WO2023272684A1 - 一种分布式通信系统及控制方法 - Google Patents

一种分布式通信系统及控制方法 Download PDF

Info

Publication number
WO2023272684A1
WO2023272684A1 PCT/CN2021/104022 CN2021104022W WO2023272684A1 WO 2023272684 A1 WO2023272684 A1 WO 2023272684A1 CN 2021104022 W CN2021104022 W CN 2021104022W WO 2023272684 A1 WO2023272684 A1 WO 2023272684A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
communication
altitude
edge computing
terminal
Prior art date
Application number
PCT/CN2021/104022
Other languages
English (en)
French (fr)
Inventor
郑涛
刘宸
蒙祖尧
Original Assignee
北京交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京交通大学 filed Critical 北京交通大学
Priority to PCT/CN2021/104022 priority Critical patent/WO2023272684A1/zh
Publication of WO2023272684A1 publication Critical patent/WO2023272684A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present application relates to the technical field of communication, and in particular to a distributed communication system and a control method.
  • Most of the current communication devices are wireless communication devices, and the wireless communication devices generally require a base station to implement wireless communication.
  • the base station is damaged or its radio coverage area is unreachable, in order to ensure the normal communication of the wireless communication device, it is usually necessary to set up a temporary wireless router to use the wireless router to assist the communication work of the wireless communication device.
  • the present application provides a distributed communication system and a control method to solve the defects of the prior art such as low flexibility.
  • the first aspect of the present application provides a distributed communication system, including: a bottom-level terminal, a middle-level communication system, and a satellite; wherein, the middle-level communication system includes a plurality of low-altitude devices with wireless communication capabilities;
  • the low-altitude device collects a communication request sent by the bottom terminal, and establishes a communication connection with the bottom terminal according to the communication request, so as to provide communication services for the bottom terminal;
  • the middle-level communication system is used to collect location information and signal power of each bottom-level terminal; and adjust the geographic location and signal gain of the low-altitude device according to the location information and signal power of each bottom-level terminal.
  • the underlying terminal also generates an edge computing task, and judges whether the local remaining computing resources satisfy the edge computing task; if the local remaining computing resources satisfy the edge computing task, execute the edge computing task; if the local If the remaining computing resources cannot satisfy the edge computing task, the edge computing task is sent to the middle-level communication system;
  • the low-altitude device in the middle-level communication system receives the edge computing task, obtains the task information of the edge computing task, and judges whether its remaining computing resources meet the edge computing task according to the task information; if its own remaining computing resources If the edge computing task is satisfied, the edge computing task is executed.
  • the remaining computing resources of the low-altitude device do not satisfy the edge computing task, obtain remaining computing resources of other low-altitude devices and location information of other low-altitude devices;
  • the edge computing task forwards the edge computing task to the satellite.
  • a sensor is attached to the low-altitude device, and the sensor is used to collect disaster information in a preset area;
  • the low-altitude device After the low-altitude device obtains the disaster information, it sends the disaster information to the disaster command center.
  • the bottom-layer terminal and the middle-layer communication system are constructed based on a mobile ad hoc network.
  • external communication equipment and/or lightweight intermediate protocols are deployed on the satellite and low-altitude equipment, so that the satellite and low-altitude equipment can adapt to multiple communication protocols.
  • each low-altitude device in the bottom-level terminal and the middle-level communication system is equipped with an emergency frequency band for transmitting emergency information.
  • the second aspect of the present application provides a control method for a distributed communication system, which is applied to a distributed communication system.
  • the distributed communication system includes a bottom-level terminal, a middle-level communication system, and a satellite; wherein, the middle-level communication system includes multiple A low-altitude device having wireless communication capabilities; said method comprising:
  • controlling the low-altitude device to collect a communication request sent by the bottom terminal, and establishing a communication connection with the bottom terminal according to the communication request, so as to provide communication services for the bottom terminal;
  • control the low-altitude equipment When the low-altitude equipment cannot meet the communication requirements of the bottom terminal, control the low-altitude equipment to forward the communication task of the bottom terminal to the satellite;
  • the satellite is controlled to receive and process the communication tasks forwarded by the low-altitude equipment.
  • the method also includes:
  • the method also includes:
  • controlling the underlying terminal to also generate an edge computing task, and judging whether the remaining local computing resources satisfy the edge computing task; if the remaining local computing resources satisfy the edge computing task, then controlling the underlying terminal to execute the edge computing task; If the remaining local computing resources cannot satisfy the edge computing task, control the bottom terminal to send the edge computing task to the middle-level communication system;
  • the method also includes:
  • control the low-altitude device to obtain the remaining computing resources of other low-altitude devices and location information of other low-altitude devices;
  • the low-altitude device is controlled to forward the edge computing task to the satellite.
  • a sensor is attached to the low-altitude equipment, and the method also includes:
  • the low-altitude equipment After obtaining the disaster information, the low-altitude equipment is controlled to send the disaster information to a disaster command center.
  • the application provides a distributed communication system and a control method.
  • the system includes: a bottom-level terminal, a middle-level communication system, and a satellite; wherein, the middle-level communication system includes a plurality of low-altitude devices with wireless communication capabilities;
  • the middle-level communication system includes a plurality of low-altitude devices with wireless communication capabilities;
  • the communication request establish a communication connection with the underlying terminal to provide communication services for the underlying terminal; when the low-altitude equipment cannot meet the communication needs of the underlying terminal, forward the communication task of the underlying terminal to the satellite; the satellite receives and processes the forwarding of the low-altitude equipment communication tasks.
  • the system provided by the above scheme provides communication services for bottom terminals by using multiple low-altitude devices in the middle-level communication system, which improves the communication efficiency of the system, and the deployment of low-altitude devices is convenient, which improves the flexibility of the system.
  • FIG. 1 is a schematic diagram of a communication process of a distributed communication system provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an exemplary distributed communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an exemplary middle-level communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of service coverage of an exemplary middle-level communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another exemplary distributed communication system provided by an embodiment of the present application.
  • FIG. 6 is a schematic flow chart of a method for controlling a distributed communication system provided by an embodiment of the present application.
  • An embodiment of the present application provides a distributed communication system, which is used to provide communication services for bottom-level terminals that cannot communicate normally in disaster areas.
  • the system includes a bottom-level terminal, a middle-level communication system and satellites; wherein, the middle-level communication system includes a plurality of low-altitude devices with wireless communication capabilities.
  • FIG. 1 it is a schematic diagram of the communication process of the distributed communication system provided by the embodiment of the present application, and the communication process is as follows:
  • Step 101 the low-altitude device collects the communication request sent by the bottom terminal, and establishes a communication connection with the bottom terminal according to the communication request, so as to provide communication services for the bottom terminal;
  • Step 102 when the low-altitude equipment cannot meet the communication requirements of the bottom terminal, forward the communication task of the bottom terminal to the satellite;
  • Step 103 the satellite receives and processes the communication task forwarded by the low-altitude device.
  • the underlying terminals specifically refer to communication devices such as mobile phones, computers, and tablets that cannot communicate normally in disaster areas or mining areas, and low-altitude devices can be flying devices such as drones or airplanes.
  • the low-altitude device when the low-altitude device can meet the communication requirements of the bottom terminal, the low-altitude device will handle the communication task.
  • the communication task may be a data packet forwarding task, a computing task, and the like.
  • the low-altitude equipment collects the electromagnetic wave signal of each communication equipment in the disaster area, and when receiving the electromagnetic wave signal of any communication equipment, it uses the electromagnetic wave signal as a communication request and establishes a communication connection with the bottom terminal to realize the communication between the bottom terminal and the low-altitude Two-way communication between devices.
  • the low-altitude equipment takes advantage of the wider electromagnetic wave propagation space brought by the height advantage to expand its coverage.
  • a low-altitude equipment can simultaneously provide higher-level communication services for a distributed mobile ad hoc network composed of multiple bottom-level terminals. , and includes longer-distance information routing and forwarding and task processing with higher computing power requirements.
  • the low-altitude device can use the current A communication task is sent to the satellite, which handles the communication task.
  • Satellites and various low-altitude devices in the middle-level communication system can provide cloud computing services for the bottom-level terminals. Satellites have stronger computing power and communication capabilities, and are suitable for handling heavy-duty computing tasks and long-distance communications.
  • the middle-level communication system is used to collect the location information and signal power of each bottom-level terminal; The geographic location and signal gain of the device.
  • the geographical location of the low-altitude device specifically refers to the geodetic coordinates (longitude, latitude, altitude) of the low-altitude device, which mainly adjusts the spatial distance between the low-altitude device and the bottom terminal.
  • each low-altitude device in the middle-level communication system can collect the location information and signal power of all bottom-level terminals in the disaster area, and then the collected location information and signal power are uniformly sent to the middle-level communication system dispatching center, and the dispatching center adjusts the geographical location and signal gain of each low-altitude device according to the obtained bottom-level terminal location information and signal power, so as to adaptively adjust the topology of the middle-level communication system and ensure This ensures the stability of the two-way communication between each low-altitude device and the corresponding bottom terminal.
  • the bottom terminal and the middle communication system are constructed based on the mobile ad hoc network.
  • Mobile ad-hoc network is a general term for infrastructure-free mobile networks.
  • APs wireless access points
  • WLANs wireless local area networks
