to an embodiment of the present invention.
  • Fig. 4 shows a schematic structural diagram of a pneumatic musculoskeletal complex module wrapped in a fastening integration module according to an embodiment of the present invention.
  • Fig. 5 shows a structural diagram of the distribution of the pressure sensor module and the vibration biofeedback module on the sole of the foot according to an embodiment of the present invention.
  • the present invention provides a gait event-driven time-sharing, multi-modal foot control and feedback rehabilitation system and method of use thereof, which simultaneously uses multi-channel neuromuscular electrical stimulation, pneumatic musculoskeletal complex and sensory biofeedback , used for lower limb gait training, can correct the problem of foot drop and foot pronation at the same time.
  • Fig. 2 shows a structural block diagram of the rehabilitation system of the present invention.
  • the rehabilitation system of the present invention includes but is not limited to: 1) pressure sensor module 110; 2) neuromuscular electrical stimulation module 100; 3) pneumatic musculoskeletal complex module 200; 4) vibration biofeedback module 109 5) micro control module 111; 6) fastening integration module 102; and 7) myoelectric signal amplifier 112.
  • the neuromuscular electrical stimulation module 100 includes: a stimulation generator 104 and an electrode array 103.
  • the pneumatic musculoskeletal complex module 200 includes: an electric air pump 106 , an electric air valve 107 , a musculoskeletal complex 105 and an air pressure sensor 108 .
  • the vibrating biofeedback module 109 includes a vibrating motor 402 .
  • the pressure sensor module 110 is used to measure the pressure value of the foot during different gait events in the dynamic gait in real time.
  • the micro-control module 111 receives the pressure value measured by the pressure sensor module 110, and recognizes different gait events in the dynamic gait and the pressure balance on the inside and outside of the plantar, so as to drive the corresponding functional modules to provide neuromuscular electrical stimulation and mechanical assistance respectively.
  • vibration biofeedback wherein the functional modules include a neuromuscular electrical stimulation module 100 , a pneumatic musculoskeletal complex module 200 , and a vibration biofeedback module 109 .
  • the pressure sensor module 110 may include a plurality of pressure sensors.
  • three pressure sensors may be provided, wherein the first pressure sensor is placed at the first metatarsal head of the foot, the second pressure sensor is placed at the fifth metatarsal head of the foot, and the third A pressure sensor is placed at the heel.
  • each pressure sensor can be placed on the corresponding sole of the foot by means of adhesion.
  • FIGS. 3-5 are schematic diagrams showing the structure of the system for the ankle joint of the present invention, so as to simultaneously correct the problems of foot drop and foot inversion of the lower limbs, and improve muscle compensation.
  • the rehabilitation system of the invention will be further described below in conjunction with FIGS. 3-5 .
  • FIG. 3 shows a schematic diagram of the mechanical assembly structure of the pneumatic musculoskeletal complex module and the neuromuscular electrical stimulation module according to an embodiment of the present invention
  • Fig. 4 shows a pneumatic musculoskeletal complex according to an embodiment of the present invention body wrapped in the fastening integrated module
  • FIG. 5 shows a schematic structural diagram of the distribution of the pressure sensor and the vibration biofeedback module on the sole of the foot according to an embodiment of the present invention.
  • the electrode array 103 is connected (for example, can be adhered to by adhesive stimulation electrodes) on the skin surface of the tibialis anterior muscle and gastrocnemius muscle on the affected side of the user's foot (percutaneous stimulation), and is passed through The wires are connected to the stimulation generator 104, and then through the micro-control module 111, electrical stimulation is applied to the target muscles of the foot to help the user correct foot drop and foot pronation problems caused by muscle disorders.
  • electrical stimulation can be applied to the target muscles, and can also be used to collect corresponding muscle electrical signals, and the collected myoelectric signals are fed back to the micro-control module 111 through the myoelectric signal amplifier 112, so as to be used to calculate muscle Dynamic coordination.
  • the electrode array 103 may include, for example, two electrodes.
  • the battery 202 powers the entire rehabilitation system, which can be a rechargeable battery or a disposable battery.
  • the wireless transmission chip 201 is configured to realize wireless information interaction between the micro control module 111 and the smart device.
  • the pneumatic musculoskeletal complex includes artificial muscles 305 and exoskeleton 301 fixed on both sides of the ankle joint, wherein the exoskeleton 301 can be used as a container in which all electronic devices, control circuit boards and batteries can be built (i.e. control box).
  • the artificial muscle can be electric field driven artificial muscle, gas driven artificial muscle (pneumatic muscle), heat driven artificial muscle, solvent absorption driven artificial muscle, electrochemical driven artificial muscle, etc.
  • a pneumatic muscle 305 is selected as the artificial muscle of the present invention.
  • the pneumatic muscle 305 can be an airbag that can be inflated by pressurized air, and it can be made of a thin film material, such as polyvinyl chloride film or other materials with small deformation when inflated.
  • the pneumatic muscle 305 is controlled by the micro control module 111, and is connected with the electric air pump 106, the electric air valve 107 and the air pressure sensor 108 through the air conduit, so as to realize the inflation, maintenance and deflation of the air muscle.
  • the exoskeleton 301 has a curved shape, which can be 3D printed, for example, from polylactide material. Exoskeleton 301 may be connected to pneumatic muscles 305 via exoskeleton extensions 303 .
  • the micro-control module 111 triggers the pneumatic muscle 305 to inflate and maintain the filling state under the air pressure, the pneumatic muscle 305 and the exoskeleton 301 together provide mechanical support for the ankle joint as a musculoskeletal complex to stabilize the mechanical structure of the ankle joint and prevent inversion .
  • the pneumatic muscle 305 becomes soft, allowing the ankle joint to complete plantarflexion with a high degree of freedom without external assistance, so as to exercise the muscle strength of the ankle joint and prevent muscle atrophy.
  • the fastening integration module 102 for fixing the rehabilitation system to the user's foot can adopt, for example, breathable elastic textile material, so that the pneumatic musculoskeletal complex and wires are integrated therein.
  • the fastening integration module 102 may include a connecting piece 304, which is used to connect and fix the control box composed of the exoskeleton 301 on both sides of the ankle joint, so as to facilitate the wearing of the system and enhance the wearing comfort.
  • the connecting member 304 may be, for example, an elastic Velcro tape with certain elasticity.
  • the fastening integration module 102 may further include a position fixer 302 for fixing and cushioning the position of the pneumatic muscle 305 when the pneumatic muscle 305 is inflated and deflated.
  • the position fixing member 302 can be made of, for example, breathable textile material, which has a certain degree of elasticity, so as to facilitate position fixation and cushioning.
  • the position fixture 302 can wrap the wires between the pressure sensor module 110 of the sole and the vibration biofeedback module 109 and the control box.
  • three (for example, thin-film) pressure sensors 401 are connected with micro control module 111 by circuit wire, wherein, the first pressure sensor is placed at the first metatarsal head place, and the second pressure sensor is placed at the fifth metatarsal head , the third pressure sensor is placed at the heel.
  • the signal of the pressure sensor is used to identify gait events in real time and calculate the balance of the plantar, so as to control the coordination of each functional module of the system in different phases.
