WO2023249198A1 - Battery heat management system for electric vehicle - Google Patents

Battery heat management system for electric vehicle Download PDF

Info

Publication number
WO2023249198A1
WO2023249198A1 PCT/KR2023/002802 KR2023002802W WO2023249198A1 WO 2023249198 A1 WO2023249198 A1 WO 2023249198A1 KR 2023002802 W KR2023002802 W KR 2023002802W WO 2023249198 A1 WO2023249198 A1 WO 2023249198A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
heat exchange
cooling
exchange medium
heat
Prior art date
Application number
PCT/KR2023/002802
Other languages
French (fr)
Korean (ko)
Inventor
박정권
Original Assignee
한국자동차연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국자동차연구원 filed Critical 한국자동차연구원
Publication of WO2023249198A1 publication Critical patent/WO2023249198A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a battery thermal management system for electric vehicles, and more specifically, to a battery thermal management system for electric vehicles that can improve the output efficiency of a battery module.
  • EVs electric vehicles
  • a thermal management system can be defined as a system in a broad sense, including the air conditioning system of an air conditioning device, a cooling system that uses coolant or refrigerant for thermal management and cooling of the power system, and a heat pump system.
  • the battery cooling system for electric vehicles controls the temperature of the power electronic components and the battery by circulating coolant along the coolant flow path of the battery that supplies operating power to the power electronic components for driving the vehicle.
  • two radiators are placed at the front of the vehicle and a parallel coolant line circulates through each radiator to separate the power electronic components and the battery for cooling.
  • a water-cooled cooling system is used.
  • the conventional battery cooling system for electric vehicles has a complex structure, and the radiator placed at the front of the vehicle cools the coolant by heat exchange with the air outside the vehicle, so it takes up excessive installation space and causes the coolant to cool in a high temperature environment. There is a problem with low cooling efficiency.
  • the purpose of the present invention is to provide a battery thermal management system for electric vehicles that can improve the output efficiency of the battery module.
  • a battery thermal management system for an electric vehicle includes: a thermal management unit in which a first heat exchange medium circulates and exchanges heat with the battery module; a cycle unit including a compressor, condenser, expansion valve, and evaporator through which a second heat exchange medium is circulated; a heating unit branched from the cycle unit and heat-exchanging the second heat exchange medium with the first heat exchange medium to increase the temperature of the battery module; and a cooling unit branched from the cycle unit and heat-exchanging the second heat exchange medium with the first heat exchange medium to lower the temperature of the battery module.
  • the heat management unit may include a first circulation section through which the first heat exchange medium circulates; a heat management member connected to the first circulation unit and heat-exchanging the first heat exchange medium with the battery module; It includes a chiller unit connected to the first circulation unit and heat-exchanging the first heat exchange medium with the second heat exchange medium.
  • the heating unit includes a heat transfer unit branched between the compressor and the condenser and delivering the second heat exchange medium discharged from the compressor to the chiller unit; a heat recovery unit branched between the compressor and the evaporator and transferring the second heat exchange medium discharged from the chiller unit to the compressor; and a heating opening/closing unit that selectively opens and closes the heat transfer unit and the heat recovery unit.
  • the cooling unit includes a cooling transfer unit branched between the compressor and the evaporator and delivering the second heat exchange medium discharged from the evaporator to the chiller unit; a cooling recovery unit branched between the compressor and the evaporator and transferring the second heat exchange medium discharged from the chiller unit to the compressor; and a cooling opening/closing unit that selectively opens and closes the cooling transfer unit and the cooling recovery unit.
  • the heat transfer unit and the cooling transfer unit are connected to each other.
  • heating recovery unit and the cooling recovery unit are the same.
  • a sensing unit that detects the temperature of the battery module; and a control unit that determines a thermal management mode based on the temperature change of the battery module measured by the sensing unit and controls operations of the heating unit and the cooling unit according to the determined thermal management mode.
  • control unit executes a heating mode that operates the heating unit and stops the cooling unit when the temperature of the battery module detected by the sensing unit is lower than the first set temperature.
  • control unit executes a cooling mode that operates the cooling unit and stops the operation of the heating unit when the temperature of the battery module detected by the sensing unit is higher than the second set temperature.
  • control unit when the temperature of the battery module detected by the sensing unit is greater than the first set temperature and less than the second set temperature, a buffer mode that stops both the heating unit and the cooling unit. Run.
  • the battery thermal management system for electric vehicles actively maintains the temperature of the battery module in the optimal efficiency range through a thermal management mode using a heating unit and a cooling unit, thereby preventing performance degradation of the battery module due to overheating and overcooling. You can.
  • the battery thermal management system for electric vehicles can eliminate the radiator installed in the front of the vehicle from the existing battery cooling system, thereby increasing space utilization and simplifying the overall system structure.
  • control unit provides a certain interval to the temperature for switching between the heating mode and the cooling mode, so that the heating unit and the cooling unit are connected in the process of switching between the heating mode and the cooling mode. This operates simultaneously to prevent the temperature of the battery module from changing in an unintended direction, and the heating unit and cooling unit repeatedly operate or stop based on a single temperature, which reduces the durability of the parts or causes unnecessary energy consumption. Consumption can be prevented.
  • FIG. 1 is a block diagram schematically showing the configuration of a battery thermal management system for an electric vehicle according to an embodiment of the present invention.
  • Figure 2 is a diagram schematically showing the configuration of a battery thermal management system for an electric vehicle according to an embodiment of the present invention.
  • FIG. 3 is a flowchart schematically showing the operation process of the thermal management mode by the control unit according to an embodiment of the present invention.
  • Figure 4 is a diagram schematically showing the operating state of the heating mode according to an embodiment of the present invention.
  • Figure 5 is a diagram schematically showing the operating state of the cooling mode according to an embodiment of the present invention.
  • the battery module 10 is a component that provides power for driving a motor of an electric vehicle, and may include a battery case (not shown) and a plurality of unit batteries (not shown) mounted within the battery case.
  • Figure 1 is a block diagram schematically showing the configuration of a battery thermal management system for an electric vehicle according to an embodiment of the present invention
  • Figure 2 is a block diagram schematically showing the configuration of a battery thermal management system for an electric vehicle according to an embodiment of the present invention. It is a drawing.
  • the battery thermal management system for an electric vehicle includes a thermal management unit 100, a cycle unit 300, a heating unit 500, a cooling unit 700, and a sensing unit. (800), including a control unit (900).
  • the heat management unit 100 circulates the first heat exchange medium (A) and exchanges heat with the battery module 10. That is, the heat management unit 100 performs the function of controlling the temperature of the battery module 10 by heat exchange between the first heat exchange medium (A) and the battery module 10.
  • the first heat exchange medium (A) may be exemplified by various types of coolant, liquid refrigerant, gas refrigerant, etc. that can transport heat energy through heat exchange action.
  • the thermal management unit 100 includes a first circulation unit 110, a thermal management member 120, and a chiller unit 130.
  • the first circulation unit 110 guides the flow of the first heat exchange medium (A) circulating through the heat management unit 100.
  • the first circulation unit 110 according to an embodiment of the present invention is formed to have the shape of a pipe through which the first heat exchange medium (A) can flow.
  • the first circulation unit 110 forms a closed flow path together with the heat management member 120 and the chiller unit 130, which will be described later, so that the first heat exchange medium (A) can circulate and flow along the extension direction.
  • the specific length and arrangement of the first circulation unit 110 can be changed in various ways depending on the structure of the vehicle, the installation location of the heat management member 120 and the chiller unit 130, etc.
  • the first circulation part 110 includes a first circulation pump 111 that provides flow force to the first heat exchange medium (A) so that the first heat exchange medium (A) can flow smoothly along the first circulation part 110. ) can be installed.
  • the heat management member 120 is connected to the first circulation unit 110 and exchanges heat with the first heat exchange medium (A) with the battery module 10.
  • the thermal management member 120 may be exemplified by various types of cooling plates that are installed to face the battery module 10 and perform thermal management of the battery module 10.
  • the first heat exchange medium (A) introduced from the first circulation unit 110 is circulated throughout the entire area of the heat management member 120 and induces heat exchange with the battery module 10.
  • a flow path 121 is formed.
  • the heat management passage 121 is connected to the first circulation section 110 on both sides.
  • the heat management passage 121 receives the first heat exchange medium (A) discharged from the chiller unit 130, which will be described later, from the first circulation unit 110 to the inside through one side.
  • the heat management passage 121 delivers the first heat exchange medium (A), which has completed heat exchange with the battery module 10, back to the first circulation unit 110 through the other side.
  • the chiller unit 130 is arranged to be spaced apart from the heat management member 120 and is connected to the first circulation unit 110.
  • the chiller unit 130 combines the first heat exchange medium (A) delivered from the first circulation unit 110 and the second heat exchange medium (B) flowing along the heating unit 500 or cooling unit 700, which will be described later. It performs the function of heating or cooling the first heat exchange medium (A), which is transferred to the heat management member 120 by heat exchange.
  • the chiller unit 130 may be exemplified by various types of heat exchangers having a first chiller passage 131 and a second chiller passage 132 that are independent of each other formed therein.
  • the first chiller passage 131 is connected at both ends to the first circulation section 110 to allow the first heat exchange medium (A) flowing through the first circulation section 110 to flow into the chiller section 130, and The first heat exchange medium (A) discharged from the unit 130 is delivered back to the first circulation unit 110.
  • the second chiller flow path 132 is connected at both ends to the heating unit 500 and the cooling unit 700, which will be described later, and supplies the second heat exchange medium (B) flowing through the heating unit 500 and the cooling unit 700 to the chiller unit.
  • the first chiller passage 131 and the second chiller passage 132 are arranged adjacent to each other to induce a heat exchange action between the first heat exchange medium (A) and the second heat exchange medium (B) flowing inside.
  • the cycle unit 300 has a second circulation unit 310 in which the second heat exchange medium (B) circulates and flows, and the second heat exchange medium (B) flowing in the second circulation unit 310 in a gaseous state at high temperature and pressure.
  • a compressor 320 that compresses, a condenser 330 that releases heat to the outside and condenses the compressed second heat exchange medium (B) into a liquid state, and the second heat exchange medium (B) condensed in the condenser 330 at a low temperature.
  • It is configured to include an expansion valve 340 that expands to a low-pressure liquid state and an evaporator 350 that absorbs heat from the outside and evaporates the second heat exchange medium (B) expanded in the expansion valve 340 into a gaseous state.
  • an accumulator 360 is installed between the compressor 320 and the evaporator 350 to transfer only the gaseous second heat exchange medium (B) to the compressor 320, and the condenser 330 and the expansion valve 340
  • a receiver dryer 370 that transmits only the second heat exchange medium (B) in a liquid state to the expansion valve 340 may be installed.
  • the cycle unit 300 may be exemplified by an air conditioning device installed in a vehicle, a cooling device for electrical components, etc.
  • the second heat exchange medium (B) may be exemplified by various types of coolant, liquid refrigerant, gas refrigerant, etc. that can transport heat energy through heat exchange.
  • the heating unit 500 is branched from the cycle unit 300 and heat-exchanges the high-temperature, high-pressure second heat exchange medium (B) discharged from the compressor 320 with the first heat exchange medium (A) to form the battery module (10). It functions as a component that increases the temperature of.
  • the heating unit 500 includes a heat transfer unit 510, a heat recovery unit 520, and a heating opening/closing unit 530.
  • the heat transfer unit 510 is branched from the second circulation unit 310 connected between the compressor 320 and the condenser 330, and the high temperature and high pressure second heat exchange medium (B) discharged from the compressor 320 is transmitted to the chiller unit 130. That is, the heat transfer unit 510 diverts the flow of the second heat exchange medium (B), which is discharged from the compressor 320 and flows through the second circulation unit 310 at high temperature and high pressure, to the chiller unit 130. It functions as a composition.
  • the heat transfer unit 510 may be formed to have the shape of a pipe with one end in communication with the second circulation unit 310 connected between the compressor 320 and the condenser 330.
  • the heat transfer unit 510 communicates with the second circulation unit 310, the other end of which is connected between the evaporator 350 and the accumulator 360, and one end of the cooling transfer unit 710, which will be described later. That is, the heat transfer unit 510 is interconnected with the cooling transfer unit 710 and shares a portion of the path for transferring the second heat exchange medium (B) to the chiller unit 130 with the cooling transfer unit 710. Accordingly, the heat transfer unit 510 can reduce the number of pipes for transmitting the second heat exchange medium (B) to the chiller unit 130 and simplify the structure of the chiller unit 130.
  • the heat recovery unit 520 branches off from the second circulation unit 310 connected between the compressor 320 and the evaporator 350, and uses the second heat exchange medium (B) discharged from the chiller unit 130 as a second circulation unit. Recover to unit 310. That is, the heat transfer unit 510 functions as a component that recovers the second heat exchange medium (B), which has completed heat exchange with the first heat exchange medium (A) in the chiller unit 130, to the second circulation unit 310.
