WO2023249058A1 - 表示装置および表示装置の製造方法 - Google Patents

表示装置および表示装置の製造方法 Download PDF

Info

Publication number
WO2023249058A1
WO2023249058A1 PCT/JP2023/022972 JP2023022972W WO2023249058A1 WO 2023249058 A1 WO2023249058 A1 WO 2023249058A1 JP 2023022972 W JP2023022972 W JP 2023022972W WO 2023249058 A1 WO2023249058 A1 WO 2023249058A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
satisfied
light emitting
following formula
emitting part
Prior art date
Application number
PCT/JP2023/022972
Other languages
English (en)
French (fr)
Inventor
功太郎 足達
明典 橋口
和樹 河本
哲朗 矢野
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2023249058A1 publication Critical patent/WO2023249058A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • the present disclosure relates to a display device and a method for manufacturing the display device.
  • micro LED display which is a display device that uses a semiconductor on which a plurality of minute light emitting diodes (LEDs), wiring, etc. are formed as it is as a light emitting substrate.
  • LEDs minute light emitting diodes
  • micro LED displays are attracting attention as small, lightweight, and thin displays.
  • organic EL (OLED) displays including organic EL elements are known.
  • Patent Document 1 discloses a micro LED display that collects light in a specific direction, for example, in the front direction by providing a linear array lens on the side from which light is emitted. By focusing the light in a specific direction, the light emitted from the LED can be used efficiently.
  • Display devices are required to increase the brightness above a certain level in the direction in which a user is expected to view the display device.
  • the brightness in the direction deviated from the direction may also be required to be greater than a certain level.
  • HUD head-up display
  • the display device is used in a head-up display (HUD), especially a head-up display that projects an image onto the windshield of a car, the brightness in that direction is increased, and the brightness in a direction deviated from that direction is also increased. You may be required to do so.
  • HUD head-up display
  • an object of the present invention is to increase the brightness in the direction in which a display device is viewed.
  • a first aspect of the present disclosure includes a light-emitting substrate having a semiconductor layer divided into a plurality of unit regions, and a light-emitting portion arranged in the plurality of unit regions; an optical sheet disposed facing the light emitting substrate, The optical sheet has a plurality of unit lenses arranged in a first direction and extending in a second direction non-parallel to the first direction, The plurality of unit areas are lined up in the first direction and the second direction, Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • w/p is less than 0.025, r/p is 0.2 or more and less than 0.525, and the following formula (1) is satisfied, and r/p is 0.525 or more and less than 1.5. and the following formula (2) is satisfied, r/p is 0.2 or more and less than 0.525, and the following formula (3) is satisfied, r/p is 0.525 or more and less than 0.725.
  • r/p is 0.725 or more and less than 1.5 and the following formula (5) is satisfied, or
  • p be the pitch of the light emitting part in the first direction
  • w be the width of the light emitting part in the first direction
  • r be the radius of curvature of the lens surface of the unit lens
  • d be the distance between the light emitting part and the unit lens.
  • w/p is 0.025 or more and less than 0.075
  • r/p is 0.2 or more and less than 0.525
  • the following formula (6) is satisfied, and r/p is 0.525 or more.
  • r/p is 0.2 or more and less than 0.525 and the following formula (8) is satisfied; r/p is 0.525 or more At least one of the following holds true: r/p is less than 0.725 and the following formula (9) is satisfied; r/p is 0.725 or more and less than 1.5 and the following formula (10) is satisfied.
  • mosquito Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • w/p is 0.075 or more and less than 0.15, r/p is 0.2 or more and less than 0.375, and the following formula (11) is satisfied, and r/p is 0.375 or more. less than 1.5 and the following formula (12) is satisfied; r/p is 0.2 or more and less than 0.725 and the following formula (13) is satisfied; and r/p is 0.725. At least one of the following is true: less than 1.5 and the following formula (14) is satisfied, Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • w/p is 0.15 or more and less than 0.25
  • r/p is 0.2 or more and less than 0.725
  • the following formula (15) is satisfied
  • r/p is 0.725 or more.
  • r/p is less than 1.5 and the following formula (16) is satisfied
  • r/p is 0.2 or more and less than 1.5 and the following formula (17) is satisfied.
  • p be the pitch of the light emitting part in the first direction
  • w be the width of the light emitting part in the first direction
  • r be the radius of curvature of the lens surface of the unit lens
  • d be the distance between the light emitting part and the unit lens.
  • w/p is 0.25 or more and less than 0.35
  • r/p is 0.25 or more and less than 0.975
  • the following formula (18) is satisfied
  • r/p is 0.975.
  • w/p is 0.35 or more and less than 0.45
  • r/p is 0.3 or more and less than 1.5
  • the following formula (20) is satisfied, Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • w/p is 0.45 or more and less than 0.55
  • r/p is 0.4 or more and less than 1.5
  • the following formula (21) is satisfied
  • w/p is 0.55 or more and less than 0.65
  • r/p is 0.45 or more and less than 1.5
  • the following formula (22) is satisfied.
  • a second aspect of the present disclosure provides a light-emitting substrate having a semiconductor layer divided into a plurality of unit regions and a light-emitting portion arranged in the plurality of unit regions; an optical sheet disposed facing the light emitting substrate, The optical sheet has a plurality of unit lenses arranged in a first direction and extending in a second direction non-parallel to the first direction, The plurality of unit areas are lined up in the first direction and the second direction, Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • w/p is less than 0.025, r/p is 0.2 or more and less than 0.525, and the following formula (23) is satisfied, and r/p is 0.525 or more and 1.5. and at least one of the following formula (24) is satisfied, or Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens. , w/p is 0.025 or more and less than 0.15, r/p is 0.2 or more and less than 0.525, and the following formula (25) is satisfied, and r/p is 0.525.
  • At least one of the following is true: less than 1.5 and the following formula (26) is satisfied, or Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens. , w/p is 0.15 or more and less than 0.25, r/p is 0.2 or more and less than 0.525, and the following formula (27) is satisfied, and r/p is 0.525.
  • At least one of the following is true: less than 1.5 and the following formula (28) is satisfied,
  • p be the pitch of the light emitting part in the first direction
  • w be the width of the light emitting part in the first direction
  • r be the radius of curvature of the lens surface of the unit lens
  • d be the distance between the light emitting part and the unit lens.
  • w/p is 0.25 or more and less than 0.35
  • r/p is 0.25 or more and less than 0.425
  • the following formula (29) is satisfied, and r/p is 0.425.
  • At least one of the following is true: less than 1.5 and the following formula (30) is satisfied,
  • p be the pitch of the light emitting part in the first direction
  • w be the width of the light emitting part in the first direction
  • r be the radius of curvature of the lens surface of the unit lens
  • d be the distance between the light emitting part and the unit lens.
  • w/p is 0.35 or more and less than 0.45
  • r/p is 0.3 or more and less than 0.525
  • the following formula (31) is satisfied
  • r/p is 0.525.
  • At least one of the following is true: less than 1.5 and the following formula (32) is satisfied,
  • p be the pitch of the light emitting part in the first direction
  • w be the width of the light emitting part in the first direction
  • r be the radius of curvature of the lens surface of the unit lens
  • d be the distance between the light emitting part and the unit lens.
  • w/p is 0.45 or more and less than 0.55
  • r/p is 0.4 or more and less than 0.625
  • the following formula (33) is satisfied
  • r/p is 0.625.
  • At least one of the following is true: less than 1.5 and the following formula (34) is satisfied, or Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens. , w/p is 0.55 or more and less than 0.65, r/p is 0.45 or more and less than 0.625, and the following formula (35) is satisfied, and r/p is 0.625.
  • This is a display device in which at least one of the above and less than 1.5 and the following formula (36) is satisfied.
  • a third aspect of the present disclosure provides a light-emitting substrate having a semiconductor layer divided into a plurality of unit regions and a light-emitting portion arranged in the plurality of unit regions; an optical sheet disposed facing the light emitting substrate,
  • the optical sheet has a plurality of unit lenses arranged in a first direction and extending in a second direction non-parallel to the first direction,
  • the plurality of unit areas are lined up in the first direction and the second direction, Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • w/p is 0.01 or more and less than 0.05, r/p is 0.2 or more and less than 0.525, and the following formula (37) is satisfied, and r/p is 0.525 or more.
  • r/p is less than 0.975 and the following formula (38) is satisfied;
  • r/p is 0.975 or more and less than 1.5 and the following formula (39) is satisfied;
  • r/p is 0.2 or more At least one of the following holds true: r/p is less than 0.525 and the following formula (40) is satisfied, and r/p is 0.525 or more and less than 0.975 and the following formula (41) is satisfied.
  • p be the pitch of the light emitting part in the first direction
  • w be the width of the light emitting part in the first direction
  • r be the radius of curvature of the lens surface of the unit lens
  • d be the distance between the light emitting part and the unit lens.
  • w/p is 0.05 or more and less than 0.1
  • r/p is 0.2 or more and less than 0.525
  • the following formula (42) is satisfied
  • r/p is 0.525 or more.
  • r/p is less than 0.975 and the following formula (43) is satisfied; r/p is 0.975 or more and less than 1.5 and the following formula (44) is satisfied; r/p is 0.2 or more At least one of the following holds true: r/p is less than 0.525 and the following formula (45) is satisfied, and r/p is 0.525 or more and less than 0.975 and the following formula (46) is satisfied.
  • p be the pitch of the light emitting part in the first direction
  • w be the width of the light emitting part in the first direction
  • r be the radius of curvature of the lens surface of the unit lens
  • d be the distance between the light emitting part and the unit lens.
  • w/p is 0.1 or more and less than 0.2, r/p is 0.2 or more and less than 0.375, and the following formula (47) is satisfied, and r/p is 0.375 or more.
  • r/p is less than 0.975 and the following formula (48) is satisfied; r/p is 0.975 or more and less than 1.5 and the following formula (49) is satisfied; and r/p is 0.375.
  • p be the pitch of the light emitting part in the first direction
  • w be the width of the light emitting part in the first direction
  • r be the radius of curvature of the lens surface of the unit lens
  • d be the distance between the light emitting part and the unit lens.
  • w/p is 0.2 or more and less than 0.3
  • r/p is 0.25 or more and less than 0.725
  • the following formula (51) is satisfied, and r/p is 0.725 or more.
  • r/p is less than 0.975 and the following formula (52) is satisfied; r/p is 0.975 or more and less than 1.5 and the following formula (53) is satisfied; and r/p is 0.725. At least one of the following is true: less than 0.975 and the following formula (54) is satisfied, or Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • w/p is 0.3 or more and less than 0.4
  • r/p is 0.35 or more and less than 0.975
  • the following formula (55) is satisfied
  • r/p is 0.975.
  • w/p is 0.4 or more and less than 0.5
  • r/p is 0.4 or more and less than 0.675
  • the following formula (57) is satisfied
  • r/p is 0.675.
  • At least one of the following is true: less than 1.5 and the following formula (58) is satisfied, Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • w/p is 0.5 or more and less than 0.6
  • r/p is 0.5 or more and less than 0.675
  • the following formula (59) is satisfied
  • r/p is 0.675.
  • This is a display device in which at least one of the above and less than 1.5 and the following formula (60) is satisfied.
  • a fourth aspect of the present disclosure provides a light-emitting substrate having a semiconductor layer divided into a plurality of unit regions and a light-emitting portion arranged in the plurality of unit regions; an optical sheet disposed facing the light emitting substrate,
  • the optical sheet has a plurality of unit lenses arranged in a first direction and extending in a second direction non-parallel to the first direction,
  • the plurality of unit areas are lined up in the first direction and the second direction, Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • w/p is 0.01 or more and less than 0.05, r/p is 0.2 or more and less than 0.525, and the following formula (61) is satisfied, and r/p is 0.525. At least one of the following is true: less than 1.5 and the following formula (62) is satisfied, or Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • w/p is 0.05 or more and less than 0.1
  • r/p is 0.2 or more and less than 0.525
  • the following formula (63) is satisfied
  • r/p is 0.525. At least one of the following is true: less than 1.5 and the following formula (64) is satisfied, or Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • w/p is 0.1 or more and less than 0.2
  • r/p is 0.2 or more and less than 0.525
  • the following formula (65) is satisfied
  • r/p is 0.525. At least one of the following is true: less than 1.5 and the following formula (66) is satisfied, or Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • w/p is 0.2 or more and less than 0.3
  • r/p is 0.25 or more and less than 0.525
  • the following formula (67) is satisfied
  • r/p is 0.525.
  • At least one of the following is true: less than 1.5 and the following formula (68) is satisfied, Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • w/p is 0.3 or more and less than 0.4
  • r/p is 0.35 or more and less than 0.675
  • the following formula (69) is satisfied
  • r/p is 0.675.
  • w/p is 0.4 or more and less than 0.5
  • r/p is 0.4 or more and less than 0.675
  • the following formula (71) is satisfied
  • r/p is 0.675.
  • w/p is 0.5 or more and less than 0.6
  • r/p is 0.5 or more and less than 0.675
  • the following formula (73) is satisfied
  • r/p is 0.675.
  • This is a display device in which at least one of the above and less than 1.5 and the following formula (74) is satisfied.
  • a fifth aspect of the present disclosure is a display device according to each of the first aspect to the fourth aspect described above, in which one of the unit lenses is may correspond to one of a second direction row of unit regions formed by lining up the plurality of unit regions in the second direction.
  • a sixth aspect of the present disclosure is that in the display device according to the fifth aspect described above, when observed from the normal direction to the plate surface of the light emitting substrate, the center of one of the unit lenses in the first direction is The light emitting portion of the unit region forming one of the corresponding unit region second direction rows may be shifted from the center in the first direction.
  • a seventh aspect of the present disclosure is a display device according to each of the first aspect to the fourth aspect described above, in which the optical sheet has a first surface facing the light emitting substrate and an opposite side of the first surface. a second surface located on the side;
  • the optical device may further include a light deflection layer that faces the second surface of the optical sheet and deflects the light from the optical sheet so that the traveling direction changes when observed from the second direction.
  • An eighth aspect of the present disclosure is a display device according to each of the first aspect to the seventh aspect described above, in which the optical sheet has a first surface facing the light emitting substrate and an opposite side of the first surface. a second surface located on the side; It may further include a light angle adjustment layer located on the second surface side of the optical sheet and adjusting the angle of the traveling direction of light from the optical sheet with respect to the normal direction to the plate surface of the light emitting substrate. .
  • a ninth aspect of the present disclosure is a display device according to each of the first aspect to the eighth aspect described above, in which the light-emitting substrate includes a first light-emitting section and a first light-emitting section as the light-emitting section. and a second light emitting section that emits light of a different wavelength.
  • a tenth aspect of the present disclosure is the display device according to the first aspect or third aspect described above, in which the optical sheet makes an angle with respect to the light collecting direction in a range of -5° or more and +5° or less.
  • the minimum value m of brightness may be 50% or more of the maximum value M of brightness in a range where the angle formed with the light collecting direction of the optical sheet is in a range of -5° or more and +5° or less.
  • An eleventh aspect of the present disclosure is the display device according to the second aspect or the fourth aspect described above, in which the optical sheet makes an angle with respect to the light collecting direction in a range of -10° or more and +10° or less.
  • the minimum value m2 of brightness may be 50% or more of the maximum value M2 of brightness in a range of ⁇ 10° or more and +10° or less formed by an angle with respect to the light collecting direction of the optical sheet.
  • a twelfth aspect of the present disclosure provides a light-emitting substrate including a semiconductor layer divided into a plurality of unit regions, a light-emitting section arranged in the plurality of unit regions, and an optical device arranged facing the light-emitting substrate.
  • a method for manufacturing a display device comprising: a sheet;
  • the optical sheet has a plurality of unit lenses arranged in a first direction and extending in a second direction non-parallel to the first direction,
  • the plurality of unit areas are lined up in the first direction and the second direction, Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • an adjustment step of adjusting the radius of curvature r and the distance d according to the value of w/p In the adjustment step, when w/p is less than 0.025, r/p is 0.2 or more and less than 0.525 and the following formula (1) is satisfied, and r/p is 0.525. r/p is 0.2 or more and less than 0.525, and the following formula (3) is satisfied; r/p is 0.525. r/p is 0.725 or more and less than 1.5 and the following formula (4) is satisfied, and r/p is 0.725 or more and less than 1.5 and the following formula (5) is satisfied.
  • r/p is 0.2 or more and less than 0.525 and the following formula (6) is satisfied; is 0.525 or more and less than 1.5 and the following formula (7) is satisfied, r/p is 0.2 or more and less than 0.525 and the following formula (8) is satisfied, r/p is 0.525 or more and less than 0.725 and the following formula (9) is satisfied, and r/p is 0.725 or more and less than 1.5 and the following formula (10) is satisfied.
  • Adjust the radius of curvature r and the distance d so that one of the following holds true
  • w/p is 0.075 or more and less than 0.15
  • r/p is 0.2 or more and less than 0.375 and the following formula (11) is satisfied; is 0.375 or more and less than 1.5 and the following formula (12) is satisfied; r/p is 0.2 or more and less than 0.725 and the following formula (13) is satisfied; Adjust the radius of curvature r and the distance d so that at least one of p is 0.725 or more and less than 1.5 and the following formula (14) is satisfied
  • w/p is 0.15 or more and less than 0.25
  • r/p is 0.2 or more and less than 0.725 and the following formula (15) is satisfied; is 0.725 or more and less than 1.5 and the following formula (16) is satisfied, and r/p is 0.2 or more and less than 1.5 and the following formula (17) is satisfied.
  • Adjust the radius of curvature r and the distance d so that either one holds true, In the adjustment step, when w/p is 0.25 or more and less than 0.35, r/p is 0.25 or more and less than 0.975 and the following formula (18) is satisfied; Adjust the radius of curvature r and the distance d so that at least one of p is 0.975 or more and less than 1.5 and the following formula (19) is satisfied, In the adjustment step, when w/p is 0.35 or more and less than 0.45, the radius of curvature is adjusted so that r/p is 0.3 or more and less than 1.5 and the following formula (20) is satisfied.
  • Adjust r and distance d In the adjustment step, when w/p is 0.45 or more and less than 0.55, the radius of curvature is adjusted so that r/p is 0.4 or more and less than 1.5 and the following formula (21) is satisfied. Adjust r and distance d, In the adjustment step, when w/p is 0.55 or more and less than 0.65, the radius of curvature is adjusted so that r/p is 0.45 or more and less than 1.5 and the following formula (22) is satisfied. This is a method of manufacturing a display device in which r and distance d are adjusted.
  • a thirteenth aspect of the present disclosure provides a light-emitting substrate including a semiconductor layer divided into a plurality of unit regions, a light-emitting section arranged in the plurality of unit regions, and an optical device arranged facing the light-emitting substrate.
  • a method for manufacturing a display device comprising: a sheet;
  • the optical sheet has a plurality of unit lenses arranged in a first direction and extending in a second direction non-parallel to the first direction,
  • the plurality of unit areas are lined up in the first direction and the second direction, Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • an adjustment step of adjusting the radius of curvature r and the distance d according to the value of w/p In the adjustment step, when w/p is less than 0.025, r/p is 0.2 or more and less than 0.525 and the following formula (23) is satisfied, and r/p is 0.
  • a fourteenth aspect of the present disclosure provides a light-emitting substrate including a semiconductor layer divided into a plurality of unit regions, a light-emitting section arranged in the plurality of unit regions, and an optical device arranged facing the light-emitting substrate.
  • a method for manufacturing a display device comprising: a sheet;
  • the optical sheet has a plurality of unit lenses arranged in a first direction and extending in a second direction non-parallel to the first direction,
  • the plurality of unit areas are lined up in the first direction and the second direction, Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • an adjustment step of adjusting the radius of curvature r and the distance d according to the value of w/p In the adjustment step, when w/p is 0.01 or more and less than 0.05, r/p is 0.2 or more and less than 0.525 and the following formula (37) is satisfied; is 0.525 or more and less than 0.975 and the following formula (38) is satisfied, r/p is 0.975 or more and less than 1.5 and the following formula (39) is satisfied, r/p is 0.2 or more and less than 0.525 and the following formula (40) is satisfied, and r/p is 0.525 or more and less than 0.975 and the following formula (41) is satisfied.
  • w/p is 0.2 or more and less than 0.3
  • r/p is 0.25 or more and less than 0.725 and the following formula (51) is satisfied
  • r/p is 0.725 or more.
  • r/p is less than 0.975 and the following formula (52) is satisfied;
  • r/p is 0.975 or more and less than 1.5 and the following formula (53) is satisfied; and r/p is 0.725.
  • the radius of curvature r and the distance d are adjusted so that at least one of the above and less than 1.5 and the following formula (56) is satisfied, When w/p is 0.4 or more and less than 0.5, r/p is 0.4 or more and less than 0.675 and the following formula (57) is satisfied, and r/p is 0.675.
  • the radius of curvature r and the distance d are adjusted so that at least one of the above and less than 1.5 and the following formula (58) is satisfied, When w/p is 0.5 or more and less than 0.6, r/p is 0.5 or more and less than 0.675 and the following formula (59) is satisfied, and r/p is 0.675.
  • This is a method for manufacturing a display device, in which the radius of curvature r and the distance d are adjusted so that at least one of the above and less than 1.5 and the following equation (60) is satisfied.
  • a fifteenth aspect of the present disclosure provides a light-emitting substrate including a semiconductor layer divided into a plurality of unit regions, a light-emitting section arranged in the plurality of unit regions, and an optical device arranged facing the light-emitting substrate.
  • a method for manufacturing a display device comprising: a sheet;
  • the optical sheet has a plurality of unit lenses arranged in a first direction and extending in a second direction non-parallel to the first direction,
  • the plurality of unit areas are lined up in the first direction and the second direction, Let p be the pitch of the light emitting part in the first direction, let w be the width of the light emitting part in the first direction, let r be the radius of curvature of the lens surface of the unit lens, and let d be the distance between the light emitting part and the unit lens.
  • an adjustment step of adjusting the radius of curvature r and the distance d according to the value of w/p In the adjustment step, when w/p is 0.01 or more and less than 0.05, r/p is 0.2 or more and less than 0.525 and the following formula (61) is satisfied; Adjust the radius of curvature r and the distance d so that at least one of p is 0.525 or more and less than 1.5 and the following formula (62) is satisfied, When w/p is 0.05 or more and less than 0.1, r/p is 0.2 or more and less than 0.525 and the following formula (63) is satisfied, and r/p is 0.525.
  • the radius of curvature r and the distance d are adjusted so that at least one of the above and less than 1.5 and the following formula (64) is satisfied, When w/p is 0.1 or more and less than 0.2, r/p is 0.2 or more and less than 0.525 and the following formula (65) is satisfied, and r/p is 0.525.
  • the radius of curvature r and the distance d are adjusted so that at least one of the above and less than 1.5 and the following formula (66) is satisfied, When w/p is 0.2 or more and less than 0.3, r/p is 0.25 or more and less than 0.525 and the following formula (67) is satisfied, and r/p is 0.525.
  • the radius of curvature r and the distance d are adjusted so that at least one of the above and less than 1.5 and the following formula (68) is satisfied, When w/p is 0.3 or more and less than 0.4, r/p is 0.35 or more and less than 0.675 and the following formula (69) is satisfied, and r/p is 0.675.
  • the radius of curvature r and the distance d are adjusted so that at least one of the above and less than 1.5 and the following formula (70) is satisfied, When w/p is 0.4 or more and less than 0.5, r/p is 0.4 or more and less than 0.675 and the following formula (71) is satisfied, and r/p is 0.675.
  • the radius of curvature r and the distance d are adjusted so that at least one of the above and less than 1.5 and the following formula (72) is satisfied, When w/p is 0.5 or more and less than 0.6, r/p is 0.5 or more and less than 0.675 and the following formula (73) is satisfied, and r/p is 0.675.
  • the brightness in the direction in which the display device is viewed can be increased.
  • FIG. 1 is an exploded perspective view schematically showing each element of the display device.
  • FIG. 2 is an enlarged cross-sectional view of a part of the light emitting substrate of the display device.
  • FIG. 3 is an enlarged plan view of a part of the light emitting substrate of the display device.
  • FIG. 4 is a cross-sectional view of the display device taken along line IV-IV in FIG. 3.
  • FIG. 5 is a diagram showing how the display device is observed from a second direction.
  • FIG. 6 is a diagram showing an example of the luminance distribution in a direction perpendicular to the second direction of the display device.
  • FIG. 7a is a diagram showing the results of a test simulating the distribution of brightness in a direction perpendicular to the second direction for a display device.
  • FIG. 1 is an exploded perspective view schematically showing each element of the display device.
  • FIG. 2 is an enlarged cross-sectional view of a part of the light emitting substrate of the display device.
  • FIG. 3
  • FIG. 7b is a diagram showing the results of a test simulating the luminance distribution in a direction perpendicular to the second direction for the display device.
  • FIG. 8 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 9 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 10 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 11 is a diagram showing the results of a test simulating the luminance distribution of the display device in a direction perpendicular to the second direction.
  • FIG. 12 is a diagram showing the results of a test simulating the luminance distribution of the display device in a direction perpendicular to the second direction.
  • FIG. 13 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 14 is a diagram showing an example of a light path when light emitted from a light emitting section of a light emitting substrate passes through an optical sheet.
  • FIG. 15 is a diagram showing an example of a light path when light emitted from a light emitting section of a light emitting substrate passes through an optical sheet.
  • FIG. 16 is a diagram showing an example of a light path when light emitted from a light emitting section of a light emitting substrate passes through an optical sheet.
  • FIG. 17a is a diagram showing the results of a test simulating the distribution of brightness in a direction perpendicular to the second direction for a display device.
  • FIG. 17b is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction is simulated.
  • FIG. 17c is a diagram showing the results of a test simulating the luminance distribution in a direction perpendicular to the second direction for the display device.
  • FIG. 17d is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction is simulated.
  • FIG. 17e is a diagram showing the results of a test simulating the luminance distribution of the display device in a direction perpendicular to the second direction.
  • FIG. 17f is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction is simulated.
  • FIG. 17d is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction is simulated.
  • FIG. 17e is a diagram showing the results of a test simulating the luminance distribution of the display device in a direction perpendicular to the second direction.
  • FIG. 17g is a diagram showing the results of a test simulating the luminance distribution of the display device in a direction perpendicular to the second direction.
  • FIG. 18a is a diagram showing the results of a test simulating the distribution of brightness in a direction perpendicular to the second direction for a display device.
  • FIG. 18b is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction is simulated.
  • FIG. 18c is a diagram showing the results of a test simulating the luminance distribution in a direction perpendicular to the second direction for the display device.
  • FIG. 19 is a diagram showing the results of a test simulating the luminance distribution in a direction perpendicular to the second direction for a display device.
  • FIG. 20 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 21 is a diagram showing the results of a test simulating the luminance distribution in a direction perpendicular to the second direction for a display device.
  • FIG. 22 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 20 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 21 is a diagram showing the results of a test simulating the luminance distribution in a direction perpendicular to the second direction for a display device.
  • FIG. 22 is
  • FIG. 23 is a diagram showing the results of a test simulating the luminance distribution in a direction perpendicular to the second direction for a display device.
  • FIG. 24a is a cross-sectional view showing a cross section perpendicular to the second direction of a display device according to modification example 2.
  • FIG. 24b is a diagram showing the results of a test in which the luminance distribution in a direction perpendicular to the second direction was simulated for the display device of Modification Example 2.
  • FIG. 25 is a diagram illustrating an example of a mode in which the display device is used as a head-up display.
  • FIG. 26a is a cross-sectional view showing a cross section perpendicular to the second direction of a display device according to modification example 3.
  • FIG. 26b is a diagram showing the results of a test in which the luminance distribution in the direction perpendicular to the second direction was simulated for the display device of Modification Example 3.
  • FIG. 27 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 28 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 29 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 30 is a diagram showing the results of a test simulating the luminance distribution in a direction perpendicular to the second direction for a display device.
  • FIG. 31 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 32 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 33 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 31 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 32 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 33
  • FIG. 34 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 35 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 36 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 37 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 35 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 36 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 38 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 39 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIG. 40 is a diagram showing the results of a test in which the luminance distribution of the display device in a direction perpendicular to the second direction was simulated.
  • FIGS. 1 to 5 are diagrams showing one embodiment. Each figure shown below is shown schematically. Therefore, the size and shape of each part are appropriately exaggerated to facilitate understanding. In addition, the present invention can be modified and implemented as appropriate without departing from the technical concept. In each figure shown below, the same parts are given the same reference numerals, and some detailed explanations may be omitted. In addition, the numerical values such as the dimensions and material names of each member described in this specification are examples of embodiments, and are not limited to these, and can be appropriately selected and used.
  • plate surface refers to the target plate-like member (sheet-like, film-like) when looking at the target plate-like member (sheet-like, film-like) in its entirety and perspective. Refers to the surface that coincides with the plane direction of the material (member, film-like member).
  • FIG. 1 is an exploded perspective view schematically showing a display device 1 of the present invention.
  • the display device 1 includes a light emitting substrate 10 and an optical sheet 20 disposed facing the light emitting substrate 10.
  • a sealing layer 40, an adhesive layer 50, and a base material layer 60 are provided between the light emitting substrate 10 and the optical sheet 20.
  • the optical sheet 20 has a first surface 20a facing the light emitting substrate 10, and a second surface 20b located on the opposite side of the first surface 20a.
  • the display device 1 of this embodiment is, for example, a display device equipped with an LED, a so-called LED display.
  • a so-called LED display a so-called LED display.
  • the display device 1 is a so-called micro LED display that uses light emitted from one or more light emitting diodes as one pixel.
  • FIG. 2 is an enlarged cross-sectional view showing the configuration of the light emitting substrate 10.
  • the light emitting substrate 10 includes a semiconductor layer 11 and a plurality of light emitting parts 13 provided on the semiconductor layer 11.
  • Each light emitting section 13 includes an active layer 14 in contact with the semiconductor layer 11 and a second semiconductor layer 15 in contact with the active layer 14. That is, at the position of the light emitting substrate 10 where the light emitting section 13 is provided, the semiconductor layer 11, the active layer 14, and the second semiconductor layer 15 are stacked in this order.
  • the active layer 14 can be caused to emit light.
  • electrodes (not shown) are provided in the semiconductor layer 11 and the second semiconductor layer 15, and the circuit formed in the semiconductor layer 11 is connected to the semiconductor layer 11 and the second semiconductor layer 15. It is connected to an external power supply via the Further, the upper surface of the light emitting section 13 serves as a light emitting surface 17 from which light emitted from the active layer 14 is emitted. In the example shown in FIG. 2, the surface of the second semiconductor layer 15 opposite to the surface in contact with the active layer 14 serves as a light emitting surface 17 from which light emitted by the active layer 14 is emitted.
  • the light emitting board 10 includes, as the light emitting parts 13, a first light emitting part 13R that emits light of a certain wavelength, and a second light emitting part 13G that emits light of a different wavelength from the first light emitting part 13R. Contains.
  • the light emitting board 10 further includes, as the light emitting section 13, a third light emitting section 13B that emits light of a different wavelength from the first light emitting section 13R and the second light emitting section 13G.
  • the light emitting board 10 includes, as the plurality of light emitting parts 13, a plurality of first light emitting parts 13R, a plurality of second light emitting parts 13G, and a plurality of third light emitting parts 13B.