  • the cellular base stations in (3G/4G/5G) only rely on the ability of each wireless terminal to send and receive wireless signals to directly connect with nearby neighbor wireless terminals (bottom terminals or low-altitude devices), forming a network with at least two The local area network of wireless terminals; each wireless terminal undertakes the functions of bit stream transmission at the physical layer, frame transmission between adjacent nodes at the data link layer, and selection of forwarding nodes for data packet forwarding at the network layer, which were originally undertaken by the wireless infrastructure.
  • Ad Hoc is the only way for each wireless terminal to quickly restore temporary and basic external communication capabilities.
  • Distributed is the basic feature of Ad Hoc. In order to improve the performance of the entire mobile ad hoc network as much as possible, all nodes need to contribute their own additional storage and computing resources to participate in the function realization of the Ad Hoc network.
  • the middle-level communication system completes the networking of the distributed mobile ad-hoc network immediately after the disaster occurs.
  • Its topology is relatively stable, its routing capability is relatively strong, and it has a certain mobility to adapt to the movement and power changes of each bottom terminal at any time. And this kind of mobility will not have too much impact on the stability of the topology, and it has stronger data processing capabilities.
  • the underlying terminal also generates an edge computing task, and judges whether the remaining local computing resources satisfy the edge computing task. If the local remaining computing resources meet the edge computing task, execute the edge computing task. If the edge computing task cannot be satisfied, the edge computing task will be sent to the middle-level communication system; the low-altitude device in the middle-level communication system receives the edge computing task, obtains the task information of the edge computing task, and judges whether its remaining computing resources meet the requirements of the edge computing task according to the task information. Computing tasks; if the remaining computing resources of its own can meet the edge computing tasks, the edge computing tasks will be executed.
  • the edge computing task is directly calculated locally without task migration. In this way, the edge computing pressure of the entire communication system is relieved, and the communication load of the communication system is also reduced.
  • each low-altitude device and satellite in the middle-level communication system has cloud computing capabilities, that is, the middle-level communication system and satellites form a cloud pool with super large data storage computing and control capabilities.
  • the distributed communication system provided by the embodiment of the present application can be applied in normal scenarios, that is, non-disaster area scenarios, and the underlying terminals themselves can communicate based on base stations, etc., and only send communication requests to low-altitude devices when edge computing services are required (also referred to as a task migration request), so that it can establish a communication connection with the low-altitude device, and then complete the task migration.
  • edge computing services also referred to as a task migration request
  • the computing task will be sent to the low-altitude device as an edge computing task.
  • the low-altitude device After receiving the edge computing task, the low-altitude device first obtains the task information of the edge computing task.
  • the task information includes at least the computing resource requirements and the delay threshold, and then judges whether its remaining computing resources can meet the computing resource requirements of the edge computing task. , and predict whether its computing time is within the delay threshold, if its own remaining computing resources can meet the computing resource requirements of the edge computing task, and its predicted computing time is within the delay threshold, then execute the edge computing task. After the edge computing task is completed, the calculation result is returned to the underlying terminal.
  • the remaining computing resources of the low-altitude device itself do not meet the edge computing tasks, the remaining computing resources of other low-altitude devices and the location information of other low-altitude devices are obtained; according to the remaining computing resources of other low-altitude devices and other The location information of the low-altitude device determines the target edge computing low-altitude device; forwards the edge computing task to the target edge computing low-altitude device.
  • the current low-altitude device (the low-altitude device that receives the edge computing task) can obtain the remaining computing resources of other low-altitude devices and the location information of other low-altitude devices through the distributed mobile ad hoc network; according to the remaining computing resources of other low-altitude devices and other
  • the location information of low-altitude devices can flexibly schedule and allocate the communication tasks directly received by itself, and use the computing power of low-altitude devices in the entire self-organizing network to provide higher-quality communication services and achieve load balancing functions.
  • the edge computing task is forwarded to the satellite.
  • the edge computing task is handled by the satellite. After the satellite obtains the calculation result, it returns the calculation result to the low-altitude device, and the low-altitude device forwards it to the underlying terminal.
  • a sensor is attached to the low-altitude device, and the sensor is used to collect disaster information in a preset area. After the low-altitude device obtains the disaster information, it sends the disaster information to Disaster Command Center.
  • the low-altitude equipment can sense the disaster situation on the ground and underground through the sensor. After the sensor collects the disaster information, the low-altitude equipment sends the disaster information to the disaster command center. Among them, when the communication capability of the low-altitude equipment is not enough to send the disaster information to the disaster command center, the low-altitude equipment sends the disaster information to the satellite, and the satellite completes the disaster information upload work.
  • external communication equipment and/or lightweight intermediate protocols are deployed on satellites and low-altitude equipment, so that satellites and low-altitude equipment can adapt to various letter of agreement.
  • the embodiments of the present application fully take into account the heterogeneity of internal devices at each level and devices between layers, and the communication protocols and communication standards used by different devices are different. Considering that no matter what wireless communication method is adopted, all It uses wireless electromagnetic waves to broadcast information to the outside, but the wireless frequency bands used are different, the encoding methods are different, or the data frame encapsulation formats are different. Therefore, the embodiment of this application proposes two solutions:
  • Various heterogeneous devices can pass through The external communication device completes the conversion and compatibility work of the communication protocol.
  • the other is a software solution, which presets a new lightweight intermediate protocol that can be automatically activated, which has the function of normalizing the communication protocols of various ground-level wireless devices, and the wireless communication
  • the communication signal undergoes the wireless frequency band conversion of the signal, the analog signal binary transcoding and the binary data frame decapsulation/recapsulation process through this protocol, so that the transformed wireless communication signal is adapted to the wireless communication standard adopted by the destination node, and the information is complete. There is no increase or decrease and can be accurately and completely identified by the destination node.
  • the satellite with the highest computing power and the middle-level communication system with the middle computing power but specially pre-deployed for emergency communication and immediate recovery preparations have been pre-installed and support the automatically activated light-weight system provided by the above embodiment.
  • Level intermediate protocol, and plug-in the communication components/equipment with communication protocol conversion compatibility provided by the above embodiments which provides double insurance for the solution of higher-level network heterogeneity, and provides support for those bottom layers that do not have the intermediate protocol support function.
  • the terminal provides the ability to exclude heterogeneous direct communication, so that satellites and low-altitude equipment can adapt to multiple communication protocols; and for the bottom terminal with the lowest computing power, considering that some bottom terminals cannot support lightweight intermediate protocols, the activities of the bottom terminal In the vicinity of the area, there are fixed external communication components/equipments that are relatively strong and have certain invulnerability, which can be used for communication tasks that do not need to be delivered to the middle-level communication system, according to the signal presentation form (frequency, modulation mode, encoding header format, etc.), and convert the signal to ensure that the receiving end can accurately obtain all the information that the sending end wants to send.
  • the signal presentation form frequency, modulation mode, encoding header format, etc.
  • each low-altitude device in the bottom-level terminal and the middle-level communication system is equipped with an emergency frequency band for transmitting emergency information.
  • the emergency information mainly refers to data packets that require high transmission speed, such as alarm information.
  • the emergency frequency band can also transmit other conventional data packets, and the emergency frequency band has strong anti-interference ability, which is conducive to ensuring the communication effect.
  • each low-altitude device in the bottom-level terminal and the middle-level communication system needs to reserve a certain amount of computing and storage resources, and a certain amount of spectrum resources also need to be reserved between each cross-level device to form an emergency frequency band for use at its own level.
  • routing discovery and data packet forwarding for computing and routing functions that cannot be fully satisfied (overload or over-distance), use this part of resources (emergency frequency band) for two-way communication between cross-level task uploading/result response .
  • FIG. 2 it is a schematic structural diagram of an exemplary distributed communication system provided by the embodiment of the present application.
  • two dotted lines without arrows connected to the same device indicate the corresponding communication range of the device.
  • the dotted line with arrows indicates the moving direction of the device, and the double arrows in the solid line indicate that two-way communication can be carried out between the two.
  • each low-altitude device in the bottom terminal can also be used as an auxiliary AP/base station for ordinary wireless communication to reinforce the function of the original base station.
  • the middle-level communication system can provide cloud computing services for the bottom-level terminals, and act as a small cloud pool to coordinate the local computing and storage resources of each temporary AP and the application of wireless spectrum resources between devices, avoiding the uneven workload distribution of each temporary AP. In this way, it is ensured that the network service capabilities provided by the bottom terminals in disaster areas of various densities are similar, and that various resources in the mid-level communication system are utilized to the greatest extent.
  • the spatial lattice architecture can be decomposed into horizontally parallel isomorphic lattices and vertically staggered heterogeneous lattices, among which, based on the low-altitude layer, three characteristics of the entire spatial lattice network architecture are supported: orderly, autonomous Canonical (self-limiting) and anisotropy.
  • the irreplaceability of the low-altitude layer lies in the fact that the aircraft (low-altitude equipment) carries not only the tasks of communication and forwarding, but also controls the movement of the aircraft (the role of the sensor) according to the size of the traffic at the ground layer to achieve regularity (according to Orderly deployment of business volume, number of terminals and signal strength, etc.).
  • conventional communication equipment only carries communication tasks, and the deployment of aircraft requires human control.