  • the vibration motor 402 is placed between the first toe and the second toe, and is connected with the micro control module 111 through a circuit wire. During the gait process, the vibration motor 402 provides the necessary vibration biofeedback to prompt the user to actively adjust the plantar force balance to correct the pronation problem.
  • the system recognizes gait events in the following ways to achieve real-time control:
  • E represents the gait event recognized in real time.
  • FSR 1 (t), FSR 5 (t), and FSR heel (t) are respectively the real-time pressure data of the first pressure sensor at the first metatarsal head place, the real-time pressure data of the second pressure sensor at the fifth metatarsal head place, and Real-time pressure data from the third pressure sensor at the heel.
  • T 1 , T 5 , and T heel are the threshold strengths of the first pressure sensor, the second pressure sensor, and the third pressure sensor respectively.
  • the threshold strength can be set according to needs, for example, it is preset as the maximum value of each pressure sensor in the dynamic gait process. A certain percentage, such as 40%.
  • the heel of the affected side steps on the ground, and the pneumatic muscle 305 in the pneumatic musculoskeletal complex module 200 is in an inflated state to provide mechanical support for it.
  • step phase begins).
  • the micro-control module 111 triggers the pneumatic muscle 305 in the pneumatic musculoskeletal complex module 200 to enter the deflated state, stops the mechanical support, and implements suprathreshold electrical stimulation to the target muscle (such as gastrocnemius) through the neuromuscular electrical stimulation module 100 to achieve Ankle plantarflexion.
  • the system After timing a fixed time value, such as 2 seconds, the system stops releasing electrical stimulation to the target muscle (such as the gastrocnemius) through the micro-control module 111; at the same time, the system uses the plantar pressure of the ankle plantar flexion to determine whether to order vibration biofeedback Module 109 provides vibratory biofeedback to correct plantar effort balance.
  • a fixed time value such as 2 seconds
  • the system recognizes it as a "foot off the ground” event (in the middle of the step phase), and triggers the pneumatic musculoskeletal complex module through the micro-control module 111
  • the pneumatic muscle 305 in 200 starts to inflate, and at the same time releases suprathreshold electrical stimulation to the target muscle (such as the tibialis anterior muscle) to achieve ankle dorsiflexion (to correct foot drop).
  • the vibration biofeedback module 109 will also give necessary vibration biofeedback to remind the user 101 to improve the foot balance in the subsequent standing phase.
  • the system recognizes it as a "heel touches the ground” event (starting of the stance phase), and controls the micro-control module 111 to make the neuromuscular electrical stimulation module 100 stop stimulating the target muscles. (such as the tibialis anterior muscle) releases the electrical stimulation, and the vibration biofeedback module 109 stops the vibration biofeedback, at this time the air pressure value in the pneumatic muscle 305 reaches the maximum.
  • the recognition returns to the "heel off the ground” event (the step phase starts), and the gait enters a cycle process.
  • the neuromuscular electrical stimulation module 100 includes an electrode array 103 and a stimulation generator 104.
  • the electrode array 103 is a dual-channel stimulation electrode array.
  • the dual-channel stimulating electrode array is attached to the antagonistic muscle pairs (such as tibialis anterior and gastrocnemius) of controlled joint activities (such as ankle dorsiflexion and plantarflexion) to perform alternating, time-sharing transcutaneous electrical stimulation to induce target Effective contraction of muscles in the relevant phases used to guide the coordination of muscles involved in dorsiflexion and plantarflexion of the ankle during gait.
  • Neuromuscular electrical stimulation is controlled in the following ways:
  • ES 1 and ES 2 represent the suprathreshold neuromuscular electrical stimulation on the target muscles (tibialis anterior muscle and gastrocnemius muscle), and the stimulation intensity is preset to a fixed value in advance according to the user's situation, such as amplitude 70V, frequency 40Hz , Symmetrical square wave electrical stimulation with a bandwidth of 50us.
  • the stimulating electrode array can also obtain myoelectric signals from the skin surface through the stimulating electrodes, and feed back to the micro control module 111 after being amplified by the electromyographic signal amplifier.
  • the pneumatic musculoskeletal complex module 200 includes, but is not limited to: the musculoskeletal complex 105 that combines the pneumatic muscle 305 with the exoskeleton 301, an electric air valve 107, an electric air pump 106, and an air pressure sensor 108, and its controlled manner is as follows :
  • P and V represent the control of the electric air pump 106 and the electric air valve 107 respectively
  • Ap and Tp are the air pressure value and the preset pressure threshold in the pneumatic muscle 305 respectively
  • the preset pressure threshold is set according to the user's personalization.
  • the system stops the electric air pump 106 to inflate and closes the electric air valve 107 to maintain the air pressure in the pneumatic muscle 305 near the preset threshold to prevent damage to the pneumatic muscle 305 caused by excessive inflation.
  • the system stops the electric air pump 106 to inflate and opens the electric air valve 107, triggering the deflation of the pneumatic muscle 305, so as to realize free movement of the ankle joint during kicking off.
  • the exoskeleton 301 and its extension 303 in the musculoskeletal complex 105 adopt an arc-shaped design to fit the user's calf, and together with the pneumatic muscles, provide mechanical support for the joint to help it fix the angle and prevent soft tissue damage caused by inversion of the foot.
  • the vibration biofeedback module 109 can be a vibration motor 402 located between the first toe and the second toe of the foot, which is based on the real-time pressure data FSR of the first pressure sensor at the first metatarsal head 1 and the real-time pressure data of the second pressure sensor at the fifth metatarsal head FSR 5 operates and is controlled in the following manner:
  • Z represents the control to the vibration motor 402
  • FSR 1max and FSR 5max are respectively the maximum value of the first pressure sensor at the first metatarsal head place and the second pressure sensor at the fifth metatarsal head place during timing after heel-off
  • the micro-control module 111 accepts the real-time signals of the sequential pressure sensor module 110 and the air pressure sensor 108 to identify gait events, and sends instructions to control the neuromuscular electrical stimulation module 100, the pneumatic musculoskeletal complex module 200 and the vibration biofeedback module in real time 109 operations.
  • the micro-control module 111 receives the myoelectric signals measured by the stimulating electrode array 103, and after normalization and calculation, obtains real-time automatic evaluation parameters, transmits them to smart devices in the form of wireless data exchange, and records and evaluates the training
  • the parameters are uploaded to the cloud server for archiving, management and analysis by medical staff.
  • Automated evaluation parameters include, but are not limited to: muscle activation level and antagonistic muscle pair synergy index; smart devices include, but are not limited to: smart phones, smart tablets, and laptops.
  • a multi-modal (fusion of multiple assistive technologies), time-sharing real-time control method is used to simultaneously correct foot drop, foot inversion, and improve muscle compensation and atrophy to reshape normal gait.
  • This lower limb exercise rehabilitation system is not only used for unilateral hemiplegia users to correct foot drop and foot inversion problems at the same time as in the embodiment, but also can be used for bilateral paraplegia users after online pairing, such as spinal cord injury users, to provide them with bilateral lower limb exercise Rehabilitation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Rehabilitation Therapy (AREA)
  • Pain & Pain Management (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Epidemiology (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Nursing (AREA)
  • Vascular Medicine (AREA)
  • Rehabilitation Tools (AREA)