  • the first light emitting section 13R, the second light emitting section 13G, and the third light emitting section 13B are light emitting diodes.
  • FIG. 3 is an enlarged plan view of a part of the light emitting substrate 10 of the display device 1.
  • the semiconductor layer 11 is divided into a plurality of unit regions 10a.
  • the unit areas 10a are arranged in a first direction d1 and a second direction d2 non-parallel to the first direction d1.
  • the first direction d1 and the second direction d2 are orthogonal to each other.
  • the plurality of unit regions 10a are lined up so as to be in contact with each other in the first direction d1 and the second direction d2.
  • one unit area 10a is shown with diagonal lines.
  • the light emitting parts 13 are arranged in a plurality of unit areas 10a.
  • light emitting sections 13 are arranged in all unit areas 10a.
  • One light emitting section 13 is arranged in one unit area 10a.
  • the light emitting section 13 is arranged at the center of the unit area 10a.
  • the light emitting units 13 are arranged at equal intervals in the first direction d1 and the second direction d2.
  • the light emitting board 10 includes, as the light emitting parts 13, a first light emitting part 13R, a second light emitting part 13G, and a third light emitting part 13B.
  • one unit area set 10b includes one unit area 10a in which the first light emitting part 13R is arranged and one unit area 10a in which the second light emitting part 13G is arranged. and one unit area 10a in which the third light emitting section 13B is arranged.
  • the light emitting substrate 10 has a plurality of unit area sets 10b arranged in the first direction d1 and the second direction d2.
  • the unit area set 10b is a pixel area of the display device 1.
  • the light emitting parts 13 arranged in each unit area set 10b form pixels of the display device 1.
  • the width of the unit region 10a in a first direction d1 which is the direction in which a plurality of unit lenses 21 are lined up (described later), is larger than the width of the unit region 10a in a second direction d2, in which the unit lenses 21 extend. It has become. Further, the width of the light emitting section 13 in the first direction d1 is larger than the width of the light emitting section 13 in the second direction d2. Although not shown, the width of the unit region 10a in a first direction d1, which is the direction in which a plurality of unit lenses 21 are lined up (described later), is smaller than the width of the unit region 10a in a second direction d2, in which the unit lenses 21 extend. . Further, the width of the light emitting section 13 in the first direction d1 may be smaller than the width of the light emitting section 13 in the second direction d2.
  • FIG. 4 is a cross-sectional view of the display device 1 taken along line IV-IV in FIG. 3.
  • the pitch of the light emitting parts 13 in the first direction d1 is p.
  • a broken line labeled C1 shown in FIGS. 3 and 4 indicates the center of the light emitting section 13 in the first direction d1.
  • the pitch p of the light emitting parts 13 is from the center C1 of the light emitting parts 13 of a certain unit area 10a in the first direction d1 to the first direction d1 of the light emitting parts 13 of the unit area 10a adjacent to the unit area 10a in the first direction d1. It is the distance to the center C1 at .
  • the pitch p of the light emitting parts 13 is, for example, 10 ⁇ m or more and 2000 ⁇ m or less.
  • the pitch p of the light emitting parts 13 may be 10 ⁇ m or more and 500 ⁇ m or less.
  • the length of the unit region 10a along the first direction d1 and the second direction d2 is, for example, 10 ⁇ m or more and 2000 ⁇ m or less.
  • the length of the unit area 10a along the first direction d1 is equal to the pitch p of the light emitting parts 13.
  • the width of the light emitting section 13 in the first direction d1 is assumed to be w.
  • the width w of the light emitting section 13 is the length of the light emitting section 13 along the first direction d1.
  • the width w of the light emitting part 13 is, for example, 1 ⁇ m or more and 1200 ⁇ m or less.
  • the length of the light emitting section 13 along the second direction d2 is, for example, 1 ⁇ m or more and 1200 ⁇ m or less.
  • the optical sheet 20 changes the traveling direction of light emitted from the light emitting substrate 10.
  • the optical sheet 20 focuses the light emitted from the light emitting substrate 10 in a specific direction.
  • the illustrated optical sheet 20 condenses light emitted from the light emitting substrate 10 that has been diffused in a direction perpendicular to the second direction d2 in a specific direction perpendicular to the second direction d2.
  • the optical sheet 20 changes the traveling direction of the light emitted from the light emitting substrate 10 so that the light appears focused in a specific direction when observed from the second direction d2.
  • the direction in which the optical sheet 20 condenses the light emitted from the light emitting substrate 10 is referred to as the condensing direction.
  • the light collecting direction is the direction in which the brightness is maximum in the brightness distribution of the light emitted from the light emitting substrate 10 and passed through the optical sheet 20.
  • the optical sheet 20 focuses the light emitted from the light emitting substrate 10 in the direction in which it is assumed that the user will frequently view the display device 1.
  • the user of the display device 1 may visually recognize the light from the display device 1 through a member that reflects the light.
  • the light from the display device 1 is emitted toward the light-reflecting member, is reflected by the light-reflecting member, and then reaches the user's eyes.
  • the display device 1 when using the display device 1 as a head-up display that projects an image onto the windshield of a car, a user visually recognizes the light from the display device 1 through the windshield.
  • the direction of the expected path of light from the display device 1 to the member that reflects the light can be regarded as the direction in which the user is expected to visually recognize the display device 1.
  • the optical sheet 20 focuses the light emitted from the light emitting substrate 10 in the direction of the expected path of the light from the display device 1 to the member that reflects the light.
  • the direction in which the user is expected to view the display device 1 with high frequency may be, for example, the front direction of the display device 1.
  • the optical sheet 20 focuses the light emitted from the light emitting substrate 10 and diffused in a direction perpendicular to the second direction d2 toward the front of the display device 1.
  • the direction in which the optical sheet 20 collects the light diffused in the direction perpendicular to the second direction d ⁇ b>2 is the front direction of the display device 1 .
  • the front direction is the normal direction d4 to the plate surface of the light emitting substrate 10.
  • optical sheet 20 of the present embodiment an optical sheet 20 that condenses light emitted from the light emitting substrate 10 and diffused in a direction perpendicular to the second direction d2 toward the front of the display device 1 will be described. I will explain about it.
  • the optical sheet 20 has a plurality of unit lenses 21.
  • the optical sheet 20 has a main body portion 23 along with a plurality of unit lenses 21.
  • the plurality of unit lenses 21 are provided on the main body part 23.
  • a broken line labeled with the symbol L1 shown in FIG. 4 is an imaginary line indicating the boundary between the plurality of unit lenses 21 and the main body portion 23.
  • adjacent unit lenses 21 in the first direction d1 are in contact with each other.
  • the boundary between the unit lens 21 and the main body 23 is a plane that passes through the position where the lens surfaces 21a of the adjacent unit lenses 21 are connected and is perpendicular to the front direction (normal direction d4) of the display device 1.
  • L1 It can be considered as L1.
  • a gap may be provided between adjacent unit lenses 21 in the first direction d1, as described later. In this case, it passes through a position where the surface of the optical sheet 20 formed between adjacent unit lenses 21 and the lens surface 21a of the unit lens 21 is connected, and also in the front direction (normal line) of the display device 1.
  • a plane perpendicular to the direction d4) can be regarded as the boundary L1 between the unit lens 21 and the main body 23.
  • the thickness of the optical sheet 20 is, for example, 10 ⁇ m or more and 4000 ⁇ m or less.
  • the refractive index of the optical sheet 20 is, for example, 1.4 or more and less than 1.7.
  • the refractive index of the optical sheet 20 is preferably 1.45 or more and less than 1.65, more preferably 1.50 or more and less than 1.60.
  • the refractive index of the optical sheet 20 may be 1.45 or more and less than 1.54.
  • the material of the optical sheet 20 is not particularly limited, but may be a light-transmitting material such as resin or glass. Examples of the material for the optical sheet 20 include polyethylene terephthalate, polyolefin, polycarbonate, polyacrylate, polyamide, triacetylcellulose, and glass.
  • the optical sheet 20 may be formed of, for example, a film containing polyethylene terephthalate, polyolefin, polycarbonate, polyacrylate, polyamide, triacetylcellulose as a main component, glass, or the like.
  • the main body 23 and unit lens 21 of the optical sheet 20 are integrally formed of the same material.
  • “having light transmittance” and “transparent” mean having transparency to the extent that it is possible to see through the optical sheet 20 from one side to the other side through the optical sheet 20. do.
  • the optical sheet 20 has a visible light transmittance of, for example, 30% or more, more preferably 70% or more.
  • Visible light transmittance is the transmittance at each wavelength when measured using a spectrophotometer ("UV-3100PC" manufactured by Shimadzu Corporation, JIS K 0115 compliant product) within the measurement wavelength range of 380 nm to 780 nm. is specified as the average value of
  • the unit lens 21 is an element that refracts incident light on its surface, ie, a lens surface 21a, to change the traveling direction of the light.
  • the unit lens 21 focuses the light emitted from the light emitting substrate 10 and diffused in the direction perpendicular to the second direction d2 in the front direction of the display device 1.
  • the plurality of unit lenses 21 are arranged in a first direction d1 and extend in a second direction d2 that is non-parallel to the first direction d1.
  • the plurality of unit lenses 21 constitute a linear array lens.
  • the unit lens 21 extends linearly in the second direction d2.
  • the first direction d1 and the second direction d2 are orthogonal to each other. Therefore, the plurality of unit lenses 21 are arranged in a direction perpendicular to the direction in which the unit lenses 21 extend linearly.
  • the plurality of unit lenses 21 are arranged corresponding to the unit area 10a.
  • the plurality of unit regions 10a are arranged in the first direction d1 and the second direction d2.
  • a row of unit regions 10a shown in FIG. 1 formed by lining up the plurality of unit regions 10a in the second direction d2 is referred to as a second direction row of unit regions 10c.
  • one of the unit lenses 21 when observed from the normal direction d4 to the plate surface of the light emitting substrate 10, one of the unit lenses 21 corresponds to one of the unit area second direction rows 10c.
  • each of the plurality of unit lenses 21 corresponds to each of the plurality of unit area second direction rows 10c.
  • the unit lens 21 corresponds to the unit area second direction row 10c, which means that the unit lens 21 corresponds to the center in the first direction d1 of the light emitting portion 13 of the unit area 10a forming the unit area second direction row 10c in the normal direction d4. It means that it overlaps with In this embodiment, as shown in FIG. 4, each of the plurality of unit lenses 21 in the normal direction d4 is connected to the first light emitting section 13 of the unit area 10a forming each of the unit area second direction rows 10c. It overlaps the center C1 in the direction d1. In the example shown in FIG.
  • the center C2 in the first direction d1 of each of the plurality of unit lenses 21 is the center C1 in the first direction d1 of the light emitting part 13 of the unit area 10a forming each of the unit area second direction rows 10c. It overlaps with
  • the unit area 10a where the first light emitting part 13R is arranged and the unit area 10a where the second light emitting part 13G is arranged are in the second direction in which the unit lens 21 extends. They are lined up on d2. In this case, one of the unit lenses 21 overlaps the first light emitting section 13R and the second light emitting section 13G in the normal direction d4.
  • a unit area 10a where the first light emitting part 13R is arranged, a unit area 10a where the second light emitting part 13G is arranged, and a unit area 10a where the third light emitting part 13B is arranged. are lined up in the second direction d2. In this case, one of the unit lenses 21 overlaps the first light emitting section 13R, the second light emitting section 13G, and the third light emitting section 13B in the normal direction d4.
  • the unit lens 21 changes the traveling direction of light by refraction at the lens surface 21a.
  • the unit lens 21 has a shape corresponding to a portion of a circle or a portion of an ellipse in a cross section perpendicular to the longitudinal direction (second direction d2).
  • the unit lens 21 has a shape corresponding to a portion of a circle in a cross section perpendicular to the second direction d2.
  • the unit lens 21 has a semicircular shape in a cross section perpendicular to the second direction d2.
  • the unit lens 21 refracts the light emitted from the light emitting substrate 10 so that the traveling direction of the light changes when observed from the second direction d2.
  • the radius of curvature of the lens surface 21a of the unit lens 21 is defined as r.
  • the radius of curvature r of the lens surface 21a of the unit lens 21 is determined from the shape of the lens surface 21a appearing in a cross section of the unit lens 21 orthogonal to the second direction d2. As described above, in the example shown in FIG. 4, the lens surface 21a of the unit lens 21 has a semicircular shape in a cross section perpendicular to the second direction d2. Therefore, the radius of curvature r is equal to the height h of the unit lens 21 shown in FIG.
  • the height h of the unit lens 21 is the distance between the apex P1 of the unit lens 21 and the boundary L1 between the unit lens 21 and the main body portion 23.
  • the apex P1 of the unit lens 21 is a point on the lens surface 21a that appears in a cross section of the unit lens 21 perpendicular to the second direction d2, and is the farthest point from the light emitting substrate 10.
  • the shape of the lens surface 21a appearing in the cross section perpendicular to the second direction d2 of the unit lens 21 is not a shape corresponding to a part of a circle, the radius of curvature at the vertex P1 can be defined as the radius of curvature r.
  • the distance between the light emitting section 13 and the unit lens 21 is d.
  • the distance d corresponds to the distance between the light emitting section 13 and the boundary L1 between the unit lens 21 and the main body section 23, as shown in FIG.
  • the radius of curvature r of the lens surface 21a of the unit lens 21 and the distance d between the light emitting section 13 and the unit lens 21 are determined according to the pitch p of the light emitting section 13 and the width w of the light emitting section 13, so that the display device 1 can be visually recognized.
  • the brightness in the direction is determined to be sufficiently large.
  • the radius of curvature r is, for example, 2 ⁇ m or more and 3000 ⁇ m or less.
  • the distance d is, for example, 1 ⁇ m or more and 7000 ⁇ m or less.
  • the length (width) of the unit lens 21 along the first direction d1 is determined as appropriate depending on the radius of curvature r, etc.
  • the length (width) of the unit lens 21 along the first direction d1 is, for example, 10 ⁇ m or more and 2000 ⁇ m or less.
  • the length of the unit lens 21 along the second direction d2 is determined as appropriate depending on the width of the region of the light emitting substrate 10 in which the light emitting section 13 is provided.
  • the pitch of the unit lenses 21 in the first direction d1 is p2.
  • the pitch p2 of the unit lenses 21 is the distance from the center C2 of a certain unit lens 21 in the first direction d1 to the center C2 in the first direction d1 of the unit lens 21 adjacent to the unit lens 21 in the first direction d1.
  • the pitch p2 of the unit lenses 21 is, for example, 10 ⁇ m or more and 2000 ⁇ m or less. In this embodiment, the pitch p2 of the unit lenses 21 is equal to the pitch p of the light emitting sections 13.
  • adjacent unit lenses 21 in the first direction d1 are in contact with each other.
  • a gap may be provided between adjacent unit lenses 21 in the first direction d1.
  • the width in the first direction d1 of the gap provided between the unit lenses 21 adjacent to each other in the first direction d1 is appropriately determined according to the radius of curvature r, the pitch p2 of the unit lenses 21, and the like.
  • the sealing layer 40 is a layer that covers the surface of the light emitting substrate 10 on which the light emitting section 13 is provided.
  • the sealing layer 40 protects the light emitting part 13 by covering the surface of the light emitting substrate 10 on which the light emitting part 13 is provided.
  • the sealing layer 40 is made of a transparent member.
  • the material of the sealing layer 40 is not particularly limited, but may be, for example, resin or silicone.
  • the refractive index of the sealing layer 40 is, for example, 1.4 or more and less than 1.8.
  • the thickness of the portion of the sealing layer 40 that overlaps the light emitting section 13 in the first direction d1 is, for example, 1 ⁇ m or more and 7000 ⁇ m or less.
  • the base material layer 60 is a base material layer on which the optical sheet 20 is provided.
  • the main body portion 23 of the optical sheet 20 is provided on the base material layer 60 and is supported by the base material layer 60.
  • the base material layer 60 is formed of a transparent member.
  • the material of the base material layer 60 is not particularly limited, but may be glass, for example.
  • the refractive index of the base material layer 60 is, for example, 1.4 or more and less than 1.8.
  • the thickness of the base material layer 60 is, for example, 1 ⁇ m or more and 7000 ⁇ m or less.
  • the adhesive layer 50 is a layer that bonds the sealing layer 40 and the base layer 60 with adhesive.
  • the adhesive layer 50 is made of a transparent member.
  • the material of the adhesive layer 50 is not particularly limited, but is, for example, an optical transparent adhesive sheet (OCA).
  • OCA optical transparent adhesive sheet
  • the adhesive layer 50 may not be provided, and the sealing layer 40 and the base layer 60 may be bonded depending on the characteristics of the sealing layer 40.
  • the refractive index of the adhesive layer 50 is, for example, 1.4 or more and less than 1.8.
  • the thickness of the adhesive layer 50 is, for example, 1 ⁇ m or more and 7000 ⁇ m or less.
  • the space between the light emitting substrate 10 and the optical sheet 20 is filled with a sealing layer 40, an adhesive layer 50, and a base material layer 60.
  • a sealing layer 40 As a result, no air layer is formed between the light emitting substrate 10 and the optical sheet 20.
  • the total thickness of the portions of the sealing layer 40, the adhesive layer 50, and the base material layer 60 that overlap with the light emitting part 13 in the first direction d1 is, for example, 1 ⁇ m or more and 7000 ⁇ m or less.
  • the radius of curvature r and the distance d described above vary depending on the pitch p of the light emitting portions 13 and the width w of the light emitting portions 13, so that the brightness in the direction in which the display device 1 is viewed is determined. determined to be sufficiently large.
  • the display device 1 In order to use light efficiently and increase the brightness in the direction in which the user is expected to view the display device 1, the display device 1 has a device that focuses light in that direction to increase the brightness in that direction. are required to do so. In particular, by condensing light in the direction in which the user is expected to view the display device 1, the light emitted from the light emitting substrate 10 without the optical sheet 20 overlaid on the light emitting substrate 10 can be improved. The brightness in the direction can be relatively increased.
  • the brightness in the light collecting direction of the optical sheet 20 is 150% or more of the brightness in the normal direction d4 when light is emitted from the light emitting substrate 10 without overlapping the optical sheet 20 on the light emitting substrate 10. It is preferable that The brightness in the normal direction d4 when light is emitted from the light-emitting substrate 10 without the optical sheet 20 stacked on the light-emitting substrate 10 is the brightness in the front direction ( An average value of luminance in a range where the angle ⁇ formed with respect to the normal direction d4) is in the range of ⁇ 5° or more and +5° or less can be adopted.
  • the display device 1 is required to increase the luminance by a certain value or more in directions where the angle with respect to the light collection direction is less than a certain value.
  • FIG. 5 is a diagram showing how the display device 1 is observed from the second direction d2.
  • the broken line labeled L2 shown in FIG. 5 is an imaginary line that is perpendicular to the second direction d2 and extends in a direction forming an angle ⁇ with respect to the front direction of the display device 1.
  • FIG. 6 is a diagram showing an example of the luminance distribution in the direction perpendicular to the second direction d2 for the display device 1 shown in FIGS. 1 to 5.
  • the vertical axis in FIG. 6 indicates the magnitude of brightness.
  • the horizontal axis in FIG. 6 indicates the angle ⁇ (corresponding to the angle made with respect to the light condensing direction of the optical sheet 20) with respect to the front direction of the display device 1 in the direction in which the luminance shown on the vertical axis is observed. There is.
  • the maximum value of brightness in the range where the angle made with the light collecting direction of the optical sheet 20 (the angle ⁇ with respect to the front direction of the display device 1) is -5° or more and +5° or less.
  • M the maximum value M corresponds to the maximum value of the brightness of the display device 1 in a direction that is perpendicular to the second direction d2 and that makes an angle of ⁇ 5° or more and +5° or less with respect to the light collecting direction of the optical sheet 20. do.
  • m be the minimum value.
  • the minimum value m corresponds to the minimum value of the brightness of the display device 1 in a direction that is perpendicular to the second direction d2 and that makes an angle of ⁇ 5° or more and +5° or less with respect to the light collecting direction of the optical sheet 20. do.
  • the minimum value m shown in FIG. 6 is preferably 50% or more of the maximum value M.
  • the brightness in the direction in which the user views the display device 1 can be ensured.
  • the angle of the line of sight of the user viewing the display device 1 with respect to the condensing direction of the optical sheet 20 is -5° or more and +5° or less when observed from the second direction d2
  • Brightness in the direction in which the user views the display device 1 can be ensured.
  • the minimum value m is 50% or more of the maximum value M
  • the difference between the minimum value m and the maximum value M becomes small, and the angle formed with the light collecting direction of the optical sheet 20 is -5°.
  • the uniformity of brightness in the range above +5° is increased.
  • the user changes the direction in which the user views the display device 1 within the range of the angle ⁇ from -5° to +5°, it is possible to reduce the change in the brightness that the user views.
  • the luminance of the optical sheet 20 in the condensing direction is 150% or more of the luminance of the light emitting substrate 10 without the optical sheet 20 overlaid, and the minimum value m mentioned above is 50% of the maximum value M.
  • the following effects can be obtained.
  • the brightness in the direction where the angle made with the light collecting direction of the optical sheet 20 is -5° or more and +5° or less is displayed.
  • the brightness of the device 1 can be at least 75% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid thereon.
  • the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without overlapping the optical sheet 20, and It is preferable to specify that the minimum value m is 50% or more of the maximum value M.
  • the display device 1 that satisfies the brightness conditions described above can be particularly suitably used as a head-up display.
  • the display device 1 that satisfies the above-mentioned brightness conditions can be particularly suitably used as a head-up display that projects an image onto the windshield of an automobile.
  • the inventors of the present invention have conducted extensive research on a display device 1 that can sufficiently increase the brightness in the direction in which a user is expected to view the display device 1, particularly a display device 1 that satisfies the brightness conditions described above.
  • the present inventors satisfied the above-mentioned brightness condition by adjusting the radius of curvature r and the distance d according to the values of the pitch p of the light emitting parts 13 and the width w of the light emitting parts 13 in the light emitting board 10. It has been discovered that the display device 1 can be provided.
  • the display device 1 that satisfies the above-mentioned brightness condition can be achieved. I found out what I can offer.
  • the brightness of the display device 1 will be 150% or more of the brightness of the light emitting substrate 10 in a state where the optical sheet 20 is not overlapped, and the minimum value m mentioned above will be 50% of the maximum value M. % or more will be described below.
  • the values of the radius of curvature r and the distance d such that the above-mentioned brightness condition is satisfied in the display device 1 in which the light collecting direction of the optical sheet 20 is in the front direction of the display device 1 will be described.
  • r/p When w/p is less than 0.025, r/p is 0.2 or more and less than 0.525 and the following formula (1) is satisfied, and r/p is 0.525 or more and less than 1.5.
  • the following formula (2) is satisfied, r/p is 0.2 or more and less than 0.525, and the following formula (3) is satisfied, and r/p is 0.525 or more and less than 0.725.
  • FIG. 7a shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the radius of curvature r is set on the premise that the lens surface 21a of the unit lens 21 has a shape corresponding to a part of a circle.
  • the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p becomes 0.01, and then the radius of curvature r and the distance d are changed. It shows the results of a test in which the luminance distribution was simulated while changing the values of /p and d/p.
  • “1” in the table shown in FIG. 7a means that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid at the corresponding r/p and d/p values. This means that the above-mentioned requirements that the minimum value m is 50% or more of the maximum value M are satisfied.
  • the column in the table where r/p is 0.2 and d/p is 0.1 is written as "1". This is because the brightness conditions described above were satisfied as a result of simulating the brightness distribution by setting the radius of curvature r and distance d so that r/p was 0.2 and d/p was 0.1. means. “0” in the table shown in FIG. 7a means that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid at the corresponding r/p and d/p values. This means that at least one of the above-mentioned minimum value m is 50% or more of the maximum value M is not satisfied.
  • the column in the table where r/p is 0.2 and d/p is 0.3 is written as "0". This is because the brightness conditions described above were not met as a result of simulating the brightness distribution by setting the radius of curvature r and distance d so that r/p was 0.2 and d/p was 0.3. It means that.
  • the test results shown in FIG. 7a also show that r/p is 0.2 or more and less than 0.525 and formula (1) is satisfied, and that r/p is 0.525 or more and less than 1.5 and formula (2 ) is satisfied, r/p is 0.2 or more and less than 0.525 and formula (3) is satisfied, r/p is 0.525 or more and less than 0.725 and formula (4) is satisfied. It can be understood that the above-mentioned brightness condition is satisfied if at least one of the following conditions holds true: r/p is 0.725 or more and less than 1.5, and formula (5) is satisfied.
  • r/p is 0.2 or more and less than 0.525 and the following formula (6) is satisfied, and r/p is 0.525 or more and 1 .5 and the following formula (7) is satisfied; r/p is 0.2 or more and less than 0.525 and the following formula (8) is satisfied; r/p is 0.525 or more and 0. r/p is less than .725 and the following formula (9) is satisfied; r/p is 0.725 or more and less than 1.5 and the following formula (10) is satisfied. is preferred.
  • FIG. 7b shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p becomes 0.05, and then the radius of curvature r and the distance d are changed.
  • the test results shown in FIG. 7b also show that r/p is 0.2 or more and less than 0.525 and formula (6) is satisfied, and that r/p is 0.525 or more and less than 1.5 and formula (7 ) is satisfied, r/p is 0.2 or more and less than 0.525 and formula (8) is satisfied, r/p is 0.525 or more and less than 0.725 and formula (9) is satisfied. It can be understood that the above-mentioned brightness condition is satisfied if at least one of the following conditions holds true: r/p is 0.725 or more and less than 1.5, and formula (10) is satisfied.
  • r/p is 0.2 or more and less than 0.375 and the following formula (11) is satisfied, and r/p is 0.375 or more and 1 .5 and the following formula (12) is satisfied; r/p is 0.2 or more and less than 0.725 and the following formula (13) is satisfied; and r/p is 0.725 or more. It is preferable that at least one of the following equations (14) is satisfied: less than 1.5. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m is 50% or more of the maximum value M. , both can be satisfied.
  • FIG. 8 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p becomes 0.1, and then the radius of curvature r and the distance d are changed.
  • r/p When w/p is 0.15 or more and less than 0.25, r/p is 0.2 or more and less than 0.725 and the following formula (15) is satisfied, and r/p is 0.725 or more and 1 At least one of the following holds true: r/p is less than .5 and the following formula (16) is satisfied, and r/p is 0.2 or more and less than 1.5 and the following formula (17) is satisfied. It is preferable. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m is 50% or more of the maximum value M. , both can be satisfied.
  • FIG. 9 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.2, and then the radius of curvature r and the distance d are changed to It shows the results of a test in which the luminance distribution was simulated while changing the values of /p and d/p.
  • the meanings of "1" and "0" in the table shown in FIG. 9 are the same as the meanings of "1" and "0" in the table shown in FIG. 7a.
  • r/p When w/p is 0.25 or more and less than 0.35, r/p is 0.25 or more and less than 0.975, and the following formula (18) is satisfied, and r/p is 0.975 or more. It is preferable that at least one of the following equations (19) and less than 1.5 is satisfied. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m is 50% or more of the maximum value M. , both can be satisfied.
  • FIG. 10 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.3, and then the radius of curvature r and the distance d are changed to It shows the results of a test in which the luminance distribution was simulated while changing the values of /p and d/p.
  • the meanings of "1" and "0" in the table shown in FIG. 10 are the same as the meanings of "1" and "0" in the table shown in FIG. 7a.
  • test results shown in FIG. 10 also show that r/p is 0.25 or more and less than 0.975 and formula (18) is satisfied, and that r/p is 0.975 or more and less than 1.5 and formula ( It can be understood that if at least one of 19) is satisfied, the above-mentioned brightness condition is satisfied.
  • r/p is 0.3 or more and less than 1.5 and the following formula (20) is satisfied. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m is 50% or more of the maximum value M. , both can be satisfied.
  • FIG. 11 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • FIG. 11 shows that the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.4, and then the radius of curvature r and the distance d are changed.
  • r/p is 0.4 or more and less than 1.5 and the following formula (21) is satisfied. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m is 50% or more of the maximum value M. , both can be satisfied.
  • FIG. 12 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p becomes 0.5, and then the radius of curvature r and the distance d are changed to It shows the results of a test in which the luminance distribution was simulated while changing the values of /p and d/p.
  • the meanings of "1" and "0" in the table shown in FIG. 12 are the same as the meanings of "1" and "0" in the table shown in FIG. 7a.
  • r/p is 0.45 or more and less than 1.5 and the following formula (22) is satisfied. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m is 50% or more of the maximum value M. , both can be satisfied.
  • FIG. 13 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p becomes 0.6, and then the radius of curvature r and the distance d are changed to It shows the results of a test in which the luminance distribution was simulated while changing the values of /p and d/p.
  • the meanings of "1" and "0" in the table shown in FIG. 13 are the same as the meanings of "1" and "0" in the table shown in FIG. 7a.
  • r/p may be determined to be 0.2 or more. r/p may be determined to be 1.5 or less. d/p may be determined to be 0.1 or more. d/p may be determined to be 3.5 or less.
  • the display device 1 that satisfies the brightness conditions described above can be provided.
  • the radius of curvature r and the distance d according to the values of the pitch p of the light emitting parts 13 and the width w of the light emitting parts 13, the display device 1 that satisfies the brightness conditions described above can be provided.
  • the radius of curvature r and the distance d according to the values of the pitch p of the light emitting parts 13 and the width w of the light emitting parts 13, the display device 1 that satisfies the brightness conditions described above can be provided.
  • the radius of curvature r and the distance d according to the values of the pitch p of the light emitting parts 13 and the width w of the light emitting parts 13
  • FIGS. 14 to 16 are diagrams showing an example of the path of light emitted from the light emitting section 13 of the light emitting substrate 10 when it passes through the optical sheet 20.
  • FIGS. 14 to 16 illustrations of the sealing layer 40, the adhesive layer 50, and the base material layer 60 are omitted.
  • 14 to 16 all show the display device 1 observed from the second direction d2.
  • FIG. 14 shows an example of a light path when the ratio of the distance d to the pitch p of the light emitting sections 13 is particularly small.
  • FIG. 15 shows an example of a light path when the ratio of the distance d to the pitch p of the light emitting sections 13 is particularly large.
  • FIG. 14 shows an example of a light path when the ratio of the distance d to the pitch p of the light emitting sections 13 is particularly small.
  • FIG. 15 shows an example of a light path when the ratio of the distance d to the pitch p of the light emitting sections 13 is particularly large.
  • FIG. 16 shows an example of a light path when the ratio of the distance d to the pitch p of the light emitting parts 13 is larger than the ratio in FIG. 14 and smaller than the ratio in FIG. 15.
  • the line labeled L3 shown in FIGS. 14 to 16 indicates the path of light in each figure.
  • the ratio of the distance d to the pitch p of the light emitting sections 13 is particularly small. Therefore, in the example shown in FIG. 14, a portion of the light emitted from the light emitting section 13 reaches the lens surface 21a at a small angle of incidence. Therefore, in the example shown in FIG. 14, the unit lens 21 is unable to focus a portion of the light in the front direction.
  • the ratio of the distance d to the pitch p of the light emitting sections 13 is particularly large. Therefore, a portion of the light emitted from the light emitting section 13 also reaches the unit lenses 21 other than the unit lenses 21 located in the front direction of the light emitting section 13 . Therefore, in the example shown in FIG. 15, the unit lens 21 is unable to focus a portion of the light in the front direction.
  • the ratio of the distance d to the pitch p of the light emitting parts 13 is larger than the ratio in FIG. 14 and smaller than the ratio in FIG. 15. Therefore, in the example shown in FIG. 16, less light reaches the lens surface 21a at a smaller angle of incidence than in the example shown in FIG. It is considered that less light reaches the unit lenses 21 other than the unit lens 21 located at . As a result, in the example shown in FIG. 16, the effect of focusing the light emitted from the light emitting section 13 in the front direction is considered to be greater than in the examples shown in FIGS. 14 and 15.
  • 17a to 17g show the display device 1 shown in FIGS. 1 to 5 in the second direction d2 by appropriately setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 7 is a graph showing the results of a test simulating the distribution of brightness in the vertical direction.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the vertical axis labeled V in FIGS. 17a to 17g represents the angle ⁇ formed with respect to the front direction (normal direction d4) of the light emitting substrate 10 without the optical sheet 20 stacked thereon.