  • Self-extensive self-limiting means that the crystal has a tendency to spontaneously form a closed geometric polyhedron shape, and thereby close (range) itself.
  • the low-altitude layer is used as the link between the ground and the satellite.
  • the external performance is self-limiting.
  • the irreplaceability of the low-altitude layer lies in: according to the natural environment and radio wave environment, it can spontaneously form a network with other equipment and form a regular network structure.
  • the aircraft equipment needs to be considered in Wireless mobile networking in three-dimensional space, such as the problem of exposed terminals and hidden terminals in three-dimensional space.
  • Anisotropy refers to the change of all or part of the chemical and physical properties of a substance as the direction changes. Variations take on different properties in different directions.
  • this architecture it is shown that the traffic volume, modulation mode, and communication protocol between layers are different.
  • the business volume from the ground layer to the middle layer is the largest, and the communication methods and communication protocols are the most diverse.
  • the irreplaceability of the low-altitude layer lies in that the low-altitude layer carries all ground services and adapts to all communication methods and protocols at the same time. Communication protocol, but the amount of traffic forwarded to the satellite level is relatively small (only unprocessable business is forwarded upwards), and it is modulated into a unified communication method through protocol conversion.
  • the wireless hardware bridge device such as software-defined radio unit pre-assembled on the low-altitude equipment and supporting application protocol conversion logic and networking algorithm, on-demand flexible service capabilities are provided for the underlying equipment.
  • the wireless hardware bridge device such as software-defined radio unit
  • the three-dimensional space flexibility, obstacle avoidance ability and space adaptive wireless communication ability brought by the height difference are used to realize flexible topology networking and load balancing.
  • the non-substitutability of equipment used for low-altitude formation includes at least: (1) From the analysis of the working mode, the working mode of ordinary APs is fixed, with fixed physical layer and data link layer parameters (such as frequency spectrum, modulation mode, etc.); (2) ) From the analysis of wireless signal characteristics, ordinary APs are designed for stationary applications. If they are installed on high-speed aircraft, Doppler frequency shift will definitely affect the original wireless signal performance. In addition, ordinary AP wireless signal It is difficult to penetrate the metal casing of similar aircraft equipment, and it is easy to cause spectrum interference between ordinary APs and the original communication equipment of the aircraft (for example, it is well-known that personal wireless devices must be turned into flight mode or turned off when taking a civil airliner), which will greatly weaken this system.
  • a common AP is usually a gateway device connected to the Internet, and in most cases only supports a star topology, even if it supports a mesh topology
  • the new type of AP is also only small-scale and does not support inter-network mobility.
  • the low-altitude layer construction equipment involved in the embodiment of the present application cannot be realized by simply adopting a common AP on the flight equipment.
  • FIG. 3 which is a schematic structural diagram of an exemplary middle-level communication system provided by the embodiment of the present application, the heterogeneous devices specifically refer to low-altitude devices, that is, the low-altitude devices can communicate with each other.
  • the bottom-level terminal can always maintain two-way communication with a certain node (heterogeneous device) in the middle-level communication system during the moving process.
  • Figure 4 is a schematic diagram of the service coverage of an exemplary middle-level communication system provided by the embodiment of the present application. After the bottom-level terminal leaves the service range of the heterogeneous device 2 (low-altitude device 2), it will immediately arrive at the heterogeneous device 3 (low-altitude device 3) 1.
  • heterogeneous device 4 low-altitude device 4
  • heterogeneous device 5 low-altitude device 5
  • the service ranges of each device overlap each other, so that when each underlying terminal moves to the overlapping area, it is about to be replaced
  • the heterogeneous devices involved in the overlapping area can completely share the current data packet sending status (sequence number of the data packet being transmitted), destination routing and node identity of each underlying terminal in the overlapping area, so as to ensure The continuity of communication during the long-distance movement of ground equipment, and the quality of network service is basically unchanged (network service resources are coordinated by the mobile ad hoc network of the middle-level communication system).
  • the bottom terminal in the overlapping area uploads the specific requirements (delay and reliability, etc.) According to these requirements, regional coordination is carried out, and the most suitable heterogeneous device that directly provides services is allocated to the bottom terminal for two-way communication of the bottom terminal, so as to improve the overall performance and personalized service capabilities of the middle-level communication system.
  • the low-altitude device 1 when the low-altitude device 1 is moving, the low-altitude device 1 discovers a bottom-level terminal 6 capable of peer-to-peer two-way communication, thereby establishing a minimum mobile ad hoc network at the bottom-level terminal level, which has the smallest edge computing capabilities.
  • the bottom terminal 6 is also adjacent to the bottom terminal 7, but the distance is slightly farther away, so the lower power low-altitude device 1 has not found the bottom terminal 7, but the bottom terminal 7 can discover the low-altitude device 1 in one direction at the same level ; But according to the system design, the low-altitude device 1 and the bottom terminal 7 must be able to carry out two-way communication through the middle-level communication system.
  • Neighborhood conditions and geographical locations between the bottom terminals 7 are for the low-altitude device 1 to choose to move closer to the bottom terminal 7 (in order to ensure that the position and topology of the ad hoc LAN at the bottom terminal level are relatively stable, it is generally required that the low-power bottom terminals The lower-level terminals with higher power move closer), until the two-way communication with the lower-level terminal 7 can be directly performed, and the low-altitude device 1 obtains information prompts, thereby reducing the network burden of the middle-level communication system. If the geographical location of the low-altitude equipment 1 is too harsh, the bottom terminal 7 moves closer to the low-altitude equipment 1 .
  • the wireless frequency bands of the underlying terminal 1, the underlying terminal 6, and the underlying terminal 7 are all different, and the lightweight intermediate protocol is not installed in the underlying terminal 1, it and the underlying terminal 6/bottom terminal 7 can be connected through the pre-deployed External communication equipment performs signal frequency conversion and data link layer frame reassembly and shielding, or in the case of failure of external communication equipment, realizes relatively reliable two-way communication functions through low-altitude equipment that has pre-deployed lightweight intermediate protocols; while the underlying terminal Both 6 and the underlying terminal 7 have been pre-installed with a lightweight intermediate protocol, and the communication between them is directly resolved at the ground level, and they can jointly build a distributed mobile ad hoc network at the same ground level.
  • FIG. 5 it is a schematic structural diagram of another exemplary distributed communication system provided by the embodiment of the present application.
  • the distributed communication system provided by the embodiment of the present application can realize worldwide wireless communication.
  • the ground-level mobile ad-hoc network has a higher node density and a larger number of nodes, and its edge computing capability is stronger. At the same time, it generates a larger amount of communication tasks.
  • the ground-level mobile ad hoc network submits computing tasks that exceed the upper limit of edge computing or communication distance capabilities to the middle-level communication system, and the middle-level communication system also submits computing tasks that exceed the capacity to
  • the high-altitude level ensures that the largest communication tasks in the communication system can also be realized reliably and efficiently.
  • the distributed communication system includes: bottom-level terminals, middle-level communication systems, and satellites; wherein, the middle-level communication system includes multiple low-altitude devices with wireless communication capabilities; low-altitude devices collect communication requests sent by bottom-level terminals, and follow the communication Request, establish a communication connection with the underlying terminal to provide communication services for the underlying terminal; when the low-altitude equipment cannot meet the communication needs of the underlying terminal, forward the communication task of the underlying terminal to the satellite; the satellite receives and processes the communication task forwarded by the low-altitude equipment.
  • the system provided by the above scheme provides communication services for bottom terminals by using multiple low-altitude devices in the middle-level communication system, which improves the communication efficiency of the system, and the deployment of low-altitude devices is convenient, which improves the flexibility of the system. Moreover, it has good invulnerability and robustness.
  • An embodiment of the present application provides a control method for a distributed communication system, which is applied to a distributed communication system.
  • the distributed communication system includes bottom-level terminals, middle-level communication systems, and satellites; wherein, the middle-level communication system includes multiple Low altitude equipment.
  • the execution subject of the control method provided in the embodiment of the present application is an electronic device, such as a server, a desktop computer, a notebook computer, a tablet computer, and other electronic devices that can be used to control a distributed communication system.
  • FIG. 6 it is a schematic flowchart of a method for controlling a distributed communication system provided by an embodiment of the present application.
  • the method includes:
  • Step 601 controlling the low-altitude equipment to collect communication requests sent by the bottom terminal, and establishing a communication connection with the bottom terminal according to the communication request, so as to provide communication services for the bottom terminal;
  • Step 602 when the low-altitude device cannot meet the communication requirements of the bottom terminal, control the low-altitude device to forward the communication task of the bottom terminal to the satellite;
  • Step 603 controlling the satellite to receive and process the communication task forwarded by the low-altitude device.
  • the method also includes:
  • Control the middle-level communication system to collect the location information and signal power of each bottom-level terminal; adjust the geographical location and signal gain of low-altitude equipment according to the location information and signal power of each bottom-level terminal.
  • the method also includes:
  • Control the low-altitude devices in the middle-level communication system to receive edge computing tasks, obtain the task information of the edge computing tasks, and judge whether their remaining computing resources meet the edge computing tasks according to the task information; if their own remaining computing resources meet the edge computing tasks, control the low-altitude devices Perform edge computing tasks.
  • the method also includes:
  • control the low-altitude device to obtain the remaining computing resources of other low-altitude devices and the location information of other low-altitude devices;
  • the method also includes:
  • the low-altitude device is controlled to forward the edge computing task to the satellite.
  • a sensor is attached to the low-altitude equipment, and the method also includes:
  • the control low-altitude equipment After receiving the disaster information, the control low-altitude equipment sends the disaster information to the disaster command center.