  • the heating recovery unit 520 may be formed to have the shape of a pipe with one end in communication with the second circulation unit 310 connected between the evaporator 350 and the accumulator 360. Accordingly, the heat recovery unit 520 delivers the second heat exchange medium (B) discharged from the chiller unit 130 back to the compressor 320, and the temperature is reduced by the heat exchange action with the first heat exchange medium (A). The second heat exchange medium (B) can be induced to return to the high temperature and high pressure state. The other end of the heating recovery unit 520 communicates with the outlet of the second chiller passage 132 provided in the chiller unit 130.
  • the heating opening and closing unit 530 selectively opens and closes the heat transfer unit 510 and the heating recovery unit 520.
  • the heating switch 530 includes a heat transfer switch 531 and a heat recovery switch 532.
  • the heat transfer opening and closing unit 531 selectively opens and closes the heating transfer unit 510.
  • the heat transfer opening/closing unit 531 is connected between one end of the heat transfer unit 510 and the second circulation unit 310 to adjust the communication state between the heat transfer unit 510 and the second circulation unit 310.
  • the heat transfer opening/closing unit 531 can be exemplified as a 3-way valve capable of controlling the flow direction of the fluid for the three flow paths and controlling the flow direction of the second heat exchange medium (B) for the three flow paths. there is.
  • the operation of the heat transfer opening/closing unit 531 is controlled by a control unit 900, which will be described later, and can open or close the heat transfer unit 510.
  • the heating recovery opening/closing unit 532 selectively opens and closes the heating recovery unit 520.
  • the heating recovery opening/closing unit 532 is connected between one end of the heating recovery unit 520 and the second circulation unit 310 to adjust the communication state between the heating recovery unit 520 and the second circulation unit 310.
  • the heating recovery opening/closing unit 532 may be exemplified as a 3-way valve capable of controlling the flow direction of fluid for three flow paths.
  • the operation of the heating recovery opening/closing unit 532 is controlled by a control unit 900, which will be described later, and can open or close the heating recovery unit 520.
  • the cooling unit 700 is branched from the cycle unit 300 and exchanges heat with the low-temperature, low-pressure second heat exchange medium (B) discharged from the evaporator 350 with the first heat exchange medium (A) to form the battery module (10). It functions as a component that lowers the temperature.
  • the cooling unit 700 includes a cooling transmission unit 710, a cooling recovery unit 720, and a cooling opening/closing unit 730.
  • the cooling transfer unit 710 branches off from the second circulation unit 310 connected between the compressor 320 and the evaporator 350, and transfers the second heat exchange medium (B) discharged from the evaporator 350 to the chiller unit 130. ) is transmitted. That is, the cooling transfer unit 710 diverts the flow of the second heat exchange medium (B), which is discharged from the evaporator 350 and flows through the second circulation unit 310 at low temperature and low pressure, to the chiller unit 130. It functions as a composition.
  • the cooling transfer unit 710 according to an embodiment of the present invention has one end in communication with the second circulation unit 310 connected between the evaporator 350 and the accumulator 360, and the other end with the second chiller passage 132. It may be formed to have the shape of a pipe communicating with the inlet.
  • the cooling transfer unit 710 also communicates with the other end of the heating transfer unit 510.
  • the cooling transfer unit 710 serves as a passage for transferring the second heat exchange medium (B) discharged from the evaporator 350 to the chiller unit 130 by the operation of the cooling transfer opening and closing unit 731, which will be described later.
  • it can also serve as a passage for delivering the second heat exchange medium (B) flowing along the heat transfer unit 510 to the chiller unit 130. Accordingly, the cooling transfer unit 710 can reduce the number of pipes for delivering the second heat exchange medium (B) to the chiller unit 130 and simplify the structure of the chiller unit 130.
  • the cooling recovery unit 720 branches off from the second circulation unit 310 connected between the compressor 320 and the evaporator 350, and transfers the second heat exchange medium (B) discharged from the chiller unit 130 into the second circulation unit. Recover to unit 310. That is, the heat transfer unit 510 functions as a component that recovers the second heat exchange medium (B), which has completed heat exchange with the first heat exchange medium (A) in the chiller unit 130, to the second circulation unit 310.
  • the cooling recovery unit 720 may have the same configuration as the heating recovery unit 520. That is, the cooling recovery unit 720 and the heating recovery unit 520 may be formed to share the flow path of the second heat exchange medium (B).
  • the cooling recovery unit 720 and the heating recovery unit 520 can reduce the number of pipes for recovering the second heat exchange medium (B) to the second circulation unit 310, and the chiller unit 130
  • the structure can be simplified.
  • the cooling recovery unit 720 may be formed separately from the heating recovery unit 520.
  • the cooling opening/closing unit 730 selectively opens and closes the cooling transfer unit 710 and the cooling recovery unit 720.
  • the cooling opening and closing unit 730 includes a cooling transfer opening and closing unit 731 and a cooling recovery opening and closing unit 732.
  • the cooling transfer opening/closing unit 731 selectively opens and closes the cooling transfer unit 710.
  • the cooling transfer opening/closing unit 731 is connected to the point where the second circulation unit 310, the other end of the heat transfer unit 510, and one end of the cooling transfer unit 710 intersect each other, thereby forming the second circulation unit 310 and heat transfer.
  • the communication state between the unit 510 and the cooling transfer unit 710 is adjusted.
  • the cooling transfer opening/closing unit 731 may be exemplified as a 4-way valve capable of controlling the flow direction of fluid for four flow paths.
  • the operation of the cooling transfer opening/closing unit 731 may be controlled by a control unit 900, which will be described later.
  • the cooling recovery opening/closing unit 732 selectively opens and closes the cooling recovery unit 720.
  • the cooling recovery opening/closing unit 732 may have the same configuration as the heating recovery opening/closing unit 532, as the cooling recovery unit 720 and the heating recovery unit 520 are illustrated as having the same configuration.
  • the sensing unit 800 detects the temperature of the battery module 10.
  • the sensing unit 800 according to an embodiment of the present invention may be installed on the battery module 10 side and may be exemplified by various types of temperature sensors capable of detecting the temperature of the battery module 10.
  • the control unit 900 determines the thermal management mode based on the temperature change of the battery module 10 measured by the sensing unit 800, and operates the heating unit 500 and cooling unit 700 according to the determined thermal management mode. Control.
  • the control unit 900 according to an embodiment of the present invention is an electronic control unit (ECU: Electronic Control Unit), a central processing unit, which is electrically connected to the heating switch 530 and the cooling switch 730 and controls their operations. It can be implemented as a (CPU: Central Processing Unit), processor, or SoC (System on Chip), and can control multiple hardware or software components by running an operating system or application, and can perform various data processing and calculations. can be performed. Additionally, the control unit 900 may be configured to execute at least one command stored in the memory and store execution result data in the memory.
  • FIG. 3 is a flowchart schematically showing the operation process of the thermal management mode by the control unit according to an embodiment of the present invention.
  • the sensing unit 800 detects the temperature of the battery module 10 (S100).
  • the control unit 900 executes the heating mode (S210).
  • the first set temperature (T1) may be exemplified to be approximately 35°C.
  • Figure 4 is a diagram schematically showing the operating state of the heating mode according to an embodiment of the present invention.
  • control unit 900 operates the heating unit 500 and stops the cooling unit 700 from operating.
  • control unit 900 operates the heat transfer opening/closing unit 531 and the heating recovery opening/closing unit 532 to open both ends of the heat transfer unit 510 and the heating recovery unit 520, and heat transfer.
  • One end of the unit 510 and the heating recovery unit 520 is communicated with the second circulation unit 310.
  • control unit 900 operates the cooling transfer opening and closing unit 731 to connect the other end of the heating transfer unit 510 and the cooling transfer unit 710. ) is connected to one end.
  • the high-temperature second heat exchange medium (B) discharged from the compressor 320 sequentially passes through the heating transfer unit 510 and the cooling transfer unit 710 and passes through the inlet of the second chiller passage 132 to the chiller unit ( 130) is transmitted inside.
  • the temperature of the second heat exchange medium (B) delivered to the chiller unit 130 may be about 60°C to 70°C.
  • the high-temperature second heat exchange medium (B) delivered to the chiller unit 130 exchanges heat with the first heat exchange medium (A) flowing along the first chiller passage 131 inside the chiller unit 130, and performs the first heat exchange process. Raise the temperature of medium (A).
  • the temperature of the first heat exchange medium (A) may be increased to approximately 30°C to 35°C by heat exchange with the second heat exchange medium (B).
  • the first heat exchange medium (A) whose temperature is raised and discharged from the chiller unit 130, flows into the interior of the heat management member 120 through the inlet side of the heat management passage 121, exchanges heat with the battery module 10, and exchanges heat with the battery module 10. Raise the temperature of the module 10.
  • control unit 900 operates the cooling transfer opening/closing unit 731 to block communication between the cooling transfer unit 710 and the second circulation unit 310 connected between the evaporator 350 and the accumulator 360.
  • the low-temperature second heat exchange medium (B) discharged from the evaporator 350 is blocked from flowing into the chiller unit 130. Accordingly, in the heating mode, the temperature of the first heat exchange medium (A) can be determined only by the high temperature of the second heat exchange medium (B) delivered through the heating unit 500.
  • the cooling recovery unit 720 may be maintained in an open state. You can.
  • the control unit 900 executes the full charge mode. Do it (S310).
  • the second set temperature (T2) may be exemplified as 36°C.
  • control unit 900 stops the operation of the heating unit 500.
  • control unit 900 operates the heat transfer opening/closing unit 531 and the heating recovery opening/closing unit 532 to close the heat transfer unit 510 and the heating recovery unit 520.
  • control unit 900 operates the cooling transfer opening/closing unit 731 to block communication between the heating transfer unit 510 and the cooling transfer unit 710.
  • the buffer mode functions as a mode that provides a certain interval to the temperature for the thermal management mode by the control unit 900 to be switched between the heating mode and the cooling mode described later.
  • control unit 900 operates the heating unit 500 and the cooling unit 700 simultaneously in the process of switching between the heating mode and the cooling mode, and prevents the temperature of the battery module 10 from changing in an unintended direction. It is possible to prevent the heating unit 500 and the cooling unit 700 from repeatedly operating or stopping based on a single temperature, thereby reducing the durability of the components or unnecessary consumption of energy.
  • the control unit 900 executes the cooling mode (S410).
  • Figure 5 is a diagram schematically showing the operating state of the cooling mode according to an embodiment of the present invention.
  • control unit 900 operates the cooling unit 700 and stops the heating unit 500 from operating.
  • control unit 900 operates the cooling transfer opening and closing unit 731 and the cooling recovery opening and closing unit 732 to connect the cooling transfer unit 710 and the cooling recovery unit 720 to the second circulation unit 310. communicate with
  • control unit 900 operates the cooling transfer opening and closing unit 731 to connect the other end of the heating transfer unit 510 and the cooling transfer unit 710. ) blocks one set of communication channels.
  • the low-temperature second heat exchange medium (B) discharged from the evaporator 350 sequentially passes through the second circulation unit 310 and the cooling transfer unit 710 and passes through the inlet of the second chiller passage 132 to the chiller unit. It is delivered to the interior of (130).
  • the temperature of the second heat exchange medium (B) delivered to the chiller unit 130 may be about 7°C to 10°C.
  • the low-temperature second heat exchange medium (B) delivered to the chiller unit 130 exchanges heat with the first heat exchange medium (A) flowing along the first chiller passage 131 inside the chiller unit 130, and performs the first heat exchange process.
  • the temperature of medium (A) is lowered.
  • the temperature of the first heat exchange medium (A) may be lowered to approximately 36° C. or lower due to heat exchange with the second heat exchange medium (B).
  • the first heat exchange medium (A) whose temperature is lowered and discharged from the chiller unit 130, flows into the interior of the heat management member 120 through the inlet side of the heat management passage 121, exchanges heat with the battery module 10, and exchanges heat with the battery module 10.
  • the temperature of the module 10 is lowered.
  • the control unit 900 operates the cooling transfer opening/closing unit 731 to block communication between the second circulation unit 310 and the heat transfer unit 510 connected between the evaporator 350 and the accumulator 360. Accordingly, in the cooling mode, the temperature of the first heat exchange medium (A) can be determined only by the low temperature second heat exchange medium (B) delivered through the cooling unit 700.
  • control unit 900 operates the cooling transfer opening/closing unit 731 to close the second circulation unit 310 connected between the cooling transfer opening/closing unit 731 and the cooling recovery opening/closing unit 732, thereby discharging discharge from the evaporator 350. It is possible to prevent the low temperature second heat exchange medium (B) from flowing into the chiller unit 130 and being directly transferred to the compressor 320.
  • the heating recovery unit 520 may be maintained in an open state. You can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The present invention relates to a battery heat management system for an electric vehicle, comprising: a heat management unit that circulates a first heat exchange medium and exchanges heat with a battery module; a cycle unit that has a compressor, a condenser, an expansion valve, and an evaporator so as to circulate a second heat exchange medium; a heating unit that is branched off from the cycle unit and exchanges heat between the second heat exchange medium and the first heat exchange medium such that the temperature of the battery module increases; and a cooling unit that is branched off from the cycle unit and exchanges heat between the second heat exchange medium and the first heat exchange medium such that the temperature of the battery module decreases.