  • FIGS. 17a to 17g indicates the angle ⁇ (°) of the direction in which the luminance shown on the vertical axis is observed with respect to the front direction (normal direction d4) of the display device 1.
  • 17a to 17g show the display device 1 in the direction perpendicular to the second direction d2 when the pitch p of the light emitting section 13, the width w and the radius of curvature r of the light emitting section 13 are constant values, and the distance d is changed. It shows the results of a test simulating the distribution of brightness.
  • the pitch p of the light emitting section 13, the width w and the radius of curvature r of the light emitting section 13 are determined so that the value of w/p is 0.2 and the value of r/p is 0.7.
  • the graph shows the results of a test in which the luminance distribution was simulated while changing the value of d/p by changing the distance d.
  • the five curves shown in FIG. 17a are the luminance distributions when the distance d is set so that the value of d/p is 0.1, 0.2, 0.3, 0.4, or 0.5, respectively. represents.
  • the five curves shown in Fig. 17b represent the luminance distribution when the distance d is set so that the value of d/p is 0.6, 0.7, 0.8, 0.9, or 1, respectively.
  • the five curves shown in FIG. 17c are the distribution of brightness when the distance d is set so that the value of d/p is 1.1, 1.2, 1.3, 1.4, or 1.5, respectively. represents.
  • the five curves shown in Figure 17d represent the luminance distribution when the distance d is set so that the value of d/p is 1.6, 1.7, 1.8, 1.9, or 2, respectively.
  • the five curves shown in FIG. 17e are the luminance distributions when the distance d is set so that the value of d/p is 2.1, 2.2, 2.3, 2.4, or 2.5, respectively. represents.
  • the five curves shown in Figure 17f represent the luminance distribution when the distance d is set so that the value of d/p is 2.6, 2.7, 2.8, 2.9, or 3, respectively.
  • the five curves shown in Figure 17g are the luminance distributions when the distance d is set so that the d/p value is 3.1, 3.2, 3.3, 3.4, or 3.5. represents.
  • the brightness in the front direction is lower than in FIG. 17d and the like.
  • the brightness is maximum in a direction shifted from the front direction. This is because, as shown in FIG. 14, part of the light emitted from the light emitting part 13 reaches the lens surface 21a at a small angle of incidence, so the unit lens 21 directs part of the light in the front direction. This is thought to reflect the fact that the light cannot be focused.
  • FIG. 17g where the value of d/p is particularly large, the brightness in the front direction is lower than in FIG. 17d and the like.
  • the brightness distribution shown in FIG. 17a has a maximum value of brightness in the front direction, and also has maximum values of brightness in a plurality of directions shifted from the front direction. This reflects that, as shown in FIG. 15, a portion of the light emitted from the light emitting section 13 reaches the unit lenses 21 other than the unit lens 21 located in the front direction of the light emitting section 13. It is thought that
  • FIG. 17d where the value of d/p is larger than in FIG. 17a but smaller than in FIG. 17g, the brightness in the front direction is higher than in FIGS. 17a and 17g.
  • the effect of focusing the light emitted from the light emitting part 13 in the front direction is greater than in FIGS. 17a and 17g. It is thought that this reflects the Further, the conditions for the value of d/p that increase the effect of focusing the light emitted from the light emitting part 13 in the front direction are considered to change depending on the value of w/p and the radius of curvature r.
  • the brightness of the display device 1 as described above is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and the minimum value m described above is 50% or more of the maximum value M.
  • the brightness condition of the display device 1 that satisfies both of the following will be considered.
  • the light In order for the brightness of the display device 1 to be 150% or more of the brightness of the light emitting substrate 10 with no optical sheet 20 overlaid, the light must be focused in the condensing direction (front direction) as shown in FIGS. 16 and 17d. It is preferable that the lighting effect is large.
  • the effect of condensing light in the condensing direction should be smaller, as shown in FIGS. preferable.
  • the optical sheet 20 of this embodiment may be intentionally designed to reduce the effect of condensing light in the condensing direction, taking into consideration the luminance conditions.
  • the radius of curvature r and the distance d according to the values of the pitch p of the light emitting parts 13 and the width w of the light emitting parts 13 the magnitude of the light focusing effect by the optical sheet 20 can be changed.
  • the radius of curvature r and the distance d according to the values of the pitch p of the light emitting parts 13 and the width w of the light emitting parts 13 the effect of condensing light in the condensing direction can be reduced.
  • the magnitude of the light condensing effect by the optical sheet 20 can be adjusted to such an extent that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 with no optical sheet 20 overlaid. It can be made bigger. Further, the magnitude of the light condensing effect of the optical sheet 20 can be reduced to such an extent that the above-mentioned minimum value m is 50% or more of the maximum value M.
  • the above-described brightness condition is satisfied in the display device 1 in which the light collecting direction of the optical sheet 20 is the front direction of the display device 1.
  • the present inventors found that by adjusting the pitch p of the light emitting section 13, the width w of the light emitting section 13, the radius of curvature r, and the distance d as described above, the refractive index of the optical sheet 20 can be adjusted. It has been found that if the refractive index is within the range of the normal optical sheet 20 included in the display device 1, it is possible to increase the brightness in the light collecting direction while ensuring brightness in the direction making an angle to the light collecting direction. In particular, when the material of the optical sheet 20 is resin, it tends to be possible to stably increase the brightness in the light collecting direction and secure the brightness in the direction at an angle to the light collecting direction, regardless of the type of resin. I found out.
  • the present inventors found that by adjusting the pitch p of the light emitting section 13, the width w of the light emitting section 13, the radius of curvature r, and the distance d as described above, the light emitting substrate 10 and the optical sheet 2 It has been found that if the layer provided between the two is a layer provided in a normal display device 1, it is possible to increase the brightness in the light collecting direction while ensuring brightness in the direction making an angle to the light collecting direction. . In particular, when an air layer is not formed between the light emitting substrate 10 and the optical sheet 20, the light condensing direction can be stably maintained regardless of the type of layer provided between the light emitting substrate 10 and the optical sheet 20.
  • the above-mentioned sealing layer 40, adhesive layer 50, and base material layer 60 are provided between the light emitting substrate 10 and the optical sheet 20, and the refraction of the sealing layer 40, adhesive layer 50, and base material layer 60 is It has been found that when the ratio and thickness are within the above-mentioned ranges, it is possible to stably increase the brightness in the light collecting direction while ensuring the brightness in the direction making an angle to the light collecting direction.
  • the optical sheet 20 of this embodiment may be designed so that the effect of condensing light in the condensing direction is reduced, as described above.
  • the pitch p of the light emitting parts 13, the width w of the light emitting parts 13, the radius of curvature r, and the distance d are adjusted, so that the effect of condensing light in the condensing direction is reduced. You can leave it there.
  • the optical sheet 20 of this embodiment is different from the conventional technology in that it includes such a concept.
  • the display device 1 of this embodiment also exhibits the following effects by adjusting the radius of curvature r and the distance d according to the values of the pitch p of the light emitting section 13 and the width w of the light emitting section 13 as described above. obtain.
  • the width of the peak corresponding to the condensing direction of the optical sheet 20 in the luminance distribution in the direction perpendicular to the second direction, as shown in FIG. 17d, for example. becomes smaller.
  • the display device 1 in which the radius of curvature r and the distance d are adjusted according to the values of the pitch p of the light emitting parts 13 and the width w of the light emitting parts 13 as described above, the light is directed in the condensing direction.
  • the light condensing effect can be suppressed from becoming too large. Therefore, even if the position of the optical sheet 20 with respect to the light emitting substrate 10 shifts, the brightness of the optical sheet 20 in the light collecting direction is unlikely to decrease. Thereby, the alignment accuracy required when attaching the optical sheet 20 to the light emitting substrate 10 can be kept small.
  • the display device 1 of the present embodiment also has the following effects by adjusting the radius of curvature r and the distance d according to the values of the pitch p of the light emitting section 13 and the width w of the light emitting section 13 as described above. It can be demonstrated.
  • the refractive index at the lens surface 21a of the unit lens 21 differs depending on the wavelength of light. Therefore, the magnitude of the effect of condensing light in the condensing direction by the optical sheet 20 varies depending on the wavelength of the light.
  • the display device 1 in which the radius of curvature r and the distance d are adjusted according to the values of the pitch p of the light emitting parts 13 and the width w of the light emitting parts 13 as described above, the light is directed in the condensing direction.
  • the light condensing effect can be suppressed from becoming too large.
  • the difference in the effect of condensing light depending on the wavelength of light can be kept small.
  • the light emitted by the display device 1 can be The brightness ratio for each wavelength can be fully controlled.
  • the light emitting substrate 10 is prepared. Further, a sealing layer 40 is formed to cover the surface of the light emitting substrate 10 on which the light emitting section 13 is provided.
  • an optical sheet 20 is manufactured.
  • the optical sheet 20 having the base material layer 60, the main body portion 23 provided on the base material layer 60, and a plurality of unit lenses 21 is prepared.
  • the optical sheet 20 having the main body part 23 and the unit lenses 21 can be produced by integrally producing the main body part 23 and the unit lenses 21 by resin molding.
  • the optical sheet 20 may be provided on the base material layer 60 by providing the main body 23 on the base material layer 60 and then providing the plurality of unit lenses 21 on the main body 23.
  • the main body portion 23 may be manufactured by molding resin, by performing machining such as cutting on a resin plate, or by molding resin and machining such as cutting. It may also be produced by combining processing.
  • the sealing layer 40 formed to cover the surface of the light emitting substrate 10 on which the light emitting section 13 is provided and the base material layer 60 on which the optical sheet 20 is provided are bonded via the adhesive layer 50. . In this way, the display device 1 shown in FIGS. 1 to 5 is manufactured.
  • the radius of curvature r and the distance d are adjusted according to the value of w/p, as described above. That is, the method for manufacturing the display device 1 according to the present embodiment includes an adjustment step of adjusting the radius of curvature r and the distance d according to the value of w/p.
  • the radius of curvature r can be adjusted by adjusting the radius of curvature r of the unit lens 21 to be manufactured when the optical sheet 20 is manufactured.
  • the distance d can be adjusted by adjusting the thickness of at least any one of the sealing layer 40, the adhesive layer 50, the base material layer 60, and the main body portion 23 of the optical sheet 20 to be produced.
  • r/p is 0.2 or more and less than 0.525 and the above formula (1) is satisfied; is 0.525 or more and less than 1.5 and the above formula (2) is satisfied, r/p is 0.2 or more and less than 0.525 and the above formula (3) is satisfied, r/p is 0.525 or more and less than 0.725 and the above-mentioned formula (4) is satisfied, and r/p is 0.725 or more and less than 1.5 and the above-mentioned formula (5) is satisfied.
  • the radius of curvature r and the distance d are adjusted so that either one holds true.
  • r/p is 0.2 or more and less than 0.525 and the above formula (6) is satisfied.
  • r/p is 0.525 or more and less than 1.5 and the above formula (7) is satisfied, r/p is 0.2 or more and less than 0.525 and the above formula (8) is satisfied.
  • r/p is 0.525 or more and less than 0.725 and the above formula (9) is satisfied, r/p is 0.725 or more and less than 1.5 and the above formula (10) is satisfied.
  • the radius of curvature r and the distance d are adjusted so that at least one of the following holds true.
  • r/p when w/p is 0.075 or more and less than 0.15, r/p is 0.2 or more and less than 0.375 and the above formula (11) is satisfied. , r/p is 0.375 or more and less than 1.5 and the above formula (12) is satisfied, r/p is 0.2 or more and less than 0.725 and the above formula (13) is satisfied.
  • the radius of curvature r and the distance d are adjusted so that at least one of the following conditions holds true: , r/p is 0.725 or more and less than 1.5, and the above-mentioned formula (14) is satisfied.
  • r/p is 0.2 or more and less than 0.725 and the above formula (15) is satisfied.
  • r/p is 0.725 or more and less than 1.5 and the above formula (16) is satisfied, and r/p is 0.2 or more and less than 1.5 and the above formula (17) is satisfied.
  • the radius of curvature r and the distance d are adjusted so that at least one of the following holds true.
  • the brightness is 150% or more of the brightness of the light emitting substrate 10 without overlapping the optical sheet 20, and the above-mentioned minimum value It is possible to manufacture a display device 1 that satisfies the requirements that m is 50% or more of the maximum value M.
  • Modification 1 In the embodiment described above, the display device 1 shown in FIG. 6 and in which the above-mentioned minimum value m is 50% or more of the maximum value M has been described. However, the brightness conditions of the display device 1 are not limited to this. In the brightness distribution shown in FIG. 6, the maximum value of brightness in the range where the angle made with the light collecting direction of the optical sheet 20 (the angle ⁇ with respect to the front direction of the display device 1) is -10° or more and +10° or less. Let be M2.
  • the maximum value M2 corresponds to the maximum value of the brightness of the display device 1 in a direction that is perpendicular to the second direction d2 and that is at an angle of ⁇ 10° or more and +10° or less with respect to the light collecting direction of the optical sheet 20. do.
  • the brightness in the range where the angle made with the light collecting direction of the optical sheet 20 (the angle ⁇ with respect to the front direction of the display device 1) is -10° or more and +10° or less. Let the minimum value be m2.
  • the minimum value m2 corresponds to the minimum value of the brightness of the display device 1 in a direction that is perpendicular to the second direction d2 and that makes an angle of ⁇ 10° or more and +10° or less with respect to the light collecting direction of the optical sheet 20. do.
  • one of the conditions for the brightness of the display device 1 is that the minimum value m2 shown in FIG. 6 is 50% or more of the maximum value M2.
  • the minimum value m2 is 50% or more of the maximum value M2
  • the minimum value m is determined to be 50% or more of the maximum value M as in the above embodiment
  • the minimum value m2 is 50% or more of the maximum value M2
  • the width of the peak corresponding to the light collecting direction of the optical sheet 20 becomes larger. Therefore, when the minimum value m2 is set to be 50% or more of the maximum value M2, when the position of the optical sheet 20 with respect to the light emitting substrate 10 shifts in the first direction d1, the light condensing of the optical sheet 20 The brightness in this direction is less likely to decrease. Thereby, the alignment accuracy required when attaching the optical sheet 20 to the light emitting substrate 10 can be kept small.
  • the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid thereon.
  • the brightness of the light emitting substrate 10 with no optical sheet 20 overlaid is such that the angle ⁇ of the light emitting substrate 10 without overlapping the optical sheet 20 with respect to the front direction (normal direction d4) is ⁇ 10° or more.
  • An average value of brightness in a range of +10° or less can be used. That is, in Modification 1, the brightness of the display device 1 is set to be 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and the above-mentioned minimum value.
  • m2 is 50% or more of the maximum value M2. This provides the following effects.
  • the brightness of the optical sheet 20 in the light collecting direction 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlapping the brightness of the optical sheet 20 in the light collecting direction can be sufficiently increased.
  • the brightness that the user views can be sufficiently increased.
  • the above-mentioned minimum value m is 50% or more of the maximum value M, the brightness in the direction where the angle made with the light collecting direction of the optical sheet 20 is -10° or more and +10° or less is displayed.
  • the brightness of the device 1 can be at least 75% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid thereon.
  • the brightness that the user sees can be made sufficiently large.
  • the visibility of the display on the display device 1 is sufficiently ensured when the user views the display device 1 from a direction where the angle with respect to the light collecting direction of the optical sheet 20 is -10° or more and +10° or less.
  • the display device 1 that satisfies the brightness conditions in Modified Example 1 described above can be particularly suitably used as a head-up display.
  • the display device 1 that satisfies the brightness conditions in Modified Example 1 described above can be particularly suitably used as a head-up display that projects an image onto the windshield of an automobile.
  • r/p is 0.2 or more and less than 0.525 and the following formula (23) is satisfied, and r/p is 0.525 or more and less than 1.5. It is preferable that at least one of the following equations (24) and below is satisfied. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m2 is 50% or more of the maximum value M2. , both can be satisfied.
  • FIG. 18a shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p becomes 0.01, and then the radius of curvature r and the distance d are changed.
  • “1” in the table shown in FIG. 18a means that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid at the corresponding r/p and d/p values. This means that the above-mentioned requirements that the minimum value m2 is 50% or more of the maximum value M2 are satisfied.
  • the column in the table where r/p is 0.2 and d/p is 0.1 is written as "1".
  • test results shown in FIG. 18a also show that r/p is 0.2 or more and less than 0.525 and formula (23) is satisfied, and that r/p is 0.525 or more and less than 1.5 and formula ( It can be understood that if at least one of the conditions 24) is satisfied, the brightness condition in Modification 1 described above is satisfied.
  • w/p is 0.025 or more and less than 0.15
  • r/p is 0.2 or more and less than 0.525
  • the following formula (25) is satisfied
  • r/p is 0.525 or more. It is preferable that at least one of the following equations (26) and less than 1.5 is satisfied. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m2 is 50% or more of the maximum value M2. , both can be satisfied.
  • FIG. 18b shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting section 13, the width w of the light emitting section 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.05, and then the radius of curvature r and the distance d are changed.
  • FIG. 18c shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • test results shown in FIGS. 18b and 18c also show that r/p is 0.2 or more and less than 0.525 and formula (25) is satisfied, and that r/p is 0.525 or more and less than 1.5. It can be understood that if at least one of formula (26) is satisfied, the brightness condition in Modification 1 described above is satisfied.
  • r/p When w/p is 0.15 or more and less than 0.25, r/p is 0.2 or more and less than 0.525, and the following formula (27) is satisfied, and r/p is 0.525 or more. It is preferable that at least one of the following equations (28) and less than 1.5 is satisfied. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m2 is 50% or more of the maximum value M2. , both can be satisfied.
  • FIG. 19 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.2, and then the radius of curvature r and the distance d are changed to It shows the results of a test in which the luminance distribution was simulated while changing the values of /p and d/p.
  • the meanings of "1" and "0" in the table shown in FIG. 19 are the same as the meanings of "1" and "0" in the table shown in FIG. 18a.
  • test results shown in FIG. 19 also show that r/p is 0.2 or more and less than 0.525 and formula (27) is satisfied, and that r/p is 0.525 or more and less than 1.5 and formula ( It can be understood that if at least one of the conditions 28) is satisfied, the brightness condition in Modification 1 described above is satisfied.
  • r/p is 0.25 or more and less than 0.425, and the following formula (29) is satisfied, and r/p is 0.425 or more. It is preferable that at least one of the following equations (30) and less than 1.5 is satisfied. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m2 is 50% or more of the maximum value M2. , both can be satisfied.
  • FIG. 20 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.3, and then the radius of curvature r and the distance d are changed to The results of a test in which the luminance distribution was simulated while changing the values of /p and d/p are shown.
  • the meanings of "1" and "0" in the table shown in FIG. 20 are the same as the meanings of "1" and "0" in the table shown in FIG. 18a.
  • test results shown in FIG. 20 also show that r/p is 0.25 or more and less than 0.425 and formula (29) is satisfied, and that r/p is 0.425 or more and less than 1.5 and formula ( It can be understood that if at least one of the conditions 30) is satisfied, the brightness condition in Modification 1 described above is satisfied.
  • r/p When w/p is 0.35 or more and less than 0.45, r/p is 0.3 or more and less than 0.525, and the following formula (31) is satisfied, and r/p is 0.525 or more. It is preferable that at least one of the following equations (32) is satisfied: less than 1.5. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m2 is 50% or more of the maximum value M2. , both can be satisfied.
  • FIG. 21 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p becomes 0.4, and then the radius of curvature r and the distance d are changed to The results of a test in which the luminance distribution was simulated while changing the values of /p and d/p are shown.
  • the meanings of "1" and "0" in the table shown in FIG. 21 are the same as the meanings of "1" and "0" in the table shown in FIG. 18a.
  • test results shown in FIG. 21 also show that r/p is 0.3 or more and less than 0.525 and formula (31) is satisfied, and that r/p is 0.525 or more and less than 1.5 and formula ( It can be understood that if at least one of the conditions 32) is satisfied, the brightness condition in Modification 1 described above is satisfied.
  • FIG. 22 shows the display device 1 shown in FIGS.
  • FIG. 22 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p becomes 0.5, and then the radius of curvature r and the distance d are changed. It shows the results of a test in which the luminance distribution was simulated while changing the values of /p and d/p.
  • the meanings of "1" and "0" in the table shown in FIG. 22 are the same as the meanings of "1" and "0" in the table shown in FIG. 18a.
  • test results shown in FIG. 22 also show that r/p is 0.4 or more and less than 0.625 and formula (33) is satisfied, and that r/p is 0.625 or more and less than 1.5 and formula ( It can be understood that if at least one of the conditions 34) is satisfied, the brightness condition in Modification 1 described above is satisfied.
  • w/p is 0.55 or more and less than 0.65
  • r/p is 0.45 or more and less than 0.625
  • the following formula (35) is satisfied
  • r/p is 0.625 or more. It is preferable that at least one of the following equations (36) is satisfied: less than 1.5. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m2 is 50% or more of the maximum value M2. , both can be satisfied.
  • FIG. 23 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.6, and then the radius of curvature r and the distance d are changed to It shows the results of a test in which the luminance distribution was simulated while changing the values of /p and d/p.
  • the meanings of "1" and "0" in the table shown in FIG. 23 are the same as the meanings of "1" and "0" in the table shown in FIG. 18a.
  • test results shown in FIG. 23 also show that r/p is 0.45 or more and less than 0.625 and formula (35) is satisfied, and that r/p is 0.625 or more and less than 1.5 and formula ( It can be understood that if at least one of the conditions 36) is satisfied, the brightness condition in Modification 1 described above is satisfied.
  • the method for manufacturing the display device 1 of Modification 1 includes an adjustment step of adjusting the radius of curvature r and the distance d according to the value of w/p.
  • the brightness is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and the minimum value m2 described above is achieved. It is possible to manufacture a display device 1 that satisfies both the requirements that M is 50% or more of the maximum value M2. In particular, in the display device 1 in which the light collecting direction of the optical sheet 20 is the front direction of the display device 1, it is considered that the brightness condition in Modification 1 is satisfied.
  • the light emitted from the light emitting substrate 10 and diffused in the direction perpendicular to the second direction d2 is focused in the front direction of the display device 1 using the optical sheet 20. , for the display device 1.
  • the direction in which light is focused in the display device 1 is not limited to this.
  • FIG. 24a is a cross-sectional view of the display device 1 of Modification 2, showing a cross section perpendicular to the second direction d2.
  • a line labeled L4 in FIG. 24a indicates an example of a light path when light emitted from the light emitting section 13 of the light emitting substrate 10 passes through the optical sheet 20 in Modification 2.
  • the center C2 of one unit lens 21 in the first direction d1 is one of the corresponding unit area second direction rows 10c. It is shifted from the center C1 in the first direction d1 of the light emitting portion 13 of the unit area 10a forming the unit area 10a.
  • the center C2 of each unit lens 21 in the first direction d1 is separated from the center C1 in the first direction d1 of the light emitting section 13 of the unit area 10a forming each of the corresponding unit area second direction row 10c. It's off.
  • FIG. 1 when observed from the normal direction d4 to the plate surface of the light emitting substrate 10, the center C2 of one unit lens 21 in the first direction d1 is one of the corresponding unit area second direction rows 10c. It is shifted from the center C1 in the first direction d1 of the light emitting portion 13 of the unit area 10a forming the unit area 10a.
  • the center C2 of each unit lens 21 in the first direction d1 is separated from the center C1 in the first direction
  • FIG. 24b is a graph showing an example of the results of a test in which the luminance distribution in the direction perpendicular to the second direction d2 was simulated for the display device 1 shown in FIG.
  • the vertical axis labeled V in FIG. 24b indicates the magnitude of brightness at an angle ⁇ of -5 with respect to the front direction (normal direction d4) of the light emitting substrate 10 with no optical sheet 20 overlaid. It is expressed by the ratio of the brightness to the average value in the range of 5° or more + 5° or less.
  • the horizontal axis of FIG. 24b indicates the angle ⁇ (°) of the direction in which the luminance shown on the vertical axis is observed with respect to the front direction (normal direction d4) of the display device 1.
  • the light emitted from the light emitting substrate 10 is focused in a direction d3 that makes an angle ⁇ 1 with respect to the front direction.
  • the direction d3 is the light collecting direction of the optical sheet 20.
  • the display device 1 further includes a light angle adjustment layer 70.
  • the optical angle adjustment layer 70 is located on the second surface 20b side of the optical sheet 20. In the example shown in FIG. 24a, the optical angle adjustment layer 70 faces the second surface 20b of the optical sheet 20.
  • the light angle adjustment layer 70 adjusts the angle of the traveling direction of light from the optical sheet 20 with respect to the normal direction d4 to the plate surface of the light emitting substrate 10. As an example, the light angle adjusting layer 70 adjusts the angle of the traveling direction of the light from the optical sheet 20 with respect to the normal direction d4 so that the traveling direction changes when observed from the first direction d1.
  • the light angle adjustment layer 70 adjusts the light angle of light that is emitted from the light emitting substrate 10, passes through the optical sheet 20, and is diffused in a direction perpendicular to the first direction d1.
  • the light angle adjustment layer 70 has a function of condensing light in a direction perpendicular to the surface of the adjustment layer 70. With such a light angle adjustment layer 70, the traveling direction of light observed from the first direction d1 can be directed to a direction perpendicular to the surface of the light angle adjustment layer 70.
  • the mode in which the light angle adjustment layer 70 adjusts the angle of the light traveling direction with respect to the normal direction d4 is not limited to the mode described above.
  • the light angle adjusting layer 70 may adjust the angle of the traveling direction of the light from the optical sheet 20 with respect to the normal direction d4 so that the traveling direction changes when observed from the second direction d2.
  • the light angle adjusting layer 70 is configured such that the angle of the traveling direction of the light from the optical sheet 20 with respect to the normal direction d4 changes when observed from a direction intersecting the first direction d1 and the second direction d2.
  • the display device 1 also includes a first light angle adjustment layer 70 that adjusts the angle of the light traveling direction with respect to the normal direction d4 so that the traveling direction changes when observed from a certain direction;
  • the optical angle adjustment layer 70 is a louver sheet.
  • the light angle adjustment layer 70 is a louver sheet having a function of condensing light diffused in a direction perpendicular to the first direction d1 in a direction perpendicular to the surface of the light angle adjustment layer 70.
  • the louver sheet has a plurality of light absorption parts extending in the first direction d1 and a plurality of light transmission parts extending in the first direction d1.
  • the light absorbing portions and the light transmitting portions are arranged alternately in the second direction d2.
  • the light absorbing portion of the louver sheet is an inclined surface that is inclined with respect to the normal direction d4, and converts the light that has been diffused in the direction perpendicular to the first direction d1 into a direction perpendicular to the surface of the light angle adjustment layer 70. It has an inclined surface that can be reflected in the direction. In this case, light that is not perpendicular to the second direction d2 is reflected by the inclined surface of the light absorption section, so that the light is focused in a direction perpendicular to the surface of the light angle adjustment layer 70.
  • the direction in which the user is expected to view the display device 1 may not be the front direction of the display device 1.
  • the light emitted from the light emitting substrate 10 is focused in a direction d3 forming an angle with respect to the front direction of the display device 1.
  • the display device 1 of Modification 2 can be suitably used as a head-up display.
  • the display device 1 of Modification 2 can be particularly suitably used as a head-up display that projects an image onto the windshield of an automobile.
  • the effects when the display device 1 of Modified Example 2 is used as a head-up display that projects an image onto the windshield of an automobile will be described below.
  • FIG. 25 is a diagram showing an example of a mode in which the display device 1 is used as a head-up display that projects an image onto the windshield 91 of the automobile 90.
  • the display device 1 is arranged so as to face the second direction d2, which is orthogonal to the longitudinal direction of the automobile 90 and perpendicular to the vertical direction of the automobile 90.
  • FIG. 25 shows the display device 1 and the automobile 90 as viewed from the second direction d2 of the display device 1.
  • a line labeled L6 shown in FIG. 25 indicates an example of an assumed path of light emitted by the display device 1.
  • the display device 1 When using the display device 1 as a head-up display of a car 90 as shown in FIG. 25, it can be said that the user H visually recognizes the image displayed by the display device 1 through the windshield 91.
  • the direction d6 of the assumed path from the display device 1 to the windshield 91 is determined by the user. This can be regarded as the direction in which the display device 1 is expected to be viewed.
  • the display device 1 When the display device 1 is used as a head-up display for a car 90 as shown in FIG. 25, it is necessary to arrange the display device 1 in a limited space inside the car 90. may be limited.
  • the angle of the windshield 91 on which the display device 1 projects an image may not be freely designed solely from the viewpoint of making it easier for the display device 1 to project the image.
  • the display device 1 of the second modification even if the angle at which the display device 1 can be arranged and the angle of the windshield 91 are limited, the direction d3 in which the light emitted from the light emitting substrate 10 is focused is By adjusting , the user H can view the image through the windshield 91.
  • the display device 1 that condenses light emitted from the light emitting substrate 10 is used as a head-up display of a general automobile 90, the light from the display device 1 is directly directed to the user H without passing through the windshield 91. It can also be prevented from reaching the eyes.
  • Modification 3 In the above-mentioned modification 2, the center C2 is shifted from the center C1, so that the light emitted from the light emitting substrate 10 is focused in the direction d3 that forms an angle with respect to the front direction of the display device 1. 1 was explained. However, the form of the display device 1 that focuses the light emitted from the light-emitting substrate 10 in a direction making an angle with respect to the front direction of the display device 1 is not limited to this.
  • FIG. 26a is a cross-sectional view of the display device 1 of Modification 3, showing a cross section perpendicular to the second direction d2.
  • a line labeled L5 in FIG. 26a indicates an example of a light path when light emitted from the light emitting section 13 of the light emitting substrate 10 passes through the optical sheet 20 in Modification 3.
  • the center C2 of the unit lens 21 in the first direction d1 is not shifted from the center C1 in the first direction d1 of the light emitting section 13 of the unit area 10a forming the corresponding unit area second direction row 10c.
  • the display device 1 of Modification 3 further includes a light deflection layer 80, as shown in FIG. 26a.
  • the light deflection layer 80 faces the second surface 20b of the optical sheet 20. In the example shown in FIG. 26a, the light deflection layer 80 is located between the optical sheet 20 and the light angle adjustment layer 70.
  • the light deflection layer 80 deflects the light from the optical sheet 20 so that the traveling direction changes when observed from the second direction d2.
  • the light deflection layer 80 has a plurality of linear prisms 81 arranged in the first direction d1 and extending in the second direction d2.
  • the linear prism 81 has a first prism surface 82 inclined with respect to the front direction (normal direction d4) of the display device 1 and a second prism surface 83 parallel to the front direction of the display device 1. .
  • the light deflection layer 80 deflects the light from the optical sheet 20 so that the traveling direction changes when observed from the second direction d2 by refracting the light at the first prism surface 82.
  • the display device 1 of the third modification the light emitted from the light emitting substrate 10 and diffused in the direction perpendicular to the second direction d2 is first diffused in the front direction (normal direction) of the display device 1 by the optical sheet 20. d4). Then, the light focused in the front direction of the display device 1 is deflected by the light deflection layer 80 in the direction d5 shown in FIG. 26a.