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种分布式通信系统及控制方法,该系统包括:底层终端、中层通信系统和卫星;其中,中层通信系统包括多个具备无线通信能力的低空设备;低空设备采集底层终端发出的通信请求,并按照通信请求,与底层终端建立通信连接,以为底层终端提供通信服务;当低空设备无法满足底层终端的通信需求时,将底层终端的通信任务转发至卫星;卫星接收并处理低空设备转发的通信任务。上述方案提供的系统,通过利用中层通信系统中的多个低空设备,为底层终端提供通信服务,提高了系统的通信效率,且低空设备部署方便,提高了系统的灵活性。

Description

一种分布式通信系统及控制方法 技术领域
本申请涉及通信技术领域,尤其涉及一种分布式通信系统及控制方法。
背景技术
目前的通信设备大多是无线通信设备,无线通信设备通常需要基站实现无线通信。在基站发生损毁或其无线电覆盖区不可达的情况下,为了保障无线通信设备可以正常通信,通常需要设置临时的无线路由器,以利用无线路由器辅助无线通信设备的通信工作。
但是,在发生地震等自然灾害的情况下,若在发生自然灾害后再人工设置临时无线路由器,则需要耗费较多的部署时间,且难以保证所部署的无线路由器信号可以覆盖整个灾区。
发明内容
本申请提供一种分布式通信系统及控制方法,以解决现有技术的灵活性较低等缺陷。
本申请第一个方面提供一种分布式通信系统,包括:底层终端、中层通信系统和卫星;其中,所述中层通信系统包括多个具备无线通信能力的低空设备;
所述低空设备采集底层终端发出的通信请求,并按照所述通信请求,与所述底层终端建立通信连接,以为所述底层终端提供通信服务;
当所述低空设备无法满足所述底层终端的通信需求时,将所述底层终端的通信任务转发至卫星;
所述卫星接收并处理低空设备转发的通信任务。
可选的,所述中层通信系统用于采集各底层终端的位置信息和信号功率;根据所述各底层终端的位置信息和信号功率,调整所述低空设备的地理位置和信号增益。
可选的,所述底层终端还生成边缘计算任务,并判断本地剩余计算资源 是否满足所述边缘计算任务;若本地剩余计算资源满足所述边缘计算任务,则执行所述边缘计算任务;若本地剩余计算资源不能满足所述边缘计算任务,则将所述边缘计算任务发送至中层通信系统中;
所述中层通信系统中的低空设备接收所述边缘计算任务,获取所述边缘计算任务的任务信息,根据所述任务信息,判断自身剩余计算资源是否满足所述边缘计算任务;若自身剩余计算资源满足所述边缘计算任务,则执行所述边缘计算任务。
可选的,若所述低空设备的自身剩余计算资源不满足所述边缘计算任务,则获取其他低空设备的剩余计算资源及其他低空设备的位置信息;
根据所述其他低空设备的剩余计算资源及其他低空设备的位置信息,确定目标边缘计算低空设备;
将所述边缘计算任务转发至所述目标边缘计算低空设备。
可选的,若所述低空设备的自身剩余计算资源不满足所述边缘计算任务,则将所述边缘计算任务转发至卫星。
可选的,所述低空设备上附设有传感器,所述传感器用于采集预设区域内的灾情信息;
所述低空设备得到所述灾情信息后,将所述灾情信息发送至灾情指挥中心。
可选的,所述底层终端和中层通信系统是基于移动自组织网络构建的。
可选的,所述卫星和低空设备上部署有外挂通信设备和/或轻量级中间协议,以使所述卫星和低空设备适应多种通信协议。
可选的,所述底层终端和中层通信系统中的各低空设备均设有应急频段,用于传输紧急信息。
本申请第二个方面提供一种分布式通信系统的控制方法,应用于分布式通信系统,所述分布式通信系统包括底层终端、中层通信系统和卫星;其中,所述中层通信系统包括多个具备无线通信能力的低空设备;所述方法包括:
控制所述低空设备采集底层终端发出的通信请求,并按照所述通信请求,与所述底层终端建立通信连接,以为所述底层终端提供通信服务;
当所述低空设备无法满足所述底层终端的通信需求时,控制所述低空设备将所述底层终端的通信任务转发至卫星;
控制所述卫星接收并处理低空设备转发的通信任务。
可选的,所述方法还包括:
控制所述中层通信系统采集各底层终端的位置信息和信号功率;根据所述各底层终端的位置信息和信号功率,调整所述低空设备的地理位置和信号增益。
可选的,所述方法还包括:
控制所述底层终端还生成边缘计算任务,并判断本地剩余计算资源是否满足所述边缘计算任务;若本地剩余计算资源满足所述边缘计算任务,则控制所述底层终端执行所述边缘计算任务;若本地剩余计算资源不能满足所述边缘计算任务,则控制所述底层终端将所述边缘计算任务发送至中层通信系统中;
控制中层通信系统中的低空设备接收所述边缘计算任务,获取所述边缘计算任务的任务信息,根据所述任务信息,判断自身剩余计算资源是否满足所述边缘计算任务;若自身剩余计算资源满足所述边缘计算任务,则控制所述低空设备执行所述边缘计算任务。
可选的,所述方法还包括:
若所述低空设备的自身剩余计算资源不满足所述边缘计算任务,则控制所述低空设备获取其他低空设备的剩余计算资源及其他低空设备的位置信息;
根据所述其他低空设备的剩余计算资源及其他低空设备的位置信息,确定目标边缘计算低空设备;
将所述边缘计算任务转发至所述目标边缘计算低空设备。
可选的,所述方法还包括:
若所述低空设备的自身剩余计算资源不满足所述边缘计算任务,则控制所述低空设备将所述边缘计算任务转发至卫星。
可选的,所述低空设备上附设有传感器,所述方法还包括:
控制传感器采集预设区域内的灾情信息;
控制所述低空设备在得到所述灾情信息后,将所述灾情信息发送至灾情指挥中心。
本申请技术方案,具有如下优点:
本申请提供一种分布式通信系统及控制方法,该系统包括:底层终端、中层通信系统和卫星;其中,中层通信系统包括多个具备无线通信能力的低空设备;低空设备采集底层终端发出的通信请求,并按照通信请求,与底层终端建立通信连接,以为底层终端提供通信服务;当低空设备无法满足底层终端的通信需求时,将底层终端的通信任务转发至卫星;卫星接收并处理低空设备转发的通信任务。上述方案提供的系统,通过利用中层通信系统中的多个低空设备,为底层终端提供通信服务,提高了系统的通信效率,且低空设备部署方便,提高了系统的灵活性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的分布式通信系统的通信流程示意图;
图2为本申请实施例提供的一种示例性的分布式通信系统的结构示意图;
图3为本申请实施例提供的示例性的中层通信系统的结构示意图;
图4为本申请实施例提供的示例性的中层通信系统的服务覆盖范围示意图;
图5为本申请实施例提供的另一种示例性的分布式通信系统的结构示意图;
图6为本申请实施例提供的分布式通信系统的控制方法的流程示意图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述, 显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在以下各实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请实施例进行描述。
本申请实施例提供了一种分布式通信系统,用于为灾区中无法正常通信的底层终端提供通信服务。该系统包括底层终端、中层通信系统和卫星;其中,所述中层通信系统包括多个具备无线通信能力的低空设备。
其中,如图1所示,为本申请实施例提供的分布式通信系统的通信流程示意图,通信流程如下:
步骤101,低空设备采集底层终端发出的通信请求,并按照通信请求,与底层终端建立通信连接,以为底层终端提供通信服务;
步骤102,当低空设备无法满足底层终端的通信需求时,将底层终端的通信任务转发至卫星;
步骤103,卫星接收并处理低空设备转发的通信任务。
需要说明的是,底层终端具体指灾区或者矿区中无法正常通信的手机、电脑和平板等通信设备,低空设备可以为无人机或飞机等飞行设备。
相反的,当低空设备可以满足底层终端的通信需求时,则由低空设备处理该通信任务。
其中,通信任务可以为数据包转发任务和计算任务等。