Description

전기자동차용 배터리 열관리 시스템Battery thermal management system for electric vehicles
본 발명은 전기자동차용 배터리 열관리 시스템에 관한 것으로, 보다 상세하게는 배터리모듈의 출력 효율을 향상시킬 수 있는 전기자동차용 배터리 열관리 시스템에 관한 것이다.The present invention relates to a battery thermal management system for electric vehicles, and more specifically, to a battery thermal management system for electric vehicles that can improve the output efficiency of a battery module.
본 출원은 2022년 06월 22일자로 출원된 한국특허출원 제10-2022-0076185호로부터 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.This application claims priority from Korean Patent Application No. 10-2022-0076185 filed on June 22, 2022, and all contents disclosed in the specification and drawings of the application are incorporated by reference into this application.
일반적으로, 최근 에너지 효율과 환경오염 문제에 대한 관심이 증가하면서 내연기관 자동차를 실질적으로 대체할 수 있는 친환경 자동차로 배터리에 충전된 전력으로 모터를 구동하여 주행하는 전기자동차(EV)에 대한 개발이 활발히 이루어지고 있다.In general, as interest in energy efficiency and environmental pollution issues has increased recently, the development of electric vehicles (EVs), which are eco-friendly vehicles that can practically replace internal combustion engine vehicles and run by driving a motor with power charged in a battery, has been growing. It is being done actively.
전기자동차에는 차량 전반의 열관리를 수행하기 위한 열관리 시스템이 탑재된다. 열관리 시스템은 공기조화장치의 에어컨 시스템, 그리고 전력계통의 열관리와 냉각을 위해 냉각수나 냉매를 이용하는 냉각 시스템, 그리고 히트 펌프 시스템을 포함하는 넓은 의미의 시스템으로 정의할 수 있다.Electric vehicles are equipped with a thermal management system to perform thermal management of the entire vehicle. A thermal management system can be defined as a system in a broad sense, including the air conditioning system of an air conditioning device, a cooling system that uses coolant or refrigerant for thermal management and cooling of the power system, and a heat pump system.
이 중 전기자동차용 배터리 냉각 시스템은 차량 구동을 위한 전력전자 부품에 작동 전력을 공급하는 배터리의 냉각수 유로를 따라 냉각수를 순환시켜 전력전자 부품과 배터리의 온도를 제어한다. 최근 전기자동차에서는, 차량의 항속거리를 증가시키고 전비를 향상시키기 위해, 차량 전단부에 2개의 라디에이터를 배치하고 각 라디에이터를 순환하는 병렬의 냉각수 라인을 구성하여, 전력전자 부품과 배터리를 분리하여 냉각하는 수냉식 냉각 시스템이 사용되고 있다.Among these, the battery cooling system for electric vehicles controls the temperature of the power electronic components and the battery by circulating coolant along the coolant flow path of the battery that supplies operating power to the power electronic components for driving the vehicle. In recent electric vehicles, in order to increase the vehicle's range and improve fuel efficiency, two radiators are placed at the front of the vehicle and a parallel coolant line circulates through each radiator to separate the power electronic components and the battery for cooling. A water-cooled cooling system is used.
그러나 종래의 전기자동차용 배터리 냉각 시스템은 구조가 복잡하고, 차량 전방에 배치된 라디에이터가 차량 외부의 공기와의 열교환에 의해 냉각수를 냉각시킴에 따라 설치 공간을 과도하게 차지하고, 기온이 높은 환경에서 냉각수의 냉각효율이 떨어지는 문제점이 있다. However, the conventional battery cooling system for electric vehicles has a complex structure, and the radiator placed at the front of the vehicle cools the coolant by heat exchange with the air outside the vehicle, so it takes up excessive installation space and causes the coolant to cool in a high temperature environment. There is a problem with low cooling efficiency.
본 발명의 배경기술은 대한민국 공개특허공보 제10-2017-014280호(2017.12.28 공개, 발명의 명칭: 전기자동차용 배터리 팩 냉각시스템)에 개시되어 있다.The background technology of the present invention is disclosed in Korean Patent Publication No. 10-2017-014280 (published on December 28, 2017, title of the invention: Battery pack cooling system for electric vehicles).
본 발명은 배터리모듈의 출력 효율을 향상시킬 수 있는 전기자동차용 배터리 열관리 시스템을 제공하는데 그 목적이 있다.The purpose of the present invention is to provide a battery thermal management system for electric vehicles that can improve the output efficiency of the battery module.
상술한 과제를 해결하기 위해 본 발명에 따른 전기자동차용 배터리 열관리 시스템은: 제1열교환매체가 순환되며 배터리모듈과 열교환하는 열관리유닛과; 압축기, 응축기, 팽창밸브 및 증발기를 구비하여 제2열교환매체가 순환되는 사이클유닛과; 상기 사이클유닛으로부터 분기되고, 상기 배터리모듈의 온도가 상승되도록 상기 제2열교환매체를 상기 제1열교환매체와 열교환시키는 가열유닛; 및 상기 사이클유닛으로부터 분기되고, 상기 배터리모듈의 온도가 하강되도록 상기 제2열교환매체를 상기 제1열교환매체와 열교환시키는 냉각유닛;을 포함한다.In order to solve the above-described problems, a battery thermal management system for an electric vehicle according to the present invention includes: a thermal management unit in which a first heat exchange medium circulates and exchanges heat with the battery module; a cycle unit including a compressor, condenser, expansion valve, and evaporator through which a second heat exchange medium is circulated; a heating unit branched from the cycle unit and heat-exchanging the second heat exchange medium with the first heat exchange medium to increase the temperature of the battery module; and a cooling unit branched from the cycle unit and heat-exchanging the second heat exchange medium with the first heat exchange medium to lower the temperature of the battery module.
또한, 상기 열관리유닛은, 상기 제1열교환매체가 순환 유동되는 제1순환부; 상기 제1순환부에 연결되고, 상기 제1열교환매체를 상기 배터리모듈과 열교환시키는 열관리부재; 상기 제1순환부와 연결되고, 상기 제1열교환매체를 상기 제2열교환매체와 열교환시키는 칠러부;를 포함한다.Additionally, the heat management unit may include a first circulation section through which the first heat exchange medium circulates; a heat management member connected to the first circulation unit and heat-exchanging the first heat exchange medium with the battery module; It includes a chiller unit connected to the first circulation unit and heat-exchanging the first heat exchange medium with the second heat exchange medium.
또한, 상기 가열유닛은, 상기 압축기와 상기 응축기의 사이로부터 분기되고, 상기 압축기로부터 배출되는 상기 제2열교환매체를 상기 칠러부로 전달하는 가열전달부와; 상기 압축기와 상기 증발기의 사이로부터 분기되고, 상기 칠러부로부터 배출되는 상기 제2열교환매체를 상기 압축기로 전달하는 가열회수부; 및 상기 가열전달부 및 상기 가열회수부를 선택적으로 개폐하는 가열개폐부;를 포함한다.Additionally, the heating unit includes a heat transfer unit branched between the compressor and the condenser and delivering the second heat exchange medium discharged from the compressor to the chiller unit; a heat recovery unit branched between the compressor and the evaporator and transferring the second heat exchange medium discharged from the chiller unit to the compressor; and a heating opening/closing unit that selectively opens and closes the heat transfer unit and the heat recovery unit.
또한, 상기 냉각유닛은, 상기 압축기와 상기 증발기의 사이로부터 분기되고, 상기 증발기로부터 배출되는 상기 제2열교환매체를 상기 칠러부로 전달하는 냉각전달부와; 상기 압축기와 상기 증발기의 사이로부터 분기되고, 상기 칠러부로부터 배출되는 상기 제2열교환매체를 상기 압축기로 전달하는 냉각회수부; 및 상기 냉각전달부 및 상기 냉각회수부를 선택적으로 개폐하는 냉각개폐부;를 포함한다.Additionally, the cooling unit includes a cooling transfer unit branched between the compressor and the evaporator and delivering the second heat exchange medium discharged from the evaporator to the chiller unit; a cooling recovery unit branched between the compressor and the evaporator and transferring the second heat exchange medium discharged from the chiller unit to the compressor; and a cooling opening/closing unit that selectively opens and closes the cooling transfer unit and the cooling recovery unit.
또한, 상기 가열전달부와 상기 냉각전달부는 상호 연결된다.Additionally, the heat transfer unit and the cooling transfer unit are connected to each other.
또한, 상기 가열회수부와 상기 냉각회수부는 동일하다.Additionally, the heating recovery unit and the cooling recovery unit are the same.
또한, 상기 배터리모듈의 온도를 감지하는 감지유닛; 및 상기 감지유닛으로부터 측정된 상기 배터리모듈의 온도 변화에 기반하여 열관리모드를 결정하고, 결정된 열관리모드에 따라 상기 가열유닛 및 상기 냉각유닛의 동작을 제어하는 제어유닛;을 더 포함한다.Additionally, a sensing unit that detects the temperature of the battery module; and a control unit that determines a thermal management mode based on the temperature change of the battery module measured by the sensing unit and controls operations of the heating unit and the cooling unit according to the determined thermal management mode.
또한, 상기 제어유닛은, 상기 감지유닛으로부터 감지된 상기 배터리모듈의 온도가 제1설정온도 미만인 경우, 상기 가열유닛을 동작시키고 상기 냉각유닛의 동작을 중지시키는 가열모드;를 실행한다.In addition, the control unit executes a heating mode that operates the heating unit and stops the cooling unit when the temperature of the battery module detected by the sensing unit is lower than the first set temperature.
또한, 상기 제어유닛은, 상기 감지유닛으로부터 감지된 상기 배터리모듈의 온도가 제2설정온도 이상인 경우, 상기 냉각유닛을 동작시키고 상기 가열유닛의 동작을 중지시키는 냉각모드;를 실행한다.In addition, the control unit executes a cooling mode that operates the cooling unit and stops the operation of the heating unit when the temperature of the battery module detected by the sensing unit is higher than the second set temperature.
또한, 상기 제어유닛은, 상기 감지유닛으로부터 감지된 상기 배터리모듈의 온도가 상기 제1설정온도 이상 상기 제2설정온도 미만인 경우, 상기 가열유닛과 상기 냉각유닛의 동작을 모두 중지시키는 완충모드;를 실행한다.In addition, the control unit, when the temperature of the battery module detected by the sensing unit is greater than the first set temperature and less than the second set temperature, a buffer mode that stops both the heating unit and the cooling unit. Run.
본 발명에 따른 전기자동차용 배터리 열관리 시스템은 가열유닛 및 냉각유닛을 통한 열관리모드에 의해 배터리모듈의 온도를 최적 효율 구간에서 능동적으로 유지시킴에 따라 과열, 과냉으로 인한 배터리모듈의 성능 저하를 방지할 수 있다.The battery thermal management system for electric vehicles according to the present invention actively maintains the temperature of the battery module in the optimal efficiency range through a thermal management mode using a heating unit and a cooling unit, thereby preventing performance degradation of the battery module due to overheating and overcooling. You can.
또한, 본 발명에 따른 전기자동차용 배터리 열관리 시스템은 기존 배터리 냉각 시스템에서 차량 전방에 설치되는 라디에이터를 삭제할 수 있어 공간 활용성이 증대되고, 전체적인 시스템 구조를 단순화시킬 수 있다.In addition, the battery thermal management system for electric vehicles according to the present invention can eliminate the radiator installed in the front of the vehicle from the existing battery cooling system, thereby increasing space utilization and simplifying the overall system structure.
또한, 본 발명에 따른 전기자동차용 배터리 열관리 시스템은 제어유닛이 가열모드와 냉각모드가 상호 전환되기 위한 온도에 일정한 간격을 부여함에 따라 가열모드와 냉각모드가 상호 전환되는 과정에서 가열유닛과 냉각유닛이 동시에 동작되며 배터리모듈의 온도가 의도하지 않은 방향으로 가변되는 것을 방지할 수 있고, 단일 온도를 경계로 가열유닛과 냉각유닛이 반복적으로 동작 또는 중지되며 부품의 내구성이 저하되거나 또는 에너지의 불필요하게 소모하는 것을 방지할 수 있다.In addition, in the battery thermal management system for electric vehicles according to the present invention, the control unit provides a certain interval to the temperature for switching between the heating mode and the cooling mode, so that the heating unit and the cooling unit are connected in the process of switching between the heating mode and the cooling mode. This operates simultaneously to prevent the temperature of the battery module from changing in an unintended direction, and the heating unit and cooling unit repeatedly operate or stop based on a single temperature, which reduces the durability of the parts or causes unnecessary energy consumption. Consumption can be prevented.
도 1은 본 발명의 일 실시예에 따른 전기자동차용 배터리 열관리 시스템의 구성을 개략적으로 나타내는 블록도이다.1 is a block diagram schematically showing the configuration of a battery thermal management system for an electric vehicle according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 전기자동차용 배터리 열관리 시스템의 구성을 개략적으로 나타내는 도면이다.Figure 2 is a diagram schematically showing the configuration of a battery thermal management system for an electric vehicle according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 제어유닛에 의한 열관리모드의 작동 과정을 개략적으로 나타내는 순서도이다.Figure 3 is a flowchart schematically showing the operation process of the thermal management mode by the control unit according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 가열모드의 동작 상태를 개략적으로 나타내는 도면이다.Figure 4 is a diagram schematically showing the operating state of the heating mode according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 냉각모드의 동작 상태를 개략적으로 나타내는 도면이다.Figure 5 is a diagram schematically showing the operating state of the cooling mode according to an embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 전기자동차용 배터리 열관리 시스템의 실시예를 설명한다.Hereinafter, an embodiment of a battery thermal management system for an electric vehicle according to the present invention will be described with reference to the attached drawings.
이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서, 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In this process, the thickness of lines or sizes of components shown in the drawing may be exaggerated for clarity and convenience of explanation. In addition, the terms described below are terms defined in consideration of functions in the present invention, and may vary depending on the intention or custom of the user or operator. Therefore, definitions of these terms should be made based on the content throughout this specification.
또한, 본 명세서에서, 어떤 부분이 다른 부분과 "연결(또는 접속)"되어 있다고 할 때, 이는 "직접적으로 연결(또는 접속)"되어 있는 경우뿐만 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결(또는 접속)"되어 있는 경우도 포함한다. 본 명세서에서, 어떤 부분이 어떤 구성요소를 "포함(또는 구비)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 "포함(또는 구비)"할 수 있다는 것을 의미한다.In addition, in this specification, when a part is said to be "connected (or connected)" to another part, this does not only mean that it is "directly connected (or connected)" but also "connected (or connected)" with another member in between. Also includes cases where there is an “indirect connection (or connection).” In this specification, when a part is said to “include (or include)” a certain component, this does not exclude other components, unless specifically stated to the contrary, but rather “includes (or includes)” other components. It means you can do it.
또한, 본 명세서 전체에 걸쳐 동일한 참조 부호는 동일한 구성 요소를 지칭할 수 있다. 동일한 참조 부호 또는 유사한 참조 부호들은 특정 도면에서 언급 또는 설명되지 않았더라도, 그 부호들은 다른 도면을 토대로 설명될 수 있다. 또한, 특정 도면에 참조 부호가 표시되지 않은 부분이 있더라도, 그 부분은 다른 도면들을 토대로 설명될 수 있다. 또한, 본 출원의 도면들에 포함된 세부 구성요소들의 개수, 형상, 크기 및 크기의 상대적인 차이 등은 이해의 편의를 위해 설정된 것으로서, 실시예들을 제한하지 않으며 다양한 형태로 구현될 수 있다.Additionally, the same reference numerals may refer to the same components throughout this specification. Even if the same or similar reference signs are not mentioned or explained in a particular drawing, the numbers may be explained based on other drawings. Additionally, even if there are parts that are not indicated by reference signs in a specific drawing, those parts can be explained based on other drawings. In addition, the number, shape, size, and relative differences in size of detailed components included in the drawings of the present application are set for convenience of understanding, do not limit the embodiments, and may be implemented in various forms.
배터리모듈(10)은 전기자동차의 모터 구동을 위한 동력을 제공하는 구성으로서, 배터리케이스(미도시) 및 배터리케이스내에 장착된 다수개의 단위배터리(미도시)를 포함하여 구성될 수 있다.The battery module 10 is a component that provides power for driving a motor of an electric vehicle, and may include a battery case (not shown) and a plurality of unit batteries (not shown) mounted within the battery case.
도 1은 본 발명의 일 실시예에 따른 전기자동차용 배터리 열관리 시스템의 구성을 개략적으로 나타내는 블록도이고, 도 2는 본 발명의 일 실시예에 따른 전기자동차용 배터리 열관리 시스템의 구성을 개략적으로 나타내는 도면이다.Figure 1 is a block diagram schematically showing the configuration of a battery thermal management system for an electric vehicle according to an embodiment of the present invention, and Figure 2 is a block diagram schematically showing the configuration of a battery thermal management system for an electric vehicle according to an embodiment of the present invention. It is a drawing.
도 1, 도 2를 참조하면, 본 발명의 일 실시예에 따른 전기자동차용 배터리 열관리 시스템은 열관리유닛(100), 사이클유닛(300), 가열유닛(500), 냉각유닛(700), 감지유닛(800), 제어유닛(900)을 포함한다.1 and 2, the battery thermal management system for an electric vehicle according to an embodiment of the present invention includes a thermal management unit 100, a cycle unit 300, a heating unit 500, a cooling unit 700, and a sensing unit. (800), including a control unit (900).
열관리유닛(100)은 제1열교환매체(A)가 순환되며 배터리모듈(10)과 열교환한다. 즉, 열관리유닛(100)은 제1열교환매체(A)와 배터리모듈(10)간의 열교환 작용에 의해 배터리모듈(10)의 온도를 조절하는 기능을 수행한다. The heat management unit 100 circulates the first heat exchange medium (A) and exchanges heat with the battery module 10. That is, the heat management unit 100 performs the function of controlling the temperature of the battery module 10 by heat exchange between the first heat exchange medium (A) and the battery module 10.
여기서 제1열교환매체(A)는 열교환 작용에 의해 열에너지를 운반할 수 있는 다양한 종류의 냉각수, 액체 냉매, 기체 냉매 등으로 예시될 수 있다.Here, the first heat exchange medium (A) may be exemplified by various types of coolant, liquid refrigerant, gas refrigerant, etc. that can transport heat energy through heat exchange action.
본 발명의 일 실시예에 따른 열관리유닛(100)은 제1순환부(110), 열관리부재(120), 칠러부(130)를 포함한다.The thermal management unit 100 according to an embodiment of the present invention includes a first circulation unit 110, a thermal management member 120, and a chiller unit 130.
제1순환부(110)는 열관리유닛(100)을 순환하는 제1열교환매체(A)의 유동을 안내한다. 본 발명의 일 실시예에 따른 제1순환부(110)는 내부를 통해 제1열교환매체(A)가 유동될 수 있는 관의 형태를 갖도록 형성된다. 제1순환부(110)는 연장 방향을 따라 제1열교환매체(A)가 순환 유동될 수 있도록 후술하는 열관리부재(120) 및 칠러부(130)와 함께 폐유로를 형성한다. 제1순환부(110)의 구체적인 길이, 배열 등은 차량의 구조, 열관리부재(120) 및 칠러부(130)의 설치 위치 등에 따라 다양하게 설계 변경이 가능하다.The first circulation unit 110 guides the flow of the first heat exchange medium (A) circulating through the heat management unit 100. The first circulation unit 110 according to an embodiment of the present invention is formed to have the shape of a pipe through which the first heat exchange medium (A) can flow. The first circulation unit 110 forms a closed flow path together with the heat management member 120 and the chiller unit 130, which will be described later, so that the first heat exchange medium (A) can circulate and flow along the extension direction. The specific length and arrangement of the first circulation unit 110 can be changed in various ways depending on the structure of the vehicle, the installation location of the heat management member 120 and the chiller unit 130, etc.
제1순환부(110)에는 제1열교환매체(A)가 제1순환부(110)를 따라 원활하게 유동될 수 있도록 제1열교환매체(A)에 유동력을 제공하는 제1순환펌프(111)가 설치될 수 있다. The first circulation part 110 includes a first circulation pump 111 that provides flow force to the first heat exchange medium (A) so that the first heat exchange medium (A) can flow smoothly along the first circulation part 110. ) can be installed.
열관리부재(120)는 제1순환부(110)에 연결되고, 제1열교환매체(A)를 배터리모듈(10)과 열교환시킨다. 본 발명의 일 실시예에 따른 열관리부재(120)는 배터리모듈(10)과 마주보게 설치되어 배터리모듈(10)의 열관리를 수행하는 다양한 종류의 냉각 플레이트로 예시될 수 있다. 열관리부재(120)의 내부에는 제1순환부(110)로부터 유입된 제1열교환매체(A)를 열관리부재(120)의 면적 전체를 순환시키며 배터리모듈(10)과의 열교환 작용을 유도하는 열관리유로(121)이 형성된다. 열관리유로(121)은 양측이 각각 제1순환부(110)와 연결된다. 열관리유로(121)은 일측을 통해 제1순환부(110)로부터 후술하는 칠러부(130)로부터 배출되는 제1열교환매체(A)를 내부로 전달받는다. 열관리유로(121)는 타측을 통해 배터리모듈(10)과의 열교환이 완료된 제1열교환매체(A)를 제1순환부(110)로 다시 전달한다.The heat management member 120 is connected to the first circulation unit 110 and exchanges heat with the first heat exchange medium (A) with the battery module 10. The thermal management member 120 according to an embodiment of the present invention may be exemplified by various types of cooling plates that are installed to face the battery module 10 and perform thermal management of the battery module 10. Inside the heat management member 120, the first heat exchange medium (A) introduced from the first circulation unit 110 is circulated throughout the entire area of the heat management member 120 and induces heat exchange with the battery module 10. A flow path 121 is formed. The heat management passage 121 is connected to the first circulation section 110 on both sides. The heat management passage 121 receives the first heat exchange medium (A) discharged from the chiller unit 130, which will be described later, from the first circulation unit 110 to the inside through one side. The heat management passage 121 delivers the first heat exchange medium (A), which has completed heat exchange with the battery module 10, back to the first circulation unit 110 through the other side.
칠러부(130)는 열관리부재(120)와 이격되게 배치되고, 제1순환부(110)와 연결된다. 칠러부(130)는 제1순환부(110)로부터 전달받은 제1열교환매체(A)와, 후술하는 가열유닛(500) 또는 냉각유닛(700)을 따라 유동되는 제2열교환매체(B)를 열교환시켜 열관리부재(120)로 전달되는 제1열교환매체(A)를 가열하거나 냉각시키는 기능을 수행한다. The chiller unit 130 is arranged to be spaced apart from the heat management member 120 and is connected to the first circulation unit 110. The chiller unit 130 combines the first heat exchange medium (A) delivered from the first circulation unit 110 and the second heat exchange medium (B) flowing along the heating unit 500 or cooling unit 700, which will be described later. It performs the function of heating or cooling the first heat exchange medium (A), which is transferred to the heat management member 120 by heat exchange.
본 발명의 일 실시예에 따른 칠러부(130)는 내부에 서로 독립된 제1칠러유로(131) 및 제2칠러유로(132)가 형성된 다양한 종류의 열교환기로 예시될 수 있다. 제1칠러유로(131)는 양단부가 제1순환부(110)와 연결되어 제1순환부(110)를 유동하는 제1열교환매체(A)를 칠러부(130)의 내부로 유입시키고, 칠러부(130)로부터 배출되는 제1열교환매체(A)를 제1순환부(110)로 다시 전달한다. 제2칠러유로(132)는 양단부가 후술하는 가열유닛(500) 및 냉각유닛(700)과 연결되어 가열유닛(500) 및 냉각유닛(700)을 유동하는 제2열교환매체(B)를 칠러부(130)의 내부로 유입시키고, 칠러부(130)로부터 배출되는 제2열교환매체(B)를 가열유닛(500) 및 냉각유닛(700)으로 다시 전달한다. 제1칠러유로(131)와 제2칠러유로(132)는 서로 인접하게 배치되어 내부를 유동하는 제1열교환매체(A)와 제2열교환매체(B)간의 열교환 작용을 유도한다.The chiller unit 130 according to an embodiment of the present invention may be exemplified by various types of heat exchangers having a first chiller passage 131 and a second chiller passage 132 that are independent of each other formed therein. The first chiller passage 131 is connected at both ends to the first circulation section 110 to allow the first heat exchange medium (A) flowing through the first circulation section 110 to flow into the chiller section 130, and The first heat exchange medium (A) discharged from the unit 130 is delivered back to the first circulation unit 110. The second chiller flow path 132 is connected at both ends to the heating unit 500 and the cooling unit 700, which will be described later, and supplies the second heat exchange medium (B) flowing through the heating unit 500 and the cooling unit 700 to the chiller unit. It is introduced into the inside of (130), and the second heat exchange medium (B) discharged from the chiller unit (130) is delivered back to the heating unit (500) and the cooling unit (700). The first chiller passage 131 and the second chiller passage 132 are arranged adjacent to each other to induce a heat exchange action between the first heat exchange medium (A) and the second heat exchange medium (B) flowing inside.
사이클유닛(300)은 제2열교환매체(B)가 순환 유동되는 제2순환부(310)와, 제2순환부(310)를 유동하는 제2열교환매체(B)를 고온, 고압의 기체 상태로 압축하는 압축기(320), 외부로 열을 방출하여 압축된 제2열교환매체(B)를 액체 상태로 응축시키는 응축기(330), 응축기(330)에서 응축된 제2열교환매체(B)를 저온, 저압의 액체 상태로 팽창시키는 팽창밸브(340) 및 외부로부터 열을 흡수하여 팽창밸브(340)에서 팽창된 제2열교환매체(B)를 기체 상태로 증발시키는 증발기(350)를 포함하여 구성된다. 또한, 압축기(320)와 증발기(350)의 사이에는 기체 상태의 제2열교환매체(B)만을 압축기(320)로 전달하는 어큐뮬레이터(360)가 설치되고, 응축기(330)와 팽창밸브(340)의 사이에는 액체 상태의 제2열교환매체(B)만을 팽창밸브(340)로 전달하는 리시버 드라이어(370)가 설치될 수 있다. 본 발명의 일 실시예에 따른 사이클유닛(300)은 차량에 설치되는 공조 장치, 전장부품의 냉각 장치 등으로 예시될 수 있다. 여기서, 제2열교환매체(B)는 열교환 작용에 의해 열에너지를 운반할 수 있는 다양한 종류의 냉각수, 액체 냉매, 기체 냉매 등으로 예시될 수 있다.The cycle unit 300 has a second circulation unit 310 in which the second heat exchange medium (B) circulates and flows, and the second heat exchange medium (B) flowing in the second circulation unit 310 in a gaseous state at high temperature and pressure. A compressor 320 that compresses, a condenser 330 that releases heat to the outside and condenses the compressed second heat exchange medium (B) into a liquid state, and the second heat exchange medium (B) condensed in the condenser 330 at a low temperature. , It is configured to include an expansion valve 340 that expands to a low-pressure liquid state and an evaporator 350 that absorbs heat from the outside and evaporates the second heat exchange medium (B) expanded in the expansion valve 340 into a gaseous state. . In addition, an accumulator 360 is installed between the compressor 320 and the evaporator 350 to transfer only the gaseous second heat exchange medium (B) to the compressor 320, and the condenser 330 and the expansion valve 340 A receiver dryer 370 that transmits only the second heat exchange medium (B) in a liquid state to the expansion valve 340 may be installed. The cycle unit 300 according to an embodiment of the present invention may be exemplified by an air conditioning device installed in a vehicle, a cooling device for electrical components, etc. Here, the second heat exchange medium (B) may be exemplified by various types of coolant, liquid refrigerant, gas refrigerant, etc. that can transport heat energy through heat exchange.
가열유닛(500)은 사이클유닛(300)으로부터 분기되고, 압축기(320)로부터 배출된 고온, 고압 상태의 제2열교환매체(B)를 제1열교환매체(A)와 열교환시켜 배터리모듈(10)의 온도를 상승시키는 구성으로서 기능한다.The heating unit 500 is branched from the cycle unit 300 and heat-exchanges the high-temperature, high-pressure second heat exchange medium (B) discharged from the compressor 320 with the first heat exchange medium (A) to form the battery module (10). It functions as a component that increases the temperature of.
본 발명의 일 실시예에 따른 가열유닛(500)은 가열전달부(510), 가열회수부(520), 가열개폐부(530)를 포함한다.The heating unit 500 according to an embodiment of the present invention includes a heat transfer unit 510, a heat recovery unit 520, and a heating opening/closing unit 530.
가열전달부(510)는 압축기(320)와 응축기(330)의 사이에 연결된 제2순환부(310)로부터 분기되고, 압축기(320)로부터 배출되는 고온, 고압 상태의 제2열교환매체(B)를 칠러부(130)로 전달한다. 즉, 가열전달부(510)는 압축기(320)로부터 배출되어 고온, 고압의 상태로 제2순환부(310)를 유동하는 제2열교환매체(B)의 흐름을 칠러부(130)로 우회시키는 구성으로서 기능한다.The heat transfer unit 510 is branched from the second circulation unit 310 connected between the compressor 320 and the condenser 330, and the high temperature and high pressure second heat exchange medium (B) discharged from the compressor 320 is transmitted to the chiller unit 130. That is, the heat transfer unit 510 diverts the flow of the second heat exchange medium (B), which is discharged from the compressor 320 and flows through the second circulation unit 310 at high temperature and high pressure, to the chiller unit 130. It functions as a composition.
본 발명의 일 실시예에 따른 가열전달부(510)는 일단이 압축기(320)와 응축기(330)의 사이에 연결된 제2순환부(310)와 연통되는 관의 형태를 갖도록 형성될 수 있다. 가열전달부(510)는 타단이 증발기(350)와 어큐뮬레이터(360)의 사이에 연결된 제2순환부(310) 및 후술하는 냉각전달부(710)의 일단과 연통 된다. 즉, 가열전달부(510)는 냉각전달부(710)와 상호 연결되어 제2열교환매체(B)를 칠러부(130)로 전달하기 위한 경로의 일부를 냉각전달부(710)와 공유한다. 이에 따라 가열전달부(510)는 제2열교환매체(B)를 칠러부(130)로 전달하기 위한 배관의 개수를 감소시킬 수 있고, 칠러부(130)의 구조를 단순화시킬 수 있다.The heat transfer unit 510 according to an embodiment of the present invention may be formed to have the shape of a pipe with one end in communication with the second circulation unit 310 connected between the compressor 320 and the condenser 330. The heat transfer unit 510 communicates with the second circulation unit 310, the other end of which is connected between the evaporator 350 and the accumulator 360, and one end of the cooling transfer unit 710, which will be described later. That is, the heat transfer unit 510 is interconnected with the cooling transfer unit 710 and shares a portion of the path for transferring the second heat exchange medium (B) to the chiller unit 130 with the cooling transfer unit 710. Accordingly, the heat transfer unit 510 can reduce the number of pipes for transmitting the second heat exchange medium (B) to the chiller unit 130 and simplify the structure of the chiller unit 130.
가열회수부(520)는 압축기(320)와 증발기(350)의 사이에 연결된 제2순환부(310)로부터 분기되고, 칠러부(130)로부터 배출되는 제2열교환매체(B)를 제2순환부(310)로 회수한다. 즉, 가열전달부(510)는 칠러부(130)에서 제1열교환매체(A)와 열교환이 완료된 제2열교환매체(B)를 제2순환부(310)로 회수하는 구성으로서 기능한다. The heat recovery unit 520 branches off from the second circulation unit 310 connected between the compressor 320 and the evaporator 350, and uses the second heat exchange medium (B) discharged from the chiller unit 130 as a second circulation unit. Recover to unit 310. That is, the heat transfer unit 510 functions as a component that recovers the second heat exchange medium (B), which has completed heat exchange with the first heat exchange medium (A) in the chiller unit 130, to the second circulation unit 310.
본 발명의 일 실시예에 따른 가열회수부(520)는 일단이 증발기(350)와 어큐뮬레이터(360)의 사이에 연결된 제2순환부(310)와 연통되는 관의 형태를 갖도록 형성될 있다. 이에 따라 가열회수부(520)는 칠러부(130)로부터 배출되는 제2열교환매체(B)를 압축기(320)로 다시 전달함에 따라 제1열교환매체(A)와의 열교환 작용에 의해 온도가 감소된 제2열교환매체(B)가 다시 고온, 고압의 상태로 복귀되도록 유도할 수 있다. 가열회수부(520)는 타단이 칠러부(130)에 구비되는 제2칠러유로(132)의 배출구와 연통된다.The heating recovery unit 520 according to an embodiment of the present invention may be formed to have the shape of a pipe with one end in communication with the second circulation unit 310 connected between the evaporator 350 and the accumulator 360. Accordingly, the heat recovery unit 520 delivers the second heat exchange medium (B) discharged from the chiller unit 130 back to the compressor 320, and the temperature is reduced by the heat exchange action with the first heat exchange medium (A). The second heat exchange medium (B) can be induced to return to the high temperature and high pressure state. The other end of the heating recovery unit 520 communicates with the outlet of the second chiller passage 132 provided in the chiller unit 130.
가열개폐부(530)는 가열전달부(510) 및 가열회수부(520)를 선택적으로 개폐한다. The heating opening and closing unit 530 selectively opens and closes the heat transfer unit 510 and the heating recovery unit 520.
본 발명의 일 실시예에 따른 가열개폐부(530)는 가열전달개폐부(531), 가열회수개폐부(532)를 포함한다.The heating switch 530 according to an embodiment of the present invention includes a heat transfer switch 531 and a heat recovery switch 532.
가열전달개폐부(531)는 가열전달부(510)를 선택적으로 개폐한다. 가열전달개폐부(531)는 가열전달부(510)의 일단 및 제2순환부(310)의 사이에 연결되어 가열전달부(510)와 제2순환부(310)의 연통 상태를 조절한다. 이 경우, 가열전달개폐부(531)는 3개의 유로에 대한 제2열교환매체(B)의 유동 방향을 조절할 수 있는 3개의 유로에 대한 유체의 유동 방향을 조절할 수 있는 3-way 밸브로 예시될 수 있다. 가열전달개폐부(531)는 후술하는 제어유닛(900)에 의해 동작이 제어되며 가열전달부(510)를 개방하거나 폐쇄할 수 있다.The heat transfer opening and closing unit 531 selectively opens and closes the heating transfer unit 510. The heat transfer opening/closing unit 531 is connected between one end of the heat transfer unit 510 and the second circulation unit 310 to adjust the communication state between the heat transfer unit 510 and the second circulation unit 310. In this case, the heat transfer opening/closing unit 531 can be exemplified as a 3-way valve capable of controlling the flow direction of the fluid for the three flow paths and controlling the flow direction of the second heat exchange medium (B) for the three flow paths. there is. The operation of the heat transfer opening/closing unit 531 is controlled by a control unit 900, which will be described later, and can open or close the heat transfer unit 510.
가열회수개폐부(532)는 가열회수부(520)를 선택적으로 개폐한다. 가열회수개폐부(532)는 가열회수부(520)의 일단 및 제2순환부(310)의 사이에 연결되어 가열회수부(520)와 제2순환부(310)의 연통 상태를 조절한다. 이 경우, 가열회수개폐부(532)는 3개의 유로에 대한 유체의 유동 방향을 조절할 수 있는 3-way 밸브로 예시될 수 있다. 가열회수개폐부(532)는 후술하는 제어유닛(900)에 의해 동작이 제어되며 가열회수부(520)를 개방하거나 폐쇄할 수 있다.The heating recovery opening/closing unit 532 selectively opens and closes the heating recovery unit 520. The heating recovery opening/closing unit 532 is connected between one end of the heating recovery unit 520 and the second circulation unit 310 to adjust the communication state between the heating recovery unit 520 and the second circulation unit 310. In this case, the heating recovery opening/closing unit 532 may be exemplified as a 3-way valve capable of controlling the flow direction of fluid for three flow paths. The operation of the heating recovery opening/closing unit 532 is controlled by a control unit 900, which will be described later, and can open or close the heating recovery unit 520.
냉각유닛(700)은 사이클유닛(300)으로부터 분기되고, 증발기(350)로부터 배출되는 저온, 저압 상태의 제2열교환매체(B)를 제1열교환매체(A)와 열교환시켜 배터리모듈(10)의 온도를 하강시키는 구성으로서 기능한다.The cooling unit 700 is branched from the cycle unit 300 and exchanges heat with the low-temperature, low-pressure second heat exchange medium (B) discharged from the evaporator 350 with the first heat exchange medium (A) to form the battery module (10). It functions as a component that lowers the temperature.
본 발명의 일 실시예에 따른 냉각유닛(700)은 냉각전달부(710), 냉각회수부(720), 냉각개폐부(730)를 포함한다.The cooling unit 700 according to an embodiment of the present invention includes a cooling transmission unit 710, a cooling recovery unit 720, and a cooling opening/closing unit 730.
냉각전달부(710)는 압축기(320)와 증발기(350)의 사이에 연결된 제2순환부(310)로부터 분기되고, 증발기(350)로부터 배출되는 제2열교환매체(B)를 칠러부(130)로 전달한다. 즉, 냉각전달부(710)는 증발기(350)로부터 배출되어 저온, 저압의 상태로 제2순환부(310)를 유동하는 제2열교환매체(B)의 흐름을 칠러부(130)로 우회시키는 구성으로서 기능한다. 본 발명의 일 실시예에 따른 냉각전달부(710)는 일단이 증발기(350)와 어큐뮬레이터(360)의 사이에 연결된 제2순환부(310)와 연통되고, 타단이 제2칠러유로(132)의 유입구와 연통되는 관의 형태를 갖도록 형성될 수 있다. The cooling transfer unit 710 branches off from the second circulation unit 310 connected between the compressor 320 and the evaporator 350, and transfers the second heat exchange medium (B) discharged from the evaporator 350 to the chiller unit 130. ) is transmitted. That is, the cooling transfer unit 710 diverts the flow of the second heat exchange medium (B), which is discharged from the evaporator 350 and flows through the second circulation unit 310 at low temperature and low pressure, to the chiller unit 130. It functions as a composition. The cooling transfer unit 710 according to an embodiment of the present invention has one end in communication with the second circulation unit 310 connected between the evaporator 350 and the accumulator 360, and the other end with the second chiller passage 132. It may be formed to have the shape of a pipe communicating with the inlet.
냉각전달부(710)의 일단은 가열전달부(510)의 타단과도 연통된다. 이 경우, 냉각전달부(710)는 후술하는 냉각전달개폐부(731)의 동작에 의해 증발기(350)로부터 배출되는 제2열교환매체(B)를 칠러부(130)로 전달하는 통로의 역할을 수행함과 동시에 가열전달부(510)를 따라 유동되는 제2열교환매체(B)를 칠러부(130)로 전달하는 통로의 역할도 수행할 수 있다. 이에 따라 냉각전달부(710)는 제2열교환매체(B)를 칠러부(130)로 전달하기 위한 배관의 개수를 감소시킬 수 있고, 칠러부(130)의 구조를 단순화시킬 수 있다.One end of the cooling transfer unit 710 also communicates with the other end of the heating transfer unit 510. In this case, the cooling transfer unit 710 serves as a passage for transferring the second heat exchange medium (B) discharged from the evaporator 350 to the chiller unit 130 by the operation of the cooling transfer opening and closing unit 731, which will be described later. At the same time, it can also serve as a passage for delivering the second heat exchange medium (B) flowing along the heat transfer unit 510 to the chiller unit 130. Accordingly, the cooling transfer unit 710 can reduce the number of pipes for delivering the second heat exchange medium (B) to the chiller unit 130 and simplify the structure of the chiller unit 130.
냉각회수부(720)는 압축기(320)와 증발기(350)의 사이에 연결된 제2순환부(310)로부터 분기되고, 칠러부(130)로부터 배출되는 제2열교환매체(B)를 제2순환부(310)로 회수한다. 즉, 가열전달부(510)는 칠러부(130)에서 제1열교환매체(A)와 열교환이 완료된 제2열교환매체(B)를 제2순환부(310)로 회수하는 구성으로서 기능한다. 본 발명의 일 실시예에 따른 냉각회수부(720)는 가열회수부(520)와 서로 동일한 구성으로 예시될 수 있다. 즉, 냉각회수부(720)와 가열회수부(520)는 제2열교환매체(B)의 유동 경로를 모두 공유하는 형태로 형성될 수 있다. 이에 따라 냉각회수부(720)와 가열회수부(520)는 제2열교환매체(B)를 제2순환부(310)로 회수하기 위한 배관의 개수를 감소시킬 수 있고, 칠러부(130)의 구조를 단순화시킬 수 있다. 이와 달리 냉각회수부(720)는 가열회수부(520)와 분리된 형태로 형성되는 것도 가능하다. The cooling recovery unit 720 branches off from the second circulation unit 310 connected between the compressor 320 and the evaporator 350, and transfers the second heat exchange medium (B) discharged from the chiller unit 130 into the second circulation unit. Recover to unit 310. That is, the heat transfer unit 510 functions as a component that recovers the second heat exchange medium (B), which has completed heat exchange with the first heat exchange medium (A) in the chiller unit 130, to the second circulation unit 310. The cooling recovery unit 720 according to an embodiment of the present invention may have the same configuration as the heating recovery unit 520. That is, the cooling recovery unit 720 and the heating recovery unit 520 may be formed to share the flow path of the second heat exchange medium (B). Accordingly, the cooling recovery unit 720 and the heating recovery unit 520 can reduce the number of pipes for recovering the second heat exchange medium (B) to the second circulation unit 310, and the chiller unit 130 The structure can be simplified. Alternatively, the cooling recovery unit 720 may be formed separately from the heating recovery unit 520.
냉각개폐부(730)는 냉각전달부(710) 및 냉각회수부(720)를 선택적으로 개폐한다.The cooling opening/closing unit 730 selectively opens and closes the cooling transfer unit 710 and the cooling recovery unit 720.
본 발명의 일 실시예에 따른 냉각개폐부(730)는 냉각전달개폐부(731), 냉각회수개폐부(732)를 포함한다.The cooling opening and closing unit 730 according to an embodiment of the present invention includes a cooling transfer opening and closing unit 731 and a cooling recovery opening and closing unit 732.
냉각전달개폐부(731)는 냉각전달부(710)를 선택적으로 개폐한다. 냉각전달개폐부(731)는 제2순환부(310), 가열전달부(510)의 타단 및 냉각전달부(710)의 일단이 서로 교차하는 지점에 연결되어 제2순환부(310), 가열전달부(510) 및 냉각전달부(710)간의 연통 상태를 조절한다. 이 경우, 냉각전달개폐부(731)는 4개의 유로에 대한 유체의 유동 방향을 조절할 수 있는 4-way 밸브로 예시될 수 있다. 냉각전달개폐부(731)는 후술하는 제어유닛(900)에 의해 동작이 제어될 수 있다.The cooling transfer opening/closing unit 731 selectively opens and closes the cooling transfer unit 710. The cooling transfer opening/closing unit 731 is connected to the point where the second circulation unit 310, the other end of the heat transfer unit 510, and one end of the cooling transfer unit 710 intersect each other, thereby forming the second circulation unit 310 and heat transfer. The communication state between the unit 510 and the cooling transfer unit 710 is adjusted. In this case, the cooling transfer opening/closing unit 731 may be exemplified as a 4-way valve capable of controlling the flow direction of fluid for four flow paths. The operation of the cooling transfer opening/closing unit 731 may be controlled by a control unit 900, which will be described later.
냉각회수개폐부(732)는 냉각회수부(720)를 선택적으로 개폐한다. 냉각회수개폐부(732)는 냉각회수부(720)와 가열회수부(520)가 동일한 구성으로 예시됨에 따라, 가열회수개폐부(532)와 동일한 구성으로 예시될 수 있다.The cooling recovery opening/closing unit 732 selectively opens and closes the cooling recovery unit 720. The cooling recovery opening/closing unit 732 may have the same configuration as the heating recovery opening/closing unit 532, as the cooling recovery unit 720 and the heating recovery unit 520 are illustrated as having the same configuration.
감지유닛(800)은 배터리모듈(10)의 온도를 감지한다. 본 발명의 일 실시예에 따른 감지유닛(800)은 배터리모듈(10)측에 설치되어 배터리모듈(10)의 온도를 감지할 수 있는 다양한 종류의 온도 센서로 예시될 수 있다. The sensing unit 800 detects the temperature of the battery module 10. The sensing unit 800 according to an embodiment of the present invention may be installed on the battery module 10 side and may be exemplified by various types of temperature sensors capable of detecting the temperature of the battery module 10.
제어유닛(900)은 감지유닛(800)으로부터 측정된 배터리모듈(10)의 온도 변화에 기반하여 열관리모드를 결정하고, 결정된 열관리모드에 따라 가열유닛(500) 및 냉각유닛(700)의 동작을 제어한다. 본 발명의 일 실시예에 따른 제어유닛(900)은 가열개폐부(530), 냉각개폐부(730)와 전기적으로 연결되어 이들의 동작을 제어하는 전자 제어 유닛(ECU: Electronic Control Unit), 중앙 처리 장치(CPU: Central Processing Unit), 프로세서(Processor) 또는 SoC(System on Chip)로 구현될 수 있으며, 운영 체제 또는 어플리케이션을 구동하여 복수의 하드웨어 또는 소프트웨어 구성요소들을 제어할 수 있고, 각종 데이터 처리 및 연산을 수행할 수 있다. 또한, 제어유닛(900)은 메모리에 저장된 적어도 하나의 명령을 실행시키고, 그 실행 결과 데이터를 메모리에 저장하도록 구성될 수 있다.The control unit 900 determines the thermal management mode based on the temperature change of the battery module 10 measured by the sensing unit 800, and operates the heating unit 500 and cooling unit 700 according to the determined thermal management mode. Control. The control unit 900 according to an embodiment of the present invention is an electronic control unit (ECU: Electronic Control Unit), a central processing unit, which is electrically connected to the heating switch 530 and the cooling switch 730 and controls their operations. It can be implemented as a (CPU: Central Processing Unit), processor, or SoC (System on Chip), and can control multiple hardware or software components by running an operating system or application, and can perform various data processing and calculations. can be performed. Additionally, the control unit 900 may be configured to execute at least one command stored in the memory and store execution result data in the memory.
이하에서는 본 발명의 일 실시예에 따른 제어유닛에 의한 열관리모드의 작동 과정을 상세하게 설명하도록 한다.Hereinafter, the operation process of the thermal management mode by the control unit according to an embodiment of the present invention will be described in detail.
도 3은 본 발명의 일 실시예에 따른 제어유닛에 의한 열관리모드의 작동 과정을 개략적으로 나타내는 순서도이다.Figure 3 is a flowchart schematically showing the operation process of the thermal management mode by the control unit according to an embodiment of the present invention.
도 3을 참조하면, 우선, 감지유닛(800)은 배터리모듈(10)의 온도를 감지한다(S100).Referring to FIG. 3, first, the sensing unit 800 detects the temperature of the battery module 10 (S100).
감지유닛(800)으로부터 감지된 배터리모듈(10)의 온도가 제1설정온도(T1) 미만인 경우(S200), 제어유닛(900)은 가열모드를 실행한다(S210). 여기서, 제1설정온도(T1)는 대략 35℃로 예시될 수 있다.When the temperature of the battery module 10 detected by the sensing unit 800 is less than the first set temperature T1 (S200), the control unit 900 executes the heating mode (S210). Here, the first set temperature (T1) may be exemplified to be approximately 35°C.
도 4는 본 발명의 일 실시예에 따른 가열모드의 동작 상태를 개략적으로 나타내는 도면이다.Figure 4 is a diagram schematically showing the operating state of the heating mode according to an embodiment of the present invention.
도 4를 참조하면, 가열모드에서 제어유닛(900)은 가열유닛(500)을 동작시키고 냉각유닛(700)의 동작을 중지시킨다.Referring to FIG. 4, in the heating mode, the control unit 900 operates the heating unit 500 and stops the cooling unit 700 from operating.
보다 구체적으로, 가열모드에서 제어유닛(900)은 가열전달개폐부(531)와 가열회수개폐부(532)를 동작시켜 가열전달부(510)와 가열회수부(520)의 양단을 개방하고, 가열전달부(510)와 가열회수부(520)의 일단을 제2순환부(310)와 연통시킨다. More specifically, in the heating mode, the control unit 900 operates the heat transfer opening/closing unit 531 and the heating recovery opening/closing unit 532 to open both ends of the heat transfer unit 510 and the heating recovery unit 520, and heat transfer. One end of the unit 510 and the heating recovery unit 520 is communicated with the second circulation unit 310.
한편, 가열전달부(510)와 냉각전달부(710)가 상호 연결됨에 따라, 제어유닛(900)은 냉각전달개폐부(731)를 동작시켜 가열전달부(510)의 타단과 냉각전달부(710)의 일단을 연통시킨다.Meanwhile, as the heat transfer unit 510 and the cooling transfer unit 710 are connected to each other, the control unit 900 operates the cooling transfer opening and closing unit 731 to connect the other end of the heating transfer unit 510 and the cooling transfer unit 710. ) is connected to one end.
이후, 압축기(320)로부터 배출된 고온의 제2열교환매체(B)는 가열전달부(510)와 냉각전달부(710)를 순차적으로 거쳐 제2칠러유로(132)의 유입구를 통해 칠러부(130)의 내부로 전달된다. 이 경우, 칠러부(130)로 전달된 제2열교환매체(B)의 온도는 약 60℃ 내지 70℃의 온도를 가질 수 있다.Thereafter, the high-temperature second heat exchange medium (B) discharged from the compressor 320 sequentially passes through the heating transfer unit 510 and the cooling transfer unit 710 and passes through the inlet of the second chiller passage 132 to the chiller unit ( 130) is transmitted inside. In this case, the temperature of the second heat exchange medium (B) delivered to the chiller unit 130 may be about 60°C to 70°C.
칠러부(130)로 전달된 고온의 제2열교환매체(B)는 칠러부(130)의 내부에서 제1칠러유로(131)를 따라 유동하는 제1열교환매체(A)와 열교환되며 제1열교환매체(A)의 온도를 상승시킨다. 이 경우, 대략 제1열교환매체(A)는 제2열교환매체(B)와의 열교환 작용에 의해 온도가 약 30℃ 내지 35℃로 상승될 수 있다.The high-temperature second heat exchange medium (B) delivered to the chiller unit 130 exchanges heat with the first heat exchange medium (A) flowing along the first chiller passage 131 inside the chiller unit 130, and performs the first heat exchange process. Raise the temperature of medium (A). In this case, the temperature of the first heat exchange medium (A) may be increased to approximately 30°C to 35°C by heat exchange with the second heat exchange medium (B).
온도가 상승되어 칠러부(130)로부터 배출되는 제1열교환매체(A)는 열관리유로(121)의 유입구 측을 통해 열관리부재(120)의 내부로 유입되고, 배터리모듈(10)과 열교환되며 배터리모듈(10)의 온도를 상승시킨다.The first heat exchange medium (A), whose temperature is raised and discharged from the chiller unit 130, flows into the interior of the heat management member 120 through the inlet side of the heat management passage 121, exchanges heat with the battery module 10, and exchanges heat with the battery module 10. Raise the temperature of the module 10.
이와 동시에, 제어유닛(900)은 냉각전달개폐부(731)를 동작시켜 증발기(350) 및 어큐뮬레이터(360) 사이에 연결된 제2순환부(310)와, 냉각전달부(710)의 연통을 차단함으로써 증발기(350)로부터 배출되는 저온의 제2열교환매체(B)가 칠러부(130)로 유입되는 것을 차단한다. 이에 따라 가열모드에서 제1열교환매체(A)의 온도는 가열유닛(500)을 통해 전달되는 고온의 제2열교환매체(B)에 의해서만 결정될 수 있다.At the same time, the control unit 900 operates the cooling transfer opening/closing unit 731 to block communication between the cooling transfer unit 710 and the second circulation unit 310 connected between the evaporator 350 and the accumulator 360. The low-temperature second heat exchange medium (B) discharged from the evaporator 350 is blocked from flowing into the chiller unit 130. Accordingly, in the heating mode, the temperature of the first heat exchange medium (A) can be determined only by the high temperature of the second heat exchange medium (B) delivered through the heating unit 500.
한편, 가열회수부(520) 및 냉각회수부(720), 가열회수개폐부(532) 및 냉각회수개폐부(732)가 서로 동일한 구성으로 이루어지는 경우, 냉각회수부(720)는 개방된 상태로 유지될 수 있다.On the other hand, when the heating recovery unit 520, the cooling recovery unit 720, the heating recovery opening/closing unit 532, and the cooling recovery opening/closing unit 732 have the same configuration, the cooling recovery unit 720 may be maintained in an open state. You can.
이후, 감지유닛(800)으로부터 감지된 배터리모듈(10)의 온도가 제1설정온도(T1) 이상, 제2설정온도(T2) 미만인 경우(S300), 제어유닛(900)은 완충모드를 실행한다(S310). 여기서, 제2설정온도(T2)는 36℃로 예시될 수 있다.Thereafter, when the temperature of the battery module 10 detected by the sensing unit 800 is above the first set temperature (T1) but below the second set temperature (T2) (S300), the control unit 900 executes the full charge mode. Do it (S310). Here, the second set temperature (T2) may be exemplified as 36°C.
제2완충모드에서 제어유닛(900)은 가열유닛(500)의 동작을 중지시킨다. In the second buffer mode, the control unit 900 stops the operation of the heating unit 500.
보다 구체적으로, 제어유닛(900)은 가열전달개폐부(531) 및 가열회수개폐부(532)를 동작시켜 가열전달부(510) 및 가열회수부(520)를 폐쇄한다. More specifically, the control unit 900 operates the heat transfer opening/closing unit 531 and the heating recovery opening/closing unit 532 to close the heat transfer unit 510 and the heating recovery unit 520.
이와 동시에 제어유닛(900)은 냉각전달개폐부(731)를 동작시켜 가열전달부(510) 및 냉각전달부(710)의 연통을 차단한다. At the same time, the control unit 900 operates the cooling transfer opening/closing unit 731 to block communication between the heating transfer unit 510 and the cooling transfer unit 710.
즉, 완충모드는 제어유닛(900)에 의한 열관리모드가 가열모드와 후술하는 냉각모드로 상호 전환되기 위한 온도에 일정한 간격을 부여하는 모드로서 기능한다. That is, the buffer mode functions as a mode that provides a certain interval to the temperature for the thermal management mode by the control unit 900 to be switched between the heating mode and the cooling mode described later.
이에 따라 제어유닛(900)은 가열모드와 냉각모드가 상호 전환되는 과정에서 가열유닛(500)과 냉각유닛(700)이 동시에 동작되며 배터리모듈(10)의 온도가 의도하지 않은 방향으로 가변되는 것을 방지할 수 있고, 단일 온도를 경계로 가열유닛(500)과 냉각유닛(700)이 반복적으로 동작 또는 중지되며 부품의 내구성이 저하되거나 또는 에너지의 불필요하게 소모하는 것을 방지할 수 있다.Accordingly, the control unit 900 operates the heating unit 500 and the cooling unit 700 simultaneously in the process of switching between the heating mode and the cooling mode, and prevents the temperature of the battery module 10 from changing in an unintended direction. It is possible to prevent the heating unit 500 and the cooling unit 700 from repeatedly operating or stopping based on a single temperature, thereby reducing the durability of the components or unnecessary consumption of energy.
이후, 감지유닛(800)으로부터 감지된 배터리모듈(10)의 온도가 제2설정온도(T2) 이상인 경우(S400), 제어유닛(900)은 냉각모드를 실행한다(S410).Thereafter, when the temperature of the battery module 10 detected by the sensing unit 800 is higher than the second set temperature (T2) (S400), the control unit 900 executes the cooling mode (S410).
도 5는 본 발명의 일 실시예에 따른 냉각모드의 동작 상태를 개략적으로 나타내는 도면이다.Figure 5 is a diagram schematically showing the operating state of the cooling mode according to an embodiment of the present invention.
도 5를 참조하면, 냉각모드에서 제어유닛(900)은 냉각유닛(700)을 동작시키고 가열유닛(500)의 동작을 중지시킨다.Referring to FIG. 5, in the cooling mode, the control unit 900 operates the cooling unit 700 and stops the heating unit 500 from operating.
보다 구체적으로, 냉각모드에서 제어유닛(900)은 냉각전달개폐부(731)와 냉각회수개폐부(732)를 동작시켜 냉각전달부(710), 냉각회수부(720)를 제2순환부(310)와 연통시킨다. More specifically, in the cooling mode, the control unit 900 operates the cooling transfer opening and closing unit 731 and the cooling recovery opening and closing unit 732 to connect the cooling transfer unit 710 and the cooling recovery unit 720 to the second circulation unit 310. communicate with
한편, 가열전달부(510)와 냉각전달부(710)가 상호 연결됨에 따라, 제어유닛(900)은 냉각전달개폐부(731)를 동작시켜 가열전달부(510)의 타단과 냉각전달부(710)의 일단의 연통을 차단한다.Meanwhile, as the heat transfer unit 510 and the cooling transfer unit 710 are connected to each other, the control unit 900 operates the cooling transfer opening and closing unit 731 to connect the other end of the heating transfer unit 510 and the cooling transfer unit 710. ) blocks one set of communication channels.
이후, 증발기(350)로부터 배출된 저온의 제2열교환매체(B)는 제2순환부(310)와 냉각전달부(710)를 순차적으로 거쳐 제2칠러유로(132)의 유입구를 통해 칠러부(130)의 내부로 전달된다. 이 경우, 칠러부(130)로 전달된 제2열교환매체(B)의 온도는 약 7℃ 내지 10℃의 온도를 가질 수 있다.Thereafter, the low-temperature second heat exchange medium (B) discharged from the evaporator 350 sequentially passes through the second circulation unit 310 and the cooling transfer unit 710 and passes through the inlet of the second chiller passage 132 to the chiller unit. It is delivered to the interior of (130). In this case, the temperature of the second heat exchange medium (B) delivered to the chiller unit 130 may be about 7°C to 10°C.
칠러부(130)로 전달된 저온의 제2열교환매체(B)는 칠러부(130)의 내부에서 제1칠러유로(131)를 따라 유동하는 제1열교환매체(A)와 열교환되며 제1열교환매체(A)의 온도를 하강시킨다. 이 경우, 대략 제1열교환매체(A)는 제2열교환매체(B)와의 열교환 작용에 의해 온도가 약 36℃ 이하로 하강될 수 있다.The low-temperature second heat exchange medium (B) delivered to the chiller unit 130 exchanges heat with the first heat exchange medium (A) flowing along the first chiller passage 131 inside the chiller unit 130, and performs the first heat exchange process. The temperature of medium (A) is lowered. In this case, the temperature of the first heat exchange medium (A) may be lowered to approximately 36° C. or lower due to heat exchange with the second heat exchange medium (B).
온도가 하강되어 칠러부(130)로부터 배출되는 제1열교환매체(A)는 열관리유로(121)의 유입구 측을 통해 열관리부재(120)의 내부로 유입되고, 배터리모듈(10)과 열교환되며 배터리모듈(10)의 온도를 하강시킨다.The first heat exchange medium (A), whose temperature is lowered and discharged from the chiller unit 130, flows into the interior of the heat management member 120 through the inlet side of the heat management passage 121, exchanges heat with the battery module 10, and exchanges heat with the battery module 10. The temperature of the module 10 is lowered.
제어유닛(900)은 냉각전달개폐부(731)를 동작시켜 증발기(350) 및 어큐뮬레이터(360) 사이에 연결된 제2순환부(310)와 가열전달부(510)의 연통을 차단한다. 이에 따라 냉각모드에서 제1열교환매체(A)의 온도는 냉각유닛(700)을 통해 전달되는 저온의 제2열교환매체(B)에 의해서만 결정될 수 있다.The control unit 900 operates the cooling transfer opening/closing unit 731 to block communication between the second circulation unit 310 and the heat transfer unit 510 connected between the evaporator 350 and the accumulator 360. Accordingly, in the cooling mode, the temperature of the first heat exchange medium (A) can be determined only by the low temperature second heat exchange medium (B) delivered through the cooling unit 700.
또한, 제어유닛(900)은 냉각전달개폐부(731)를 동작시켜 냉각전달개폐부(731)와 냉각회수개폐부(732)의 사이에 연결된 제2순환부(310)를 폐쇄함으로써 증발기(350)로부터 배출되는 저온의 제2열교환매체(B)가 칠러부(130)로 유입되지 않고, 압축기(320)로 곧바로 전달되는 것을 방지할 수 있다. In addition, the control unit 900 operates the cooling transfer opening/closing unit 731 to close the second circulation unit 310 connected between the cooling transfer opening/closing unit 731 and the cooling recovery opening/closing unit 732, thereby discharging discharge from the evaporator 350. It is possible to prevent the low temperature second heat exchange medium (B) from flowing into the chiller unit 130 and being directly transferred to the compressor 320.
한편, 가열회수부(520) 및 냉각회수부(720), 가열회수개폐부(532) 및 냉각회수개폐부(732)가 서로 동일한 구성으로 이루어지는 경우, 가열회수부(520)는 개방된 상태로 유지될 수 있다.On the other hand, when the heating recovery unit 520, the cooling recovery unit 720, the heating recovery opening/closing unit 532, and the cooling recovery opening/closing unit 732 have the same configuration, the heating recovery unit 520 may be maintained in an open state. You can.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. The present invention has been described with reference to the embodiments shown in the drawings, but these are merely exemplary, and those skilled in the art will recognize that various modifications and other equivalent embodiments are possible therefrom. You will understand.
따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.Therefore, the scope of technical protection of the present invention should be determined by the scope of the patent claims below.

Claims (10)

  1. 제1열교환매체가 순환되며 배터리모듈과 열교환하는 열관리유닛;A heat management unit in which the first heat exchange medium circulates and exchanges heat with the battery module;
    압축기, 응축기, 팽창밸브 및 증발기를 구비하여 제2열교환매체가 순환되는 사이클유닛;A cycle unit including a compressor, condenser, expansion valve, and evaporator through which a second heat exchange medium is circulated;
    상기 사이클유닛으로부터 분기되고, 상기 배터리모듈의 온도가 상승되도록 상기 제2열교환매체를 상기 제1열교환매체와 열교환시키는 가열유닛; 및a heating unit branched from the cycle unit and heat-exchanging the second heat exchange medium with the first heat exchange medium to increase the temperature of the battery module; and
    상기 사이클유닛으로부터 분기되고, 상기 배터리모듈의 온도가 하강되도록 상기 제2열교환매체를 상기 제1열교환매체와 열교환시키는 냉각유닛;을 포함하는 것을 특징으로 하는 전기자동차용 배터리 열관리 시스템.A cooling unit branched from the cycle unit and heat-exchanging the second heat exchange medium with the first heat exchange medium to lower the temperature of the battery module.
  2. 제 1항에 있어서,According to clause 1,
    상기 열관리유닛은,The thermal management unit is,
    상기 제1열교환매체가 순환 유동되는 제1순환부;a first circulation section through which the first heat exchange medium circulates;
    상기 제1순환부에 연결되고, 상기 제1열교환매체를 상기 배터리모듈과 열교환시키는 열관리부재;a heat management member connected to the first circulation unit and heat-exchanging the first heat exchange medium with the battery module;
    상기 제1순환부와 연결되고, 상기 제1열교환매체를 상기 제2열교환매체와 열교환시키는 칠러부;를 포함하는 것을 특징으로 하는 전기자동차용 배터리 열관리 시스템.A battery thermal management system for an electric vehicle, comprising: a chiller unit connected to the first circulation unit and heat-exchanging the first heat exchange medium with the second heat exchange medium.
  3. 제 2항에 있어서,According to clause 2,
    상기 가열유닛은,The heating unit is,
    상기 압축기와 상기 응축기의 사이로부터 분기되고, 상기 압축기로부터 배출되는 상기 제2열교환매체를 상기 칠러부로 전달하는 가열전달부;a heat transfer unit branched between the compressor and the condenser and transferring the second heat exchange medium discharged from the compressor to the chiller unit;
    상기 압축기와 상기 증발기의 사이로부터 분기되고, 상기 칠러부로부터 배출되는 상기 제2열교환매체를 상기 압축기로 전달하는 가열회수부; 및a heat recovery unit branched between the compressor and the evaporator and transferring the second heat exchange medium discharged from the chiller unit to the compressor; and
    상기 가열전달부 및 상기 가열회수부를 선택적으로 개폐하는 가열개폐부;를 포함하는 것을 특징으로 하는 전기자동차용 배터리 열관리 시스템.A heat management system for a battery for an electric vehicle, comprising: a heating opening and closing unit that selectively opens and closes the heat transfer unit and the heating recovery unit.
  4. 제 3항에 있어서,According to clause 3,
    상기 냉각유닛은,The cooling unit is,
    상기 압축기와 상기 증발기의 사이로부터 분기되고, 상기 증발기로부터 배출되는 상기 제2열교환매체를 상기 칠러부로 전달하는 냉각전달부;a cooling transfer unit branched between the compressor and the evaporator and delivering the second heat exchange medium discharged from the evaporator to the chiller unit;
    상기 압축기와 상기 증발기의 사이로부터 분기되고, 상기 칠러부로부터 배출되는 상기 제2열교환매체를 상기 압축기로 전달하는 냉각회수부; 및a cooling recovery unit branched between the compressor and the evaporator and transferring the second heat exchange medium discharged from the chiller unit to the compressor; and
    상기 냉각전달부 및 상기 냉각회수부를 선택적으로 개폐하는 냉각개폐부;를 포함하는 것을 특징으로 하는 전기자동차용 배터리 열관리 시스템.A battery thermal management system for an electric vehicle, comprising a cooling opening and closing unit that selectively opens and closes the cooling transfer unit and the cooling recovery unit.
  5. 제 4항에 있어서,According to clause 4,
    상기 가열전달부와 상기 냉각전달부는 상호 연결되는 것을 특징으로 하는 전기자동차용 배터리 열관리 시스템.A battery thermal management system for an electric vehicle, characterized in that the heat transfer unit and the cooling transfer unit are interconnected.
  6. 제 4항에 있어서,According to clause 4,
    상기 가열회수부와 상기 냉각회수부는 동일한 것을 특징으로 하는 전기자동차용 배터리 열관리 시스템.A battery thermal management system for an electric vehicle, wherein the heating recovery unit and the cooling recovery unit are the same.
  7. 제 1항에 있어서,According to clause 1,
    상기 배터리모듈의 온도를 감지하는 감지유닛; 및A sensing unit that detects the temperature of the battery module; and
    상기 감지유닛으로부터 측정된 상기 배터리모듈의 온도 변화에 기반하여 열관리모드를 결정하고, 결정된 열관리모드에 따라 상기 가열유닛 및 상기 냉각유닛의 동작을 제어하는 제어유닛;을 더 포함하는 것을 특징으로 하는 전기자동차용 배터리 열관리 시스템.A control unit that determines a thermal management mode based on the temperature change of the battery module measured by the sensing unit and controls the operation of the heating unit and the cooling unit according to the determined thermal management mode. Automotive battery thermal management system.
  8. 제 7항에 있어서,According to clause 7,
    상기 제어유닛은, 상기 감지유닛으로부터 감지된 상기 배터리모듈의 온도가 제1설정온도 미만인 경우, 상기 가열유닛을 동작시키고 상기 냉각유닛의 동작을 중지시키는 가열모드;를 실행하는 것을 특징으로 하는 전기자동차용 배터리 열관리 시스템.The control unit, when the temperature of the battery module detected by the sensing unit is below the first set temperature, executes a heating mode to operate the heating unit and stop the operation of the cooling unit. Battery thermal management system.
  9. 제 8항에 있어서,According to clause 8,
    상기 제어유닛은, 상기 감지유닛으로부터 감지된 상기 배터리모듈의 온도가 제2설정온도 이상인 경우, 상기 냉각유닛을 동작시키고 상기 가열유닛의 동작을 중지시키는 냉각모드;를 실행하는 것을 특징으로 하는 전기자동차용 배터리 열관리 시스템.The control unit, when the temperature of the battery module detected by the sensing unit is higher than the second set temperature, executes a cooling mode to operate the cooling unit and stop the operation of the heating unit. Battery thermal management system.
  10. 제 9항에 있어서,According to clause 9,
    상기 제어유닛은, 상기 감지유닛으로부터 감지된 상기 배터리모듈의 온도가 상기 제1설정온도 이상 상기 제2설정온도 미만인 경우, 상기 가열유닛과 상기 냉각유닛의 동작을 모두 중지시키는 완충모드;를 실행하는 것을 특징으로 하는 전기자동차용 배터리 열관리 시스템.The control unit executes a buffer mode that stops both the heating unit and the cooling unit when the temperature of the battery module detected by the sensing unit is greater than the first set temperature and less than the second set temperature. A battery thermal management system for electric vehicles, characterized in that.
PCT/KR2023/002802 2022-06-22 2023-02-28 Battery heat management system for electric vehicle WO2023249198A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0076185 2022-06-22
KR1020220076185A KR20240000023A (en) 2022-06-22 2022-06-22 Battery thermal management system for electric vehicle

Publications (1)

Publication Number Publication Date
WO2023249198A1 true WO2023249198A1 (en) 2023-12-28

Family

ID=89380037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002802 WO2023249198A1 (en) 2022-06-22 2023-02-28 Battery heat management system for electric vehicle

Country Status (2)

Country Link
KR (1) KR20240000023A (en)
WO (1) WO2023249198A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170094015A (en) * 2016-02-05 2017-08-17 한온시스템 주식회사 Thermal management system of battery for vehicle
CN208170778U (en) * 2018-05-21 2018-11-30 江西江铃集团新能源汽车有限公司 Thermal management system of electric automobile
CN208232746U (en) * 2018-04-18 2018-12-14 上海加冷松芝汽车空调股份有限公司 Used in new energy vehicles integrates crew module's air-conditioning and battery pack heat management heat pump system
JP2019130981A (en) * 2018-01-30 2019-08-08 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
CN114312219A (en) * 2021-12-31 2022-04-12 优跑汽车技术(上海)有限公司 Air conditioning system of electric automobile and control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170094015A (en) * 2016-02-05 2017-08-17 한온시스템 주식회사 Thermal management system of battery for vehicle
JP2019130981A (en) * 2018-01-30 2019-08-08 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
CN208232746U (en) * 2018-04-18 2018-12-14 上海加冷松芝汽车空调股份有限公司 Used in new energy vehicles integrates crew module's air-conditioning and battery pack heat management heat pump system
CN208170778U (en) * 2018-05-21 2018-11-30 江西江铃集团新能源汽车有限公司 Thermal management system of electric automobile
CN114312219A (en) * 2021-12-31 2022-04-12 优跑汽车技术(上海)有限公司 Air conditioning system of electric automobile and control method thereof

Also Published As

Publication number Publication date
KR20240000023A (en) 2024-01-02

Similar Documents

Publication Publication Date Title
WO2021215695A1 (en) Heat pump system for vehicle
WO2019212275A1 (en) Vehicle heat-management system
WO2019066330A1 (en) Integrated heat management system of vehicle
WO2018105928A1 (en) Vehicle thermal management system
WO2018105927A1 (en) Vehicle thermal management system
WO2018155886A1 (en) Vehicle heat pump system
WO2014065548A1 (en) Air conditioner
WO2016017939A1 (en) Automotive heat pump system
WO2020184869A1 (en) Heat management system for vehicle
WO2020246792A1 (en) Heat management system
WO2019225867A1 (en) Heat management system
WO2022114563A1 (en) Heat management system
WO2019208942A1 (en) Heat exchange system for vehicle
WO2018124789A1 (en) Heat pump for automobile
WO2019160294A1 (en) Vehicle heat management system
WO2013183889A1 (en) Battery pack
WO2018135850A1 (en) Waste heat recovery type hybrid heat pump system
WO2019208939A1 (en) Thermal management system
WO2021025426A1 (en) Integrated thermal management circuit for vehicle
WO2023249198A1 (en) Battery heat management system for electric vehicle
WO2018190540A1 (en) Air conditioner for vehicle
WO2020204570A1 (en) Heat management system for vehicle
WO2022030663A1 (en) Reservoir tank for integrated heat management, and integrated heat management module comprising same
WO2021246722A1 (en) Thermal management system of vehicle
WO2024025170A1 (en) Vehicle thermal management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827321

Country of ref document: EP

Kind code of ref document: A1