  • the display device 1 of Modification 3 can also condense the light emitted from the light emitting substrate 10 in a direction forming an angle with respect to the front direction of the display device 1.
  • FIG. 26b is a graph showing an example of the results of a test in which the luminance distribution in the direction perpendicular to the second direction d2 was simulated for the display device 1 shown in FIG. 26a.
  • the refractive index of the optical sheet 20 was set to 1.50.
  • the vertical axis labeled V in FIG. 26b indicates the magnitude of brightness at an angle ⁇ of -5 with respect to the front direction (normal direction d4) of the light-emitting substrate 10 with no optical sheet 20 overlaid. It is expressed by the ratio of the brightness to the average value in the range of 5° or more + 5° or less.
  • 26b indicates the angle ⁇ (°) of the direction in which the luminance shown on the vertical axis is observed with respect to the front direction (normal direction d4) of the display device 1.
  • the light emitted from the light emitting substrate 10 is focused in a direction d5 that forms an angle of ⁇ 2 with respect to the front direction.
  • the display device 1 of Modification Example 2 does not require the provision of the light deflection layer 80 and directs the light emitted from the light emitting substrate 10 toward the front direction of the display device 1. It has the advantage of being able to focus light in an angular direction.
  • the center C2 is shifted from the center C1 as shown in FIG. 24a. Therefore, in the display device 1 of Modification 2, it is considered that the light emitted from the light emitting section 13 easily reaches the unit lenses 21 other than the unit lens 21 located in the front direction of the light emitting section 13.
  • FIG. 24b which corresponds to the results of a test simulating the distribution of brightness in the display device 1 of Modification 2, the brightness is maximum at angle ⁇ 1, and the brightness takes a local maximum value at angle ⁇ 3.
  • the reason why the brightness takes the maximum value at the angle ⁇ 3 is that the light emitted from the light emitting part 13 and passing through the lens surface 21a of the unit lens 21 adjacent to the unit lens 21 located in the front direction of the light emitting part 13 is directed in the front direction. This is thought to be because the light is focused in a direction that makes an angle of ⁇ 3 with respect to the light beam.
  • the display device 1 of Modification 3 there is no need to shift the center C2 from the center C1. Therefore, in the display device 1 of Modification Example 3, compared to the display device 1 of Modification Example 2, the light emitted from the light emitting section 13 is transmitted through a unit lens other than the unit lens 21 located in the front direction of the light emitting section 13. 21 can be suppressed. This has the advantage that the light emitted from the light emitting section 13 can be prevented from being focused in directions other than the desired direction, as shown in FIG. 24b.
  • Modification Example 4 is such that the brightness of the display device 1 for each value of w/p is 150% or more of the brightness of the light emitting substrate 10 without overlapping the optical sheet 20, and the above-mentioned minimum value m is the maximum value.
  • the present invention relates to an example in which the conditions for the values of the radius of curvature r and the distance d such that the condition of being 50% or more of M can be satisfied are determined from a different perspective from the embodiment and each modification example described above.
  • the brightness of the display device 1 will be 150% or more of the brightness of the light emitting substrate 10 without overlapping the optical sheet 20, and the above-mentioned minimum value m will be
  • the conditions for the values of the radius of curvature r and the distance d such that they are 50% or more of the maximum value M will be described.
  • a modified example of the conditions for the values of the radius of curvature r and the distance d will be described so that the above-mentioned brightness condition is satisfied in the display device 1 in which the light collecting direction of the optical sheet 20 is the front direction of the display device 1.
  • r/p When w/p is 0.01 or more and less than 0.05, r/p is 0.2 or more and less than 0.525 and the following formula (37) is satisfied, and r/p is 0.525 or more and 0. less than .975 and the following formula (38) is satisfied; r/p is 0.975 or more and less than 1.5 and the following formula (39) is satisfied; r/p is 0.2 or more and 0. At least one of the following holds true: r/p is less than .525 and the following formula (40) is satisfied, and r/p is 0.525 or more and less than 0.975 and the following formula (41) is satisfied. It is preferable.
  • FIG. 27 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the luminance distribution was simulated under four conditions, first to fourth conditions, regarding the refractive index and w/p value of the optical sheet 20.
  • the first to fourth conditions are determined as follows.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.01.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.01.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.05.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.05.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • “1” in the table shown in FIG. 27 means that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid at the corresponding r/p and d/p values.
  • This and the above-mentioned minimum value m being 50% or more of the maximum value M mean that all of the first to fourth conditions are satisfied.
  • the column in the table where r/p is 0.2 and d/p is 0.1 is written as "1". This is the result of simulating the brightness distribution by setting the radius of curvature r and distance d so that r/p is 0.2 and d/p is 0.1 under the first to fourth conditions.
  • the above-mentioned brightness condition is satisfied in any of the first to fourth conditions.
  • “0” in the table shown in FIG. 27 means that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid at the corresponding r/p and d/p values.
  • "0" is written in the column where r/p is 0.2 and d/p is 0.2 in the table.
  • the test results shown in FIG. 27 also show that r/p is 0.2 or more and less than 0.525 and formula (37) is satisfied, and that r/p is 0.525 or more and less than 0.975 and formula (38 ) is satisfied, r/p is 0.975 or more and less than 1.5 and formula (39) is satisfied, r/p is 0.2 or more and less than 0.525 and formula (40) is satisfied. It can be understood that the above-mentioned brightness condition is satisfied if at least one of the following is satisfied: r/p is 0.525 or more and less than 0.975, and formula (41) is satisfied.
  • the inventors of the present invention have found the following trends from the results of simulation tests.
  • the values of w/p, r/p, and d/p are constant, the above-mentioned brightness condition is satisfied when the refractive index of the optical sheet 20 is A1 and when the refractive index of the optical sheet 20 is A2. shall be.
  • the refractive index of the optical sheet 20 is A3, which is A1 or more and A2 or less, the above-mentioned brightness condition tends to be satisfied.
  • the inventors of the present invention have found the following trends from the results of simulation tests.
  • r/p is 0.2 or more and less than 0.525 and the following formula (42) is satisfied, and r/p is 0.525 or more and 0. less than .975 and the following formula (43) is satisfied; r/p is 0.975 or more and less than 1.5 and the following formula (44) is satisfied; r/p is 0.2 or more and 0 At least one of the following holds true: r/p is less than .525 and the following formula (45) is satisfied, and r/p is 0.525 or more and less than 0.975 and the following formula (46) is satisfied. It is preferable.
  • FIG. 28 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the first to fourth conditions regarding the refractive index and w/p value of the optical sheet 20 are similar to the simulation test whose results are shown in FIG. 27 except for the points described below.
  • the luminance distribution is simulated under the following four conditions.
  • the first to fourth conditions are determined as follows.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.05.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.05.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.1.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.1.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the meanings of "1" and "0" in the table shown in FIG. 28 are the same as the meanings of "1" and "0" in the table shown in FIG. 27.
  • the test results shown in FIG. 28 also show that r/p is 0.2 or more and less than 0.525 and formula (42) is satisfied, and that r/p is 0.525 or more and less than 0.975 and formula (43 ) is satisfied, r/p is 0.975 or more and less than 1.5 and formula (44) is satisfied, r/p is 0.2 or more and less than 0.525 and formula (45) is satisfied. It can be understood that the above-mentioned brightness condition is satisfied if at least one of the following is satisfied: r/p is 0.525 or more and less than 0.975, and formula (46) is satisfied.
  • the refractive index of the optical sheet 20 is 1.50 or more and 1.60 or less and the value of w/p is If r/p is 0.05 or more and less than 0.1, then r/p is 0.2 or more and less than 0.525 and formula (42) is satisfied, and r/p is 0.525 or more and less than 0.975 and Formula (43) is satisfied, r/p is 0.975 or more and less than 1.5, and Formula (44) is satisfied, r/p is 0.2 or more and less than 0.525, and Formula (45) If at least one of the following is satisfied: r/p is 0.525 or more and less than 0.975, and formula (46) is satisfied, the above-mentioned brightness condition is stably satisfied. I can understand that.
  • r/p is 0.2 or more and less than 0.375 and the following formula (47) is satisfied, and r/p is 0.375 or more and 0. r/p is less than .975 and the following formula (48) is satisfied; r/p is 0.975 or more and less than 1.5 and the following formula (49) is satisfied; and r/p is 0.375 or more. It is preferable that at least one of the following equations (50) and less than 0.975 be satisfied. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m is 50% or more of the maximum value M. , both can be satisfied.
  • FIG. 29 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the first to fourth conditions regarding the refractive index and w/p value of the optical sheet 20 are the same as the simulation test whose results are shown in FIG. 27 except for the points described below.
  • the luminance distribution is simulated under the following four conditions.
  • the first to fourth conditions are determined as follows.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.1.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.1.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.2.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.2.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the meanings of "1" and "0" in the table shown in FIG. 29 are the same as the meanings of "1" and "0" in the table shown in FIG. 27.
  • test results shown in FIG. 29 also show that r/p is 0.2 or more and less than 0.375 and formula (47) is satisfied, and that r/p is 0.375 or more and less than 0.975 and formula (48 ) is satisfied, r/p is 0.975 or more and less than 1.5 and formula (49) is satisfied, and r/p is 0.375 or more and less than 0.975 and formula (50) is satisfied. It can be understood that if at least one of the following conditions holds true, the above-mentioned brightness condition is satisfied.
  • the refractive index of the optical sheet 20 is 1.50 or more and 1.60 or less and the value of w/p is In the case of 0.1 or more and less than 0.2, r/p is 0.2 or more and less than 0.375 and formula (47) is satisfied, and r/p is 0.375 or more and less than 0.975 and Formula (48) is satisfied, r/p is 0.975 or more and less than 1.5 and formula (49) is satisfied, and r/p is 0.375 or more and less than 0.975 and formula (50 It can be understood that if at least one of the following is satisfied, the above-mentioned brightness condition is stably satisfied.
  • r/p is 0.25 or more and less than 0.725 and the following formula (51) is satisfied, and r/p is 0.725 or more and 0. r/p is less than .975 and the following formula (52) is satisfied; r/p is 0.975 or more and less than 1.5 and the following formula (53) is satisfied; and r/p is 0.725 or more. It is preferable that at least one of the following equations (54) and less than 0.975 be satisfied. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m is 50% or more of the maximum value M. , both can be satisfied.
  • FIG. 30 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the first to fourth conditions regarding the refractive index and w/p value of the optical sheet 20 are similar to the simulation test whose results are shown in FIG. 27 except for the points described below.
  • the luminance distribution is simulated under the following four conditions.
  • the first to fourth conditions are determined as follows.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.2.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.2.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.3.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.3.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the meanings of "1" and "0" in the table shown in FIG. 30 are the same as the meanings of "1" and "0" in the table shown in FIG. 27.
  • the test results shown in FIG. 30 also show that r/p is 0.25 or more and less than 0.725 and formula (51) is satisfied, and that r/p is 0.725 or more and less than 0.975 and formula (52 ) is satisfied, r/p is 0.975 or more and less than 1.5 and formula (53) is satisfied, and r/p is 0.725 or more and less than 0.975 and formula (54) is satisfied. It can be understood that if at least one of the following conditions holds true, the above-mentioned brightness condition is satisfied.
  • the refractive index of the optical sheet 20 is 1.50 or more and 1.60 or less and the value of w/p is In the case of 0.2 or more and less than 0.3, r/p is 0.25 or more and less than 0.725 and formula (51) is satisfied, and r/p is 0.725 or more and less than 0.975 and Formula (52) is satisfied, r/p is 0.975 or more and less than 1.5 and formula (53) is satisfied, and r/p is 0.725 or more and less than 0.975 and formula (54 It can be understood that if at least one of the following is satisfied, the above-mentioned brightness condition is stably satisfied.
  • r/p is 0.35 or more and less than 0.975 and the following formula (55) is satisfied, and r/p is 0.975 or more. It is preferable that at least one of the following equations (56) is satisfied: less than 1.5. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m is 50% or more of the maximum value M. , both can be satisfied.
  • FIG. 31 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the first to fourth conditions regarding the refractive index and w/p value of the optical sheet 20 are similar to the simulation test whose results are shown in FIG. 27 except for the points explained below.
  • the luminance distribution is simulated under the following four conditions.
  • the first to fourth conditions are determined as follows.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.3.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.3.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.4.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.4.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the meanings of "1" and "0" in the table shown in FIG. 31 are the same as the meanings of "1" and "0" in the table shown in FIG. 27.
  • test results shown in FIG. 31 also show that r/p is 0.35 or more and less than 0.975 and formula (55) is satisfied, and that r/p is 0.975 or more and less than 1.5 and formula ( It can be understood that the above-mentioned brightness condition is satisfied if at least one of the conditions 56) is satisfied.
  • the refractive index of the optical sheet 20 is 1.50 or more and 1.60 or less and the value of w/p is In the case of 0.3 or more and less than 0.4, r/p is 0.35 or more and less than 0.975 and formula (55) is satisfied, and r/p is 0.975 or more and less than 1.5. It can be understood that if at least one of formula (56) is satisfied, the above-mentioned brightness condition is stably satisfied.
  • w/p is 0.4 or more and less than 0.5
  • r/p is 0.4 or more and less than 0.675
  • the following formula (57) is satisfied
  • r/p is 0.675 or more. It is preferable that at least one of the following equations (58) and less than 1.5 is satisfied. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m is 50% or more of the maximum value M. , both can be satisfied.
  • FIG. 32 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the first to fourth conditions regarding the refractive index and w/p value of the optical sheet 20 are similar to the simulation test whose results are shown in FIG. 27 except for the points described below.
  • the luminance distribution is simulated under the following four conditions.
  • the first to fourth conditions are determined as follows.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.4.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.4.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.5.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.5.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the meanings of "1" and "0" in the table shown in FIG. 32 are the same as the meanings of "1" and "0" in the table shown in FIG. 27.
  • test results shown in FIG. 32 also show that r/p is 0.4 or more and less than 0.675 and formula (57) is satisfied, and that r/p is 0.675 or more and less than 1.5 and formula ( It can be understood that the above-mentioned brightness condition is satisfied if at least one of the conditions 58) is satisfied.
  • the refractive index of the optical sheet 20 is 1.50 or more and 1.60 or less and the value of w/p is In the case of 0.4 or more and less than 0.5, r/p is 0.4 or more and less than 0.675 and formula (57) is satisfied, and r/p is 0.675 or more and less than 1.5. It can be understood that if at least one of formula (58) is satisfied, the above-mentioned brightness condition is stably satisfied.
  • r/p is 0.5 or more and less than 0.675, and the following formula (59) is satisfied, and r/p is 0.675 or more. It is preferable that at least one of the following equations (60) is satisfied: less than 1.5. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m is 50% or more of the maximum value M. , both can be satisfied.
  • FIG. 33 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the first to fourth conditions regarding the refractive index and w/p value of the optical sheet 20 are the same as the simulation test whose results are shown in FIG. 27 except for the points explained below.
  • the luminance distribution is simulated under the following four conditions.
  • the first to fourth conditions are determined as follows.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.5.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.5.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.6.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.6.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the meanings of "1" and "0" in the table shown in FIG. 33 are the same as the meanings of "1" and "0" in the table shown in FIG. 27.
  • test results shown in FIG. 33 also show that r/p is 0.5 or more and less than 0.675 and formula (59) is satisfied, and that r/p is 0.675 or more and less than 1.5 and formula ( It can be understood that the above-mentioned brightness condition is satisfied if at least one of the conditions 60) is satisfied.
  • the refractive index of the optical sheet 20 is 1.50 or more and 1.60 or less and the value of w/p is In the case of 0.5 or more and less than 0.6, r/p is 0.5 or more and less than 0.675 and formula (59) is satisfied, and r/p is 0.675 or more and less than 1.5. It can be understood that if at least one of formula (60) is satisfied, the above-mentioned brightness condition is stably satisfied.
  • the method for manufacturing the display device 1 of Modification 4 includes an adjustment step of adjusting the radius of curvature r and the distance d according to the value of w/p.
  • r/p is 0.2 or more and less than 0.525 and the above formula (37) is satisfied; r/p is 0.525 or more and less than 0.975 and the above-mentioned formula (38) is satisfied; r/p is 0.975 or more and less than 1.5 and the above-mentioned formula (39) is satisfied; r/p is 0.2 or more and less than 0.525 and the above formula (40) is satisfied, and r/p is 0.525 or more and less than 0.975 and the above formula (41) is satisfied.
  • the radius of curvature r and the distance d are adjusted so that at least one of the following holds true.
  • r/p is 0.2 or more and less than 0.525 and the above formula (42) is satisfied; r/p is 0.525 or more and less than 0.975 and the above-mentioned formula (43) is satisfied; r/p is 0.975 or more and less than 1.5 and the above-mentioned formula (44) is satisfied; r/p is 0.2 or more and less than 0.525 and the above formula (45) is satisfied, and r/p is 0.525 or more and less than 0.975 and the above formula (46) is satisfied.
  • the radius of curvature r and the distance d are adjusted so that at least one of the following holds true.
  • the luminance is 150% or more of the luminance of the light emitting substrate 10 without the optical sheet 20 stacked thereon, and the above-mentioned minimum value m It is possible to manufacture a display device 1 that satisfies both of the requirements that M is 50% or more of the maximum value M. In particular, in the display device 1 in which the light collecting direction of the optical sheet 20 is the front direction of the display device 1, it is considered that the brightness condition in Modification 4 is satisfied.
  • Modification 5 is such that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and the above-mentioned minimum value m2 is the maximum value for each value of w/p.
  • the present invention relates to an example in which the conditions for the values of the radius of curvature r and the distance d such that the condition of being 50% or more of M2 can be satisfied are determined from a different perspective from the embodiment and each modification described above.
  • the brightness of the display device 1 will be 150% or more of the brightness of the light emitting substrate 10 without overlapping the optical sheet 20, and the above-mentioned minimum value m2 will be The conditions for the values of the radius of curvature r and the distance d such that they are 50% or more of the maximum value M2 will be described. In particular, a modified example of the conditions for the values of the radius of curvature r and the distance d will be described so that the above-mentioned brightness condition is satisfied in the display device 1 in which the light collecting direction of the optical sheet 20 is the front direction of the display device 1.
  • r/p When w/p is 0.01 or more and less than 0.05, r/p is 0.2 or more and less than 0.525, and the following formula (61) is satisfied, and r/p is 0.525 or more. It is preferable that at least one of the following equations (62) is satisfied: less than 1.5. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m2 is 50% or more of the maximum value M2. , both can be satisfied.
  • FIG. 34 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the luminance distribution was simulated under four conditions, first to fourth conditions, regarding the refractive index and w/p value of the optical sheet 20.
  • the first to fourth conditions are determined as follows.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.01.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.01.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.05.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.05.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • “1” in the table shown in FIG. 34 means that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid at the corresponding r/p and d/p values. This means that both of the first to fourth conditions are satisfied, and that the above-mentioned minimum value m2 is 50% or more of the maximum value M2. For example, "1" is written in the column where r/p is 0.2 and d/p is 0.1 in the table. This is the result of simulating the brightness distribution by setting the radius of curvature r and distance d so that r/p is 0.2 and d/p is 0.1 under the first to fourth conditions.
  • the above-mentioned brightness condition is satisfied in any of the first to fourth conditions.
  • “0” in the table shown in FIG. 34 indicates that, at the corresponding r/p and d/p values, the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without overlapping the optical sheet 20.
  • "0" is written in the column where r/p is 0.2 and d/p is 0.2 in the table.
  • test results shown in FIG. 34 also show that r/p is 0.2 or more and less than 0.525 and formula (61) is satisfied, and that r/p is 0.525 or more and less than 1.5 and formula ( It can be understood that the above-mentioned brightness condition is satisfied if at least one of the conditions 62) is satisfied.
  • the refractive index of the optical sheet 20 is 1.50 or more and 1.60 or less and the value of w/p is In the case of 0.01 or more and less than 0.05, r/p is 0.2 or more and less than 0.525 and formula (61) is satisfied, and r/p is 0.525 or more and less than 1.5. It can be understood that if at least one of formula (62) is satisfied, the above-mentioned brightness condition is stably satisfied.
  • r/p is 0.2 or more and less than 0.525 and the following formula (63) is satisfied, and r/p is 0.525 or more. It is preferable that at least one of the following equations (64) is satisfied: less than 1.5. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m2 is 50% or more of the maximum value M2. , both can be satisfied.
  • FIG. 35 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the first to fourth conditions regarding the refractive index and w/p value of the optical sheet 20 are the same as the simulation test whose results are shown in FIG. 34 except for the points described below.
  • the luminance distribution is simulated under the following four conditions.
  • the first to fourth conditions are determined as follows.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.05.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.05.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.1.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.1.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the meanings of "1" and "0" in the table shown in FIG. 35 are the same as the meanings of "1" and "0" in the table shown in FIG.
  • test results shown in FIG. 35 also show that r/p is 0.2 or more and less than 0.525 and formula (63) is satisfied, and that r/p is 0.525 or more and less than 1.5 and formula ( It can be understood that the above-mentioned brightness condition is satisfied if at least one of the conditions 64) is satisfied.
  • the refractive index of the optical sheet 20 is 1.50 or more and 1.60 or less and the value of w/p is In the case of 0.05 or more and less than 0.1, r/p is 0.2 or more and less than 0.525 and formula (63) is satisfied, and r/p is 0.525 or more and less than 1.5. It can be understood that if at least one of formula (64) is satisfied, the above-mentioned brightness condition is stably satisfied.
  • w/p is 0.1 or more and less than 0.2
  • r/p is 0.2 or more and less than 0.525
  • the following formula (65) is satisfied
  • r/p is 0.525 or more. It is preferable that at least one of the following equations (66) is satisfied: less than 1.5. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m2 is 50% or more of the maximum value M2. , both can be satisfied.
  • FIG. 36 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the first to fourth conditions regarding the refractive index and w/p value of the optical sheet 20 are the same as the simulation test whose results are shown in FIG. 34 except for the points described below.
  • the luminance distribution is simulated under the following four conditions.
  • the first to fourth conditions are determined as follows.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.1.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.1.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.2.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.2.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the meanings of "1" and "0" in the table shown in FIG. 36 are the same as the meanings of "1" and "0" in the table shown in FIG.
  • test results shown in FIG. 36 also show that r/p is 0.2 or more and less than 0.525 and formula (65) is satisfied, and that r/p is 0.525 or more and less than 1.5 and formula ( It can be understood that the above-mentioned brightness condition is satisfied if at least one of the conditions 66) is satisfied.
  • the refractive index of the optical sheet 20 is 1.50 or more and 1.60 or less and the value of w/p is In the case of 0.1 or more and less than 0.2, r/p is 0.2 or more and less than 0.525 and formula (65) is satisfied, and r/p is 0.525 or more and less than 1.5. It can be understood that if at least one of formula (66) is satisfied, the above-mentioned brightness condition is stably satisfied.
  • r/p When w/p is 0.2 or more and less than 0.3, r/p is 0.25 or more and less than 0.525, and the following formula (67) is satisfied, and r/p is 0.525 or more. It is preferable that at least one of the following equations (68) is satisfied: less than 1.5. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m2 is 50% or more of the maximum value M2. , both can be satisfied.
  • FIG. 37 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the first to fourth conditions regarding the refractive index and w/p value of the optical sheet 20 are the same as the simulation test whose results are shown in FIG. 34 except for the points explained below.
  • the luminance distribution is simulated under the following four conditions.
  • the first to fourth conditions are determined as follows.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.2.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.2.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.3.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.3.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the meanings of "1" and "0" in the table shown in FIG. 37 are the same as the meanings of "1" and "0" in the table shown in FIG.
  • test results shown in FIG. 37 also show that r/p is 0.25 or more and less than 0.525 and formula (67) is satisfied, and that r/p is 0.525 or more and less than 1.5 and formula ( It can be understood that the above-mentioned brightness condition is satisfied if at least one of the conditions 68) is satisfied.
  • the refractive index of the optical sheet 20 is 1.50 or more and 1.60 or less and the value of w/p is In the case of 0.2 or more and less than 0.3, r/p is 0.25 or more and less than 0.525 and formula (67) is satisfied, and r/p is 0.525 or more and less than 1.5. It can be understood that if at least one of formula (68) is satisfied, the above-mentioned brightness condition is stably satisfied.
  • r/p When w/p is 0.3 or more and less than 0.4, r/p is 0.35 or more and less than 0.675, and the following formula (69) is satisfied, and r/p is 0.675 or more. It is preferable that at least one of the following equations (70) is satisfied: less than 1.5. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m2 is 50% or more of the maximum value M2. , both can be satisfied.
  • FIG. 38 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the first to fourth conditions regarding the refractive index and w/p value of the optical sheet 20 are the same as the simulation test whose results are shown in FIG. 34 except for the points described below.
  • the luminance distribution is simulated under the following four conditions.
  • the first to fourth conditions are determined as follows.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.3.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.3.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.4.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.4.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the meanings of "1" and "0" in the table shown in FIG. 38 are the same as the meanings of "1" and "0" in the table shown in FIG.
  • test results shown in FIG. 38 also show that r/p is 0.35 or more and less than 0.675 and formula (69) is satisfied, and that r/p is 0.675 or more and less than 1.5 and formula ( It can be understood that the above-mentioned brightness condition is satisfied if at least one of the conditions 70) is satisfied.
  • the refractive index of the optical sheet 20 is 1.50 or more and 1.60 or less and the value of w/p is In the case of 0.3 or more and less than 0.4, r/p is 0.35 or more and less than 0.675 and formula (69) is satisfied, and r/p is 0.675 or more and less than 1.5. It can be understood that if at least one of formula (70) is satisfied, the above-mentioned brightness condition is stably satisfied.
  • w/p is 0.4 or more and less than 0.5
  • r/p is 0.4 or more and less than 0.675
  • the following formula (71) is satisfied
  • r/p is 0.675 or more. It is preferable that at least one of the following equations (72) is satisfied: less than 1.5. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m2 is 50% or more of the maximum value M2. , both can be satisfied.
  • FIG. 39 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the first to fourth conditions regarding the refractive index and w/p value of the optical sheet 20 are similar to the simulation test whose results are shown in FIG. 34 except for the points described below.
  • the luminance distribution is simulated under the following four conditions.
  • the first to fourth conditions are determined as follows.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.4.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.4.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.5.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.5.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the meanings of "1" and "0" in the table shown in FIG. 39 are the same as the meanings of "1" and "0" in the table shown in FIG.
  • test results shown in FIG. 39 also show that r/p is 0.4 or more and less than 0.675 and formula (71) is satisfied, and that r/p is 0.675 or more and less than 1.5 and formula ( It can be understood that the above-mentioned brightness condition is satisfied if at least one of the conditions 72) is satisfied.
  • the refractive index of the optical sheet 20 is 1.50 or more and 1.60 or less and the value of w/p is In the case of 0.4 or more and less than 0.5, r/p is 0.4 or more and less than 0.675 and formula (71) is satisfied, and r/p is 0.675 or more and less than 1.5. It can be understood that if at least one of formula (72) is satisfied, the above-mentioned brightness condition is stably satisfied.
  • r/p is 0.5 or more and less than 0.675, and the following formula (73) is satisfied, and r/p is 0.675 or more. It is preferable that at least one of the following equations (74) is satisfied: less than 1.5. This ensures that the brightness of the display device 1 is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and that the above-mentioned minimum value m2 is 50% or more of the maximum value M2. , both can be satisfied.
  • FIG. 40 shows the display device 1 shown in FIGS. 1 to 5 in a direction perpendicular to the second direction d2 by setting the pitch p of the light emitting part 13, the width w of the light emitting part 13, the radius of curvature r, and the distance d.
  • 3 is a table showing the results of a test simulating luminance distribution.
  • the first to fourth conditions regarding the refractive index and w/p value of the optical sheet 20 are the same as the simulation test whose results are shown in FIG. 34 except for the points described below.
  • the luminance distribution is simulated under the following four conditions.
  • the first to fourth conditions are determined as follows.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.5.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.5.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.50, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.6.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the refractive index of the optical sheet 20 is 1.60, and the pitch p of the light emitting part 13 and the width w of the light emitting part 13 are determined so that the value of w/p is 0.6.
  • the brightness distribution is simulated while changing the values of r/p and d/p by changing the radius of curvature r and the distance d.
  • the meanings of "1" and "0" in the table shown in FIG. 40 are the same as the meanings of "1" and "0" in the table shown in FIG.
  • test results shown in FIG. 40 also show that r/p is 0.5 or more and less than 0.675 and formula (73) is satisfied, and that r/p is 0.675 or more and less than 1.5 and formula ( It can be understood that the above-mentioned brightness condition is satisfied if at least one of the conditions 74) is satisfied.
  • the refractive index of the optical sheet 20 is 1.50 or more and 1.60 or less and the value of w/p is In the case of 0.5 or more and less than 0.6, r/p is 0.5 or more and less than 0.675 and formula (73) is satisfied, and r/p is 0.675 or more and less than 1.5. It can be understood that if at least one of formula (74) is satisfied, the above-mentioned brightness condition is stably satisfied.
  • the manufacturing method of the display device 1 of Modification 5 includes an adjustment step of adjusting the radius of curvature r and the distance d according to the value of w/p, similarly to the display device 1 of the above-described embodiment and each modification. .
  • the brightness is 150% or more of the brightness of the light emitting substrate 10 without the optical sheet 20 overlaid, and the minimum value m2 described above is achieved. It is possible to manufacture a display device 1 that satisfies both the requirements that M2 is 50% or more of the maximum value M2. In particular, in the display device 1 in which the light collecting direction of the optical sheet 20 is the front direction of the display device 1, it is considered that the brightness condition in Modification Example 5 is satisfied.
  • Display device 10 Light emitting substrate 10a Unit region 10c Unit region second direction column 11 Semiconductor layer 13 Light emitting section 13R First light emitting section 13G Second light emitting section 13B Third light emitting section 20 Optical sheet 20a First surface 20b Second surface 21 Unit Lens 21a Lens surface 70 Light angle adjustment layer 80 Light deflection layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

[課題]表示装置が視認される方向における輝度を大きくする。 [解決手段]表示装置1は、単位領域10aに区分けされた半導体層11と、複数の単位領域10aに配置された発光部13と、を有する発光基板10と、光学シート20と、を備える。光学シート20は、複数の単位レンズ21を有する。複数の単位領域10aは、第1方向及び第2方向に並んでいる。w/pが0.025未満であり、r/pが0.2以上0.525未満で且つ式(1)が満たされること、r/pが0.525以上1.5未満で且つ式(2)が満たされること、r/pが0.2以上0.525未満で且つ式(3)が満たされること、r/pが0.525以上0.725未満で且つ式(4)が満たされること、及びr/pが0.725以上1.5未満で且つ式(5)が満たされることの、少なくともいずれか1つが成立する。

Description

表示装置および表示装置の製造方法
 本開示は、表示装置および表示装置の製造方法に関する。
 近年、複数の発光部が搭載された表示装置、特にLEDが搭載された表示装置、いわゆるLEDディスプレイが知られている。特に、複数の微小な発光ダイオード(LED)や配線等を形成された半導体をそのまま発光基板として用いる表示装置、いわゆるマイクロLEDディスプレイが開発されている。マイクロLEDディスプレイは、小型で軽量且つ薄型のディスプレイとして注目されている。また、有機EL素子を備えた有機EL(OLED)ディスプレイが知られている。
 また、上記の表示装置、特にマイクロLEDディスプレイにおいては、発光ダイオードから射出する光が拡散光であるため、光を効率よく利用できていないという課題がある。このような課題に対して、例えば特許文献1では、光を出射させる側にリニアアレイレンズを設けることで、特定の方向、例えば正面方向に集光するマイクロLEDディスプレイが開示されている。特定の方向への集光を行うことで、LEDから発光した光を効率よく利用することができる。
特開2019-197133号公報
 表示装置においては、使用者が表示装置を視認すると想定される方向における輝度を、一定以上大きくすることが求められる。光を効率よく利用しつつ、特に使用者が表示装置を視認すると想定される方向における輝度を大きくするために、当該方向に集光して、当該方向における輝度を大きくすることが求められる場合がある。その一方で、使用者が、当該方向からずれた方向から表示装置を視認する場合も想定して、当該方向からずれた方向における輝度も、一定以上大きくすることが求められる場合がある。例えば、表示装置をヘッドアップディスプレイ(HUD)、特に自動車のフロントガラスに画像を投影するヘッドアップディスプレイに利用する場合に、当該方向における輝度を大きくするとともに、当該方向からずれた方向における輝度も大きくすることが求められる場合がある。
 本発明はこのような点を考慮してなされたものであり、表示装置が視認される方向における輝度を大きくすることを目的とする。
 本開示の第1の態様は、複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、
 前記発光基板に向かい合って配置された光学シートと、を備え、
 前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
 前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.025未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(1)が満たされること、r/pが0.525以上1.5未満で且つ以下の式(2)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(3)が満たされること、r/pが0.525以上0.725未満で且つ以下の式(4)が満たされること、及びr/pが0.725以上1.5未満で且つ以下の式(5)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.025以上0.075未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(6)が満たされること、r/pが0.525以上1.5未満で且つ以下の式(7)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(8)が満たされること、r/pが0.525以上0.725未満で且つ以下の式(9)が満たされること、r/pが0.725以上1.5未満で且つ以下の式(10)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.075以上0.15未満であるとともに、r/pが0.2以上0.375未満で且つ以下の式(11)が満たされること、r/pが0.375以上1.5未満で且つ以下の式(12)が満たされること、r/pが0.2以上0.725未満で且つ以下の式(13)が満たされること、及びr/pが0.725以上1.5未満で且つ以下の式(14)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.15以上0.25未満であるとともに、r/pが0.2以上0.725未満で且つ以下の式(15)が満たされること、r/pが0.725以上1.5未満で且つ以下の式(16)が満たされること、及びr/pが0.2以上1.5未満で且つ以下の式(17)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.25以上0.35未満であるとともに、r/pが0.25以上0.975未満で且つ以下の式(18)が満たされること、及びr/pが0.975以上1.5未満で且つ以下の式(19)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.35以上0.45未満であるとともに、r/pが0.3以上1.5未満で且つ以下の式(20)が満たされるか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.45以上0.55未満であるとともに、r/pが0.4以上1.5未満で且つ以下の式(21)が満たされるか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.55以上0.65未満であるとともに、r/pが0.45以上1.5未満で且つ以下の式(22)が満たされる、表示装置である。
Figure JPOXMLDOC01-appb-M000009
 本開示の第2の態様は、複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、
 前記発光基板に向かい合って配置された光学シートと、を備え、
 前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
 前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.025未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(23)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(24)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.025以上0.15未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(25)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(26)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.15以上0.25未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(27)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(28)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.25以上0.35未満であるとともに、r/pが0.25以上0.425未満で且つ以下の式(29)が満たされること、及びr/pが0.425以上1.5未満で且つ以下の式(30)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.35以上0.45未満であるとともに、r/pが0.3以上0.525未満で且つ以下の式(31)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(32)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.45以上0.55未満であるとともに、r/pが0.4以上0.625未満で且つ以下の式(33)が満たされること、及びr/pが0.625以上1.5未満で且つ以下の式(34)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.55以上0.65未満であるとともに、r/pが0.45以上0.625未満で且つ以下の式(35)が満たされること、及びr/pが0.625以上1.5未満で且つ以下の式(36)が満たされることの、少なくともいずれか1つが成立する、表示装置である。
Figure JPOXMLDOC01-appb-M000010
 本開示の第3の態様は、複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、
 前記発光基板に向かい合って配置された光学シートと、を備え、
 前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
 前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.01以上0.05未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(37)が満たされること、r/pが0.525以上0.975未満で且つ以下の式(38)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(39)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(40)が満たされること、及びr/pが0.525以上0.975未満で且つ以下の式(41)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.05以上0.1未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(42)が満たされること、r/pが0.525以上0.975未満で且つ以下の式(43)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(44)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(45)が満たされること、及びr/pが0.525以上0.975未満で且つ以下の式(46)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.1以上0.2未満であるとともに、r/pが0.2以上0.375未満で且つ以下の式(47)が満たされること、r/pが0.375以上0.975未満で且つ以下の式(48)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(49)が満たされること、及びr/pが0.375以上0.975未満で且つ以下の式(50)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.2以上0.3未満であるとともに、r/pが0.25以上0.725未満で且つ以下の式(51)が満たされること、r/pが0.725以上0.975未満で且つ以下の式(52)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(53)が満たされること、及びr/pが0.725以上0.975未満で且つ以下の式(54)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.3以上0.4未満であるとともに、r/pが0.35以上0.975未満で且つ以下の式(55)が満たされること、及びr/pが0.975以上1.5未満で且つ以下の式(56)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.4以上0.5未満であるとともに、r/pが0.4以上0.675未満で且つ以下の式(57)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(58)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.5以上0.6未満であるとともに、r/pが0.5以上0.675未満で且つ以下の式(59)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(60)が満たされることの、少なくともいずれか1つが成立する、表示装置である。
Figure JPOXMLDOC01-appb-M000011
 本開示の第4の態様は、複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、
 前記発光基板に向かい合って配置された光学シートと、を備え、
 前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
 前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.01以上0.05未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(61)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(62)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.05以上0.1未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(63)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(64)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.1以上0.2未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(65)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(66)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.2以上0.3未満であるとともに、r/pが0.25以上0.525未満で且つ以下の式(67)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(68)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.3以上0.4未満であるとともに、r/pが0.35以上0.675未満で且つ以下の式(69)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(70)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.4以上0.5未満であるとともに、r/pが0.4以上0.675未満で且つ以下の式(71)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(72)が満たされることの、少なくともいずれか1つが成立するか、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.5以上0.6未満であるとともに、r/pが0.5以上0.675未満で且つ以下の式(73)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(74)が満たされることの、少なくともいずれか1つが成立する、表示装置である。
Figure JPOXMLDOC01-appb-M000012
 本開示の第5の態様は、上述した第1の態様から上述した第4の態様のそれぞれによる表示装置において、前記発光基板の板面への法線方向からの観察において、前記単位レンズの1つが、前記複数の単位領域が前記第2方向に並んでなす単位領域第2方向列の1つに対応してもよい。
 本開示の第6の態様は、上述した第5の態様による表示装置において、前記発光基板の板面への法線方向からの観察において、前記単位レンズの1つの前記第1方向における中心が、対応する前記単位領域第2方向列の1つをなす前記単位領域の前記発光部の前記第1方向における中心からずれていてもよい。
 本開示の第7の態様は、上述した第1の態様から上述した第4の態様のそれぞれによる表示装置において、前記光学シートは、前記発光基板と向かい合う第1面と、前記第1面の反対側に位置する第2面と、を有し、
 前記光学シートの前記第2面と向かい合い、前記光学シートからの光を、前記第2方向からの観察において進行方向が変化するように偏向する、光偏向層をさらに備えてもよい。
 本開示の第8の態様は、上述した第1の態様から上述した第7の態様のそれぞれによる表示装置において、前記光学シートは、前記発光基板と向かい合う第1面と、前記第1面の反対側に位置する第2面と、を有し、
 前記光学シートの前記第2面側に位置し、前記光学シートからの光の進行方向の前記発光基板の板面への法線方向に対する角度を調整する、光角度調整層をさらに備えてもよい。
 本開示の第9の態様は、上述した第1の態様から上述した第8の態様のそれぞれによる表示装置において、前記発光基板は、前記発光部として、第1発光部と、前記第1発光部と異なる波長の光を発する第2発光部と、を含んでもよい。
 本開示の第10の態様は、上述した第1の態様又は上述した第3の態様による表示装置において、前記光学シートの集光方向に対してなす角度が-5°以上+5°以下の範囲における輝度の最小値mが、前記光学シートの集光方向に対してなす角度が-5°以上+5°以下の範囲における輝度の最大値Mの50%以上であってもよい。
 本開示の第11の態様は、上述した第2の態様又は上述した第4の態様による表示装置において、前記光学シートの集光方向に対してなす角度が-10°以上+10°以下の範囲における輝度の最小値m2が、前記光学シートの集光方向に対してなす角度が-10°以上+10°以下の範囲における輝度の最大値M2の50%以上であってもよい。
 本開示の第12の態様は、複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、前記発光基板に向かい合って配置された光学シートと、を備える、表示装置の製造方法であって、
 前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
 前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pの値に応じて曲率半径r及び距離dを調整する調整工程を備え、
 前記調整工程において、w/pが0.025未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(1)が満たされること、r/pが0.525以上1.5未満で且つ以下の式(2)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(3)が満たされること、r/pが0.525以上0.725未満で且つ以下の式(4)が満たされること、及びr/pが0.725以上1.5未満で且つ以下の式(5)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 前記調整工程において、w/pが0.025以上0.075未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(6)が満たされること、r/pが0.525以上1.5未満で且つ以下の式(7)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(8)が満たされること、r/pが0.525以上0.725未満で且つ以下の式(9)が満たされること、r/pが0.725以上1.5未満で且つ以下の式(10)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 前記調整工程において、w/pが0.075以上0.15未満の場合には、r/pが0.2以上0.375未満で且つ以下の式(11)が満たされること、r/pが0.375以上1.5未満で且つ以下の式(12)が満たされること、r/pが0.2以上0.725未満で且つ以下の式(13)が満たされること、及びr/pが0.725以上1.5未満で且つ以下の式(14)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 前記調整工程において、w/pが0.15以上0.25未満の場合には、r/pが0.2以上0.725未満で且つ以下の式(15)が満たされること、r/pが0.725以上1.5未満で且つ以下の式(16)が満たされること、及びr/pが0.2以上1.5未満で且つ以下の式(17)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 前記調整工程において、w/pが0.25以上0.35未満の場合には、r/pが0.25以上0.975未満で且つ以下の式(18)が満たされること、及びr/pが0.975以上1.5未満で且つ以下の式(19)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 前記調整工程において、w/pが0.35以上0.45未満の場合には、r/pが0.3以上1.5未満で且つ以下の式(20)が満たされるように、曲率半径r及び距離dを調整し、
 前記調整工程において、w/pが0.45以上0.55未満の場合には、r/pが0.4以上1.5未満で且つ以下の式(21)が満たされるように、曲率半径r及び距離dを調整し、
 前記調整工程において、w/pが0.55以上0.65未満の場合には、r/pが0.45以上1.5未満で且つ以下の式(22)が満たされるように、曲率半径r及び距離dを調整する、表示装置の製造方法である。
Figure JPOXMLDOC01-appb-M000013
 本開示の第13の態様は、複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、前記発光基板に向かい合って配置された光学シートと、を備える、表示装置の製造方法であって、
 前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
 前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pの値に応じて曲率半径r及び距離dを調整する調整工程を備え、
 前記調整工程において、w/pが0.025未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(23)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(24)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 前記調整工程において、w/pが0.025以上0.15未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(25)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(26)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 前記調整工程において、w/pが0.15以上0.25未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(27)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(28)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 前記調整工程において、w/pが0.25以上0.35未満の場合には、r/pが0.25以上0.425未満で且つ以下の式(29)が満たされること、及びr/pが0.425以上1.5未満で且つ以下の式(30)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 前記調整工程において、w/pが0.35以上0.45未満の場合には、r/pが0.3以上0.525未満で且つ以下の式(31)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(32)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 前記調整工程において、w/pが0.45以上0.55未満の場合には、r/pが0.4以上0.625未満で且つ以下の式(33)が満たされること、及びr/pが0.625以上1.5未満で且つ以下の式(34)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 前記調整工程において、w/pが0.55以上0.65未満の場合には、r/pが0.45以上0.625未満で且つ以下の式(35)が満たされること、及びr/pが0.625以上1.5未満で且つ以下の式(36)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する、表示装置の製造方法である。
Figure JPOXMLDOC01-appb-M000014
 本開示の第14の態様は、複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、前記発光基板に向かい合って配置された光学シートと、を備える、表示装置の製造方法であって、
 前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
 前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pの値に応じて曲率半径r及び距離dを調整する調整工程を備え、
 前記調整工程において、w/pが0.01以上0.05未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(37)が満たされること、r/pが0.525以上0.975未満で且つ以下の式(38)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(39)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(40)が満たされること、及びr/pが0.525以上0.975未満で且つ以下の式(41)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 w/pが0.05以上0.1未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(42)が満たされること、r/pが0.525以上0.975未満で且つ以下の式(43)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(44)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(45)が満たされること、及びr/pが0.525以上0.975未満で且つ以下の式(46)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 w/pが0.1以上0.2未満の場合には、r/pが0.2以上0.375未満で且つ以下の式(47)が満たされること、r/pが0.375以上0.975未満で且つ以下の式(48)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(49)が満たされること、及びr/pが0.375以上0.975未満で且つ以下の式(50)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 w/pが0.2以上0.3未満の場合には、r/pが0.25以上0.725未満で且つ以下の式(51)が満たされること、r/pが0.725以上0.975未満で且つ以下の式(52)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(53)が満たされること、及びr/pが0.725以上0.975未満で且つ以下の式(54)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 w/pが0.3以上0.4未満の場合には、r/pが0.35以上0.975未満で且つ以下の式(55)が満たされること、及びr/pが0.975以上1.5未満で且つ以下の式(56)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 w/pが0.4以上0.5未満の場合には、r/pが0.4以上0.675未満で且つ以下の式(57)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(58)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 w/pが0.5以上0.6未満の場合には、r/pが0.5以上0.675未満で且つ以下の式(59)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(60)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する、表示装置の製造方法である。
Figure JPOXMLDOC01-appb-M000015
 本開示の第15の態様は、複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、前記発光基板に向かい合って配置された光学シートと、を備える、表示装置の製造方法であって、
 前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
 前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
 前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pの値に応じて曲率半径r及び距離dを調整する調整工程を備え、
 前記調整工程において、w/pが0.01以上0.05未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(61)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(62)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 w/pが0.05以上0.1未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(63)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(64)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 w/pが0.1以上0.2未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(65)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(66)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 w/pが0.2以上0.3未満の場合には、r/pが0.25以上0.525未満で且つ以下の式(67)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(68)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 w/pが0.3以上0.4未満の場合には、r/pが0.35以上0.675未満で且つ以下の式(69)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(70)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 w/pが0.4以上0.5未満の場合には、r/pが0.4以上0.675未満で且つ以下の式(71)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(72)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
 w/pが0.5以上0.6未満の場合には、r/pが0.5以上0.675未満で且つ以下の式(73)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(74)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する、表示装置の製造方法。
Figure JPOXMLDOC01-appb-M000016
 本開示によれば、表示装置が視認される方向における輝度を大きくできる。
図1は、表示装置の各要素を概略的に示す分解斜視図。 図2は、表示装置の発光基板の一部を拡大して示す断面図。 図3は、表示装置の発光基板の一部を拡大して示す平面図。 図4は、図3のIV-IV線に沿った表示装置の断面図。 図5は、表示装置を第2方向から観察した様子を示す図。 図6は、表示装置の第2方向に垂直な方向における輝度の分布の一例を示す図。 図7aは、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図7bは、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図8は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図9は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図10は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図11は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図12は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図13は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図14は、発光基板の発光部から出射された光が光学シートを通過するときの光の経路の一例を示す図。 図15は、発光基板の発光部から出射された光が光学シートを通過するときの光の経路の一例を示す図。 図16は、発光基板の発光部から出射された光が光学シートを通過するときの光の経路の一例を示す図。 図17aは、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図17bは、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図17cは、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図17dは、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図17eは、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図17fは、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図17gは、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図18aは、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図18bは、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図18cは、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図19は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図20は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図21は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図22は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図23は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図24aは、変形例2の表示装置の第2方向に垂直な断面を示す断面図。 図24bは、変形例2の表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図25は、表示装置をヘッドアップディスプレイとして利用する態様の一例を示す図。 図26aは、変形例3の表示装置の第2方向に垂直な断面を示す断面図。 図26bは、変形例3の表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図27は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図28は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図29は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図30は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図31は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図32は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図33は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図34は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図35は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図36は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図37は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図38は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図39は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。 図40は、表示装置について第2方向に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す図。
 以下、図面を参照して一実施の形態について説明する。図1乃至図5は一実施の形態を示す図である。以下に示す各図は、模式的に示したものである。そのため、各部の大きさ、形状は理解を容易にするために、適宜誇張している。また、技術思想を逸脱しない範囲において適宜変更して実施できる。なお、以下に示す各図において、同一部分には同一の符号を付しており、一部詳細な説明を省略する場合がある。また、本明細書中に記載する各部材の寸法等の数値および材料名は、実施の形態としての一例であり、これに限定されるものではなく、適宜選択して使用できる。
 また、「板面(シート面、フィルム面)」とは、対象となる板状(シート状、フィルム状)の部材を全体的かつ大局的に見た場合において対象となる板状部材(シート状部材、フィルム状部材)の平面方向と一致する面のことを指す。
 さらに、本明細書において用いる、形状や幾何学的条件ならびにそれらの程度を特定する、例えば、「平行」、「直交」、「同一」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。
 図1は、本発明の表示装置1を概略的に示す分解斜視図である。図1においては、後述する封止層40、粘着層50及び基材層60の図示を省略している。図1に示されているように、表示装置1は、発光基板10と、発光基板10に向かい合って配置された光学シート20と、を備える。図1には示さないが、発光基板10と光学シート20との間には、封止層40、粘着層50及び基材層60が設けられている。図1に示す例では、光学シート20は、発光基板10と向かい合う第1面20aと、前記第1面20aの反対側に位置する第2面20bと、を有する。本実施の形態の表示装置1は、例えばLEDを搭載した表示装置、いわゆるLEDディスプレイである。以下、表示装置1が、1つ又は複数の発光ダイオードから発した光を1つの画素として用いている、いわゆるマイクロLEDディスプレイである場合について説明する。
 発光基板10は、画像を形成する光を発する。図2は、発光基板10の構成を示す拡大断面図である。図2に示されているように、発光基板10は、半導体層11と、半導体層11上に設けられた複数の発光部13と、を有している。各発光部13は、半導体層11に接する活性層14と、活性層14に接する第2半導体層15と、を含んでいる。すなわち、発光基板10の発光部13が設けられた位置において、半導体層11、活性層14及び第2半導体層15がこの順で積層されている。
 半導体層11と第2半導体層15との間に電圧を印加することで、活性層14を発光させることができる。半導体層11と第2半導体層15との間に電圧を印加するために、半導体層11及び第2半導体層15には、図示しない電極が設けられており、半導体層11に形成された回路を介して外部の電源と接続している。また、発光部13の上面が、活性層14から発せられる光を射出する発光面17となっている。図2に示す例においては、第2半導体層15の活性層14と接する面とは反対側の面が、活性層14が発する光を射出する発光面17となっている。
 本実施の形態において、発光基板10は、発光部13として、ある波長の光を発する第1発光部13Rと、第1発光部13Rとは異なる波長の光を発する第2発光部13Gと、を含んでいる。図2に示す例において、発光基板10は、発光部13として、第1発光部13R及び第2発光部13Gとは異なる波長の光を発する第3発光部13Bと、をさらに含んでいる。発光基板10は、複数の発光部13として、複数の第1発光部13Rと、複数の第2発光部13Gと、複数の第3発光部13Bと、を有している。第1発光部13R、第2発光部13G及び第3発光部13Bは、発光ダイオードである。
 図3は、表示装置1の発光基板10の一部を拡大して示す平面図である。図2及び図3に示すように、半導体層11は、複数の単位領域10aに区分けされている。図3に示された例では、単位領域10aは、第1方向d1及び第1方向d1に非平行な第2方向d2に並んでいる。図示された例において、第1方向d1と第2方向d2とは、互いに直交している。また、図示された例において、複数の単位領域10aは、第1方向d1及び第2方向d2において互いに接するように並んでいる。図3において、1つの単位領域10aが、斜線を付して示されている。発光部13は、複数の単位領域10aに配置されている。図示された例では、全ての単位領域10aに発光部13が配置されている。1つの単位領域10aには、1つの発光部13が配置されている。また、図示された例では、発光部13は、単位領域10aの中央に配置されている。発光部13は、第1方向d1及び第2方向d2に同一の間隔で並んでいる。
 図3に示す例では、発光基板10は、発光部13として、第1発光部13Rと、第2発光部13Gと、第3発光部13Bとを有している。図3に示す例において、発光基板10は、1つの単位領域組10bは、第1発光部13Rが配置された1つの単位領域10aと、第2発光部13Gが配置された1つの単位領域10aと、第3発光部13Bが配置された1つの単位領域10aと、を含む、単位領域組10bを有している。図3に示す例において、発光基板10は、第1方向d1及び第2方向d2に並ぶ、複数の単位領域組10bを有している。1つの単位領域組10bにおいて、第1発光部13Rが配置された単位領域10aと、第2発光部13Gが配置された単位領域10aと、第3発光部13Bが配置された単位領域10aとは、第2方向d2に並んでいる。単位領域組10bは、表示装置1の画素領域となっている。各単位領域組10bに配置された発光部13は、表示装置1の画素を形成する。
 図3に示す例においては、後述する複数の単位レンズ21が並ぶ方向である第1方向d1における単位領域10aの幅が、単位レンズ21が延びる第2方向d2における単位領域10aの幅よりも大きくなっている。また、第1方向d1における発光部13の幅が、第2方向d2における発光部13の幅よりも大きくなっている。図示はしないが、後述する複数の単位レンズ21が並ぶ方向である第1方向d1における単位領域10aの幅が、単位レンズ21が延びる第2方向d2における単位領域10aの幅よりも小さくなっている。また、第1方向d1における発光部13の幅が、第2方向d2における発光部13の幅よりも小さくなっていてもよい。
 図4は、図3のIV-IV線に沿った表示装置1の断面図である。図3及び図4に示すように、第1方向d1における発光部13のピッチをpとする。図3及び図4に示す符号C1を付した破線は、発光部13の第1方向d1における中心を示している。発光部13のピッチpは、ある単位領域10aの発光部13の第1方向d1における中心C1から、当該単位領域10aと第1方向d1において隣り合う単位領域10aの発光部13の第1方向d1における中心C1までの距離である。発光部13のピッチpは、例えば10μm以上2000μm以下である。発光部13のピッチpは、10μm以上500μm以下であってもよい。また、単位領域10aの第1方向d1及び第2方向d2に沿った長さは、例えば10μm以上2000μm以下である。図3及び図4に示す例では、単位領域10aの第1方向d1に沿った長さは、発光部13のピッチpと等しい。図3及び図4に示すように、第1方向d1における発光部13の幅をwとする。発光部13の幅wは、換言すれば、発光部13の第1方向d1に沿った長さである。発光部13の幅wは、例えば1μm以上1200μm以下である。発光部13の第2方向d2に沿った長さは、例えば1μm以上1200μm以下である。
 光学シート20は、発光基板10から出射される光の進行方向を変化させる。光学シート20は、発光基板10から出射される光を、特定の方向に集光させる。とりわけ、図示された光学シート20は、発光基板10から出射される、第2方向d2に垂直な方向において拡散されている光を、第2方向d2に垂直な特定の方向に集光させる。換言すれば、光学シート20は、発光基板10から出射される光の進行方向を、当該光が第2方向d2からの観察において特定の方向に集光されて見えるように変化させる。光学シート20が、発光基板10から出射される光を集光させる方向を、集光方向と称する。集光方向は、発光基板10から出射されて光学シート20を通過した光の輝度の分布において、輝度が最大となる方向である。
 光学シート20は、発光基板10から出射される光を、使用者が高頻度で表示装置1を視認すると想定される方向に集光させる。なお、表示装置1の使用者は、表示装置1からの光を、光を反射させる部材を介して視認する場合もある。この場合、表示装置1からの光は、光を反射させる部材に向けて出射されて、光を反射させる部材において反射されてから、使用者の目に達する。例えば、表示装置1を自動車のフロントガラスに画像を投影するヘッドアップディスプレイとして利用する場合には、使用者は、表示装置1からの光を、フロントガラスを介して視認する。このような場合には、表示装置1から当該光を反射させる部材までの光の想定経路の方向を、使用者が表示装置1を視認すると想定される方向とみなすことができる。この場合、光学シート20は、表示装置1から当該光を反射させる部材までの光の想定経路の方向に、発光基板10から出射される光を集光する。
 使用者が高頻度で表示装置1を視認すると想定される方向は、例えば表示装置1の正面方向であり得る。この場合、光学シート20は、発光基板10から出射される第2方向d2に垂直な方向において拡散されている光を、表示装置1の正面方向へ集光させる。換言すれば、光学シート20が、第2方向d2に垂直な方向において拡散されている光を集光させる集光方向は、表示装置1の正面方向である。正面方向は、発光基板10の板面への法線方向d4となる方向である。以下、本実施の形態の光学シート20の一例として、発光基板10から出射される第2方向d2に垂直な方向において拡散されている光を、表示装置1の正面方向へ集光させる光学シート20について説明する。
 図4に示すように、光学シート20は、複数の単位レンズ21を有している。図4に示す例において、光学シート20は、複数の単位レンズ21とともに、本体部23を有している。複数の単位レンズ21は、本体部23上に設けられている。図4に示す符号L1を付した破線は、複数の単位レンズ21と本体部23との境界を示す仮想の線である。図4に示す例において、第1方向d1において隣り合う単位レンズ21同士は、互いに接している。この場合、隣り合う単位レンズ21のレンズ面21a同士が接続される位置を通り、且つ表示装置1の正面方向(法線方向d4)に垂直な面を、単位レンズ21と本体部23との境界L1とみなし得る。図示はしないが、後述するように、第1方向d1において隣り合う単位レンズ21同士の間に隙間が設けられていてもよい。この場合には、隣り合う単位レンズ21同士の間に形成されている光学シート20の面と単位レンズ21のレンズ面21aとが接続される位置を通り、且つ表示装置1の正面方向(法線方向d4)に垂直な面を、単位レンズ21と本体部23との境界L1とみなし得る。
 光学シート20の厚さは、例えば10μm以上4000μm以下である。光学シート20の屈折率は、例えば1.4以上1.7未満である。光学シート20の屈折率は、好ましくは1.45以上1.65未満であり、より好ましくは1.50以上1.60未満である。光学シート20の屈折率は、1.45以上1.54未満であってもよい。光学シート20の材質は、特に限られるものではないが、例えば樹脂やガラス等からなる光透過性を有するものである。光学シート20の材質としては、例えば、ポリエチレンテレフタレート、ポリオリフィン、ポリカーボネート、ポリアクリレート、ポリアミド、トリアセチルセルロース、ガラスなどが挙げられる。光学シート20は、例えばポリエチレンテレフタレート、ポリオリフィン、ポリカーボネート、ポリアクリレート、ポリアミド、トリアセチルセルロースを主成分とするフィルム、ガラスなどで形成されてもよい。図4に示す例において、光学シート20の本体部23及び単位レンズ21は、同じ材質により一体として形成されている。ここで、「光透過性を有する」及び「透明」とは、光学シート20を介して光学シート20の一方の側から他方の側を透視し得る程度の透明性を有していることを意味する。光学シート20は、例えば30%以上、より好ましくは70%以上の可視光透過率を有する。可視光透過率は、分光光度計((株)島津製作所製「UV-3100PC」、JIS K 0115準拠品)を用いて測定波長380nm~780nmの範囲内で測定したときの、各波長における透過率の平均値として特定される。
 単位レンズ21は、入射した光をその表面であるレンズ面21aにおいて屈折させて、光の進行方向を変更する要素である。本実施の形態において、単位レンズ21は、発光基板10から出射される第2方向d2に垂直な方向において拡散されている光を、表示装置1の正面方向に集光させる。
 複数の単位レンズ21は、第1方向d1に配置され、第1方向d1に非平行な第2方向d2に延びている。本実施の形態において、複数の単位レンズ21は、リニアアレイレンズを構成している。
 図示された例では、単位レンズ21は、第2方向d2に直線状に延びている。図示された例では、第1方向d1と第2方向d2とが互いに直交している。このため、複数の単位レンズ21は、単位レンズ21が直線状に延びる方向に直交する方向に並んでいる。
 複数の単位レンズ21は、単位領域10aに対応して配置されている。本実施の形態において、複数の単位領域10aは、第1方向d1及び第2方向d2に並んでいる。図1に示す複数の単位領域10aが第2方向d2に並んでなす単位領域10aの列を、単位領域第2方向列10cと称する。本実施の形態においては、発光基板10の板面への法線方向d4からの観察において、単位レンズ21の1つが、単位領域第2方向列10cの1つに対応する。本実施の形態においては、複数の単位レンズ21の各々が、複数の単位領域第2方向列10cの各々に対応する。単位レンズ21が単位領域第2方向列10cに対応するとは、単位レンズ21が、法線方向d4において、単位領域第2方向列10cをなす単位領域10aの発光部13の第1方向d1における中心に重なることを意味する。本実施の形態においては、図4に示すように、複数の単位レンズ21の各々が、法線方向d4において、単位領域第2方向列10cの各々をなす単位領域10aの発光部13の第1方向d1における中心C1に重なっている。図4に示す例では、複数の単位レンズ21の各々の第1方向d1における中心C2が、単位領域第2方向列10cの各々をなす単位領域10aの発光部13の第1方向d1における中心C1に重なっている。
 図3に示す例においては、上述したように、第1発光部13Rが配置された単位領域10aと、第2発光部13Gが配置された単位領域10aとは、単位レンズ21の延びる第2方向d2に並んでいる。この場合、単位レンズ21の1つが、法線方向d4において、第1発光部13Rと第2発光部13Gとに重なる。図3に示す例においては、特に、第1発光部13Rが配置された単位領域10aと、第2発光部13Gが配置された単位領域10aと、第3発光部13Bが配置された単位領域10aとは、第2方向d2に並んでいる。この場合、単位レンズ21の1つが、法線方向d4において、第1発光部13Rと、第2発光部13Gと、第3発光部13Bとに重なる。
 図示された例において、単位レンズ21は、レンズ面21aでの屈折により光の進行方向を変化させる。単位レンズ21は、その長手方向(第2方向d2)に直交する断面において、円の一部分または楕円の一部分に相当する形状を有している。本実施の形態において、単位レンズ21は、第2方向d2に直交する断面において、円の一部分に相当する形状を有している。図4に示す例において、単位レンズ21は、第2方向d2に直交する断面において、半円形状を有している。本実施の形態において、単位レンズ21は、発光基板10から出射された光を、第2方向d2からの観察において当該光の進行方向が変化するように、屈折させる。
 ここで、単位レンズ21のレンズ面21aの曲率半径をrとする。本実施の形態において、単位レンズ21のレンズ面21aの曲率半径rは、単位レンズ21の第2方向d2に直交する断面に表れるレンズ面21aの形状から定められる。上述したように、図4に示す例において、単位レンズ21のレンズ面21aは、第2方向d2に直交する断面において、半円形状を有している。このため、曲率半径rは、図4に示す単位レンズ21の高さhと等しい。単位レンズ21の高さhは、単位レンズ21の頂点P1と、単位レンズ21と本体部23との境界L1と、の距離である。単位レンズ21の頂点P1は、単位レンズ21の第2方向d2に直交する断面に表れるレンズ面21a上の、発光基板10から最も遠ざかった位置の点である。図示はしないが、単位レンズ21の第2方向d2に直交する断面に表れるレンズ面21aの形状が、円の一部分に相当する形状でない場合、頂点P1における曲率半径を、曲率半径rと定め得る。
 また、発光部13と単位レンズ21との距離をdとする。本実施の形態において、距離dは、図4に示すように、発光部13と、単位レンズ21と本体部23との境界L1と、の距離に相当する。
 単位レンズ21のレンズ面21aの曲率半径r、及び発光部13と単位レンズ21との距離dは、発光部13のピッチp及び発光部13の幅wに応じて、表示装置1が視認される方向における輝度が十分に大きくなるように定められる。曲率半径rは、例えば2μm以上3000μm以下である。距離dは、例えば1μm以上7000μm以下である。
 単位レンズ21の第1方向d1に沿った長さ(幅)は、曲率半径rなどに応じて適宜定められる。単位レンズ21の第1方向d1に沿った長さ(幅)は、例えば10μm以上2000μm以下である。単位レンズ21の第2方向d2に沿った長さは、発光基板10の発光部13が設けられた領域の幅などに応じて適宜定められる。
 図3及び図4に示すように、第1方向d1における単位レンズ21のピッチをp2とする。単位レンズ21のピッチp2は、ある単位レンズ21の第1方向d1における中心C2から、当該単位レンズ21と第1方向d1において隣り合う単位レンズ21の第1方向d1における中心C2までの距離である。単位レンズ21のピッチp2は、例えば10μm以上2000μm以下である。本実施の形態において、単位レンズ21のピッチp2は、発光部13のピッチpと等しい。
 図4に示す例において、第1方向d1において隣り合う単位レンズ21同士は、互いに接している。図示はしないが、第1方向d1において隣り合う単位レンズ21同士の間に、隙間が設けられていてもよい。この場合、第1方向d1において隣り合う単位レンズ21同士の間に設けられた隙間の、第1方向d1における幅は、曲率半径r及び単位レンズ21のピッチp2などに応じて適宜定められる。
 封止層40は、発光基板10の発光部13が設けられた面を覆う層である。封止層40は、発光基板10の発光部13が設けられた面を覆うことによって、発光部13を保護する。封止層40は、透明な部材で形成されている。封止層40の材料は特に限られないが、例えば樹脂やシリコーンである。封止層40の屈折率は、例えば1.4以上1.8未満である。封止層40の、第1方向d1において発光部13に重なる部分の厚さは、例えば1μm以上7000μm以下である。
 基材層60は、光学シート20が設けられる基材の層である。本実施の形態において、光学シート20の本体部23は、基材層60上に設けられており、基材層60によって支持されている。基材層60は、透明な部材で形成されている。基材層60の材料は特に限られないが、例えばガラスである。基材層60の屈折率は、例えば1.4以上1.8未満である。基材層60の厚さは、例えば1μm以上7000μm以下である。
 粘着層50は、封止層40と基材層60とを粘着によって接合する層である。粘着層50は、透明な部材で形成されている。粘着層50の材料は特に限られないが、例えば光学用透明粘着シート(OCA)である。粘着層50を設けず、封止層40の特性により封止層40と基材層60とを接合してもよい。粘着層50の屈折率は、例えば1.4以上1.8未満である。粘着層50の厚さは、例えば1μm以上7000μm以下である。
 図4に示す例において、発光基板10と光学シート20との間は、封止層40、粘着層50及び基材層60によって充填されている。これによって、発光基板10と光学シート20との間には、空気層は形成されていない。封止層40、粘着層50及び基材層60の、第1方向d1において発光部13に重なる部分の厚さの合計は、例えば1μm以上7000μm以下である。
 本実施の形態の表示装置1において、上述した曲率半径r及び距離dは、上述した発光部13のピッチp及び発光部13の幅wに応じて、表示装置1が視認される方向における輝度が十分に大きくなるように定められる。
 本実施の形態における、使用者が表示装置1を視認すると想定される方向における輝度を十分に大きくできるような、輝度の条件の一例について説明する。表示装置1には、光を効率よく利用しつつ、特に使用者が表示装置1を視認すると想定される方向における輝度を大きくするために、当該方向に集光して、当該方向における輝度を大きくすることが求められる。特に使用者が表示装置1を視認すると想定される方向に集光することによって、発光基板10に光学シート20を重ねていない状態で発光基板10から光を出射させた場合と比較して、当該方向における輝度を、相対的に大きくできる。一例として、光学シート20の集光方向における輝度は、発光基板10に光学シート20を重ねていない状態で発光基板10から光を出射させた場合の法線方向d4における輝度の、150%以上となることが好ましい。発光基板10に光学シート20を重ねていない状態で発光基板10から光を出射させた場合の法線方向d4における輝度としては、光学シート20を重ねていない状態の発光基板10の、正面方向(法線方向d4)に対してなす角度θが-5°以上+5°以下の範囲における輝度の平均値を採用できる。
 その一方で、使用者が、光学シート20の集光方向に対して角度をなす方向から表示装置1を視認することも想定される。このような想定に基づいて、表示装置1には、集光方向に対してなす角度が一定の大きさ以下である方向における輝度も、一定以上大きくすることが求められる。
 図5は、表示装置1を第2方向d2から観察した様子を示す図である。図5では、表示装置1について、発光基板10や光学シート20などの表示装置1の構成要素の図示を省略して、表示装置1の概形のみを図示している。図5に示す符号L2を付した破線は、第2方向d2に垂直であり、且つ表示装置1の正面方向に対して角度θをなす方向に延びる、仮想の線である。
 図6は、図1乃至図5に示す表示装置1について、第2方向d2に垂直な方向における輝度の分布の一例を示す図である。図6の縦軸は、輝度の大きさを示している。図6の横軸は、縦軸に示す輝度が観察される方向の、表示装置1の正面方向に対してなす角度θ(光学シート20の集光方向に対してなす角度に相当)を示している。
 図6に示す輝度の分布において、光学シート20の集光方向に対してなす角度(表示装置1の正面方向に対してなす角度θ)が-5°以上+5°以下の範囲における輝度の最大値をMとする。最大値Mは、表示装置1の、第2方向d2に垂直であり、且つ光学シート20の集光方向に対してなす角度が-5°以上+5°以下である方向における輝度の最大値に相当する。また、図6に示す輝度の分布において、光学シート20の集光方向に対してなす角度(表示装置1の正面方向に対してなす角度θ)が-5°以上+5°以下の範囲における輝度の最小値をmとする。最小値mは、表示装置1の、第2方向d2に垂直であり、且つ光学シート20の集光方向に対してなす角度が-5°以上+5°以下である方向における輝度の最小値に相当する。ここで、図6に示す最小値mは、最大値Mの50%以上であることが好ましい。これによって、使用者が、光学シート20の集光方向に対して角度をなす方向から表示装置1を視認する場合であっても、使用者が表示装置1を視認する方向における輝度を確保できる。特に、第2方向d2からの観察において、使用者が表示装置1を視認する視線の方向の、光学シート20の集光方向に対してなす角度が-5°以上+5°以下である場合に、使用者が表示装置1を視認する方向における輝度を確保できる。また、最小値mが最大値Mの50%以上であることによれば、最小値mと最大値Mとの差が小さくなり、光学シート20の集光方向に対してなす角度が-5°以上+5°以下の範囲における輝度の均一性が高くなる。これによって、例えば使用者が表示装置1を視認する方向を角度θが-5°以上+5°以下の範囲において変更した場合に、使用者が視認する輝度の変化を小さくできる。
 上述したように、光学シート20の集光方向における輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされることによって、以下の効果が得られる。光学シート20の集光方向における輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることによって、光学シート20の集光方向における輝度を十分に大きくできる。これによって、使用者が集光方向から表示装置1を視認した場合に、使用者が視認する輝度を十分に大きくできる。これに加えて、上述した最小値mが最大値Mの50%以上であることによって、光学シート20の集光方向に対してなす角度が-5°以上+5°以下の方向における輝度を、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の、少なくとも75%以上にできる。これによって、使用者が、光学シート20の集光方向に対してなす角度が-5°以上+5°以下の方向から表示装置1を視認した場合に、使用者が視認する輝度を十分に大きくできる。以上より、使用者が光学シート20の集光方向に対してなす角度が-5°以上+5°以下の方向から表示装置1を視認した場合の、表示装置1の表示の見やすさを十分に確保できる。
 以上より、表示装置1の輝度の条件の一例として、上述したように、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされることを定めるのが好ましい。上述した輝度の条件を満たす表示装置1は、特にヘッドアップディスプレイとして好適に利用できる。上述した輝度の条件を満たす表示装置1は、特に自動車のフロントガラスに画像を投影するヘッドアップディスプレイとして好適に利用できる。
 本件発明者らは、使用者が表示装置1を視認すると想定される方向における輝度を十分に大きくできるような表示装置1、特に上述した輝度の条件を満たす表示装置1について鋭意研究を重ねた。その結果、本発明者らは、発光基板10における発光部13のピッチp及び発光部13の幅wの値に応じて曲率半径r及び距離dを調整することによって、上述した輝度の条件を満たす表示装置1を提供できることを見出した。特に、発光部13のピッチpに対する発光部13の幅wの割合、すなわちw/pの値に応じて曲率半径r及び距離dを調整することによって、上述した輝度の条件を満たす表示装置1を提供できることを見出した。
 以下、w/pの値ごとに、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが満たされ得るような、曲率半径r及び距離dの値の条件について説明する。特に、光学シート20の集光方向が表示装置1の正面方向である表示装置1において上述した輝度の条件が満たされるような、曲率半径r及び距離dの値の条件について説明する。
 w/pが0.025未満である場合、r/pが0.2以上0.525未満で且つ以下の式(1)が満たされること、r/pが0.525以上1.5未満で且つ以下の式(2)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(3)が満たされること、r/pが0.525以上0.725未満で且つ以下の式(4)が満たされること、及びr/pが0.725以上1.5未満で且つ以下の式(5)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000017
 図7aは、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。なお、以下に説明するシミュレーション試験は、単位レンズ21のレンズ面21aが円の一部に相当する形状を有することを前提として、曲率半径rを設定している。図7aは、特に、w/pの値が0.01となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図7aに示す表の「1」は、対応するr/p及びd/pの値において、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが満たされたことを意味する。例えば、表のr/pが0.2且つd/pが0.1となっている欄には「1」と表記されている。これは、r/pが0.2となり且つd/pが0.1となるように曲率半径r及び距離dを定めて輝度の分布をシミュレーションした結果、上述した輝度の条件が満たされたことを意味する。図7aに示す表の「0」は、対応するr/p及びd/pの値において、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとの少なくともいずれか一方が満たされなかったことを意味する。例えば、表のr/pが0.2且つd/pが0.3となっている欄には「0」と表記されている。これは、r/pが0.2となり且つd/pが0.3となるように曲率半径r及び距離dを定めて輝度の分布をシミュレーションした結果、上述した輝度の条件が満たされなかったことを意味する。
 図7aに示す試験の結果からも、r/pが0.2以上0.525未満で且つ式(1)が満たされること、r/pが0.525以上1.5未満で且つ式(2)が満たされること、r/pが0.2以上0.525未満で且つ式(3)が満たされること、r/pが0.525以上0.725未満で且つ式(4)が満たされること、及びr/pが0.725以上1.5未満で且つ式(5)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 w/pが0.025以上0.075未満である場合、r/pが0.2以上0.525未満で且つ以下の式(6)が満たされること、r/pが0.525以上1.5未満で且つ以下の式(7)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(8)が満たされること、r/pが0.525以上0.725未満で且つ以下の式(9)が満たされること、r/pが0.725以上1.5未満で且つ以下の式(10)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000018
 図7bは、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図7bは、特に、w/pの値が0.05となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図7bに示す表の「1」及び「0」の意味は、図7aに示す表の「1」及び「0」の意味と同様である。
 図7bに示す試験の結果からも、r/pが0.2以上0.525未満で且つ式(6)が満たされること、r/pが0.525以上1.5未満で且つ式(7)が満たされること、r/pが0.2以上0.525未満で且つ式(8)が満たされること、r/pが0.525以上0.725未満で且つ式(9)が満たされること、r/pが0.725以上1.5未満で且つ式(10)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 w/pが0.075以上0.15未満である場合、r/pが0.2以上0.375未満で且つ以下の式(11)が満たされること、r/pが0.375以上1.5未満で且つ以下の式(12)が満たされること、r/pが0.2以上0.725未満で且つ以下の式(13)が満たされること、及びr/pが0.725以上1.5未満で且つ以下の式(14)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000019
 図8は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図8は、特に、w/pの値が0.1となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図8に示す表の「1」及び「0」の意味は、図7aに示す表の「1」及び「0」の意味と同様である。
 図8に示す試験の結果からも、r/pが0.2以上0.375未満で且つ式(11)が満たされること、r/pが0.375以上1.5未満で且つ式(12)が満たされること、r/pが0.2以上0.725未満で且つ式(13)が満たされること、及びr/pが0.725以上1.5未満で且つ式(14)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 w/pが0.15以上0.25未満である場合、r/pが0.2以上0.725未満で且つ以下の式(15)が満たされること、r/pが0.725以上1.5未満で且つ以下の式(16)が満たされること、及びr/pが0.2以上1.5未満で且つ以下の式(17)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000020
 図9は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図9は、特に、w/pの値が0.2となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図9に示す表の「1」及び「0」の意味は、図7aに示す表の「1」及び「0」の意味と同様である。
 図9に示す試験の結果からも、r/pが0.2以上0.725未満で且つ式(15)が満たされること、r/pが0.725以上1.5未満で且つ式(16)が満たされること、及びr/pが0.2以上1.5未満で且つ式(17)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 w/pが0.25以上0.35未満である場合、r/pが0.25以上0.975未満で且つ以下の式(18)が満たされること、及びr/pが0.975以上1.5未満で且つ以下の式(19)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000021
 図10は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図10は、特に、w/pの値が0.3となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図10に示す表の「1」及び「0」の意味は、図7aに示す表の「1」及び「0」の意味と同様である。
 図10に示す試験の結果からも、r/pが0.25以上0.975未満で且つ式(18)が満たされること、及びr/pが0.975以上1.5未満で且つ式(19)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 w/pが0.35以上0.45未満である場合、r/pが0.3以上1.5未満で且つ以下の式(20)が満たされることが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000022
 図11は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図11は、特に、w/pの値が0.4となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図11に示す表の「1」及び「0」の意味は、図7aに示す表の「1」及び「0」の意味と同様である。
 図11に示す試験の結果からも、r/pが0.3以上1.5未満で且つ式(20)が満たされれば、上述した輝度の条件が満たされることが理解できる。
 w/pが0.45以上0.55未満である場合、r/pが0.4以上1.5未満で且つ以下の式(21)が満たされることが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000023
 図12は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図12は、特に、w/pの値が0.5となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図12に示す表の「1」及び「0」の意味は、図7aに示す表の「1」及び「0」の意味と同様である。
 図12に示す試験の結果からも、r/pが0.4以上1.5未満で且つ式(21)が満たされれば、上述した輝度の条件が満たされることが理解できる。
 w/pが0.55以上0.65未満である場合、r/pが0.45以上1.5未満で且つ以下の式(22)が満たされることが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000024
 図13は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図13は、特に、w/pの値が0.6となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図13に示す表の「1」及び「0」の意味は、図7aに示す表の「1」及び「0」の意味と同様である。
 図13に示す試験の結果からも、r/pが0.45以上1.5未満で且つ式(22)が満たされれば、上述した輝度の条件が満たされることが理解できる。
 r/pは、0.2以上と定められていてもよい。r/pは、1.5以下と定められていてもよい。d/pは、0.1以上と定められていてもよい。d/pは、3.5以下と定められていてもよい。
 上述したように発光部13のピッチp及び発光部13の幅wの値に応じて曲率半径r及び距離dを調整することによって、上述した輝度の条件を満たす表示装置1を提供できる理由として、考えられる事項について説明する。
 図14乃至図16は、発光基板10の発光部13から出射された光が光学シート20を通過するときの光の経路の一例を示す図である。図14乃至図16においては、封止層40、粘着層50及び基材層60の図示を省略している。図14乃至図16は、いずれも表示装置1を第2方向d2から観察した様子を示している。図14は、発光部13のピッチpに対する距離dの比率が特に小さい場合の、光の経路の一例を示している。図15は、発光部13のピッチpに対する距離dの比率が特に大きい場合の、光の経路の一例を示している。図16は、発光部13のピッチpに対する距離dの比率が、図14における比率よりは大きく図15における比率よりは小さい場合の、光の経路の一例を示している。図14乃至図16に示す符号L3を付した線は、各図における光の経路を示している。
 図14に示す例においては、発光部13のピッチpに対する距離dの比率が特に小さい。このため、図14に示す例においては、発光部13から出射された光の一部が、小さな入射角でレンズ面21aに到達している。このため、図14に示す例において、単位レンズ21は、当該光の一部を正面方向に集光できていない。
 図15に示す例においては、発光部13のピッチpに対する距離dの比率が特に大きい。このため、発光部13の正面方向に位置する単位レンズ21以外の単位レンズ21にも、発光部13から出射された光の一部が到達している。このため、図15に示す例において、単位レンズ21は、当該光の一部を正面方向に集光できていない。
 これに対して、図16に示す例においては、発光部13のピッチpに対する距離dの比率が、図14における比率よりは大きく図15における比率よりは小さい。このため、図16に示す例においては、図14に示す例と比較して小さな入射角でレンズ面21aに到達する光が少なく、且つ図15に示す例と比較して発光部13の正面方向に位置する単位レンズ21以外の単位レンズ21に到達する光が少ないと考えられる。これにより、図16に示す例では、図14及び図15に示す例と比較して、発光部13から出射された光を正面方向に集光する効果がより大きいと考えられる。
 図17a乃至図17gは、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを適宜設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示すグラフである。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図17a乃至図17gの符号Vが付された縦軸は、輝度の大きさを、光学シート20を重ねていない状態の発光基板10の、正面方向(法線方向d4)に対してなす角度θが-5°以上+5°以下の範囲における輝度の平均値に対する比率によって表している。図17a乃至図17gの横軸は、縦軸に示す輝度が観察される方向の、表示装置1の正面方向(法線方向d4)に対してなす角度θ(°)を示している。
 図17a乃至図17gは、発光部13のピッチp、発光部13の幅w及び曲率半径rを一定値とし、距離dを変更したときの、表示装置1の第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示している。図17a乃至図17gにおいては、w/pの値が0.2となりr/pの値が0.7となるように発光部13のピッチp、発光部13の幅w及び曲率半径rを定めた上で、距離dを変更することによってd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。
 図17aに示す5本の曲線は、それぞれd/pの値が0.1、0.2、0.3、0.4又は0.5となるように距離dを定めたときの輝度の分布を表す。図17bに示す5本の曲線は、それぞれd/pの値が0.6、0.7、0.8、0.9又は1となるように距離dを定めたときの輝度の分布を表す。図17cに示す5本の曲線は、それぞれd/pの値が1.1、1.2、1.3、1.4又は1.5となるように距離dを定めたときの輝度の分布を表す。図17dに示す5本の曲線は、それぞれd/pの値が1.6、1.7、1.8、1.9又は2となるように距離dを定めたときの輝度の分布を表す。図17eに示す5本の曲線は、それぞれd/pの値が2.1、2.2、2.3、2.4又は2.5となるように距離dを定めたときの輝度の分布を表す。図17fに示す5本の曲線は、それぞれd/pの値が2.6、2.7、2.8、2.9又は3となるように距離dを定めたときの輝度の分布を表す。図17gに示す5本の曲線は、それぞれd/pの値が3.1、3.2、3.3、3.4又は3.5となるように距離dを定めたときの輝度の分布を表す。
 図17a乃至図17gを参照すると、特にd/pの値が小さい図17aにおいては、図17dなどと比較して正面方向における輝度が小さくなっている。図17aにおいては、正面方向からずれた方向において輝度が最大となっている。これは、図14に示すように、発光部13から出射された光の一部が、小さな入射角でレンズ面21aに到達しているために、単位レンズ21が当該光の一部を正面方向に集光できていないことを反映していると考えられる。
 また、特にd/pの値が大きい図17gにおいては、図17dなどと比較して正面方向における輝度が小さくなっている。図17aに示す輝度の分布は、正面方向において輝度の極大値を有するとともに、正面方向からずれた複数の方向においても輝度の極大値を有している。これは、図15に示すように、発光部13の正面方向に位置する単位レンズ21以外の単位レンズ21にも、発光部13から出射された光の一部が到達していることを反映していると考えられる。
 これに対して、d/pの値が図17aよりは大きく図17gよりは小さい図17dにおいては、図17a及び図17gと比較して正面方向における輝度が大きくなっている。これは、図17dにおいては、図16に示す例のように、図17a及び図17gと比較して、発光部13から出射された光を正面方向に集光する効果がより大きくなっていることを反映していると考えられる。また、発光部13から出射された光を正面方向に集光する効果が大きくなるようなd/pの値の条件は、w/pや曲率半径rの値に応じて変化すると考えられる。
 ここで、上述した、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとがともに満たされるという表示装置1の輝度の条件について検討する。表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となるためには、図16及び図17dのように、光を集光方向(正面方向)に集光する効果が大きいほうが好ましい。一方で、上述した最小値mが最大値Mの50%以上となるためには、図14、図15、図17a及び図17gのように、光を集光方向に集光する効果が小さいほうが好ましい。本実施の形態の光学シート20は、当該輝度の条件を考慮して、あえて、光を集光方向に集光する効果が小さくなるように設計されてもよい。
 上述したように発光部13のピッチp及び発光部13の幅wの値に応じて曲率半径r及び距離dを調整することによって、光学シート20による光を集光する効果の大きさを変更できる。例えば、発光部13のピッチp及び発光部13の幅wの値に応じて曲率半径r及び距離dを調整することで、光を集光方向に集光する効果を小さくし得る。また、当該調整によって、光学シート20による光を集光する効果の大きさを、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となる程度には大きくし得る。また、光学シート20による光を集光する効果の大きさを、上述した最小値mが最大値Mの50%以上となる程度には小さくし得る。これにより、上述したように発光部13のピッチp及び発光部13の幅wの値に応じて曲率半径r及び距離dを調整することによって、上述した輝度の条件を満たす表示装置1を提供できると考えられる。特に、光学シート20の集光方向が表示装置1の正面方向である表示装置1において上述した輝度の条件が満たされると考えられる。以上より、上述したように発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを調整することで、集光方向における輝度を大きくしつつ、集光方向に対して角度をなす方向における輝度を確保できる。
 特に、本件発明者らは、シミュレーション試験の結果から、上述したように発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを調整すれば、光学シート20の屈折率が、表示装置1が備える通常の光学シート20の屈折率の範囲にあれば、集光方向における輝度を大きくしつつ集光方向に対して角度をなす方向における輝度を確保できる傾向を見出した。特に、光学シート20の材質が樹脂である場合に、樹脂の種類によらず、安定的に、集光方向における輝度を大きくしつつ集光方向に対して角度をなす方向における輝度を確保できる傾向を見出した。また、本件発明者らは、シミュレーション試験の結果から、上述したように発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを調整すれば、発光基板10と光学シート20との間に設けられる層が、通常の表示装置1において設けられる層であれば、集光方向における輝度を大きくしつつ集光方向に対して角度をなす方向における輝度を確保できる傾向を見出した。特に、発光基板10と光学シート20との間に空気層が形成されていない場合に、発光基板10と光学シート20との間に設けられる層の種類によらず、安定的に、集光方向における輝度を大きくしつつ集光方向に対して角度をなす方向における輝度を確保できる傾向を見出した。特に、発光基板10と光学シート20との間に、上述した封止層40、粘着層50及び基材層60が設けられており、封止層40、粘着層50及び基材層60の屈折率及び厚みが上述した範囲にある場合に、安定的に、集光方向における輝度を大きくしつつ集光方向に対して角度をなす方向における輝度を確保できる傾向を見出した。
 従来技術においては、光学シートについて、光を集光方向に集光する効果を高くすることが追及されてきた。これに対して、本実施の形態の光学シート20は、上述したように、光を集光方向に集光する効果が小さくなるように設計されてもよい。本実施の形態の光学シート20は、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dが調整されることで、光を集光方向に集光する効果が小さくされていてもよい。このような思想を含んでいる点において、本実施の形態の光学シート20は、従来技術とは異なっている。
 本実施の形態の表示装置1は、上述したように発光部13のピッチp及び発光部13の幅wの値に応じて曲率半径r及び距離dを調整することによって、以下の効果も発揮し得る。光を集光方向に集光する効果が大きい表示装置1では、例えば図17dのように、第2方向に垂直な方向における輝度の分布において、光学シート20の集光方向に対応するピークの幅が小さくなる。このため、発光基板10に対する光学シート20の位置が第1方向d1にずれると、ずれがわずかであったとしても、光学シート20の集光方向における輝度は大きく低下する。これに対して、上述したように発光部13のピッチp及び発光部13の幅wの値に応じて曲率半径r及び距離dが調整された表示装置1によれば、光を集光方向に集光する効果が大きくなり過ぎないよう抑えられる。このため、発光基板10に対する光学シート20の位置がずれたとしても、光学シート20の集光方向における輝度が低下しにくい。これによって、発光基板10に対して光学シート20を取り付けるときに要求される位置合わせの精度を、小さく抑えられる。
 また、本実施の形態の表示装置1は、上述したように発光部13のピッチp及び発光部13の幅wの値に応じて曲率半径r及び距離dを調整することによって、以下の効果も発揮し得る。特に、単位レンズ21の1つが、法線方向d4において、第1発光部13Rと、第1発光部13Rとは異なる波長の光を発する第2発光部13Gとに重なっている場合について考える。ここで、単位レンズ21のレンズ面21aにおける屈折率は、光の波長に応じて異なる。このため、光学シート20による光を集光方向に集光する効果の大きさには、光の波長に応じて差が生じる。これによって、例えば、第1発光部13R及び第2発光部13Gが、集光方向における輝度が同じとなるように発光したとしても、光学シート20を通過した後の集光方向における輝度に差が生じる。そして、光を集光方向に集光する効果自体が大きいほど、光の波長に応じた光を集光する効果の差も大きくなりやすい。これに対して、上述したように発光部13のピッチp及び発光部13の幅wの値に応じて曲率半径r及び距離dが調整された表示装置1によれば、光を集光方向に集光する効果が大きくなり過ぎないよう抑えられる。このため、光の波長に応じた光を集光する効果の差を、小さく抑えられる。これによって、例えば、第1発光部13R及び第2発光部13Gの発光を制御する上で、光の波長に応じた光を集光する効果の差を考慮せずとも、表示装置1が発する光の波長ごとの輝度の比率を、十分に制御し得る。
 次に、上述した表示装置1の製造方法の一例について説明する。まず、発光基板10を準備する。また、発光基板10の発光部13が設けられた面を覆うように封止層40を形成する。
 また、光学シート20を製造する。光学シート20の製造においては、基材層60と、基材層60上に設けられた本体部23及び複数の単位レンズ21を有する光学シート20とが用意される。本体部23及び単位レンズ21を有する光学シート20は、本体部23と単位レンズ21とを樹脂賦型により一体的に作製することで、作製できる。なお、基材層60上に本体部23を設けた上で、本体部23に複数の単位レンズ21を設けることで、基材層60上に光学シート20を設けてもよい。この場合、本体部23は、樹脂を賦型することで作製してもよいし、樹脂製板材に切削等の機械加工を施すことで作製してもよいし、樹脂賦型と切削等の機械加工とを組み合わせて作製してもよい。
 次に、発光基板10の発光部13が設けられた面を覆うように形成された封止層40と、光学シート20が設けられた基材層60とを、粘着層50を介して接合する。これによって、図1乃至図5に示す表示装置1が製造される。
 なお、本実施の形態の表示装置1の製造方法において、曲率半径r及び距離dは、上述したように、w/pの値に応じて調整される。すなわち、本実施の形態の表示装置1の製造方法は、w/pの値に応じて曲率半径r及び距離dを調整する調整工程を備える。曲率半径rの調整は、光学シート20を製造する際に、作製する単位レンズ21の曲率半径rを調整することによって行い得る。距離dの調整は、作製する封止層40、粘着層50、基材層60及び光学シート20の本体部23の少なくともいずれか1つの厚さを調整することによって行い得る。
 本実施の形態の調整工程において、w/pが0.025未満の場合には、r/pが0.2以上0.525未満で且つ上述した式(1)が満たされること、r/pが0.525以上1.5未満で且つ上述した式(2)が満たされること、r/pが0.2以上0.525未満で且つ上述した式(3)が満たされること、r/pが0.525以上0.725未満で且つ上述した式(4)が満たされること、及びr/pが0.725以上1.5未満で且つ上述した式(5)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 本実施の形態の調整工程において、w/pが0.025以上0.075未満の場合には、r/pが0.2以上0.525未満で且つ上述した式(6)が満たされること、r/pが0.525以上1.5未満で且つ上述した式(7)が満たされること、r/pが0.2以上0.525未満で且つ上述した式(8)が満たされること、r/pが0.525以上0.725未満で且つ上述した式(9)が満たされること、r/pが0.725以上1.5未満で且つ上述した式(10)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 本実施の形態の調整工程において、w/pが0.075以上0.15未満の場合には、r/pが0.2以上0.375未満で且つ上述した式(11)が満たされること、r/pが0.375以上1.5未満で且つ上述した式(12)が満たされること、r/pが0.2以上0.725未満で且つ上述した式(13)が満たされること、及びr/pが0.725以上1.5未満で且つ上述した式(14)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 本実施の形態の調整工程において、w/pが0.15以上0.25未満の場合には、r/pが0.2以上0.725未満で且つ上述した式(15)が満たされること、r/pが0.725以上1.5未満で且つ上述した式(16)が満たされること、及びr/pが0.2以上1.5未満で且つ上述した式(17)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 本実施の形態の調整工程において、w/pが0.25以上0.35未満の場合には、r/pが0.25以上0.975未満で且つ上述した式(18)が満たされること、及びr/pが0.975以上1.5未満で且つ上述した式(19)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 本実施の形態の調整工程において、w/pが0.35以上0.45未満の場合には、r/pが0.3以上1.5未満で且つ上述した式(20)が満たされるように、曲率半径r及び距離dを調整する。
 本実施の形態の調整工程において、w/pが0.45以上0.55未満の場合には、r/pが0.4以上1.5未満で且つ上述した式(21)が満たされるように、曲率半径r及び距離dを調整する。
 本実施の形態の調整工程において、w/pが0.55以上0.65未満の場合には、r/pが0.45以上1.5未満で且つ上述した式(22)が満たされるように、曲率半径r及び距離dを調整する。
 以上の調整工程を備える本実施の形態の表示装置1の製造方法によれば、輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされた表示装置1を製造し得る。
 なお、上述した実施の形態に対して、様々な変更を加えることが可能である。以下、図面を参照しながら、変形の一例について説明する。以下の説明及び以下の説明で用いる図面では、上述した具体例と同様に構成され得る部分について、上述の具体例における対応する部分に対して用いた符号と同一の符号を用いるとともに、重複する説明を省略する場合がある。また、上述した実施の形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。
 (変形例1)
 上述した実施の形態においては、図6に示し且つ上述した最小値mが最大値Mの50%以上である表示装置1について説明した。しかしながら、表示装置1の輝度の条件は、これに限られない。図6に示す輝度の分布において、光学シート20の集光方向に対してなす角度(表示装置1の正面方向に対してなす角度θ)が-10°以上+10°以下の範囲における輝度の最大値をM2とする。最大値M2は、表示装置1の、第2方向d2に垂直であり、且つ光学シート20の集光方向に対してなす角度が-10°以上+10°以下である方向における輝度の最大値に相当する。また、図6に示す輝度の分布において、光学シート20の集光方向に対してなす角度(表示装置1の正面方向に対してなす角度θ)が-10°以上+10°以下の範囲における輝度の最小値をm2とする。最小値m2は、表示装置1の、第2方向d2に垂直であり、且つ光学シート20の集光方向に対してなす角度が-10°以上+10°以下である方向における輝度の最小値に相当する。ここで、本変形例においては、表示装置1の輝度の条件の1つとして、図6に示す最小値m2が、最大値M2の50%以上であることを定める。これによって、第2方向d2からの観察において、使用者が表示装置1を視認する視線の方向の、光学シート20の集光方向に対してなす角度が-10°以上+10°以下である場合に、使用者が表示装置1を視認する方向における輝度を確保できる。
 最小値m2が最大値M2の50%以上であることを定めることによって、上述した実施の形態のように最小値mが最大値Mの50%以上であることを定めた場合と比較して、以下の効果が得られる。第2方向d2からの観察において、使用者が表示装置1を視認する視線の方向の光学シート20の集光方向に対してなす角度が-10°以上+10°以下である場合に、使用者が表示装置1を視認する方向における輝度を確保できる。このため、より広い視野角において、表示装置1の輝度を確保できる。また、最小値m2が最大値M2の50%以上であることを定めることによって、最小値mが最大値Mの50%以上であることを定めた場合と比較して、第2方向に垂直な方向における輝度の分布において、光学シート20の集光方向に対応するピークの幅が大きくなる。このため、最小値m2が最大値M2の50%以上であることを定めた場合には、発光基板10に対する光学シート20の位置が第1方向d1にずれたときに、光学シート20の集光方向における輝度が、より低下しにくい。これによって、発光基板10に対して光学シート20を取り付けるときに要求される位置合わせの精度を、小さく抑えられる。
 また、本変形例においても、上述した実施の形態と同様に、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることを定める。光学シート20を重ねていない状態の発光基板10の輝度としては、光学シート20を重ねていない状態の発光基板10の、正面方向(法線方向d4)に対してなす角度θが-10°以上+10°以下の範囲における輝度の平均値を採用できる。すなわち、変形例1においては、表示装置1の輝度の条件として、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとを定める。これによって、以下の効果が得られる。光学シート20の集光方向における輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることによって、光学シート20の集光方向における輝度を十分に大きくできる。これによって、使用者が正面方向から表示装置1を視認した場合に、使用者が視認する輝度を十分に大きくできる。これに加えて、上述した最小値mが最大値Mの50%以上であることによって、光学シート20の集光方向に対してなす角度が-10°以上+10°以下の方向における輝度を、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の、少なくとも75%以上にできる。これによって、使用者が、光学シート20の集光方向に対してなす角度が-10°以上+10°以下の方向から表示装置1を視認した場合に、使用者が視認する輝度を十分に大きくできる。以上より、使用者が光学シート20の集光方向に対してなす角度が-10°以上+10°以下の方向から表示装置1を視認した場合の、表示装置1の表示の見やすさを十分に確保できる。上述した変形例1における輝度の条件を満たす表示装置1は、特にヘッドアップディスプレイとして好適に利用できる。上述した変形例1における輝度の条件を満たす表示装置1は、特に自動車のフロントガラスに画像を投影するヘッドアップディスプレイとして好適に利用できる。
 以下、w/pの値ごとに、上述した変形例1における輝度の条件が満たされ得るような、曲率半径r及び距離dの値の条件について説明する。特に、光学シート20の集光方向が表示装置1の正面方向である表示装置1において変形例1における輝度の条件が満たされるような、曲率半径r及び距離dの値の条件について説明する。
 w/pが0.025未満である場合、r/pが0.2以上0.525未満で且つ以下の式(23)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(24)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000025
 図18aは、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図18aは、特に、w/pの値が0.01となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図18aに示す表の「1」は、対応するr/p及びd/pの値において、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが満たされたことを意味する。例えば、表のr/pが0.2且つd/pが0.1となっている欄には「1」と表記されている。これは、r/pが0.2となり且つd/pが0.1となるように曲率半径r及び距離dを定めて輝度の分布をシミュレーションした結果、上述した変形例1における輝度の条件が満たされたことを意味する。図18aに示す表の「0」は、対応するr/p及びd/pの値において、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとの少なくともいずれか一方が満たされなかったことを意味する。例えば、表のr/pが0.2且つd/pが0.3となっている欄には「0」と表記されている。これは、r/pが0.2となり且つd/pが0.3となるように曲率半径r及び距離dを定めて輝度の分布をシミュレーションした結果、上述した変形例1における輝度の条件が満たされなかったことを意味する。
 図18aに示す試験の結果からも、r/pが0.2以上0.525未満で且つ式(23)が満たされること、及びr/pが0.525以上1.5未満で且つ式(24)が満たされることの、少なくともいずれか1つが成立すれば、上述した変形例1における輝度の条件が満たされることが理解できる。
 w/pが0.025以上0.15未満である場合、r/pが0.2以上0.525未満で且つ以下の式(25)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(26)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000026
 図18bは、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図18bは、特に、w/pの値が0.05となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図18bに示す表の「1」及び「0」の意味は、図18aに示す表の「1」及び「0」の意味と同様である。
 図18cは、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図18cは、特に、w/pの値が0.1となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図18cに示す表の「1」及び「0」の意味は、図18aに示す表の「1」及び「0」の意味と同様である。
 図18b及び図18cに示す試験の結果からも、r/pが0.2以上0.525未満で且つ式(25)が満たされること、及びr/pが0.525以上1.5未満で且つ式(26)が満たされることの、少なくともいずれか1つが成立すれば、上述した変形例1における輝度の条件が満たされることが理解できる。
 w/pが0.15以上0.25未満である場合、r/pが0.2以上0.525未満で且つ以下の式(27)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(28)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000027
 図19は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図19は、特に、w/pの値が0.2となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図19に示す表の「1」及び「0」の意味は、図18aに示す表の「1」及び「0」の意味と同様である。
 図19に示す試験の結果からも、r/pが0.2以上0.525未満で且つ式(27)が満たされること、及びr/pが0.525以上1.5未満で且つ式(28)が満たされることの、少なくともいずれか1つが成立すれば、上述した変形例1における輝度の条件が満たされることが理解できる。
 w/pが0.25以上0.35未満である場合、r/pが0.25以上0.425未満で且つ以下の式(29)が満たされること、及びr/pが0.425以上1.5未満で且つ以下の式(30)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000028
 図20は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図20は、特に、w/pの値が0.3となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図20に示す表の「1」及び「0」の意味は、図18aに示す表の「1」及び「0」の意味と同様である。
 図20に示す試験の結果からも、r/pが0.25以上0.425未満で且つ式(29)が満たされること、及びr/pが0.425以上1.5未満で且つ式(30)が満たされることの、少なくともいずれか1つが成立すれば、上述した変形例1における輝度の条件が満たされることが理解できる。
 w/pが0.35以上0.45未満である場合、r/pが0.3以上0.525未満で且つ以下の式(31)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(32)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000029
 図21は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図21は、特に、w/pの値が0.4となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図21に示す表の「1」及び「0」の意味は、図18aに示す表の「1」及び「0」の意味と同様である。
 図21に示す試験の結果からも、r/pが0.3以上0.525未満で且つ式(31)が満たされること、及びr/pが0.525以上1.5未満で且つ式(32)が満たされることの、少なくともいずれか1つが成立すれば、上述した変形例1における輝度の条件が満たされることが理解できる。
 w/pが0.45以上0.55未満である場合、r/pが0.4以上0.625未満で且つ以下の式(33)が満たされること、及びr/pが0.625以上1.5未満で且つ以下の式(34)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000030
 図22は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図22は、特に、w/pの値が0.5となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図22に示す表の「1」及び「0」の意味は、図18aに示す表の「1」及び「0」の意味と同様である。
 図22に示す試験の結果からも、r/pが0.4以上0.625未満で且つ式(33)が満たされること、及びr/pが0.625以上1.5未満で且つ式(34)が満たされることの、少なくともいずれか1つが成立すれば、上述した変形例1における輝度の条件が満たされることが理解できる。
 w/pが0.55以上0.65未満である場合、r/pが0.45以上0.625未満で且つ以下の式(35)が満たされること、及びr/pが0.625以上1.5未満で且つ以下の式(36)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000031
 図23は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図23は、特に、w/pの値が0.6となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションした試験の結果を示している。図23に示す表の「1」及び「0」の意味は、図18aに示す表の「1」及び「0」の意味と同様である。
 図23に示す試験の結果からも、r/pが0.45以上0.625未満で且つ式(35)が満たされること、及びr/pが0.625以上1.5未満で且つ式(36)が満たされることの、少なくともいずれか1つが成立すれば、上述した変形例1における輝度の条件が満たされることが理解できる。
 次に、変形例1の表示装置1の製造方法の一例について説明する。変形例1の表示装置1の製造方法は、上述した実施の形態の表示装置1と同様に、w/pの値に応じて曲率半径r及び距離dを調整する調整工程を備える。
 変形例1の調整工程において、w/pが0.025未満の場合には、r/pが0.2以上0.525未満で且つ上述した式(23)が満たされること、及びr/pが0.525以上1.5未満で且つ上述した式(24)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例1の調整工程において、w/pが0.025以上0.15未満の場合には、r/pが0.2以上0.525未満で且つ上述した式(25)が満たされること、及びr/pが0.525以上1.5未満で且つ上述した式(26)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例1の調整工程において、w/pが0.15以上0.25未満の場合には、r/pが0.2以上0.525未満で且つ上述した式(27)が満たされること、及びr/pが0.525以上1.5未満で且つ上述した式(28)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例1の調整工程において、w/pが0.25以上0.35未満の場合には、r/pが0.25以上0.425未満で且つ上述した式(29)が満たされること、及びr/pが0.425以上1.5未満で且つ上述した式(30)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例1の調整工程において、w/pが0.35以上0.45未満の場合には、r/pが0.3以上0.525未満で且つ上述した式(31)が満たされること、及びr/pが0.525以上1.5未満で且つ上述した式(32)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例1の調整工程において、w/pが0.45以上0.55未満の場合には、r/pが0.4以上0.625未満で且つ上述した式(33)が満たされること、及びr/pが0.625以上1.5未満で且つ上述した式(34)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例1の調整工程において、w/pが0.55以上0.65未満の場合には、r/pが0.45以上0.625未満で且つ上述した式(35)が満たされること、及びr/pが0.625以上1.5未満で且つ上述した式(36)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 以上の調整工程を備える変形例1の表示装置1の製造方法によれば、輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされた表示装置1を製造し得る。特に、光学シート20の集光方向が表示装置1の正面方向である表示装置1において、変形例1における輝度の条件が満たされると考えられる。以上より、変形例1に示したように発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを調整することによっても、集光方向における輝度を大きくしつつ、集光方向に対して角度をなす方向における輝度を確保できる。
 (変形例2)
 上述した実施の形態及び変形例においては、発光基板10から出射される第2方向d2に垂直な方向において拡散されている光を、光学シート20を用いて表示装置1の正面方向に集光させる、表示装置1について示した。しかしながら、表示装置1において光が集光される方向は、これに限られない。
 図24aは、変形例2の表示装置1の、第2方向d2に垂直な断面を示す断面図である。図24aに示す符号L4を付した線は、変形例2において発光基板10の発光部13から出射された光が光学シート20を通過するときの光の経路の一例を示している。
 変形例2においては、発光基板10の板面への法線方向d4からの観察において、単位レンズ21の1つの第1方向d1における中心C2が、対応する単位領域第2方向列10cの1つをなす単位領域10aの発光部13の第1方向d1における中心C1からずれている。変形例2においては、単位レンズ21の各々の第1方向d1における中心C2が、対応する単位領域第2方向列10cの各々をなす単位領域10aの発光部13の第1方向d1における中心C1からずれている。このことは、図24aにおいて、単位レンズ21の1つの第1方向d1における中心C2と、対応する単位領域第2方向列10cの1つをなす単位領域10aの発光部13の第1方向d1における中心C1とが、法線方向d4において重なっていないことからも理解できる。
 変形例2においては、上述したように中心C2が中心C1からずれていることによって、発光基板10から出射される第2方向d2に垂直な方向において拡散されている光が、第2方向d2に垂直且つ表示装置1の正面方向(法線方向d4)に対して角度をなす方向d3に集光される。発光基板10から出射される光が集光される方向d3は、第1方向d1における中心C2の中心C1に対するずれの大きさを変更することによって調整し得る。図24bは、図24aに示す表示装置1について、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果の一例を示すグラフである。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図24bの符号Vが付された縦軸は、輝度の大きさを、光学シート20を重ねていない状態の発光基板10の、正面方向(法線方向d4)に対してなす角度θが-5°以上+5°以下の範囲における輝度の平均値に対する比率によって表している。図24bの横軸は、縦軸に示す輝度が観察される方向の、表示装置1の正面方向(法線方向d4)に対してなす角度θ(°)を示している。図24bにおいては、正面方向に対してなす角度がθ1である方向d3に、発光基板10から出射される光が集光されている。換言すれば、方向d3が、光学シート20の集光方向となっている。
 また、図24aに示す例において、表示装置1は、光角度調整層70をさらに備えている。光角度調整層70は、光学シート20の第2面20b側に位置している。図24aに示す例において、光角度調整層70は、光学シート20の第2面20bと向かい合っている。光角度調整層70は、光学シート20からの光の進行方向の、発光基板10の板面への法線方向d4に対する角度を調整する。一例として、光角度調整層70は、光学シート20からの光の進行方向の法線方向d4に対する角度を、第1方向d1からの観察において進行方向が変化するように調整する。このような光角度調整層70の一例として、光角度調整層70は、発光基板10から出射されて光学シート20を通過した第1方向d1に垂直な方向において拡散されている光を、光角度調整層70の面に対して垂直な方向に集光する機能を有する光角度調整層70が挙げられる。このような光角度調整層70により、第1方向d1から観察した光の進行方向を、光角度調整層70の面に対して垂直な方向に向け得る。
 なお、光角度調整層70が光の進行方向の法線方向d4に対する角度を調整する態様は、上述した態様に限定されない。光角度調整層70は、光学シート20からの光の進行方向の法線方向d4に対する角度を、第2方向d2からの観察において進行方向が変化するように調整してもよい。また、光角度調整層70は、光学シート20からの光の進行方向の法線方向d4に対する角度を、第1方向d1及び第2方向d2に交差する方向からの観察において進行方向が変化するように調整してもよい。また、表示装置1は、光の進行方向の法線方向d4に対する角度を、ある方向からの観察において進行方向が変化するように調整する第1の光角度調整層70と、光の進行方向の法線方向d4に対する角度を、ある方向に交差する別の方向からの観察において進行方向が変化するように調整する第2の光角度調整層70と、を含む、複数の光角度調整層70を備えてもよい。
 一例として、光角度調整層70はルーバーシートである。一具体例として、光角度調整層70が、第1方向d1に垂直な方向において拡散されている光を、光角度調整層70の面に対して垂直な方向に集光する機能を有するルーバーシートである場合について説明する。この場合、ルーバーシートは、第1方向d1に延びる複数の光吸収部と、第1方向d1に延びる複数の光透過部と、を有する。光吸収部と光透過部とは、第2方向d2に互い違いに配置されている。ルーバーシートの光吸収部は、法線方向d4に対して傾斜した傾斜面であって、第1方向d1に垂直な方向において拡散されている光を光角度調整層70の面に対して垂直な方向に反射させ得る傾斜面を有している。この場合、第2方向d2に対して非垂直な光が光吸収部の傾斜面で反射されることによって、光が光角度調整層70の面に対して垂直な方向に集光される。
 表示装置1において、使用者が表示装置1を視認すると想定される方向が、表示装置1の正面方向ではない場合もあり得る。ここで、変形例2においては、発光基板10から出射される光が表示装置1の正面方向に対して角度をなす方向d3に集光される。これにより、使用者が表示装置1を視認すると想定される方向が表示装置1の正面方向ではない場合でも、当該方向に方向d3を合わせることで、当該方向に光を集光させ得る。
 変形例2の表示装置1は、ヘッドアップディスプレイとして好適に利用できる。変形例2の表示装置1は、特に、自動車のフロントガラスに画像を投影するヘッドアップディスプレイとして好適に利用できる。以下、変形例2の表示装置1を、自動車のフロントガラスに画像を投影するヘッドアップディスプレイとして利用する場合の作用効果について説明する。
 図25は、表示装置1を、自動車90のフロントガラス91に画像を投影するヘッドアップディスプレイとして利用する態様の一例を示す図である。図25において、表示装置1は、自動車90の前後方向に直交し且つ自動車90の上下方向に直交する方向に第2方向d2を向けて配置されている。そして、図25は、表示装置1及び自動車90を、表示装置1の第2方向d2から観察した様子を示している。図25では、表示装置1について、発光基板10や光学シート20などの表示装置1の構成要素の図示を省略して、表示装置1の概形のみを図示している。図25に示す符号L6を付した線は、表示装置1が発する光の想定経路の一例を示している。
 表示装置1を、図25に示すように自動車90のヘッドアップディスプレイとして利用する場合、使用者Hは、フロントガラス91を介して、表示装置1が表示する画像を視認しているといえる。この場合、表示装置1からの光がフロントガラス91において反射されて使用者Hの目に達するまでの想定経路L6のうち、表示装置1からフロントガラス91までの想定経路の方向d6を、使用者が表示装置1を視認すると想定される方向とみなすことができる。表示装置1を、図25に示すように自動車90のヘッドアップディスプレイとして利用する場合、自動車90内の限られたスペースに表示装置1を配置する必要があるために、表示装置1を配置できる角度が限られる場合がある。また、表示装置1が画像を投影するフロントガラス91の角度も、表示装置1によって画像を投影しやすくする観点のみから自由に設計できない場合がある。
 ここで、変形例2の表示装置1によれば、表示装置1を配置できる角度やフロントガラス91の角度が限られていたとしても、発光基板10から出射される光が集光される方向d3を調整することによって、使用者Hにフロントガラス91を介して画像を視認させ得る。
 また、発光基板10から出射される光を集光させる表示装置1を一般的な自動車90のヘッドアップディスプレイとして利用する場合、表示装置1からの光が、フロントガラス91を介さず直接使用者Hの目に達することも抑制できる。
 (変形例3)
 上述した変形例2においては、中心C2が中心C1からずれていることによって、発光基板10から出射される光が表示装置1の正面方向に対して角度をなす方向d3に集光される表示装置1について説明した。しかしながら、発光基板10から出射される光を表示装置1の正面方向に対して角度をなす方向に集光させる表示装置1の形態は、これに限られない。
 図26aは、変形例3の表示装置1の、第2方向d2に垂直な断面を示す断面図である。図26aに示す符号L5を付した線は、変形例3において発光基板10の発光部13から出射された光が光学シート20を通過するときの光の経路の一例を示している。
 変形例3において、単位レンズ21の第1方向d1における中心C2は、対応する単位領域第2方向列10cをなす単位領域10aの発光部13の第1方向d1における中心C1からずれていない。変形例3の表示装置1は、図26aに示すように、光偏向層80をさらに備えている。光偏向層80は、光学シート20の第2面20bと向かい合っている。図26aに示す例において、光偏向層80は、光学シート20と光角度調整層70との間に位置している。
 光偏向層80は、光学シート20からの光を、第2方向d2からの観察において進行方向が変化するように偏向する。図26aに示す例において、光偏向層80は、第1方向d1に配置され第2方向d2に延びる複数の線状プリズム81を有している。線状プリズム81は、表示装置1の正面方向(法線方向d4)に対して傾斜した第1プリズム面82と、表示装置1の正面方向に平行な第2プリズム面83とを有している。この場合、光偏向層80は、光学シート20からの光を、第1プリズム面82において屈折させることで、第2方向d2からの観察において進行方向が変化するように偏向する。
 変形例3の表示装置1においては、発光基板10から出射される第2方向d2に垂直な方向において拡散されている光は、まず、光学シート20によって、表示装置1の正面方向(法線方向d4)に集光される。そして、表示装置1の正面方向に集光された光が、光偏向層80によって、図26aに示す方向d5に偏向される。変形例3の表示装置1によっても、変形例2の表示装置1と同様に、発光基板10から出射される光を表示装置1の正面方向に対して角度をなす方向に集光させ得る。図26bは、図26aに示す表示装置1について、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果の一例を示すグラフである。シミュレーション試験において、光学シート20の屈折率は1.50に設定している。図26bの符号Vが付された縦軸は、輝度の大きさを、光学シート20を重ねていない状態の発光基板10の、正面方向(法線方向d4)に対してなす角度θが-5°以上+5°以下の範囲における輝度の平均値に対する比率によって表している。図26bの横軸は、縦軸に示す輝度が観察される方向の、表示装置1の正面方向(法線方向d4)に対してなす角度θ(°)を示している。図26bにおいては、正面方向に対してなす角度がθ2である方向d5に、発光基板10から出射される光が集光されている。
 なお、変形例2の表示装置1は、変形例3の表示装置1と比較して、光偏向層80を設ける必要なく、発光基板10から出射される光を表示装置1の正面方向に対して角度をなす方向に集光させ得る利点を有する。
 一方で、変形例2の表示装置1においては、図24aに示すように中心C2が中心C1からずれている。このため、変形例2の表示装置1においては、発光部13から出射された光が、発光部13の正面方向に位置する単位レンズ21以外の単位レンズ21に到達しやすいと考えられる。変形例2の表示装置1における輝度の分布をシミュレーションした試験の結果に相当する図24bを参照すると、角度θ1において輝度が最大となるとともに、角度θ3において輝度が極大値をとっている。角度θ3において輝度が極大値をとるのは、発光部13から出射されて発光部13の正面方向に位置する単位レンズ21と隣り合う単位レンズ21のレンズ面21aを通過した光が、正面方向に対してなす角度がθ3である方向に集光されているためと考えられる。この点に関し、変形例3の表示装置1は、中心C2を中心C1からずらす必要がない。このため、変形例3の表示装置1は、変形例2の表示装置1と比較して、発光部13から出射された光が、発光部13の正面方向に位置する単位レンズ21以外の単位レンズ21に到達することを抑制できる。これによって、図24bに示すように発光部13から出射された光が所望の方向以外の方向にも集光されることを抑制できる利点を有する。
 (変形例4)
 変形例4は、w/pの値ごとの、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが満たされ得るような曲率半径r及び距離dの値の条件について、上述した実施の形態及び各変形例とは異なる観点から定めた例に関する。
 以下、変形例4における、w/pの値ごとに、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが満たされ得るような、曲率半径r及び距離dの値の条件について説明する。特に、光学シート20の集光方向が表示装置1の正面方向である表示装置1において上述した輝度の条件が満たされるような、曲率半径r及び距離dの値の条件の変形例について説明する。
 w/pが0.01以上0.05未満である場合、r/pが0.2以上0.525未満で且つ以下の式(37)が満たされること、r/pが0.525以上0.975未満で且つ以下の式(38)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(39)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(40)が満たされること、及びr/pが0.525以上0.975未満で且つ以下の式(41)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000032
 図27は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。図27に結果を示すシミュレーション試験においては、光学シート20の屈折率及びw/pの値に関し、第1-第4条件までの4条件のもとで輝度の分布をシミュレーションしている。図27に結果を示すシミュレーション試験においては、第1-第4条件を以下の通りに定めている。第1条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.01となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第2条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.01となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第3条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.05となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第4条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.05となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。図27に示す表の「1」は、対応するr/p及びd/pの値において、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、第1-第4条件のいずれにおいても満たされたことを意味する。例えば、表のr/pが0.2且つd/pが0.1となっている欄には「1」と表記されている。これは、第1-第4条件のもとでr/pが0.2となり且つd/pが0.1となるように曲率半径r及び距離dを定めて輝度の分布をシミュレーションした結果、第1-第4条件のいずれにおいても上述した輝度の条件が満たされたことを意味する。図27に示す表の「0」は、対応するr/p及びd/pの値において、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとの少なくともいずれか一方が、第1-第4条件の少なくともいずれか1条件において満たされなかったことを意味する。例えば、表のr/pが0.2且つd/pが0.2となっている欄には「0」と表記されている。これは、第1-第4条件のもとでr/pが0.2となり且つd/pが0.2となるように曲率半径r及び距離dを定めて輝度の分布をシミュレーションした結果、第1-第4条件の少なくともいずれか1条件において上述した輝度の条件が満たされなかったことを意味する。
 図27に示す試験の結果からも、r/pが0.2以上0.525未満で且つ式(37)が満たされること、r/pが0.525以上0.975未満で且つ式(38)が満たされること、r/pが0.975以上1.5未満で且つ式(39)が満たされること、r/pが0.2以上0.525未満で且つ式(40)が満たされること、及びr/pが0.525以上0.975未満で且つ式(41)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 特に、本件発明者らは、シミュレーション試験の結果から、以下の傾向を見出している。w/p、r/p及びd/pの値が一定の場合において、光学シート20の屈折率がA1のとき及び光学シート20の屈折率がA2のときに、上述した輝度の条件が満たされるとする。この場合、光学シート20の屈折率がA1以上A2以下であるA3のときにも、上述した輝度の条件が満たされる傾向がある。また、本件発明者らは、シミュレーション試験の結果から、以下の傾向を見出している。光学シート20の屈折率、r/p及びd/pの値が一定の場合において、w/pがB1のとき及びw/pがB2のときに、上述した輝度の条件が満たされるとする。この場合、w/pがB1以上B2以下であるB3のときにも、上述した輝度の条件が満たされる傾向がある。以上の傾向を踏まえると、第1-第4条件のもとで上述した輝度の条件が満たされるかを示した図27から、光学シート20の屈折率が1.50以上1.60以下且つw/pの値が0.01以上0.05未満の場合には、r/pが0.2以上0.525未満で且つ式(37)が満たされること、r/pが0.525以上0.975未満で且つ式(38)が満たされること、r/pが0.975以上1.5未満で且つ式(39)が満たされること、r/pが0.2以上0.525未満で且つ式(40)が満たされること、及びr/pが0.525以上0.975未満で且つ式(41)が満たされることの、少なくともいずれか1つが成立すれば、安定的に上述した輝度の条件が満たされることが理解できる。
 w/pが0.05以上0.1未満である場合、r/pが0.2以上0.525未満で且つ以下の式(42)が満たされること、r/pが0.525以上0.975未満で且つ以下の式(43)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(44)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(45)が満たされること、及びr/pが0.525以上0.975未満で且つ以下の式(46)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000033
 図28は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。図28に結果を示すシミュレーション試験においても、以下に説明する点以外は図27に結果を示すシミュレーション試験と同様に、光学シート20の屈折率及びw/pの値に関し、第1-第4条件までの4条件のもとで輝度の分布をシミュレーションしている。図28に結果を示すシミュレーション試験においては、第1-第4条件を以下の通りに定めている。第1条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.05となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第2条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.05となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第3条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.1となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第4条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.1となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。図28に示す表の「1」及び「0」の意味は、図27に示す表の「1」及び「0」の意味と同様である。
 図28に示す試験の結果からも、r/pが0.2以上0.525未満で且つ式(42)が満たされること、r/pが0.525以上0.975未満で且つ式(43)が満たされること、r/pが0.975以上1.5未満で且つ式(44)が満たされること、r/pが0.2以上0.525未満で且つ式(45)が満たされること、及びr/pが0.525以上0.975未満で且つ式(46)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 特に、第1-第4条件のもとで上述した輝度の条件が満たされるかを示した図28から、光学シート20の屈折率が1.50以上1.60以下且つw/pの値が0.05以上0.1未満の場合には、r/pが0.2以上0.525未満で且つ式(42)が満たされること、r/pが0.525以上0.975未満で且つ式(43)が満たされること、r/pが0.975以上1.5未満で且つ式(44)が満たされること、r/pが0.2以上0.525未満で且つ式(45)が満たされること、及びr/pが0.525以上0.975未満で且つ式(46)が満たされることの、少なくともいずれか1つが成立すれば、安定的に上述した輝度の条件が満たされることが理解できる。
 w/pが0.1以上0.2未満である場合、r/pが0.2以上0.375未満で且つ以下の式(47)が満たされること、r/pが0.375以上0.975未満で且つ以下の式(48)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(49)が満たされること、及びr/pが0.375以上0.975未満で且つ以下の式(50)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000034
 図29は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。図29に結果を示すシミュレーション試験においても、以下に説明する点以外は図27に結果を示すシミュレーション試験と同様に、光学シート20の屈折率及びw/pの値に関し、第1-第4条件までの4条件のもとで輝度の分布をシミュレーションしている。図29に結果を示すシミュレーション試験においては、第1-第4条件を以下の通りに定めている。第1条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.1となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第2条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.1となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第3条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.2となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第4条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.2となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。図29に示す表の「1」及び「0」の意味は、図27に示す表の「1」及び「0」の意味と同様である。
 図29に示す試験の結果からも、r/pが0.2以上0.375未満で且つ式(47)が満たされること、r/pが0.375以上0.975未満で且つ式(48)が満たされること、r/pが0.975以上1.5未満で且つ式(49)が満たされること、及びr/pが0.375以上0.975未満で且つ式(50)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 特に、第1-第4条件のもとで上述した輝度の条件が満たされるかを示した図29から、光学シート20の屈折率が1.50以上1.60以下且つw/pの値が0.1以上0.2未満の場合には、r/pが0.2以上0.375未満で且つ式(47)が満たされること、r/pが0.375以上0.975未満で且つ式(48)が満たされること、r/pが0.975以上1.5未満で且つ式(49)が満たされること、及びr/pが0.375以上0.975未満で且つ式(50)が満たされることの、少なくともいずれか1つが成立すれば、安定的に上述した輝度の条件が満たされることが理解できる。
 w/pが0.2以上0.3未満である場合、r/pが0.25以上0.725未満で且つ以下の式(51)が満たされること、r/pが0.725以上0.975未満で且つ以下の式(52)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(53)が満たされること、及びr/pが0.725以上0.975未満で且つ以下の式(54)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000035
 図30は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。図30に結果を示すシミュレーション試験においても、以下に説明する点以外は図27に結果を示すシミュレーション試験と同様に、光学シート20の屈折率及びw/pの値に関し、第1-第4条件までの4条件のもとで輝度の分布をシミュレーションしている。図30に結果を示すシミュレーション試験においては、第1-第4条件を以下の通りに定めている。第1条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.2となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第2条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.2となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第3条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.3となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第4条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.3となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。図30に示す表の「1」及び「0」の意味は、図27に示す表の「1」及び「0」の意味と同様である。
 図30に示す試験の結果からも、r/pが0.25以上0.725未満で且つ式(51)が満たされること、r/pが0.725以上0.975未満で且つ式(52)が満たされること、r/pが0.975以上1.5未満で且つ式(53)が満たされること、及びr/pが0.725以上0.975未満で且つ式(54)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 特に、第1-第4条件のもとで上述した輝度の条件が満たされるかを示した図30から、光学シート20の屈折率が1.50以上1.60以下且つw/pの値が0.2以上0.3未満の場合には、r/pが0.25以上0.725未満で且つ式(51)が満たされること、r/pが0.725以上0.975未満で且つ式(52)が満たされること、r/pが0.975以上1.5未満で且つ式(53)が満たされること、及びr/pが0.725以上0.975未満で且つ式(54)が満たされることの、少なくともいずれか1つが成立すれば、安定的に上述した輝度の条件が満たされることが理解できる。
 w/pが0.3以上0.4未満である場合、r/pが0.35以上0.975未満で且つ以下の式(55)が満たされること、及びr/pが0.975以上1.5未満で且つ以下の式(56)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000036
 図31は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。図31に結果を示すシミュレーション試験においても、以下に説明する点以外は図27に結果を示すシミュレーション試験と同様に、光学シート20の屈折率及びw/pの値に関し、第1-第4条件までの4条件のもとで輝度の分布をシミュレーションしている。図31に結果を示すシミュレーション試験においては、第1-第4条件を以下の通りに定めている。第1条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.3となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第2条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.3となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第3条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.4となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第4条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.4となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。図31に示す表の「1」及び「0」の意味は、図27に示す表の「1」及び「0」の意味と同様である。
 図31に示す試験の結果からも、r/pが0.35以上0.975未満で且つ式(55)が満たされること、及びr/pが0.975以上1.5未満で且つ式(56)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 特に、第1-第4条件のもとで上述した輝度の条件が満たされるかを示した図31から、光学シート20の屈折率が1.50以上1.60以下且つw/pの値が0.3以上0.4未満の場合には、r/pが0.35以上0.975未満で且つ式(55)が満たされること、及びr/pが0.975以上1.5未満で且つ式(56)が満たされることの、少なくともいずれか1つが成立すれば、安定的に上述した輝度の条件が満たされることが理解できる。
 w/pが0.4以上0.5未満である場合、r/pが0.4以上0.675未満で且つ以下の式(57)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(58)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000037
 図32は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。図32に結果を示すシミュレーション試験においても、以下に説明する点以外は図27に結果を示すシミュレーション試験と同様に、光学シート20の屈折率及びw/pの値に関し、第1-第4条件までの4条件のもとで輝度の分布をシミュレーションしている。図32に結果を示すシミュレーション試験においては、第1-第4条件を以下の通りに定めている。第1条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.4となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第2条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.4となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第3条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.5となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第4条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.5となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。図32に示す表の「1」及び「0」の意味は、図27に示す表の「1」及び「0」の意味と同様である。
 図32に示す試験の結果からも、r/pが0.4以上0.675未満で且つ式(57)が満たされること、及びr/pが0.675以上1.5未満で且つ式(58)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 特に、第1-第4条件のもとで上述した輝度の条件が満たされるかを示した図32から、光学シート20の屈折率が1.50以上1.60以下且つw/pの値が0.4以上0.5未満の場合には、r/pが0.4以上0.675未満で且つ式(57)が満たされること、及びr/pが0.675以上1.5未満で且つ式(58)が満たされることの、少なくともいずれか1つが成立すれば、安定的に上述した輝度の条件が満たされることが理解できる。
 w/pが0.5以上0.6未満である場合、r/pが0.5以上0.675未満で且つ以下の式(59)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(60)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000038
 図33は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。図33に結果を示すシミュレーション試験においても、以下に説明する点以外は図27に結果を示すシミュレーション試験と同様に、光学シート20の屈折率及びw/pの値に関し、第1-第4条件までの4条件のもとで輝度の分布をシミュレーションしている。図33に結果を示すシミュレーション試験においては、第1-第4条件を以下の通りに定めている。第1条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.5となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第2条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.5となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第3条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.6となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第4条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.6となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。図33に示す表の「1」及び「0」の意味は、図27に示す表の「1」及び「0」の意味と同様である。
 図33に示す試験の結果からも、r/pが0.5以上0.675未満で且つ式(59)が満たされること、及びr/pが0.675以上1.5未満で且つ式(60)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 特に、第1-第4条件のもとで上述した輝度の条件が満たされるかを示した図33から、光学シート20の屈折率が1.50以上1.60以下且つw/pの値が0.5以上0.6未満の場合には、r/pが0.5以上0.675未満で且つ式(59)が満たされること、及びr/pが0.675以上1.5未満で且つ式(60)が満たされることの、少なくともいずれか1つが成立すれば、安定的に上述した輝度の条件が満たされることが理解できる。
 次に、変形例4の表示装置1の製造方法の一例について説明する。変形例4の表示装置1の製造方法は、上述した実施の形態及び変形例の表示装置1と同様に、w/pの値に応じて曲率半径r及び距離dを調整する調整工程を備える。
 変形例4の調整工程において、w/pが0.01以上0.05未満の場合には、r/pが0.2以上0.525未満で且つ上述した式(37)が満たされること、r/pが0.525以上0.975未満で且つ上述した式(38)が満たされること、r/pが0.975以上1.5未満で且つ上述した式(39)が満たされること、r/pが0.2以上0.525未満で且つ上述した式(40)が満たされること、及びr/pが0.525以上0.975未満で且つ上述した式(41)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例4の調整工程において、w/pが0.05以上0.1未満の場合には、r/pが0.2以上0.525未満で且つ上述した式(42)が満たされること、r/pが0.525以上0.975未満で且つ上述した式(43)が満たされること、r/pが0.975以上1.5未満で且つ上述した式(44)が満たされること、r/pが0.2以上0.525未満で且つ上述した式(45)が満たされること、及びr/pが0.525以上0.975未満で且つ上述した式(46)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例4の調整工程において、w/pが0.1以上0.2未満の場合には、r/pが0.2以上0.375未満で且つ上述した式(47)が満たされること、r/pが0.375以上0.975未満で且つ上述した式(48)が満たされること、r/pが0.975以上1.5未満で且つ上述した式(49)が満たされること、及びr/pが0.375以上0.975未満で且つ上述した式(50)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例4の調整工程において、w/pが0.2以上0.3未満の場合には、r/pが0.25以上0.725未満で且つ上述した式(51)が満たされること、r/pが0.725以上0.975未満で且つ上述した式(52)が満たされること、r/pが0.975以上1.5未満で且つ上述した式(53)が満たされること、及びr/pが0.725以上0.975未満で且つ上述した式(54)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例4の調整工程において、w/pが0.3以上0.4未満の場合には、r/pが0.35以上0.975未満で且つ上述した式(55)が満たされること、及びr/pが0.975以上1.5未満で且つ上述した式(56)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例4の調整工程において、w/pが0.4以上0.5未満の場合には、r/pが0.4以上0.675未満で且つ上述した式(57)が満たされること、及びr/pが0.675以上1.5未満で且つ上述した式(58)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例4の調整工程において、w/pが0.5以上0.6未満の場合には、r/pが0.5以上0.675未満で且つ上述した式(59)が満たされること、及びr/pが0.675以上1.5未満で且つ上述した式(60)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 以上の調整工程を備える変形例4の表示装置1の製造方法によれば、輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値mが最大値Mの50%以上であることとが、ともに満たされた表示装置1を製造し得る。特に、光学シート20の集光方向が表示装置1の正面方向である表示装置1において、変形例4における輝度の条件が満たされると考えられる。以上より、変形例4に示したように発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを調整することによっても、集光方向における輝度を大きくしつつ、集光方向に対して角度をなす方向における輝度を確保できる。
 (変形例5)
 変形例5は、w/pの値ごとの、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが満たされ得るような曲率半径r及び距離dの値の条件について、上述した実施の形態及び各変形例とは異なる観点から定めた例に関する。
 以下、変形例5における、w/pの値ごとに、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが満たされ得るような、曲率半径r及び距離dの値の条件について説明する。特に、光学シート20の集光方向が表示装置1の正面方向である表示装置1において上述した輝度の条件が満たされるような、曲率半径r及び距離dの値の条件の変形例について説明する。
 w/pが0.01以上0.05未満である場合、r/pが0.2以上0.525未満で且つ以下の式(61)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(62)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000039
 図34は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。図34に結果を示すシミュレーション試験においては、光学シート20の屈折率及びw/pの値に関し、第1-第4条件までの4条件のもとで輝度の分布をシミュレーションしている。図34に結果を示すシミュレーション試験においては、第1-第4条件を以下の通りに定めている。第1条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.01となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第2条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.01となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第3条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.05となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第4条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.05となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。図34に示す表の「1」は、対応するr/p及びd/pの値において、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、第1-第4条件のいずれにおいても満たされたことを意味する。例えば、表のr/pが0.2且つd/pが0.1となっている欄には「1」と表記されている。これは、第1-第4条件のもとでr/pが0.2となり且つd/pが0.1となるように曲率半径r及び距離dを定めて輝度の分布をシミュレーションした結果、第1-第4条件のいずれにおいても上述した輝度の条件が満たされたことを意味する。図34に示す表の「0」は、対応するr/p及びd/pの値において、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとの少なくともいずれか一方が、第1-第4条件の少なくともいずれか1条件において満たされなかったことを意味する。例えば、表のr/pが0.2且つd/pが0.2となっている欄には「0」と表記されている。これは、第1-第4条件のもとでr/pが0.2となり且つd/pが0.2となるように曲率半径r及び距離dを定めて輝度の分布をシミュレーションした結果、第1-第4条件の少なくともいずれか1条件において上述した輝度の条件が満たされなかったことを意味する。
 図34に示す試験の結果からも、r/pが0.2以上0.525未満で且つ式(61)が満たされること、及びr/pが0.525以上1.5未満で且つ式(62)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 特に、第1-第4条件のもとで上述した輝度の条件が満たされるかを示した図34から、光学シート20の屈折率が1.50以上1.60以下且つw/pの値が0.01以上0.05未満の場合には、r/pが0.2以上0.525未満で且つ式(61)が満たされること、及びr/pが0.525以上1.5未満で且つ式(62)が満たされることの、少なくともいずれか1つが成立すれば、安定的に上述した輝度の条件が満たされることが理解できる。
 w/pが0.05以上0.1未満である場合、r/pが0.2以上0.525未満で且つ以下の式(63)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(64)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000040
 図35は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。図35に結果を示すシミュレーション試験においても、以下に説明する点以外は図34に結果を示すシミュレーション試験と同様に、光学シート20の屈折率及びw/pの値に関し、第1-第4条件までの4条件のもとで輝度の分布をシミュレーションしている。図35に結果を示すシミュレーション試験においては、第1-第4条件を以下の通りに定めている。第1条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.05となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第2条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.05となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第3条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.1となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第4条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.1となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。図35に示す表の「1」及び「0」の意味は、図34に示す表の「1」及び「0」の意味と同様である。
 図35に示す試験の結果からも、r/pが0.2以上0.525未満で且つ式(63)が満たされること、及びr/pが0.525以上1.5未満で且つ式(64)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 特に、第1-第4条件のもとで上述した輝度の条件が満たされるかを示した図35から、光学シート20の屈折率が1.50以上1.60以下且つw/pの値が0.05以上0.1未満の場合には、r/pが0.2以上0.525未満で且つ式(63)が満たされること、及びr/pが0.525以上1.5未満で且つ式(64)が満たされることの、少なくともいずれか1つが成立すれば、安定的に上述した輝度の条件が満たされることが理解できる。
 w/pが0.1以上0.2未満である場合、r/pが0.2以上0.525未満で且つ以下の式(65)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(66)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000041
 図36は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。図36に結果を示すシミュレーション試験においても、以下に説明する点以外は図34に結果を示すシミュレーション試験と同様に、光学シート20の屈折率及びw/pの値に関し、第1-第4条件までの4条件のもとで輝度の分布をシミュレーションしている。図36に結果を示すシミュレーション試験においては、第1-第4条件を以下の通りに定めている。第1条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.1となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第2条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.1となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第3条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.2となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第4条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.2となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。図36に示す表の「1」及び「0」の意味は、図34に示す表の「1」及び「0」の意味と同様である。
 図36に示す試験の結果からも、r/pが0.2以上0.525未満で且つ式(65)が満たされること、及びr/pが0.525以上1.5未満で且つ式(66)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 特に、第1-第4条件のもとで上述した輝度の条件が満たされるかを示した図36から、光学シート20の屈折率が1.50以上1.60以下且つw/pの値が0.1以上0.2未満の場合には、r/pが0.2以上0.525未満で且つ式(65)が満たされること、及びr/pが0.525以上1.5未満で且つ式(66)が満たされることの、少なくともいずれか1つが成立すれば、安定的に上述した輝度の条件が満たされることが理解できる。
 w/pが0.2以上0.3未満である場合、r/pが0.25以上0.525未満で且つ以下の式(67)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(68)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000042
 図37は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。図37に結果を示すシミュレーション試験においても、以下に説明する点以外は図34に結果を示すシミュレーション試験と同様に、光学シート20の屈折率及びw/pの値に関し、第1-第4条件までの4条件のもとで輝度の分布をシミュレーションしている。図37に結果を示すシミュレーション試験においては、第1-第4条件を以下の通りに定めている。第1条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.2となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第2条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.2となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第3条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.3となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第4条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.3となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。図37に示す表の「1」及び「0」の意味は、図34に示す表の「1」及び「0」の意味と同様である。
 図37に示す試験の結果からも、r/pが0.25以上0.525未満で且つ式(67)が満たされること、及びr/pが0.525以上1.5未満で且つ式(68)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 特に、第1-第4条件のもとで上述した輝度の条件が満たされるかを示した図37から、光学シート20の屈折率が1.50以上1.60以下且つw/pの値が0.2以上0.3未満の場合には、r/pが0.25以上0.525未満で且つ式(67)が満たされること、及びr/pが0.525以上1.5未満で且つ式(68)が満たされることの、少なくともいずれか1つが成立すれば、安定的に上述した輝度の条件が満たされることが理解できる。
 w/pが0.3以上0.4未満である場合、r/pが0.35以上0.675未満で且つ以下の式(69)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(70)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000043
 図38は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。図38に結果を示すシミュレーション試験においても、以下に説明する点以外は図34に結果を示すシミュレーション試験と同様に、光学シート20の屈折率及びw/pの値に関し、第1-第4条件までの4条件のもとで輝度の分布をシミュレーションしている。図38に結果を示すシミュレーション試験においては、第1-第4条件を以下の通りに定めている。第1条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.3となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第2条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.3となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第3条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.4となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第4条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.4となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。図38に示す表の「1」及び「0」の意味は、図34に示す表の「1」及び「0」の意味と同様である。
 図38に示す試験の結果からも、r/pが0.35以上0.675未満で且つ式(69)が満たされること、及びr/pが0.675以上1.5未満で且つ式(70)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 特に、第1-第4条件のもとで上述した輝度の条件が満たされるかを示した図38から、光学シート20の屈折率が1.50以上1.60以下且つw/pの値が0.3以上0.4未満の場合には、r/pが0.35以上0.675未満で且つ式(69)が満たされること、及びr/pが0.675以上1.5未満で且つ式(70)が満たされることの、少なくともいずれか1つが成立すれば、安定的に上述した輝度の条件が満たされることが理解できる。
 w/pが0.4以上0.5未満である場合、r/pが0.4以上0.675未満で且つ以下の式(71)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(72)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000044
 図39は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。図39に結果を示すシミュレーション試験においても、以下に説明する点以外は図34に結果を示すシミュレーション試験と同様に、光学シート20の屈折率及びw/pの値に関し、第1-第4条件までの4条件のもとで輝度の分布をシミュレーションしている。図38に結果を示すシミュレーション試験においては、第1-第4条件を以下の通りに定めている。第1条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.4となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第2条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.4となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第3条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.5となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第4条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.5となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。図39に示す表の「1」及び「0」の意味は、図34に示す表の「1」及び「0」の意味と同様である。
 図39に示す試験の結果からも、r/pが0.4以上0.675未満で且つ式(71)が満たされること、及びr/pが0.675以上1.5未満で且つ式(72)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 特に、第1-第4条件のもとで上述した輝度の条件が満たされるかを示した図39から、光学シート20の屈折率が1.50以上1.60以下且つw/pの値が0.4以上0.5未満の場合には、r/pが0.4以上0.675未満で且つ式(71)が満たされること、及びr/pが0.675以上1.5未満で且つ式(72)が満たされることの、少なくともいずれか1つが成立すれば、安定的に上述した輝度の条件が満たされることが理解できる。
 w/pが0.5以上0.6未満である場合、r/pが0.5以上0.675未満で且つ以下の式(73)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(74)が満たされることの、少なくともいずれか1つが成立することが好ましい。これによって、表示装置1の輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされ得る。
Figure JPOXMLDOC01-appb-M000045
 図40は、図1乃至図5に示す表示装置1について、発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを設定して、第2方向d2に垂直な方向における輝度の分布をシミュレーションした試験の結果を示す表である。図40に結果を示すシミュレーション試験においても、以下に説明する点以外は図34に結果を示すシミュレーション試験と同様に、光学シート20の屈折率及びw/pの値に関し、第1-第4条件までの4条件のもとで輝度の分布をシミュレーションしている。図40に結果を示すシミュレーション試験においては、第1-第4条件を以下の通りに定めている。第1条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.5となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第2条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.5となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第3条件においては、光学シート20の屈折率を1.50とし、且つw/pの値が0.6となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。第4条件においては、光学シート20の屈折率を1.60とし、且つw/pの値が0.6となるように発光部13のピッチp及び発光部13の幅wを定めた上で、曲率半径r及び距離dを変更することによってr/p及びd/pの値を変更しつつ、輝度の分布をシミュレーションしている。図40に示す表の「1」及び「0」の意味は、図34に示す表の「1」及び「0」の意味と同様である。
 図40に示す試験の結果からも、r/pが0.5以上0.675未満で且つ式(73)が満たされること、及びr/pが0.675以上1.5未満で且つ式(74)が満たされることの、少なくともいずれか1つが成立すれば、上述した輝度の条件が満たされることが理解できる。
 特に、第1-第4条件のもとで上述した輝度の条件が満たされるかを示した図40から、光学シート20の屈折率が1.50以上1.60以下且つw/pの値が0.5以上0.6未満の場合には、r/pが0.5以上0.675未満で且つ式(73)が満たされること、及びr/pが0.675以上1.5未満で且つ式(74)が満たされることの、少なくともいずれか1つが成立すれば、安定的に上述した輝度の条件が満たされることが理解できる。
 次に、変形例5の表示装置1の製造方法の一例について説明する。変形例5の表示装置1の製造方法は、上述した実施の形態及び各変形例の表示装置1と同様に、w/pの値に応じて曲率半径r及び距離dを調整する調整工程を備える。
 変形例5の調整工程において、w/pが0.01以上0.05未満の場合には、r/pが0.2以上0.525未満で且つ上述した式(61)が満たされること、及びr/pが0.525以上1.5未満で且つ上述した式(62)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例5の調整工程において、w/pが0.05以上0.1未満の場合には、r/pが0.2以上0.525未満で且つ上述した式(63)が満たされること、及びr/pが0.525以上1.5未満で且つ上述した式(64)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例5の調整工程において、w/pが0.1以上0.2未満の場合には、r/pが0.2以上0.525未満で且つ上述した式(65)が満たされること、及びr/pが0.525以上1.5未満で且つ上述した式(66)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例5の調整工程において、w/pが0.2以上0.3未満の場合には、r/pが0.25以上0.525未満で且つ上述した式(67)が満たされること、及びr/pが0.525以上1.5未満で且つ上述した式(68)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例5の調整工程において、w/pが0.3以上0.4未満の場合には、r/pが0.35以上0.675未満で且つ上述した式(69)が満たされること、及びr/pが0.675以上1.5未満で且つ上述した式(70)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例5の調整工程において、w/pが0.4以上0.5未満の場合には、r/pが0.4以上0.675未満で且つ上述した式(71)が満たされること、及びr/pが0.675以上1.5未満で且つ上述した式(72)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 変形例5の調整工程において、w/pが0.5以上0.6未満の場合には、r/pが0.5以上0.675未満で且つ上述した式(73)が満たされること、及びr/pが0.675以上1.5未満で且つ上述した式(74)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する。
 以上の調整工程を備える変形例5の表示装置1の製造方法によれば、輝度が光学シート20を重ねていない状態の発光基板10の輝度の150%以上となることと、上述した最小値m2が最大値M2の50%以上であることとが、ともに満たされた表示装置1を製造し得る。特に、光学シート20の集光方向が表示装置1の正面方向である表示装置1において、変形例5における輝度の条件が満たされると考えられる。以上より、変形例5に示したように発光部13のピッチp、発光部13の幅w、曲率半径r及び距離dを調整することによっても、集光方向における輝度を大きくしつつ、集光方向に対して角度をなす方向における輝度を確保できる。
 上記実施の形態及び各変形例に開示されている複数の構成要素を必要に応じて適宜組合せることも可能である。あるいは、上記実施の形態及び各変形例に示される全構成要素から幾つかの構成要素を削除してもよい。
 1     表示装置
 10    発光基板
 10a   単位領域
 10c   単位領域第2方向列
 11    半導体層
 13    発光部
 13R   第1発光部
 13G   第2発光部
 13B   第3発光部
 20    光学シート
 20a   第1面
 20b   第2面
 21    単位レンズ
 21a   レンズ面
 70    光角度調整層
 80    光偏向層

Claims (15)

  1.  複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、
     前記発光基板に向かい合って配置された光学シートと、を備え、
     前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
     前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.025未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(1)が満たされること、r/pが0.525以上1.5未満で且つ以下の式(2)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(3)が満たされること、r/pが0.525以上0.725未満で且つ以下の式(4)が満たされること、及びr/pが0.725以上1.5未満で且つ以下の式(5)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.025以上0.075未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(6)が満たされること、r/pが0.525以上1.5未満で且つ以下の式(7)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(8)が満たされること、r/pが0.525以上0.725未満で且つ以下の式(9)が満たされること、r/pが0.725以上1.5未満で且つ以下の式(10)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.075以上0.15未満であるとともに、r/pが0.2以上0.375未満で且つ以下の式(11)が満たされること、r/pが0.375以上1.5未満で且つ以下の式(12)が満たされること、r/pが0.2以上0.725未満で且つ以下の式(13)が満たされること、及びr/pが0.725以上1.5未満で且つ以下の式(14)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.15以上0.25未満であるとともに、r/pが0.2以上0.725未満で且つ以下の式(15)が満たされること、r/pが0.725以上1.5未満で且つ以下の式(16)が満たされること、及びr/pが0.2以上1.5未満で且つ以下の式(17)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.25以上0.35未満であるとともに、r/pが0.25以上0.975未満で且つ以下の式(18)が満たされること、及びr/pが0.975以上1.5未満で且つ以下の式(19)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.35以上0.45未満であるとともに、r/pが0.3以上1.5未満で且つ以下の式(20)が満たされるか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.45以上0.55未満であるとともに、r/pが0.4以上1.5未満で且つ以下の式(21)が満たされるか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.55以上0.65未満であるとともに、r/pが0.45以上1.5未満で且つ以下の式(22)が満たされる、表示装置。
    Figure JPOXMLDOC01-appb-M000001
  2.  複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、
     前記発光基板に向かい合って配置された光学シートと、を備え、
     前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
     前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.025未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(23)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(24)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.025以上0.15未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(25)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(26)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.15以上0.25未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(27)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(28)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.25以上0.35未満であるとともに、r/pが0.25以上0.425未満で且つ以下の式(29)が満たされること、及びr/pが0.425以上1.5未満で且つ以下の式(30)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.35以上0.45未満であるとともに、r/pが0.3以上0.525未満で且つ以下の式(31)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(32)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.45以上0.55未満であるとともに、r/pが0.4以上0.625未満で且つ以下の式(33)が満たされること、及びr/pが0.625以上1.5未満で且つ以下の式(34)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.55以上0.65未満であるとともに、r/pが0.45以上0.625未満で且つ以下の式(35)が満たされること、及びr/pが0.625以上1.5未満で且つ以下の式(36)が満たされることの、少なくともいずれか1つが成立する、表示装置。
    Figure JPOXMLDOC01-appb-M000002
  3.  複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、
     前記発光基板に向かい合って配置された光学シートと、を備え、
     前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
     前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.01以上0.05未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(37)が満たされること、r/pが0.525以上0.975未満で且つ以下の式(38)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(39)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(40)が満たされること、及びr/pが0.525以上0.975未満で且つ以下の式(41)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.05以上0.1未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(42)が満たされること、r/pが0.525以上0.975未満で且つ以下の式(43)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(44)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(45)が満たされること、及びr/pが0.525以上0.975未満で且つ以下の式(46)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.1以上0.2未満であるとともに、r/pが0.2以上0.375未満で且つ以下の式(47)が満たされること、r/pが0.375以上0.975未満で且つ以下の式(48)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(49)が満たされること、及びr/pが0.375以上0.975未満で且つ以下の式(50)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.2以上0.3未満であるとともに、r/pが0.25以上0.725未満で且つ以下の式(51)が満たされること、r/pが0.725以上0.975未満で且つ以下の式(52)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(53)が満たされること、及びr/pが0.725以上0.975未満で且つ以下の式(54)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.3以上0.4未満であるとともに、r/pが0.35以上0.975未満で且つ以下の式(55)が満たされること、及びr/pが0.975以上1.5未満で且つ以下の式(56)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.4以上0.5未満であるとともに、r/pが0.4以上0.675未満で且つ以下の式(57)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(58)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.5以上0.6未満であるとともに、r/pが0.5以上0.675未満で且つ以下の式(59)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(60)が満たされることの、少なくともいずれか1つが成立する、表示装置。
    Figure JPOXMLDOC01-appb-M000003
  4.  複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、
     前記発光基板に向かい合って配置された光学シートと、を備え、
     前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
     前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.01以上0.05未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(61)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(62)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.05以上0.1未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(63)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(64)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.1以上0.2未満であるとともに、r/pが0.2以上0.525未満で且つ以下の式(65)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(66)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.2以上0.3未満であるとともに、r/pが0.25以上0.525未満で且つ以下の式(67)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(68)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.3以上0.4未満であるとともに、r/pが0.35以上0.675未満で且つ以下の式(69)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(70)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.4以上0.5未満であるとともに、r/pが0.4以上0.675未満で且つ以下の式(71)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(72)が満たされることの、少なくともいずれか1つが成立するか、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pが0.5以上0.6未満であるとともに、r/pが0.5以上0.675未満で且つ以下の式(73)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(74)が満たされることの、少なくともいずれか1つが成立する、表示装置。
    Figure JPOXMLDOC01-appb-M000004
  5.  前記発光基板の板面への法線方向からの観察において、前記単位レンズの1つが、前記複数の単位領域が前記第2方向に並んでなす単位領域第2方向列の1つに対応する、請求項1乃至4のいずれか一項に記載の表示装置。
  6.  前記発光基板の板面への法線方向からの観察において、前記単位レンズの1つの前記第1方向における中心が、対応する前記単位領域第2方向列の1つをなす前記単位領域の前記発光部の前記第1方向における中心からずれている、請求項5に記載の表示装置。
  7.  前記光学シートは、前記発光基板と向かい合う第1面と、前記第1面の反対側に位置する第2面と、を有し、
     前記光学シートの前記第2面と向かい合い、前記光学シートからの光を、前記第2方向からの観察において進行方向が変化するように偏向する、光偏向層をさらに備える、請求項1乃至4のいずれか一項に記載の表示装置。
  8.  前記光学シートは、前記発光基板と向かい合う第1面と、前記第1面の反対側に位置する第2面と、を有し、
     前記光学シートの前記第2面側に位置し、前記光学シートからの光の進行方向の前記発光基板の板面への法線方向に対する角度を調整する、光角度調整層をさらに備える、請求項1乃至4のいずれか一項に記載の表示装置。
  9.  前記発光基板は、前記発光部として、第1発光部と、前記第1発光部と異なる波長の光を発する第2発光部と、を含む、請求項1乃至4のいずれか一項に記載の表示装置。
  10.  前記光学シートの集光方向に対してなす角度が-5°以上+5°以下の範囲における輝度の最小値mが、前記光学シートの集光方向に対してなす角度が-5°以上+5°以下の範囲における輝度の最大値Mの50%以上である、請求項1又は3に記載の表示装置。
  11.  前記光学シートの集光方向に対してなす角度が-10°以上+10°以下の範囲における輝度の最小値m2が、前記光学シートの集光方向に対してなす角度が-10°以上+10°以下の範囲における輝度の最大値M2の50%以上である、請求項2又は4に記載の表示装置。
  12.  複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、前記発光基板に向かい合って配置された光学シートと、を備える、表示装置の製造方法であって、
     前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
     前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pの値に応じて曲率半径r及び距離dを調整する調整工程を備え、
     前記調整工程において、w/pが0.025未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(1)が満たされること、r/pが0.525以上1.5未満で且つ以下の式(2)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(3)が満たされること、r/pが0.525以上0.725未満で且つ以下の式(4)が満たされること、及びr/pが0.725以上1.5未満で且つ以下の式(5)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     前記調整工程において、w/pが0.025以上0.075未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(6)が満たされること、r/pが0.525以上1.5未満で且つ以下の式(7)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(8)が満たされること、r/pが0.525以上0.725未満で且つ以下の式(9)が満たされること、r/pが0.725以上1.5未満で且つ以下の式(10)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     前記調整工程において、w/pが0.075以上0.15未満の場合には、r/pが0.2以上0.375未満で且つ以下の式(11)が満たされること、r/pが0.375以上1.5未満で且つ以下の式(12)が満たされること、r/pが0.2以上0.725未満で且つ以下の式(13)が満たされること、及びr/pが0.725以上1.5未満で且つ以下の式(14)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     前記調整工程において、w/pが0.15以上0.25未満の場合には、r/pが0.2以上0.725未満で且つ以下の式(15)が満たされること、r/pが0.725以上1.5未満で且つ以下の式(16)が満たされること、及びr/pが0.2以上1.5未満で且つ以下の式(17)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     前記調整工程において、w/pが0.25以上0.35未満の場合には、r/pが0.25以上0.975未満で且つ以下の式(18)が満たされること、及びr/pが0.975以上1.5未満で且つ以下の式(19)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     前記調整工程において、w/pが0.35以上0.45未満の場合には、r/pが0.3以上1.5未満で且つ以下の式(20)が満たされるように、曲率半径r及び距離dを調整し、
     前記調整工程において、w/pが0.45以上0.55未満の場合には、r/pが0.4以上1.5未満で且つ以下の式(21)が満たされるように、曲率半径r及び距離dを調整し、
     前記調整工程において、w/pが0.55以上0.65未満の場合には、r/pが0.45以上1.5未満で且つ以下の式(22)が満たされるように、曲率半径r及び距離dを調整する、表示装置の製造方法。
    Figure JPOXMLDOC01-appb-M000005
  13.  複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、前記発光基板に向かい合って配置された光学シートと、を備える、表示装置の製造方法であって、
     前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
     前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pの値に応じて曲率半径r及び距離dを調整する調整工程を備え、
     前記調整工程において、w/pが0.025未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(23)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(24)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     前記調整工程において、w/pが0.025以上0.15未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(25)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(26)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     前記調整工程において、w/pが0.15以上0.25未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(27)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(28)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     前記調整工程において、w/pが0.25以上0.35未満の場合には、r/pが0.25以上0.425未満で且つ以下の式(29)が満たされること、及びr/pが0.425以上1.5未満で且つ以下の式(30)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     前記調整工程において、w/pが0.35以上0.45未満の場合には、r/pが0.3以上0.525未満で且つ以下の式(31)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(32)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     前記調整工程において、w/pが0.45以上0.55未満の場合には、r/pが0.4以上0.625未満で且つ以下の式(33)が満たされること、及びr/pが0.625以上1.5未満で且つ以下の式(34)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     前記調整工程において、w/pが0.55以上0.65未満の場合には、r/pが0.45以上0.625未満で且つ以下の式(35)が満たされること、及びr/pが0.625以上1.5未満で且つ以下の式(36)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する、表示装置の製造方法。
    Figure JPOXMLDOC01-appb-M000006
  14.  複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、前記発光基板に向かい合って配置された光学シートと、を備える、表示装置の製造方法であって、
     前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
     前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pの値に応じて曲率半径r及び距離dを調整する調整工程を備え、
     前記調整工程において、w/pが0.01以上0.05未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(37)が満たされること、r/pが0.525以上0.975未満で且つ以下の式(38)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(39)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(40)が満たされること、及びr/pが0.525以上0.975未満で且つ以下の式(41)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     w/pが0.05以上0.1未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(42)が満たされること、r/pが0.525以上0.975未満で且つ以下の式(43)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(44)が満たされること、r/pが0.2以上0.525未満で且つ以下の式(45)が満たされること、及びr/pが0.525以上0.975未満で且つ以下の式(46)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     w/pが0.1以上0.2未満の場合には、r/pが0.2以上0.375未満で且つ以下の式(47)が満たされること、r/pが0.375以上0.975未満で且つ以下の式(48)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(49)が満たされること、及びr/pが0.375以上0.975未満で且つ以下の式(50)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     w/pが0.2以上0.3未満の場合には、r/pが0.25以上0.725未満で且つ以下の式(51)が満たされること、r/pが0.725以上0.975未満で且つ以下の式(52)が満たされること、r/pが0.975以上1.5未満で且つ以下の式(53)が満たされること、及びr/pが0.725以上0.975未満で且つ以下の式(54)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     w/pが0.3以上0.4未満の場合には、r/pが0.35以上0.975未満で且つ以下の式(55)が満たされること、及びr/pが0.975以上1.5未満で且つ以下の式(56)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     w/pが0.4以上0.5未満の場合には、r/pが0.4以上0.675未満で且つ以下の式(57)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(58)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     w/pが0.5以上0.6未満の場合には、r/pが0.5以上0.675未満で且つ以下の式(59)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(60)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する、表示装置の製造方法。
    Figure JPOXMLDOC01-appb-M000007
  15.  複数の単位領域に区分けされた半導体層と、前記複数の単位領域に配置された発光部と、を有する発光基板と、前記発光基板に向かい合って配置された光学シートと、を備える、表示装置の製造方法であって、
     前記光学シートは、第1方向に配置され前記第1方向に非平行な第2方向に延びる複数の単位レンズを有し、
     前記複数の単位領域は、前記第1方向及び前記第2方向に並んでおり、
     前記第1方向における前記発光部のピッチpとし、前記第1方向における前記発光部の幅wとし、前記単位レンズのレンズ面の曲率半径rとし、前記発光部と前記単位レンズとの距離dとして、w/pの値に応じて曲率半径r及び距離dを調整する調整工程を備え、
     前記調整工程において、w/pが0.01以上0.05未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(61)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(62)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     w/pが0.05以上0.1未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(63)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(64)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     w/pが0.1以上0.2未満の場合には、r/pが0.2以上0.525未満で且つ以下の式(65)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(66)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     w/pが0.2以上0.3未満の場合には、r/pが0.25以上0.525未満で且つ以下の式(67)が満たされること、及びr/pが0.525以上1.5未満で且つ以下の式(68)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     w/pが0.3以上0.4未満の場合には、r/pが0.35以上0.675未満で且つ以下の式(69)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(70)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     w/pが0.4以上0.5未満の場合には、r/pが0.4以上0.675未満で且つ以下の式(71)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(72)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整し、
     w/pが0.5以上0.6未満の場合には、r/pが0.5以上0.675未満で且つ以下の式(73)が満たされること、及びr/pが0.675以上1.5未満で且つ以下の式(74)が満たされることの、少なくともいずれか1つが成立するように、曲率半径r及び距離dを調整する、表示装置の製造方法。
    Figure JPOXMLDOC01-appb-M000008
PCT/JP2023/022972 2022-06-21 2023-06-21 表示装置および表示装置の製造方法 WO2023249058A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-099945 2022-06-21
JP2022099945 2022-06-21
JP2023026633 2023-02-22
JP2023-026633 2023-02-22

Publications (1)

Publication Number Publication Date
WO2023249058A1 true WO2023249058A1 (ja) 2023-12-28

Family

ID=89380040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022972 WO2023249058A1 (ja) 2022-06-21 2023-06-21 表示装置および表示装置の製造方法

Country Status (1)

Country Link
WO (1) WO2023249058A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212716A (ja) * 2003-01-06 2004-07-29 Seiko Epson Corp 表示パネル、表示装置およびその製造方法
JP2007087606A (ja) * 2005-09-16 2007-04-05 Cheil Ind Co Ltd バックライトユニットおよび液晶表示装置
CN101135738A (zh) * 2006-08-31 2008-03-05 财团法人工业技术研究院 光学扩散模块
JP2010250301A (ja) * 2009-03-25 2010-11-04 Dainippon Printing Co Ltd 面光源装置、光学部材および表示装置
JP2016014632A (ja) * 2014-07-03 2016-01-28 日星電気株式会社 照明装置
JP2019197133A (ja) * 2018-05-09 2019-11-14 大日本印刷株式会社 表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212716A (ja) * 2003-01-06 2004-07-29 Seiko Epson Corp 表示パネル、表示装置およびその製造方法
JP2007087606A (ja) * 2005-09-16 2007-04-05 Cheil Ind Co Ltd バックライトユニットおよび液晶表示装置
CN101135738A (zh) * 2006-08-31 2008-03-05 财团法人工业技术研究院 光学扩散模块
JP2010250301A (ja) * 2009-03-25 2010-11-04 Dainippon Printing Co Ltd 面光源装置、光学部材および表示装置
JP2016014632A (ja) * 2014-07-03 2016-01-28 日星電気株式会社 照明装置
JP2019197133A (ja) * 2018-05-09 2019-11-14 大日本印刷株式会社 表示装置

Similar Documents

Publication Publication Date Title
US7255456B2 (en) Direct backlight module
CN112437894B (zh) 照明设备
CN103631055B (zh) 显示装置
WO2018223726A1 (zh) 显示面板及显示装置
US11885997B2 (en) Light guide, virtual image optical system, and virtual image display device
US10649131B2 (en) Display device and head-mounted display
US20060239028A1 (en) Optical element and the light source apparatus utilizing the same
US10185150B2 (en) Narrow angle light engine
CN113009692B (zh) 近眼光场显示装置
CN107003565A (zh) 光偏转漫射片、堆叠光偏转漫射片、堆叠光学片以及使用上述的液晶显示装置
CN110730926B (zh) 光学结构体及显示装置
TWI363199B (en) Liquid crystal display and light quide plate thereof
WO2023249058A1 (ja) 表示装置および表示装置の製造方法
JP2008311032A (ja) 光学シート、それを用いたバックライトユニット、およびディスプレイ装置
JP6008241B2 (ja) 面光源装置および表示装置
TW202323863A (zh) 具有減少光學偽影的菲涅爾透鏡
KR20200000330A (ko) 면상 조명 장치
KR20200101722A (ko) 발광다이오드 장치용 광학 구조물 및 이를 구비하는 조명용 발광다이오드 장치
US10684428B2 (en) Front light unit and image display device
JP7445579B2 (ja) バックライトモジュール
WO2013081038A1 (ja) 光源装置、面光源装置、表示装置および照明装置
US7674008B2 (en) Light emitting device and panel
TW202418248A (zh) 顯示裝置及顯示裝置之製造方法
KR20130133569A (ko) 백라이트 유닛 및 이를 포함하는 액정 표시 장치
US8995060B2 (en) Optical film and head-up display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827241

Country of ref document: EP

Kind code of ref document: A1