具体地,低空设备采集灾区内各通信设备的电磁波信号,当接收到任一通信设备的电磁波信号时,则将该电磁波信号作为通信请求,并与底层终端建立通信连接,以实现底层终端与低空设备之间的双向通信。
其中,低空设备利用高度优势所带来的更广茂的电磁波传播空间,扩大其覆盖范围,一个低空设备可同时为多个底层终端所组成的分布式移动自组织网络提供更高层次的通信服务,且包括更远距离的信息路由转发及更高算力要求的任务处理等。
具体地,若当前底层终端向低空设备发送的通信任务/计算任务是低空设备自身无法实现的,如传输距离超出低空设备的通信能力或计算任务超出低空设备算力等,则低空设备可以将当前通信任务发送至卫星,由卫星处理该通信任务。
其中,卫星和中层通信系统中的各低空设备均可以为底层终端提供云计算服务,卫星具备更强的算力和通信能力,适用于处理大负荷计算任务和远距离通信。
具体地,在一实施例中,为了进一步提高通信系统的可靠性和灵活性,中层通信系统用于采集各底层终端的位置信息和信号功率;根据各底层终端的位置信息和信号功率,调整低空设备的地理位置和信号增益。
其中,低空设备的地理位置具体是指低空设备的大地坐标(经度,纬度,海拔),主要是调整了低空设备与底层终端之间的空间距离。
具体地,在底层终端移动速度快、灾区覆盖范围大且多山区的情况下,中层通信系统中的各个低空设备可以采集灾区内所有底层终端的位置信息和信号功率,然后将采集到的位置信息和信号功率统一发送至中层通信系统调度中心,由调度中心根据得到的底层终端的位置信息和信号功率,调整各低空设备的地理位置和信号增益,以适应性调整中层通信系统的拓扑结构,保障了各低空设备与对应的底层终端之间的双向通信的稳定性。
其中,底层终端和中层通信系统是基于移动自组织网络构建的。
需要说明的是,移动自组织网络(Ad Hoc)是无基础设施移动网络的总称,在这样的网络中,无需无线局域网(WLAN)中的无线接入点(AP),也不存在蜂窝移动网络(3G/4G/5G)中的蜂窝基站,仅凭借各无线终端自身对无线信号的发送与接收能力来直接与附近邻居无线终端(底层终端或低空设备)进行连接,组成一个最少仅有两个无线终端的局域网;各无线终端承担了原本由无线基础设施所承担的物理层比特流传输、数据链路层相邻节点间帧传输、网络层路由探寻数据包转发节点选择等功能,各无线终端均为无线基础设的一部分,共同为自身与彼此提供网络服务,为各无线终端增加了一定的存储、计算开销。Ad Hoc是各无线终端唯一能够迅速恢复临时、基本的对外通信能力的方式。分布式是Ad Hoc的基本特征,为了尽可能提升整个移动自组织网络的性能,所有节点均需贡献出自己额外的存储与计算资 源,参与到Ad Hoc网络的功能实现中。
其中,中层通信系统在发生灾情后即刻完成分布式移动自组织网络的组网,其拓扑相对稳定、路由能力相对较强,具有一定的移动能力以随时适应各底层终端的移动及功率改变情况,且这种移动性对拓扑的稳定性不会产生过大影响,具备更强的数据处理能力。
具体地,在一实施例中,底层终端还生成边缘计算任务,并判断本地剩余计算资源是否满足边缘计算任务,若本地剩余计算资源满足边缘计算任务,则执行边缘计算任务,若本地剩余计算资源不能满足边缘计算任务,则将边缘计算任务发送至中层通信系统中;中层通信系统中的低空设备接收边缘计算任务,获取边缘计算任务的任务信息,根据任务信息,判断自身剩余计算资源是否满足边缘计算任务;若自身剩余计算资源满足边缘计算任务,则执行边缘计算任务。
具体地,在底层终端的本地剩余计算资源可以满足边缘计算任务需求的情况下,则直接在本地计算该边缘计算任务,而不进行任务迁移。这样即缓解了整个通信系统的边缘计算压力,也减轻了通信系统的通信负荷。
需要说明的是,本申请实施例提供的中层通信系统中的各低空设备和卫星均具备云计算能力,即中层通信系统和卫星构成具备超大数据存储计算与控制能力的云池。
其中,本申请实施例提供的分布式通信系统可以应用于正常场景下,即非灾区场景,底层终端自身可以基于基站等进行通信,只有在需要边缘计算服务的情况下,向低空设备发送通信请求(也可以称为任务迁移请求),以使其与低空设备之间建立通信连接,进而完成任务迁移工作。
具体地,若底层终端当前的算力不足以完成当前的计算任务,则将该计算任务作为边缘计算任务发送至低空设备。低空设备在接收到边缘计算任务后,首先获取边缘计算任务的任务信息,其中,任务信息至少包括计算资源需求和时延阈值,然后判断自身剩余计算资源是否可以满足该边缘计算任务的计算资源需求,并预测其计算时间是否在时延阈值内,若自身剩余计算资源可以满足该边缘计算任务的计算资源需求,且其预测的计算时间在时延阈值内,则执行该边缘计算任务。在完成边缘计算任务后,将计算结果返回至底层终端。
相反地,在一实施例中,若低空设备的自身剩余计算资源不满足边缘计算任务,则获取其他低空设备的剩余计算资源及其他低空设备的位置信息;根据其他低空设备的剩余计算资源及其他低空设备的位置信息,确定目标边缘计算低空设备;将边缘计算任务转发至目标边缘计算低空设备。
具体地,当前低空设备(接收到边缘计算任务的低空设备)能够通过分布式移动自组织网络获取其他低空设备的剩余计算资源及其他低空设备的位置信息;根据其他低空设备的剩余计算资源及其他低空设备的位置信息,对自身所直接接收到的通信任务进行灵活调度分配,发挥整个自组织网络内低空设备的算力来提供更高质量的通信服务,同时实现负载均衡功能。
类似的,在一实施例中,若低空设备的自身剩余计算资源不满足边缘计算任务,则将边缘计算任务转发至卫星。
具体地,由卫星处理边缘计算任务,卫星在得到计算结果后,将计算结果返回至低空设备,由低空设备转发至底层终端。
具体地,在一实施例中,为了进一步提高通信系统的普适性,低空设备上附设有传感器,传感器用于采集预设区域内的灾情信息,低空设备得到灾情信息后,将灾情信息发送至灾情指挥中心。
具体地,低空设备可以通过传感器对地面及地下所发生的灾情进行感知,传感器在采集到灾情信息后,低空设备将灾情信息发送至灾情指挥中心。其中,在低空设备的通信能力不足以将灾情信息发送至灾情指挥中心的情况下,低空设备将灾情信息发送至卫星,由卫星完成灾情信息上传工作。
具体地,在一实施例中,为了提高通信系统的鲁棒性和抗毁性,卫星和低空设备上部署有外挂通信设备和/或轻量级中间协议,以使卫星和低空设备适应多种通信协议。
具体地,本申请实施例充分考虑到各层级内部设备与层间各设备的异构性,针对于不同设备所使用的通信协议和通信标准不同,考虑到无论是采用何种无线通信方式,均是采用无线电磁波的方式向外广播信息,只不过所采用的无线频段不同、编码方式不同或数据帧封装格式不同,因此本申请实施例提出了两种解决方式:
一种是硬件解决方式,使用一种新的外挂通信组件/设备(外部通信设备),其具有即插即用、常见接口和标准化通用化的无线通信接口和通信协 议,各异构设备可通过该外部通信设备完成通信协议的转换兼容工作。
另一种是软件解决方式,预设一种新的可自动激活的轻量级中间协议,其具备将多种地面层次无线设备通信协议进行归一化的功能,各异构设备之间的无线通信信号通过该协议进行信号的无线频段变换、模拟信号二进制转编码与二进制数据帧解封装/重新封装工序,从而使变换后的无线通信信号适配于目的节点所采用的无线通信标准,信息完整不存在增减且能够被目的节点准确完整识别。
在本申请实施例中,对于算力最高的卫星和算力居中但是专门预先部署用于进行应急通信即时恢复准备的中层通信系统,均已预装且支持上述实施例提供的可自动激活的轻量级中间协议,并外挂了上述实施例提供的具有通信协议转换兼容能力的通信组件/设备,为较高层次网络异构性的解决提供了双重保险,为那些不具备中间协议支持功能的底层终端提供排除异构直接通信的能力,以使卫星和低空设备适应多种通信协议;而对于算力最低的底层终端,考虑到部分底层终端无法支持轻量级中间协议,在底层终端所活动的区域附近,固定有较为坚固、具有一定抗毁性的外挂通信组件/设备,能够对无需交付中层通信系统的通信任务,根据各底层终端所支持的通信协议的信号呈现形式(频率、调制方式、编码报头格式等)的区别,对信号进行转换,以确保接收端能准确获取发送端想要发送的全部信息。
