WO2023273228A1 - 稠油举升装置和方法 - Google Patents

稠油举升装置和方法 Download PDF

Info

Publication number
WO2023273228A1
WO2023273228A1 PCT/CN2021/140491 CN2021140491W WO2023273228A1 WO 2023273228 A1 WO2023273228 A1 WO 2023273228A1 CN 2021140491 W CN2021140491 W CN 2021140491W WO 2023273228 A1 WO2023273228 A1 WO 2023273228A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
heavy oil
pump
oil
power fluid
Prior art date
Application number
PCT/CN2021/140491
Other languages
English (en)
French (fr)
Inventor
崔启利
赵学洋
姜琳
丁波
林庆仁
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Publication of WO2023273228A1 publication Critical patent/WO2023273228A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/129Adaptations of down-hole pump systems powered by fluid supplied from outside the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/006Combined heating and pumping means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/40Separation associated with re-injection of separated materials

Definitions

  • At least one embodiment of the present disclosure relates to a heavy oil lifting device and method.
  • viscosity reduction measures are required during heavy oil lifting to facilitate the smooth production of heavy oil.
  • Heavy oil production requires two sets of systems, one is the mechanical system for lifting crude oil, and the other is the viscosity reducing system for reducing the viscosity of crude oil during the lifting process.
  • Mechanical systems are divided into rod pumps and rodless pumps.
  • Rod pumps usually include beam pumping units and screw pumps; rodless pumps include hydraulic pumps and electric submersible centrifugal pumps.
  • the main methods of lifting viscosity reduction include mixing thin oil, thermal viscosity reduction, and chemical agent viscosity reduction methods.
  • Liaohe Oilfield adopts electric heating rods for thermal viscosity reduction, and cooperates with beam pumping units to lift and produce heavy oil.
  • Xinjiang Oilfield adopts the method of blending thin oil to reduce viscosity and cooperates with screw pumps to lift and produce heavy oil. Two operations The schemes cost a lot. Therefore need a kind of heavy oil lifting technology that can reduce cost, reduce construction work.
  • At least one embodiment of the present disclosure relates to a heavy oil lifting device and method.
  • At least one embodiment of the present disclosure provides a heavy oil lifting device, including: a plurality of liquid injection pumps, each liquid injection pump includes a liquid inlet and a liquid outlet, the liquid injection pump is configured to suck liquid and The liquid is discharged after being pressurized; the control valve includes a first end and a second end, and the liquid outlets of the plurality of injection pumps are connected to the first end of the control valve; the power fluid transmission pipe is connected to the The second end of the control valve is connected to be configured to transmit the pressurized liquid; the working pump is connected to the power fluid transmission pipe, and the pressurized liquid is used as the power fluid to drive the working pump to reciprocate the control valve is configured to switchably communicate with one of the plurality of injection pumps so that the power fluid transmission tube is switchably connected to one of the plurality of injection pumps; The pump is connected.
  • the multiple infusion pumps include at least two infusion pumps with different powers.
  • the heavy oil lifting device further includes an oil pipe, the power fluid transmission pipe is located in the oil pipe, and the working pump is located in the oil pipe.
  • the power fluid drives the working pump to reciprocate to form a dry liquid, and the dry liquid mixes with the well fluid to form an oily mixed liquid, and the working pump is configured to lift the oily mixed liquid through the tubing to the ground.
  • the heavy oil lifting device further includes a first transmission pipeline, the first transmission pipeline is connected to the liquid inlets of the plurality of injection pumps, and the first transmission pipeline is configured to transmit the liquid .
  • the heavy oil lifting device further includes a filter, which is arranged in the first transmission pipeline and configured to filter the liquid passing through the filter.
  • the heavy oil lifting device further includes a second transmission pipeline, and the liquid outlets of the plurality of injection pumps are connected to the power fluid transmission pipe through the second transmission pipeline.
  • the heavy oil lifting device further includes a flow meter, and the flow meter is arranged in the second transmission pipeline.
  • the heavy oil lifting device further includes a third transmission pipeline, and the third transmission pipeline is connected with the oil pipe to transmit the oil-containing mixed liquid.
  • the heavy oil lifting device further includes a separator connected to the third transmission pipeline, the separator is configured to perform oil-water separation on the oil-containing mixed liquid, and the separator includes an oil outlet An outlet and a water outlet, the water outlet is connected to the first transmission pipeline to form a circulation loop of the power fluid.
  • the heavy oil lifting device further includes a heating component configured to heat the liquid to form a thermodynamic fluid.
  • the heavy oil lifting device further includes a casing, and the oil pipe is located in the casing.
  • the heavy oil lifting device further includes a control component connected to the control valve and configured to control the control valve to communicate with one of the multiple injection pumps.
  • the working pump includes a housing, a piston structure, and a partition member that divides the housing into a first cavity and a second cavity
  • the piston structure includes a piston rod, a first piston, and a second piston
  • the first piston and the second piston are respectively arranged at both ends of the piston rod
  • the first piston is located in the first chamber and divides the first chamber into a first power fluid chamber and a second chamber.
  • an oil chamber the second piston is located in the second chamber and divides the second chamber into a second power fluid chamber and a second oil chamber
  • the piston rod passes through the partition member
  • the The piston structure is rotatable about the axis of the piston rod.
  • At least one embodiment of the present disclosure also provides a heavy oil lifting method, including: using a liquid injection pump to inhale liquid and discharge the liquid after pressurization; using the pressurized liquid as power fluid;
  • the power fluid transmission pipe is used to drive the working pump to reciprocate; the power fluid becomes dry and mixes with the well fluid in the pump chamber of the working pump to form an oily mixed fluid; the reciprocating movement of the working pump makes the oily mixed fluid Lifting to the ground;
  • the liquid injection pump is set in multiples, each liquid injection pump includes a liquid inlet and a liquid outlet, and the liquid outlets of the multiple liquid injection pumps are connected to the control valve, the method Also comprising: adjusting the control valve to switchably communicate with one of the plurality of infusion pumps so that the power fluid transmission tube is switchably connected to one of the plurality of infusion pumps. An infusion pump is connected.
  • the multiple infusion pumps include at least two infusion pumps with different powers
  • the method further includes: selecting an infusion pump with a suitable power for operation according to operation parameters.
  • the heavy oil lifting method further includes: separating oil from water on the oil-containing mixed liquid lifted to the ground, and the separated water is sucked into the injection pump as the liquid to form a circulation loop of the power fluid .
  • the heavy oil lift method also includes heating the motive fluid to form a thermodynamic fluid.
  • Fig. 1 is a schematic diagram of a heavy oil lifting device provided by an embodiment of the present disclosure.
  • Fig. 2 is a schematic diagram of a heavy oil lifting device provided by an embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram of an underground working part in a heavy oil lifting device provided by an embodiment of the present disclosure.
  • Fig. 4A is a schematic cross-sectional view at the positions of two pumping pipelines of a working pump in a heavy oil lifting device according to an embodiment of the present disclosure.
  • Fig. 4B is a schematic cross-sectional view at the positions of two reversing pipelines of a working pump in a heavy oil lifting device according to an embodiment of the present disclosure.
  • Fig. 4C is a schematic cross-sectional view at the positions of two power fluid pipelines of a working pump in a heavy oil lifting device according to an embodiment of the present disclosure.
  • FIG. 4D is a schematic cross-sectional view along line M-N of FIG. 4A .
  • Fig. 5 is a schematic diagram of a heavy oil lifting device or method provided by an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of a heavy oil lifting device provided by an embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram of a heavy oil lifting device or method provided by an embodiment of the present disclosure.
  • the hydraulic station of the heavy oil lifting device uses a single plunger pump, and the parameters such as the power of the plunger pump cannot be adjusted under different circumstances. If the plunger pump fails, the heavy oil lifting operation will be affected.
  • the heavy oil lifting device provided by at least one embodiment of the present disclosure can solve at least one of the above-mentioned problems.
  • Fig. 1 is a schematic diagram of a heavy oil lifting device provided by an embodiment of the present disclosure.
  • Fig. 2 is a schematic diagram of a heavy oil lifting device provided by an embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram of an underground working part in a heavy oil lifting device provided by an embodiment of the present disclosure.
  • Fig. 4A is a schematic cross-sectional view at the positions of two pumping pipelines of a working pump in a heavy oil lifting device according to an embodiment of the present disclosure.
  • Fig. 4B is a schematic cross-sectional view at the positions of two reversing pipelines of a working pump in a heavy oil lifting device according to an embodiment of the present disclosure.
  • Fig. 1 is a schematic diagram of a heavy oil lifting device provided by an embodiment of the present disclosure.
  • Fig. 2 is a schematic diagram of a heavy oil lifting device provided by an embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram of an underground working part in a heavy oil lifting
  • FIG. 4C is a schematic cross-sectional view at the positions of two power fluid pipelines of a working pump in a heavy oil lifting device according to an embodiment of the present disclosure.
  • FIG. 4D is a schematic cross-sectional view along line M-N of FIG. 4A .
  • Fig. 5 is a schematic diagram of a heavy oil lifting device or method provided by an embodiment of the present disclosure. A heavy oil lifting device and a heavy oil lifting method provided by embodiments of the present disclosure will be described below with reference to FIGS. 1 to 5 .
  • the heavy oil lifting device includes a surface hydraulic station 1 and an underground operation part 2.
  • the surface hydraulic station 1 includes a plurality of injection pumps 110 and control valves 120; the underground operation part 2 It includes a power fluid transmission pipe 210 and a working pump 220 .
  • each liquid injection pump 110 includes a liquid inlet 110a and a liquid outlet 110b, and the liquid injection pump 110 is configured to suck liquid and discharge it after pressurizing the liquid; the liquid outlets of a plurality of liquid injection pumps 110 110b is connected to the first end 120a of the control valve 120; that is, the liquid outlet 110b of the infusion pump 110 is commonly connected to the first end 120a of the control valve 120, and the second end 120b of the control valve 120 is connected to the power fluid transmission pipe 210 , the power fluid transmission pipe 210 is configured to transmit pressurized fluid; the power fluid transmission pipe 210 is connected to the operation pump 220 , and the pressurized liquid is used as the power fluid to drive the operation pump 220 to reciprocate.
  • the injection pump 110 is connected to the working pump 220 through the power fluid transmission pipe 210 .
  • service pump 220 is a downhole service pump.
  • power fluid includes water.
  • control valve 120 is configured to switchably communicate with one of the multiple injection pumps 110 so that the power fluid transmission pipe 210 can switchably communicate with the multiple injection pumps 110 .
  • One of the infusion pumps 110 is in communication.
  • the heavy oil lifting device provided by the embodiments of the present disclosure is suitable for heavy oil recovery operations and can be used in heavy oil lifting procedures.
  • the heavy oil lifting device Unlike the hydraulic station of the usual heavy oil lifting device, which only has a single liquid injection pump, the heavy oil lifting device provided by the embodiment of the present disclosure is equipped with multiple liquid injection pumps, which can be switched and used.
  • the structure is simple, through the control valve 120, a suitable injection pump can be switched and used among multiple injection pumps, and the rest can be used as a backup, so as to enhance the service life and service cycle of the equipment, improve stability, facilitate maintenance, and save maintenance time , stable operation and improved stability.
  • the priming pump 110 is configured to suck in a low pressure liquid and pressurize it to create a high pressure liquid.
  • a liquid at high pressure has a greater pressure than a liquid at low pressure.
  • the low-pressure liquid may also be referred to as suction liquid, and the high-pressure liquid may also be referred to as discharge liquid.
  • the low pressure liquid may be referred to as a first pressure liquid.
  • the high pressure liquid may be referred to as a second pressure liquid.
  • infusion pump 110 is configured to suck in liquid at a first pressure and configured to expel liquid at a second pressure, the second pressure being greater than the first pressure.
  • the plurality of infusion pumps 110 includes at least two infusion pumps 110 with different powers.
  • a plurality of liquid injection pumps may have different powers, different models, different structures, etc., so that the switching and use of liquid injection pumps of different specifications can be realized, and the diversity of choices can be increased. Injection pumps with different powers can be switched to meet the needs of downhole operations in different periods and provide more control options for heavy oil production operations.
  • three-cylinder or five-cylinder injection pumps can be used, and multiple injection pumps with different power performances can be configured.
  • the injection pump that is suitable for the operation can be automatically selected by inputting operation parameters, and the injection flow rate of power fluid can be controlled to adjust the production well fluid volume. Set up multiple injection pumps, one can be used and the rest can be used for backup, which is convenient for maintenance.
  • control valve 120 includes an electronically controlled control valve, but is not limited thereto, and a suitable control valve can be selected according to its intended function.
  • the control valve 120 includes a valve body and a spool.
  • the first end 120a of the control valve 120 communicates with the selected infusion pump 110 through the rotation of the spool.
  • the control valve 120 includes an electrically controlled reversing valve.
  • the control valve 120 includes a solenoid reversing valve.
  • the infusion pump 110 acts as a power pump.
  • the injection pump 110 may also be called an auxiliary pump, and the working pump 220 may also be called a main pump or an oil well pump.
  • the infusion pump 110 includes a plunger pump, but is not limited thereto.
  • the working pump 220 includes a rodless pump, but is not limited thereto.
  • the working pump 220 includes a piston pump, but is not limited thereto.
  • the heavy oil lifting device has a simple structure, convenient maintenance, and stable operation. There is no reciprocating sucker rod from the wellhead to the downhole pump head, which reduces the damage caused by mechanical wear to the device itself.
  • the working pump includes a piston that can reciprocate up and down.
  • the working pumps have different structures, and pumps with other structures can also be selected.
  • the exhaust fluid after the hydraulic system works is mixed with the well fluid in the pump cavity, so that the fluid volume in the wellbore is 2-3 times that of the conventional oil recovery fluid, so the flow rate in the wellbore It is faster and can effectively carry the sand to the ground, reducing or avoiding the phenomenon of sand blocking.
  • the performance of the screw pump oil production equipment itself is unstable, and the phenomenon of rod lag and broken rod occurs frequently, which brings hidden dangers to continuous and stable operation.
  • Hydraulic pumps and other equipment have low production efficiency, and require high operating pressure and high performance requirements for oil pipes, which also have hidden dangers in operation.
  • the heavy oil lifting device provided by the embodiments of the present disclosure is fully applicable to the production of horizontal wells and composite wells, and can greatly improve the recovery rate of heavy oil.
  • the heavy oil lifting device provided by the embodiments of the present disclosure has stable performance and can work continuously.
  • the applicability of heavy oil production equipment is generally not strong. Due to the limitation of structure and operation mechanism, the general operating depth is above 2000 meters. Small losses, low operating pressure requirements, equipped with non-continuous tubing (conventional tubing) can operate at 3,000 meters underground, and with coiled tubing, can operate at 5,000 meters underground, which is the most advanced pumping and lifting production technology at present.
  • the heavy oil lifting device further includes an oil pipe 230
  • the power fluid transmission pipe 210 is located in the oil pipe 230
  • the working pump 220 is located in the oil pipe 230 .
  • the underground working part 2 also includes oil pipes 230 .
  • the tubing can be non-continuous tubing (conventional tubing) or coiled tubing.
  • the conventional tubing is composed of a single section of 8-10 meters of single-section pipeline connection.
  • the length of the coiled tubing can be 5000-7000 meters. In the usual technology, it is used for heavy oil lifting operations. The depth is the most, when using it, choose according to the job requirements.
  • the power fluid transmission pipe is inside the oil pipe, and its function is to transmit power fluid.
  • Conventional tubing meets the requirements for operations above 3,000 meters underground, and coiled tubing meets the requirements for operations above 5,000 meters underground. It is completely suitable for sand wells, ultra-deep wells, horizontal wells, and composite wells, and caters to the development trend of heavy oil production.
  • the center of the power fluid transmission pipe 210 may coincide with the center of the oil pipe 230 , in this case, the power fluid transmission pipe 210 may be called a center pipe.
  • the power fluid drives the working pump 220 to reciprocate to form a dry liquid, and the dry liquid mixes with the well fluid to form an oily mixed liquid.
  • the working pump 220 is configured to lift the oily mixed liquid to the surface through the tubing 230 .
  • one end of the power fluid transmission pipe 210 is connected to the control valve 120, and the other end of the power fluid transmission pipe 210 is connected to the working pump 220, and the pressurized liquid passes through the power fluid transmission pipe 210 to the working pump 220, as The power fluid of the working pump 220 drives the working pump 220 to reciprocate in the oil pipe 230 to pump the well fluid containing heavy oil.
  • the liquid passing through the pump chamber becomes depleted fluid and mixes with the well fluid to form an oily mixed fluid, and the working pump 220 reciprocates Lift the mixture to the ground.
  • FIG. 2 shows the ground 400 .
  • the mechanical system for lifting crude oil and the viscosity reducing system are combined into one, which can greatly reduce the lifting cost.
  • the structure of the lifting device is simple, the hydraulic station is built on the ground, water is used as the working medium, and the liquid injection pump that provides high-pressure liquid pressurizes the water separated from the separator and injects it downhole through the power fluid transmission pipe to provide power for the working pump, and According to different input parameters, the control unit can automatically select and judge the injection pump used for operation. Compared with the usual heavy oil lifting method, the production cost is greatly reduced.
  • the power fluid medium can also be water added to the emulsion, or medium such as oil.
  • the heavy oil lifting device provided by the embodiments of the present disclosure can completely replace electric heating, blending with thin oil, and chemical viscosity reduction. Through the operation mechanism of the device, the recovery of heavy oil is realized without adding additional heavy oil viscosity reduction measures. Compared with heating, it can save 240,000 yuan in electricity bills per year. Compared with blending thin oil, it can save the cost of blending thin oil. According to different well conditions, the ratio of blending thin oil is more than 30%, and Tahe Oilfield even reaches more than 100%. The annual savings The cost is 300,000-800,000. Compared with the chemical viscosity reduction method, it can save the cost of chemical agents.
  • the heavy oil lifting device integrates the lifting mechanical system and the lifting viscosity-reducing system into one, which can greatly reduce the lifting cost.
  • the hydraulic station is built on the ground, using water as the power fluid, which is injected downhole through the power fluid transmission pipe through the injection pump to provide power for the operation pump to drive the piston to reciprocate, and the well fluid is pumped into the pump chamber to mix with the power fluid to lift
  • the water content of heavy oil can be increased while lubricating and lifting to recover.
  • the produced well fluid flows into the metering station, and the water separated by the oil-water separation equipment can be recycled and re-used as power fluid for injection operations.
  • the operating pump of the heavy oil lifting device converts the hydraulic energy into mechanical energy under the action of the power fluid, and performs up and down reciprocating motion.
  • the well fluid is drawn into the pump chamber and mixed with the power fluid to lift the heavy oil.
  • the water content makes the heavy oil in the wellbore have a water content greater than 70%, so the produced fluid is lifted to the ground in the form of oil-in-water to realize heavy oil recovery.
  • the produced well fluid flows into the metering station.
  • the principle of heavy oil lifting technology water is used as the power fluid to drive the operation pump, and at the same time, the exhaust fluid is mixed with the well fluid to increase the water content of heavy oil, and the crude oil is lifted and recovered in the form of oil in water.
  • the power fluid is not limited to water. Emulsions or chemicals can be added to the water, and water can also be replaced with other suitable liquids as power fluids.
  • the heavy oil lifting device further includes a first transmission pipeline 161, the first transmission pipeline 161 is connected to the liquid inlets 110a of a plurality of liquid injection pumps 110, and the first transmission pipeline 161 is configured for transporting liquids.
  • the heavy oil lifting device further includes a filter 140 disposed in the first transmission pipeline 161 and configured to filter the liquid passing through the filter 140 .
  • the filter 140 is used to filter the liquid passing through the filter, which is beneficial to obtain clean power fluid.
  • the heavy oil lifting device further includes a second transmission pipeline 162 , and the liquid outlets 110 b of the plurality of injection pumps 110 are connected to the power fluid transmission pipe 210 through the second transmission pipeline 162 .
  • the heavy oil lifting device further includes a flow meter 130 , and the flow meter 130 is arranged in the second transmission pipeline 162 .
  • the flow meter is used to measure the flow rate of injected power fluid, which is convenient for calculating the final oil recovery.
  • the heavy oil lifting device further includes a third transmission pipeline 163 , and the third transmission pipeline 163 is connected with the oil pipe 230 to transmit the oily mixture.
  • FIG. 2 shows water 801 and oil 802 .
  • the first transmission pipeline 161 transmits the liquid
  • the second transmission pipeline 162 transmits the pressurized liquid
  • the third transmission pipeline 163 transmits the oil-containing mixed liquid 800 .
  • the heavy oil lifting device further includes a separator 150, which is connected to the third transmission pipeline 163, and the separator 150 is configured to separate oil from water for the oily mixed liquid, and the separator 150 includes an outlet
  • the oil port 151 and the water outlet 152 are connected to the first transmission pipeline 161 to form a power fluid circulation loop.
  • the filter 140 is used to filter the water flowing out of the separator 150, which is beneficial to obtain clean power fluid.
  • the water separated by the oil-water separator can be recycled and re-injected as power fluid to realize the closed-loop operation of the entire heavy oil recovery lifting system.
  • the heavy oil lifting device adopts the power fluid closed-loop operation mode.
  • water is used as the power fluid, which is pressurized from the ground and driven into the underground to drive the operation pump to achieve the suction effect.
  • the heavy oil is mixed with well fluid in the pump chamber, and the heavy oil is lifted and recovered in the form of oil-in-water.
  • the oil and water are separated, and the separated water returns to the The wellhead operates continuously, and the water can be recycled during the operation of the whole device, realizing closed-loop operation, improving water utilization and increasing economy.
  • the heavy oil lifting device further includes a heating component 171 configured to heat the liquid to form a thermodynamic fluid.
  • thermal power fluid can be injected according to the viscosity of heavy oil and production requirements.
  • the control unit controls the temperature of the injected power fluid to reduce the viscosity of downhole heavy oil and achieve a better lifting effect.
  • the heavy oil lifting device further includes a casing 261 , and the oil pipe 230 is located in the casing 261 .
  • the space between the oil pipe 230 and the casing 261 is the oil casing annulus 262 .
  • FIG. 3 shows an oil layer 300 .
  • sleeve 261 has an inlet 263 .
  • the inlet 263 may also be located at the end of the sleeve 261 .
  • Well fluid or oil formation enters the oil casing annulus 262 through the inlet 263 .
  • well fluids include heavy oil.
  • the heavy oil lifting device further includes a connector 271 and a sand settler 272 , the power fluid transmission pipe 210 is connected with the sand settler 272 through the connector 271 , and the sand settler 272 Configured to reduce the amount of sand entering the tubing 230 .
  • job pump 220 includes a seal ring.
  • the heavy oil lifting device can adopt a rigid and flexible structure and a compensating sealing method, which has a strong sand discharge performance and reduces or avoids sand jamming of the working pump.
  • the rigid and flexible structure can mean that the oil pipe is a rigid pipe, while the operating pump is a rodless pump.
  • the piston structure in the operating pump can move freely around the piston rod, and there is a flexible type, which can remove sand and well fluid together. , Reduce or avoid the phenomenon of sand plugging or sand jamming.
  • the compensatory sealing method can refer to the use of a pan-seal seal setting, which is compensatory and has a better sealing effect.
  • the operating pump 220 includes a first housing 2291, a second housing 2292, and a first reversing valve 2201 and a second reversing valve located in the second housing 2292. 2202, and the piston structure 2203.
  • the first housing 2291 is located inside the second housing 2292 .
  • the working pump 220 includes an opening 2211 connected to an oil pipe through which the oil-containing mixture enters the oil pipe to be lifted through the oil pipe.
  • the operating pump 220 includes an oil inlet 2208 and an oil inlet 2209 , and check valves 2210 are respectively provided at the oil inlet 2208 and the oil inlet 2209 to facilitate the entry of crude oil into the operating pump 220 .
  • the piston structure 2203 may be referred to as a reciprocating piston, and the working pump 220 may be referred to as a reciprocating pump.
  • the first reversing valve 2201 includes a first spool, the first spool includes a first guide rod 011 and a third piston 012, the second reversing valve 2202 includes a second spool, and the first spool includes a first guide rod 011 and a third piston 012.
  • the second spool includes a second guide rod 021 and a fourth piston 022 .
  • the first reversing valve 2201 also includes a first piston cylinder 031, the first valve core moves in the first piston cylinder 031, and the second reversing valve 2202 also includes a second piston cylinder 032, The second spool moves in the second piston cylinder 032 .
  • the working pump 220 also includes openings 2240-2249 through which liquid can enter corresponding lines or chambers.
  • openings 2240 - 2249 are located in second housing 2292 .
  • the working pump 220 further includes a channel 2251 , a channel 2252 and a channel 2261 , and the channels 2251 , 2252 and 2261 are configured to pass motive fluid.
  • the piston structure 2203 includes a piston rod 30 and a first piston 31 and a second piston 32 respectively located at two ends of the piston rod 30 .
  • the piston structure 2203 can rotate around the axis of the piston rod 30 to facilitate sand discharge, and the heavy oil lifting device provided by some embodiments of the present disclosure can realize sand-carrying production.
  • the piston rod 30 is not fixed in its axial direction, and the piston rod 30 can rotate around its axial direction to facilitate sand discharge.
  • the operating pump 220 includes a partition member 280, and the partition member 280 separates the pump chamber 22 into a first chamber 22a and a second chamber 22b.
  • the first chamber 22a includes a first oil chamber 2281 and a second chamber 22b.
  • the first power fluid chamber 2271 and the second chamber 22b include a second power fluid chamber 2272 and a second oil chamber 2282 .
  • the first piston 31 is located in the first chamber 22a and the first chamber 22a is divided into a first power fluid chamber 2271 and a first oil chamber 2281, and the second piston 32 is located in the second chamber. 22b and divides the second chamber 22b into a second power fluid chamber 2272 and a second oil chamber 2282, the piston rod 30 passes through the partition member 280, and the piston structure 2203 can rotate around the axis of the piston rod.
  • the working pump 220 includes a pump chamber 22
  • the pump chamber 22 includes a first oil chamber 2281 , a second oil chamber 2282 , a first power fluid chamber 2271 , and a second power fluid chamber 2272 .
  • the first oil chamber 2281 can also be called the upper oil chamber
  • the second oil chamber 2282 can also be called the lower oil chamber
  • the first power fluid chamber 2271 can also be called the upper power fluid chamber
  • the second power fluid chamber 2272 can also be called Make the lower power fluid cavity.
  • the working surface of the power fluid chamber and the working surface of the oil chamber work on two different end surfaces of the same piston, so the efficiency is higher.
  • the upper surface and the lower surface of the first piston 31 are the working surface of the first power fluid chamber 2271 and the working surface of the first oil chamber 2281 respectively.
  • the lower surface and the upper surface of the second piston 32 are the working surface of the second power fluid chamber 2272 and the working surface of the second oil chamber 2282 respectively.
  • the pipelines of the working pump 220 include two pump oil pipelines (pump oil pipeline 2231, pump oil pipeline 2232), 2 reversing pipelines (reversing pipeline 2233, reversing pipeline 2234) and 2 Power fluid pipelines (liquid inlet pipeline 2235, fluid outlet pipeline 2236), a total of six pipelines.
  • pump oil pipeline 2231 pump oil pipeline 2231
  • pump oil pipeline 2232 pump oil pipeline 2232
  • reversing pipeline 2233 reversing pipeline 2234
  • Power fluid pipelines liquid inlet pipeline 2235, fluid outlet pipeline 2236
  • six lines surround the piston structure 2203 symmetrically.
  • both the reversing line and the power fluid line are used for power fluid.
  • the central connection line between the pump oil pipeline 2231 and the pump oil pipeline 2232 can pass through the center C0 of the working pump, and the central connection line between the reversing pipeline 2233 and the reversing pipeline 2234 can pass through the center C0 of the working pump,
  • the central connecting line of the liquid inlet pipeline 2235 and the liquid outlet pipeline 2236 may pass through the center C0 of the working pump.
  • the reversing pipeline 2233 and the liquid outlet pipeline 2236 are located on one side of the central line between the pump oil pipeline 2231 and the pump oil pipeline 2232, and the reversing pipeline 2234 and the liquid inlet pipeline 2235 are located at the side of the pump oil pipeline 2231 and the pump oil pipeline 2232.
  • the other side of the central line of the pump oil pipeline 2232 is to facilitate the circulation of power fluid (reversing fluid).
  • the opening 2241 communicates with the pump oil line 2231
  • the opening 2242 communicates with the pump oil line 2232
  • the reversing fluid can pass through the opening 2244 and the opening 2245
  • the power fluid can pass through the opening 2243 and the opening 2246.
  • line 2233 Connected to line 2233.
  • both opening 2249 and opening 2247 communicate with the liquid inlet line 2235
  • both openings 2248 and 2240 communicate with the liquid outlet line 2236 .
  • the power fluid in the inlet line 2235 can enter the pump cavity through the opening 2247, the starved liquid can enter the outlet line 2236 through the opening 2248, and the power fluid in the inlet line 2235 can enter the pump through the opening 2249 cavity, starved fluid can enter the outlet line 2236 through the opening 2240.
  • the power fluid is pressurized by the liquid injection pump 110 on the ground and enters the working pump 220 through the power fluid transmission pipe 210 .
  • the power fluid enters the first power fluid chamber 2271 through the power fluid pipeline (inlet pipeline 2235), and drives the piston structure 2203 to move downward.
  • the second oil chamber 2282 realizes suction, and the first oil chamber 2281 The thrust is realized, the well fluid is absorbed into the second oil chamber 2282 through the pump oil pipeline 2231, and the well fluid in the first oil chamber 2281 is pushed out to the pump oil pipeline 2232.
  • the power fluid in the second power fluid chamber 2272 (the liquid) is pushed out to the reversing pipeline 2233 and the liquid outlet pipeline 2236, and the well fluid in the exhausted fluid and pump oil pipeline 2232 is mixed at the opening 2211 to form an oily mixed fluid; the piston structure 2203 runs to the lowest end and transmits power through the reversing pipeline
  • the liquid realizes the reversing movement of the piston structure 2203, the power fluid enters the second power fluid chamber 2272, drives the piston structure 2203 to move upward, the second oil chamber 2282 realizes the thrust, pushes out the well fluid in the second oil chamber 2282, and passes through the pump oil pipeline 2231 mixes with the power fluid (lean liquid) in the power fluid pipeline (fluid pipeline 2236) to form an oil-containing mixed fluid.
  • the first oil chamber 2281 realizes suction to suck the well fluid into the first oil chamber 2281, and the oil-containing mixed fluid passes through the oil pipe It is lifted to the ground to do the next cycle, repeating itself, to realize the continuous lifting of crude oil.
  • an oil outlet check valve can be set in the pump oil pipeline 2231, and an oil outlet check valve can be set in the pump oil pipeline 2232.
  • one of the oil pumping pipeline 2231 and the oil pumping pipeline 2232 is an oil inlet pipeline, and the other is an oil outlet pipeline.
  • one of the oil pumping pipeline 2231 and the oil pumping pipeline 2232 is an oil inlet pipeline, and the other is an oil outlet pipeline.
  • the first reversing valve 2201 is configured to push the piston structure 2203 to move downward under the action of the reversing fluid/power fluid, and the piston structure 2203 drives the second reversing valve when it moves downwards.
  • the valve 2202 runs from top to bottom; the second reversing valve 2202 is configured to push the piston structure 2203 to run upwards under the action of the reversing fluid/power fluid, and when the piston structure 2203 moves upwards, it drives the first reversing valve 2201 from bottom to top run.
  • the first reversing valve 2201 reciprocates in the up and down direction, and the second reversing valve 2202 reciprocates in the up and down direction.
  • first reversing valve 2201 moves from top to bottom under the action of power fluid, so that the piston structure moves from top to bottom
  • second reversing valve 2202 moves from bottom to top under the action of power fluid, so that the piston structure moves from Bottom up movement.
  • the piston structure 2203 moves between the top dead center and the bottom dead center.
  • the first spool of the first reversing valve 2201 is at the top dead center, and the opening 2245 communicates with the opening 2247.
  • the second spool of the second reversing valve 2201 is located at the top dead center, and the opening 2244 communicates with the opening 2240 .
  • the working pump 220 shown in FIG. 4A to FIG. 4C can suck oil into the pump chamber 22 when the piston structure 2203 moves downward and upward, which is beneficial to improve the oil pumping efficiency.
  • Embodiments of the present disclosure do not limit the structure of the working pump 220 as long as it can realize crude oil suction and lifting.
  • At least one embodiment of the present disclosure also provides a heavy oil lifting method, including the following steps.
  • Step S11 using the infusion pump 110 to inhale the liquid and pressurize the liquid to discharge it.
  • Step S12 using the pressurized liquid as the power fluid.
  • Step S13 the power fluid passes through the power fluid transmission pipe 210 to drive the working pump 220 to reciprocate.
  • Step S14 the power fluid becomes depleted fluid and mixes with the well fluid in the pump cavity of the working pump 220 to form an oil-containing mixed fluid.
  • Step S15 the working pump 220 reciprocates so that the oily mixed liquid is lifted to the ground, and there are multiple liquid injection pumps 110, and each liquid injection pump 110 includes a liquid inlet 110a and a liquid outlet 110b, and multiple liquid injection pumps 110
  • the liquid outlet 110b of the liquid injection pump 110 is connected to the control valve 120, and the method further includes: adjusting the control valve 120 so that it can switchably communicate with one liquid injection pump 110 among the plurality of liquid injection pumps 110 so that the power fluid can be transmitted
  • the tube 210 is switchably communicated with one infusion pump 110 among the plurality of infusion pumps 110 .
  • the multiple infusion pumps 110 include at least two infusion pumps 110 with different powers, and the method further includes: selecting an infusion pump 110 with a suitable power for operation according to operating parameters.
  • the production volume of heavy oil in the whole process of heavy oil production shows a decreasing change.
  • it is required to provide different operating power at different stages of heavy oil production.
  • lifting devices with different operating powers should be used in different regions, resulting in the problem of poor versatility of the lifting devices.
  • the ground hydraulic station of the system of the invention adopts multiple injection pumps of different types.
  • the heavy oil lifting device and method provided by the embodiments of the present disclosure can switch between different injection pumps according to different periods of operation and different ground conditions, which improves the overall efficiency of the whole set. Suitability and operational durability of the device.
  • the liquid injection pump 110 with the power corresponding to the operating parameters can be selected to operate, so as to facilitate the recovery of heavy oil.
  • the liquid injection pump 110 of the first power is used, and as the mining progresses, the liquid injection pump 110 of the second power is used, and the first power is smaller than the second power.
  • Embodiments of the present disclosure include but are not limited to this .
  • the heavy oil lifting method also includes: oil-water separation of the oil-containing mixed liquid lifted to the ground, and the separated water is sucked into the liquid injection pump 110 as liquid (suction liquid) to form a circulation loop of power fluid and increase water flow rate.
  • the utilization rate increases the economy.
  • water is used as the power fluid, which is pumped into the ground to drive the working pump to achieve the suction effect after being pressurized from the ground, and is also used as the carrier for lifting after mixing with heavy oil.
  • the well fluid is mixed to lift the heavy oil in the form of oil-in-water. After extraction, the oil and water are separated, and the separated water returns to the wellhead for continuous operation. The water can be recycled to realize closed-loop operation.
  • the heavy oil lift method also includes heating the motive fluid to form a thermodynamic fluid.
  • a heating element may be used to heat the power fluid.
  • Fig. 6 is a schematic diagram of a heavy oil lifting device provided by an embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram of a heavy oil lifting device or method provided by an embodiment of the present disclosure.
  • the heavy oil lifting device further includes a control unit 170 connected to the control valve 120 to be configured to control the injection of the control valve 120 and one of the plurality of injection pumps 110 .
  • the liquid pump 110 communicates.
  • the heavy oil lifting device and method provided by some embodiments of the present disclosure are intelligent heavy oil lifting devices and methods, realizing intelligent production.
  • the heavy oil production system needs manual equipment debugging, and the later operation also requires special personnel for regular management and maintenance, which brings a great burden to the management cost.
  • the production unit needs an intelligent production method, which can reduce personnel operations and realize unmanned production. control and reduce operational risks.
  • the intelligent heavy oil lifting system mainly includes the following intelligent methods.
  • the detector provides important operational information such as heavy oil viscosity, heavy oil composition, well depth, and temperature as operational input parameters.
  • the system changes the operation parameters accordingly to ensure the optimal operation plan.
  • Heating pipes are arranged on the ground, and the system automatically judges whether to provide thermal power fluid according to the viscosity of heavy oil and the demand of production volume, so as to reduce the viscosity of heavy oil and improve the production efficiency of heavy oil. (Usually double-acting rodless oil recovery equipment does not have a heating system, and there is no option for using a thermal power fluid).
  • the hydraulic station is equipped with monitoring components (for example, a monitoring camera), which can realize remote control, real-time display of operating parameters, realize unmanned management, and reduce operating costs. Once the operation parameters are abnormal, the system will send out an alarm and suspend the operation, which can effectively ensure the safety of the operation.
  • monitoring components for example, a monitoring camera
  • Some embodiments of the present disclosure provide an intelligent heavy oil lifting method, including the following steps.
  • Step S21 start the device, and obtain operating parameters; for example, provide operating information such as heavy oil viscosity, heavy oil composition, well depth, and temperature through the detector as operating parameters, and operating parameters may also include oil production, operating pressure, and power fluid injection volume Wait.
  • operating parameters for example, provide operating information such as heavy oil viscosity, heavy oil composition, well depth, and temperature through the detector as operating parameters, and operating parameters may also include oil production, operating pressure, and power fluid injection volume Wait.
  • Step S22 start operation, automatically select the power of the operation liquid injection pump according to the provided operation parameters, judge whether to provide thermal power fluid, and start the operation, inject power fluid stably, and the control panel displays the power fluid flow rate, working pressure, and temperature of the working pump in real time , stroke number, well fluid output and other information, and at the same time start the monitoring components to monitor the abnormal conditions of the operation parameters in the whole process, so as to facilitate the operation safety.
  • Step S23 the power fluid is injected into the working pump through the power fluid transmission pipe to provide power for the working pump, and the hydraulic energy is converted into mechanical energy, which drives the movement of the piston structure to realize the suction of the pump chamber.
  • the piston structure can adopt the form of single piston or multiple pistons to realize multiple Two pump chambers operate at the same time, increasing the mixing volume of well fluid and exhaust fluid (input power fluid) so as to improve production efficiency.
  • Step S24 the well fluid is sucked into the pump cavity, and mixed with the depleted fluid to increase the water content of the heavy oil to form a mixed fluid.
  • Step S25 lubricating in the form of oil-in-water, and the oil-containing mixture is lifted to the wellhead through the oil pipe.
  • Step S26 the oil-containing mixed liquid produced at the wellhead flows into the comprehensive treatment station along the surface pipeline, and the oil-water separation is carried out through the separator.
  • Step S27 the separated water is reused as power fluid through filtration, saving water resources and forming a closed-loop operation of the system.
  • the turbofracturing equipment provided by the embodiments of the present disclosure may further include one or more processors and one or more memories.
  • a processor can process data signals and can include various computing architectures, such as a Complex Instruction Set Computer (CISC) architecture, an Architecture Reduced Instruction Set Computer (RISC) architecture, or an architecture that implements a combination of multiple instruction sets.
  • the memory may hold instructions and/or data for execution by the processor. These instructions and/or data may include codes for implementing some or all functions of one or more devices described in the embodiments of this application.
  • memory includes dynamic random access memory (DRAM), static random access memory (SRAM), flash memory (flash memory), optical memory (optical memory), or other memories known to those skilled in the art.
  • control unit 170 includes codes and programs stored in memory; the processor can execute the codes and programs to implement some or all of the functions of the control unit 170 as described above.
  • control unit 170 may be a special hardware device, configured to implement some or all of the functions of the control unit 170 as described above.
  • control part 170 may be a circuit board or a combination of multiple circuit boards for realizing the above-mentioned functions.
  • the circuit board or a combination of multiple circuit boards may include: (1) one or more processors; (2) one or more non-transitory computer-readable and (3) processor-executable firmware stored in the memory.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)

Abstract

提供一种稠油举升装置和稠油举升方法。该稠油举升装置包括:多个注液泵,每个注液泵包括进液口和出液口,注液泵被配置为吸入液体并将液体增压后排出;控制阀,包括第一端和第二端,多个注液泵的出液口与控制阀的第一端相连;动力液传输管,与控制阀的第二端相连,以被配置为传输增压后的液体;作业泵,与动力液传输管相连,增压后的液体作为动力液驱动作业泵往复运动;控制阀被配置为可切换地与多个注液泵中的一个注液泵连通以使得动力液传输管可切换地与多个注液泵中的一个注液泵连通。该稠油举升装置设置多台注液泵,可实现切换使用,增强设备使用寿命和使用周期,提高稳定性,维护方便,节约维护时间,运行稳定,提高稳定性。

Description

稠油举升装置和方法
相关申请的交叉引用
出于所有目的,本专利申请要求于2021年06月28日递交的中国专利申请第202110717853.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一实施例涉及一种稠油举升装置和方法。
背景技术
稠油举升过程中,随着油温、气温的持续降低,稠油粘度会急剧上升,逐步变成硬块,就像公路上的沥青。
通常,在稠油举升过程中需要采用降粘措施,以利于稠油被顺利采出。稠油开采需要两套系统,一是举升原油的机械系统,二是在举升过程中给原油降粘的降粘系统。机械系统分为有杆泵泵和无杆泵两种,通常有杆泵包括游梁式抽油机、螺杆泵;无杆泵包括水力泵、电潜离心泵等。举升降粘主要方式包括掺稀油、热力降粘、和化学药剂降粘方式。辽河油田采用电加热杆进行热力降粘,并配合游梁式抽油机将稠油举升采出,新疆油田采用掺稀油降粘方式配合螺杆泵将稠油举升采出,两种作业方案均花费较大成本。因此需要一种可以降低成本,减少施工作业的稠油举升技术。
发明内容
本公开的至少一实施例涉及一种稠油举升装置和方法。
本公开的至少一实施例提供一种稠油举升装置,包括:多个注液泵,每个注液泵包括进液口和出液口,所述注液泵被配置为吸入液体并将所述液体增压后排出;控制阀,包括第一端和第二端,所述多个注液泵的出液口与所述控制阀的第一端相连;动力液传输管,与所述控制阀的第二端相连,以被配置为传输所述增压后的液体;作业泵,与所述动力液传输管相连,所述增压后的液体作为动力液驱动所述作业泵往复运动;所述控制阀被配置为可切 换地与所述多个注液泵中的一个注液泵连通以使得所述动力液传输管可切换地与所述多个注液泵中的一个注液泵连通。
例如,所述多个注液泵包括至少两个功率不同的注液泵。
例如,稠油举升装置还包括油管,所述动力液传输管位于所述油管中,所述作业泵位于所述油管中。
例如,所述动力液驱动所述作业泵往复运动后形成乏液,所述乏液与井液混合形成含油混合液,所述作业泵被配置为将所述含油混合液通过所述油管举升至地面。
例如,稠油举升装置还包括第一传输管路,所述第一传输管路与所述多个注液泵的进液口相连,所述第一传输管路被配置为传输所述液体。
例如,稠油举升装置还包括过滤器,所述过滤器设置在所述第一传输管路中,并被配置为对经过所述过滤器的液体进行过滤。
例如,稠油举升装置还包括第二传输管路,所述多个注液泵的出液口与所述动力液传输管通过所述第二传输管路相连。
例如,稠油举升装置还包括流量计,所述流量计设置在所述第二传输管路中。
例如,稠油举升装置还包括第三传输管路,所述第三传输管路与所述油管相连,以传输所述含油混合液。
例如,稠油举升装置还包括分离器,所述分离器与所述第三传输管路相连,所述分离器被配置为对所述含油混合液进行油水分离,所述分离器包括出油口和出水口,所述出水口与所述第一传输管路相连,以形成所述动力液的循环回路。
例如,稠油举升装置还包括加热部件,所述加热部件被配置为对所述液体进行加热以形成热动力液。
例如,稠油举升装置还包括套管,所述油管位于所述套管中。
例如,稠油举升装置还包括控制部件,所述控制部件与所述控制阀相连,以被配置为控制所述控制阀与所述多个注液泵中的一个注液泵连通。
例如,所述作业泵包括壳体、活塞结构和分隔部件,所述分隔部件将所述壳体分隔为第一腔和第二腔,所述活塞结构包括活塞杆、第一活塞和第二活塞,所述第一活塞和所述第二活塞分设在所述活塞杆的两端,所述第一活 塞位于所述第一腔内并将所述第一腔分隔为第一动力液腔和第一油腔,所述第二活塞位于所述第二腔内并将所述第二腔分隔为第二动力液腔和第二油腔,所述活塞杆穿过所述分隔部件,并且所述活塞结构可围绕所述活塞杆的轴线旋转。
本公开的至少一实施例还提供一种稠油举升方法,包括:利用注液泵吸入液体并将所述液体增压后排出;以增压后的液体作为动力液;所述动力液通过动力液传输管以驱动作业泵往复运动;所述动力液成为乏液并与井液在所述作业泵的泵腔中混合形成含油混合液;所述作业泵往复运动使得所述含油混合液被举升至地面;所述注液泵设置为多个,每个注液泵包括进液口和出液口,所述多个注液泵的出液口与所述控制阀相连,所述方法还包括:调节所述控制阀,使其可切换地与所述多个注液泵中的一个注液泵连通以使得所述动力液传输管可切换地与所述多个注液泵中的一个注液泵连通。
例如,所述多个注液泵包括至少两个功率不同的注液泵,所述方法还包括:根据作业参数选择适合功率的注液泵进行作业。
例如,稠油举升方法还包括:对举升至地面的所述含油混合液进行油水分离,分离出来的水作为所述液体被吸入所述注液泵,以形成所述动力液的循环回路。
例如,稠油举升方法还包括对动力液进行加热以形成热动力液。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一实施例提供的一种稠油举升装置的示意图。
图2为本公开一实施例提供的一种稠油举升装置的示意图。
图3为本公开一实施例提供的一种稠油举升装置中的地下作业部分的示意图。
图4A为本公开一实施例提供的一种稠油举升装置中的作业泵的两条泵油管线位置处的剖视示意图。
图4B为本公开一实施例提供的一种稠油举升装置中的作业泵的两条换 向管线位置处的剖视示意图。
图4C为本公开一实施例提供的一种稠油举升装置中的作业泵的两条动力液管线位置处的剖视示意图。
图4D为图4A的沿线M-N的剖视示意图。
图5为本公开一实施例提供的一种稠油举升装置或方法的示意图。
图6为本公开一实施例提供的一种稠油举升装置的示意图。
图7为本公开一实施例提供的一种稠油举升装置或方法的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
通常的稠油举升装置存在以下至少之一的问题。
(1)、稠油举升装置的液压站使用单台柱塞泵,在不同情况下不能调整柱塞泵的功率等参数,若柱塞泵故障,影响稠油举升作业。
(2)、消耗成本高。
通常的稠油举升技术不管是电加热、掺稀油、还是化学降粘,都要耗费大量的成本,给稠油开采支出带来经济负担。
(3)、机械磨损严重,存在堵砂风险。
面对含砂油井,通常技术方案采用的常规采油机易出现堵砂、卡砂现象,会造成设备停工甚至是安全事故,同时采用有杆泵会出现偏磨现象,采用无杆采油机设备结构复杂,作业效率低,影响采收收益。
(4)、适用性不强,效率低。
常规游梁式抽油机对于水平井、复合井适用性不强,而水平井和复合井是未来稠油开采技术的发展趋势,可大幅度提高稠油井采收率。
本公开至少一实施例提供的稠油举升装置,可解决上述至少之一的问题。
图1为本公开一实施例提供的一种稠油举升装置的示意图。图2为本公开一实施例提供的一种稠油举升装置的示意图。图3为本公开一实施例提供的一种稠油举升装置中的地下作业部分的示意图。图4A为本公开一实施例提供的一种稠油举升装置中的作业泵的两条泵油管线位置处的剖视示意图。图4B为本公开一实施例提供的一种稠油举升装置中的作业泵的两条换向管线位置处的剖视示意图。图4C为本公开一实施例提供的一种稠油举升装置中的作业泵的两条动力液管线位置处的剖视示意图。图4D为图4A的沿线M-N的剖视示意图。图5为本公开一实施例提供的一种稠油举升装置或方法的示意图。以下结合图1至图5对本公开的实施例提供的一种稠油举升装置以及稠油举升方法进行描述。
如图1、图2、以及图5所示,稠油举升装置包括地面液压站1和地下作业部分2,地面液压站1包括多个注液泵110、以及控制阀120;地下作业部分2包括动力液传输管210、以及作业泵220。如图1所示,每个注液泵110包括进液口110a和出液口110b,注液泵110被配置为吸入液体并将液体增压后排出;多个注液泵110的出液口110b与控制阀120的第一端120a相连;即,注液泵110的出液口110b共同连接至控制阀120的第一端120a,控制阀120的第二端120b与动力液传输管210相连,动力液传输管210被配置为传输增压后的液体;动力液传输管210与作业泵220相连,增压后的液体作为动力液驱动作业泵220往复运动。例如,注液泵110通过动力液传输管210与作业泵220相连。例如,作业泵220为井下作业泵。例如,动力液包括水。
如图1、图2、以及图5所示,控制阀120被配置为可切换地与多个注液泵110中的一个注液泵110连通以使得动力液传输管210可切换地与多个注液泵110中的一个注液泵110连通。
本公开的实施例提供的稠油举升装置适用于稠油开采作业,可用于稠油举升工序。
与通常的稠油举升装置的液压站中,仅设置单台注液泵不同,本公开的实施例提供的稠油举升装置设置多台注液泵,可实现切换使用,举升装置的结构简单,通过控制阀120使得在多个注液泵中可切换地选择使用一个适合的注液泵,其余可作为备用,增强设备使用寿命和使用周期,提高稳定性,维护方便,节约维护时间,运行稳定,提高稳定性。
例如,注液泵110被配置为吸入低压力的液体并将其增压以形成高压力的液体。高压力的液体的压力大于低压力的液体的压力。低压力的液体也可称作吸入液体,高压力的液体也可称作排出液体。低压力的液体可称作第一压力的液体。高压力的液体可称作第二压力的液体。例如,注液泵110被配置为吸入第一压力的液体并被配置为排出第二压力的液体,第二压力大于第一压力。
例如,多个注液泵110包括至少两个功率不同的注液泵110。例如,多个注液泵可以具有不同的功率、不同的型号、不同的结构等,可实现切换使用不同规格的注液泵,提高选择的多样性。选用不同功率的注液泵切换使用,可以满足不同时期井下的作业需求,为稠油开采作业提供更多操控选择。
例如,注液泵可采用三缸或者五缸,配置多台功率性能不同的注液泵,通过输入作业参数自动选择判断合适作业的注液泵,控制动力液注入流量来调节采出井液量。设置多台注液泵,可以一个使用其余备用,方便维修。
例如,控制阀120包括电控控制阀,但不限于此,可根据其要实现的作用选择适合的控制阀。例如,在一些实施例中,控制阀120包括阀体和阀芯。例如,在一些实施例中,通过阀芯的旋转来使得控制阀120的第一端120a与选定的注液泵110连通。例如,控制阀120包括电控换向阀。例如,控制阀120包括电磁换向阀。
例如,注液泵110作为动力泵。注液泵110也可称作辅助泵,作业泵220也可称作主泵或抽油泵。例如,注液泵110包括柱塞泵,但不限于此。例如,作业泵220包括无杆泵,但不限于此。例如,作业泵220包括活塞泵,但不限于此。作业泵220采用无杆泵的情况下,稠油举升装置结构简单,维护方便,运行稳定,从井口到井下泵头,没有往复运动的抽油杆,降低机械磨损 对装置本身造成的损伤,无偏磨现象;适用性更广,适用于砂井、超深井、水平井、斜井,复合井作业。例如,作业泵包括活塞可上下往复式作业,作业泵结构形式不尽相同,也可选择其它结构的泵。
本公开的实施例提供的稠油举升装置,液压系统工作后的乏液在泵腔中与井液混合,使井筒内液量为常规采油液量的2-3倍,因此井筒内的流速较快,能有效地把砂携带到地面,减轻或避免堵砂现象。
螺杆泵采油设备本身性能不稳定,杆滞后、断杆现象频繁发生,给持续稳定作业带来隐患。水力泵等设备开采效率低,且作业压强要求高,对油管性能要求高,同样存在作业隐患。本公开的实施例提供的稠油举升装置完全适用于水平井和复合井的开采,可以大幅度提升稠油采收率。
本公开的实施例提供的稠油举升装置性能稳定,可持续作业。针对超深井,通常稠油开采设备适用性并不强,受结构和运行机理限制普遍作业深度在2000米以上,而本公开的实施例提供的稠油举升装置因采用水为动力介质,压力损失小,作业压力需求低,配备非连续油管(常规油管)可在地下3000米进行作业,配合连续油管可在地下5000米进行作业,为目前抽油举升开采技术之最。
例如,如图2和图3所示,稠油举升装置还包括油管230,动力液传输管210位于油管230中,作业泵220位于油管230中。地下作业部分2还包括油管230。油管可选用非连续油管(常规油管)或连续油管,常规油管由单节8-10米单节管线连接组成使用,连续油管长度可为5000-7000米,在通常技术中为稠油举升作业深度之最,使用时根据作业需求进行选择。动力液传输管在油管内部,作用是输送动力液。常规油管满足地下3000米以上作业需求,连续油管满足地下5000米作业需求。完全适用于砂井、超深井、水平井、复合井作业,迎合稠油开采发展大趋势。
例如,动力液传输管210的中心可位于油管230的中心重合,此情况下,动力液传输管210可称作中心管。
例如,动力液驱动作业泵220往复运动后形成乏液,乏液与井液混合形成含油混合液,作业泵220被配置为将含油混合液通过油管230举升至地面。
如图2所示,动力液传输管210的一端与控制阀120相连,动力液传输管210的另一端与作业泵220相连,增压后的液体经过动力液传输管210到 达作业泵220,作为作业泵220的动力液,驱动作业泵220在油管230中往复运动,以抽吸含有稠油的井液,经过泵腔的液体成为乏液与井液混合成为含油混合液,作业泵220往复运动举升混合液到地面。图2示出了地面400。
因乏液与井液混合,降低稠油的粘度,利于稠油举升。举升原油机械系统和降粘系统合二为一,可以大幅降低举升成本。举升装置结构简单,地面建设液压站,采用水作为作业介质,提供高压力的液体的注液泵把分离器分离出来的水加压后通过动力液传输管注入井下为作业泵提供动力,且根据输入参数不同,控制部件可自动选择判断用于作业的注液泵。与通常的稠油举升方式相比,大幅度降低开采成本。将动力液介质也可采用加入乳化液的水,或者是油等介质。
本公开的实施例提供的稠油举升装置,可以完全替代电加热、掺稀油、化学降粘,通过装置的运行机理实现稠油采出,不需要增加额外稠油降粘措施,与电加热相比可年节约24万元电费,与掺稀油相比可以节约掺稀油的费用,根据井况不同,掺稀油比例在30%以上,塔河油田甚至达到100%以上,年节约费用30万-80万,与化学降粘方式相比可以节约下化学药剂使用费用。
本公开的实施例提供的稠油举升装置将举升机械系统和举升降粘系统合二为一,可以大幅降低举升成本。地面建设液压站,以水为动力液,通过注液泵加压通过动力液传输管注入井下为作业泵提供动力带动活塞进行往复式运动,井液被抽入泵腔中与动力液混合,提升稠油含水量,同时增加润滑举升采出,采出后的井液流入计量站,通过油水分离设备分离出的水,可以循环利用重新作为动力液注入作业。
本公开的实施例提供的稠油举升装置的作业泵在动力液的作用下,把液压能转换成机械能,做上下往复运动,井液被抽入泵腔中与动力液混合,提升稠油含水量,使井筒中的稠油含水量大于70%,因此采出液以水包油的形式被举升到地面,实现稠油采出。采出后的井液流入计量站。
稠油举升技术原理:以水作为动力液驱动作业泵运转,同时乏液与井液混合,增加稠油含水率,以水包油的形式将原油举升采出,动力液不限于水,可在水中加入乳化液或化学药剂,也可将水替换为其他适合的液体作为动力液。
例如,如图2所示,稠油举升装置还包括第一传输管路161,第一传输 管路161与多个注液泵110的进液口110a相连,第一传输管路161被配置为传输液体。
例如,如图2所示,稠油举升装置还包括过滤器140,过滤器140设置在第一传输管路161中,并被配置为对经过过滤器140的液体进行过滤。过滤器140用于对经过过滤器的液体进行过滤,利于获得洁净的动力液。
例如,如图2所示,稠油举升装置还包括第二传输管路162,多个注液泵110的出液口110b与动力液传输管210通过第二传输管路162相连。
例如,如图2所示,稠油举升装置还包括流量计130,流量计130设置在第二传输管路162中。流量计用于计量注入动力液流量,方便计算最终采油量。
例如,如图2所示,稠油举升装置还包括第三传输管路163,第三传输管路163与油管230相连,以传输含油混合液。
图2示出了水801以及油802,第一传输管路161传输液体,第二传输管路162传输增压后的液体,第三传输管路163传输含油混合液800。
例如,如图2所示,稠油举升装置还包括分离器150,分离器150与第三传输管路163相连,分离器150被配置为对含油混合液进行油水分离,分离器150包括出油口151和出水口152,出水口152与第一传输管路161相连,以形成动力液的循环回路。例如,过滤器140用于过滤从分离器150中流出的水,利于获得洁净的动力液。通过油水分离器分离出的水,可以循环利用重新作为动力液注入作业,实现整个稠油开采举升系统闭环工作。
本公开的一些实施例提供的稠油举升装置采用动力液闭环运行模式,在稠油举升装置中,水既作为动力液,从地面加压后打入地下驱动作业泵运动实现抽吸效果,又作为和稠油混合后实现举升的载体,在泵腔中与井液混合,将稠油以水包油形式举升采出,采出后经油水分离,分离出的水重新回到井口进行持续作业,整个装置运行过程中水可循环利用,实现闭环运行,提高水的利用率,增加经济性。
例如,如图2所示,稠油举升装置还包括加热部件171,加热部件171被配置为对液体进行加热以形成热动力液。同时根据稠油粘度不同和开采需求可以选择注入热动力液。通过输入作业参数,控制部件控制注入动力液温度来降低井下稠油粘度,起到更好的举升效果。
例如,如图3所示,稠油举升装置还包括套管261,油管230位于套管261中。油管230和套管261之间的空间为油套环空262。图3示出了油层300。例如,如图3所示,套管261具有入口263。在其他的实施例中,入口263也可位于套管261的端部。井液或油层通过入口263进入油套环空262中。例如,井液包括稠油。
例如,在一些实施例中,如图3所示,稠油举升装置还包括连接器271和沉砂器272,动力液传输管210通过连接器271与沉砂器272相连,沉砂器272被配置为减少进入油管230中的砂的量。
例如,在一些实施例中,作业泵220包括密封圈。例如,在一些实施例中,稠油举升装置可采用钢性柔型的结构和补偿式的密封方式,具有很强的排砂性能,减少或避免作业泵出现卡砂现象。例如,钢性柔型的结构可指油管为刚性管,而作业泵为无杆泵,例如,作业泵中的活塞结构可以围绕活塞杆自由活动,存在柔型,可以将砂与井液一同排除,减轻或避免出现堵砂或卡砂的现象。例如,补偿式的密封方式可指采用泛塞密封设置,具有补偿性,密封效果更好。
例如,如图4A所示,在一些实施例中,作业泵220包括第一壳体2291、第二壳体2292以及位于第二壳体2292内的第一换向阀2201、第二换向阀2202、以及活塞结构2203。第一壳体2291位于第二壳体2292内。例如,如图4A所示,作业泵220包括开口2211,开口2211与油管相连,含油混合液通过开口进入油管以通过油管被举升。例如,如图4A所示,作业泵220包括进油口2208和进油口2209,在进油口2208和进油口2209处分别设置单向阀2210,以利于原油进入作业泵220。活塞结构2203可称作往复活塞,作业泵220可称作往复泵。
例如,参考图4A至图4C,第一换向阀2201包括第一阀芯,第一阀芯包括第一导杆011和第三活塞012,第二换向阀2202包括第二阀芯,第二阀芯包括第二导杆021和第四活塞022。如图4A至图4C所示,第一换向阀2201还包括第一活塞缸031,第一阀芯在第一活塞缸031内运动,第二换向阀2202还包括第二活塞缸032,第二阀芯在第二活塞缸032内运动。
例如,参考图4A至图4C,作业泵220还包括开口2240至2249,液体可通过开口2240至2249进入对应的管线或腔。例如,参考图4A至图4C, 开口2240至2249位于第二壳体2292中。例如,参考图4A至图4C,作业泵220还包括通道2251、通道2252和通道2261,并且通道2251、通道2252和通道2261均被配置为通过动力液。
例如,如图4A至图4C所示,活塞结构2203包括活塞杆30和分别位于活塞杆30两端的第一活塞31和第二活塞32。参考图4A至图4C,活塞结构2203可围绕活塞杆30的轴线旋转,以利于排砂,本公开的一些实施例提供的稠油举升装置可实现携砂开采。例如,如图4A至图4C所示,活塞杆30在其轴向上不固定,活塞杆30可围绕其轴向旋转,以利于排砂。
例如,如图4A至图4C所示,作业泵220包括分隔部件280,分隔部件280将泵腔22分隔为第一腔22a和第二腔体22b,第一腔22a包括第一油腔2281和第一动力液腔2271,第二腔22b包括第二动力液腔2272和第二油腔2282。
例如,如图4A至图4C所示,第一活塞31位于第一腔22a内并将第一腔22a分隔为第一动力液腔2271和第一油腔2281,第二活塞32位于第二腔22b内并将第二腔22b分隔为第二动力液腔2272和第二油腔2282,活塞杆30穿过分隔部件280,并且活塞结构2203可围绕活塞杆的轴线旋转。
例如,如图4A所示,作业泵220包括泵腔22,泵腔22包括第一油腔2281、第二油腔2282、第一动力液腔2271、以及第二动力液腔2272。第一油腔2281也可称作上油腔,第二油腔2282也可称作下油腔,第一动力液腔2271也可称作上动力液腔,第二动力液腔2272也可称作下动力液腔。
如图4A至图4C所示,动力液腔的工作面和油腔的工作面在同一活塞上不同的两个端面上工作,效率更高。例如,对于第一活塞31,第一活塞31的上表面和下表面分别为第一动力液腔2271的工作面和第一油腔2281的工作面。例如,对于第二活塞32,第二活塞32的下表面和上表面分别为第二动力液腔2272的工作面和第二油腔2282的工作面。
例如,如图4D所示,作业泵220的管线包括两条泵油管线(泵油管线2231、泵油管线2232)、2条换向管线(换向管线2233、换向管线2234)和2条动力液管线(进液管线2235、出液管线2236),共计六条管线。例如,六条管线对称环绕在活塞结构2203的周围。例如,换向管线和动力液管线均用于流通动力液。例如,如图4D所示,泵油管线2231和泵油管线2232的 中心连线可通过作业泵的中心C0,换向管线2233和换向管线2234的中心连线可通过作业泵的中心C0,进液管线2235和出液管线2236的中心连线可通过作业泵的中心C0。例如,如图4D所示,换向管线2233和出液管线2236位于泵油管线2231和泵油管线2232的中心连线的一侧,换向管线2234和进液管线2235位于泵油管线2231和泵油管线2232的中心连线的另一侧,以利于动力液(换向液)的流通。
例如,如图4A所示,开口2241与泵油管线2231连通,开口2242与泵油管线2232连通。例如,如图4B所示,换向液可通过开口2244和开口2245,动力液可通过开口2243和开口2246,开口2243和开口2245均与换向管线2234连通,开口2244和开口2246均与换向管线2233连通。例如,如图4C所示,开口2249和开口2247均与进液管线2235连通,开口2248和开口2240均与出液管线2236连通。例如,如图4C所示,进液管线2235中的动力液可通过开口2247进入泵腔,乏液可通过开口2248进入出液管线2236,进液管线2235中的动力液可通过开口2249进入泵腔,乏液可通过开口2240进入出液管线2236。
以下结合图2、图4A至图4C对作业泵的作业过程进行介绍。如图2所示,动力液经地面的注液泵110加压通过动力液传输管210进入作业泵220。参考图4A至图4C,动力液通过动力液管线(进液管线2235)进入第一动力液腔2271,带动活塞结构2203向下运行,此时第二油腔2282实现吸力,第一油腔2281实现推力,井液通过泵油管线2231吸附进第二油腔2282,第一油腔2281中的井液被推出到泵油管线2232,此时,第二动力液腔2272中的动力液(乏液)被推出至换向管线2233以及出液管线2236,乏液和泵油管线2232中的井液在开口2211处混合成为含油混合液;活塞结构2203运行到最下端后通过换向管线输送动力液实现活塞结构2203换向运动,动力液进入第二动力液腔2272,带动活塞结构2203向上运动,第二油腔2282实现推力,将第二油腔2282中的井液推出,通过泵油管线2231与动力液管线(出液管线2236)中动力液(乏液)混合形成含油混合液,此时第一油腔2281实现吸力,将井液吸进第一油腔2281,含油混合液通过油管被举升到地面,做下一个循环,周而复始,实现原油持续举升。
例如,可在泵油管线2231中设置出油单向阀,可在泵油管线2232中设 置出油单向阀。
例如,在活塞结构2203向下运动时,泵油管线2231和泵油管线2232中的一个为进油管线,另一个为出油管线。例如,在活塞结构2203向上运动时,泵油管线2231和泵油管线2232中的一个为进油管线,另一个为出油管线。
例如,如图4A至图4C所示,第一换向阀2201被配置为在换向液/动力液的作用下推动活塞结构2203向下运行,活塞结构2203向下运行时带动第二换向阀2202由上向下运行;第二换向阀2202被配置为在换向液/动力液的作用下推动活塞结构2203向上运行,活塞结构2203向上运行时带动第一换向阀2201由下向上运行。第一换向阀2201在上下方向上往复运动,第二换向阀2202在上下方向上往复运动。例如,第一换向阀2201在动力液的作用下由上向下运动,使得活塞结构由上至下运动,第二换向阀2202在动力液的作用下由下向上运动,使得活塞结构由下至上运动。
例如,活塞结构2203在上止点和下止点之间运动,当活塞结构2203位于上止点时,第一换向阀2201的第一阀芯位于上止点,开口2245和开口2247连通,第二换向阀2201的第二阀芯位于上止点,开口2244和开口2240连通。
图4A至图4C所示的作业泵220,在活塞结构2203向下运动和向上运动两种情况下均能吸油进入泵腔22,利于提高抽油效率。本公开的实施例对于作业泵220的结构不做限定,只要能实现原油抽吸以及举升即可。
本公开至少一实施例还提供一种稠油举升方法,包括如下步骤。
步骤S11、利用注液泵110吸入液体并将液体增压后排出。
步骤S12、以增压后的液体作为动力液。
步骤S13、动力液通过动力液传输管210以驱动作业泵220往复运动。
步骤S14、动力液成为乏液并与井液在作业泵220的泵腔中混合形成含油混合液。
步骤S15、作业泵220往复运动使得含油混合液被举升至地面,注液泵110设置为多个,每个注液泵110包括进液口110a和出液口110b,多个注液泵110的出液口110b与所述控制阀120相连,该方法还包括:调节控制阀120,使其可切换地与多个注液泵110中的一个注液泵110连通以使得所述动力液传输管210可切换地与所述多个注液泵110中的一个注液泵110连通。
例如,通过识别作业参数,匹配合适的注液泵启动,通过控制阀换向使得选用的注液泵的出液口与动力液传输管连通,使得动力液通过动力液传输管注入作业泵。
例如,多个注液泵110包括至少两个功率不同的注液泵110,方法还包括:根据作业参数选择适合功率的注液泵110进行作业。
整个稠油开采过程稠油采出量呈现递减变化,为了保持出油量,要求在稠油开采的不同阶段提供不同的作业功率。另外,因不同稠油田地况也不尽相同,不同地区要采用不同作业功率的举升装置,导致举升装置通用性差的问题。该发明系统地面液压站采用多台不同型号注液泵,本公开的实施例提供的稠油举升装置和方法,可以根据作业不同时期,不同地况切换不同的注液泵作业,提高了整套装置的适用性和作业持久性。
例如,作业参数不同的情况下,可选择该作业参数对应的功率的注液泵110运行,以利于稠油开采。例如,在开采初期,使用第一功率的注液泵110,随着开采的进行,使用第二功率的注液泵110,第一功率小于第二功率,本公开的实施例包括但不限于此。
例如,稠油举升方法还包括:对举升至地面的含油混合液进行油水分离,分离出来的水作为液体(吸入液体)被吸入注液泵110,以形成动力液的循环回路,提高水的利用率,增加经济性。例如,在整个举升装置中,水即作为动力液,从地面加压后打入地下驱动作业泵运动实现抽吸效果,又作为和稠油混合后实现举升的载体,在泵腔中与井液混合,将稠油以水包油形式举升采出,采出后经油水分离,分离出的水重新回到井口进行持续作业,水可循环利用,实现闭环运行。
例如,稠油举升方法还包括对动力液进行加热以形成热动力液。参考图2,可采用加热部件对动力液进行加热。
图6为本公开一实施例提供的一种稠油举升装置的示意图。图7为本公开一实施例提供的一种稠油举升装置或方法的示意图。
例如,如图6和图7所示,稠油举升装置还包括控制部件170,控制部件170与控制阀120相连,以被配置为控制控制阀120与多个注液泵110中的一个注液泵110连通。本公开一些实施例提供的稠油举升装置和方法为智能稠油举升装置和方法,实现智能化开采。
通常,稠油开采系统需要人为进行设备调试,后期运行也需要有专人定期管理维护,这给管理成本带来很大负担,开采单位需求一种智能化开采方式,可以减少人员作业、实现无人操控,降低作业风险。该智能稠油举升系统主要包括以下几个智能化方式。
(1)、探测器提供出稠油粘度、稠油成分、井深、温度等重要作业信息作为作业输入参数,控制系统根据输入作业参数选择合适的输出功率、动力液排量、作业压强,并根据地况改变系统随之改变作业参数,保证最优化的作业方案。
(2)、地面配置加热管,系统根据稠油粘度和采出量需求自动判断是否提供热动力液,从而降低稠油粘度提高稠油开采效率。(通常双作用无杆采油设备没有加热系统,没有用热动力液可选项)。
(3)、液压站配备监测部件(例如,监控摄像头),可实现远程操控,作业参数实时显现,实现无人化管理,降低运营成本。一旦作业参数出现异常,系统发出警报并暂停作业,可有效保证作业安全。
本公开一些实施例提供智能的稠油举升方法,包括如下步骤。
步骤S21、启动装置,获得作业参数;例如,通过探测器提供出稠油粘度、稠油成分、井深、温度等作业信息作为作业参数,作业参数还可包括采油量、作业压力、动力液注入量等。
步骤S22、开始运行,依据提供的作业参数自动选择作业注液泵的功率,判断是否提供热动力液,并开机运转,稳定注入动力液,控制面板实时显示动力液流量、工作压强、作业泵温度、冲程数、井液产出量等信息,同时启动监测部件,全程监测作业参数异常情况,以利于作业安全。
步骤S23、动力液通过动力液传输管注入作业泵,为作业泵提供动力,液压能转化为机械能,带动活塞结构运动,实现泵腔抽吸,活塞结构可采用单活塞或多活塞形式,实现多个泵腔同时作业,提高井液和乏液(输入的动力液)混合量从而提高开采效率。
步骤S24、井液被吸入泵腔内,与乏液混合提高稠油含水率形成混合液。
步骤S25、以水包油的形式,起到润滑作用,含油混合液通过油管被举升到井口。
步骤S26、井口采出的含油混合液顺地面管线流入综合处理站,通过分 离器进行油水分离。
步骤S27、分离出的水通过过滤重新作为动力液使用,节约水资源,形成系统闭环作业。
本公开的实施例提供的涡轮压裂设备还可以包括一个或多个处理器以及一个或多个存储器。处理器可以处理数据信号,可以包括各种计算结构,例如复杂指令集计算机(CISC)结构、结构精简指令集计算机(RISC)结构或者一种实行多种指令集组合的结构。存储器可以保存处理器执行的指令和/或数据。这些指令和/或数据可以包括代码,用于实现本申请实施例描述的一个或多个装置的一些功能或全部功能。例如,存储器包括动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、闪存(flash memory)、光存储器(optical memory),或其他的本领域技术人员熟知的存储器。
在本申请的一些实施例中,控制部件170包括存储在存储器中的代码和程序;处理器可以执行该代码和程序以实现如上所述的控制部件170的一些功能或全部功能。
在本公开的一些实施例中,控制部件170可以是特殊硬件器件,用来实现如上所述的控制部件170的一些或全部功能。例如,控制部件170可以是一个电路板或多个电路板的组合,用于实现如上所述的功能。在本申请实施例中,该一个电路板或多个电路板的组合可以包括:(1)一个或多个处理器;(2)与处理器相连接的一个或多个非暂时的计算机可读的存储器;以及(3)处理器可执行的存储在存储器中的固件。
在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种稠油举升装置,包括:
    多个注液泵,每个注液泵包括进液口和出液口,所述注液泵被配置为吸入液体并将所述液体增压后排出;
    控制阀,包括第一端和第二端,所述多个注液泵的出液口与所述控制阀的第一端相连;
    动力液传输管,与所述控制阀的第二端相连,以被配置为传输所述增压后的液体;
    作业泵,与所述动力液传输管相连,所述增压后的液体作为动力液驱动所述作业泵往复运动,
    其中,所述控制阀被配置为可切换地与所述多个注液泵中的一个注液泵连通以使得所述动力液传输管可切换地与所述多个注液泵中的一个注液泵连通。
  2. 根据权利要求1所述的稠油举升装置,其中,所述多个注液泵包括至少两个功率不同的注液泵。
  3. 根据权利要求1或2所述的稠油举升装置,还包括油管,其中,所述动力液传输管位于所述油管中,所述作业泵位于所述油管中。
  4. 根据权利要求3所述的稠油举升装置,其中,所述动力液驱动所述作业泵往复运动后形成乏液,所述乏液与井液混合形成含油混合液,所述作业泵被配置为将所述含油混合液通过所述油管举升至地面。
  5. 根据权利要求3或4所述的稠油举升装置,还包括第一传输管路,其中,所述第一传输管路与所述多个注液泵的进液口相连,所述第一传输管路被配置为传输所述液体。
  6. 根据权利要求5所述的稠油举升装置,还包括过滤器,其中,所述过滤器设置在所述第一传输管路中,并被配置为对经过所述过滤器的液体进行过滤。
  7. 根据权利要求5所述的稠油举升装置,还包括第二传输管路,其中,所述多个注液泵的出液口与所述动力液传输管通过所述第二传输管路相连。
  8. 根据权利要求7所述的稠油举升装置,还包括流量计,其中,所述流 量计设置在所述第二传输管路中。
  9. 根据权利要求8所述的稠油举升装置,还包括第三传输管路,其中,所述第三传输管路与所述油管相连,以传输所述含油混合液。
  10. 根据权利要求9所述的稠油举升装置,还包括分离器,其中,所述分离器与所述第三传输管路相连,所述分离器被配置为对所述含油混合液进行油水分离,所述分离器包括出油口和出水口,所述出水口与所述第一传输管路相连,以形成所述动力液的循环回路。
  11. 根据权利要求1-10任一项所述的稠油举升装置,还包括加热部件,其中,所述加热部件被配置为对所述液体进行加热以形成热动力液。
  12. 根据权利要求3-11任一项所述的稠油举升装置,还包括套管,其中,所述油管位于所述套管中。
  13. 根据权利要求1-12任一项所述的稠油举升装置,还包括控制部件,其中,所述控制部件与所述控制阀相连,以被配置为控制所述控制阀与所述多个注液泵中的一个注液泵连通。
  14. 根据权利要求1-13任一项所述的稠油举升装置,其中,所述作业泵包括壳体、活塞结构和分隔部件,所述分隔部件将所述壳体分隔为第一腔和第二腔,所述活塞结构包括活塞杆、第一活塞和第二活塞,所述第一活塞和所述第二活塞分设在所述活塞杆的两端,所述第一活塞位于所述第一腔内并将所述第一腔分隔为第一动力液腔和第一油腔,所述第二活塞位于所述第二腔内并将所述第二腔分隔为第二动力液腔和第二油腔,所述活塞杆穿过所述分隔部件,并且所述活塞结构可围绕所述活塞杆的轴线旋转。
  15. 一种稠油举升方法,包括:
    利用注液泵吸入液体并将所述液体增压后排出;
    以增压后的液体作为动力液;
    所述动力液通过动力液传输管以驱动作业泵往复运动;
    所述动力液成为乏液并与井液在所述作业泵的泵腔中混合形成含油混合液;
    所述作业泵往复运动使得所述含油混合液被举升至地面,
    其中,所述注液泵设置为多个,每个注液泵包括进液口和出液口,所述多个注液泵的出液口与所述控制阀相连,
    所述方法还包括:
    调节所述控制阀,使其可切换地与所述多个注液泵中的一个注液泵连通以使得所述动力液传输管可切换地与所述多个注液泵中的一个注液泵连通。
  16. 根据权利要求15所述的稠油举升方法,其中,所述多个注液泵包括至少两个功率不同的注液泵,所述方法还包括:根据作业参数选择适合功率的注液泵进行作业。
  17. 根据权利要求15或16所述的稠油举升方法,还包括:对举升至地面的所述含油混合液进行油水分离,其中,分离出来的水作为所述液体被吸入所述注液泵,以形成所述动力液的循环回路。
  18. 根据权利要求15-17任一项所述的稠油举升方法,还包括对动力液进行加热以形成热动力液。
PCT/CN2021/140491 2021-06-28 2021-12-22 稠油举升装置和方法 WO2023273228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110717853.7A CN113236191A (zh) 2021-06-28 2021-06-28 稠油举升装置和方法
CN202110717853.7 2021-06-28

Publications (1)

Publication Number Publication Date
WO2023273228A1 true WO2023273228A1 (zh) 2023-01-05

Family

ID=77140909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140491 WO2023273228A1 (zh) 2021-06-28 2021-12-22 稠油举升装置和方法

Country Status (4)

Country Link
US (1) US20220412196A1 (zh)
CN (1) CN113236191A (zh)
CA (1) CA3135462A1 (zh)
WO (1) WO2023273228A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
CA3092829C (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
CA3092859A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11604113B2 (en) 2019-09-13 2023-03-14 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11193361B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
CN113236191A (zh) * 2021-06-28 2021-08-10 烟台杰瑞石油装备技术有限公司 稠油举升装置和方法
CN114198064B (zh) * 2021-12-21 2022-10-25 烟台杰瑞石油装备技术有限公司 采油系统、防喷装置以及采油方法
CN115217444B (zh) * 2022-06-29 2024-05-10 陕西航天泵阀科技集团有限公司 井下排液装置及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201180635Y (zh) * 2008-04-18 2009-01-14 刘运林 液压双作用无杆泵
US20110308812A1 (en) * 2010-06-22 2011-12-22 Terry Bullen Artificial lift system
CN103758499A (zh) * 2013-12-30 2014-04-30 三一重型能源装备有限公司 压裂车及压裂设备组
CN106014347A (zh) * 2016-07-05 2016-10-12 刘军 无杆采油的直线液马达采油设备
CN111140212A (zh) * 2020-01-17 2020-05-12 大庆市海油庆石油科技有限公司 撬装式聚合物驱配注装置
CN112032139A (zh) * 2020-07-30 2020-12-04 德州联合石油科技股份有限公司 一种液压注入泵
CN112267853A (zh) * 2020-11-20 2021-01-26 中船重工船舶设计研究中心有限公司 一种基于可燃冰开采平台的除砂系统
CN213064046U (zh) * 2020-06-23 2021-04-27 西安陕鼓动力股份有限公司 一种提高离心压缩机组可靠性的系统
CN112996983A (zh) * 2018-11-09 2021-06-18 芙罗服务管理公司 流体交换设备以及相关控制装置、系统和方法
CN113236191A (zh) * 2021-06-28 2021-08-10 烟台杰瑞石油装备技术有限公司 稠油举升装置和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7633498A (en) * 1997-06-02 1998-12-21 Ecoquip Artificial Lift Ltd. Hydraulic pump jack drive system for reciprocating an oil well pump rod
CN107676237B (zh) * 2017-08-04 2019-06-04 崔迺林 一种水力活塞泵换向阀

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201180635Y (zh) * 2008-04-18 2009-01-14 刘运林 液压双作用无杆泵
US20110308812A1 (en) * 2010-06-22 2011-12-22 Terry Bullen Artificial lift system
CN103758499A (zh) * 2013-12-30 2014-04-30 三一重型能源装备有限公司 压裂车及压裂设备组
CN106014347A (zh) * 2016-07-05 2016-10-12 刘军 无杆采油的直线液马达采油设备
CN112996983A (zh) * 2018-11-09 2021-06-18 芙罗服务管理公司 流体交换设备以及相关控制装置、系统和方法
CN111140212A (zh) * 2020-01-17 2020-05-12 大庆市海油庆石油科技有限公司 撬装式聚合物驱配注装置
CN213064046U (zh) * 2020-06-23 2021-04-27 西安陕鼓动力股份有限公司 一种提高离心压缩机组可靠性的系统
CN112032139A (zh) * 2020-07-30 2020-12-04 德州联合石油科技股份有限公司 一种液压注入泵
CN112267853A (zh) * 2020-11-20 2021-01-26 中船重工船舶设计研究中心有限公司 一种基于可燃冰开采平台的除砂系统
CN113236191A (zh) * 2021-06-28 2021-08-10 烟台杰瑞石油装备技术有限公司 稠油举升装置和方法

Also Published As

Publication number Publication date
CN113236191A (zh) 2021-08-10
US20220412196A1 (en) 2022-12-29
CA3135462A1 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
WO2023273228A1 (zh) 稠油举升装置和方法
US10883350B2 (en) Device and method for water drainage and gas production by pressure control and gas lift
RU2438042C2 (ru) Погружная насосная система (варианты) и способ насосной подачи
WO2008148297A1 (en) A hydraulic oil pump
CN104061142B (zh) 液压驱动抽油泵及采油装置
CN106401925A (zh) 一种井下气液换能增压泵
CN105041213A (zh) 一种二氧化碳气体钻井装置及方法
CN202810812U (zh) 以蒸汽动力举升稠油的采油管柱
US20050109516A1 (en) Rotary and reciprocal well pump system
CN217206403U (zh) 稠油举升装置
CN203702099U (zh) 自动换向封闭液驱无杆采油装置
CN109538453A (zh) 一种自动往复液压采油深井泵
CN204716213U (zh) 脉动压力驱动自平衡活塞泵排液装置
US20210131240A1 (en) Hydraulic Jet Pump and Method for Use of Same
RU165135U1 (ru) Погружная насосная установка
CN204436767U (zh) 液压双作用无杆采油泵及系统
CN210290030U (zh) 一种天然气井用的辅助排液装置
CN102720663A (zh) 一种多功能潜油直线电机专用抽油泵
CN103775318A (zh) 一种液压传动无杆抽油系统
CN207920787U (zh) 一种油田注水井口单井直注式增注泵
CN100395427C (zh) 一种无杆采油方法和采油系统
CN219654862U (zh) 一种液力强制排采装置
CN206487451U (zh) 一种高效采油的井下电潜泵
CN104929595A (zh) 脉动压力驱动自平衡活塞泵排液装置及其工艺方法
CN111520116A (zh) 高油气比油田油气举升装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE