WO2023272630A1 - 多相串联电容直流-直流转换器、控制方法 - Google Patents

多相串联电容直流-直流转换器、控制方法 Download PDF

Info

Publication number
WO2023272630A1
WO2023272630A1 PCT/CN2021/103772 CN2021103772W WO2023272630A1 WO 2023272630 A1 WO2023272630 A1 WO 2023272630A1 CN 2021103772 W CN2021103772 W CN 2021103772W WO 2023272630 A1 WO2023272630 A1 WO 2023272630A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
phase
circuit
transient
power
Prior art date
Application number
PCT/CN2021/103772
Other languages
English (en)
French (fr)
Inventor
苑竞艺
刘泽国
程林
吴枫
Original Assignee
合肥乘翎微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥乘翎微电子有限公司 filed Critical 合肥乘翎微电子有限公司
Priority to PCT/CN2021/103772 priority Critical patent/WO2023272630A1/zh
Publication of WO2023272630A1 publication Critical patent/WO2023272630A1/zh
Priority to US18/329,511 priority patent/US11799378B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0019Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • H02M1/0845Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system digitally controlled (or with digital control)
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the disclosure belongs to the field of electronic technology, and in particular relates to a multi-phase series capacitor DC-DC converter and a control method.
  • One aspect of the present disclosure provides a multi-phase series capacitor DC-DC converter, which is characterized in that it includes: a power stage circuit for converting an input DC voltage into a stable DC voltage required by a load, wherein the power The stage circuit includes at least two-phase inductors, and there is a preset interval of phase difference between the inductor currents of each phase, which is used to charge the load alternately in sequence. There are two-way switches between each adjacent two-phase inductors.
  • the load transient response circuit is used to control at least one of the bidirectional switches to be turned on when the load transient positive jump occurs, so that at least Two-phase inductors charge the load simultaneously to quickly respond to transient changes in the load.
  • the load transient response circuit includes: an error amplifier, configured to calculate an error between the output voltage of the power stage circuit and a reference voltage, to obtain an error signal; a transient detection circuit, configured to The signal judges whether the load has a transient positive jump; the transient enhancement logic circuit is used to generate a control signal for controlling the conduction of the bidirectional switch when the load is detected to have a transient positive jump; the drive circuit uses Controlling at least one of the bidirectional switches to be turned on according to the control signal.
  • the two-phase inductors connected to the turned on bidirectional switches are connected in parallel.
  • the load transient response circuit further includes: a turn-on time generation circuit, configured to generate control signals for power transistors of the circuit where the inductance of each phase is located according to the error signal, and each of the control signals is used to control each The circuit where the phase inductance is located is turned on, so that the inductance of each phase charges the load alternately in turn; the drive circuit is also used to, when no load transient positive jump occurs, according to the control signal of each phase and controlling the power switches provided on the circuit where the inductors of each phase are located, so that the inductors of each phase are alternately charged to the load.
  • a turn-on time generation circuit configured to generate control signals for power transistors of the circuit where the inductance of each phase is located according to the error signal, and each of the control signals is used to control each The circuit where the phase inductance is located is turned on, so that the inductance of each phase charges the load alternately in turn; the drive circuit is also used to, when no load transient positive jump occurs, according to the control signal of each
  • the sub-circuit where at least one phase inductance is located in the power stage circuit includes: a power switch AH, a power switch AL, and a filter inductor L b , which are connected in sequence;
  • the circuit includes: a power switch BH, a capacitor CF, a power switch BL and a filter inductor L a connected in sequence; wherein, the input ends of the power switch AH and the capacitor CF are connected to the power switch BH, and the power switch BH , AH are respectively used to control the voltage input of the corresponding sub-circuit; the output terminals of the filter inductance L b and the filter inductance L a are connected with the output port of the power stage circuit; the filter inductance L b and the filter
  • the bidirectional switch is provided between the input ports of the inductor L a ; a grounded filter capacitor C is also provided at the output port of the power stage circuit.
  • the drive circuit is also used to connect the power switch BL and power switch on the two-phase sub-circuit connected to at least one of the bidirectional switches that are turned on. AH, the power switch AL is turned off, and the power switch BH is driven to generate a voltage input pulse in response to a load transient forward jump.
  • Another aspect of the present disclosure provides a control method, which is applied to the multi-phase series capacitor DC-DC converter as described in the first aspect, including: when detecting a transient positive jump of the load, controlling the power stage circuit The bidirectional switches between at least two adjacent inductors are turned on, so that the at least two adjacent inductors charge the load at the same time, so as to quickly respond to the transient change of the load.
  • the method further includes: when the load is working normally, controlling the bidirectional switch to be turned off, and controlling the inductance of each phase to charge the load alternately in sequence.
  • the load when detecting a transient positive jump of the load, it further includes: connecting the power switch BL and power switch AH, the power switch AL is turned off, and drives the power switch BH to generate a voltage input pulse in response to the load transient forward jump.
  • controlling the conduction of the bidirectional switch between at least two adjacent inductors in the power stage circuit includes: calculating the output voltage of the power stage circuit and the reference The error between the voltages is used to obtain an error signal; according to the error signal, it is judged whether the load has a transient positive jump; when the load is detected to have a transient positive jump, a control for controlling the conduction of the bidirectional switch is generated signal; controlling at least one of the bidirectional switches to be turned on according to the control signal.
  • the multi-phase series capacitor DC-DC converter and its control method provided by the present disclosure release the phase interleaving clock of the two-phase structure when the load transient jumps, eliminate the delay time of the phase interleaving, and use the two-phase inductance to simultaneously When the load is charged, the rising slope of the inductor current is at least doubled, which greatly improves the load transient response speed.
  • Fig. 1 schematically shows a circuit diagram of a conventional two-phase series capacitor DC-DC converter
  • Fig. 2 schematically shows a load transient jump response curve of a traditional two-phase series capacitor DC-DC converter
  • Fig. 3 schematically shows a schematic circuit diagram of a multi-phase series capacitor DC-DC converter provided by an embodiment of the present disclosure
  • Fig. 4 schematically shows the working diagram of the power stage circuit provided by the embodiment of the present disclosure when the load transient jumps
  • FIG. 5 schematically shows a signal schematic diagram of a multi-phase series capacitor DC-DC converter provided by an embodiment of the present disclosure
  • FIG. 6 schematically shows a load transient jump response curve of a multi-phase series capacitor DC-DC converter provided by an embodiment of the present disclosure
  • FIG. 7 schematically shows a schematic topology diagram of a power stage circuit of a multi-phase series capacitor DC-DC converter provided by an embodiment of the present disclosure
  • Fig. 8 schematically shows a flow chart of a control method for a multi-phase series capacitor DC-DC converter provided by an embodiment of the present disclosure.
  • a computer-readable medium is any medium that can contain, store, convey, propagate or transport instructions.
  • a computer readable medium may include, but is not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium.
  • Specific examples of computer-readable media include: magnetic storage, such as magnetic tape or hard disk (HDD); optical storage, such as compact disc (CD-ROM); memory, such as random access memory (RAM) or flash memory; and/or wired / wireless communication link.
  • V in is the input voltage of the converter
  • V out is the output voltage of the converter
  • L is the inductance value
  • D represents the duty cycle of the power tube control signal
  • D V out /V in , D ⁇ 1
  • T is the switch of the converter Cycle
  • DT represents the conduction time of the power tube per cycle.
  • Fig. 1 schematically shows a schematic circuit diagram of a traditional two-phase series capacitor DC-DC converter provided by an embodiment of the present disclosure.
  • L a , L b and C are filter inductors and capacitors
  • BH, BL, AH and AL are power switches
  • the switching nodes SW1, SW2 and SW3 The equivalent parasitic capacitances are respectively C oss1 , C oss2 and C oss3 .
  • the power supply voltage is high, and the power switch often uses LDMOSFET (Laterally-Diffused Metal-Oxide Semiconductor Field Effect Transistor, laterally diffused metal-oxide semiconductor field effect transistor), resulting in switching nodes SW1, SW2 and SW3
  • LDMOSFET Laterally-Diffused Metal-Oxide Semiconductor Field Effect Transistor, laterally diffused metal-oxide semiconductor field effect transistor
  • Fig. 2 schematically shows a load transient jump response curve of a traditional two-phase series capacitor DC-DC converter provided by an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a DC-DC converter with fast load transient response, which can realize fast load transient response without increasing the switching frequency, the circuit is simple, and the cost is reduced; at the same time, the circuit can be applied in multiple Phase-series capacitor DC-DC converter topology, with scalability.
  • Fig. 3 schematically shows a schematic circuit diagram of a multi-phase series capacitor DC-DC converter provided by an embodiment of the present disclosure.
  • FIG. 3 only shows a two-phase multi-phase series capacitor DC-DC converter.
  • the DC-DC converter includes two parts: a power stage circuit 210 and a load transient response circuit 220 .
  • the power stage circuit 210 is used to convert the input DC voltage into a stable output DC voltage with ripples, wherein the power stage circuit 210 includes at least two-phase inductors, and there is a preset interval of phase difference between the inductor currents of each phase , used to charge the load alternately in sequence. For example, when the power stage circuit 210 includes only two-phase inductors, the phase difference between the inductor currents of each phase is 180°. When the power stage circuit 210 includes three-phase inductors, each The phase difference between the phase inductor currents is 120°.
  • a bidirectional switch S tran is provided between each adjacent two-phase inductance. When the bidirectional switch S tran is turned on, the two phases of the inductance connected to the turned on bidirectional switch S tran are connected in parallel, and the corresponding two-phase The inductor simultaneously charges the load.
  • the load transient response circuit 220 is configured to control at least one of the bidirectional switches S tran to be turned on when a load transient positive jump occurs, so that at least two-phase inductors charge the load at the same time, so as to quickly respond to the load transient changes.
  • the power stage circuit 210 is composed of four power switches AH, AL, BH and BL, a flying capacitor CF and two filter inductors L a and L b .
  • the circuit further includes a bidirectional switch S tran connected in parallel between the two switching nodes SW1 and SW2.
  • the bidirectional switch S tran can be connected together in a manner of connecting source terminals of two N-type LDMOSFETs.
  • both switches When the gate-source voltage is high, both switches are turned on, and both switches are in the on state; when the gate-source voltage is low, both switches are turned off, and at least one N-type LDMOSFET body
  • the diode is reverse-biased, which can ensure that the bidirectional switch S tran is in an off state, and the switching type of the bidirectional switch S tran is not limited here.
  • the subcircuit where at least one phase inductance is located includes: a power switch AH, a power switch AL, and a filter inductor Lb , which are connected in sequence; another subcircuit where at least one phase inductance is adjacent to the inductance includes: The power switch BH, the capacitor CF, the power switch BL and a filter inductor L a are sequentially connected; wherein, the input ends of the power switch AH and the capacitor CF are connected to the power switch BH, and the power switches BH and AH are respectively Used to control the voltage input of the corresponding sub-circuit; the output terminals of the filter inductor L b and the filter inductor L a are connected to the output port of the power stage circuit; the filter inductor L b and the filter inductor L a
  • the bidirectional switch S tran is provided between the input ports of the power stage circuit; a grounded filter capacitor C is also provided at the output port of the power stage circuit.
  • the bidirectional switch S tran is used to short-circuit the two-phase switch nodes when the load transiently jumps, release the two-phase interleaved clock, and use the two-phase inductor current to charge the load synchronously.
  • the specific load transient jump response curve is shown in Figure 6 shown.
  • the load transient response circuit 220 includes: an error amplifier 221 , an on-time generation circuit 222 , a transient detection circuit 223 , a transient enhancement logic circuit 224 , and a drive circuit 225 .
  • the error amplifier 221 is used to calculate the error between the output voltage V FB of the power stage circuit and the reference voltage V REF to obtain an error signal V EA .
  • the conduction time generation circuit 222 is used to generate the control signals of the high-side power transistors of the circuits where the inductances of each phase are located according to the error signal V EA , and each of the control signals is used to control the conduction of the circuits where the inductors of each phase are located, so that The inductors of each phase charge the load alternately in sequence.
  • the transient detection circuit 223 is configured to judge whether the load has a transient positive jump according to the error signal V EA . Specifically, when the error signal V EA is greater than the preset signal V L , it is determined that the load has a transient positive jump. Wherein, when it is judged that the load has a transient positive jump, the output transient detection signal Tran_Detected is at a high level, otherwise the output is at a low level. When the transient detection signal is high level, the built-in monostable circuit is triggered to ensure that the signal cannot be triggered again within the rated time.
  • the transient enhancement logic circuit 224 is configured to generate a control signal for controlling the conduction of the bidirectional switch when detecting a transient positive jump of the load.
  • the driving circuit 225 is configured to control at least one of the bidirectional switches to be turned on according to the control signal.
  • the drive circuit 225 is also used to connect the power switch BL and the power switch AH on the two-phase sub-circuit connected to at least one of the bidirectional switch S tran that is turned on. .
  • the power switch AL is turned off, and the power switch BH is driven to generate a voltage input pulse in response to a transient load transition.
  • the drive circuit 225 is also used to control the on and off of the power switch provided on the circuit where the inductor of each phase is located according to the control signal of the power tube of the circuit where the inductor of each phase is located. On, that is, to control the conduction time of the power switches on the circuit where the inductors are located, so that the inductors of each phase can charge the load alternately in sequence.
  • the power transistor BL of the first phase and the power transistors AH, AL of the second phase are turned off, and the Stran control of releasing the two-phase interleaved clock is generated. Signal.
  • the drive circuit 225 is also used to control the power switches provided on the circuit where the inductors of each phase are located when no transient load transition occurs, so that the inductors of each phase alternately control the load. Charge.
  • Fig. 4 schematically shows the working schematic diagram of the power stage circuit provided by the embodiment of the present disclosure in response to the load transient jump
  • Fig. 5 schematically shows the multi-phase series capacitor DC-DC converter provided by the embodiment of the present disclosure
  • FIG. 6 schematically shows a load transient jump response curve of a multi-phase series capacitor DC-DC converter provided by an embodiment of the present disclosure.
  • the gray part in Fig. 4 represents that the power transistor is closed
  • BH, BL, AH, and AL in Fig. 5 correspond to the gate terminal control signals of the corresponding power transistor in Fig.
  • S tran represents the bidirectional switch S
  • the control signal of tran when the transient detection signal Tran_Detected is high level, the control signal SBH of the power tube BH of the first phase and the control signal Tran_EN of the bidirectional switch S tran are high level, and the control signal SAH of the second phase is low level, through the drive circuit to obtain the gate terminal control signals of the power tubes of each phase and the gate terminal control signal of the bidirectional switch S tran based on the Tran_EN signal, turn off the power tubes AH, AL and BL, and turn on the power tube BH and the two-phase switch S tran .
  • the bidirectional switch S tran is turned on, using the two-phase inductance to charge the load at the same time, eliminating the delay caused by the existing two-phase interleaved clock, and speeding up the load transient response speed, referring to Figure 5, the first-phase power transistor BH extends the on-time in response to the control signal SBH to respond to load transient changes and provide corresponding energy to the load.
  • the two-phase inductors can charge the load capacitance at the same time, which is equivalent to two-phase inductors connected in parallel, and the rising slope of the inductor current is the formula (3):
  • D is the duty ratio of the power tube BH in the steady state.
  • the multi-phase series capacitor DC-DC converter releases the two-phase interleaved clock when the load undergoes a transient positive jump, and uses two-phase inductance to charge the load at the same time, The rising slope of the inductor current is doubled, enabling fast load transient response.
  • the converter is an N-phase series capacitive DC-DC converter
  • the N-phase inductor when the load transiently jumps, can be used to charge the load at the same time, so that the rising slope of the inductor current can be expanded by N times, and it has fast load Transient response capability, wide application range, and scalability.
  • Fig. 7 schematically shows a schematic diagram of a topology of a power stage circuit provided by an embodiment of the present disclosure.
  • embodiments of the present disclosure also provide various topological structures of power stage circuits, wherein (1) shows a multi-phase series capacitor topology, and (2) schematically shows a series Capacitor+3-level hybrid topology, (3) schematically shows a simplified multi-phase series capacitor topology, and (4) schematically shows a dual-inductor hybrid Dickson topology.
  • the topological structure of the power stage circuit provided by this embodiment is not limited to the several structures shown in FIG. 7 , but all of them can realize charging the load by multi-phase inductance simultaneously by closing the bidirectional switch to quickly respond to the transient change of the load.
  • the topology of the multi-phase series capacitor DC-DC converter provided by the present disclosure can be a step-up or step-down multi-phase series capacitor power stage circuit, when the power stage circuit is the boost shown in (5) in Figure 7 Multi-phase series capacitor topology structure, the multi-phase series capacitor DC-DC converter provided by the present disclosure has a transient negative jump in the load, the multi-phase interleaved clock is released, and the multi-phase inductance is used to discharge the load at the same time, and the inductor current drops the slope Double the size, with fast load transient response capability.
  • Fig. 8 schematically shows a flow chart of a control method for a multi-phase series capacitor DC-DC converter provided by an embodiment of the present disclosure.
  • control method includes S810.
  • the detection load when the detection load has a transient positive jump, it also includes:
  • controlling the conduction of the bidirectional switch between at least two adjacent inductors in the power stage circuit specifically includes S812-S815.
  • the output transient detection signal Tran_Detected is high. If the error signal does not exceed the rated amplitude VL, it is judged that the load current does not have a transient positive transition. Transition, the output transient detection signal Tran_Detected is low level.
  • the power transistor BL of the first phase and the two power transistors AH and AL of the second phase are turned off, and the bidirectional switch S tran is turned on to charge the load at the same time by using the two-phase inductor current. Achieve transient enhancement effects.
  • the method also includes S820:
  • the drive circuit 225 will control the bidirectional switch to turn off, and the power switch BL, the power switch BH, the power switch AH, and the power switch AL are controlled by the two-phase control signals SBH and SAH
  • the sequential conduction is controlled, the phase difference of the inductor current of each phase is restored, and the load is charged alternately in sequence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种多相串联电容直流-直流转换器,包括:功率级电路,用于将输入直流电压转换为负载所需的稳定直流电压,其中,功率级电路至少包括两相电感,各相电感电流之间存在预设间隔的相位差,用于依次交替的对负载进行充电,各相邻的两相电感之间均设有双向开关,当双向开关导通时,对应的两相电感同时对负载进行充电;负载瞬态响应电路,用于当发生负载瞬态正向跳变时,控制至少一个双向开关导通,使至少两相电感同时对负载充电,以快速响应负载的瞬态变化。本公开还提供了该转换器的控制方法,可实现对负载瞬态变化的快速响应。

Description

多相串联电容直流-直流转换器、控制方法 技术领域
本公开属于电子技术领域,尤其涉及一种多相串联电容直流-直流转换器、控制方法。
背景技术
现有的多相串联电容直流-直流转换器通常针对控制环路进行优化,来提高负载瞬态响应速度,但负载瞬态响应速度仍受限于电感电流的上升斜率。传统的瞬态增强技术通过提高开关频率来提高电感电流上升斜率,然而开关频率的提高进一步压缩了功率管导通时间,对控制、驱动电路的设计提出极高挑战;开关频率的提高大幅增加了功率管的开关损耗,恶化了转换效率。为避免多相功率管导通时间发生交叠,功率管控制信号需保持360°/N的固定相位差,无法利用N相电感电流同时为负载充电,负载瞬态响应速度提升受限。
发明内容
本公开的一个方面提供了一种多相串联电容直流-直流转换器,其特征在于,包括:功率级电路,用于将输入直流电压转换为负载所需的稳定直流电压,其中,所述功率级电路至少包括两相电感,各相电感电流之间存在预设间隔的相位差,用于依次交替的对负载进行充电,各相邻的两相电感之间均设有双向开关,当所述双向开关导通时,对应的两相电感同时对所述负载进行充电;负载瞬态响应电路,用于当发生负载瞬态正向跳变时,控制至少一个所述双向开关导通,使至少两相电感同时对所述负载充电,以快速响应所述负载的瞬态变化。
可选地,所述负载瞬态响应电路包括:误差放大器,用于计算所述功率级电路的输出电压与参考电压之间的误差,得到误差信号;瞬态检 测电路,用于根据所述误差信号判断所述负载是否发生瞬态正向跳变;瞬态增强逻辑电路,用于当检测负载发生瞬态正向跳变时,产生控制所述双向开关导通的控制信号;驱动电路,用于根据所述控制信号控制至少一个所述双向开关导通。
可选地,当发生负载瞬态正向跳变,至少一个所述双向开关导通后,与导通的所述双向开关连接的两相所述电感并联。
可选地,所述负载瞬态响应电路还包括:导通时间产生电路,用于根据所述误差信号产生各相电感所在电路的功率管的控制信号,各所述控制信号分别用于控制各相电感所在电路导通,以使各相所述电感依次交替的对所述负载充电;所述驱动电路还用于,当未发生负载瞬态正向跳变时,根据各相所述控制信号,控制设于各相所述电感所在电路上的功率开关,使各相所述电感依次交替的对所述负载进行充电。
可选地,所述功率级电路其中至少一相电感所在子电路包括:功率开关AH、功率开关AL和一个滤波电感L b,依次连接;与所述电感相邻的另外至少一相电感所在子电路包括:功率开关BH、电容C F、功率开关BL和一个滤波电感L a,依次连接;其中,所述功率开关AH和电容C F的输入端均与功率开关BH连接,所述功率开关BH、AH分别用于控制对应的所述子电路的电压输入;所述滤波电感L b和滤波电感L a的输出端均与所述功率级电路的输出端口连接;所述滤波电感L b和滤波电感L a的输入端口之间设有所述双向开关;所述功率级电路的输出端口还设有一接地的滤波电容C。
可选地,当发生负载瞬态正向跳变后,所述驱动电路还用于,将与导通的至少一个所述双向开关相连的两相子电路上的所述功率开关BL、功率开关AH、功率开关AL关闭,并驱动所述功率开关BH产生响应负载瞬态正向跳变的电压输入脉冲。
本公开另一方面提供了一种控制方法,应用于如第一方面所述的多相串联电容直流-直流转换器,包括:当检测负载发生瞬态正向跳变时,控制功率级电路中至少两相相邻的电感之间的双向开关导通,使所述至 少两相相邻的电感同时对所述负载进行充电,以快速响应所述负载的瞬态变化。
可选地,还包括:当所述负载正常工作时,控制所述双向开关断开,以及,控制各相所述电感依次交替的对负载进行充电。
可选地,当检测负载发生瞬态正向跳变时,还包括:将所述功率级电路中与导通的至少一个所述双向开关相连的两相子电路上的功率开关BL、功率开关AH、功率开关AL关闭,并驱动功率开关BH产生响应负载瞬态正向跳变的电压输入脉冲。
可选地,所述当检测负载发生瞬态正向跳变时,控制功率级电路中至少两相相邻的电感之间的双向开关导通包括:计算所述功率级电路的输出电压与参考电压之间的误差,得到误差信号;根据所述误差信号判断所述负载是否发生瞬态正向跳变;当检测负载发生瞬态正向跳变时,产生控制所述双向开关导通的控制信号;根据所述控制信号控制至少一个所述双向开关导通。
在本公开实施例采用的上述至少一个技术方案能够达到以下有益效果:
本公开提供的多相串联电容直流-直流转换器及其控制方法,在负载发生瞬态跳变时,解除两相结构的相位交错时钟,消除相位交错的延时时间,利用两相电感同时为负载充电,电感电流上升斜率扩大至少一倍,大幅提高负载瞬态响应速度。
附图说明
图1示意性示出了传统两相串联电容直流-直流转换器的电路示意图;
图2示意性示出了传统两相串联电容直流-直流转换器的负载瞬态跳变响应曲线图;
图3示意性示出了本公开实施例提供的多相串联电容直流-直流转 换器的电路示意图;
图4示意性示出了本公开实施例提供的功率级电路在负载瞬态跳变时的工作示意图;
图5示意性示出了本公开实施例提供的多相串联电容直流-直流转换器的信号示意图;
图6示意性示出了本公开实施例提供的多相串联电容直流-直流转换器的负载瞬态跳变响应曲线图;
图7示意性示出了本公开实施例提供的多相串联电容直流-直流转换器功率级电路的拓扑结构示意图;
图8示意性示出了本公开实施例提供的一种多相串联电容直流-直流转换器的控制方法的流程图。
具体实施方式
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开。这里使用的词语“一”、“一个(种)”和“该”等也应包括“多个”、“多种”的意思,除非上下文另外明确指出。此外,在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。
在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。
附图中示出了一些方框图和/或流程图。应理解,方框图和/或流程图中的一些方框或其组合可以由计算机程序指令来实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其他可编程数据处理装置 的处理器,从而这些指令在由该处理器执行时可以创建用于实现这些方框图和/或流程图中所说明的功能/操作的装置。
因此,本公开的技术可以硬件和/或软件(包括固件、微代码等)的形式来实现。另外,本公开的技术可以采取存储有指令的计算机可读介质上的计算机程序产品的形式,该计算机程序产品可供指令执行系统使用或者结合指令执行系统使用。在本公开的上下文中,计算机可读介质可以是能够包含、存储、传送、传播或传输指令的任意介质。例如,计算机可读介质可以包括但不限于电、磁、光、电磁、红外或半导体系统、装置、器件或传播介质。计算机可读介质的具体示例包括:磁存储装置,如磁带或硬盘(HDD);光存储装置,如光盘(CD-ROM);存储器,如随机存取存储器(RAM)或闪存;和/或有线/无线通信链路。
对于传统的Buck直流-直流转换器,电感电流的斜率m与纹波Δi L可以表示为:
m=(V in-V out)/L      (1)
Δi L=m×DT      (2)
V in是转换器输入电压,V out是转换器输出电压,L是电感值,D代表功率管控制信号的占空比,D=V out/V in,D<1,T是转换器的开关周期,DT表示每周期功率管的导通时间。由公式(1),电感电流斜率与电感值成反比。电感电流斜率代表负载发生瞬态跳变时电感对负载充电的电流能力,斜率越大,对负载的充电电流越大,输出电压的恢复速度越快,电压跌落越小,负载瞬态响应速度越高。由公式(2),负载发生瞬态跳变时,占空比D越大,单周期内对负载电容的充电时间DT越长,输出电压的恢复速度越快,负载瞬态响应速度越高。
图1示意性示出了本公开实施例提供的传统两相串联电容直流-直流转换器的电路示意图。
如图1所示,对于两相串联电容直流-直流转换器,提高负载瞬态响应速度最直接的方法便是提高转换器的开关频率,在保持电感电流纹波不变的前提下,选取更小的滤波电感值,提高电感电流的上升斜率。
如图1所示,对于传统的两相串联电容直流-直流转换器,L a、L b 与C为滤波电感、电容,BH、BL、AH和AL是功率开关,开关节点SW1、SW2和SW3的等效寄生电容分别为C oss1、C oss2和C oss3。在大转换比的应用环境下,电源电压较高,功率开关常采用LDMOSFET(Laterally-Diffused Metal-Oxide Semiconductor Field Effect Transistor,横向扩散金属氧化物半导体场效应晶体管),导致开关节点SW1、SW2和SW3的寄生电容C oss1、C oss2和C oss3容值较大。当BH与BL、AH与AL开关切换时,在电容C oss1、C oss2和C oss3上的电荷被放电而浪费,能量损失可达C oss1V in 2f s+C oss2V in 2f s+C oss3V in 2f s,因此更高的开关频率带来更大的开关损耗,严重降低能量转换效率。
图2示意性示出了本公开实施例提供的传统两相串联电容直流-直流转换器的负载瞬态跳变响应曲线图。
如图2所示,对于两相串联电容直流-直流转换器,由于两相结构固有的180°相位差,两相电感无法同时对负载进行充电,因此负载瞬态响应速度存在可优化的空间。
本公开实施例提供了一种具备快速负载瞬态响应的直流-直流转换器,在不提高开关频率的前提下,实现快速负载瞬态响应,电路简单,降低成本;同时该电路可应用在多相串联电容直流-直流转换器拓扑结构中,具备可拓展性。
图3示意性示出了本公开实施例提供的多相串联电容直流-直流转换器的电路示意图。
需要说明的是,本公开提供的是一种多相串联电容直流-直流转换器,为了便于说明,图3仅示出了两相多相串联电容直流-直流转换器。
如图3所示,该直流-直流转换器包括功率级电路210和负载瞬态响应电路220两部分。
功率级电路210,用于将输入直流电压转换为带有纹波的稳定输出直流电压,其中,所述功率级电路210至少包括两相电感,各相电感电流之间存在预设间隔的相位差,用于依次交替的对负载进行充电,例如,当该功率级电路210仅包括两相电感时,各相电感电流之间的相位相差180°,该功率级电路210包括三相电感时,各相电感电流之间的相位相 差120°。各相邻的两相电感之间均设有双向开关S tran,当所述双向开关S tran导通时,与导通的该双向开关S tran连接的两相所述电感并联,对应的两相电感同时对所述负载进行充电。
负载瞬态响应电路220,用于当发生负载瞬态正向跳变时,控制至少一个所述双向开关S tran导通,使至少两相电感同时对所述负载充电,以快速响应所述负载的瞬态变化。
如图3所示,该功率级电路210由四个功率开关AH、AL、BH和BL,一个飞电容C F与两个滤波电感L a和L b组成。特别的,该电路还包括并接在两个开关节点SW1、SW2间的一个双向开关S tran。该双向开关S tran可以由两个N型LDMOSFET源端相连的方式连接在一起。当其栅源电压为高电平,两开关均开启,此时两开关均处于导通状态;当其栅源电压为低电平时,两开关均关断,其至少有一个N型LDMOSFET的体二极管处于反偏,可以保证双向开关S tran处于关断状态,此处对双向开关S tran的开关类型不加以限制。
具体的,功率级电路其中至少一相电感所在子电路包括:功率开关AH、功率开关AL和一个滤波电感L b,依次连接;与所述电感相邻的另外至少一相电感所在子电路包括:功率开关BH、电容C F、功率开关BL和一个滤波电感L a,依次连接;其中,所述功率开关AH和电容C F的输入端均与功率开关BH连接,所述功率开关BH、AH分别用于控制对应的所述子电路的电压输入;所述滤波电感L b和滤波电感L a的输出端均与所述功率级电路的输出端口连接;所述滤波电感L b和滤波电感L a的输入端口之间设有所述双向开关S tran;所述功率级电路的输出端口还设有一接地的滤波电容C。
该双向开关S tran用于实现在负载发生瞬态跳变时将两相开关节点短路,解除两相交错时钟,利用两相电感电流同步对负载充电,具体负载瞬态跳变响应曲线如图6所示。
如图3所示,负载瞬态响应电路220包括:误差放大器221,导通时间产生电路222,瞬态检测电路223,瞬态增强逻辑电路224,驱动电路225。
误差放大器221,用于计算所述功率级电路的输出电压V FB与参考电压V REF之间的误差,得到误差信号V EA
导通时间产生电路222,用于根据所述误差信号V EA产生各相电感所在电路的高边功率管的控制信号,各所述控制信号分别用于控制各相电感所在电路导通,以使各相所述电感依次交替的对所述负载充电。
瞬态检测电路223,用于根据所述误差信号V EA判断所述负载是否发生瞬态正向跳变。具体的,当误差信号V EA大于预设信号V L时,判断负载发生瞬态正向跳变。其中,当判断负载发生瞬态正向跳变,输出瞬态检测信号Tran_Detected为高电平,否则输出为低电平。当瞬态检测信号为高电平,触发内置的单稳态电路,保证在额定时间内不可再次触发该信号。
瞬态增强逻辑电路224,用于当检测负载发生瞬态正向跳变时,产生控制所述双向开关导通的控制信号。
驱动电路225,用于根据所述控制信号控制至少一个所述双向开关导通。
当发生负载瞬态正向跳变后,所述驱动电路225还用于,将与导通的至少一个所述双向开关S tran相连的两相子电路上的所述功率开关BL、功率开关AH、功率开关AL关闭,并驱动所述功率开关BH产生响应负载瞬态正向跳变的电压输入脉冲。
当未发生负载瞬态正向跳变时,驱动电路225还用于根据各相电感所在电路的功率管的控制信号,控制设于各相所述电感所在电路上的功率开关的导通和断开,即控制各项电感所在电路上的功率开关的导通时间,使各相所述电感依次交替的对所述负载进行充电。
在本公开实施例中,确保在检测到负载发生瞬态正向跳变时,关闭第一相的功率管BL及第二相的功率管AH、AL,产生解除两相交错时钟的S tran控制信号。
此外,驱动电路225还用于当未发生负载瞬态正向跳变时,通过控制设于各相所述电感所在电路上的功率开关,使各相所述电感依次交替的对所述负载进行充电。
图4示意性示出了本公开实施例提供的功率级电路在负载瞬态跳变响应时的工作示意图;图5示意性示出了本公开实施例提供的多相串联电容直流-直流转换器的信号示意图;图6示意性示出了本公开实施例提供的多相串联电容直流-直流转换器的负载瞬态跳变响应曲线图。
参考图4、图5、图6,其中,图4灰色部分代表功率管关闭,图5的BH、BL、AH、AL对应图6中相应功率管的栅端控制信号,S tran代表双向开关S tran的控制信号,当瞬态检测信号Tran_Detected为高电平,使第一相功率管BH的控制信号SBH与双向开关S tran的控制信号Tran_EN为高电平,第二相的控制信号SAH为低电平,经过驱动电路分别得到各相功率管的栅端控制信号及基于Tran_EN信号的双向开关S tran栅端控制信号,关闭功率管AH、AL和BL,打开功率管BH和双相开关S tran。参考图6,双向开关S tran导通,利用两相电感同时对负载充电,消除既有的两相交错时钟带来的延时,加快负载瞬态响应速度,参考图5,第一相功率管BH响应于控制信号SBH延长导通时间,以响应负载瞬态变化,为负载提供相应的能量。
在本公开实施例中,在瞬态正向跳变期间,两相电感可以同时为负载电容充电,等效为两相电感并联,电感电流上升斜率为公式(3):
Figure PCTCN2021103772-appb-000001
其中D为稳态下功率管BH的占空比。
而传统的两相串联电容直流-直流转换器,在负载发生瞬态正向跳变期间,电感电流上升斜率为公式(4):
Figure PCTCN2021103772-appb-000002
由式(3)和(4)可知,本公开提供的多相串联电容直流-直流转换器在负载发生瞬态正向跳变时,解除两相交错时钟,利用两相电感同时对负载充电,电感电流上升斜率扩大一倍,具备快速负载瞬态响应能力。相应的,当该转换器为N相串联电容式直流-直流转换器时,负载发生瞬态跳变时,可利用N相电感同时为负载充电,使电感电流上升斜率扩大N倍,具备快速负载瞬态响应能力,应用范围广,具备可拓展性。
图7示意性示出了本公开实施例提供的功率级电路的拓扑结构的示 意图。
如图7所示,本公开实施例还提供了功率级电路的多种拓扑结构,其中,(1)示出了一种多相串联电容拓扑结构,(2)示意性示出了一种串联电容+3-level混合拓扑结构,(3)示意性示出了一种简化版多相串联电容拓扑结构,(4)示意性示出了一种双电感混合型Dickson拓扑结构。本实施例提供的功率级电路的拓扑结构并不仅限于图7所示的几种结构,但均能实现通过闭合双向开关使多相电感同时给负载充电以快速相应负载瞬态变化。
本公开提供的多相串联电容直流-直流转换器,其拓扑结构可为升压式、降压式多相串联电容功率级电路,当功率级电路为图7中(5)所示的升压式多相串联电容拓扑结构,本公开提供的多相串联电容直流-直流转换器在负载发生瞬态负向跳变,解除多相交错时钟,利用多相电感同时对负载放电,电感电流下降斜率扩大一倍,具备快速负载瞬态响应能力。
图8示意性示出了本公开实施例提供的一种多相串联电容直流-直流转换器的控制方法的流程图。
如图8所示,该控制方法包括S810。
S810,当检测负载发生瞬态正向跳变时,控制功率级电路中至少两相相邻的电感之间的双向开关导通,使所述至少两相相邻的电感同时对所述负载进行充电,以快速响应所述负载的瞬态变化。
在本公开实施例中,响应于负载瞬态正向跳变,可以控制如图3所示的转换器的功率电路中的至少一个双向开关闭合,使至少两相电感同时向负载充电,以至少提高一倍相应速度。
具体的,在S810中,当检测负载发生瞬态正向跳变时,还包括:
S811,将所述功率级电路中与导通的至少一个所述双向开关相连的两相子电路上的功率开关BL、功率开关AH、功率开关AL关闭,并驱动功率开关BH产生响应负载瞬态正向跳变的电压输入脉冲。
在S810中,当检测负载发生瞬态正向跳变时,控制功率级电路中至少两相相邻的电感之间的双向开关导通具体包括S812~S815。
S812,计算所述功率级电路的输出电压与参考电压之间的误差,得到误差信号。
S813,根据所述误差信号判断所述负载是否发生瞬态正向跳变。
当误差信号超过额定幅值VL,判断负载电流发生瞬态正向跳变,输出瞬态检测信号Tran_Detected为高电平,若误差信号没有超过额定幅值VL,判断负载电流没有发生瞬态正向跳变,输出瞬态检测信号Tran_Detected为低电平。
S814,当检测负载发生瞬态正向跳变时,产生控制所述双向开关导通的控制信号。
S815,根据所述控制信号控制至少一个所述双向开关导通。
当瞬态检测信号Tran_Detected为高电平,关闭第一相的功率管BL及第二相的两个功率管AH、AL,触发双向开关S tran导通,利用两相电感电流同时对负载充电,实现瞬态增强效果。
该方法还包括S820:
S820,当所述负载正常工作时,控制所述双向开关断开,以及,控制各相所述电感依次交替的对负载进行充电。
其中,当负载发生瞬态正向跳变,并恢复正常后,驱动电路225会控制双向开关断开,功率开关BL、功率开关BH、功率开关AH、功率开关AL由两相控制信号SBH和SAH控制按序导通,恢复各相所述电感电流的相位差,并依次交替的对负载进行充电。
本领域技术人员可以理解,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合或/或结合,即使这样的组合或结合没有明确记载于本公开中。特别地,在不脱离本公开精神和教导的情况下,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合和/或结合。所有这些组合和/或结合均落入本公开的范围。
尽管已经参照本公开的特定示例性实施例示出并描述了本公开,但是本领域技术人员应该理解,在不背离所附权利要求及其等同物限定的本公开的精神和范围的情况下,可以对本公开进行形式和细节上的多种 改变。因此,本公开的范围不应该限于上述实施例,而是应该不仅由所附权利要求来进行确定,还由所附权利要求的等同物来进行限定。

Claims (10)

  1. 一种多相串联电容直流-直流转换器,其特征在于,包括:
    功率级电路,用于将输入直流电压转换为负载所需的稳定直流电压,其中,所述功率级电路至少包括两相电感,各相电感电流之间存在预设间隔的相位差,用于依次交替的对负载进行充电,各相邻的两相电感之间均设有双向开关,当所述双向开关导通时,对应的两相电感同时对所述负载进行充电;
    负载瞬态响应电路,用于当发生负载瞬态正向跳变时,控制至少一个所述双向开关导通,使至少两相电感同时对所述负载充电,以快速响应所述负载的瞬态变化。
  2. 根据权利要求1所述的转换器,其特征在于,所述负载瞬态响应电路包括:
    误差放大器,用于计算所述功率级电路的输出电压与参考电压之间的误差,得到误差信号;
    瞬态检测电路,用于根据所述误差信号判断所述负载是否发生瞬态正向跳变;
    瞬态增强逻辑电路,用于当检测负载发生瞬态正向跳变时,产生控制所述双向开关导通的控制信号;
    驱动电路,用于根据所述控制信号控制至少一个所述双向开关导通。
  3. 根据权利要求2所述的转换器,其特征在于,当发生负载瞬态正向跳变,至少一个所述双向开关导通后,与导通的所述双向开关连接的两相所述电感并联。
  4. 根据权利要求2所述的转换器,其特征在于,所述负载瞬态响应电路还包括:
    导通时间产生电路,用于根据所述误差信号产生各相电感所在电路的功率管的控制信号,各所述控制信号分别用于控制各相电感所在电路导通,以使各相所述电感依次交替的对所述负载充电;
    驱动电路还用于,当未发生负载瞬态正向跳变时,根据各相所述控制信号,控制设于各相所述电感所在电路上的功率开关的导通和断开,使各相所述电感依次交替的对所述负载进行充电。
  5. 根据权利要求1所述的转换器,其特征在于,所述功率级电路其中至少一相电感所在子电路包括:
    功率开关AH、功率开关AL和一个滤波电感L b,依次连接;
    与所述电感相邻的另外至少一相电感所在子电路包括:
    功率开关BH、电容C F、功率开关BL和一个滤波电感L a,依次连接;
    其中,所述功率开关AH和电容C F的输入端均与功率开关BH连接,所述功率开关BH、AH分别用于控制对应的所述子电路的电压输入;所述滤波电感L b和滤波电感L a的输出端均与所述功率级电路的输出端口连接;所述滤波电感L b和滤波电感L a的输入端口之间设有所述双向开关;所述功率级电路的输出端口还设有一接地的滤波电容C。
  6. 根据权利要求5所述的转换器,其特征在于,当发生负载瞬态正向跳变后,所述驱动电路还用于,将与导通的至少一个所述双向开关相连的两相子电路上的所述功率开关BL、功率开关AH、功率开关AL关闭,并驱动所述功率开关BH产生响应负载瞬态正向跳变的电压输入脉冲。
  7. 多相串联电容直流-直流转换器控制方法,应用于如权利要求1-6所述的多相串联电容直流-直流转换器,其特征在于,包括:
    当检测负载发生瞬态正向跳变时,控制功率级电路中至少两相相邻的电感之间的双向开关导通,使所述至少两相相邻的电感同时对所述负载进行充电,以快速响应所述负载的瞬态变化。
  8. 根据权利要求7所述的控制方法,其特征在于,还包括:
    当所述负载正常工作时,控制所述双向开关断开,以及,控制各相所述电感依次交替的对负载进行充电。
  9. 根据权利要求8所述的控制方法,其特征在于,当检测负载发生瞬态正向跳变时,还包括:
    将所述功率级电路中与导通的至少一个所述双向开关相连的两相子电路上的功率开关BL、功率开关AH、功率开关AL关闭,并驱动功率开关BH产生响应负载瞬态正向跳变的电压输入脉冲。
  10. 根据权利要求7所述的控制方法,其特征在于,所述当检测负载发生瞬态正向跳变时,控制功率级电路中至少两相相邻的电感之间的双向开关导通包括:
    计算所述功率级电路的输出电压与参考电压之间的误差,得到误差信号;
    根据所述误差信号判断所述负载是否发生瞬态正向跳变;
    当检测负载发生瞬态正向跳变时,产生控制所述双向开关导通的控制信号;
    根据所述控制信号控制至少一个所述双向开关导通。
PCT/CN2021/103772 2021-06-30 2021-06-30 多相串联电容直流-直流转换器、控制方法 WO2023272630A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/103772 WO2023272630A1 (zh) 2021-06-30 2021-06-30 多相串联电容直流-直流转换器、控制方法
US18/329,511 US11799378B1 (en) 2021-06-30 2023-06-05 Multiphase series capacitor DC-DC converter and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103772 WO2023272630A1 (zh) 2021-06-30 2021-06-30 多相串联电容直流-直流转换器、控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/329,511 Continuation US11799378B1 (en) 2021-06-30 2023-06-05 Multiphase series capacitor DC-DC converter and control method

Publications (1)

Publication Number Publication Date
WO2023272630A1 true WO2023272630A1 (zh) 2023-01-05

Family

ID=84692181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103772 WO2023272630A1 (zh) 2021-06-30 2021-06-30 多相串联电容直流-直流转换器、控制方法

Country Status (2)

Country Link
US (1) US11799378B1 (zh)
WO (1) WO2023272630A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1363136A (zh) * 2000-02-07 2002-08-07 香港大学 用于开关变换器的快速瞬态响应的阶跃电感器
US20180013348A1 (en) * 2016-07-11 2018-01-11 Apple Inc. Slew Mode Control of Transient Phase Based on Output Voltage Slope of Multiphase DC-DC Power Converter
TWI649951B (zh) * 2018-01-26 2019-02-01 茂達電子股份有限公司 快速負載暫態響應的電壓轉換器
CN111245236A (zh) * 2020-03-16 2020-06-05 深圳市诚芯微科技有限公司 一种降压式直流-直流转换器拓扑结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943535B1 (en) * 2002-10-17 2005-09-13 Analog Devices, Inc. Multiple-phase DC-DC converter topology
US6940261B1 (en) * 2003-03-19 2005-09-06 Linear Technology Corporation Circuits and methods for providing multiple phase switching regulators which employ the input capacitor voltage signal for current sensing
US20080238378A1 (en) * 2007-03-30 2008-10-02 Uan-Zo-Li Alexander Voltage regulator
CN101753022A (zh) * 2008-12-10 2010-06-23 成都芯源系统有限公司 用于电压变换器的负载瞬态变化检测电路及其应用电路
US9627999B2 (en) * 2012-11-07 2017-04-18 Volvo Truck Corporation Power supply device
CN106143171A (zh) * 2015-03-31 2016-11-23 通用电气公司 多源能量存储系统及能量管理控制方法
US10673328B2 (en) * 2015-04-07 2020-06-02 Virginia Tech Intellectual Properties, Inc. Inverse charge current mode (IQCM) control for power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1363136A (zh) * 2000-02-07 2002-08-07 香港大学 用于开关变换器的快速瞬态响应的阶跃电感器
US20180013348A1 (en) * 2016-07-11 2018-01-11 Apple Inc. Slew Mode Control of Transient Phase Based on Output Voltage Slope of Multiphase DC-DC Power Converter
TWI649951B (zh) * 2018-01-26 2019-02-01 茂達電子股份有限公司 快速負載暫態響應的電壓轉換器
CN111245236A (zh) * 2020-03-16 2020-06-05 深圳市诚芯微科技有限公司 一种降压式直流-直流转换器拓扑结构

Also Published As

Publication number Publication date
US11799378B1 (en) 2023-10-24
US20230318460A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
US10164536B2 (en) Voltage conversion circuit and method, and multiphase parallel power system
US9178422B2 (en) Resonance-based single inductor output-driven DC-DC converter and method
US10298128B2 (en) Multi-switch power converter
US11228243B2 (en) Power converter with reduced RMS input current
EP1992062A2 (en) Interleaved soft switching bridge power converter
TWI686043B (zh) 轉換器和電源管理積體電路系統
US11496051B2 (en) Power converter
Chen et al. A quadratic high step-up DC-DC converter with voltage multiplier
Ling et al. High step-up interleaved boost converter with low switch voltage stress
Lim et al. Energy recovery snubber circuit for a dc–dc push–pull converter
CN104052275A (zh) 用于具有快速瞬态响应的两级降压升压转换器的系统和方法
US11456663B2 (en) Power converter with reduced root mean square input current
JP4535492B2 (ja) 昇降圧チョッパ回路
US20150288292A1 (en) High bandwidth, high efficiency dc-dc multilevel converter topology
WO2023272630A1 (zh) 多相串联电容直流-直流转换器、控制方法
KR101250321B1 (ko) Llc 공진 컨버터
CN113507207B (zh) 多相串联电容直流-直流转换器控制电路、控制方法
Zhu et al. Development of voltage lift technique on double-output transformerless DC-DC converter
CN113507208B (zh) 多相串联电容直流-直流转换器、控制方法
KR102466159B1 (ko) 고변압비 비절연형 반전 벅부스트 컨버터, 이를 수행하기 위한 기록 매체 및 장치
Ge et al. A regulated cascaded hybrid switched-capacitor converter with soft-charging and zero voltage switching for 48-to-12-V applications
Wang et al. Soft switching high frequency AC-link DC-DC buck-boost converters
Li et al. A SEPIC fed buck converter
US20240048061A1 (en) Single-stage half-bridge point of load converter with quasi-peak cycle by cycle current controller
KR102457072B1 (ko) 다중 위상 하이브리드 승/강압 dc-dc 컨버터 및 그 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21947584

Country of ref document: EP

Kind code of ref document: A1