具体地,在一实施例中,为了进一步提高通信系统的抗毁性与鲁棒性,底层终端和中层通信系统中的各低空设备均设有应急频段,用于传输紧急信息。
需要说明的是,紧急信息主要是指传输速度要求较高的数据包,如报警信息等。另外,应急频段也可以传输其他的常规数据包,应急频段的抗干扰性较强,有利于保障通信效果。
示例性的,底层终端和中层通信系统中的各低空设备需预留一定的计算、存储资源,各跨层次设备间也需预留一定的频谱资源,以形成应急频段,用于在自身层次的边缘计算、路由探寻及数据包转发之外,对于无法完全满足(超负荷或超距离)的计算与路由功能,将这部分资源(应急频段)用于跨层次任务上传/结果响应的双向通信中。除此之外,全系统各层级各设备间还应预留少量资源用来进行机动,用于应对系统内某设备突然发生异常情况 (故障、损坏等),无法正常参与的情况下,其他设备能够动用这部分资源来进行填充,增强系统鲁棒性,保障系统仍能满足全部通信需求而不致过载发生。
示例性的,如图2所示,为本申请实施例提供的一种示例性的分布式通信系统的结构示意图,图中与同一设备连接的两条无箭头虚线表示该设备对应的通信范围,有箭头虚线表示设备的移动方向,实线双箭头表示二者之间可以进行双向通信。其中,在底层终端无需借助中层通信系统实现通信功能的情况下,底层终端中的各低空设备也可以作为普通无线通信的辅助AP/基站,来对原有基站功能进行补强。而在发生灾情后,通过自身感知与人工控制中心(灾情指挥中心)经由卫星和/或中层通信系统所发布的控制信令的“双保险”,在地面/地下发生灾情后的最短时间内,立即投入到底层终端中,确保通信功能恢复的无缝衔接,为灾区用户提供不间断的通信服务。
其中,中层通信系统可以为底层终端提供云计算服务,作为小型云池统一协调各临时AP的本地计算、存储资源与设备间无线频谱资源的应用,避免了各临时AP的工作负荷分布过于不均的情况,从而保证了对各类密度的灾区中的各底层终端所提供的网络服务能力相近,且中层通信系统内的各类资源得到最大程度的利用。
如图2所示,本申请实施例提供的分布式通信系统构成了“空间点阵”的架构,整个网络结构可以类比为分子晶体的结构。从微观结构上来看,高空层次、低空层次和地面层次之间的相互通信连接可以类比为分子间作用力,同层次之间的相互通信可以类比于分子内的作用力,低空层次是构成空间点阵架构的关键层次。微观结构在宏观中表现为三维空间中的跨层次分布式特性。空间点阵架构可以分解为横向平行的同构点阵和纵向交错的异构点阵,其中,以低空层次为基础,支撑起了整个空间点阵网络架构的三个特性:有序性、自范性(自限性)和各向异性。
在微观结构上,(1)长程有序性是指在一个单晶体的范围内,质点的有序分布延伸到整个晶格的全部。在本架构中,地面层次原本为无序分布的,但是通过低空层次的后续部署,例如在底层终端密度大的地方密集分布,在底层终端密度小的地方稀疏分布,呈现出这样一个有序性和规律性。在该特性中,低空层次的不可替代性在于:飞行器(低空设备)承载的不只是通信 和转发的任务,同时会根据地面层次业务量大小控制飞行器移动(传感器的作用),实现规律性(根据业务量、终端数量和信号强弱等)的有序部署。但是常规的通信设备只承载通信任务,飞行器的部署则需要人为控制。(2)自范性(自限性)是指晶体具有自发地形成封闭的几何多面体外形的趋势,并以此封闭(范围)着它本身。在本架构中,低空层次作为地面到卫星的承上启下层次,向上连接几颗地球卫星,形成晶体结构的上侧面,向下连接各个地面终端,其范围覆盖整个封闭区域,形成晶体结构的下侧面,对外表现为自限性。在该特性中,低空层次的不可替代性在于:能够根据自然环境及无线电波环境,自发地与其他设备组网并构成规律性的网状结构,为了呈现规则有序结构,飞行器设备需考虑在三维空间中的无线移动组网方式,例如立体空间中的暴露终端和隐藏终端问题。但是常规的通信设备仅考虑了平面空间中的移动组网问题,上升到空间层次后将不再适用;(3)各向异性指物质的全部或部分化学、物理等性质随着方向的改变而有所变化,在不同的方向上呈现出差异的性质。在本架构中表现为,层次之间的业务量、调制方式、通信协议有所不同。在该特性中,地面层次到中间层次的业务量最为庞大,且通信方式和通信协议种类最多,而低空层次的不可替代性在于:低空层次承载所有的地面业务,同时适配所有的通信方式和通信协议,但是到转发到卫星层次的业务量部分较少(只向上转发无法处理的业务),且通过协议转换调制为统一的通信方式。
在宏观实现上,通过预装配在低空设备上的无线硬件桥装置(例如软件定义无线电单元)以及配套用协议转换逻辑和组网算法,为底层设备提供按需的柔性服务能力。在距离地面一定高度的低空空域,利用其高度差所带来的三维空间灵活性、障碍物规避能力及空间自适应无线通信能力,实现柔性拓扑组网与负载均衡。低空层次构成用设备不可替代性至少包括:(1)从工作方式上来分析,普通AP的工作方式是固定的,固定的物理层和数据链路层参数(例如频谱、调制方式等);(2)从无线信号特性上分析,普通AP是为静止化的应用而设计的,如果架设到高速运行的飞行器上,多普勒频移一定会影响原有的无线信号性能,另外,普通AP无线信号难以穿透类似飞行器设备的金属外壳,且容易造成普通AP与飞行器原有通信设备之间的频谱干扰(例如众所周知的乘坐民用客机须将个人无线设备开成飞行模式或关 机),将大大削弱本申请实施例涉及的低空层次的服务能力;(3)从组网功能上分析,普通AP通常是一种连接互联网的网关设备,大多数情况下仅支持星型拓扑,即便是支持网状拓扑的新型AP,也仅为小规模且不支持网间移动的。根据以上分析,本申请实施例所涉及的低空层次构成用设备不能简单采用飞行设备搭载普通AP的方式实现。示例性的,如图3所示,为本申请实施例提供的示例性的中层通信系统的结构示意图,异构设备具体指低空设备,即各低空设备之间可以通信。
其中,底层终端在移动的过程中始终能够同中层通信系统中的某一节点(异构设备)保持双向通信。图4为本申请实施例提供的示例性的中层通信系统的服务覆盖范围示意图,底层终端离开异构设备2(低空设备2)的服务范围后便会立即到达异构设备3(低空设备3)、异构设备4(低空设备4)与异构设备5(低空设备5)服务范围中的一个中,而且各设备间服务范围互有重叠,从而在各底层终端在移动到重叠区,即将更换中层服务节点时,重叠区内所涉及到的各异构设备能够完全共享重叠区内各底层终端的当前数据包发送状态(正在传输的数据包序号)、目的地路由与节点身份标识,从而确保地面设备远距离移动过程中通信的持续性,且网络服务质量基本不变(网络服务资源由中层通信系统的移动自组织网络统一协调)。此外,处于重叠区内的底层终端,将自身所需进行的业务流量的具体要求(时延和可靠性等)上传至中层通信系统后,中层通信系统的移动自组织网络(区域云中心)会根据这些要求进行区域内统筹,为底层终端分配一个最合适的直接提供服务的异构设备供底层终端进行双向通信,提升中层通信系统的总体性能与个性化服务能力。
示例性的,低空设备1在移动过程中,低空设备1发现了一个能够进行同级双向通信的底层终端6,从而建立了一个最小型的底层终端层次的移动自组织网络,该网络具备最小的边缘计算能力。与此同时,底层终端6也与底层终端7相邻,但是距离稍远,因此较小功率的低空设备1并未发现底层终端7,但是底层终端7能够在同级中单向发现低空设备1;但根据系统设计,低空设备1和底层终端7一定能够通过中层通信系统进行双向通信,此时,在低空设备1剩余电量允许的情况下,中层通信系统将通知具备移动能力的低空设备1和底层终端7之间的邻居情况及其地理位置,供低空设备1 选择可向底层终端7靠拢(为了保障底层终端层次的自组织局域网的位置与拓扑相对稳定,一般要求功率较小的底层终端向功率较大的底层终端靠拢),直到能够直接同底层终端7进行双向通信,低空设备1获得信息提示,从而减小了中层通信系统的网络负担。若低空设备1所处地理位置过于恶劣,则底层终端7向低空设备1靠拢。