Abstract

一种步态事件驱动的分时相、多模态足部康复系统及使用方法,系统包括:压力传感器模块(110),实时测量足底部的压力分布值;微控制模块(111),将测量的压力值与预设的阈值比较以识别动态步态中的不同步态事件和足底部内外侧的压力平衡,并实时控制相应的操作;神经肌肉电刺激模块(100),基于识别的步态事件,对足部的目标肌肉实施或停止阈上电刺激;气动式肌骨联合体模块(200),包括气动肌肉(305)并基于识别的步态事件,对气动肌肉(305)放气或充气;和振动生物反馈模块(109),当识别的足底部内外侧的压力不平衡时,提供生物反馈以纠正足底部的用力平衡,步态事件包括脚跟触地、脚跟离地和脚掌离地。可纠正足下垂、足内翻,并改善肌肉代偿和萎缩,重塑正常步态。

Description

步态事件驱动的分时相、多模态足部康复系统及使用方法 技术领域
本发明涉及辅助医疗康复训练设备领域,尤其涉及步态事件驱动的、在不同步态时相中,分别由神经肌肉电刺激、气动式肌骨联合体和感知生物反馈以不同组合形式(即多模态)提供足部动态辅助的康复系统,以纠正下肢运动功能损伤用户(如卒中、脊髓损伤)足下垂、足内翻和肌肉代偿的问题。
背景技术
对于下肢运动功能损伤用户,尤其是中风导致的偏瘫用户,其行走步态存在诸多残障,如双侧失衡,足下垂(无法提起前脚掌),足内翻(足部向内侧翻转),这大大增加用户摔倒的风险,以及后期复原的可能。同时由于步态长期失调而导致异化的肌肉代偿性运动,使患侧下肢的肌群难以得到有效的协调性康复训练。
传统的辅助医疗设备(例如参见图1的踝足矫形器)采用被动式及具有固定关节角度的矫形器,提供恒常机械支撑和固定作用以防止足下垂和足内翻,但此类矫形器无法帮助用户锻炼患侧踝关节的目标肌肉,过度使用反而存在肌肉萎缩的风险并影响踝关节的稳定性。
另外,现有的用于下肢康复的机器人在步态过程中提供单一的机械外力辅助,主导患侧肢体完成指定步态(如特定的轨迹)。在此过程中,即使用户自身肌肉发力产生的关节运动与机器人设定步态不一致,也会被机器人的马达强行带领,产生非自主性的被动运动。此类机器人的辅助方法无法在运动过程中指导用户如何使用目标肌肉正确发力并完成相应的动 作,也无法在运动过程中及时给予反馈信号,让用户意识到错误并予以纠正,从而导致用户在动态步态中的肌肉代偿性问题无法得到纠正,也无法有效重塑正常步态(即在没有系统辅助的情况下,用户可恢复正常行走)。
在现有的用于下肢康复的机器人的机械及控制设计中,还没有在动态行走过程中,同时纠正由肌肉萎缩及肌肉代偿运动引起的足下垂和足内翻问题,或给予纠错反馈的可穿戴康复系统。传统的用于下肢康复的硬质外骨骼机器人中,对于踝关节设计过于简单,都是在不同的步态时相中给予单一的机械力矩支撑和带动,一般由一个自由度的马达转动来实现在矢状面上的足部背屈(踝关节屈曲,足尖上移接近脚胫的动作)与跖屈(踝关节伸展,足尖伸直下压移离脚胫的动作)。此类设计虽然可用马达给予的外力抵消足下垂的现象,但无法纠正用户内在的肌肉萎缩及代偿性运动,并且忽略了对于中风后常见的、发生在足部水平面的足内翻的控制与纠正。这种机械辅助方案甚至会由于足部水平面自由度的缺失而引起相应的肌肉萎缩。而且,硬质外骨骼自身的重量比较容易让单侧使用者在行走时失去平衡,尤其是对于中风后的偏瘫用户。气动肌肉(通过用加压空气填充气囊而起作用)与外骨骼(一种能保护生物柔软内部器官的外部坚硬骨骼结构)相结合的肌骨联合体相较于传统硬质外骨骼更轻便柔软,适用于单侧穿戴于患侧下肢,并能提供足够的力学辅助。
神经肌肉电刺激通过经皮刺激诱发小腿肌肉收缩可纠正步态迈步相中的足下垂;同时,多通道的神经肌肉电刺激可纠正肌肉群的代偿。但是目前单一的神经肌肉电刺激技术无法用于纠正步态站立相中的足内翻问题。通过传感器感知步态站立相或步态迈步相开始时足底水平面的用力平衡性,对用户提供即时的感知反馈,如振动、声、光或温度提示等,用户可自主修正足底用力分布以达所期平衡范围,以纠正足内翻。但是单一的足底感知平衡反馈又不能同时解决完整步态中足下垂及肌肉代偿的问题。本发明通过独有的多模态机械与电子设计,配以创新的分时相、以步态事件驱动的控制算法,将多通道神经肌肉电刺激、气动式肌骨联合体和足底感知生物反馈融为一体,并将它们用于各步态时相中的相互配合。所实现的康复系统可用于同时纠正足下垂和足内翻问题,并能实时提供反馈信号 以实现用户的自主纠偏,更可以提高下肢肌群的协调能力和改善肌肉代偿及萎缩。
发明内容
如上所述,现有足踝康复系统没有能同时在行走中实时纠正足下垂、足内翻,还能改善肌肉代偿和肌肉萎缩的功能。具体地,现有的各种足踝康复系统具有如下问题:
1)传统踝足矫形器:以被动形式固定整个踝关节,以防足下垂,足内翻,但这会引起肌肉萎缩,关节退化,无法重建正常步态。
2)下肢康复机器人:足踝部设计过于简单,都是在不同的步态时相中给予单一的机械力矩支撑和带动,一般由一个自由度的马达转动来实现在矢状面上的足部背屈与跖屈。不能同时纠正足下垂,足内翻。
3)神经肌肉电刺激仪:目前单一的神经肌肉电刺激技术无法用于纠正步态站立相中的足内翻问题。
针对以上问题,本发明提供了一种步态事件驱动的分时限、多模态足部控制及反馈康复系统。本发明的系统重量轻有利于单边使用(如偏瘫用户),不影响双侧平衡;并且与传统下肢康复机器人相比,造价便宜、康复效果更好。
在本发明的第一实例中,提供了一种步态事件驱动的分时相、多模态足部康复系统,所述系统包括:
压力传感器模块,所述压力传感器模块连接于用户的足底部,并实时测量足底部的不同区域的压力分布值;
微控制模块,所述微控制模块接收测量的压力值,将测量的压力值与预设的阈值比较以识别动态步态中的不同步态事件和足底部内外侧的压力平衡,并实时控制神经肌肉电刺激模块、气动式肌骨联合体模块、和/或振动生物反馈模块执行相应的操作;
神经肌肉电刺激模块,所述神经肌肉电刺激模块被配置用于基于微控 制模块识别的步态事件,对足部的目标肌肉实施或停止阈上电刺激;
气动式肌骨联合体模块,所述气动式肌骨联合体模块包括用于对足部提供机械支撑的肌骨联合体,并且被配置用于基于微控制模块识别的步态事件,对肌骨联合体的气动肌肉放气或充气,以在步态周期中的站立相时固定足踝部或者在迈步相时放松足踝部;和
振动生物反馈模块,所述振动生物反馈模块被配置用于当微控制模块识别的足底部内外侧的压力不平衡时,提供生物反馈以纠正用户足底部的用力平衡,
其中,步态事件包括脚跟触地、脚跟离地和脚掌离地。
压力传感器模块可以包括放置于足底部的第一跖骨头处的第一压力传感器、放置于足底部的第五跖骨头处的第二压力传感器、和放置于脚跟处的第三压力传感器。
微控制模块可以通过以下方式识别步态事件以实现实时控制:
Figure PCTCN2022073495-appb-000001
其中,E为实时识别的步态事件,FSR 1(t)、FSR 5(t)、FSR 脚跟(t)分别为第一压力传感器、第二压力传感器、和第三压力传感器测量的实时压力数据,T 1、T 5、T 脚跟分别为第一压力传感器、第二压力传感器、第三压力传感器的预设的阈值。
当第三压力传感器测量的压力值小于所述预设的阈值时,微控制模块可以将步态事件识别为脚跟离地,控制气动肌肉放气并停止机械支持,同时控制神经肌肉电刺激模块对目标肌肉实施阈上电刺激。
当第一压力传感器、第二压力传感器和第三压力传感器均小于等于各自的预设的阈值时,微控制模块可以将步态事件识别为脚掌离地,控制气动肌肉充气,同时控制神经肌肉电刺激模块对目标肌肉实施阈上电刺激。
在实施阈上电刺激的同时,振动生物反馈模块可以提供生物反馈以纠 正用户足底部的用力平衡。
当第三压力传感器测量的压力值大于预设的阈值时,微控制模块可以将步态事件识别为脚跟触地,控制神经肌肉电刺激模块停止对目标肌肉的阈上电刺激,并控制振动生物反馈模块停止生物反馈。
神经肌肉电刺激模块可以包括刺激发生器和电极阵列,电极阵列可以通过导线与刺激发生器相连,从而对目标肌肉实施阈上电刺激。
电极阵列可以为连接在目标肌肉上的双通道刺激电极阵列,其中,目标肌肉为胫骨前肌和腓肠肌。
该康复系统还可以包括肌电信号放大器,该肌电信号放大器可以被配置用于将电极阵列采集的肌电信号反馈至微控制模块,以用于计算肌肉动态协调性。
神经肌肉电刺激模块的阈上电刺激方式可以如下:
Figure PCTCN2022073495-appb-000002
Figure PCTCN2022073495-appb-000003
其中,ES 1、ES 2分别为实施在胫骨前肌和腓肠肌上的阈上电刺激,E为实时识别的步态事件,1表示实施阈上电刺激,0表示停止阈上电刺激。
阈上电刺激可以为幅值70V、频率40Hz、带宽50us的对称方波电刺激。
气动式肌骨联合体模块还可以包括电动气泵、电动气阀和气压传感器。
气动式肌骨联合体模块可以被进一步配置为根据气压传感器测量的气动肌肉中的气压值与预设压力阈值的比较,确定气动肌肉的充气或放 气。
肌骨联合体还可以包括外骨骼,该外骨骼能作为所有电子器件、控制电路板及电池的容器。
外骨骼可以由聚交酯材料3D打印而成。
外骨骼可以通过外骨骼延伸部与气动肌肉相连接。
振动生物反馈模块可以包括位于足底部的第一脚趾和第二脚趾之间的振动马达。
振动马达的控制方式可以如下:
Figure PCTCN2022073495-appb-000004
其中,Z表示为对振动马达的控制,Z=1表示开启振动马达,Z=0表示停止振动马达,FSR 1max和FSR 5max分别为脚跟离地后计时期间第一跖骨头处的第一压力传感器和第五跖骨头处的第二压力传感器的最大值,b%为预设的平衡阈值,E为实时识别的步态事件。
康复系统还可以包括用于将所述康复系统固定于足部的紧固整合模块。
紧固整合模块可以包括用于连接并固定外骨骼的连接件和用于固定并缓冲气动肌肉位置的位置固定件。
紧固整合模块可以采用透气及具有弹性的纺织材料。
气动肌肉为聚氯乙烯薄膜。
在本发明的另一实例中,提供了一种根据在前所述的步态事件驱动的分时相、多模态足部康复系统的使用方法。
本发明的范围由权利要求限定,这些权利要求通过参考而被纳入本节中。对本领域的技术人员来说,通过对一个或多个实施方式的以下详细描述的思考,将对本发明的实施方式有更全面的理解,并实现其额外的优势。
附图说明
本发明的优选特征、实施例和变型可以从以下详细说明中看出,该详细说明为本领域技术人员提供了足够的信息以执行本发明。详细说明不应被视为以任何方式限制前述发明内容的范围。详细说明将参考以下多个附图:
图1示出了现有技术中的传统踝足矫形器的图片。
图2示出了本发明康复系统的控制组件结构框图。
图3示出了根据本发明实施例的气动式肌骨联合体模块和神经肌肉电刺激模块的机械组装结构的示意图。
图4示出了根据本发明实施例的气动式肌骨联合体模块包裹在紧固整合模块中的结构示意图。
图5示出了根据本发明实施例的压力传感器模块和振动生物反馈模块在足底位置分布的结构示意图。
具体实施方式
下面将详细描述本发明的具体实施例。这里描述的实施例为下肢单侧使用的举例说明,并不用于限制本发明。本发明所提出的系统和方法也可用于下肢双侧使用。
本发明提供了一种步态事件驱动的分时相、多模态足部控制及反馈康复系统及其使用方法,其同时使用多通道神经肌肉电刺激、气动式肌骨联合体和感知生物反馈,用于下肢步态训练,可同时纠正足下垂和足内翻的问题。
图2示出了本发明的康复系统的结构框图。如图2所示,本发明的康复系统包括但不限于:1)压力传感器模块110;2)神经肌肉电刺激模块100;3)气动式肌骨联合体模块200;4)振动生物反馈模块109;5)微控制模块111;6)紧固整合模块102;以及7)肌电信号放大器112。神经 肌肉电刺激模块100包括:刺激发生器104和电极阵列103。气动式肌骨联合体模块200包括:电动气泵106、电动气阀107、肌骨联合体105和气压传感器108。振动生物反馈模块109包括振动马达402。
压力传感器模块110用于实时测量动态步态中不同步态事件时足部的压力值。微控制模块111接收压力传感器模块110所测量的压力值,并识别动态步态中的不同步态事件和足底内外侧的压力平衡,以驱动相应的功能模块分别提供神经肌肉电刺激、机械辅助和振动生物反馈,其中,功能模块包括神经肌肉电刺激模块100、气动式肌骨联合体模块200、以及振动生物反馈模块109。举例来说,压力传感器模块110可包括多个压力传感器。在本发明的一个实施例中,可设置有三个压力传感器,其中第一压力传感器放置于足部的第一跖骨头处,第二压力传感器放置于足部的第五跖骨头处,而第三压力传感器放置于脚跟处。举例来说,可利用粘附的方式将各个压力传感器置于相应的足底部处。
图3-5示出了本发明的用于踝关节的系统结构示意图,以同时纠正下肢的足下垂和足内翻问题,并改善肌肉代偿。以下将结合图3-5,对发明的康复系统做进一步说明。
具体地,图3示出了根据本发明实施例的气动式肌骨联合体模块和神经肌肉电刺激模块的机械组装结构的示意图;图4示出了根据本发明实施例的气动式肌骨联合体包裹在紧固整合模块中的结构示意图;以及图5示出了根据本发明实施例的压力传感器和振动生物反馈模块在足底位置分布的结构示意图。
在根据本发明的一个实施例中,电极阵列103连接在(例如,可通过粘贴式刺激电极粘附于)用户足部患侧的胫骨前肌和腓肠肌的皮肤表面(经皮刺激),并通过导线与刺激发生器104相连,继而通过微控制模块111对足部的目标肌肉施加电刺激,以帮助用户纠正由肌肉失调导致的足下垂和足内翻问题。在该实施例中,可以给目标肌肉施加电刺激,也可用于采集相应的肌肉电信号,并经肌电信号放大器112将采集到的肌电信号反馈至微控制模块111,以用于计算肌肉动态协调性。如图3所示,电极阵列103可以包括例如2个电极。
电池202为整个康复系统供电,其可以为可充电电池或一次性电池。无线传输芯片201被配置为实现微控制模块111与智能设备的无线信息交互。
如图4所示,气动式肌骨联合体包括人工肌肉305及固定于踝关节两侧的外骨骼301,其中外骨骼301可作为可内置所有电子器件、控制电路板及电池的容器(即控制盒)。人工肌肉可为电场驱动人工肌肉、气体驱动人工肌肉(气动肌肉)、热驱动人工肌肉、溶剂吸收驱动人工肌肉、电化学驱动人工肌肉等。在本发明的实施例中,选择例如气动肌肉305作为本发明的人工肌肉。气动肌肉305可以为可通过加压空气实现充气的气囊,其可以为薄膜性材料,例如聚氯乙烯薄膜或其他充气形变较小的材料。气动肌肉305由微控制模块111控制,并通过气体导管与电动气泵106、电动气阀107和气压传感器108相连接,从而实现气动肌肉的充气并维持气压和放气。
外骨骼301具有弧形形状,其可以例如由聚交酯材料3D打印而成。外骨骼301可以通过外骨骼延伸部303与气动肌肉305相连。当微控制模块111触发气动肌肉305充气以及在气压维持充盈状态时,气动肌肉305与外骨骼301作为肌骨联合体一起为踝关节提供机械力学支撑,以稳固踝关节的力学结构,防止内翻。放气后,气动肌肉305变软,使得踝关节高自由度地、在没有外力辅助的情况下完成跖屈,以锻炼踝关节处的肌肉力量,防止肌肉萎缩。
用于将康复系统固定于用户足部的紧固整合模块102可采用例如透气弹性纺织材料,从而将气动式肌骨联合体和导线整合于其中。紧固整合模块102可包括连接件304,其用于连接并固定踝关节两侧的由外骨骼301组成的控制盒,从而便于系统的穿戴并增强穿戴舒适性。在本发明的一个实施例中,连接件304可以为例如具有一定弹性的弹力魔术贴。紧固整合模块102还可以包括位置固定件302,其用于在气动肌肉305充放气时,固定并缓冲气动肌肉305的位置。在发明的一个实施例中,该位置固定件302可采用例如透气纺织材料,该透气纺织材料具有一定的弹性,以便于位置的固定和缓冲。此外,该位置固定件302可包裹足底的压力传感器模 块110和振动生物反馈模块109与控制盒之间的导线。
参照图5,三个(例如,薄膜状的)压力传感器401通过电路导线与微控制模块111连接,其中,第一压力传感器放置于第一跖骨头处,第二压力传感器放置于第五跖骨头处,第三压力传感器放置于脚跟处。压力传感器的信号用于实时识别步态事件及计算足底平衡性,以控制系统各功能模块在不同时相的配合。振动马达402放置于第一脚趾和第二脚趾之间,通过电路导线与微控制模块111连接。在步态过程中,振动马达402提供必要的振动生物反馈,提示用户主动调整足底用力平衡,以纠正足内翻问题。
在本发明中,当足部处于动态步态过程中时,系统按以下方法识别步态事件以实现实时控制:
Figure PCTCN2022073495-appb-000005
其中,E表示实时识别到的步态事件。FSR 1(t)、FSR 5(t)、FSR 脚跟(t)分别为第一跖骨头处的第一压力传感器的实时压力数据、第五跖骨头处的第二压力传感器的实时压力数据、和脚跟处的第三压力传感器的实时压力数据。T 1、T 5、T 脚跟分别为第一压力传感器、第二压力传感器、第三压力传感器的阈值强度,阈值强度可根据需要设置,例如预设为动态步态过程中各个压力传感器最大值的某一百分比,例如40%。
在初始化状态下,患侧脚跟踩地,气动式肌骨联合体模块200中的气动肌肉305处于充气状态,为其提供机械支持。
I)当脚跟处的第三压力传感器的压力值小于等于设定阈值时,系统识别为“脚跟离地”事件(迈步相开始)。通过微控制模块111触发气动式肌骨联合体模块200中的气动肌肉305进入放气状态,停止机械支持,并通过神经肌肉电刺激模块100对目标肌肉(如腓肠肌)实施阈上电刺激,实现脚踝跖屈。II)计时某一固定时值后,如2秒,系统通过微控制模块111停止对目标肌肉(如腓肠肌)释放电刺激;同时系统利用在脚踝跖屈的足 底压力,判断是否指令振动生物反馈模块109提供振动生物反馈以纠正足底用力平衡。III)等待第一、第二、第三压力传感器均小于等于各自的预设阈值,系统识别为“脚掌离地”事件(迈步相中间),通过微控制模块111触发气动式肌骨联合体模块200中的气动肌肉305开始充气,同时对目标肌肉(如胫骨前肌)释放阈上电刺激,实现脚踝背屈(纠正足下垂)。此时,振动生物反馈模块109也会给予必要的振动生物反馈,提醒用户101在之后的站立相中要改进足度平衡。IV)当脚跟处的第三压力传感器的压力值大于设定阈值时,系统识别为“脚跟触地”事件(站立相开始),控制微控制模块111使神经肌肉电刺激模块100停止对目标肌肉(如胫骨前肌)释放电刺激,并且振动生物反馈模块109停止振动生物反馈,此时气动肌肉305内的气压值达最大。V)当脚跟处的第三压力传感器的压力值小于阈值时,识别回到“脚跟离地”事件(迈步相开始),步态进入循环过程。
神经肌肉电刺激模块100包括电极阵列103和刺激发生器104,在该实施例中,电极阵列103为双通道刺激电极阵列。双通道刺激电极阵列贴在所控关节活动(如脚踝背屈和跖屈)的拮抗肌对(如胫骨前肌和腓肠肌)上,以进行交替式、分时相的经皮电刺激,诱发目标肌肉在相关时相中的有效收缩,用于指导步态中涉及踝关节背屈与跖屈的肌肉协调。神经肌肉电刺激的受控方式如下:
Figure PCTCN2022073495-appb-000006
Figure PCTCN2022073495-appb-000007
其中ES 1、ES 2分别表示为目标肌肉(即胫骨前肌和腓肠肌)上的阈上神经肌肉电刺激,刺激强度根据用户情况,提前预设为某一固定值,如幅值70V,频率40Hz,带宽50us的对称方波电刺激。动态步态中脚掌离地 时,系统提供相应的电刺激(ES 1=1)引起胫骨前肌收缩,带动踝关节完成背屈活动,脚跟触地时,系统停止此电刺激(ES 1=0)。当脚跟离地时,系统提供相应的电刺激(ES 2=1)引起腓肠肌收缩,带动踝关节完成跖屈活动,此神经肌肉电刺激时间为预设的固定时间n秒,如2秒,计时2秒后系统停止此电刺激(ES 2=0)。所述刺激电极阵列同时也能通过刺激电极从皮肤面表获取肌肉电信号,经肌电信号放大器放大后反馈至微控制模块111。
气动式肌骨联合体模块200包括但不限于:将气动肌肉305与外骨骼301相结合的肌骨联合体105、电动气阀107、电动气泵106和气压传感器108,其受控方式如下所示:
Figure PCTCN2022073495-appb-000008
其中P和V分别表示对电动气泵106和电动气阀107的控制,Ap和Tp分别为气动肌肉305中的气压值和预设压力阈值,预设压力阈值根据用户个性化设置。当识别为脚掌离地且气动肌肉305中的气压小于等于预设阈值时,系统开启电动气泵106并关闭电动气阀107,触发气动肌肉305充气状态,以提供机械支持于目标关节位置。当气动肌肉305内的气压大于预设阈值时,系统停止电动气泵106充气并关闭电动气阀107,将气动肌肉305内的气压维持在预设阈值附近,防止充气过度造成气动肌肉305损坏。当识别为脚跟离地时,系统停止电动气泵106充气并打开电动气阀107,触发气动肌肉305放气,以实现蹬地期间踝关节的自由活动。肌骨联合体105中的外骨骼301及其延伸部分303,采用弧形设计贴合用户小腿,与气动肌肉一起为关节提供机械支持帮助其固定角度,防止足内翻导致软组织损伤。
在本发明的一个实施例中,振动生物反馈模块109可以为位于足部第一脚趾和第二脚趾之间的振动马达402,其基于第一跖骨头处的第一压力传感器的实时压力数据FSR 1和第五跖骨头处的第二压力传感器的实时压 力数据FSR 5操作,并且受控方式如下所示:
Figure PCTCN2022073495-appb-000009
其中Z表示为对振动马达402的控制,FSR 1max和FSR 5max分别为脚跟离地后计时期间,第一跖骨头处的第一压力传感器和第五跖骨头处的第二压力传感器的最大值,b%为预设的平衡阈值,如50%。若FSR 5max与预设的平衡阈值相乘后,仍大于等于FSR 1max,系统识别为步态失衡,并开启振动马达402(Z=1)以提供振动生物反馈提醒用户101调整患侧足底受力平衡,振动强度为用户可感知的机械振动阈值。若FSR 5max与预设的平衡阈值相乘后,小于FSR 1max,系统不触发振动马达402(Z=0),即足底平衡达标。当识别为脚跟触地事件时,系统则关闭振动马达402,停止振动生物反馈。
微控制模块111接受时序性的压力传感器模块110和气压传感器108的实时信号以识别步态事件,并下放指令实时控制神经肌肉电刺激模块100、气动式肌骨联合体模块200和振动生物反馈模块109的操作。同时,微控制模块111接受由刺激性的电极阵列103测得的肌肉电信号,经过归一化计算后,得到实时自动化评估参数,以无线数据交换方式传输至智能设备,并将训练记录和评估参数上传至云端服务器供医务人员存档、管理以及分析。自动化评估参数包括但不限于:肌肉激活水平和拮抗肌对协同收缩指数;智能设备包括但不限于:智能手机、智能平板、便携式计算机。
本发明的系统及方法具有以下优势:
1)多模态(多种辅助技术融合)、分时相的实时控制方法用于同时纠正足下垂、足内翻,并改善肌肉代偿和萎缩,以重塑正常步态。
2)可穿戴足踝部多模态系统结构设计。
3)并给予生物反馈信号,让用户自主纠正足底平衡。
4)通过神经肌肉电刺激改善肌肉协调性,防肌肉萎缩。
此下肢运动康复系统除了如实施例中用于单侧偏瘫用户同时纠正足 下垂和足内翻问题,也可联机配对后便于双侧瘫痪用户使用,如脊髓损伤用户,为其提供下肢双侧运动康复训练。
虽然本公开已经就有限的实施方式进行了描述,但受益于本公开的本领域的技术人员将理解可以设计出不偏离本文所述的公开范围的其他实施方式。因此,本公开的范围应只受所附权利要求书的限制。

Claims (24)

  1. 一种步态事件驱动的分时相、多模态足部康复系统,所述系统包括:
    压力传感器模块(110),所述压力传感器模块连接于用户的足底部,并实时测量足底部的不同区域的压力分布值;
    微控制模块(111),所述微控制模块(111)接收测量的压力值,将所述测量的压力值与预设的阈值比较以识别动态步态中的不同步态事件和足底部内外侧的压力平衡,并实时控制神经肌肉电刺激模块(100)、气动式肌骨联合体模块(200)、和/或振动生物反馈模块(109)执行相应的操作;
    神经肌肉电刺激模块(100),所述神经肌肉电刺激模块被配置用于基于所述微控制模块(111)识别的步态事件,对足部的目标肌肉实施或停止阈上电刺激;
    气动式肌骨联合体模块(200),所述气动式肌骨联合体模块包括用于对足部提供机械支撑的肌骨联合体(105),并被配置用于基于所述微控制模块(111)识别的步态事件,对所述肌骨联合体(105)的气动肌肉(305)放气或充气,以在步态周期中的站立相时固定足踝部或者在迈步相时放松足踝部;和
    振动生物反馈模块(109),所述振动生物反馈模块被配置用于当所述微控制模块(111)识别的足底部内外侧的压力不平衡时,提供生物反馈以纠正用户足底部的用力平衡,
    其中,所述步态事件包括脚跟触地、脚跟离地和脚掌离地。
  2. 根据权利要求1所述的足部康复系统,其中,所述压力传感器模块(110)包括放置于足底部的第一跖骨头处的第一压力传感器、放置于足底部的第五跖骨头处的第二压力传感器、和放置于脚跟处的第三压力传感器。
  3. 根据权利要求2所述的足部康复系统,其中,所述微控制模块(111)通过以下方式识别所述步态事件以实现实时控制:
    Figure PCTCN2022073495-appb-100001
    其中,E为实时识别的步态事件,FSR 1(t)、FSR 5(t)、FSR 脚跟(t)分别为所述第一压力传感器、所述第二压力传感器、和所述第三压力传感器测量的实时压力数据,T 1、T 5、T 脚跟分别为所述第一压力传感器、所述第二压力传感器、所述第三压力传感器的预设的阈值。
  4. 根据权利要求3所述的足部康复系统,其中,当所述第三压力传感器测量的压力值小于所述预设的阈值时,所述微控制模块(111)将所述步态事件识别为所述脚跟离地,控制所述气动肌肉(305)放气并停止机械支持,同时控制所述神经肌肉电刺激模块(100)对所述目标肌肉实施阈上电刺激。
  5. 根据权利要求3所述的足部康复系统,其中,当所述第一压力传感器、所述第二压力传感器和所述第三压力传感器均小于等于各自的预设的阈值时,所述微控制模块(111)将所述步态事件识别为所述脚掌离地,控制所述气动肌肉(305)充气,同时控制所述神经肌肉电刺激模块(100)对所述目标肌肉实施阈上电刺激。
  6. 根据权利要求5所述的足部康复系统,其中,在实施所述阈上电刺激的同时,所述振动生物反馈模块(109)提供生物反馈以纠正用户足底部的用力平衡。
  7. 根据权利要求3所述的足部康复系统,其中,当所述第三压力传感器测量的压力值大于所述预设的阈值时,所述微控制模块(111)将所述步态事件识别为脚跟触地,控制所述神经肌肉电刺激模块(100)停止对所述目标肌肉的阈上电刺激,并控制所述振动生物反馈模块(109)停止生物反馈。
  8. 根据权利要求1所述的足部康复系统,其中,所述神经肌肉电刺激模块(100)包括刺激发生器(104)和电极阵列(103),所述电极阵列(103)通过导线与刺激发生器(104)相连,从而对所述目标肌肉实施阈上电刺激。
  9. 根据权利要求8所述的足部康复系统,其中,所述电极阵列(103)为连接在所述目标肌肉上的双通道刺激电极阵列,其中,所述目标肌肉为胫骨前肌和腓肠肌。
  10. 根据权利要求8所述的足部康复系统,其中,所述康复系统还包括肌电信号放大器(112),所述肌电信号放大器被配置用于将所述电极阵列(103)采集的肌电信号反馈至所述微控制模块(111),以用于计算肌肉动态协调性。
  11. 根据权利要求9所述的足部康复系统,其中,所述神经肌肉电刺激模块(100)的阈上电刺激方式如下:
    Figure PCTCN2022073495-appb-100002
    Figure PCTCN2022073495-appb-100003
    其中,ES 1、ES 2分别为实施在胫骨前肌和腓肠肌上的阈上电刺激,E为实时识别的步态事件,1表示实施阈上电刺激,0表示停止阈上电刺激。
  12. 根据权利要求1所述的足部康复系统,其中,所述阈上电刺激为幅值70V、频率40Hz、带宽50us的对称方波电刺激。
  13. 根据权利要求1所述的足部康复系统,其中,所述气动式肌骨联合体模块(200)还包括电动气泵(106)、电动气阀(107)和气压传感器(108)。
  14. 根据权利要求13所述的足部康复系统,其中,所述气动式肌骨 联合体模块(200)被进一步配置为根据所述气压传感器(108)测量的所述气动肌肉(305)中的气压值与预设压力阈值的比较,确定所述气动肌肉(305)的充气或放气,。
  15. 根据权利要求1所述的足部康复系统,所述肌骨联合体105)还包括外骨骼(301),所述外骨骼(301)能作为所有电子器件、控制电路板及电池的容器。
  16. 根据权利要求15所述的足部康复系统,所述外骨骼(301)由聚交酯材料3D打印而成。
  17. 根据权利要求15所述的足部康复系统,所述外骨骼(301)通过外骨骼延伸部(303)与所述气动肌肉(305)相连接。
  18. 根据权利要求1所述的足部康复系统,其中,所述振动生物反馈模块(109)包括位于足底部的第一脚趾和第二脚趾之间的振动马达(402)。
  19. 根据权利要求18所述的足部康复系统,其中,所述振动马达(402)的控制方式如下:
    Figure PCTCN2022073495-appb-100004
    其中,Z表示为对振动马达(402)的控制,Z=1表示开启振动马达(402),Z=0表示停止振动马达(402),FSR 1max和FSR 5max分别为脚跟离地后计时期间第一跖骨头处的第一压力传感器和第五跖骨头处的第二压力传感器的最大值,b%为预设的平衡阈值,E为实时识别的步态事件。
  20. 根据权利要求1所述的足部康复系统,其中,所述康复系统还包括用于将所述康复系统固定于足部的紧固整合模块(102)。
  21. 根据权利要求15所述的足部康复系统,其中,所述紧固整合模块(102)包括用于连接并固定所述外骨骼(301)的连接件(304)和用于固定并缓冲所述气动肌肉(305)位置的位置固定件(302)。
  22. 根据权利要求20所述的足部康复系统,其中,所述紧固整合模块 (102)采用透气及具弹性的纺织材料。
  23. 根据权利要求1所述的足部康复系统,其中,所述气动肌肉(305)为聚氯乙烯薄膜。
  24. 一种根据权利要求1至23所述的步态事件驱动的分时相、多模态的使用方法。
PCT/CN2022/073495 2021-06-30 2022-01-24 步态事件驱动的分时相、多模态足部康复系统及使用方法 WO2023273324A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22831158.5A EP4364710A1 (en) 2021-06-30 2022-01-24 Gait event-driven, phase-dependent and multi-modal foot rehabilitation system and use method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110733839.6 2021-06-30
CN202110733839.6A CN115531135A (zh) 2021-06-30 2021-06-30 步态事件驱动的分时相、多模态足部康复系统及使用方法

Publications (1)

Publication Number Publication Date
WO2023273324A1 true WO2023273324A1 (zh) 2023-01-05

Family

ID=84689800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073495 WO2023273324A1 (zh) 2021-06-30 2022-01-24 步态事件驱动的分时相、多模态足部康复系统及使用方法

Country Status (3)

Country Link
EP (1) EP4364710A1 (zh)
CN (1) CN115531135A (zh)
WO (1) WO2023273324A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117653906A (zh) * 2023-12-19 2024-03-08 太极计算机股份有限公司 一种调节足内翻肌肉收缩力的电刺激方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030093021A1 (en) * 2001-05-24 2003-05-15 Amit Goffer Gait-locomotor apparatus
US20050101448A1 (en) * 2003-10-22 2005-05-12 Jiping He Apparatus and method for repetitive motion therapy
US20070203435A1 (en) * 2004-03-26 2007-08-30 Peter Novak System And Method For Gait Synchronized Vibratory Stimulation Of The Feet
CN108113788A (zh) * 2016-11-29 2018-06-05 张叡 一种新型气动人工肌肉驱动踝关节矫正器
CN108992778A (zh) * 2018-08-01 2018-12-14 龚映清 一种基于传感器智能鞋垫的功能性肌肉电刺激系统及方法
CN111714842A (zh) * 2020-07-03 2020-09-29 南通大学附属医院 新型智能足踝肌力康训器及其工作方法
CN213250102U (zh) * 2020-07-01 2021-05-25 浙江大学 一种步态采集及神经肌肉电刺激动力式踝足矫形器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030093021A1 (en) * 2001-05-24 2003-05-15 Amit Goffer Gait-locomotor apparatus
US20050101448A1 (en) * 2003-10-22 2005-05-12 Jiping He Apparatus and method for repetitive motion therapy
US20070203435A1 (en) * 2004-03-26 2007-08-30 Peter Novak System And Method For Gait Synchronized Vibratory Stimulation Of The Feet
CN108113788A (zh) * 2016-11-29 2018-06-05 张叡 一种新型气动人工肌肉驱动踝关节矫正器
CN108992778A (zh) * 2018-08-01 2018-12-14 龚映清 一种基于传感器智能鞋垫的功能性肌肉电刺激系统及方法
CN213250102U (zh) * 2020-07-01 2021-05-25 浙江大学 一种步态采集及神经肌肉电刺激动力式踝足矫形器
CN111714842A (zh) * 2020-07-03 2020-09-29 南通大学附属医院 新型智能足踝肌力康训器及其工作方法

Also Published As

Publication number Publication date
EP4364710A1 (en) 2024-05-08
CN115531135A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
US11324653B2 (en) Exoskeleton for assisting human movement
KR100946186B1 (ko) 하지의 로봇 보조기
Kobetic et al. Synthesis of paraplegic gait with multichannel functional neuromuscular stimulation
Lenzi et al. Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking
Lyons et al. A review of portable FES-based neural orthoses for the correction of drop foot
JP4216725B2 (ja) 筋肉刺激装置
US9682006B2 (en) Movement assistance devices
US9456918B2 (en) Orthosis and method of use for treatment and rehabilitation of dropfoot
US9693926B2 (en) Movement assistance device
Kinnaird et al. Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton
TW201639533A (zh) 互動式外骨骼膝關節機器系統
US11672983B2 (en) Sensor in clothing of limbs or footwear
KR100946185B1 (ko) 상지의 로봇 보조기
CN107405249B (zh) 步行训练用脊髓电刺激装置
WO2012003451A2 (en) Universal closed-loop electrical stimulation system
JP2004504922A (ja) Fes制御システムへのインターフェイス
CN111167010A (zh) 用于患者的运动重建和/或恢复的控制系统
Bulea et al. Finite state control of a variable impedance hybrid neuroprosthesis for locomotion after paralysis
JP2004313555A (ja) 機能的電気刺激歩行補助装置
JP2021508283A (ja) 医療用歩行器
WO2021047100A1 (zh) 一种自适应电刺激训练系统
CN112089577A (zh) 基于表面肌电和功能电刺激的交互式训练外骨骼机器人
WO2023273324A1 (zh) 步态事件驱动的分时相、多模态足部康复系统及使用方法
JP2004081676A (ja) バイオフィードバック装置及び方法
CN214596823U (zh) 一种基于足底压力反馈的电刺激系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831158

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022831158

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022831158

Country of ref document: EP

Effective date: 20240130