示例性的,若底层终端1、底层终端6和底层终端7所工作的无线频段均不相同,底层终端1未安装轻量级中间协议,它与底层终端6/底层终端7可通过预先部署的外挂通信设备进行信号频率转换与数据链路层帧重组、屏蔽,或在外挂通信设备失效的情况下,通过已预部署轻量级中间协议的低空设备实现较为可靠的双向通信功能;而底层终端6和底层终端7均已预装轻量级中间协议,它们之间的通信直接在地面层次中解决,可共同构建同一地面层次分布式移动自组织网络。示例性的,如图5所示,为本申请实施例提供的另一种示例性的分布式通信系统的结构示意图,本申请实施例提供的分布式通信系统可以实现全球范围内的无线通信。其中,地面层次移动自组织网络的节点密度较大、节点数较多,其边缘计算能力较强,与此同时其所产生的通信任务量也较大。因此,出于资源预留的阈值条件,地面层级移动自组织网络将自身超过边缘计算或者通信距离能力上限的计算任务上交至中层通信系统,中层通信系统同样将超出能力的计算任务上交至高空层级(卫星),确保通信系统中最大型的通信任务也能得到可靠、高效的实现。
本申请实施例提供的分布式通信系统包括:底层终端、中层通信系统和卫星;其中,中层通信系统包括多个具备无线通信能力的低空设备;低空设备采集底层终端发出的通信请求,并按照通信请求,与底层终端建立通信连接,以为底层终端提供通信服务;当低空设备无法满足底层终端的通信需求时,将底层终端的通信任务转发至卫星;卫星接收并处理低空设备转发的通信任务。上述方案提供的系统,通过利用中层通信系统中的多个低空设备,为底层终端提供通信服务,提高了系统的通信效率,且低空设备部署方便,提高了系统的灵活性。并且,具有良好的抗毁性与鲁棒性。
本申请实施例提供了一种分布式通信系统的控制方法,应用于分布式通信系统,分布式通信系统包括底层终端、中层通信系统和卫星;其中,中层 通信系统包括多个具备无线通信能力的低空设备。本申请实施例提供的控制方法的执行主体为电子设备,比如服务器、台式电脑、笔记本电脑、平板电脑及其他可用于控制分布式通信系统的电子设备。
如图6所示,为本申请实施例提供的分布式通信系统的控制方法的流程示意图。该方法包括:
步骤601,控制低空设备采集底层终端发出的通信请求,并按照通信请求,与底层终端建立通信连接,以为底层终端提供通信服务;
步骤602,当低空设备无法满足底层终端的通信需求时,控制低空设备将底层终端的通信任务转发至卫星;
步骤603,控制卫星接收并处理低空设备转发的通信任务。
具体地,在一实施例中,该方法还包括:
控制中层通信系统采集各底层终端的位置信息和信号功率;根据各底层终端的位置信息和信号功率,调整低空设备的地理位置和信号增益。
具体地,在一实施例中,该方法还包括:
控制底层终端还生成边缘计算任务,并判断本地剩余计算资源是否满足边缘计算任务;若本地剩余计算资源满足边缘计算任务,则控制底层终端执行边缘计算任务;若本地剩余计算资源不能满足边缘计算任务,则控制底层终端将边缘计算任务发送至中层通信系统中;
控制中层通信系统中的低空设备接收边缘计算任务,获取边缘计算任务的任务信息,根据任务信息,判断自身剩余计算资源是否满足边缘计算任务;若自身剩余计算资源满足边缘计算任务,则控制低空设备执行边缘计算任务。
具体地,在一实施例中,该方法还包括:
若低空设备的自身剩余计算资源不满足边缘计算任务,则控制低空设备获取其他低空设备的剩余计算资源及其他低空设备的位置信息;
根据其他低空设备的剩余计算资源及其他低空设备的位置信息,确定目标边缘计算低空设备;
将边缘计算任务转发至目标边缘计算低空设备。
具体地,在一实施例中,该方法还包括:
若低空设备的自身剩余计算资源不满足边缘计算任务,则控制低空设备 将边缘计算任务转发至卫星。
具体地,在一实施例中,低空设备上附设有传感器,该方法还包括:
控制传感器采集预设区域内的灾情信息;
控制低空设备在得到灾情信息后,将灾情信息发送至灾情指挥中心。
关于本实施例中的分布式通信系统的控制方法,其中各个步骤的具体方式已经在有关该分布式通信系统的实施例中进行了详细描述,此处将不做详细阐述说明。
本申请实施例提供的分布式通信系统的控制方法,用于控制上述实施例提供的分布式通信系统,其实现方式与原理相同,不再赘述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种分布式通信系统,其特征在于,包括:底层终端、中层通信系统和卫星;其中,所述中层通信系统包括多个具备无线通信能力的低空设备;
    所述低空设备采集底层终端发出的通信请求,并按照所述通信请求,与所述底层终端建立通信连接,以为所述底层终端提供通信服务;
    当所述低空设备无法满足所述底层终端的通信需求时,将所述底层终端的通信任务转发至卫星;
    所述卫星接收并处理低空设备转发的通信任务。
  2. 根据权利要求1所述的系统,其特征在于,所述中层通信系统用于采集各底层终端的位置信息和信号功率;根据所述各底层终端的位置信息和信号功率,调整所述低空设备的地理位置和信号增益。
  3. 根据权利要求1所述的系统,其特征在于,所述底层终端还生成边缘计算任务,并判断本地剩余计算资源是否满足所述边缘计算任务;若本地剩余计算资源满足所述边缘计算任务,则执行所述边缘计算任务;若本地剩余计算资源不能满足所述边缘计算任务,则将所述边缘计算任务发送至中层通信系统中;
    所述中层通信系统中的低空设备接收所述边缘计算任务,获取所述边缘计算任务的任务信息,根据所述任务信息,判断自身剩余计算资源是否满足所述边缘计算任务;若自身剩余计算资源满足所述边缘计算任务,则执行所述边缘计算任务。
  4. 根据权利要求3所述的系统,其特征在于,若所述低空设备的自身剩余计算资源不满足所述边缘计算任务,则获取其他低空设备的剩余计算资源及其他低空设备的位置信息;
    根据所述其他低空设备的剩余计算资源及其他低空设备的位置信息,确定目标边缘计算低空设备;
    将所述边缘计算任务转发至所述目标边缘计算低空设备。
  5. 根据权利要求3所述的系统,其特征在于,若所述低空设备的自身剩余计算资源不满足所述边缘计算任务,则将所述边缘计算任务转发至卫星。
  6. 根据权利要求1所述的系统,其特征在于,所述低空设备上附设有传感器,所述传感器用于采集预设区域内的灾情信息;
    所述低空设备得到所述灾情信息后,将所述灾情信息发送至灾情指挥中心。
  7. 根据权利要求1所述的系统,其特征在于,所述底层终端和中层通信系统是基于移动自组织网络构建的。
  8. 根据权利要求1所述的系统,其特征在于,所述卫星和低空设备上部署有外挂通信设备和/或轻量级中间协议,以使所述卫星和低空设备适应多种通信协议。
  9. 根据权利要求1所述的系统,其特征在于,所述底层终端和中层通信系统中的各低空设备均设有应急频段,用于传输紧急信息。
  10. 一种分布式通信系统的控制方法,应用于分布式通信系统,所述分布式通信系统包括底层终端、中层通信系统和卫星;其中,所述中层通信系统包括多个具备无线通信能力的低空设备;其特征在于,所述方法包括:
    控制所述低空设备采集底层终端发出的通信请求,并按照所述通信请求,与所述底层终端建立通信连接,以为所述底层终端提供通信服务;
    当所述低空设备无法满足所述底层终端的通信需求时,控制所述低空设备将所述底层终端的通信任务转发至卫星;
    控制所述卫星接收并处理低空设备转发的通信任务。
PCT/CN2021/104022 2021-07-01 2021-07-01 一种分布式通信系统及控制方法 WO2023272684A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/104022 WO2023272684A1 (zh) 2021-07-01 2021-07-01 一种分布式通信系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/104022 WO2023272684A1 (zh) 2021-07-01 2021-07-01 一种分布式通信系统及控制方法

Publications (1)

Publication Number Publication Date
WO2023272684A1 true WO2023272684A1 (zh) 2023-01-05

Family

ID=84692193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104022 WO2023272684A1 (zh) 2021-07-01 2021-07-01 一种分布式通信系统及控制方法

Country Status (1)

Country Link
WO (1) WO2023272684A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050090201A1 (en) * 2003-08-20 2005-04-28 Mark Lengies System and method for a mobile AD HOC network suitable for aircraft
US20150024677A1 (en) * 2013-07-21 2015-01-22 Hughes Network Systems, Llc System and architecture for space-based and mobile terrestrial sensor vehicles, and end-to-end network for aggregation and processing of sensor data
CN107733459A (zh) * 2017-09-15 2018-02-23 中国汽车技术研究中心 基于DSRC及低空卫星通信的车载T‑Box及其应用
CN109412671A (zh) * 2018-09-21 2019-03-01 清华大学 星空地协同架构下的海上按需通信方法及装置
CN111132080A (zh) * 2019-12-09 2020-05-08 北航(四川)西部国际创新港科技有限公司 一种多网融合通信的自适应无缝切换系统和方法
US20210119692A1 (en) * 2019-10-17 2021-04-22 National Central University Wireless communication relay system for unmanned vehicles
CN112929074A (zh) * 2021-01-27 2021-06-08 东南大学 一种卫星和高空平台协助的星地边缘计算任务卸载方法
CN112954599A (zh) * 2021-03-31 2021-06-11 广东电网有限责任公司电力调度控制中心 一种灾后无人机通信系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050090201A1 (en) * 2003-08-20 2005-04-28 Mark Lengies System and method for a mobile AD HOC network suitable for aircraft
US20150024677A1 (en) * 2013-07-21 2015-01-22 Hughes Network Systems, Llc System and architecture for space-based and mobile terrestrial sensor vehicles, and end-to-end network for aggregation and processing of sensor data
CN107733459A (zh) * 2017-09-15 2018-02-23 中国汽车技术研究中心 基于DSRC及低空卫星通信的车载T‑Box及其应用
CN109412671A (zh) * 2018-09-21 2019-03-01 清华大学 星空地协同架构下的海上按需通信方法及装置
US20210119692A1 (en) * 2019-10-17 2021-04-22 National Central University Wireless communication relay system for unmanned vehicles
CN111132080A (zh) * 2019-12-09 2020-05-08 北航(四川)西部国际创新港科技有限公司 一种多网融合通信的自适应无缝切换系统和方法
CN112929074A (zh) * 2021-01-27 2021-06-08 东南大学 一种卫星和高空平台协助的星地边缘计算任务卸载方法
CN112954599A (zh) * 2021-03-31 2021-06-11 广东电网有限责任公司电力调度控制中心 一种灾后无人机通信系统

Similar Documents

Publication Publication Date Title
US11463152B2 (en) Moving cellular communication system
Hung et al. Architecture harmonization between cloud radio access networks and fog networks
Hellaoui et al. Aerial control system for spectrum efficiency in UAV-to-cellular communications
CN105144835B (zh) 异构网状网络和其中使用的多无线电接入技术节点
EP2963863B1 (en) Methods of incorporating an ad hoc cellular network into a fixed cellular network
KR100924605B1 (ko) 무선 네트워크에서 무선 자원들을 재사용하는 시스템 및방법
KR100950357B1 (ko) 무선 네트워크에서 채널들을 할당하는 시스템 및 방법
KR101661861B1 (ko) Ps-lte 재난안전통신망을 위한 모니터링 uav 애드혹 네트워크
US11943040B2 (en) System and method for droneran controller
CN206977713U (zh) 一种基于无线自组网的海上应急无线通信系统
US20210289433A1 (en) OpenRAN Solution Suite
WO2023272684A1 (zh) 一种分布式通信系统及控制方法
CN108882307A (zh) 一种控制与业务分离的方法及装置
US20230082175A1 (en) Method, apparatus and computer program product for management of sidelink based relaying
CN113194485B (zh) 一种分布式通信系统及控制方法
WO2016161761A1 (zh) 数据传输方法及装置
US11526826B2 (en) Remote definition of metrics
RU2782866C2 (ru) Архитектура с агрегированием технологий для систем связи стандарта долгосрочного развития
CN117979382A (zh) 基于网络分簇和信息摆渡的无线自组织通信系统及方法
CN115038175A (zh) 控制蜂窝系统中的射频发射
Meng et al. Emergency communication network design and key technology research
Chevrollier et al. Converged infrastructure for emerging regions-A research agenda

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE