WO2023249013A1 - Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery - Google Patents

Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery Download PDF

Info

Publication number
WO2023249013A1
WO2023249013A1 PCT/JP2023/022772 JP2023022772W WO2023249013A1 WO 2023249013 A1 WO2023249013 A1 WO 2023249013A1 JP 2023022772 W JP2023022772 W JP 2023022772W WO 2023249013 A1 WO2023249013 A1 WO 2023249013A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
secondary battery
positive electrode
active material
lithium
Prior art date
Application number
PCT/JP2023/022772
Other languages
French (fr)
Japanese (ja)
Inventor
信吾 橘
亮 栗木
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023249013A1 publication Critical patent/WO2023249013A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery, a lithium secondary battery, and a method for producing a positive electrode active material for a lithium secondary battery.
  • an electrolyte (such as a non-aqueous electrolyte or a solid electrolyte) is placed between a positive electrode and a negative electrode.
  • charging and discharging are performed by moving lithium ions between a positive electrode and a negative electrode via an electrolyte.
  • the positive electrode is produced using, for example, a lithium metal composite oxide as a positive electrode active material.
  • a positive electrode active material for a lithium secondary battery is produced, for example, by firing a mixture of a metal composite compound, which is a precursor of a lithium metal composite oxide, and a lithium compound.
  • the lithium compound tends to remain as a residue in the lithium metal composite oxide.
  • the residue of the lithium compound is, for example, unreacted material of lithium hydroxide as a raw material, lithium carbonate contained as an impurity in lithium hydroxide as a raw material, and lithium carbonate produced as a by-product during calcination.
  • the residual lithium compound becomes a cause of gas generation in the lithium secondary battery.
  • the present invention provides a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery, and a lithium secondary battery, which can suppress gas generation and easily realize a lithium secondary battery with excellent rate characteristics.
  • the present invention aims to provide a method for producing a positive electrode active material for a lithium secondary battery.
  • a lithium metal composite oxide with a layered structure containing Li element, Ni element, and element M A positive electrode active material for a lithium secondary battery, comprising: a lithium compound containing lithium hydroxide and lithium carbonate;
  • the element M is at least one selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, Ca, Ba, Al, Zn, Sn, Zr, Nb, B, Si, S, and P.
  • the water vapor adsorption amount Va 0.5 when the relative pressure p/p 0 between the water vapor pressure p and the saturated vapor pressure p 0 is 0.5
  • water vapor when the relative pressure p/p 0 is 0.5 in the desorption isotherm of the water vapor adsorption method is an element
  • the adsorption amount Vd 0.5 satisfies the relationship shown in the following (formula A)
  • the BET specific surface area Sm measured by the nitrogen adsorption method satisfies the relationship shown in the following (formula B)
  • the mass proportion W1 of the lithium hydroxide and the mass proportion W2 of the lithium carbonate satisfy the relationship shown in the following (Formula C), Positive electrode active material for lithium secondary batteries.
  • the lithium metal composite oxide is Represented by the following (compositional formula I), The positive electrode active material for a lithium secondary battery according to [1]. Li[Li m (Ni (1-x-y) C x M1 y ) 1-m ] O 2 ... (compositional formula I) (In (compositional formula I), M1 is at least one member selected from the group consisting of Mn, Fe, Cu, Ti, Mg, Ca, Ba, Al, Zn, Sn, Zr, B, Si, S, and P.
  • the average pore diameter measured by nitrogen adsorption method is 150 nm or less, The positive electrode active material for a lithium secondary battery according to any one of [1] to [6].
  • the pore volume measured by nitrogen adsorption method is 0.0005 cm 3 /g or more and 0.0150 cm 3 /g or less, The positive electrode active material for a lithium secondary battery according to any one of [1] to [7].
  • 50% cumulative volume particle size D50 is 3 ⁇ m or more and 30 ⁇ m or less, The positive electrode active material for a lithium secondary battery according to any one of [1] to [8].
  • a method for producing a positive electrode active material for a lithium secondary battery comprising: a preparation step of preparing a fired powder of a metal composite compound that is a precursor of a lithium metal composite oxide and a lithium compound; a humidification step of performing a humidification treatment on the baked powder prepared in the preparation step; a drying step of producing the positive electrode active material for a lithium secondary battery by performing a drying treatment on the fired powder subjected to the humidification treatment in the humidification step, In the humidification step, the humidification process is performed in an atmosphere where the dew point is 50 ° C. or more and 90 ° C.
  • a method for producing a positive electrode active material for a lithium secondary battery [13] In the humidification step, the humidification process is performed in an atmosphere with a temperature of 80° C. or higher and 400° C. or lower. The method for producing a positive electrode active material for a lithium secondary battery according to [12]. [14] In the drying step, the drying process is performed in an atmosphere with a temperature of 100° C. or higher and 400° C. or lower. The method for producing a positive electrode active material for a lithium secondary battery according to [12] or [13].
  • a positive electrode active material for a lithium secondary battery a positive electrode for a lithium secondary battery, and a lithium secondary battery are capable of suppressing gas generation and easily realizing a lithium secondary battery with excellent rate characteristics. , and a method for producing a positive electrode active material for a lithium secondary battery.
  • FIG. 1A is a diagram schematically showing a positive electrode active material produced in a related art (a state before being subjected to water washing treatment or humidification treatment).
  • FIG. 1B is a diagram schematically showing a positive electrode active material produced in the related technology (state after washing with water).
  • FIG. 1C is a diagram schematically showing a positive electrode active material produced in the related art (a state after performing a known humidification treatment).
  • FIG. 2 is a diagram showing an example of an adsorption isotherm and a desorption isotherm.
  • FIG. 3 is a flow diagram outlining a manufacturing method for manufacturing a positive electrode active material for a lithium secondary battery according to an embodiment.
  • FIG. 4 is a schematic diagram showing an example of a lithium secondary battery.
  • FIG. 5 is a schematic diagram showing an example of an all-solid lithium secondary battery.
  • FIG. 6 is a diagram showing adsorption isotherms and desorption isotherms used in determining water retention parameters for (Example 1) and (
  • MCC Metal Composite Compound
  • Lithium metal composite oxide is indicated using the abbreviation “LiMO” (Lithium Metal composite Oxide).
  • CAM Positive electrode active material for lithium secondary batteries.
  • the numerical range for example, when it is described as “5-15 ⁇ m”, it means the range from 5 ⁇ m to 15 ⁇ m, and means the numerical range including the lower limit of 5 ⁇ m and the upper limit of 15 ⁇ m.
  • FIGS. 1A to 1C are diagrams schematically showing CAMs according to related technology.
  • FIG. 1A shows the CAM before being subjected to water washing or humidification.
  • FIG. 1B shows the CAM after being subjected to water washing treatment.
  • FIG. 1C shows the CAM after humidification treatment.
  • LiMO51 has active sites 71 (areas surrounded by solid ellipses in the figure) that have high water retention and can cause side reactions. There is.
  • the active sites 71 can be inactivated by contact with water, as shown in FIG. (Illustrated by the area enclosed by a dashed oval). Furthermore, when the known humidification treatment is performed, unlike the case of water washing treatment, the amount of lithium compound 61 remaining on the surface of LiMO 51 does not decrease, so it is possible to suppress an excessive increase in the BET specific surface area. As a result, a lithium secondary battery with excellent rate characteristics can be obtained. However, in the implementation of the known humidification process, the residual amount of the lithium compound 61 is the same before and after the humidification process, so it may not be possible to sufficiently suppress gas generation in the lithium secondary battery.
  • the CAM of this embodiment can suppress gas generation and manufacture a lithium secondary battery with excellent rate characteristics.
  • the CAM includes LiMO and a lithium compound. That is, in CAM, a lithium compound remains as a residue in LiMO. Each part constituting the above-mentioned CAM will be sequentially explained.
  • LiMO includes at least Li element, Ni element, and element M.
  • Element M is at least one element selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, Ca, Ba, Al, Zn, Sn, Zr, Nb, B, Si, S, and P. It is.
  • Element M is preferably at least one element selected from the group consisting of Co, Mn, Al, Zr, Nb and B.
  • LiMO is preferably represented by the following (compositional formula I).
  • element M1 is selected from the group consisting of Mn, Fe, Cu, Ti, Mg, Ca, Ba, Al, Zn, Sn, Zr, Nb, B, Si, S, and P. At least one element. That is, the element M1 is an element other than the Co element among the above-mentioned elements M. Element M1 is preferably at least one element selected from the group consisting of Mn, Al, Zr, Nb, and B.
  • each of m, x, and y preferably satisfies the relationships shown in (formula Ia) to (formula Id) below.
  • compositional formula I when the value of m is equal to or greater than the lower limit of the range shown in (formula Ia), the rate characteristics of the lithium secondary battery can be improved. Furthermore, in (compositional formula I), when the value of m is equal to or less than the upper limit of the range shown in (formula Ia), the initial coulombic efficiency of the lithium secondary battery can be improved. Furthermore, in (compositional formula I), m is more preferably ⁇ 0.03 or more, and particularly preferably 0 or more. Furthermore, m is more preferably 0.1 or less, particularly preferably 0.07 or less. The range of m is more preferably ⁇ 0.03 ⁇ m ⁇ 0.1, and particularly preferably 0 ⁇ m ⁇ 0.07.
  • compositional formula I when the value of x satisfies the relationship shown in (formula Ib), the internal resistance of the lithium secondary battery can be reduced and the rate characteristics can be improved. Furthermore, in (compositional formula I), x is more preferably 0.01 or more, particularly preferably 0.02 or more. Furthermore, x is more preferably 0.4 or less, particularly preferably 0.3 or less. The range of x is more preferably 0.01 ⁇ x ⁇ 0.4, and particularly preferably 0.02 ⁇ x ⁇ 0.3.
  • compositional formula I when the value of y satisfies the relationship shown in (formula Ic), the cycle maintenance rate of the lithium secondary battery can be improved.
  • y is more preferably 0.0002 or more, particularly preferably 0.0005 or more.
  • y is more preferably 0.6 or less, particularly preferably 0.5 or less.
  • the range of y is more preferably 0.0002 ⁇ y ⁇ 0.6, and particularly preferably 0.0005 ⁇ y ⁇ 0.5.
  • the initial capacity of the lithium secondary battery can be improved by making the sum (x+y) of the value of x and the value of y satisfy the relationship shown in (formula Id).
  • the sum of the value of x and the value of y (x+y) is preferably 0.01 or more.
  • (x+y) is more preferably less than 0.6, particularly preferably 0.5 or less, and even more preferably 0.25 or less.
  • the range of (x+y) is 0 ⁇ x+y ⁇ 1, more preferably 0.01 ⁇ x+y ⁇ 0.6, particularly preferably 0.01 ⁇ x+y ⁇ 0.5, and 0.01 ⁇ x+y ⁇ 0. 25 is more preferred.
  • composition of LiMO can be determined, for example, by measuring CAM using an ICP emission spectrometer (Optima 7300 (manufactured by PerkinElmer, Inc.), etc.).
  • m in (compositional formula I) may include Li derived from a lithium compound in addition to Li derived from LiMO. Before measuring the composition, the sample is dissolved in acid or alkali depending on the element to be measured.
  • the above LiMO has a layered structure.
  • the crystal structure of LiMO is preferably a layered rock salt structure, more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structure is P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21 , R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6/m, P6 3 /m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P-6m2, P-6c2, P-62m, P-62c, P6/mmm, P6
  • the monoclinic crystal structure is P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2/m, P2 1 /m, C2/m, P2/c, P2 1 /c, and C2 It belongs to one space group selected from the group consisting of /c.
  • the crystal structure of LiMO is hexagonal, which belongs to space group R-3m, or C2/m, in order to obtain a lithium secondary battery with high discharge capacity and excellent rate characteristics.
  • a monoclinic type is particularly preferred.
  • the crystal structure of LiMO can be calculated by performing CAM powder X-ray diffraction measurement using CuK ⁇ as a radiation source and measuring the diffraction angle 2 ⁇ in the range of 10-90°. Specifically, this can be confirmed by observation using a powder X-ray diffraction measurement device (for example, Ultima IV manufactured by Rigaku Co., Ltd.).
  • a powder X-ray diffraction measurement device for example, Ultima IV manufactured by Rigaku Co., Ltd.
  • the lithium compound is a residue left in LiMO during the production of the CAM, and includes lithium hydroxide and lithium carbonate.
  • the lithium compound that is the residue is the unreacted material of the raw material lithium hydroxide, the lithium carbonate contained as an impurity in the raw material lithium hydroxide, and the carbonate produced as a byproduct during calcination. Lithium etc.
  • Characteristics of CAM CAM is a powder made up of a plurality of particles. Although details will be described later, the CAM powder is a fired powder.
  • the CAM powder may be composed only of secondary particles that are aggregated primary particles, or may be a mixture of both primary particles and secondary particles.
  • the CAM powder may include LiMO, which is a secondary particle, and primary particles of a lithium compound.
  • primary particles are particles that do not have grain boundaries in appearance when the CAM is observed with a field of view of 1000 times or more and 30000 times or less using a microscope (such as a scanning electron microscope).
  • secondary particles are aggregates of primary particles.
  • the above CAM satisfies (Requirement 1), (Requirement 2), and (Requirement 3) shown below.
  • (Requirement 1), (Requirement 2), and (Requirement 3) the above-mentioned CAM can easily realize a lithium secondary battery that suppresses gas generation and has excellent rate characteristics.
  • (Vd 0.5 - Va 0.5 )/Va 0.9 defines a water retention parameter indicating water retention, and means that as the value decreases, it becomes harder to retain water.
  • active sites in CAM that are likely to cause side reactions are effectively inactivated by contact with water. This is thought to be because Ni, which is active on the CAM surface, becomes inactivated by forming a NiO-OH structure upon contact with water. Therefore, a lithium secondary battery manufactured using a CAM that satisfies the relationship shown in (Formula A) can sufficiently suppress gas generation.
  • the water retention parameter satisfies formula (A1).
  • Va 0.5 , Va 0.9 , and Vd 0.5 are amounts (unit: cm 3 (STP)/g) that a sample of CAM adsorbs water vapor per unit mass (for example, 1 g).
  • the adsorption isotherm and the desorption isotherm are obtained by changing the relative pressure p/p 0 condition and measuring the amount of water vapor adsorbed by the sample.
  • the amount of water vapor adsorption is measured by performing a water vapor adsorption method using a vapor adsorption measuring device.
  • the vapor adsorption measuring device is, for example, "BELSORP (registered trademark)-18" manufactured by Microtrac Bell Co., Ltd., and the amount of water vapor adsorption is measured under the following measurement conditions.
  • ⁇ Filled sample amount 0.5g ⁇ Sample pretreatment conditions: 5 hours treatment at 200°C under vacuum ⁇ Thermostatic chamber temperature: 50°C ⁇ Adsorption temperature: 25°C ⁇ Saturated vapor pressure: 3.169kPa ⁇ Adsorption equilibrium time: 500 seconds
  • FIG. 2 is a diagram showing an example of an adsorption isotherm and a desorption isotherm.
  • the horizontal axis is the relative pressure p/p 0
  • the vertical axis is the water vapor adsorption amount V (cm 3 (STP)/g).
  • the adsorption isotherm is shown as a solid line
  • the desorption isotherm is shown as a broken line.
  • the adsorption isotherm (solid line) is the locus of the water vapor adsorption amount V measured when p/ po is increased to 0.9.
  • V increases as p/ po increases.
  • the desorption isotherm (dashed line) is obtained by increasing p/ po to a point exceeding 0.9 in order to obtain an adsorption isotherm, and then lowering it from that point. This is the trajectory of V to be measured.
  • V decreases as p/ po decreases.
  • V when p/ po is 0.5 in the adsorption isotherm i.e., Va 0.5
  • Va 0.5 ⁇ Vd 0.5 the value obtained by subtracting Va 0.5 from Vd 0.5 is greater than zero (Vd 0.5 - Va 0.5 >0).
  • Vd 0.5 - Va 0.5 )/Va 0.9 is the value obtained by subtracting Va 0.5 from Vd 0.5 (Vd 0.5 - Va 0.5 ) when the amount of water vapor adsorption is at its maximum. It is a value divided by Va 0.9 , which is an index indicating the degree of hysteresis, that is, a water retention parameter (water retention index), and means that as the value becomes smaller, it becomes harder to retain water.
  • the lower limit value of (Vd 0.5 - Va 0.5 )/Va 0.9 is not particularly limited, but (Vd 0.5 - Va 0.5 )/Va 0.9 >0 may be satisfied, (Vd 0.5 - Va 0.5 )/Va 0.9 >0.1.
  • the above range of (Vd 0.5 - Va 0.5 )/Va 0.9 is preferably 0 ⁇ (Vd 0.5 - Va 0.5 )/Va 0.9 ⁇ 0.90, and 0 ⁇ (Vd 0.5 ⁇ Va 0.5 )/Va 0.9 ⁇ 0.85 is more preferable, and 0.1 ⁇ (Vd 0.5 ⁇ Va 0.5 )/Va 0.9 ⁇ 0.85 is particularly preferable.
  • Sm is a value measured by the BET (Brunauer, Emmett, Teller) method. In the measurement of Sm, nitrogen gas is used as the adsorption gas.
  • the BET specific surface area (unit: m 2 /g) can be determined by drying 1 g of CAM at a temperature of 105° C. for 30 minutes in a nitrogen atmosphere, and then using a BET specific surface area meter (for example, Macsorb (registered) manufactured by Mountech Co., Ltd.). Trademark)).
  • W1 and W2 satisfy the relationship shown in the following formula (C1).
  • W2/W1 W2/W1 ⁇ 0 or W2/W1>0.
  • the above range of W2/W1 is, for example, 0 ⁇ W2/W1 ⁇ 1.40, 0 ⁇ W2/W1 ⁇ 1.00, 0 ⁇ W2/W1 ⁇ 1.40, 0 ⁇ W2/W1 ⁇ 1.00. Can be mentioned.
  • W2 preferably satisfies the relationship shown in the following formula (D).
  • the lower limit of W2 is not particularly limited, but may be W2 ⁇ 0% by mass or W2>0% by mass.
  • the range of W2 is, for example, 0 mass% ⁇ W2 ⁇ 0.70 mass%, 0 mass% ⁇ W2 ⁇ 0.60 mass%, 0 mass% ⁇ W2 ⁇ 0.70 mass%, 0 mass% ⁇ W2 ⁇ An example is 0.60% by mass.
  • the amount of eluted lithium W3 measured by neutralization titration satisfies the relationship shown in the following formula (E). It is preferable.
  • the lower limit value of W3 is not particularly limited, but W3>0% by mass may be satisfied.
  • the range of W3 is particularly preferably 0% by mass ⁇ W3 ⁇ 0.50% by mass, and even more preferably 0% by mass ⁇ W3 ⁇ 0.40% by mass.
  • hydrochloric acid having a concentration of 0.1 mol/L is continuously added dropwise to 60 g of the filtrate obtained by filtering the slurry.
  • Hydrochloric acid is added dropwise using an automatic titrator (AT-610, manufactured by Kyoto Denshi Kogyo Co., Ltd.) until the pH reaches 4.0.
  • AT-610 automatic titrator
  • the titration amount A [mL] of hydrochloric acid when the pH becomes 8.3 ⁇ 0.1 the titration amount A [mL] of hydrochloric acid when the pH becomes 4.5 ⁇ 0.1. Find the amount B [mL].
  • W1 and W2 are calculated using (Formula b) and (Formula c) below.
  • the molecular weight of lithium hydroxide and the molecular weight of lithium carbonate are calculated with the atomic weights as H: 1.000, Li: 6.941, C: 12, O: 16. (that is, the molecular weight of lithium hydroxide: 23.941, the molecular weight of lithium carbonate: 73.882).
  • W1 [mass%] ⁇ 0.1 ⁇ (2A-B)/1000 ⁇ 23.941/(20 ⁇ 60/100) ⁇ 100
  • W2 [mass%] ⁇ 0.1 ⁇ (B-A)/1000 ⁇ 73.882/(20 ⁇ 60/100) ⁇ 100
  • the above CAM has a diffraction angle 2 ⁇ within the range of 10-90° in the diffraction pattern of powder X-ray diffraction measured with CuK ⁇ rays. It is preferable that the crystal strain calculated from the diffraction pattern included in is 0.10° or less. This facilitates the diffusion of lithium ions in the planar direction of the layered structure of LiMO included in the CAM, reducing the diffusion resistance of lithium ions and improving the rate characteristics.
  • the crystal strain is 0.08° or less.
  • Crystal strain is measured by powder X-ray diffraction.
  • Powder X-ray diffraction is performed using an X-ray diffraction apparatus (eg, Bruker D8 Advance) under the following measurement conditions.
  • Powder X-ray diffraction is performed using CuK ⁇ rays under the conditions that the measurement range of the diffraction angle 2 ⁇ is 10° or more and 90° or less. Then, crystal strain can be determined by analyzing the diffraction pattern obtained by performing powder X-ray diffraction using the Rietveld analysis method.
  • Rietveld analysis is a method of comparing an actually measured powder X-ray diffraction pattern with a simulation pattern from a crystal structure model, and optimizing the crystal structure parameters in the crystal structure model so that the difference between the two is minimized. Optimization of crystal strain is performed using a layered rock salt crystal structure (Li 1-n Men ) (Me 1-n Lin ) O 2 as an initial crystal structure model.
  • the average pore diameter of the CAM measured by the nitrogen adsorption method described above is preferably 150 nm or less. Thereby, a decrease in electrode density can be prevented and a battery with high energy density can be obtained. In addition, it can have sufficient electrolyte permeability and retention, and can improve rate characteristics.
  • the average pore diameter is more preferably 100 nm or less, particularly preferably 60 nm or less. Moreover, it is preferable that the above-mentioned average pore diameter is 10 nm or more.
  • the average pore diameter range is more preferably 10-150 nm, particularly preferably 10-100 nm, and even more preferably 10-60 nm.
  • the pore volume of the CAM measured by the nitrogen adsorption method is preferably 0.0005-0.015 cm 3 /g.
  • the pore volume is at least the lower limit of the above range, sufficient electrolyte permeability and retention can be achieved, and rate characteristics can be improved.
  • the pore volume is less than or equal to the upper limit of the above range, the density of the CAM is improved and the energy density is likely to be improved.
  • the lower limit of the pore volume is more preferably 0.001 cm 3 /g, and the upper limit is more preferably 0.010 cm 3 /g.
  • Examples of the range of the pore volume mentioned above include 0.001-0.015 cm 3 /g, 0.0005-0.010 cm 3 /g, and 0.0010.010 cm 3 /g.
  • the average pore diameter and pore volume are calculated based on the pore diameter distribution obtained by analyzing the adsorption isotherm and desorption isotherm obtained by implementing the nitrogen adsorption method using the BJH (Barrett-Joyner-Halenda) method.
  • Ru The BJH method is a method in which the pore shape is assumed to be cylindrical, and analysis is performed based on a relational expression (Kelvin equation) between the pore diameter and the relative pressure of nitrogen that causes capillary condensation.
  • the pore size distribution determined from the desorption isotherm is derived from bottleneck-shaped pores.
  • adsorption isotherm and desorption isotherm When measuring the above-mentioned adsorption isotherm and desorption isotherm, first, using a vacuum heat treatment device (for example, BELSORP-vacII manufactured by Microtrac Bell Co., Ltd.), the temperature is set at 150°C for 8 hours. Vacuum degassing is performed on a 10 g sample. After performing the vacuum degassing process, the adsorption isotherm and desorption isotherm of nitrogen are obtained at the temperature of liquid nitrogen (77K) using a measuring device (for example, BELSORP-mini manufactured by Microtrac Bell Co., Ltd.). The amount of nitrogen adsorbed by the sample per unit mass in the adsorption isotherm and the desorption isotherm is calculated as expressed by the volume of nitrogen gas in the standard temperature and pressure (STP).
  • STP standard temperature and pressure
  • the 50% cumulative volume particle size D 50 (hereinafter sometimes referred to as D 50 ) of the CAM is preferably 3 to 30 ⁇ m.
  • D50 The 50% cumulative volume particle size of the CAM is more preferably 5 ⁇ m or more, particularly preferably 7 ⁇ m or more, and even more preferably 8 ⁇ m or more.
  • D50 is more preferably 25 ⁇ m or less, particularly preferably 23 ⁇ m or less, and even more preferably 20 ⁇ m or less. D 50 is more preferably 5-25 ⁇ m, particularly preferably 7-23 ⁇ m, even more preferably 8-20 ⁇ m.
  • the above D50 is measured by laser diffraction scattering method. Specifically, when measuring D50 , first, a dispersion liquid in which CAM powder is dispersed is obtained. The dispersion liquid is prepared by introducing 0.1 g of CAM powder into 50 ml of an aqueous sodium hexametaphosphate solution (concentration: 0.2% by mass). Next, by measuring the particle size distribution of the powder in the dispersion liquid using a laser diffraction scattering particle size distribution measuring device (for example, Microtrac MT3300EXII manufactured by Microtrac Bell Co., Ltd.), a volume-based cumulative particle size distribution curve is obtained. get. D 50 ( ⁇ m) corresponds to the value of the particle diameter at the time of 50% accumulation from the microparticle side in the cumulative particle size distribution curve.
  • a laser diffraction scattering particle size distribution measuring device for example, Microtrac MT3300EXII manufactured by Microtrac Bell Co., Ltd.
  • FIG. 3 is a flow diagram outlining the manufacturing method for manufacturing the CAM according to the embodiment.
  • a preparation step (ST10), a humidification step (ST20), and a drying step (ST30) are sequentially performed.
  • the composition of MCC includes Ni element, Co element, and the above element M1 in a molar ratio represented by the following (Formula II).
  • each of x and y preferably satisfies the relationships shown below (Formula IIb) to (Formula IId). )same as).
  • MCC is, for example, a metal composite hydroxide, a metal composite oxide, or a mixture thereof.
  • the metal composite hydroxide is produced, for example, by a known batch coprecipitation method or continuous coprecipitation method.
  • a method for producing the metal composite hydroxide containing Ni, Co, and Al as the metal elements will be explained in detail by taking as an example.
  • a nickel salt solution, a cobalt salt solution, an aluminum salt solution, and a complexing agent are reacted by a continuous coprecipitation method described in JP-A-2002-201028.
  • a metal composite hydroxide Ni (1-x-y) Co x Al y (OH) 2 ) containing Ni element, Co element, and element M1 in the molar ratio expressed by the above (Formula II) is produced. is manufactured.
  • the nickel salt that is the solute of the nickel salt solution is, for example, at least one of nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate.
  • the cobalt salt that is the solute of the cobalt salt solution is, for example, at least one of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate.
  • the aluminum salt that is the solute of the aluminum salt solution is, for example, at least one of aluminum sulfate, aluminum nitrate, aluminum chloride, and aluminum acetate.
  • the above metal salts are mixed in proportion. That is, in the mixed solution containing the metal salt, the molar ratio of each element corresponds to the above (Formula II). Water is used here as a solvent.
  • a complexing agent may be used in the manufacturing process of the metal composite hydroxide.
  • the amount of the complexing agent is such that, for example, the molar ratio to the total number of moles of metal salts (nickel salt, cobalt salt, and aluminum salt) is greater than 0 and less than or equal to 2.0.
  • the complexing agent is a material that can form complexes with nickel ions, cobalt ions, and aluminum ions in an aqueous solution.
  • Complexing agents include, for example, ammonium ion donors (such as ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, or ammonium fluoride), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, and glycine. At least one type.
  • the pH value of a mixed solution containing a nickel salt solution, a cobalt salt solution, an aluminum salt solution, and a complexing agent is adjusted. For this reason, an alkali metal hydroxide is added to the mixed solution before the pH of the mixed solution changes from alkaline to neutral.
  • Alkali metal hydroxides are, for example, sodium hydroxide or potassium hydroxide.
  • the pH value is measured when the temperature of the liquid mixture is 40°C.
  • the pH of the mixed solution is measured when the temperature of the mixed solution sampled from the reaction tank reaches 40°C. If the temperature of the sampled mixture is not 40°C, the pH is measured after heating or cooling the mixture to 40°C.
  • a complexing agent is continuously supplied to the reaction tank to cause a reaction, and Ni (1-x-y) C x Al y (OH) 2 is generated.
  • the temperature of the reaction tank is controlled, for example, within the range of 20-80°C, preferably within the range of 30-70°C.
  • the pH value in the reaction tank is controlled within the range of, for example, 9-13.
  • reaction precipitate formed in the reaction tank is neutralized while being stirred.
  • the time for neutralizing the reaction precipitate is, for example, in the range of 1 to 20 hours.
  • reaction tank used in the continuous coprecipitation method a type of reaction tank in which overflow occurs can be used in order to separate the formed reaction precipitate.
  • a device etc. having the following characteristics is used.
  • various gases for example, an inert gas such as nitrogen, argon, or carbon dioxide, an oxidizing gas such as air or oxygen, or a mixed gas thereof
  • an inert gas such as nitrogen, argon, or carbon dioxide
  • an oxidizing gas such as air or oxygen, or a mixed gas thereof
  • the neutralized reaction precipitate is washed and isolated. Isolation is performed, for example, by dehydrating a slurry containing the reaction precipitate by centrifugation, suction filtration, or the like.
  • reaction precipitate is dried and sieved as necessary to obtain a metal composite hydroxide.
  • the reaction precipitate It is preferable to wash the reaction precipitate using water or an alkaline washing liquid. In washing the reaction precipitate, it is preferable to use an alkaline washing liquid, and it is particularly preferable to use an aqueous sodium hydroxide solution as the alkaline washing liquid. Further, cleaning may be performed using a cleaning liquid containing elemental sulfur.
  • the cleaning liquid containing elemental sulfur is an aqueous solution of potassium or sodium sulfate.
  • a metal composite hydroxide is produced as the MCC, but a metal composite oxide may also be prepared.
  • a metal composite oxide is produced, for example, by heating a metal composite hydroxide.
  • the heating step may be performed multiple times as necessary.
  • the heating temperature means the set temperature of the heating device, and when performing multiple heating processes, the heating temperature means the temperature of the process heated at the highest holding temperature among the multiple heating processes. .
  • the heating temperature is preferably in the range of 400-700°C, more preferably in the range of 450-680°C.
  • the metal composite hydroxide is sufficiently oxidized and a metal composite oxide having a BET specific surface area within an appropriate range is obtained.
  • the time for maintaining the heating temperature in the heating step is preferably in the range of 0.1 to 20 hours, more preferably in the range of 0.5 to 10 hours.
  • the rate of temperature increase until the heating temperature described above is reached is, for example, in the range of 50-400° C./hour.
  • the heat treatment is performed in an atmosphere containing air, oxygen, nitrogen, argon, or a mixed gas thereof.
  • the interior of the heating device may be an oxygen-containing atmosphere containing a moderate amount of oxygen.
  • the oxygen-containing atmosphere may be a mixed gas atmosphere of an inert gas and an oxidizing gas, or may be a state in which an oxidizing agent is present in an inert gas atmosphere.
  • the oxygen-containing atmosphere only needs to contain a sufficient amount of oxygen atoms to oxidize the transition metal.
  • the atmosphere inside the heating device can be controlled by passing an oxidizing gas into the heating device, or by introducing an oxidizing gas into the mixed liquid. This is carried out by bubbling, etc.
  • the oxidizing agent to be present in the oxygen-containing atmosphere includes peroxides such as hydrogen peroxide, peroxide salts such as permanganates, perchlorates, hypochlorites, nitric acid, halogens, or ozone.
  • peroxides such as hydrogen peroxide, peroxide salts such as permanganates, perchlorates, hypochlorites, nitric acid, halogens, or ozone.
  • Lithium compounds used in the production of LiMO include, for example, lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, lithium chloride, and fluoride. At least one of lithium. Among these, it is preferable to use lithium hydroxide, lithium hydroxide hydrate, a mixture of lithium hydroxide and lithium carbonate, or a mixture of lithium hydroxide hydrate and lithium carbonate as the lithium compound. Further, when lithium hydroxide contains lithium carbonate, the content of lithium carbonate in lithium hydroxide is preferably 5% by mass or less.
  • the firing temperature is preferably in the range of 650-1000°C, more preferably in the range of 680-900°C, and particularly preferably in the range of 700-850°C.
  • 650° C. or higher a CAM having a strong crystal structure can be obtained.
  • the firing temperature is 1000° C. or less, volatilization of lithium ions on the surface of the CAM particles can be reduced.
  • the primary particle diameter of the obtained CAM can be controlled. As the holding time becomes longer, the primary particle diameter tends to increase and the BET specific surface area tends to decrease.
  • the above retention time is adjusted as appropriate depending on the type of transition metal element used and the type and amount of the precipitant.
  • the holding time of the firing treatment is preferably 0.5 to 50 hours, more preferably 1 to 20 hours.
  • the retention time of the firing treatment is 50 hours or less, it is possible to substantially suppress the battery performance from deteriorating due to volatilization of lithium ions.
  • the holding time of the firing treatment is 0.5 hours or more, crystal development is sufficient and battery performance is unlikely to deteriorate.
  • the heating rate until the firing temperature is reached is preferably 80°C/hour or more, more preferably 100°C/hour or more, and particularly preferably 150°C/hour or more.
  • the rate of temperature increase until the firing temperature is reached is calculated from the time from the time when temperature raising is started until the firing temperature is reached in the firing apparatus.
  • the firing process has a plurality of firing stages at different firing temperatures.
  • the firing process preferably includes a first firing stage and a second firing stage in which firing is performed at a higher temperature than the first firing stage.
  • the firing process may include firing stages with different firing temperatures and firing times.
  • the firing process is performed in an atmosphere containing air, oxygen, nitrogen, argon, a mixed gas of these, or the like, depending on the desired composition.
  • the mixture of MCC and lithium compound may be calcined in the presence of an inert melting agent.
  • the inert melting agent is added to an extent that does not impair the initial capacity of a battery using CAM, and may remain in the fired product.
  • the inert melting agent for example, those described in WO2019/177032A1 can be used.
  • the mixture may be subjected to a temporary calcination treatment before being subjected to the above calcination treatment.
  • the temporary firing process is performed at a temperature lower than the firing temperature in the firing process.
  • the firing temperature of the temporary firing process is, for example, in the range of 400°C or higher and lower than 700°C.
  • the pre-firing process may be performed multiple times.
  • the firing device used during temporary firing is not particularly limited, and is, for example, a continuous firing furnace or a fluidized fluidized firing furnace.
  • the continuous firing furnace is, for example, a tunnel furnace or a roller hearth kiln.
  • the fluidized kiln is, for example, a rotary kiln.
  • the crushing process may be performed multiple times. For example, in the case of sequentially performing the first firing stage and the second firing stage, the first crushing process is performed after the first firing stage, and then the second firing stage is performed. You may perform a 2nd crushing process after implementation.
  • the humidification step (ST20) it is preferable to perform the humidification process in an atmosphere with a dew point of 50-90°C.
  • the dew point is equal to or higher than the above lower limit, sufficient humidification process can be carried out.
  • the dew point is below the above upper limit, the amount of water that comes into contact with the CAM is small, and it is difficult to generate large amounts of lithium hydroxide or lithium carbonate as a residue when Li is extracted from the inside of the CAM. , gas generation in lithium secondary batteries can be sufficiently suppressed.
  • the dew point of the humidification treatment is more preferably 60°C or higher, and particularly preferably 80°C or lower.
  • the dew point range of the humidification treatment is 60-90°C, 50-80°C, and 60-80°C.
  • the humidification process (ST20), it is preferable to perform the humidification process in an atmosphere where the CO 2 concentration is 200 ppm or less. Moreover, in the humidification process, when the CO 2 concentration is below the above upper limit value, the amount of lithium carbonate in the CAM is difficult to increase.
  • the CO 2 concentration in the humidification treatment is more preferably 100 ppm or less, particularly preferably 50 ppm or less.
  • the humidification process is preferably performed in an atmosphere with a temperature of 80-400°C.
  • the temperature is equal to or higher than the above lower limit, the moisture that has come into contact with the CAM evaporates appropriately, and the problem of clumping during the humidification process is less likely to occur.
  • the temperature is below the above upper limit value, it is possible to prevent the CAM from being re-sintered and the crystallite diameter from increasing excessively. As a result, it is possible to prevent the diffusion resistance of lithium ions within the crystal structure from increasing and to suppress deterioration of rate characteristics.
  • the temperature of the humidification treatment is more preferably 90°C or higher, particularly preferably 100°C or higher, and even more preferably 300°C or lower.
  • the temperature range for the humidification treatment includes 80-300°C, 90-400°C, 100-400°C, and 100-300°C.
  • the treatment time is preferably 0.1 to 5 hours.
  • the process time is equal to or longer than the above lower limit, sufficient humidification process can be performed.
  • the processing time is below the above upper limit, the amount of water that comes into contact with the CAM is small, and it is difficult to generate a large amount of lithium hydroxide or lithium carbonate as a residue when Li is extracted from the inside of the CAM. Therefore, gas generation in the lithium secondary battery can be sufficiently suppressed.
  • the humidification treatment time is more preferably 0.2-2.5 hours, particularly preferably 0.3-2 hours.
  • the drying step (ST30) it is preferable to perform the drying process in an atmosphere with a temperature of 100 to 400°C.
  • the temperature of the drying process is preferably at least the lower limit of the above range in order to prevent the charging capacity of the lithium secondary battery from decreasing due to moisture remaining in the CAM before the drying process. Therefore, the lower limit of the temperature of the drying treatment is more preferably 110°C, particularly preferably 120°C. Further, the temperature of the drying treatment is preferably at most the upper limit of the above range in order to prevent the rate characteristics from deteriorating due to re-sintering of the CAM. Therefore, the upper limit of the temperature of the drying treatment is more preferably 350°C, particularly preferably 300°C.
  • the temperature range for the drying treatment includes 100-350°C, 110-350°C, and 120-300°C.
  • drying is performed by, for example, reduced pressure drying, vacuum drying, air blowing, heating, or a combination thereof.
  • Reduced pressure drying and vacuum drying are carried out, for example, at 100-200° C. under a pressure of 0.3 atmospheres or less.
  • Drying by air blowing is performed using, for example, a hot air dryer.
  • the treatment time is preferably 0.1 hour or more. In the drying treatment, if the treatment time is equal to or longer than the above lower limit, the drying treatment can be sufficiently carried out.
  • the processing time of the drying treatment is more preferably 0.5 hours or more, and particularly preferably 1.0 hours or more.
  • the drying step (ST30) it is preferable to perform the drying process in an atmosphere where the CO 2 concentration is 200 ppm or less. Further, in the drying process, when the CO 2 concentration is below the above upper limit value, the increase in lithium carbonate in the CAM can be suppressed, and the generation of gas in the lithium secondary battery can be sufficiently suppressed.
  • the CO 2 concentration in the drying treatment is more preferably 100 ppm or less, particularly preferably 50 ppm or less.
  • the CAM can be manufactured by adjusting the processing conditions in the humidification step (ST20) and the drying step (ST30).
  • Lithium Secondary Battery An example of a lithium secondary battery positive electrode having the CAM of this embodiment and a lithium secondary battery including the lithium secondary battery positive electrode will be described.
  • the positive electrode for a lithium secondary battery may be referred to as a positive electrode.
  • An example of a suitable lithium secondary battery in which LiMO manufactured by the manufacturing method of the present embodiment is used as a CAM includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and a separator between the positive electrode and the negative electrode. It has an electrolyte placed therein.
  • FIG. 4 is a schematic diagram showing an example of a lithium secondary battery.
  • the cylindrical lithium secondary battery 10 is manufactured as follows.
  • the positive electrode 2 includes a positive electrode active material layer 2a containing CAM, and a positive electrode current collector 2b on which the positive electrode active material layer 2a is formed over one surface.
  • a positive electrode 2 can be manufactured by first preparing a positive electrode mixture containing CAM, a conductive material, and a binder, and then supporting the positive electrode mixture on one surface of the positive electrode current collector 2b to form the positive electrode active material layer 2a. .
  • Examples of the negative electrode 3 include an electrode in which a negative electrode mixture containing a negative electrode active material (not shown) is supported on a negative electrode current collector, and an electrode made of a negative electrode active material alone; It can be manufactured by
  • the bottom of the battery can 5 is sealed.
  • an electrolyte (not shown) is interposed between the positive electrode 2 and the negative electrode 3.
  • the top of the battery can 5 is sealed with the top insulator 7 and the sealing body 8. Thereby, the lithium secondary battery 10 is completed.
  • the shape of the electrode group 4 is a columnar shape in which the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the winding axis is, for example, a circle, an ellipse, a rectangle, or a rectangle with rounded corners.
  • the shape of the lithium secondary battery having such an electrode group 4 a shape defined by IEC60086, which is a standard established by the International Electrotechnical Commission (IEC), or JIS C 8500 can be adopted.
  • the shape may be cylindrical or square.
  • the lithium secondary battery is not limited to the above-mentioned wound type configuration, but may have a laminated type configuration in which a laminated structure of a positive electrode, a separator, a negative electrode, and a separator are repeatedly stacked.
  • stacked lithium secondary batteries include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode, separator, negative electrode, and electrolyte that constitute the lithium secondary battery for example, the configurations, materials, and manufacturing methods described in [0113] to [0140] of WO2022/113904A1 can be used.
  • All-solid-state lithium secondary battery will be described as an example of a lithium secondary battery including a positive electrode for a lithium secondary battery formed using the CAM of this embodiment.
  • FIG. 5 is a schematic diagram showing an example of an all-solid-state lithium secondary battery.
  • the all-solid-state lithium secondary battery 1000 includes a laminate 100 having a positive electrode 110, a negative electrode 120, and a solid electrolyte layer 130, and an exterior body 200 that houses the laminate 100.
  • the all-solid-state lithium secondary battery 1000 may have a bipolar structure in which a CAM and a negative electrode active material are arranged on both sides of a current collector.
  • a specific example of the bipolar structure is, for example, the structure described in JP-A-2004-95400.
  • the positive electrode 110 has a positive electrode active material layer 111 and a positive electrode current collector 112.
  • the positive electrode active material layer 111 includes the above-mentioned CAM and solid electrolyte. Further, the positive electrode active material layer 111 may contain a conductive material and a binder.
  • the negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122.
  • the negative electrode active material layer 121 includes a negative electrode active material. Further, the negative electrode active material layer 121 may include a solid electrolyte and a conductive material.
  • the laminate 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122.
  • the all-solid-state lithium secondary battery 1000 may include a separator between the positive electrode 110 and the negative electrode 120.
  • the all-solid-state lithium secondary battery 1000 further includes an insulator (not shown) that insulates the stacked body 100 and the exterior body 200, and a sealing body (not shown) that seals the opening 200a of the exterior body 200.
  • the exterior body 200 is a container made of a highly corrosion-resistant metal material such as aluminum, stainless steel, or nickel-plated steel. Further, the exterior body 200 may be a container made of a bag-shaped laminated film that has been subjected to anti-corrosion treatment on at least one surface.
  • Examples of the shape of the all-solid-state lithium secondary battery 1000 include a coin shape, a button shape, a paper shape (or sheet shape), a cylindrical shape, a square shape, and a laminate shape (pouch shape).
  • the all-solid-state lithium secondary battery 1000 has, for example, one stacked body 100, but is not limited to this.
  • the all-solid-state lithium secondary battery 1000 may have a configuration in which the laminate 100 is used as a unit cell, and a plurality of unit cells (the laminate 100) are sealed inside an exterior body 200.
  • LiMO with a layered structure containing Li element, Ni element, and the element M;
  • a CAM comprising: a lithium compound containing lithium hydroxide and lithium carbonate;
  • the Va 0.5 , the Va 0.9 , and the Vd 0.5 satisfy the relationship shown in the following (Formula A'),
  • the Sm satisfies the relationship shown in the following (Formula B'), and
  • a positive electrode for a lithium secondary battery comprising the CAM according to any one of [21] to [29].
  • a lithium secondary battery comprising the positive electrode for a lithium secondary battery according to [30].
  • a method for manufacturing a CAM comprising: A preparation step of preparing a fired powder of MCC, which is a precursor of LiMO, and a lithium compound; a humidification step of performing a humidification treatment on the baked powder prepared in the preparation step; a drying step of producing the CAM by performing a drying treatment on the fired powder that has been subjected to the humidification treatment in the humidification step, In the humidification process, the humidification process is performed in an atmosphere with a dew point of 50-90°C and a CO 2 concentration of 50 ppm or less.
  • the method for manufacturing a CAM according to [32] wherein in the humidification process, the humidification process is performed in an atmosphere having a temperature of 90 to 400°C.
  • humidity processing conditions are the conditions when the humidification processing was performed in the humidification process (ST20)
  • drying processing conditions are the conditions when the drying processing was performed in the drying process (ST30).
  • Example 1 In (Example 1), first, a powder of nickel cobalt aluminum metal composite oxide was produced as MCC, which is a precursor of LiMO.
  • aqueous sodium hydroxide solution was added into the reaction tank. At this time, the temperature of the solution was maintained at 50° C. in the reaction tank. Then, a mixed solution was prepared by mixing a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and an aluminum sulfate aqueous solution at a ratio in which the molar ratio of Ni, Co, and Al was 88:9:3. In addition, an ammonium sulfate aqueous solution was prepared as a complexing agent.
  • reaction precipitate was washed with water, isolated by dehydration using a centrifuge, and dried at 105°C to obtain a metal composite hydroxide.
  • MCC which is a nickel cobalt aluminum metal composite oxide
  • lithium hydroxide monohydrate powder prepared as a lithium compound and MCC were mixed.
  • the value obtained by dividing the molar amount of Li element [Li] by the sum of the molar amount of Ni element [Ni], the molar amount of Co element [Co], and the molar amount of Al element [Al] is 1.
  • the firing was carried out at a temperature of 740° C. for 5 hours in an oxygen atmosphere.
  • the humidification process was performed under the humidification process conditions shown in Table 1. Specifically, 150 g of fired powder was subjected to humidification treatment under the conditions that the treatment temperature was 300° C. and the treatment time was 1 hour. At this time, air was circulated so that the dew point was 60° C. and the CO 2 concentration was less than 1 ppm.
  • the drying process was performed under the drying process conditions shown in Table 1. Specifically, the drying process was performed at a process temperature of 300° C. and a process time of 1 hour. At this time, air was circulated so that the dew point was ⁇ 30° C. or less and the CO 2 concentration was less than 1 ppm. As a result, the CAM sample in (Example 1) was completed.
  • Example 2 (Example 3)
  • Example 3 In (Example 2) and (Example 3), as shown in Table 1, the humidification process was performed under different processing times from those in (Example 1). Specifically, the processing time of (Example 2) is 0.3 hours, and the processing time of (Example 3) is 2 hours. Except for this point, in (Example 2) and (Example 3), the CAM samples were completed as in (Example 1).
  • Example C1 In (Example C1), as shown in Table 1, unlike (Example 1), etc., humidification treatment and drying treatment were not performed. That is, in (Example C1), the fired powder obtained before performing the humidification process in (Example 1) was used as a CAM sample.
  • Example C2 In (Example C2), as shown in Table 1, humidification treatment was not carried out similarly to (Example C1). In (Example C2), the baked powder obtained before the humidification process in (Example 1) was washed with water, and after the washing process, a drying process was performed.
  • Example C2 the water washing treatment and drying treatment were carried out under the following conditions.
  • Water washing treatment conditions -Water washing treatment was carried out by dispersing 50 g of baked powder in 50 g of pure water and stirring for 20 minutes. The baked powder after washing with water was recovered by vacuum filtration.
  • Drying treatment was carried out by drying the baked powder after washing with water under reduced pressure at 120° C. for 10 hours.
  • Example C2 a CAM sample was completed in the same manner as in (Example 1), except that the humidification process was not performed and the water washing process and drying process were performed sequentially.
  • Example C3 In (Example C3), as shown in Table 1, humidification treatment and drying treatment were performed under different conditions from (Example 1).
  • Example C3 the humidification process was performed in the same manner as in (Example 1), except that the atmospheric gas was air with a CO 2 concentration of 400 ppm, as shown in the humidification process conditions in Table 1. carried out.
  • Example C3 the drying process was carried out in the same manner as in (Example 1), except that the atmospheric gas was air with a CO 2 concentration of 400 ppm, as shown in the drying process conditions in Table 1.
  • Example C3 a CAM sample was completed in the same manner as in (Example 1) except that the humidification treatment conditions were different from those in (Example 1).
  • FIG. 6 is a diagram showing adsorption isotherms and desorption isotherms used in determining water retention parameters for (Example 1) and (Example C1).
  • the horizontal axis is the relative pressure p/p 0
  • the vertical axis is the water vapor adsorption amount V (cm 3 (STP)/g).
  • the adsorption isotherm is shown by a solid line
  • the desorption isotherm is shown by a broken line.
  • BET specific surface area Sm As shown in Table 1, the BET specific surface area Sm was determined for each example as a physical property evaluation corresponding to the above-mentioned (requirement 2).
  • W1, W2, and W3 were measured by the method described above (neutralization titration method).
  • Table 1 also lists the results for W1 and W2.
  • Table 1 also shows the results of W3.
  • the results of determining crystal strain, average pore diameter, pore volume, and D50 for CAM are shown. These compositions and physical properties were measured by the methods described above (Measurement of composition) and [A-3-4]. Further, as a result of powder X-ray diffraction measurement, the LiMO in the CAM obtained in (Example 1) to (Example 3) and (Example C1) to (Example C3) had a layered structure.
  • a positive electrode for a lithium secondary battery was produced from the CAM sample of each example, and then a lithium secondary battery was produced using the produced positive electrode for a lithium secondary battery. Thereafter, as shown in Table 1, the float charge and rate characteristics of the manufactured lithium secondary battery were measured.
  • a paste-like positive electrode mixture was prepared.
  • the positive electrode mixture was prepared by kneading the mixture of the CAM produced in each example, the conductive material, and the binder.
  • acetylene black was used as the conductive material
  • PVdF was used as the binder.
  • each material was mixed in the following proportions.
  • N-methyl-2-pyrrolidone was used as an organic solvent.
  • the paste-like positive electrode mixture prepared as described above was applied to a current collector (aluminum foil having a thickness of 40 ⁇ m). Thereafter, the current collector coated with the positive electrode mixture was vacuum-dried for 8 hours in an atmosphere at a temperature of 150° C., thereby completing a positive electrode for a lithium secondary battery.
  • the electrode area of the positive electrode for a lithium secondary battery was 1.65 cm 2 .
  • electrolyte a solution in which LiPF 6 was dissolved in a mixed solution of various substances in the proportions shown below was used.
  • the electrolytic solution was prepared so that the concentration of LiPF 6 was 1 mol/l.
  • a negative electrode was placed above the separator.
  • metallic lithium was used as the negative electrode.
  • the upper cover was installed via the gasket, and the upper cover was caulked using a caulking machine. As a result, a coin-shaped half cell R2032 was produced as a lithium secondary battery.
  • Float test As an index for evaluating the amount of gas generated within the battery, the amount of float electricity was measured.
  • the float charge is the charge observed when an irreversible reaction occurs with the electrolyte at the particle interface. The larger the value of the float electrical quantity observed, the greater the amount of gas generated.
  • the float electrical quantity was measured under the following conditions. ⁇ Test temperature: 60°C ⁇ Maximum charging voltage: 4.3V, charging current: 0.2CA ⁇ Constant voltage holding time 60 hours
  • the integrated amount of electricity during the constant voltage holding time after shifting to the 4.3V constant voltage mode was calculated as the float amount of electricity (mAh/g).
  • the float electrical quantity was 6.0 mAh/g or less, it was determined that the float electrical quantity was small.
  • Rate characteristics [(1C/0.2C) discharge capacity]
  • the rate characteristic is the ratio (%) of the discharge capacity when the charge/discharge rate is 1C to the discharge capacity when the charge/discharge rate is 0.2C.
  • Rate characteristics when the rate characteristics were 95% or more, it was determined that the rate characteristics were high.
  • rate characteristics were measured under the following conditions.
  • (Rate characteristic measurement conditions) (0.2C discharge capacity) ⁇ Test temperature: 25°C ⁇ Maximum charging voltage: 4.3V, charging current: 0.2CA, constant current constant voltage charging, ends at 0.05CA current value ⁇ Minimum discharging voltage: 2.5V, discharging current: 0.2CA, constant current discharge ( 1C discharge capacity) ⁇ Processing temperature: 25°C ⁇ Maximum charging voltage: 4.3V, charging current: 1CA, constant current constant voltage charging, ends at 0.05CA current value ⁇ Minimum discharging voltage: 2.5V, discharging current: 1CA, constant current discharge
  • Example C1 shows that the relationship of (formula A) specified as (requirement 1) is Not satisfied.
  • the value calculated by (Formula A) is a water retention parameter, and the water retention parameter of (Example C1) is higher than the water retention parameters of (Example 1) to (Example 3). Therefore, (Example C1) retains water more easily than (Example 1) to (Example 3), so the active sites where side reactions are likely to occur in lithium secondary batteries are more likely to occur than (Example 1) to (Example 3). more than As a result, in (Example C1), as shown in the "Battery Evaluation” column of Table 1, the float electricity amount was large.
  • Example C1 unlike (Example 1) to (Example 3), humidification processing and drying processing were not performed.
  • the humidification process inactivates active sites that are likely to cause side reactions in a lithium secondary battery through contact with water. From this, if humidification treatment is not performed as in (Example C1), it is not possible to inactivate the active sites that tend to cause side reactions in lithium secondary batteries, and the relationship in (Formula A) is It is possible that you will not be satisfied.
  • Example C2 As can be seen from the results shown in the "Physical property evaluation” column of Table 1, (Example C2) satisfies the relationship of (Formula B) specified as (Requirement 2). do not have. (Formula B) specifies Sm, and Sm in (Example C2) is higher than Sm in (Example 1) to (Example 3). Therefore, in (Example C2), side reactions occurring on the surface of the CAM during charging and discharging of a lithium secondary battery cannot be suppressed more than in (Example 1) to (Example 3). As a result, as shown in the "Battery Evaluation” column of Table 1, (Example C2) has a low rate characteristic value.
  • Example C2 unlike (Example 1) to (Example 3), a water washing process is performed instead of a humidification process. Similar to the humidification process, the water washing process inactivates active sites that are likely to cause side reactions in a lithium secondary battery through contact with water. However, when performing the water washing treatment, the lithium compound remaining at the grain boundaries of LiMO and filling the pores is excessively removed. For this reason, if the water washing process is performed as in (Example C2), it will be difficult to satisfy the relationship (Equation B). It is thought that many reactions occur and the value of the rate characteristic becomes low.
  • Example C3 As can be seen from the results shown in the "Physical property evaluation” column of Table 1, (Example C3) does not satisfy the relationship of (formula C) specified as (requirement 3). .
  • (Formula C) defines W2/W1, and the value of W2/W1 in (Example C3) is larger than in (Example 1) to (Example 3). Therefore, (Example C3) is unable to suppress gas generation in the lithium secondary battery more than (Example 1) to (Example 3).
  • the float electricity amount was large.
  • Example C3 humidification processing is performed similarly to (Example 1) to (Example 3). However, in (Example 1) to (Example 3), the humidification process is performed in an atmosphere where the CO 2 concentration is 200 ppm or less (less than 1 ppm), whereas in (Example C3), the CO 2 concentration is Humidification processing is performed in an atmosphere exceeding 200 ppm (400 ppm). As a result, in (Example C3), W2 is particularly large among the lithium compounds remaining on the surface of the CAM, and it is considered that the relationship of (Formula C) is not satisfied.
  • a positive electrode active material for a lithium secondary battery a positive electrode for a lithium secondary battery, and a lithium secondary battery are capable of suppressing gas generation and easily realizing a lithium secondary battery with excellent rate characteristics. , and a method for producing a positive electrode active material for a lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Provided is a positive electrode active material for a lithium secondary battery and the like, whereby it is possible to suppress the generation of gas and to easily achieve a lithium secondary battery having excellent rate characteristics. The positive electrode active material for a lithium secondary battery according to the present invention is such that a water vapor adsorption amount Va0.5 when a relative pressure p/p0 is 0.5 in an adsorption isotherm according to a water vapor adsorption method, a water vapor adsorption amount Va0.9 when the relative pressure p/p0 is 0.9 in the adsorption isotherm according to the water vapor adsorption method, and a water vapor adsorption amount Vd0.5 when the relative pressure p/p0 is 0.5 in a desorption isotherm according to the water vapor adsorption method satisfy a relationship of "(Vd0.5 - Va0.5)/Va0.9 ≤ 0.90", a BET specific surface area Sm measured by a nitrogen adsorption method satisfies a relationship of "Sm ≤ 0.8 m2/g", and a mass ratio W1 of lithium hydroxide and a mass ratio W2 of lithium carbonate satisfy a relationship of "W2/W1 ≤ 1.40".

Description

リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池、およびリチウム二次電池用正極活物質の製造方法Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
 本発明は、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池、およびリチウム二次電池用正極活物質の製造方法に関する。 The present invention relates to a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery, a lithium secondary battery, and a method for producing a positive electrode active material for a lithium secondary battery.
 リチウム二次電池は、正極と負極との間に電解質(非水電解質や固体電解質など)が配置されている。リチウム二次電池では、電解質を介して、リチウムイオンが正極と負極との間を移動することで、充電および放電が行われる。 In a lithium secondary battery, an electrolyte (such as a non-aqueous electrolyte or a solid electrolyte) is placed between a positive electrode and a negative electrode. In a lithium secondary battery, charging and discharging are performed by moving lithium ions between a positive electrode and a negative electrode via an electrolyte.
 リチウム二次電池において、正極は、例えば、リチウム金属複合酸化物を正極活物質として用いて作製される。リチウム二次電池用正極活物質は、例えば、リチウム金属複合酸化物の前駆体である金属複合化合物とリチウム化合物とを混合した混合物を焼成することで作製される。 In a lithium secondary battery, the positive electrode is produced using, for example, a lithium metal composite oxide as a positive electrode active material. A positive electrode active material for a lithium secondary battery is produced, for example, by firing a mixture of a metal composite compound, which is a precursor of a lithium metal composite oxide, and a lithium compound.
 上記の焼成では、リチウム化合物がリチウム金属複合酸化物に残留物として残留しやすい。リチウム化合物の残留物は、例えば、原料である水酸化リチウムの未反応物、原料である水酸化リチウムに不純物として含まれる炭酸リチウム、焼成の際に副生成物として生成された炭酸リチウムである。残留物であるリチウム化合物は、リチウム二次電池においてガスが発生する要因になる。 In the above firing, the lithium compound tends to remain as a residue in the lithium metal composite oxide. The residue of the lithium compound is, for example, unreacted material of lithium hydroxide as a raw material, lithium carbonate contained as an impurity in lithium hydroxide as a raw material, and lithium carbonate produced as a by-product during calcination. The residual lithium compound becomes a cause of gas generation in the lithium secondary battery.
 このため、リチウム化合物がリチウム金属複合酸化物に残留物として残留する正極活物質について、水洗処理(例えば、特許文献1参照)を施すことが提案されている。 For this reason, it has been proposed to perform a water washing treatment (for example, see Patent Document 1) on a positive electrode active material in which a lithium compound remains as a residue in a lithium metal composite oxide.
特開2007-273108号公報Japanese Patent Application Publication No. 2007-273108 特開2021-39933号公報JP 2021-39933 Publication 特開2018-14322号公報JP 2018-14322 Publication 特開2009-99462号公報JP2009-99462A 特開2002-348121号公報Japanese Patent Application Publication No. 2002-348121
 従来においては、ガスの発生を抑制すると共に、レート特性に優れたリチウム二次電池を実現することが容易でない。 Conventionally, it has not been easy to realize a lithium secondary battery that suppresses gas generation and has excellent rate characteristics.
 したがって、本発明は、ガスの発生を抑制すると共に、レート特性に優れたリチウム二次電池を容易に実現可能な、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池、およびリチウム二次電池用正極活物質の製造方法を提供することを目的とする。 Therefore, the present invention provides a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery, and a lithium secondary battery, which can suppress gas generation and easily realize a lithium secondary battery with excellent rate characteristics. The present invention aims to provide a method for producing a positive electrode active material for a lithium secondary battery.
 本発明は、以下の態様を有する。
 [1]
 Li元素、Ni元素、および元素Mを含む、層状構造のリチウム金属複合酸化物と、
 水酸化リチウムおよび炭酸リチウムを含むリチウム化合物と
 を有するリチウム二次電池用正極活物質であって、
 前記元素Mが、Co、Mn、Fe、Cu、Ti、Mg、Ca、Ba、Al、Zn、Sn、Zr、Nb、B、Si、S、およびPからなる群から選択される少なくとも1種の元素であり、
 水蒸気吸着法の吸着等温線において水蒸気圧pと飽和蒸気圧pとの相対圧力p/pが0.5であるときの水蒸気吸着量Va0.5、前記水蒸気吸着法の吸着等温線において前記相対圧力p/pが0.9であるときの水蒸気吸着量Va0.9、および、前記水蒸気吸着法の脱着等温線において前記相対圧力p/pが0.5であるときの水蒸気吸着量Vd0.5が、下記の(式A)に示す関係を満たし、
 窒素吸着法により計測されるBET比表面積Smが下記の(式B)に示す関係を満たし、かつ、
 前記水酸化リチウムの質量割合W1と前記炭酸リチウムの質量割合W2とが下記の(式C)に示す関係を満たす、
 リチウム二次電池用正極活物質。
 (Vd0.5-Va0.5)/Va0.9≦0.90   ・・・(式A)
 Sm≦0.8m/g   ・・・(式B)
 W2/W1≦1.40   ・・・(式C)
 [2]
 前記リチウム金属複合酸化物は、
 下記(組成式I)で表される、
 [1]に記載のリチウム二次電池用正極活物質。
 Li[Li(Ni(1-x-y)CoM11-m]O   ・・・(組成式I)
((組成式I)において、M1は、Mn、Fe、Cu、Ti、Mg、Ca、Ba、Al、Zn、Sn、Zr、B、Si、SおよびPからなる群から選択される少なくとも1種の元素であり、m、x、およびyは、-0.1≦m≦0.2、0≦x≦0.5、0<y≦0.7、およびx+y<1に示す関係を満足する。)
 [3]
 前記BET比表面積Smが下記の式(B1)に示す関係を満たす、
 [1]または[2]に記載のリチウム二次電池用正極活物質。
 0.2m/g≦Sm≦0.7m/g   ・・・(式B1)
 [4]
 前記炭酸リチウムの質量割合W2は、下記の式(D)に示す関係を満たす、
 [1]から[3]のいずれかに記載のリチウム二次電池用正極活物質。
 W2≦0.70質量%   ・・・(式D)
 [5]
 中和滴定法で測定される、前記リチウム二次電池用正極活物質の溶出リチウム量W3は、下記の式(E)に示す関係を満たす、
 [1]から[4]のいずれかに記載のリチウム二次電池用正極活物質。
 W3≦0.50質量%   ・・・(式E)
 [6]
 CuKα線で測定した粉末X線回折の回折パターンにおいて、回折角2θが10°以上90°以下の範囲内に含まれる回折パターンから算出される結晶歪が、0.10°以下である、
 [1]から[5]のいずれかに記載のリチウム二次電池用正極活物質。
 [7]
 窒素吸着法により計測される平均細孔径が、150nm以下である、
 [1]から[6]のいずれかに記載のリチウム二次電池用正極活物質。
 [8]
 窒素吸着法により計測される細孔容積が、0.0005cm/g以上0.0150cm/g以下である、
 [1]から[7]のいずれかに記載のリチウム二次電池用正極活物質。
 [9]
50%累積体積粒度D50が3μm以上30μm以下である、
 [1]から[8]のいずれかに記載のリチウム二次電池用正極活物質。
 [10]
 [1]から[9]のいずれかに記載のリチウム二次電池用正極活物質を有する、
 リチウム二次電池用正極。
 [11]
 [10]に記載のリチウム二次電池用正極を有する、
 リチウム二次電池。
 [12]
  リチウム二次電池用正極活物質の製造方法であって、
 リチウム金属複合酸化物の前駆体である金属複合化合物と、リチウム化合物との焼成粉を準備する準備工程と、
 前記準備工程で準備された前記焼成粉について加湿処理を施す加湿工程と、
 前記加湿工程において前記加湿処理が施された前記焼成粉について乾燥処理を施すことによって、前記リチウム二次電池用正極活物質を作製する乾燥工程と
 を有し、
 前記加湿工程では、露点が50℃以上90℃以下であってCO濃度が200ppm以下である雰囲気において、前記加湿処理を実行する、
 リチウム二次電池用正極活物質の製造方法。
 [13]
 前記加湿工程では、温度が80℃以上400℃以下である雰囲気において、前記加湿処理を実行する、
 [12]に記載のリチウム二次電池用正極活物質の製造方法。
 [14]
 前記乾燥工程では、温度が100℃以上400℃以下である雰囲気において、前記乾燥処理を実行する、
 [12]または[13]に記載のリチウム二次電池用正極活物質の製造方法。
The present invention has the following aspects.
[1]
A lithium metal composite oxide with a layered structure containing Li element, Ni element, and element M;
A positive electrode active material for a lithium secondary battery, comprising: a lithium compound containing lithium hydroxide and lithium carbonate;
The element M is at least one selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, Ca, Ba, Al, Zn, Sn, Zr, Nb, B, Si, S, and P. is an element,
In the adsorption isotherm of the water vapor adsorption method, the water vapor adsorption amount Va 0.5 when the relative pressure p/p 0 between the water vapor pressure p and the saturated vapor pressure p 0 is 0.5, in the adsorption isotherm of the water vapor adsorption method Water vapor adsorption amount Va 0.9 when the relative pressure p/p 0 is 0.9, and water vapor when the relative pressure p/p 0 is 0.5 in the desorption isotherm of the water vapor adsorption method. The adsorption amount Vd 0.5 satisfies the relationship shown in the following (formula A),
The BET specific surface area Sm measured by the nitrogen adsorption method satisfies the relationship shown in the following (formula B), and
The mass proportion W1 of the lithium hydroxide and the mass proportion W2 of the lithium carbonate satisfy the relationship shown in the following (Formula C),
Positive electrode active material for lithium secondary batteries.
(Vd 0.5 - Va 0.5 )/Va 0.9 ≦0.90 (Formula A)
Sm≦0.8m 2 /g (Formula B)
W2/W1≦1.40 (Formula C)
[2]
The lithium metal composite oxide is
Represented by the following (compositional formula I),
The positive electrode active material for a lithium secondary battery according to [1].
Li[Li m (Ni (1-x-y) C x M1 y ) 1-m ] O 2 ... (compositional formula I)
(In (compositional formula I), M1 is at least one member selected from the group consisting of Mn, Fe, Cu, Ti, Mg, Ca, Ba, Al, Zn, Sn, Zr, B, Si, S, and P. m, x, and y satisfy the relationships shown in -0.1≦m≦0.2, 0≦x≦0.5, 0<y≦0.7, and x+y<1 .)
[3]
The BET specific surface area Sm satisfies the relationship shown in the following formula (B1),
The positive electrode active material for a lithium secondary battery according to [1] or [2].
0.2m 2 /g≦Sm≦0.7m 2 /g (Formula B1)
[4]
The mass proportion W2 of the lithium carbonate satisfies the relationship shown in the following formula (D),
The positive electrode active material for a lithium secondary battery according to any one of [1] to [3].
W2≦0.70% by mass (Formula D)
[5]
The eluted lithium amount W3 of the positive electrode active material for lithium secondary batteries, measured by neutralization titration method, satisfies the relationship shown in the following formula (E),
The positive electrode active material for a lithium secondary battery according to any one of [1] to [4].
W3≦0.50% by mass (Formula E)
[6]
In the diffraction pattern of powder X-ray diffraction measured with CuKα rays, the crystal strain calculated from the diffraction pattern in which the diffraction angle 2θ is within the range of 10° or more and 90° or less is 0.10° or less.
The positive electrode active material for a lithium secondary battery according to any one of [1] to [5].
[7]
The average pore diameter measured by nitrogen adsorption method is 150 nm or less,
The positive electrode active material for a lithium secondary battery according to any one of [1] to [6].
[8]
The pore volume measured by nitrogen adsorption method is 0.0005 cm 3 /g or more and 0.0150 cm 3 /g or less,
The positive electrode active material for a lithium secondary battery according to any one of [1] to [7].
[9]
50% cumulative volume particle size D50 is 3 μm or more and 30 μm or less,
The positive electrode active material for a lithium secondary battery according to any one of [1] to [8].
[10]
Having a positive electrode active material for a lithium secondary battery according to any one of [1] to [9],
Positive electrode for lithium secondary batteries.
[11]
Having the positive electrode for a lithium secondary battery according to [10],
Lithium secondary battery.
[12]
A method for producing a positive electrode active material for a lithium secondary battery, the method comprising:
a preparation step of preparing a fired powder of a metal composite compound that is a precursor of a lithium metal composite oxide and a lithium compound;
a humidification step of performing a humidification treatment on the baked powder prepared in the preparation step;
a drying step of producing the positive electrode active material for a lithium secondary battery by performing a drying treatment on the fired powder subjected to the humidification treatment in the humidification step,
In the humidification step, the humidification process is performed in an atmosphere where the dew point is 50 ° C. or more and 90 ° C. or less and the CO 2 concentration is 200 ppm or less.
A method for producing a positive electrode active material for a lithium secondary battery.
[13]
In the humidification step, the humidification process is performed in an atmosphere with a temperature of 80° C. or higher and 400° C. or lower.
The method for producing a positive electrode active material for a lithium secondary battery according to [12].
[14]
In the drying step, the drying process is performed in an atmosphere with a temperature of 100° C. or higher and 400° C. or lower.
The method for producing a positive electrode active material for a lithium secondary battery according to [12] or [13].
 本発明によれば、ガスの発生を抑制すると共に、レート特性に優れたリチウム二次電池を容易に実現可能な、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池、およびリチウム二次電池用正極活物質の製造方法を提供することができる。 According to the present invention, a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery, and a lithium secondary battery are capable of suppressing gas generation and easily realizing a lithium secondary battery with excellent rate characteristics. , and a method for producing a positive electrode active material for a lithium secondary battery.
図1Aは、関連技術において作製される正極活物質を模式的に示す図である(水洗処理や加湿処理を施す前の状態)。FIG. 1A is a diagram schematically showing a positive electrode active material produced in a related art (a state before being subjected to water washing treatment or humidification treatment). 図1Bは、関連技術において作製される正極活物質を模式的に示す図である(水洗処理を施した後の状態)。FIG. 1B is a diagram schematically showing a positive electrode active material produced in the related technology (state after washing with water). 図1Cは、関連技術において作製される正極活物質を模式的に示す図である(公知の加湿処理を施した後の状態)。FIG. 1C is a diagram schematically showing a positive electrode active material produced in the related art (a state after performing a known humidification treatment). 図2は、吸着等温線および脱着等温線の一例を示す図である。FIG. 2 is a diagram showing an example of an adsorption isotherm and a desorption isotherm. 図3は、実施形態のリチウム二次電池用正極活物質を作製する製造方法の概要を示すフロー図である。FIG. 3 is a flow diagram outlining a manufacturing method for manufacturing a positive electrode active material for a lithium secondary battery according to an embodiment. 図4は、リチウム二次電池の一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of a lithium secondary battery. 図5は、全固体リチウム二次電池の一例を示す模式図である。FIG. 5 is a schematic diagram showing an example of an all-solid lithium secondary battery. 図6は、(例1)と(例C1)に関して、保水性パラメータを求める際に用いた吸着等温線および脱着等温線を示す図である。FIG. 6 is a diagram showing adsorption isotherms and desorption isotherms used in determining water retention parameters for (Example 1) and (Example C1).
 以下より、本発明の実施形態の一例について説明する。 An example of an embodiment of the present invention will be described below.
 本明細書では、用語について、適宜、略語を用いている。具体的には、金属複合化合物は、略語「MCC」(Metal Composite Compound)を用いて示している。リチウム金属複合酸化物は、略語「LiMO」(Lithium Metal composite Oxide)を用いて示している。リチウム二次電池用正極活物質については、略語「CAM」(Cathode Active Material for lithium secondary batteries)を用いて示している。数値範囲について、例えば「5-15μm」と記載されて
いる場合、5μmから15μmまでの範囲を意味し、下限値である5μmと上限値である15μmを含む数値範囲を意味する。
In this specification, abbreviations are used as appropriate for terms. Specifically, metal composite compounds are indicated using the abbreviation "MCC" (Metal Composite Compound). Lithium metal composite oxide is indicated using the abbreviation "LiMO" (Lithium Metal composite Oxide). The positive electrode active material for lithium secondary batteries is indicated using the abbreviation "CAM" (Cathode Active Material for lithium secondary batteries). Regarding the numerical range, for example, when it is described as "5-15 μm", it means the range from 5 μm to 15 μm, and means the numerical range including the lower limit of 5 μm and the upper limit of 15 μm.
 図1Aから図1Cは、関連技術に係るCAMを模式的に示す図である。図1Aでは、水洗処理や加湿処理を施す前のCAMを示している。図1Bでは、水洗処理を施した後のCAMを示している。図1Cでは、加湿処理を施した後のCAMを示している。 FIGS. 1A to 1C are diagrams schematically showing CAMs according to related technology. FIG. 1A shows the CAM before being subjected to water washing or humidification. FIG. 1B shows the CAM after being subjected to water washing treatment. FIG. 1C shows the CAM after humidification treatment.
 図1Aに示すように、水洗処理や加湿処理を施す前のCAMは、リチウム金属複合酸化物(LiMO)51にリチウム化合物61が残留している。また、水洗処理や加湿処理を施す前の正極活物質のうち、LiMO51には、保水性が高く副反応が発生し得る活性点71(図では、実線の楕円で囲った領域)が存在している。 As shown in FIG. 1A, in the CAM before being subjected to water washing treatment or humidification treatment, lithium compound 61 remains in lithium metal composite oxide (LiMO) 51. In addition, among the positive electrode active materials before being subjected to water washing or humidification, LiMO51 has active sites 71 (areas surrounded by solid ellipses in the figure) that have high water retention and can cause side reactions. There is.
 このCAMについて水洗処理を施した場合には、図1Bに示すように、LiMO51から残留物のリチウム化合物61が除かれ、リチウム化合物61の残留量が低減する。その結果、リチウム二次電池においてガスの発生等を抑制することができる。この他に、水洗処理を実施した場合には、LiMO51において保水性が高く副反応が発生し得る活性点71を、水の接触によって不活性化させることができる(図では、破線の楕円で囲った領域で図示)。しかし、水洗処理の実施では、LiMO51の表面からリチウム化合物61の残留量の減少に伴って、BET比表面積が増大する。その結果、リチウム二次電池の充放電サイクルにおいて、LiMO51の表面で副反応が多く生じやすくなり、副反応生成物からなる抵抗層の形成や表面劣化が生じやすくなるため、レート特性が不十分になる場合がある。 When this CAM is subjected to water washing treatment, the residual lithium compound 61 is removed from the LiMO 51, and the amount of the remaining lithium compound 61 is reduced, as shown in FIG. 1B. As a result, gas generation and the like can be suppressed in the lithium secondary battery. In addition, when water washing is performed, active sites 71 in LiMO51 that have high water retention and can cause side reactions can be inactivated by contact with water (in the figure, the active sites 71 are surrounded by broken ellipses). area). However, when the water washing treatment is performed, the BET specific surface area increases as the amount of lithium compound 61 remaining on the surface of LiMO 51 decreases. As a result, during the charge/discharge cycle of a lithium secondary battery, many side reactions tend to occur on the surface of LiMO51, resulting in the formation of a resistance layer made of side reaction products and surface deterioration, resulting in insufficient rate characteristics. It may happen.
 これに対して、公知の加湿処理を実施した場合には、図1Cに示すように、水洗処理の場合と同様に、水の接触によって活性点71を不活性化することができる(図では、破線の楕円で囲った領域で図示)。また、公知の加湿処理を実施した場合には、水洗処理の場合と異なり、LiMO51の表面に残留するリチウム化合物61の量が減少しないので、BET比表面積の過剰な増加を抑制することができる。その結果、レート特性が優れるリチウム二次電池を得ることができる。しかしながら、公知の加湿処理の実施では、リチウム化合物61の残留量は、加湿処理の実施前後で同等であるために、リチウム二次電池においてガスが発生することを十分に抑制できない場合がある。本実施形態のCAMは、ガスの発生を抑制すると共に、レート特性に優れたリチウム二次電池を製造することができる。 On the other hand, when a known humidification process is performed, the active sites 71 can be inactivated by contact with water, as shown in FIG. (Illustrated by the area enclosed by a dashed oval). Furthermore, when the known humidification treatment is performed, unlike the case of water washing treatment, the amount of lithium compound 61 remaining on the surface of LiMO 51 does not decrease, so it is possible to suppress an excessive increase in the BET specific surface area. As a result, a lithium secondary battery with excellent rate characteristics can be obtained. However, in the implementation of the known humidification process, the residual amount of the lithium compound 61 is the same before and after the humidification process, so it may not be possible to sufficiently suppress gas generation in the lithium secondary battery. The CAM of this embodiment can suppress gas generation and manufacture a lithium secondary battery with excellent rate characteristics.
[A]CAM
 本実施形態において、CAMは、LiMOとリチウム化合物とを有する。つまり、CAMは、LiMOにリチウム化合物が残留物として残留している。上記CAMを構成する各部について順次説明する。
[A]CAM
In this embodiment, the CAM includes LiMO and a lithium compound. That is, in CAM, a lithium compound remains as a residue in LiMO. Each part constituting the above-mentioned CAM will be sequentially explained.
[A-1]LiMO
 上記CAMにおいて、LiMOは、少なくとも、Li元素、Ni元素、および元素Mを含む。元素Mは、Co、Mn、Fe、Cu、Ti、Mg、Ca、Ba、Al、Zn、Sn、Zr、Nb、B、Si、S、およびPからなる群から選択される少なくとも1種の元素である。元素Mは、Co、Mn、Al、Zr、NbおよびBからなる群から選択される少なくとも1種の元素が好ましい。
[A-1] LiMO
In the above CAM, LiMO includes at least Li element, Ni element, and element M. Element M is at least one element selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, Ca, Ba, Al, Zn, Sn, Zr, Nb, B, Si, S, and P. It is. Element M is preferably at least one element selected from the group consisting of Co, Mn, Al, Zr, Nb and B.
 具体的には、LiMOは、下記(組成式I)で表されることが好ましい。 Specifically, LiMO is preferably represented by the following (compositional formula I).
 Li[Li(Ni(1-x-y)CoM11-m]O   ・・・(組成式I) Li[Li m (Ni (1-x-y) C x M1 y ) 1-m ] O 2 ... (compositional formula I)
 (組成式I)において、元素M1は、Mn、Fe、Cu、Ti、Mg、Ca、Ba、Al、Zn、Sn、Zr、Nb、B、Si、S、およびPからなる群から選択される少なくとも1種の元素である。すなわち、元素M1は、上述の元素MのうちCo元素以外の元素である。元素M1は、Mn、Al、Zr、NbおよびBからなる群から選択される少なくとも1種の元素が好ましい。 In (compositional formula I), element M1 is selected from the group consisting of Mn, Fe, Cu, Ti, Mg, Ca, Ba, Al, Zn, Sn, Zr, Nb, B, Si, S, and P. At least one element. That is, the element M1 is an element other than the Co element among the above-mentioned elements M. Element M1 is preferably at least one element selected from the group consisting of Mn, Al, Zr, Nb, and B.
 また、(組成式I)において、m、x、およびyのそれぞれは、下記(式Ia)から(式Id)に示す関係を満足することが好ましい。 Furthermore, in (compositional formula I), each of m, x, and y preferably satisfies the relationships shown in (formula Ia) to (formula Id) below.
 -0.1≦m≦0.2  ・・・(式Ia)
 0≦x≦0.5  ・・・(式Ib)
 0<y≦0.7  ・・・(式Ic)
 x+y<1  ・・・(式Id)
-0.1≦m≦0.2 (Formula Ia)
0≦x≦0.5 (Formula Ib)
0<y≦0.7...(Formula Ic)
x+y<1...(Formula Id)
 (組成式I)において、mの値が(式Ia)に示す範囲の下限値以上であることによって、リチウム二次電池のレート特性を向上させることができる。また、(組成式I)において、mの値が(式Ia)に示す範囲の上限値以下であることによって、リチウム二次電池の初回クーロン効率を向上させることができる。また、(組成式I)において、mは-0.03以上であることがより好ましく、0以上であることが特に好ましい。さらに、mは0.1以下がより好ましく、0.07以下が特に好ましい。mの範囲としては、-0.03≦m≦0.1がより好ましく、0≦m≦0.07が特に好ましい。 In (compositional formula I), when the value of m is equal to or greater than the lower limit of the range shown in (formula Ia), the rate characteristics of the lithium secondary battery can be improved. Furthermore, in (compositional formula I), when the value of m is equal to or less than the upper limit of the range shown in (formula Ia), the initial coulombic efficiency of the lithium secondary battery can be improved. Furthermore, in (compositional formula I), m is more preferably −0.03 or more, and particularly preferably 0 or more. Furthermore, m is more preferably 0.1 or less, particularly preferably 0.07 or less. The range of m is more preferably −0.03≦m≦0.1, and particularly preferably 0≦m≦0.07.
 (組成式I)において、xの値が(式Ib)に示す関係を満たすことによって、リチウム二次電池の内部抵抗を低減し、レート特性を向上させることができる。また、(組成式I)において、xは0.01以上であることがより好ましく、0.02以上であることが特に好ましい。さらに、xは0.4以下がより好ましく、0.3以下が特に好ましい。xの範囲としては、0.01≦x≦0.4がより好ましく、0.02≦x≦0.3が特に好ましい。 In (compositional formula I), when the value of x satisfies the relationship shown in (formula Ib), the internal resistance of the lithium secondary battery can be reduced and the rate characteristics can be improved. Furthermore, in (compositional formula I), x is more preferably 0.01 or more, particularly preferably 0.02 or more. Furthermore, x is more preferably 0.4 or less, particularly preferably 0.3 or less. The range of x is more preferably 0.01≦x≦0.4, and particularly preferably 0.02≦x≦0.3.
 (組成式I)において、yの値が(式Ic)に示す関係を満足することによって、リチウム二次電池のサイクル維持率を向上させることができる。また、(組成式I)において、yは0.0002以上であることがより好ましく、0.0005以上であることが特に好ましい。さらに、yは0.6以下がより好ましく、0.5以下が特に好ましい。yの範囲としては、0.0002≦y≦0.6がよりお好ましく、0.0005≦y≦0.5が特に好ましい。 In (compositional formula I), when the value of y satisfies the relationship shown in (formula Ic), the cycle maintenance rate of the lithium secondary battery can be improved. Further, in (compositional formula I), y is more preferably 0.0002 or more, particularly preferably 0.0005 or more. Furthermore, y is more preferably 0.6 or less, particularly preferably 0.5 or less. The range of y is more preferably 0.0002≦y≦0.6, and particularly preferably 0.0005≦y≦0.5.
 (組成式I)において、xの値とyの値との加算値(x+y)が(式Id)に示す関係を満足することによって、リチウム二次電池の初期容量を向上させることができる。なお、リチウム二次電池の内部抵抗が増加してレート特性が低下することを抑制するために、xの値とyの値との加算値(x+y)は、0.01以上であることが好ましい。また、(組成式I)において、(x+y)は0.6未満がより好ましく、0.5以下が特に好ましく、0.25以下がさらに好ましい。(x+y)の範囲としては、0<x+y<1であり、0.01≦x+y<0.6がより好ましく、0.01≦x+y≦0.5が特に好ましく、0.01≦x+y≦0.25がさらに好ましい。 In (compositional formula I), the initial capacity of the lithium secondary battery can be improved by making the sum (x+y) of the value of x and the value of y satisfy the relationship shown in (formula Id). In addition, in order to suppress the internal resistance of the lithium secondary battery from increasing and the rate characteristics from decreasing, the sum of the value of x and the value of y (x+y) is preferably 0.01 or more. . Further, in (compositional formula I), (x+y) is more preferably less than 0.6, particularly preferably 0.5 or less, and even more preferably 0.25 or less. The range of (x+y) is 0<x+y<1, more preferably 0.01≦x+y<0.6, particularly preferably 0.01≦x+y≦0.5, and 0.01≦x+y≦0. 25 is more preferred.
(組成の測定)
 LiMOの組成は、例えば、CAMをICP発光分光分析装置(Optima7300(株式会社パーキンエルマー製)等)を用いて測定することにより求められる。なお、(組成式I)のmには、LiMO由来のLiに加えてリチウム化合物由来のLiも含み得る。組成の測定前に、測定元素に応じて試料を酸又はアルカリに溶解させる処理を行う。
(Measurement of composition)
The composition of LiMO can be determined, for example, by measuring CAM using an ICP emission spectrometer (Optima 7300 (manufactured by PerkinElmer, Inc.), etc.). Note that m in (compositional formula I) may include Li derived from a lithium compound in addition to Li derived from LiMO. Before measuring the composition, the sample is dissolved in acid or alkali depending on the element to be measured.
 上記LiMOは、層状構造を有する。 The above LiMO has a layered structure.
 LiMOの結晶構造は、層状岩塩型構造であることが好ましく、六方晶型又は単斜晶型であることがより好ましい。具体的には、六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、およびP6/mmcからなる群から選ばれる一つの空間群に帰属される。また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、およびC2/cからなる群から選ばれる一つの空間群に帰属される。上記のうち、LiMOの結晶構造は、放電容量が高く、レート特性に優れるリチウム二次電池を得るために、空間群R-3mに帰属される六方晶型、又は、C2/mに帰属される単斜晶型であることが特に好ましい。 The crystal structure of LiMO is preferably a layered rock salt structure, more preferably a hexagonal crystal structure or a monoclinic crystal structure. Specifically, the hexagonal crystal structure is P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21 , R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6/m, P6 3 /m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P-6m2, P-6c2, P-62m, P-62c, P6/mmm, P6/mcc, P6 3 /mcm, and P6 3 /mmc. Ru. The monoclinic crystal structure is P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2/m, P2 1 /m, C2/m, P2/c, P2 1 /c, and C2 It belongs to one space group selected from the group consisting of /c. Among the above, the crystal structure of LiMO is hexagonal, which belongs to space group R-3m, or C2/m, in order to obtain a lithium secondary battery with high discharge capacity and excellent rate characteristics. A monoclinic type is particularly preferred.
 LiMOの結晶構造は、CuKαを線源とし、かつ回折角2θの測定範囲を10-90°とするCAMの粉末X線回折測定を行うことで算出できる。具体的には、粉末X線回折測定装置(例えば、株式会社リガク製UltimaIV)を用いて観察することにより確認できる。 The crystal structure of LiMO can be calculated by performing CAM powder X-ray diffraction measurement using CuKα as a radiation source and measuring the diffraction angle 2θ in the range of 10-90°. Specifically, this can be confirmed by observation using a powder X-ray diffraction measurement device (for example, Ultima IV manufactured by Rigaku Co., Ltd.).
[A-2]リチウム化合物
 上記CAMにおいて、リチウム化合物は、CAMの作製の際にLiMOに残留した残留物であって、水酸化リチウムおよび炭酸リチウムを含む。
[A-2] Lithium Compound In the above CAM, the lithium compound is a residue left in LiMO during the production of the CAM, and includes lithium hydroxide and lithium carbonate.
 具体的には、残留物であるリチウム化合物は、原料である水酸化リチウムの未反応物、原料である水酸化リチウムに不純物として含まれる炭酸リチウム、焼成の際に副生成物として生成された炭酸リチウム等である。 Specifically, the lithium compound that is the residue is the unreacted material of the raw material lithium hydroxide, the lithium carbonate contained as an impurity in the raw material lithium hydroxide, and the carbonate produced as a byproduct during calcination. Lithium etc.
[A-3]CAMの特性
 CAMは、複数の粒子が集合した粉体である。詳細については後述するが、CAMの粉体は、焼成粉である。
[A-3] Characteristics of CAM CAM is a powder made up of a plurality of particles. Although details will be described later, the CAM powder is a fired powder.
 CAMの粉体は、一次粒子が凝集した二次粒子のみで構成されていてもよく、一次粒子と二次粒子との両者が混合していてもよい。例えば、CAMの粉体は、二次粒子であるLiMOと、リチウム化合物の一次粒子とを含んでいてもよい。 The CAM powder may be composed only of secondary particles that are aggregated primary particles, or may be a mixture of both primary particles and secondary particles. For example, the CAM powder may include LiMO, which is a secondary particle, and primary particles of a lithium compound.
 なお、上記の「一次粒子」は、顕微鏡(走査型電子顕微鏡など)を用いて1000倍以上30000倍以下の視野でCAMを観察した際に、外観上、粒界が存在しない粒子である。そして、上記の「二次粒子」は、一次粒子の凝集体である。 Note that the above-mentioned "primary particles" are particles that do not have grain boundaries in appearance when the CAM is observed with a field of view of 1000 times or more and 30000 times or less using a microscope (such as a scanning electron microscope). The above-mentioned "secondary particles" are aggregates of primary particles.
 上記CAMは、下記に示す(要件1)と(要件2)と(要件3)とを満足する。上記CAMは、(要件1)と(要件2)と(要件3)とを満足することで、ガスの発生を抑制すると共に、レート特性に優れたリチウム二次電池を容易に実現可能である。 The above CAM satisfies (Requirement 1), (Requirement 2), and (Requirement 3) shown below. By satisfying (Requirement 1), (Requirement 2), and (Requirement 3), the above-mentioned CAM can easily realize a lithium secondary battery that suppresses gas generation and has excellent rate characteristics.
[A-3-1](要件1)保水パラメータ
 上記CAMは、水蒸気吸着法の吸着等温線において水蒸気圧pと飽和蒸気圧pとの相対圧力p/pが0.5であるときの水蒸気吸着量Va0.5、水蒸気吸着法の吸着等温線において相対圧力p/pが0.9であるときの水蒸気吸着量Va0.9、および水蒸気吸着法の脱着等温線において相対圧力p/pが0.5であるときの水蒸気吸着量Vd0.5が、下記の(式A)に示す(要件1)の関係を満たす。
[A-3-1] (Requirement 1) Water retention parameter The above CAM is based on the adsorption isotherm of the water vapor adsorption method when the relative pressure p/p 0 between the water vapor pressure p and the saturated vapor pressure p 0 is 0.5. Water vapor adsorption amount Va 0.5 , water vapor adsorption amount Va 0.9 when the relative pressure p/p 0 is 0.9 in the adsorption isotherm of the water vapor adsorption method, and relative pressure p in the desorption isotherm of the water vapor adsorption method. The water vapor adsorption amount Vd 0.5 when /p 0 is 0.5 satisfies the relationship (requirement 1) shown in (Formula A) below.
 (Vd0.5-Va0.5)/Va0.9≦0.90   ・・・(式A) (Vd 0.5 - Va 0.5 )/Va 0.9 ≦0.90 (Formula A)
 (Vd0.5-Va0.5)/Va0.9は、保水性を示す保水パラメータを規定しており、値が小さくなるに伴って水を保持しにくくなることを意味する。(式A)に示す関係を満たす場合には、CAMにおいて副反応が発生しやすい活性点が水との接触によって効果的に不活性化した状態になる。CAM表面で活性的なNiが水との接触により、NiO-OHの構造となり、不活性化するためであると考えられる。このため、(式A)に示す関係を満たすCAMを用いて作製されたリチウム二次電池は、ガスの発生を十分に抑制することができる。 (Vd 0.5 - Va 0.5 )/Va 0.9 defines a water retention parameter indicating water retention, and means that as the value decreases, it becomes harder to retain water. When the relationship shown in (Formula A) is satisfied, active sites in CAM that are likely to cause side reactions are effectively inactivated by contact with water. This is thought to be because Ni, which is active on the CAM surface, becomes inactivated by forming a NiO-OH structure upon contact with water. Therefore, a lithium secondary battery manufactured using a CAM that satisfies the relationship shown in (Formula A) can sufficiently suppress gas generation.
 上記のように示した観点から、保水パラメータは、式(A1)を満たすことがより好ましい。 From the viewpoint shown above, it is more preferable that the water retention parameter satisfies formula (A1).
 (Vd0.5-Va0.5)/Va0.9≦0.85     ・・・(式A1) (Vd 0.5 - Va 0.5 )/Va 0.9 ≦0.85 (Formula A1)
 なお、測定時の水蒸気圧pおよび飽和蒸気圧pは、温度が25℃である場合の値である。Va0.5、Va0.9、およびVd0.5は、単位質量(例えば、1g)当たりのCAMの試料が水蒸気を吸着する量(単位:cm(STP)/g)である。 Note that the water vapor pressure p and the saturated vapor pressure p 0 at the time of measurement are values when the temperature is 25°C. Va 0.5 , Va 0.9 , and Vd 0.5 are amounts (unit: cm 3 (STP)/g) that a sample of CAM adsorbs water vapor per unit mass (for example, 1 g).
(保水性パラメータの測定)
 吸着等温線および脱着等温線は、相対圧力p/pの条件を変えて試料が水蒸気を吸着する水蒸気吸着量を測定することで得られる。水蒸気吸着量は、蒸気吸着測定装置を用いて水蒸気吸着法を実行することで測定される。蒸気吸着測定装置は、例えば、マイクロトラック・ベル社製の「BELSORP(登録商標)-18」であって、下記の測定条件で水蒸気吸着量の測定が実行される。
(Measurement of water retention parameters)
The adsorption isotherm and the desorption isotherm are obtained by changing the relative pressure p/p 0 condition and measuring the amount of water vapor adsorbed by the sample. The amount of water vapor adsorption is measured by performing a water vapor adsorption method using a vapor adsorption measuring device. The vapor adsorption measuring device is, for example, "BELSORP (registered trademark)-18" manufactured by Microtrac Bell Co., Ltd., and the amount of water vapor adsorption is measured under the following measurement conditions.
・充填試料量:0.5g
・試料の前処理条件:真空下、200℃で5時間処理
・恒温槽温度:50℃
・吸着温度:25℃
・飽和蒸気圧:3.169kPa
・吸着平衡時間:500秒
・Filled sample amount: 0.5g
・Sample pretreatment conditions: 5 hours treatment at 200℃ under vacuum ・Thermostatic chamber temperature: 50℃
・Adsorption temperature: 25℃
・Saturated vapor pressure: 3.169kPa
・Adsorption equilibrium time: 500 seconds
 図2は、吸着等温線および脱着等温線の一例を示す図である。図2において、横軸は、相対圧力p/pであり、縦軸は、水蒸気吸着量V(cm(STP)/g)である。図2では、吸着等温線について実線で示し、脱着等温線について破線で示している。 FIG. 2 is a diagram showing an example of an adsorption isotherm and a desorption isotherm. In FIG. 2, the horizontal axis is the relative pressure p/p 0 , and the vertical axis is the water vapor adsorption amount V (cm 3 (STP)/g). In FIG. 2, the adsorption isotherm is shown as a solid line, and the desorption isotherm is shown as a broken line.
 図2に示すように、吸着等温線(実線)は、本実施形態では、p/pを0.9まで上昇させたときに測定される水蒸気吸着量Vの軌跡である。吸着等温線では、p/pが上昇するに伴ってVが増加している。これに対して、脱着等温線(破線)は、本実施形態では、吸着等温線を得るために0.9を超える点までp/pを上昇させた後に、該点から下降させたときに測定されるVの軌跡である。脱着等温線では、p/pが下降するに伴ってVが減少している。 As shown in FIG. 2, in this embodiment, the adsorption isotherm (solid line) is the locus of the water vapor adsorption amount V measured when p/ po is increased to 0.9. In the adsorption isotherm, V increases as p/ po increases. On the other hand, in this embodiment, the desorption isotherm (dashed line) is obtained by increasing p/ po to a point exceeding 0.9 in order to obtain an adsorption isotherm, and then lowering it from that point. This is the trajectory of V to be measured. In the desorption isotherm, V decreases as p/ po decreases.
 図2から判るように、吸着等温線と脱着等温線は、一致していない。例えば、吸着等温線においてp/pが0.5であるときのV(すなわちVa0.5)は、脱着等温線においてp/pが0.5であるときのV(すなわちVd0.5)よりも小さい(Va0.5<Vd0.5)。つまり、Vd0.5からVa0.5を差分した値は、ゼロよりも大きい(Vd0.5-Va0.5>0)。このように、水蒸気の吸着と脱着との間には、ヒステリシスが存在する。 As can be seen from FIG. 2, the adsorption isotherm and desorption isotherm do not match. For example, V when p/ po is 0.5 in the adsorption isotherm (i.e., Va 0.5 ) is V (i.e., Vd 0.5 ) when p/ po is 0.5 in the desorption isotherm . 5 ) (Va 0.5 < Vd 0.5 ). That is, the value obtained by subtracting Va 0.5 from Vd 0.5 is greater than zero (Vd 0.5 - Va 0.5 >0). Thus, hysteresis exists between adsorption and desorption of water vapor.
 (Vd0.5-Va0.5)/Va0.9は、Vd0.5からVa0.5を差分した値(Vd0.5-Va0.5)を、水蒸気吸着量が最大になるVa0.9で割った値であって、ヒステリシスの程度を示す指標、つまり保水パラメータ(保水指数)を示しており、値が小さくなるに伴って水を保持しにくくなることを意味する。 (Vd 0.5 - Va 0.5 )/Va 0.9 is the value obtained by subtracting Va 0.5 from Vd 0.5 (Vd 0.5 - Va 0.5 ) when the amount of water vapor adsorption is at its maximum. It is a value divided by Va 0.9 , which is an index indicating the degree of hysteresis, that is, a water retention parameter (water retention index), and means that as the value becomes smaller, it becomes harder to retain water.
 上記(Vd0.5-Va0.5)/Va0.9の下限値は特に限定されないが、(Vd0.5-Va0.5)/Va0.9>0であってもよく、(Vd0.5-Va0.5)/Va0.9>0.1であってもよい。上記(Vd0.5-Va0.5)/Va0.9の範囲は、0<(Vd0.5-Va0.5)/Va0.9≦0.90が好ましく、0<(Vd0.5-Va0.5)/Va0.9≦0.85がより好ましく、0.1<(Vd0.5-Va0.5)/Va0.9≦0.85が特に好ましい。 The lower limit value of (Vd 0.5 - Va 0.5 )/Va 0.9 is not particularly limited, but (Vd 0.5 - Va 0.5 )/Va 0.9 >0 may be satisfied, (Vd 0.5 - Va 0.5 )/Va 0.9 >0.1. The above range of (Vd 0.5 - Va 0.5 )/Va 0.9 is preferably 0<(Vd 0.5 - Va 0.5 )/Va 0.9 ≦0.90, and 0<(Vd 0.5 −Va 0.5 )/Va 0.9 ≦0.85 is more preferable, and 0.1<(Vd 0.5 −Va 0.5 )/Va 0.9 ≦0.85 is particularly preferable.
[A-3-2](要件2)BET比表面積Sm
 上記CAMは、窒素吸着法により計測されるBET比表面積Smが下記の(式B)に示す(要件2)の関係を満たす。
[A-3-2] (Requirement 2) BET specific surface area Sm
In the above CAM, the BET specific surface area Sm measured by the nitrogen adsorption method satisfies the relationship (requirement 2) shown in the following (Formula B).
 Sm≦0.8m/g   ・・・(式B) Sm≦0.8m 2 /g (Formula B)
 (式B)に示す関係を満たす場合には、CAM表面での副反応による抵抗層や表面劣化が生じにくくなるため、リチウム二次電池の充放電サイクルにおいて、CAMの表面で副反応が発生することを十分に抑制することができる。その結果、リチウム二次電池のレート特性を向上することができる。上記のように示した観点から、Smは、0.2m/g≦Sm≦0.8m/gであることが好ましい。 When the relationship shown in (Formula B) is satisfied, the resistance layer and surface deterioration due to side reactions on the CAM surface are less likely to occur, so side reactions occur on the CAM surface during the charge/discharge cycle of the lithium secondary battery. This can be sufficiently suppressed. As a result, the rate characteristics of the lithium secondary battery can be improved. From the viewpoint shown above, it is preferable that Sm satisfies 0.2 m 2 /g≦Sm≦0.8 m 2 /g.
 上記のように示した観点から、Smは、下記の式(B1)に示す関係を満たすことが更に好ましい。 From the viewpoint shown above, it is more preferable that Sm satisfies the relationship shown in the following formula (B1).
 0.2m/g≦Sm≦0.7m/g   ・・・(式B1) 0.2m 2 /g≦Sm≦0.7m 2 /g (Formula B1)
 (式B1)の下限値以上を満たす場合には、CAMの表面反応場が十分存在し、リチウム二次電池のレート特性を高めることができる。 When the lower limit of (Formula B1) or more is satisfied, there are sufficient surface reaction fields of CAM, and the rate characteristics of the lithium secondary battery can be improved.
(Smの測定)
 Smは、BET(Brunauer,Emmett,Teller)法によって測定される値である。Smの測定では、吸着ガスとして窒素ガスを用いる。BET比表面積(単位:m/g)は、例えば、窒素雰囲気において、1gのCAMを105℃の温度条件で30分間乾燥させた後に、BET比表面積計(例えば、マウンテック社製、Macsorb(登録商標))を用いて測定される。
(Measurement of Sm)
Sm is a value measured by the BET (Brunauer, Emmett, Teller) method. In the measurement of Sm, nitrogen gas is used as the adsorption gas. The BET specific surface area (unit: m 2 /g) can be determined by drying 1 g of CAM at a temperature of 105° C. for 30 minutes in a nitrogen atmosphere, and then using a BET specific surface area meter (for example, Macsorb (registered) manufactured by Mountech Co., Ltd.). Trademark)).
[A-3-3](要件3)W2/W1
 上記CAMは、水酸化リチウムの質量割合W1と炭酸リチウムの質量割合W2とが下記の(式C)に示す(要件3)の関係を満たす。
[A-3-3] (Requirement 3) W2/W1
In the above CAM, the mass proportion W1 of lithium hydroxide and the mass proportion W2 of lithium carbonate satisfy the relationship (requirement 3) shown in the following (Formula C).
 W2/W1≦1.40   ・・・(式C) W2/W1≦1.40...(Formula C)
 (式C)に示す関係を満たす場合には、CAMに含まれるリチウム化合物のうち炭酸リチウムの量が水酸化リチウムの量と比較して過剰でない。種々の検討の結果、水酸化リチウムと比較して炭酸リチウムのほうがリチウム二次電池の副反応に由来するガス発生量(cc/g)に寄与しやすいという知見が得られている。上記(式C)を満たすCAMは、リチウム化合物に含まれる炭酸リチウムの質量割合が低いことを示している。よって、リチウム二次電池においてガスの発生を十分に抑制することができる。 When the relationship shown in (Formula C) is satisfied, the amount of lithium carbonate among the lithium compounds contained in the CAM is not excessive compared to the amount of lithium hydroxide. As a result of various studies, it has been found that lithium carbonate is more likely to contribute to the amount of gas generated (cc/g) resulting from side reactions in a lithium secondary battery than lithium hydroxide. A CAM that satisfies the above (Formula C) indicates that the mass proportion of lithium carbonate contained in the lithium compound is low. Therefore, gas generation can be sufficiently suppressed in the lithium secondary battery.
 上記の観点から、W1およびW2は、下記の式(C1)に示す関係を満たすことが更に好ましい。 From the above viewpoint, it is more preferable that W1 and W2 satisfy the relationship shown in the following formula (C1).
 W2/W1≦1.00   ・・・(式C1) W2/W1≦1.00...(Formula C1)
 上記W2/W1の下限値は特に限定されないが、W2/W1≧0であってもよく、W2/W1>0であってもよい。上記W2/W1の範囲は、例えば、0≦W2/W1≦1.40、0≦W2/W1≦1.00、0<W2/W1≦1.40、0<W2/W1≦1.00が挙げられる。 Although the lower limit value of W2/W1 is not particularly limited, it may be W2/W1≧0 or W2/W1>0. The above range of W2/W1 is, for example, 0≦W2/W1≦1.40, 0≦W2/W1≦1.00, 0<W2/W1≦1.40, 0<W2/W1≦1.00. Can be mentioned.
 上記CAMは、W2が下記の式(D)に示す関係を満たすことが好ましい。 In the above CAM, W2 preferably satisfies the relationship shown in the following formula (D).
 W2≦0.70質量%   ・・・(式D) W2≦0.70% by mass...(Formula D)
 (式D)を満たすことにより、炭酸リチウムの副反応によるガス発生を抑制することができる。 By satisfying (Formula D), gas generation due to side reactions of lithium carbonate can be suppressed.
 上記の観点から、下記の式(D1)に示す関係を満たすことがより好ましい。 From the above viewpoint, it is more preferable that the relationship shown in the following formula (D1) is satisfied.
 W2≦0.60質量%   ・・・(式D1) W2≦0.60% by mass...(Formula D1)
 上記W2の下限値は特に限定されないが、W2≧0質量%であってもよく、W2>0質量%であってもよい。上記W2の範囲は、例えば、0質量%≦W2≦0.70質量%、0質量%≦W2≦0.60質量%、0質量%<W2≦0.70質量%、0質量%<W2≦0.60質量%が挙げられる。 The lower limit of W2 is not particularly limited, but may be W2≧0% by mass or W2>0% by mass. The range of W2 is, for example, 0 mass%≦W2≦0.70 mass%, 0 mass%≦W2≦0.60 mass%, 0 mass%<W2≦0.70 mass%, 0 mass%<W2≦ An example is 0.60% by mass.
 また、上記CAMは、中和滴定法で測定される溶出リチウム量W3が下記の式(E)に示す関係を満たすことが好ましい。
ことが好ましい。
Further, in the CAM, it is preferable that the amount of eluted lithium W3 measured by neutralization titration satisfies the relationship shown in the following formula (E).
It is preferable.
 W3≦0.50質量%   ・・・(式E) W3≦0.50% by mass...(Formula E)
 (式E)を満たすことにより、リチウム化合物の副反応によるガスの発生を抑制することができる。 By satisfying (Formula E), gas generation due to side reactions of the lithium compound can be suppressed.
 上記の観点から、下記の式(E1)に示す関係を満たすことがより好ましい。 From the above viewpoint, it is more preferable that the relationship shown in the following formula (E1) is satisfied.
 W3≦0.40質量%   ・・・(式E1) W3≦0.40% by mass...(Formula E1)
 上記W3の下限値は特に限定されないが、W3>0質量%であってもよい。上記W3の範囲は、0質量%<W3≦0.50質量%が特に好ましく、0質量%≦W3≦0.40質量がさらに好ましい。 The lower limit value of W3 is not particularly limited, but W3>0% by mass may be satisfied. The range of W3 is particularly preferably 0% by mass<W3≦0.50% by mass, and even more preferably 0% by mass≦W3≦0.40% by mass.
(中和滴定法)
 上記W1およびW2は、中和滴定法によって測定される。
(Neutralization titration method)
The above W1 and W2 are measured by neutralization titration method.
 W1およびW2の測定を行う際には、まず、5gのCAMと100gの純水とを100mLのポリプロピレン製容器に入れることで、スラリーを作製する。そして、スラリーを収容する容器の内部に撹拌子を入れた後に、その容器を密閉した状態で、5分間、スラリーを撹拌する。撹拌完了後、スラリーを濾過する。 When measuring W1 and W2, first, 5 g of CAM and 100 g of pure water are placed in a 100 mL polypropylene container to prepare a slurry. After a stirring bar is placed inside a container containing the slurry, the slurry is stirred for 5 minutes while the container is sealed. After stirring is complete, filter the slurry.
 そして、スラリーの濾過により得られた60gの濾液に、濃度が0.1mol/Lである塩酸を連続的に滴下する。塩酸の滴下は、自動滴定装置(京都電子工業社製、AT-610)を用いて、pHが4.0となるまで実施する。このとき、塩酸が滴下された濾液において、pHが8.3±0.1になる時の塩酸の滴定量A[mL]と、pHが4.5±0.1になる時の塩酸の滴定量B[mL]を求める。 Then, hydrochloric acid having a concentration of 0.1 mol/L is continuously added dropwise to 60 g of the filtrate obtained by filtering the slurry. Hydrochloric acid is added dropwise using an automatic titrator (AT-610, manufactured by Kyoto Denshi Kogyo Co., Ltd.) until the pH reaches 4.0. At this time, in the filtrate to which hydrochloric acid was added dropwise, the titration amount A [mL] of hydrochloric acid when the pH becomes 8.3±0.1, and the titration amount A [mL] of hydrochloric acid when the pH becomes 4.5±0.1. Find the amount B [mL].
 その後、下記の(式b)および(式c)を用いて、W1およびW2を算出する。なお、(式b)と(式c)とにおいて、水酸化リチウムの分子量および炭酸リチウムの分子量は、原子量を、H:1.000、Li:6.941、C:12、O:16として算出している(つまり、水酸化リチウムの分子量:23.941、炭酸リチウムの分子量:73.882)。 After that, W1 and W2 are calculated using (Formula b) and (Formula c) below. In addition, in (formula b) and (formula c), the molecular weight of lithium hydroxide and the molecular weight of lithium carbonate are calculated with the atomic weights as H: 1.000, Li: 6.941, C: 12, O: 16. (that is, the molecular weight of lithium hydroxide: 23.941, the molecular weight of lithium carbonate: 73.882).
 W1[質量%]={0.1×(2A-B)/1000}×{23.941/(20×60/100)}×100 ・・・(式b)
 W2[質量%]={0.1×(B-A)/1000}×{73.882/(20×60/100)}×100 ・・・(式c)
W1 [mass%] = {0.1×(2A-B)/1000}×{23.941/(20×60/100)}×100 (Formula b)
W2 [mass%] = {0.1×(B-A)/1000}×{73.882/(20×60/100)}×100 (formula c)
 そして、上記によって算出したW1およびW2の結果から、(式d)を用いて、W3を求めることができる。 Then, from the results of W1 and W2 calculated above, W3 can be found using (formula d).
 W3[質量%]=W2×(2×6.941/73.882)+W1×(6.941/23.941) ・・・(式d) W3 [mass%] = W2 x (2 x 6.941/73.882) + W1 x (6.941/23.941)... (formula d)
[A-3-4]その他の特性
[A-3-4-1]結晶歪
 上記CAMは、CuKα線で測定した粉末X線回折の回折パターンにおいて、回折角2θが10-90°の範囲内に含まれる回折パターンから算出される結晶歪が、0.10°以下であることが好ましい。これにより、CAMに含まれるLiMOの層状構造の平面方向へのリチウムイオンの拡散が容易となり、リチウムイオンの拡散抵抗を低減し、レート特性を向上させることができる。
[A-3-4] Other properties [A-3-4-1] Crystal strain The above CAM has a diffraction angle 2θ within the range of 10-90° in the diffraction pattern of powder X-ray diffraction measured with CuKα rays. It is preferable that the crystal strain calculated from the diffraction pattern included in is 0.10° or less. This facilitates the diffusion of lithium ions in the planar direction of the layered structure of LiMO included in the CAM, reducing the diffusion resistance of lithium ions and improving the rate characteristics.
 上記のように示した観点から、上記の結晶歪は、0.08°以下であることがより好ましい。 From the viewpoint shown above, it is more preferable that the crystal strain is 0.08° or less.
 結晶歪は、粉末X線回折によって測定される。粉末X線回折は、X線回折装置(例えば、Bruker社製D8 Advance)を用いて、下記の測定条件で実行される。 Crystal strain is measured by powder X-ray diffraction. Powder X-ray diffraction is performed using an X-ray diffraction apparatus (eg, Bruker D8 Advance) under the following measurement conditions.
(測定条件)
・サンプリング幅:0.02
・スキャンスピード:4°/min
(Measurement condition)
・Sampling width: 0.02
・Scan speed: 4°/min
 粉末X線回折は、CuKα線を用いて、回折角2θの測定範囲が10°以上90°以下である条件で実行される。そして、粉末X線回折の実行で得た回折パターンについて、リートベルト解析法による解析を行うことで、結晶歪を求めることができる。リートベルト解析とは、実測の粉末X線回折パターンと結晶構造モデルからのシミュレーションパターンを比較し、両者の差が最小となるよう結晶構造モデルにおける結晶構造パラメータを最適化する手法である。初期結晶構造モデルとして層状岩塩型結晶構造(Li1-nMe)(Me1-nLi)Oを用い、結晶歪の最適化を行う。 Powder X-ray diffraction is performed using CuKα rays under the conditions that the measurement range of the diffraction angle 2θ is 10° or more and 90° or less. Then, crystal strain can be determined by analyzing the diffraction pattern obtained by performing powder X-ray diffraction using the Rietveld analysis method. Rietveld analysis is a method of comparing an actually measured powder X-ray diffraction pattern with a simulation pattern from a crystal structure model, and optimizing the crystal structure parameters in the crystal structure model so that the difference between the two is minimized. Optimization of crystal strain is performed using a layered rock salt crystal structure (Li 1-n Men ) (Me 1-n Lin ) O 2 as an initial crystal structure model.
[A-3-4-2]平均細孔径・細孔容積
 上記CAMの窒素吸着法により計測される平均細孔径は、150nm以下であることが好ましい。これにより、電極密度の低下を防ぎ、エネルギー密度の高い電池を得ることができる。また、十分な電解液の浸透性と保持性を有することができ、レート特性を向上させることができる。
[A-3-4-2] Average pore diameter/pore volume The average pore diameter of the CAM measured by the nitrogen adsorption method described above is preferably 150 nm or less. Thereby, a decrease in electrode density can be prevented and a battery with high energy density can be obtained. In addition, it can have sufficient electrolyte permeability and retention, and can improve rate characteristics.
 上記のように示した観点から、上記の平均細孔径は、100nm以下であることがより好ましく、60nm以下であることが特に好ましい。また、上記の平均細孔径は10nm以上であることが好ましい。上記の平均細孔径の範囲は、10-150nmがより好ましく、10-100nmが特に好ましく、10-60nmがさらに好ましい。 From the viewpoint shown above, the average pore diameter is more preferably 100 nm or less, particularly preferably 60 nm or less. Moreover, it is preferable that the above-mentioned average pore diameter is 10 nm or more. The average pore diameter range is more preferably 10-150 nm, particularly preferably 10-100 nm, and even more preferably 10-60 nm.
 また、上記CAMの窒素吸着法により計測される細孔容積は、0.0005-0.015cm/gであることが好ましい。細孔容積が上記範囲の下限値以上であることで、十分な電解液の浸透性と保持性を有することができ、レート特性を向上させることができる。また、細孔容積が上記範囲の上限値以下であることで、CAMの密度が向上してエネルギー密度が向上しやすい。 Further, the pore volume of the CAM measured by the nitrogen adsorption method is preferably 0.0005-0.015 cm 3 /g. When the pore volume is at least the lower limit of the above range, sufficient electrolyte permeability and retention can be achieved, and rate characteristics can be improved. Further, when the pore volume is less than or equal to the upper limit of the above range, the density of the CAM is improved and the energy density is likely to be improved.
 上記のように示した観点から、上記の細孔容積は、下限値が0.001cm/gであることがより好ましく、上限値が0.010cm/gであることがより好ましい。上記の細孔容積の範囲は、0.001-0.015cm/g、0.0005-0.010cm/g、0.0010.010cm/g等が挙げられる。 From the viewpoint shown above, the lower limit of the pore volume is more preferably 0.001 cm 3 /g, and the upper limit is more preferably 0.010 cm 3 /g. Examples of the range of the pore volume mentioned above include 0.001-0.015 cm 3 /g, 0.0005-0.010 cm 3 /g, and 0.0010.010 cm 3 /g.
 平均細孔径および細孔容積は、窒素吸着法の実施によって得た吸着等温線および脱離等温線を、BJH(Barrett-Joyner-Halenda)法で解析して取得した細孔径分布に基づいて算出される。BJH法は、細孔形状を円柱状と仮定し、毛管凝縮を生じる細孔径と窒素の相対圧の関係式(ケルビン式)に基づいて解析を行う手法である。脱離等温線から求められる細孔径分布は、ボトルネック型の細孔に由来する。 The average pore diameter and pore volume are calculated based on the pore diameter distribution obtained by analyzing the adsorption isotherm and desorption isotherm obtained by implementing the nitrogen adsorption method using the BJH (Barrett-Joyner-Halenda) method. Ru. The BJH method is a method in which the pore shape is assumed to be cylindrical, and analysis is performed based on a relational expression (Kelvin equation) between the pore diameter and the relative pressure of nitrogen that causes capillary condensation. The pore size distribution determined from the desorption isotherm is derived from bottleneck-shaped pores.
 上記の吸着等温線および脱離等温線の測定を行う際には、まず、真空加熱処理装置(例えば、マイクロトラック・ベル株式会社製のBELSORP-vacII)を用いて、150℃、8時間の条件で10gの試料について真空脱気処理を実行する。真空脱気処理の実行後、測定装置(例えばマイクロトラック・ベル株式会社製BELSORP-mini)を用いて、液体窒素の温度(77K)において、窒素の吸着等温線と脱離等温線を得る。吸着等温線および脱離等温線において単位質量あたりの試料が窒素を吸着する窒素吸着量は、標準状態(STP;Standard Temperature and Pressure)における窒素ガスの体積で表されるように算出される。 When measuring the above-mentioned adsorption isotherm and desorption isotherm, first, using a vacuum heat treatment device (for example, BELSORP-vacII manufactured by Microtrac Bell Co., Ltd.), the temperature is set at 150°C for 8 hours. Vacuum degassing is performed on a 10 g sample. After performing the vacuum degassing process, the adsorption isotherm and desorption isotherm of nitrogen are obtained at the temperature of liquid nitrogen (77K) using a measuring device (for example, BELSORP-mini manufactured by Microtrac Bell Co., Ltd.). The amount of nitrogen adsorbed by the sample per unit mass in the adsorption isotherm and the desorption isotherm is calculated as expressed by the volume of nitrogen gas in the standard temperature and pressure (STP).
[A-3-4-3]50%累積体積粒度D50
 CAMの50%累積体積粒度D50(以下D50と記載することがある)は、3-30μmであることが好ましい。D50が本範囲であることによって、かさ密度を大きくすることができるので、充填密度を高くすることができる。その結果、リチウム二次電池用正極において、CAMの粒子と導電材の粒子とが接触する接触面積が増大し、導電性が向上するので、リチウム二次電池のレート特性を向上させることができる。CAMのD50は、5μm以上がより好ましく、7μm以上が特に好ましく、8μm以上がさらに好ましい。D50は、25μm以下がより好ましく、23μm以下が特に好ましく、20μm以下がさらに好ましい。D50は、5-25μmがより好ましく、7-23μmが特に好ましく、8-20μmがさらに好ましい。
[A-3-4-3] 50% cumulative volume particle size D 50
The 50% cumulative volume particle size D 50 (hereinafter sometimes referred to as D 50 ) of the CAM is preferably 3 to 30 μm. By having D50 within this range, the bulk density can be increased, and therefore the packing density can be increased. As a result, in the positive electrode for a lithium secondary battery, the contact area between the CAM particles and the conductive material particles increases, and the conductivity improves, so that the rate characteristics of the lithium secondary battery can be improved. The D50 of the CAM is more preferably 5 μm or more, particularly preferably 7 μm or more, and even more preferably 8 μm or more. D50 is more preferably 25 μm or less, particularly preferably 23 μm or less, and even more preferably 20 μm or less. D 50 is more preferably 5-25 μm, particularly preferably 7-23 μm, even more preferably 8-20 μm.
 上記のD50は、レーザー回折散乱法によって測定される。具体的には、D50の測定を行う際には、まず、CAMの粉末を分散させた分散液を得る。分散液は、0.1gのCAMの粉末を、50mlのヘキサメタりん酸ナトリウム水溶液(濃度0.2質量%)に投入することで調製される。次に、レーザー回折散乱粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、マイクロトラックMT3300EXII)を用いて、分散液中の粉末について粒度分布を測定することで、体積基準の累積粒度分布曲線を得る。D50(μm)は、累積粒度分布曲線において、微小粒子側から50%累積時の粒子径の値に相当する。 The above D50 is measured by laser diffraction scattering method. Specifically, when measuring D50 , first, a dispersion liquid in which CAM powder is dispersed is obtained. The dispersion liquid is prepared by introducing 0.1 g of CAM powder into 50 ml of an aqueous sodium hexametaphosphate solution (concentration: 0.2% by mass). Next, by measuring the particle size distribution of the powder in the dispersion liquid using a laser diffraction scattering particle size distribution measuring device (for example, Microtrac MT3300EXII manufactured by Microtrac Bell Co., Ltd.), a volume-based cumulative particle size distribution curve is obtained. get. D 50 (μm) corresponds to the value of the particle diameter at the time of 50% accumulation from the microparticle side in the cumulative particle size distribution curve.
[B]CAMの製造方法
 上記CAMを作製する製造方法について説明する。
[B] Method for manufacturing CAM A method for manufacturing the above-mentioned CAM will be described.
 図3は、実施形態に係るCAMを作製する製造方法の概要を示すフロー図である。 FIG. 3 is a flow diagram outlining the manufacturing method for manufacturing the CAM according to the embodiment.
 上記CAMを作製する際には、図3に示すように、準備工程(ST10)と加湿工程(ST20)と乾燥工程(ST30)とを順次実行する。 When producing the above CAM, as shown in FIG. 3, a preparation step (ST10), a humidification step (ST20), and a drying step (ST30) are sequentially performed.
[B-1]準備工程(ST10)
 準備工程(ST10)では、LiMOの前駆体であるMCCとリチウム化合物との焼成粉を準備する。
[B-1] Preparation process (ST10)
In the preparation step (ST10), a fired powder of MCC, which is a precursor of LiMO, and a lithium compound is prepared.
 具体的には、MCCの組成は、Ni元素、Co元素、および上記元素M1を、下記(式II)で表されるモル比率で含む。 Specifically, the composition of MCC includes Ni element, Co element, and the above element M1 in a molar ratio represented by the following (Formula II).
 [Ni]:[Co]:[M1]=(1-x-y):x:y   (式II) [Ni]:[Co]:[M1]=(1-x-y):x:y (Formula II)
 (式II)において、x、およびyのそれぞれは、下記(式IIb)から(式IId)に示す関係を満足することが好ましい(上述の(組成式I)に関する(式Ib)から(式Id)と同様)。 In (Formula II), each of x and y preferably satisfies the relationships shown below (Formula IIb) to (Formula IId). )same as).
 0≦x≦0.5  ・・・(式IIb)
 0<y≦0.7  ・・・(式IIc)
 x+y<1  ・・・(式IId)
0≦x≦0.5 (Formula IIb)
0<y≦0.7...(Formula IIc)
x+y<1...(Formula IId)
[B-1-1]MCC
 MCCは、例えば、金属複合水酸化物、金属複合酸化物、または、これらの混合物である。
[B-1-1] MCC
MCC is, for example, a metal composite hydroxide, a metal composite oxide, or a mixture thereof.
 金属複合水酸化物は、例えば、公知のバッチ式共沈殿法又は連続式共沈殿法により製造される。以下、金属元素として、Ni、Co及びAlを含む金属複合水酸化物を例に、その製造方法を詳述する。 The metal composite hydroxide is produced, for example, by a known batch coprecipitation method or continuous coprecipitation method. Hereinafter, a method for producing the metal composite hydroxide containing Ni, Co, and Al as the metal elements will be explained in detail by taking as an example.
 具体的には、JP-A-2002-201028に記載された連続式共沈殿法によって、ニッケル塩溶液とコバルト塩溶液とアルミニウム塩溶液と錯化剤とを反応させる。これにより、Ni元素、Co元素、および元素M1を上記の(式II)で表されるモル比率で含む金属複合水酸化物(Ni(1-x-y)CoAl(OH))が製造される。 Specifically, a nickel salt solution, a cobalt salt solution, an aluminum salt solution, and a complexing agent are reacted by a continuous coprecipitation method described in JP-A-2002-201028. As a result, a metal composite hydroxide (Ni (1-x-y) Co x Al y (OH) 2 ) containing Ni element, Co element, and element M1 in the molar ratio expressed by the above (Formula II) is produced. is manufactured.
 ニッケル塩溶液の溶質であるニッケル塩は、例えば、硫酸ニッケル、硝酸ニッケル、塩化ニッケルおよび酢酸ニッケルのうちの少なくとも1種である。 The nickel salt that is the solute of the nickel salt solution is, for example, at least one of nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate.
 コバルト塩溶液の溶質であるコバルト塩は、例えば、硫酸コバルト、硝酸コバルト、塩化コバルトおよび酢酸コバルトのうちの少なくとも1種である。 The cobalt salt that is the solute of the cobalt salt solution is, for example, at least one of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate.
 アルミニウム塩溶液の溶質であるアルミニウム塩は、例えば、硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウムおよび酢酸アルミニウムのうちの少なくとも1種である。 The aluminum salt that is the solute of the aluminum salt solution is, for example, at least one of aluminum sulfate, aluminum nitrate, aluminum chloride, and aluminum acetate.
 上記の金属塩は、割合で混合される。すなわち、上記金属塩を含む混合溶液において、各元素のモル比は、上記(式II)と対応している。ここでは、溶媒として、水が使用される。 The above metal salts are mixed in proportion. That is, in the mixed solution containing the metal salt, the molar ratio of each element corresponds to the above (Formula II). Water is used here as a solvent.
 金属複合水酸化物の製造工程では、錯化剤を使用してもよい。この場合、錯化剤の量は、例えば、金属塩(ニッケル塩、コバルト塩およびアルミニウム塩)のモル数の合計に対するモル比が、0より大きく2.0以下である。 A complexing agent may be used in the manufacturing process of the metal composite hydroxide. In this case, the amount of the complexing agent is such that, for example, the molar ratio to the total number of moles of metal salts (nickel salt, cobalt salt, and aluminum salt) is greater than 0 and less than or equal to 2.0.
 錯化剤は、水溶液中で、ニッケルイオン、コバルトイオンおよびアルミニウムイオンと錯体を形成可能な材料である。錯化剤は、例えば、アンモニウムイオン供給体(水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、又は弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、およびグリシンのうちの少なくとも1種である。 The complexing agent is a material that can form complexes with nickel ions, cobalt ions, and aluminum ions in an aqueous solution. Complexing agents include, for example, ammonium ion donors (such as ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, or ammonium fluoride), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, and glycine. At least one type.
 共沈殿法では、ニッケル塩溶液、コバルト塩溶液、アルミニウム塩溶液、および錯化剤を含む混合液について、pH値を調整する。このため、混合液のpHがアルカリ性から中性になる前に、混合液にアルカリ金属水酸化物を添加する。アルカリ金属水酸化物は、例えば、水酸化ナトリウム又は水酸化カリウムである。 In the coprecipitation method, the pH value of a mixed solution containing a nickel salt solution, a cobalt salt solution, an aluminum salt solution, and a complexing agent is adjusted. For this reason, an alkali metal hydroxide is added to the mixed solution before the pH of the mixed solution changes from alkaline to neutral. Alkali metal hydroxides are, for example, sodium hydroxide or potassium hydroxide.
 なお、ここでは、pHの値は、混合液の温度が40℃である時に測定される。混合液のpHは、反応槽からサンプリングした混合液の温度が、40℃になったときに測定する。サンプリングした混合液が40℃でない場合には、混合液を40℃になるまで加温又は冷却した後に、pHを測定する。 Note that here, the pH value is measured when the temperature of the liquid mixture is 40°C. The pH of the mixed solution is measured when the temperature of the mixed solution sampled from the reaction tank reaches 40°C. If the temperature of the sampled mixture is not 40°C, the pH is measured after heating or cooling the mixture to 40°C.
 上記ニッケル塩溶液、コバルト塩溶液およびアルミニウム塩溶液の他に、錯化剤を反応槽に連続して供給することによって、反応が生じ、Ni(1-x-y)CoAl(OH)が生成される。 In addition to the above nickel salt solution, cobalt salt solution, and aluminum salt solution, a complexing agent is continuously supplied to the reaction tank to cause a reaction, and Ni (1-x-y) C x Al y (OH) 2 is generated.
 ここでは、反応槽の温度は、例えば、20-80℃の範囲内、好ましくは、30-70℃の範囲内で制御される。 Here, the temperature of the reaction tank is controlled, for example, within the range of 20-80°C, preferably within the range of 30-70°C.
 また、反応に際しては、反応槽内のpH値は、例えば、9-13の範囲内で制御される。 Furthermore, during the reaction, the pH value in the reaction tank is controlled within the range of, for example, 9-13.
 そして、反応槽内で形成された反応沈殿物を撹拌した状態で中和させる。反応沈殿物を中和させる時間は、例えば、1-20時間の範囲である。 Then, the reaction precipitate formed in the reaction tank is neutralized while being stirred. The time for neutralizing the reaction precipitate is, for example, in the range of 1 to 20 hours.
 連続式共沈殿法で用いる反応槽としては、形成された反応沈殿物を分離するために、オーバーフローが生ずるタイプの反応槽を使用することができる。 As the reaction tank used in the continuous coprecipitation method, a type of reaction tank in which overflow occurs can be used in order to separate the formed reaction precipitate.
 バッチ式共沈殿法により金属複合水酸化物を製造する場合、オーバーフローパイプを備えない反応槽や、オーバーフローした反応沈殿物をオーバーフローパイプに連結された濃縮槽で濃縮し、再び反応槽へ循環させる機構を有する装置等が使用される。 When manufacturing metal composite hydroxides using a batch coprecipitation method, a reaction tank without an overflow pipe or a mechanism in which the overflowing reaction precipitate is concentrated in a concentrating tank connected to the overflow pipe and circulated back to the reaction tank. A device etc. having the following characteristics is used.
 ここでは、各種気体(例えば、窒素、アルゴン又は二酸化炭素等の不活性ガス、空気又は酸素等の酸化性ガス、又はそれらの混合ガス)を反応槽内に供給してもよい。 Here, various gases (for example, an inert gas such as nitrogen, argon, or carbon dioxide, an oxidizing gas such as air or oxygen, or a mixed gas thereof) may be supplied into the reaction tank.
 上記の反応が完了後、中和された反応沈殿物を洗浄して単離する。単離は、例えば、反応沈殿物を含むスラリーを遠心分離や吸引ろ過などで脱水する方法で行われる。 After the above reaction is completed, the neutralized reaction precipitate is washed and isolated. Isolation is performed, for example, by dehydrating a slurry containing the reaction precipitate by centrifugation, suction filtration, or the like.
 そして、単離された反応沈殿物について、必要に応じて、乾燥および篩別を実行することで、金属複合水酸化物が得られる。 Then, the isolated reaction precipitate is dried and sieved as necessary to obtain a metal composite hydroxide.
 反応沈殿物の洗浄は、水又はアルカリ性洗浄液を用いて行うことが好ましい。反応沈殿物の洗浄では、アルカリ性洗浄液を用いることが好ましく、特に、水酸化ナトリウム水溶液をアルカリ性洗浄液として用いることが好ましい。また、硫黄元素を含有する洗浄液を用いて、洗浄を行ってもよい。硫黄元素を含有する洗浄液は、カリウムやナトリウムの硫酸塩水溶液等である。 It is preferable to wash the reaction precipitate using water or an alkaline washing liquid. In washing the reaction precipitate, it is preferable to use an alkaline washing liquid, and it is particularly preferable to use an aqueous sodium hydroxide solution as the alkaline washing liquid. Further, cleaning may be performed using a cleaning liquid containing elemental sulfur. The cleaning liquid containing elemental sulfur is an aqueous solution of potassium or sodium sulfate.
 なお、上記の例では、MCCとして、金属複合水酸化物を製造しているが、金属複合酸化物を調製してもよい。 Note that in the above example, a metal composite hydroxide is produced as the MCC, but a metal composite oxide may also be prepared.
 金属複合酸化物は、例えば、金属複合水酸化物を加熱することによって製造される。加熱工程は、必要に応じて、複数回、実施してもよい。加熱工程では、加熱温度は、加熱装置の設定温度を意味し、複数の加熱工程を行う場合には、加熱温度は、複数の加熱工程のうち、最高保持温度で加熱した工程の温度を意味する。 A metal composite oxide is produced, for example, by heating a metal composite hydroxide. The heating step may be performed multiple times as necessary. In the heating process, the heating temperature means the set temperature of the heating device, and when performing multiple heating processes, the heating temperature means the temperature of the process heated at the highest holding temperature among the multiple heating processes. .
 加熱温度は、400-700℃の範囲であることが好ましく、450-680℃の範囲であることがより好ましい。これにより、金属複合水酸化物が十分に酸化され、かつ、適切な範囲のBET比表面積を有する金属複合酸化物が得られる。 The heating temperature is preferably in the range of 400-700°C, more preferably in the range of 450-680°C. As a result, the metal composite hydroxide is sufficiently oxidized and a metal composite oxide having a BET specific surface area within an appropriate range is obtained.
 加熱工程において加熱温度を保持する時間は、0.1-20時間の範囲であることが好ましく、0.5-10時間の範囲であることがより好ましい。上記した加熱温度に達するまでの昇温速度は、例えば、50-400℃/時間の範囲である。また、加熱処理は、大気、酸素、窒素、アルゴン又はこれらの混合ガスを含む雰囲気で実施される。 The time for maintaining the heating temperature in the heating step is preferably in the range of 0.1 to 20 hours, more preferably in the range of 0.5 to 10 hours. The rate of temperature increase until the heating temperature described above is reached is, for example, in the range of 50-400° C./hour. Further, the heat treatment is performed in an atmosphere containing air, oxygen, nitrogen, argon, or a mixed gas thereof.
 加熱装置の内部は、適度に酸素を含有する酸素含有雰囲気でもよい。酸素含有雰囲気は、不活性ガスと酸化性ガスとの混合ガス雰囲気でもよく、不活性ガス雰囲気下で酸化剤を存在させた状態でもよい。これにより、金属複合水酸化物に含まれる遷移金属が適度に酸化されるため、金属複合酸化物の形態を制御しやすくなる。 The interior of the heating device may be an oxygen-containing atmosphere containing a moderate amount of oxygen. The oxygen-containing atmosphere may be a mixed gas atmosphere of an inert gas and an oxidizing gas, or may be a state in which an oxidizing agent is present in an inert gas atmosphere. As a result, the transition metal contained in the metal composite hydroxide is appropriately oxidized, making it easier to control the form of the metal composite oxide.
 酸素含有雰囲気は、遷移金属を酸化させるために十分な量の酸素原子が存在すればよい。 The oxygen-containing atmosphere only needs to contain a sufficient amount of oxygen atoms to oxidize the transition metal.
 酸素含有雰囲気が不活性ガスと酸化性ガスとを含む混合ガス雰囲気である場合、加熱装置内の雰囲気の制御は、加熱装置内に酸化性ガスを通気させる方法、又は、混合液に酸化性ガスをバブリングする方法などによって、実行される。 When the oxygen-containing atmosphere is a mixed gas atmosphere containing an inert gas and an oxidizing gas, the atmosphere inside the heating device can be controlled by passing an oxidizing gas into the heating device, or by introducing an oxidizing gas into the mixed liquid. This is carried out by bubbling, etc.
 酸素含有雰囲気に存在させる酸化剤は、過酸化水素などの過酸化物、過マンガン酸塩などの過酸化物塩、過塩素酸塩、次亜塩素酸塩、硝酸、ハロゲン又はオゾンなどである。 The oxidizing agent to be present in the oxygen-containing atmosphere includes peroxides such as hydrogen peroxide, peroxide salts such as permanganates, perchlorates, hypochlorites, nitric acid, halogens, or ozone.
[B-1-2]リチウム化合物
 LiMOの製造で使用するリチウム化合物は、例えば、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウム、塩化リチウム、およびフッ化リチウムの少なくとも一つである。これらのうち、水酸化リチウム、水酸化リチウム水和物、水酸化リチウムと炭酸リチウムの混合物、又は、水酸化リチウム水和物と炭酸リチウムの混合物をリチウム化合物として用いることが好ましい。また、水酸化リチウムが炭酸リチウムを含有する場合には、水酸化リチウム中の炭酸リチウムの含有量は、5質量%以下であることが好ましい。
[B-1-2] Lithium compounds Lithium compounds used in the production of LiMO include, for example, lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, lithium chloride, and fluoride. At least one of lithium. Among these, it is preferable to use lithium hydroxide, lithium hydroxide hydrate, a mixture of lithium hydroxide and lithium carbonate, or a mixture of lithium hydroxide hydrate and lithium carbonate as the lithium compound. Further, when lithium hydroxide contains lithium carbonate, the content of lithium carbonate in lithium hydroxide is preferably 5% by mass or less.
[B-1-3]混合
 上記のMCCおよびリチウム化合物は、最終目的物の組成比を勘案した割合で混合される。
[B-1-3] Mixing The above MCC and lithium compound are mixed in a proportion that takes into account the composition ratio of the final target product.
[B-1-4]焼成
 そして、MCCとリチウム化合物との混合物について焼成処理を実行することによって、焼成物を作製する。
[B-1-4] Firing Then, a fired product is produced by performing a firing process on the mixture of MCC and a lithium compound.
 焼成温度は、650-1000℃の範囲であることが好ましく、680-900℃の範囲であることがより好ましく、700-850℃の範囲であることが特に好ましい。焼成温度が650℃以上であると、強固な結晶構造を有するCAMを得ることができる。また、焼成温度が1000℃以下であると、CAMの粒子表面のリチウムイオンの揮発を低減できる。 The firing temperature is preferably in the range of 650-1000°C, more preferably in the range of 680-900°C, and particularly preferably in the range of 700-850°C. When the firing temperature is 650° C. or higher, a CAM having a strong crystal structure can be obtained. Further, when the firing temperature is 1000° C. or less, volatilization of lithium ions on the surface of the CAM particles can be reduced.
 また、焼成処理の保持時間を調整することによって、得られるCAMの一次粒子径を制御することができる。保持時間が長くなるに伴って、一次粒子径が大きくなり、BET比表面積が小さくなる傾向にある。上記保持時間は、用いる遷移金属元素の種類や、沈殿剤の種類および量に応じて、適宜、調整される。 Furthermore, by adjusting the holding time of the firing process, the primary particle diameter of the obtained CAM can be controlled. As the holding time becomes longer, the primary particle diameter tends to increase and the BET specific surface area tends to decrease. The above retention time is adjusted as appropriate depending on the type of transition metal element used and the type and amount of the precipitant.
 具体的には、焼成処理の保持時間は、0.5-50時間が好ましく、1-20時間がより好ましい。焼成処理の保持時間が50時間以下である場合には、リチウムイオンの揮発によって実質的に電池性能が低下することを抑制できる。焼成処理の保持時間が0.5時間以上である場合には、結晶の発達が十分であり、電池性能が低下しにくい。 Specifically, the holding time of the firing treatment is preferably 0.5 to 50 hours, more preferably 1 to 20 hours. When the retention time of the firing treatment is 50 hours or less, it is possible to substantially suppress the battery performance from deteriorating due to volatilization of lithium ions. When the holding time of the firing treatment is 0.5 hours or more, crystal development is sufficient and battery performance is unlikely to deteriorate.
 焼成温度に達するまでの昇温速度は、80℃/時間以上が好ましく、100℃/時間以上がより好ましく、150℃/時間以上が特に好ましい。焼成温度に達するまでの昇温速度は、焼成装置において、昇温を開始した時間から焼成温度に到達するまでの時間から算出される。 The heating rate until the firing temperature is reached is preferably 80°C/hour or more, more preferably 100°C/hour or more, and particularly preferably 150°C/hour or more. The rate of temperature increase until the firing temperature is reached is calculated from the time from the time when temperature raising is started until the firing temperature is reached in the firing apparatus.
 焼成処理は、焼成温度が異なる複数の焼成段階を有することが好ましい。例えば、焼成処理は、第1の焼成段階と、第1の焼成段階よりも高温で焼成する第2の焼成段階を有することが好ましい。さらに、焼成処理は、焼成温度および焼成時間が異なる焼成段階を有していてもよい。 It is preferable that the firing process has a plurality of firing stages at different firing temperatures. For example, the firing process preferably includes a first firing stage and a second firing stage in which firing is performed at a higher temperature than the first firing stage. Additionally, the firing process may include firing stages with different firing temperatures and firing times.
 焼成処理は、所望の組成に応じて、大気、酸素、窒素、アルゴン又はこれらの混合ガス等を含む雰囲気で実行される。 The firing process is performed in an atmosphere containing air, oxygen, nitrogen, argon, a mixed gas of these, or the like, depending on the desired composition.
 MCCとリチウム化合物との混合物は、不活性溶融剤の存在下で焼成されてもよい。不活性溶融剤は、CAMを使用した電池の初期容量が損なわれない程度に添加され、焼成物に残留してもよい。不活性溶融剤としては、例えばWO2019/177032A1に記載のものを使用することができる。 The mixture of MCC and lithium compound may be calcined in the presence of an inert melting agent. The inert melting agent is added to an extent that does not impair the initial capacity of a battery using CAM, and may remain in the fired product. As the inert melting agent, for example, those described in WO2019/177032A1 can be used.
 なお、混合物について、上記の焼成処理を行う前に、仮焼成処理を実施してもよい。仮焼成処理では、焼成処理における焼成温度よりも低い温度で実施する。仮焼成処理の焼成温度は、例えば、400℃以上700℃未満の範囲である。仮焼成処理は、複数回、行ってもよい。 Note that the mixture may be subjected to a temporary calcination treatment before being subjected to the above calcination treatment. The temporary firing process is performed at a temperature lower than the firing temperature in the firing process. The firing temperature of the temporary firing process is, for example, in the range of 400°C or higher and lower than 700°C. The pre-firing process may be performed multiple times.
 仮焼成時に用いる焼成装置は、特に限定されず、例えば、連続焼成炉、又は、流動式焼成炉である。連続焼成炉は、例えば、トンネル炉、又は、ローラーハースキルンである。流動式焼成炉は、例えば、ロータリーキルンである。 The firing device used during temporary firing is not particularly limited, and is, for example, a continuous firing furnace or a fluidized fluidized firing furnace. The continuous firing furnace is, for example, a tunnel furnace or a roller hearth kiln. The fluidized kiln is, for example, a rotary kiln.
[B-1-5]解砕
 上記の焼成によって得られた焼成物を解砕処理する。これにより、焼成物から焼成粉が作製される。
[B-1-5] Crushing The fired product obtained by the above firing is crushed. As a result, fired powder is produced from the fired product.
 解砕処理は、複数回、実行してよい。例えば、焼成処理について、第1の焼成段階と第2の焼成段階とを順次行う場合には、第1の焼成段階の実施後に第1の解砕処理を実行し、更に、第2の焼成段階の実施後に第2の解砕処理を実行してもよい。 The crushing process may be performed multiple times. For example, in the case of sequentially performing the first firing stage and the second firing stage, the first crushing process is performed after the first firing stage, and then the second firing stage is performed. You may perform a 2nd crushing process after implementation.
[B-2]加湿工程(ST20)
 次に、加湿工程(ST20)においては、準備工程(ST10)で準備された焼成粉について加湿処理を施す。
[B-2] Humidification process (ST20)
Next, in the humidification process (ST20), the fired powder prepared in the preparation process (ST10) is subjected to a humidification process.
 加湿工程(ST20)では、露点が50-90℃である雰囲気において、加湿処理を実行することが好ましい。加湿処理の実施において、露点が上記下限値以上である場合には、十分な加湿処理を実施できる。また、露点が上記上限値以下である場合には、CAMと接触する水分量が少なく、CAM内部よりLiが引き抜かれることによって生成する水酸化リチウムまたは炭酸リチウムが残留物として多量に生成しにくいため、リチウム二次電池のガスの発生を十分に抑制することができる。 In the humidification step (ST20), it is preferable to perform the humidification process in an atmosphere with a dew point of 50-90°C. In carrying out the humidification process, if the dew point is equal to or higher than the above lower limit, sufficient humidification process can be carried out. In addition, when the dew point is below the above upper limit, the amount of water that comes into contact with the CAM is small, and it is difficult to generate large amounts of lithium hydroxide or lithium carbonate as a residue when Li is extracted from the inside of the CAM. , gas generation in lithium secondary batteries can be sufficiently suppressed.
 このような観点から、加湿処理の露点は、60℃以上であることがより好ましく、80℃以下であることが特に好ましい。加湿処理の露点の範囲は、60-90℃、50-80℃、60-80℃が挙げられる。 From this point of view, the dew point of the humidification treatment is more preferably 60°C or higher, and particularly preferably 80°C or lower. The dew point range of the humidification treatment is 60-90°C, 50-80°C, and 60-80°C.
 また、加湿工程(ST20)では、CO濃度が200ppm以下である雰囲気において、加湿処理を実行することが好ましい。また、加湿処理において、CO濃度が上記の上限値以下である場合には、CAM中の炭酸リチウムの量が増加しにくい。 Moreover, in the humidification process (ST20), it is preferable to perform the humidification process in an atmosphere where the CO 2 concentration is 200 ppm or less. Moreover, in the humidification process, when the CO 2 concentration is below the above upper limit value, the amount of lithium carbonate in the CAM is difficult to increase.
 このような観点から、加湿処理におけるCO濃度は、100ppm以下であることがより好ましく、50ppm以下であることが特に好ましい。 From such a viewpoint, the CO 2 concentration in the humidification treatment is more preferably 100 ppm or less, particularly preferably 50 ppm or less.
 加湿工程(ST20)では、温度が80-400℃である雰囲気において、加湿処理を実行することが好ましい。
 加湿処理において、温度が上記の下限値以上である場合には、CAMと接触した水分が適度に揮発し、加湿工程の実施中にダマとなってしまう不具合が生じにくい。また、温度が上記の上限値以下である場合には、CAMが再焼結して結晶子径が過剰に増加することが防ぐことができる。その結果、結晶構造内のリチウムイオンの拡散抵抗が大きくなることを防ぎ、レート特性の低下を抑制することができる。
In the humidification step (ST20), the humidification process is preferably performed in an atmosphere with a temperature of 80-400°C.
In the humidification process, when the temperature is equal to or higher than the above lower limit, the moisture that has come into contact with the CAM evaporates appropriately, and the problem of clumping during the humidification process is less likely to occur. Moreover, when the temperature is below the above upper limit value, it is possible to prevent the CAM from being re-sintered and the crystallite diameter from increasing excessively. As a result, it is possible to prevent the diffusion resistance of lithium ions within the crystal structure from increasing and to suppress deterioration of rate characteristics.
 このような観点から、加湿処理の温度は、90℃以上であることがより好ましく、100℃以上であることが特に好ましく、300℃以下であることが更に好ましい。加湿処理の温度の範囲は、80-300℃、90-400℃、100-400℃、100-300℃が挙げられる。 From this point of view, the temperature of the humidification treatment is more preferably 90°C or higher, particularly preferably 100°C or higher, and even more preferably 300°C or lower. The temperature range for the humidification treatment includes 80-300°C, 90-400°C, 100-400°C, and 100-300°C.
 加湿工程(ST20)では、処理時間が0.1-5時間であることが好ましい。加湿処理において、処理時間が上記の下限値以上である場合には、十分な加湿処理を実施できる。また、処理時間が上記の上限値以下である場合には、CAMと接触する水分量が少なく、CAM内部よりLiが引き抜かれて生成する水酸化リチウムまたは炭酸リチウムが残留物として多量に生成しにくいため、リチウム二次電池のガスの発生を十分に抑制することができる。 In the humidification step (ST20), the treatment time is preferably 0.1 to 5 hours. In the humidification process, if the process time is equal to or longer than the above lower limit, sufficient humidification process can be performed. In addition, if the processing time is below the above upper limit, the amount of water that comes into contact with the CAM is small, and it is difficult to generate a large amount of lithium hydroxide or lithium carbonate as a residue when Li is extracted from the inside of the CAM. Therefore, gas generation in the lithium secondary battery can be sufficiently suppressed.
 このような観点から、加湿処理の処理時間は、0.2-2.5時間であることがより好ましく、0.3-2時間であることが特に好ましい。 From this point of view, the humidification treatment time is more preferably 0.2-2.5 hours, particularly preferably 0.3-2 hours.
[B-3]乾燥工程(ST30)
 乾燥工程(ST30)では、加湿工程(ST20)において加湿処理が施された焼成粉について乾燥処理を施すことによって、CAMを作製する。
[B-3] Drying process (ST30)
In the drying step (ST30), a CAM is produced by drying the fired powder that has been humidified in the humidifying step (ST20).
 乾燥工程(ST30)では、温度が100-400℃である雰囲気において、乾燥処理を実行することが好ましい。乾燥処理の温度は、乾燥処理前のCAMに残存する水分に起因してリチウム二次電池の充電容量が低下することを防止するために、上記範囲の下限値以上であることが好ましい。このため、乾燥処理の温度の下限値は、110℃であることがより好ましく、120℃であることが特に好ましい。また、乾燥処理の温度は、CAMが再焼結することによってレート特性が劣化することを防止するために、上記範囲の上限値以下であることが好ましい。このため、乾燥処理の温度の上限値は、350℃であることがより好ましく、300℃であることが特に好ましい。乾燥処理の温度範囲は、100-350℃、110-350℃、120-300℃が挙げられる。 In the drying step (ST30), it is preferable to perform the drying process in an atmosphere with a temperature of 100 to 400°C. The temperature of the drying process is preferably at least the lower limit of the above range in order to prevent the charging capacity of the lithium secondary battery from decreasing due to moisture remaining in the CAM before the drying process. Therefore, the lower limit of the temperature of the drying treatment is more preferably 110°C, particularly preferably 120°C. Further, the temperature of the drying treatment is preferably at most the upper limit of the above range in order to prevent the rate characteristics from deteriorating due to re-sintering of the CAM. Therefore, the upper limit of the temperature of the drying treatment is more preferably 350°C, particularly preferably 300°C. The temperature range for the drying treatment includes 100-350°C, 110-350°C, and 120-300°C.
 なお、乾燥は、例えば、減圧乾燥、真空乾燥、送風、加熱、および、これらの組み合わせによって実行される。減圧乾燥および真空乾燥は、例えば、0.3気圧以下の圧力の下、100-200℃で実行される。送風による乾燥は、例えば、熱風式乾燥機を用いて実行される。 Note that drying is performed by, for example, reduced pressure drying, vacuum drying, air blowing, heating, or a combination thereof. Reduced pressure drying and vacuum drying are carried out, for example, at 100-200° C. under a pressure of 0.3 atmospheres or less. Drying by air blowing is performed using, for example, a hot air dryer.
 乾燥工程(ST30)では、処理時間が0.1時間以上であることが好ましい。乾燥処理において、処理時間が上記の下限値以上である場合には、乾燥処理を十分に実施することができる。 In the drying step (ST30), the treatment time is preferably 0.1 hour or more. In the drying treatment, if the treatment time is equal to or longer than the above lower limit, the drying treatment can be sufficiently carried out.
 このような観点から、乾燥処理の処理時間は、0.5時間以上であることがより好ましく、1.0時間以上であることが特に好ましい。 From this point of view, the processing time of the drying treatment is more preferably 0.5 hours or more, and particularly preferably 1.0 hours or more.
 また、乾燥工程(ST30)では、CO濃度が200ppm以下である雰囲気において、乾燥処理を実行することが好ましい。また、乾燥処理において、CO濃度が上記の上限値以下である場合には、CAM中の炭酸リチウムの増加を抑え、リチウム二次電池のガスの発生を十分に抑制することができる。 Further, in the drying step (ST30), it is preferable to perform the drying process in an atmosphere where the CO 2 concentration is 200 ppm or less. Further, in the drying process, when the CO 2 concentration is below the above upper limit value, the increase in lithium carbonate in the CAM can be suppressed, and the generation of gas in the lithium secondary battery can be sufficiently suppressed.
 このような観点から、乾燥処理におけるCO濃度は、100ppm以下であることがより好ましく、50ppm以下であることが特に好ましい。 From such a viewpoint, the CO 2 concentration in the drying treatment is more preferably 100 ppm or less, particularly preferably 50 ppm or less.
 上記加湿工程(ST20)及び上記乾燥工程(ST30)における処理条件を調整することによって、上記CAMを製造することができる。 The CAM can be manufactured by adjusting the processing conditions in the humidification step (ST20) and the drying step (ST30).
[C]リチウム二次電池
 本実施形態のCAMを有するリチウム二次電池用正極、および、そのリチウム二次電池用正極を備えるリチウム二次電池の一例について説明する。以下、リチウム二次電池用正極を正極と称することがある。
[C] Lithium Secondary Battery An example of a lithium secondary battery positive electrode having the CAM of this embodiment and a lithium secondary battery including the lithium secondary battery positive electrode will be described. Hereinafter, the positive electrode for a lithium secondary battery may be referred to as a positive electrode.
 本実施形態の製造方法により製造されるLiMOをCAMとして用いる場合の好適なリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。 An example of a suitable lithium secondary battery in which LiMO manufactured by the manufacturing method of the present embodiment is used as a CAM includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and a separator between the positive electrode and the negative electrode. It has an electrolyte placed therein.
 図4は、リチウム二次電池の一例を示す模式図である。例えば円筒型のリチウム二次電池10は、次のようにして製造する。 FIG. 4 is a schematic diagram showing an example of a lithium secondary battery. For example, the cylindrical lithium secondary battery 10 is manufactured as follows.
 まず、図4の部分拡大図に示すように、帯状を呈する一対のセパレータ1と、一端に正極リード21が設置された帯状の正極2と、一端に負極リード31が設置された帯状の負極3とを準備する。そして、セパレータ1、正極2、セパレータ1、および負極3の順に積層した積層体を巻回することによって、電極群4を作製する。 First, as shown in the partially enlarged view of FIG. 4, a pair of band-shaped separators 1, a band-shaped positive electrode 2 with a positive electrode lead 21 installed at one end, and a band-shaped negative electrode 3 with a negative electrode lead 31 installed at one end. and prepare. Then, the electrode group 4 is produced by winding a laminate in which the separator 1, the positive electrode 2, the separator 1, and the negative electrode 3 are laminated in this order.
 正極2は、一例として、CAMを含む正極活物質層2aと、正極活物質層2aが一面に形成された正極集電体2bとを有する。このような正極2は、まずCAM、導電材及びバインダーを含む正極合剤を調製し、正極合剤を正極集電体2bの一面に担持させて正極活物質層2aを形成することで製造できる。 As an example, the positive electrode 2 includes a positive electrode active material layer 2a containing CAM, and a positive electrode current collector 2b on which the positive electrode active material layer 2a is formed over one surface. Such a positive electrode 2 can be manufactured by first preparing a positive electrode mixture containing CAM, a conductive material, and a binder, and then supporting the positive electrode mixture on one surface of the positive electrode current collector 2b to form the positive electrode active material layer 2a. .
 負極3は、一例として、不図示の負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができ、正極2と同様の方法で製造できる。 Examples of the negative electrode 3 include an electrode in which a negative electrode mixture containing a negative electrode active material (not shown) is supported on a negative electrode current collector, and an electrode made of a negative electrode active material alone; It can be manufactured by
 次いで、電極群4およびインシュレーター(図示省略)を電池缶5に収容した後に電池缶5の缶底を封止する。そして、電池缶5において電極群4に電解液6を含浸させることで、正極2と負極3との間に電解質(図示省略)を介在させる。その後、トップインシュレーター7および封口体8で電池缶5の上部を封止する。これにより、リチウム二次電池10を完成させる。 Next, after the electrode group 4 and the insulator (not shown) are housed in the battery can 5, the bottom of the battery can 5 is sealed. Then, by impregnating the electrode group 4 with the electrolytic solution 6 in the battery can 5, an electrolyte (not shown) is interposed between the positive electrode 2 and the negative electrode 3. Thereafter, the top of the battery can 5 is sealed with the top insulator 7 and the sealing body 8. Thereby, the lithium secondary battery 10 is completed.
 電極群4の形状としては、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、例えば、円、楕円、長方形、又は、角を丸めた長方形となるような柱状の形状を挙げることができる。 The shape of the electrode group 4 is a columnar shape in which the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the winding axis is, for example, a circle, an ellipse, a rectangle, or a rectangle with rounded corners. The shape of
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた規格であるIEC60086、又は、JIS C 8500で定められる形状を採用することができる。例えば、円筒型又は角型等の形状を挙げることができる。 Further, as the shape of the lithium secondary battery having such an electrode group 4, a shape defined by IEC60086, which is a standard established by the International Electrotechnical Commission (IEC), or JIS C 8500 can be adopted. For example, the shape may be cylindrical or square.
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、およびセパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、又はペーパー型(又はシート型)電池を例示することができる。 Furthermore, the lithium secondary battery is not limited to the above-mentioned wound type configuration, but may have a laminated type configuration in which a laminated structure of a positive electrode, a separator, a negative electrode, and a separator are repeatedly stacked. Examples of stacked lithium secondary batteries include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
 リチウム二次電池を構成する正極、セパレータ、負極及び電解液については、例えば、WO2022/113904A1の[0113]~[0140]に記載の構成、材料及び製造方法を用いることが出来る。 For the positive electrode, separator, negative electrode, and electrolyte that constitute the lithium secondary battery, for example, the configurations, materials, and manufacturing methods described in [0113] to [0140] of WO2022/113904A1 can be used.
[D]全固体リチウム二次電池
 本実施形態のCAMを用いて形成されるリチウム二次電池用正極を備えるリチウム二次電池の一例として、全固体リチウム二次電池について説明する。
[D] All-solid-state lithium secondary battery An all-solid-state lithium secondary battery will be described as an example of a lithium secondary battery including a positive electrode for a lithium secondary battery formed using the CAM of this embodiment.
 図5は、全固体リチウム二次電池の一例を示す模式図である。図5に示すように、全固体リチウム二次電池1000は、正極110と負極120と固体電解質層130とを有する積層体100と、積層体100を収容する外装体200とを備える。全固体リチウム二次電池1000は、集電体の両側にCAMと負極活物質とを配置したバイポーラ構造であってもよい。バイポーラ構造の具体例は、例えば、JP-A-2004-95400に記載されている構造が挙げられる。 FIG. 5 is a schematic diagram showing an example of an all-solid-state lithium secondary battery. As shown in FIG. 5, the all-solid-state lithium secondary battery 1000 includes a laminate 100 having a positive electrode 110, a negative electrode 120, and a solid electrolyte layer 130, and an exterior body 200 that houses the laminate 100. The all-solid-state lithium secondary battery 1000 may have a bipolar structure in which a CAM and a negative electrode active material are arranged on both sides of a current collector. A specific example of the bipolar structure is, for example, the structure described in JP-A-2004-95400.
 正極110は、正極活物質層111と正極集電体112とを有している。正極活物質層111は、上述したCAM及び固体電解質を含む。また、正極活物質層111は、導電材及びバインダーを含んでいてもよい。 The positive electrode 110 has a positive electrode active material layer 111 and a positive electrode current collector 112. The positive electrode active material layer 111 includes the above-mentioned CAM and solid electrolyte. Further, the positive electrode active material layer 111 may contain a conductive material and a binder.
 負極120は、負極活物質層121と負極集電体122とを有している。負極活物質層121は、負極活物質を含む。また、負極活物質層121は、固体電解質及び導電材を含んでいてもよい。 The negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122. The negative electrode active material layer 121 includes a negative electrode active material. Further, the negative electrode active material layer 121 may include a solid electrolyte and a conductive material.
 積層体100は、正極集電体112に接続される外部端子113と、負極集電体122に接続される外部端子123とを有していてもよい。その他、全固体リチウム二次電池1000は、正極110と負極120との間にセパレータを有していてもよい。 The laminate 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122. In addition, the all-solid-state lithium secondary battery 1000 may include a separator between the positive electrode 110 and the negative electrode 120.
 全固体リチウム二次電池1000は、さらに、積層体100と外装体200とを絶縁するインシュレーター(図示無し)、および外装体200の開口部200aを封止する不図示の封止体を有する。 The all-solid-state lithium secondary battery 1000 further includes an insulator (not shown) that insulates the stacked body 100 and the exterior body 200, and a sealing body (not shown) that seals the opening 200a of the exterior body 200.
 外装体200は、アルミニウム、ステンレス鋼又はニッケルメッキ鋼などの耐食性の高い金属材料を成形した容器である。また、外装体200は、少なくとも一方の面に耐食加工を施したラミネートフィルムを袋状に加工した容器でもよい。 The exterior body 200 is a container made of a highly corrosion-resistant metal material such as aluminum, stainless steel, or nickel-plated steel. Further, the exterior body 200 may be a container made of a bag-shaped laminated film that has been subjected to anti-corrosion treatment on at least one surface.
 全固体リチウム二次電池1000の形状は、例えば、コイン型、ボタン型、ペーパー型(またはシート型)、円筒型、角型、又はラミネート型(パウチ型)等が挙げられる。 Examples of the shape of the all-solid-state lithium secondary battery 1000 include a coin shape, a button shape, a paper shape (or sheet shape), a cylindrical shape, a square shape, and a laminate shape (pouch shape).
 全固体リチウム二次電池1000は、一例として、積層体100を1つ有する形態であるが、これに限らない。全固体リチウム二次電池1000は、積層体100を単位セルとし、外装体200の内部に複数の単位セル(積層体100)を封じた構成でもよい。 The all-solid-state lithium secondary battery 1000 has, for example, one stacked body 100, but is not limited to this. The all-solid-state lithium secondary battery 1000 may have a configuration in which the laminate 100 is used as a unit cell, and a plurality of unit cells (the laminate 100) are sealed inside an exterior body 200.
全固体リチウム二次電池については、例えば、WO2022/113904A1の[0151]~[0181]に記載の構成、材料及び製造方法を用いることができる。 For the all-solid lithium secondary battery, for example, the configurations, materials, and manufacturing methods described in [0151] to [0181] of WO2022/113904A1 can be used.
 本発明は、以下の態様を有する。
[21]
 Li元素、Ni元素、および前記元素Mを含む、層状構造のLiMOと、
 水酸化リチウムおよび炭酸リチウムを含むリチウム化合物と
 を有するCAMであって、
 前記Va0.5、前記Va0.9、および、前記Vd0.5が、下記の(式A‘)に示す関係を満たし、
 前記Smが下記の(式B‘)に示す関係を満たし、かつ、
 前記W1と前記W2とが下記の(式C1‘)に示す関係を満たす、CAM。
 0<(Vd0.5-Va0.5)/Va0.9≦0.85   ・・・(式A‘)
 0.2m/g≦Sm≦0.8m/g   ・・・(式B‘)
 0≦W2/W1≦1.00   ・・・(式C1‘)
 [22]
 前記LiMOは、前記(組成式I)で表される、[21]に記載のCAM。
 [23]
 前記Smが下記の式(B1)に示す関係を満たす、[21]または[22]に記載のCAM。
 0.2m/g≦Sm≦0.7m/g   ・・・(式B1)
 [24]
 前記W2は、下記の式(D1‘)に示す関係を満たす、[21]から[23]のいずれかに記載のCAM。
 0質量%≦W2≦0.60質量%   ・・・(式D1‘)
 [25]
 前記W3は、下記の式(E1‘)に示す関係を満たす、[21]から[24]のいずれかに記載のCAM。
 0質量%以上≦W3≦0.40質量%   ・・・(式E1‘)
 [26]
 前記結晶歪が、0.08°以下である、[21]から[25]のいずれかに記載のCAM。
 [27]
 前記平均細孔径が、10-100nmである、[21]から[26]のいずれかに記載のCAM。
 [28]
 前記細孔容積が、0.001-0.010cm/gである、[21]から[27]のいずれかに記載のCAM。
 [29]
前記D50が8-20μmである、[21]から[28]のいずれかに記載のCAM。
 [30]
 [21]から[29]のいずれかに記載のCAMを有する、リチウム二次電池用正極。
 [31]
 [30]に記載のリチウム二次電池用正極を有する、リチウム二次電池。
 [32]
 CAMの製造方法であって、
 LiMOの前駆体であるMCCと、リチウム化合物との焼成粉を準備する準備工程と、
 前記準備工程で準備された前記焼成粉について加湿処理を施す加湿工程と、
 前記加湿工程において前記加湿処理が施された前記焼成粉について乾燥処理を施すことによって、前記CAMを作製する乾燥工程と
 を有し、
 前記加湿工程では、露点が50-90℃であってCO濃度が50ppm以下である雰囲気において、前記加湿処理を実行する、CAMの製造方法。
 [33]
 前記加湿工程では、温度が90-400℃である雰囲気において、前記加湿処理を実行する、[32]に記載のCAMの製造方法。
 [34]
 前記乾燥工程では、温度が100-350℃である雰囲気において、前記乾燥処理を実行する、[32]または[33]に記載のCAMの製造方法。
The present invention has the following aspects.
[21]
LiMO with a layered structure containing Li element, Ni element, and the element M;
A CAM comprising: a lithium compound containing lithium hydroxide and lithium carbonate;
The Va 0.5 , the Va 0.9 , and the Vd 0.5 satisfy the relationship shown in the following (Formula A'),
The Sm satisfies the relationship shown in the following (Formula B'), and
A CAM in which the W1 and the W2 satisfy the relationship shown in the following (Formula C1').
0<(Vd 0.5 - Va 0.5 )/Va 0.9 ≦0.85 (Formula A')
0.2m 2 /g≦Sm≦0.8m 2 /g (Formula B')
0≦W2/W1≦1.00...(Formula C1')
[22]
The CAM according to [21], wherein the LiMO is represented by the above (compositional formula I).
[23]
The CAM according to [21] or [22], wherein the Sm satisfies the relationship shown in formula (B1) below.
0.2m 2 /g≦Sm≦0.7m 2 /g (Formula B1)
[24]
The CAM according to any one of [21] to [23], wherein W2 satisfies the relationship shown in the following formula (D1').
0 mass%≦W2≦0.60 mass%...(formula D1')
[25]
The CAM according to any one of [21] to [24], wherein W3 satisfies the relationship shown in formula (E1') below.
0 mass% or more ≦W3≦0.40 mass% ... (Formula E1')
[26]
The CAM according to any one of [21] to [25], wherein the crystal strain is 0.08° or less.
[27]
The CAM according to any one of [21] to [26], wherein the average pore diameter is 10 to 100 nm.
[28]
The CAM according to any one of [21] to [27], wherein the pore volume is 0.001-0.010 cm 3 /g.
[29]
The CAM according to any one of [21] to [28], wherein the D50 is 8-20 μm.
[30]
A positive electrode for a lithium secondary battery, comprising the CAM according to any one of [21] to [29].
[31]
A lithium secondary battery, comprising the positive electrode for a lithium secondary battery according to [30].
[32]
A method for manufacturing a CAM, the method comprising:
A preparation step of preparing a fired powder of MCC, which is a precursor of LiMO, and a lithium compound;
a humidification step of performing a humidification treatment on the baked powder prepared in the preparation step;
a drying step of producing the CAM by performing a drying treatment on the fired powder that has been subjected to the humidification treatment in the humidification step,
In the humidification process, the humidification process is performed in an atmosphere with a dew point of 50-90°C and a CO 2 concentration of 50 ppm or less.
[33]
The method for manufacturing a CAM according to [32], wherein in the humidification process, the humidification process is performed in an atmosphere having a temperature of 90 to 400°C.
[34]
The method for producing a CAM according to [32] or [33], wherein in the drying step, the drying process is performed in an atmosphere at a temperature of 100 to 350°C.
 以下より、実施例および比較例について表1を用いて説明する。表1において、(例1)から(例3)は、実施例に相当し、(例C1)から(例C3)は、比較例に相当する。 Examples and comparative examples will be described below using Table 1. In Table 1, (Example 1) to (Example 3) correspond to Examples, and (Example C1) to (Example C3) correspond to Comparative Examples.
 表1において、「加湿処理条件」は、加湿工程(ST20)で加湿処理を実施したときの条件であり、「乾燥処理条件」は、乾燥工程(ST30)で乾燥処理を実施したときの条件である。 In Table 1, "humidification processing conditions" are the conditions when the humidification processing was performed in the humidification process (ST20), and "drying processing conditions" are the conditions when the drying processing was performed in the drying process (ST30). be.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[1]CAMの試料作製
 各例に係るCAMの試料を作製した手順について、順次、説明する。
[1] Preparation of CAM sample The procedure for preparing the CAM sample according to each example will be explained in order.
(例1)
 (例1)では、まず、LiMOの前駆体であるMCCとして、ニッケルコバルトアルミニウム金属複合酸化物の粉末を作製した。
(Example 1)
In (Example 1), first, a powder of nickel cobalt aluminum metal composite oxide was produced as MCC, which is a precursor of LiMO.
 最初に、撹拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後に、水酸化ナトリウム水溶液を反応槽内に添加した。このとき、反応槽内において溶液の液温を50℃に保持した。そして、硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸アルミニウム水溶液とを、NiとCoとAlとのモル比が88:9:3となる割合で混合することで、混合溶液を調製した。また、硫酸アンモニウム水溶液を錯化剤として準備した。 First, water was put into a reaction tank equipped with a stirrer and an overflow pipe, and then an aqueous sodium hydroxide solution was added into the reaction tank. At this time, the temperature of the solution was maintained at 50° C. in the reaction tank. Then, a mixed solution was prepared by mixing a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and an aluminum sulfate aqueous solution at a ratio in which the molar ratio of Ni, Co, and Al was 88:9:3. In addition, an ammonium sulfate aqueous solution was prepared as a complexing agent.
 そして、上記の混合溶液と硫酸アンモニウム水溶液とを反応槽内に撹拌しながら連続的に添加した。このとき、反応槽内において混合液のpHが11.6(測定時の液温40℃)になるように、水酸化ナトリウム水溶液を滴下した。これにより、反応沈殿物を得た。 Then, the above mixed solution and an aqueous ammonium sulfate solution were continuously added into the reaction tank while stirring. At this time, an aqueous sodium hydroxide solution was added dropwise so that the pH of the mixed solution became 11.6 (liquid temperature at the time of measurement: 40° C.) in the reaction tank. This gave a reaction precipitate.
 その後、反応沈殿物を水で洗浄した後に、遠心分離機を用いて脱水処理を行うことで単離し、105℃で乾燥して、金属複合水酸化物を得た。 Thereafter, the reaction precipitate was washed with water, isolated by dehydration using a centrifuge, and dried at 105°C to obtain a metal composite hydroxide.
 そして、金属複合水酸化物を大気雰囲気中において650℃の温度で5時間加熱した後に、室温に戻るまで冷却した。これにより、ニッケルコバルトアルミニウム金属複合酸化物であるMCCを得た。 Then, the metal composite hydroxide was heated in the air at a temperature of 650° C. for 5 hours, and then cooled to room temperature. As a result, MCC, which is a nickel cobalt aluminum metal composite oxide, was obtained.
 つぎに、リチウム化合物として準備した水酸化リチウム一水和物の粉末と、MCCとを混合した。ここでは、Li元素のモル量[Li]を、Ni元素のモル量[Ni]とCo元素のモル量[Co]とAl元素のモル量[Al]とを加算した値で割った値が1.06になる割合(つまり、[Li]/([Ni]+[Co]+[Al])=1.06)になるように、混合を行った。 Next, lithium hydroxide monohydrate powder prepared as a lithium compound and MCC were mixed. Here, the value obtained by dividing the molar amount of Li element [Li] by the sum of the molar amount of Ni element [Ni], the molar amount of Co element [Co], and the molar amount of Al element [Al] is 1. Mixing was performed so that the ratio was .06 (that is, [Li]/([Ni]+[Co]+[Al])=1.06).
 つぎに、MCCと水酸化リチウム一水和物との混合物を焼成した。焼成は、酸素雰囲気下において、温度が740℃である条件で、5時間、実施した。 Next, the mixture of MCC and lithium hydroxide monohydrate was fired. The firing was carried out at a temperature of 740° C. for 5 hours in an oxygen atmosphere.
 つぎに、上記の焼成によって得られた焼成物について石臼式解砕機により解砕することで、焼成粉を得た(図3の準備工程(ST10))。 Next, the fired product obtained by the above firing was crushed using a stone mill crusher to obtain fired powder (preparation step (ST10) in FIG. 3).
 つぎに、上記の焼成粉について加湿処理を施した(図3の加湿工程(ST20))。 Next, the above baked powder was subjected to humidification treatment (humidification step (ST20) in FIG. 3).
 加湿処理は、表1に示す加湿処理条件で実行した。具体的には、150gの焼成粉について、処理温度が300℃であって処理時間が1時間である条件で、加湿処理を施した。このとき、露点が60℃、CO濃度が1ppm未満となるように調整したエアーを流通させた。 The humidification process was performed under the humidification process conditions shown in Table 1. Specifically, 150 g of fired powder was subjected to humidification treatment under the conditions that the treatment temperature was 300° C. and the treatment time was 1 hour. At this time, air was circulated so that the dew point was 60° C. and the CO 2 concentration was less than 1 ppm.
 つぎに、加湿処理を施した焼成粉について、乾燥処理を施した(図3の乾燥工程(ST30))。 Next, the fired powder subjected to the humidification treatment was subjected to a drying treatment (drying step (ST30) in FIG. 3).
 乾燥処理は、表1に示す乾燥処理条件で実行した。具体的には、処理温度が300℃であって、処理時間が1時間である条件で、乾燥処理を実行した。このとき、露点が-30℃以下、CO濃度が1ppm未満となるように調整したエアーを流通させた。これにより、(例1)におけるCAMの試料を完成させた。 The drying process was performed under the drying process conditions shown in Table 1. Specifically, the drying process was performed at a process temperature of 300° C. and a process time of 1 hour. At this time, air was circulated so that the dew point was −30° C. or less and the CO 2 concentration was less than 1 ppm. As a result, the CAM sample in (Example 1) was completed.
(例2),(例3)
 (例2)および(例3)では、表1に示すように、加湿処理条件の処理時間が(例1)の場合と異なる条件で、加湿処理を実施した。具体的には、(例2)の処理時間は、0.3時間であり、(例3)の処理時間は、2時間である。この点を除き、(例2)および(例3)では、(例1)の場合と同様に、CAMの試料を完成させた。
(Example 2), (Example 3)
In (Example 2) and (Example 3), as shown in Table 1, the humidification process was performed under different processing times from those in (Example 1). Specifically, the processing time of (Example 2) is 0.3 hours, and the processing time of (Example 3) is 2 hours. Except for this point, in (Example 2) and (Example 3), the CAM samples were completed as in (Example 1).
(例C1)
 (例C1)では、表1に示すように、(例1)等と異なり、加湿処理及び乾燥処理を実施しなかった。つまり、(例C1)では、(例1)において加湿処理を実行する前に得た焼成粉を、CAMの試料とした。
(Example C1)
In (Example C1), as shown in Table 1, unlike (Example 1), etc., humidification treatment and drying treatment were not performed. That is, in (Example C1), the fired powder obtained before performing the humidification process in (Example 1) was used as a CAM sample.
(例C2)
 (例C2)では、表1に示すように、(例C1)と同様に、加湿処理を実施しなかった。(例C2)では、(例1)において加湿処理を実行する前に得た焼成粉について、水洗処理を実施し、その水洗処理の実施後に乾燥処理を実施した。
(Example C2)
In (Example C2), as shown in Table 1, humidification treatment was not carried out similarly to (Example C1). In (Example C2), the baked powder obtained before the humidification process in (Example 1) was washed with water, and after the washing process, a drying process was performed.
 (例C2)において、水洗処理および乾燥処理は、下記の条件で実施した。
[水洗処理条件]
・水洗処理は50gの焼成粉を50gの純水に分散させ、20分間攪拌することで実施した。水洗後の焼成粉は減圧濾過により回収した。
[乾燥処理条件]
・乾燥処理は水洗後の焼成粉を120℃で10時間の条件で減圧乾燥することで実施した。
In (Example C2), the water washing treatment and drying treatment were carried out under the following conditions.
[Water washing treatment conditions]
-Water washing treatment was carried out by dispersing 50 g of baked powder in 50 g of pure water and stirring for 20 minutes. The baked powder after washing with water was recovered by vacuum filtration.
[Drying processing conditions]
- Drying treatment was carried out by drying the baked powder after washing with water under reduced pressure at 120° C. for 10 hours.
 上記したように、(例C2)では、加湿処理を実施せず、水洗処理と乾燥処理とを順次実施した点を除き、(例1)の場合と同様に、CAMの試料を完成させた。 As described above, in (Example C2), a CAM sample was completed in the same manner as in (Example 1), except that the humidification process was not performed and the water washing process and drying process were performed sequentially.
(例C3)
 (例C3)では、表1に示すように、(例1)とは異なる条件で、加湿処理および乾燥処理を実施した。
(Example C3)
In (Example C3), as shown in Table 1, humidification treatment and drying treatment were performed under different conditions from (Example 1).
 具体的には、(例C3)では、表1の加湿処理条件に示すように、雰囲気ガスをCO濃度が400ppmであるエアーとした以外は、(例1)の場合と同様に加湿処理を実施した。 Specifically, in (Example C3), the humidification process was performed in the same manner as in (Example 1), except that the atmospheric gas was air with a CO 2 concentration of 400 ppm, as shown in the humidification process conditions in Table 1. carried out.
 そして、(例C3)では、表1の乾燥処理条件に示すように、雰囲気ガスをCO濃度が400ppmであるエアーとした以外は、(例1)の場合と同様に乾燥処理を実施した。 In (Example C3), the drying process was carried out in the same manner as in (Example 1), except that the atmospheric gas was air with a CO 2 concentration of 400 ppm, as shown in the drying process conditions in Table 1.
 このように、(例C3)では、加湿処理条件が(例1)の場合と異なる点を除き、(例1)の場合と同様に、CAMの試料を完成させた。 Thus, in (Example C3), a CAM sample was completed in the same manner as in (Example 1) except that the humidification treatment conditions were different from those in (Example 1).
[2]物性評価
 上記のように各例について作製したCAMの試料に関して、表1に示すように、上述した(要件1)から(要件3)に対応する物性評価を実施した。
[2] Physical property evaluation As shown in Table 1, physical property evaluation corresponding to (requirement 1) to (requirement 3) described above was performed for the CAM samples prepared for each example as described above.
[2-1]保水性パラメータ[=(Vd0.5-Va0.5)/Va0.9
 具体的には、表1に示すように、(要件1)に対応する物性評価として、保水性パラメータ[=(Vd0.5-Va0.5)/Va0.9]を各例について求めた。
[2-1] Water retention parameter [=(Vd 0.5 - Va 0.5 )/Va 0.9 ]
Specifically, as shown in Table 1, the water retention parameter [=(Vd 0.5 - Va 0.5 )/Va 0.9 ] was determined for each example as a physical property evaluation corresponding to (requirement 1). Ta.
 保水性パラメータ[=(Vd0.5-Va0.5)/Va0.9]は、各例の試料について、上記(保水性パラメータの測定)にて説明したとおり、水蒸気吸着法で水蒸気吸着量を測定し、その結果から吸着等温線および脱着等温線を得ることで求めた。 The water retention parameter [=(Vd 0.5 - Va 0.5 )/Va 0.9 ] is determined by water vapor adsorption using the water vapor adsorption method for each sample as explained above (measurement of water retention parameter). It was determined by measuring the amount and obtaining an adsorption isotherm and a desorption isotherm from the results.
 図6は、(例1)と(例C1)に関して、保水性パラメータを求める際に用いた吸着等温線および脱着等温線を示す図である。図6において、横軸は、相対圧力p/pであり、縦軸は、水蒸気吸着量V(cm(STP)/g)である。図6では、図2と同様に、吸着等温線について実線で示し、脱着等温線について破線で示している。 FIG. 6 is a diagram showing adsorption isotherms and desorption isotherms used in determining water retention parameters for (Example 1) and (Example C1). In FIG. 6, the horizontal axis is the relative pressure p/p 0 , and the vertical axis is the water vapor adsorption amount V (cm 3 (STP)/g). In FIG. 6, as in FIG. 2, the adsorption isotherm is shown by a solid line, and the desorption isotherm is shown by a broken line.
 (例1)と(例C1)とにおいては、図6に示す吸着等温線および脱着等温線を用いて、保水性パラメータを求めた。他の例については図示を省略しているが、同様に、吸着等温線および脱着等温線を用いて、保水性パラメータを求めた。 In (Example 1) and (Example C1), water retention parameters were determined using the adsorption isotherm and desorption isotherm shown in FIG. Although illustration of other examples is omitted, water retention parameters were similarly determined using adsorption isotherms and desorption isotherms.
[2-2]BET比表面積Sm
 表1に示すように、上述した(要件2)に対応する物性評価として、BET比表面積Smを各例について求めた。
[2-2] BET specific surface area Sm
As shown in Table 1, the BET specific surface area Sm was determined for each example as a physical property evaluation corresponding to the above-mentioned (requirement 2).
 Smの測定は、上記(Smの測定)にて説明したとおり、吸着ガスとして窒素ガスを用いた窒素吸着法によって実施した。 The measurement of Sm was carried out by the nitrogen adsorption method using nitrogen gas as the adsorption gas, as explained above (Measurement of Sm).
[2-3]W2/W1、W3
 表1に示すように、上述した(要件3)に対応する物性評価として、水酸化リチウムの質量割合W1で炭酸リチウムの質量割合W2を割った値(W2/W1)とW3を、各例について求めた。
[2-3] W2/W1, W3
As shown in Table 1, as a physical property evaluation corresponding to the above-mentioned (requirement 3), the value (W2/W1) and W3, which are obtained by dividing the mass proportion W2 of lithium carbonate by the mass proportion W1 of lithium hydroxide, and W3 are calculated for each example. I asked for it.
 W1、W2、およびW3の測定は、上記(中和滴定法)にて説明した方法によって行った。 W1, W2, and W3 were measured by the method described above (neutralization titration method).
 なお、表1では、W1とW2とのそれぞれの結果について併記している。また、表1では、W3の結果についても併記している。また、表1では、LiMOの(組成式I)(=Li[Li(Ni(1-x-y)CoM11-m]O)における、x、y、およびmの値を示している。その他、CAMについて、結晶歪、平均細孔径、細孔容積、およびD50を求めた結果を示している。これらの組成および物性は、前記(組成の測定)および[A-3-4]で説明した方法で測定した。また、(例1)から(例3)、及び(例C1)~(例C3)で得られたCAM中のLiMOは、粉末X線回折測定の結果、層状構造を有していた。 Note that Table 1 also lists the results for W1 and W2. Table 1 also shows the results of W3. Furthermore, in Table 1, the values of x, y, and m in (compositional formula I) of LiMO (=Li[Li m (Ni (1-x-y) Co x M1 y ) 1-m ]O 2 ) It shows. In addition, the results of determining crystal strain, average pore diameter, pore volume, and D50 for CAM are shown. These compositions and physical properties were measured by the methods described above (Measurement of composition) and [A-3-4]. Further, as a result of powder X-ray diffraction measurement, the LiMO in the CAM obtained in (Example 1) to (Example 3) and (Example C1) to (Example C3) had a layered structure.
[3]電池評価
 上記のように、各例において作製したCAMの試料に関しては、表1に示すように、電池評価を実施した。
[3] Battery Evaluation As described above, for the CAM samples produced in each example, battery evaluation was performed as shown in Table 1.
 電池評価を実施する際には、各例のCAMの試料からリチウム二次電池用正極を作製した後に、その作製したリチウム二次電池用正極を用いてリチウム二次電池を作製した。その後、その作製したリチウム二次電池に関して、表1に示すように、フロート電気量とレート特性とを測定した。 When performing battery evaluation, a positive electrode for a lithium secondary battery was produced from the CAM sample of each example, and then a lithium secondary battery was produced using the produced positive electrode for a lithium secondary battery. Thereafter, as shown in Table 1, the float charge and rate characteristics of the manufactured lithium secondary battery were measured.
[3-1]リチウム二次電池用正極の作製
 リチウム二次電池用正極を作製する際には、まず、ペースト状の正極合剤を調製した。正極合剤は、各例において作製したCAMと導電材とバインダーとの混合物を混練することで調製した。ここでは、導電材として、アセチレンブラックを用い、バインダーとして、PVdFを用いた。そして、各材料を下記の割合で混合した。正極合剤の調製の際には、有機溶媒として、N-メチル-2-ピロリドンを用いた。
[3-1] Production of positive electrode for lithium secondary battery When producing a positive electrode for lithium secondary battery, first, a paste-like positive electrode mixture was prepared. The positive electrode mixture was prepared by kneading the mixture of the CAM produced in each example, the conductive material, and the binder. Here, acetylene black was used as the conductive material, and PVdF was used as the binder. Then, each material was mixed in the following proportions. When preparing the positive electrode mixture, N-methyl-2-pyrrolidone was used as an organic solvent.
・CAM:92質量部
・導電材:5質量部
・バインダー:3質量部
・CAM: 92 parts by mass ・Conductive material: 5 parts by mass ・Binder: 3 parts by mass
 そして、上記のように調製したペースト状の正極合剤を、集電体(厚さが40μmであるアルミニウム箔)に塗布した。その後、正極合剤が塗布された集電体について、温度が150℃である雰囲気において、8時間、真空乾燥を行うことで、リチウム二次電池用正極を完成させた。ここでは、リチウム二次電池用正極の電極面積を1.65cmとした。 Then, the paste-like positive electrode mixture prepared as described above was applied to a current collector (aluminum foil having a thickness of 40 μm). Thereafter, the current collector coated with the positive electrode mixture was vacuum-dried for 8 hours in an atmosphere at a temperature of 150° C., thereby completing a positive electrode for a lithium secondary battery. Here, the electrode area of the positive electrode for a lithium secondary battery was 1.65 cm 2 .
[3-2]リチウム二次電池の作製
 リチウム二次電池を作製する際には、まず、上記のように作製したリチウム二次電池用正極を、コイン型電池R2032用パーツ(宝泉株式会社製)の下蓋の上面に置いた。下蓋への設置では、リチウム二次電池用正極のアルミニウム箔面を下方に向けた。そして、リチウム二次電池用正極が設置された下蓋の上面に、積層フィルムセパレータを設置した。ここでは、積層フィルムセパレータとして、厚みが16μmであって、ポリエチレン製多孔質フィルムの上に耐熱多孔層が積層されたものを用いた。
[3-2] Fabrication of lithium secondary battery When fabricating a lithium secondary battery, first, the positive electrode for lithium secondary battery fabricated as described above is attached to parts for coin-type battery R2032 (manufactured by Hosen Co., Ltd.). ) was placed on the top of the lower lid. When installing it on the lower lid, the aluminum foil surface of the positive electrode for a lithium secondary battery was directed downward. Then, a laminated film separator was installed on the upper surface of the lower lid on which the positive electrode for a lithium secondary battery was installed. Here, a laminated film separator having a thickness of 16 μm and having a heat-resistant porous layer laminated on a polyethylene porous film was used.
 つぎに、上記パーツの内部に300μlの電解液を注入した。ここでは、電解液として、下記の割合で各物質が混合した混合液に、LiPFが溶解した溶液を用いた。電解液は、LiPFの濃度が1mol/lになるように調製した。 Next, 300 μl of electrolyte was injected into the inside of the above part. Here, as the electrolyte, a solution in which LiPF 6 was dissolved in a mixed solution of various substances in the proportions shown below was used. The electrolytic solution was prepared so that the concentration of LiPF 6 was 1 mol/l.
・エチレンカーボネート:30体積部
・ジメチルカーボネート:35体積部
・エチルメチルカーボネート:35体積部
・Ethylene carbonate: 30 parts by volume ・Dimethyl carbonate: 35 parts by volume ・Ethyl methyl carbonate: 35 parts by volume
 つぎに、負極をセパレータの上側に設置した。ここでは、負極として金属リチウムを用いた。そして、ガスケットを介して、上蓋の設置を行い、かしめ機を用いて上蓋をかしめた。これにより、リチウム二次電池として、コイン型ハーフセルR2032を作製した。 Next, a negative electrode was placed above the separator. Here, metallic lithium was used as the negative electrode. Then, the upper cover was installed via the gasket, and the upper cover was caulked using a caulking machine. As a result, a coin-shaped half cell R2032 was produced as a lithium secondary battery.
[3-3]フロート試験
 電池内のガス発生量を評価する指標として、フロート電気量を測定した。フロート電気量とは、粒子界面で電解液と不可逆反応を起こした際に観測される電気量である。観測されるフロート電気量の値が大きいほど、ガス発生量が多いことを意味する。
[3-3] Float test As an index for evaluating the amount of gas generated within the battery, the amount of float electricity was measured. The float charge is the charge observed when an irreversible reaction occurs with the electrolyte at the particle interface. The larger the value of the float electrical quantity observed, the greater the amount of gas generated.
 具体的には、下記条件でフロート電気量を測定した。
・試験温度:60℃
・充電最大電圧:4.3V、充電電流:0.2CA
・定電圧保持時間60時間
Specifically, the float electrical quantity was measured under the following conditions.
・Test temperature: 60℃
・Maximum charging voltage: 4.3V, charging current: 0.2CA
・Constant voltage holding time 60 hours
 フロート試験における、4.3Vの定電圧モードに移行してからの定電圧保持時間の間の積算電気量をフロート電気量(mAh/g)として算出した。フロート試験の評価は、フロート電気量が6.0mAh/g以下である場合をフロート電気量が小さいと判断した。 In the float test, the integrated amount of electricity during the constant voltage holding time after shifting to the 4.3V constant voltage mode was calculated as the float amount of electricity (mAh/g). In the evaluation of the float test, when the float electrical quantity was 6.0 mAh/g or less, it was determined that the float electrical quantity was small.
[3-4]レート特性[(1C/0.2C)放電容量]
 レート特性は、充放電レートが0.2Cであるときの放電容量に対する、充放電レートが1Cであるときの放電容量の割合(%)である。レート特性の評価は、レート特性が95%以上である場合をレート特性が高いと判断した。
[3-4] Rate characteristics [(1C/0.2C) discharge capacity]
The rate characteristic is the ratio (%) of the discharge capacity when the charge/discharge rate is 1C to the discharge capacity when the charge/discharge rate is 0.2C. Regarding the evaluation of rate characteristics, when the rate characteristics were 95% or more, it was determined that the rate characteristics were high.
 具体的には、下記条件でレート特性について測定を実施した。
(レート特性測定条件)
(0.2C放電容量)
・試験温度:25℃
・充電最大電圧:4.3V、充電電流:0.2CA、定電流定電圧充電、0.05CA電流値にて終了
・放電最小電圧:2.5V、放電電流:0.2CA、定電流放電
(1C放電容量)
・処理温度:25℃
・充電最大電圧:4.3V、充電電流:1CA、定電流定電圧充電、0.05CA電流値にて終了
・放電最小電圧:2.5V、放電電流:1CA、定電流放電
Specifically, the rate characteristics were measured under the following conditions.
(Rate characteristic measurement conditions)
(0.2C discharge capacity)
・Test temperature: 25℃
・Maximum charging voltage: 4.3V, charging current: 0.2CA, constant current constant voltage charging, ends at 0.05CA current value ・Minimum discharging voltage: 2.5V, discharging current: 0.2CA, constant current discharge ( 1C discharge capacity)
・Processing temperature: 25℃
・Maximum charging voltage: 4.3V, charging current: 1CA, constant current constant voltage charging, ends at 0.05CA current value ・Minimum discharging voltage: 2.5V, discharging current: 1CA, constant current discharge
[4]まとめ
 各例の「物性評価」および「電池評価」に関して説明する。
[4] Summary The "physical property evaluation" and "battery evaluation" of each example will be explained.
[4-1](例1)から(例3)の結果について
 (例1)から(例3)は、表1の「物性評価」欄に示すように、(要件1)として規定する上記(式A)、(要件2)として規定する上記(式B)、(要件3)として規定する上記(式C)の関係を全て満たす。
[4-1] Regarding the results of (Example 1) to (Example 3) (Example 1) to (Example 3) are as shown in the "Physical property evaluation" column of Table 1. It satisfies all of the relationships of formula A), the above (formula B) defined as (requirement 2), and the above (formula C) defined as (requirement 3).
 このため、(例1)から(例3)は、表1の「電池評価」欄に示すように、(要件1)として規定する(式A)と(式C)の関係を満たすのでフロート電気量の値が小さく、かつ、(要件2)として規定する(式B)の関係を満たすのでレート特性の値が高い。 Therefore, as shown in the "Battery evaluation" column of Table 1, (Example 1) to (Example 3) satisfy the relationship between (Formula A) and (Formula C) specified as (Requirement 1), so the float electric Since the value of the quantity is small and the relationship of (Formula B) defined as (Requirement 2) is satisfied, the value of the rate characteristic is high.
[4-2](例C1)の結果について
 これに対して、(例C1)は、表1の「物性評価」欄に示すように、(要件1)として規定する(式A)の関係を満たさない。(式A)で算出される値は、保水パラメータであって、(例C1)の保水パラメータは、(例1)から(例3)の保水パラメータよりも高い。このため、(例C1)は、(例1)から(例3)よりも水を保持しやすいので、リチウム二次電池において副反応が発生しやすい活性点が(例1)から(例3)よりも多い。その結果、(例C1)は、表1の「電池評価」欄に示すように、フロート電気量が大きくなっている。
[4-2] Regarding the results of (Example C1) On the other hand, as shown in the "Physical property evaluation" column of Table 1, (Example C1) shows that the relationship of (formula A) specified as (requirement 1) is Not satisfied. The value calculated by (Formula A) is a water retention parameter, and the water retention parameter of (Example C1) is higher than the water retention parameters of (Example 1) to (Example 3). Therefore, (Example C1) retains water more easily than (Example 1) to (Example 3), so the active sites where side reactions are likely to occur in lithium secondary batteries are more likely to occur than (Example 1) to (Example 3). more than As a result, in (Example C1), as shown in the "Battery Evaluation" column of Table 1, the float electricity amount was large.
 (例C1)では、(例1)から(例3)と異なり、加湿処理及び乾燥処理を実行していない。加湿処理の実施は、リチウム二次電池において副反応が発生しやすい活性点を、水との接触で不活性化させる。このことから、(例C1)のように加湿処理を実行しない場合には、リチウム二次電池において副反応が発生しやすい活性点を不活性化することができず、(式A)の関係を満足しなくなると考えられる。 In (Example C1), unlike (Example 1) to (Example 3), humidification processing and drying processing were not performed. The humidification process inactivates active sites that are likely to cause side reactions in a lithium secondary battery through contact with water. From this, if humidification treatment is not performed as in (Example C1), it is not possible to inactivate the active sites that tend to cause side reactions in lithium secondary batteries, and the relationship in (Formula A) is It is possible that you will not be satisfied.
[4-3](例C2)の結果について
 (例C2)は、表1の「物性評価」欄に示す結果から判るように、(要件2)として規定する(式B)の関係を満たしていない。(式B)では、Smについて規定しており、(例C2)のSmは、(例1)から(例3)のSmよりも高い。このため、(例C2)は、リチウム二次電池の充放電において、CAMの表面で生じる副反応を、(例1)から(例3)よりも抑制することができない。その結果、(例C2)は、表1の「電池評価」欄に示すように、レート特性の値が低くなっている。
[4-3] Regarding the results of (Example C2) As can be seen from the results shown in the "Physical property evaluation" column of Table 1, (Example C2) satisfies the relationship of (Formula B) specified as (Requirement 2). do not have. (Formula B) specifies Sm, and Sm in (Example C2) is higher than Sm in (Example 1) to (Example 3). Therefore, in (Example C2), side reactions occurring on the surface of the CAM during charging and discharging of a lithium secondary battery cannot be suppressed more than in (Example 1) to (Example 3). As a result, as shown in the "Battery Evaluation" column of Table 1, (Example C2) has a low rate characteristic value.
 (例C2)では、(例1)から(例3)と異なり、加湿処理に代えて、水洗処理を実行している。水洗処理は、加湿処理と同様に、リチウム二次電池において副反応が発生しやすい活性点を、水の接触で不活性化させる。しかし、水洗処理の実施では、LiMOの粒界に残留し細孔を埋めているリチウム化合物を過剰に除去してしまう。このことから、(例C2)のように水洗処理を実行した場合には、(式B)の関係を満足することが困難になるため、リチウム二次電池の充放電サイクルにおいて、CAM表面で副反応が多く生じ、レート特性の値が低くなると考えられる。 In (Example C2), unlike (Example 1) to (Example 3), a water washing process is performed instead of a humidification process. Similar to the humidification process, the water washing process inactivates active sites that are likely to cause side reactions in a lithium secondary battery through contact with water. However, when performing the water washing treatment, the lithium compound remaining at the grain boundaries of LiMO and filling the pores is excessively removed. For this reason, if the water washing process is performed as in (Example C2), it will be difficult to satisfy the relationship (Equation B). It is thought that many reactions occur and the value of the rate characteristic becomes low.
[4-4](例C3)の結果について
 (例C3)は、表1の「物性評価」欄に示す結果から判るように、(要件3)として規定する(式C)の関係を満たさない。(式C)は、W2/W1について規定しており、W2/W1の値は、(例C3)の方が(例1)から(例3)よりも大きい。このため、(例C3)は、リチウム二次電池のガスの発生を、(例1)から(例3)よりも抑制することができない。その結果、(例C3)は、表1の「電池評価」欄に示すように、フロート電気量が大きくなっている。
[4-4] About the results of (Example C3) As can be seen from the results shown in the "Physical property evaluation" column of Table 1, (Example C3) does not satisfy the relationship of (formula C) specified as (requirement 3). . (Formula C) defines W2/W1, and the value of W2/W1 in (Example C3) is larger than in (Example 1) to (Example 3). Therefore, (Example C3) is unable to suppress gas generation in the lithium secondary battery more than (Example 1) to (Example 3). As a result, in (Example C3), as shown in the "Battery Evaluation" column of Table 1, the float electricity amount was large.
 (例C3)では、(例1)から(例3)と同様に、加湿処理を行っている。しかし、(例1)から(例3)では、CO濃度が200ppm以下である雰囲気(1ppm未満)において、加湿処理を実行しているのに対して、(例C3)では、CO濃度が200ppmを超える雰囲気(400ppm)において加湿処理を実行している。その結果、(例C3)では、CAMの表面に残留するリチウム化合物のうち、特に、W2が大きくなり、(式C)の関係を満足していないと考えられる。 In (Example C3), humidification processing is performed similarly to (Example 1) to (Example 3). However, in (Example 1) to (Example 3), the humidification process is performed in an atmosphere where the CO 2 concentration is 200 ppm or less (less than 1 ppm), whereas in (Example C3), the CO 2 concentration is Humidification processing is performed in an atmosphere exceeding 200 ppm (400 ppm). As a result, in (Example C3), W2 is particularly large among the lithium compounds remaining on the surface of the CAM, and it is considered that the relationship of (Formula C) is not satisfied.
 本発明によれば、ガスの発生を抑制すると共に、レート特性に優れたリチウム二次電池を容易に実現可能な、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池、およびリチウム二次電池用正極活物質の製造方法を提供することができる。 According to the present invention, a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery, and a lithium secondary battery are capable of suppressing gas generation and easily realizing a lithium secondary battery with excellent rate characteristics. , and a method for producing a positive electrode active material for a lithium secondary battery.
1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード、51…リチウム金属複合酸化物、61…リチウム化合物、71…活性点、100…積層体、110…正極、111…リチウム二次電池用正極活物質層、112…正極集電体、113…外部端子、120…負極、121…負極活物質層、122…負極集電体、123…外部端子、130…固体電解質層、200…外装体、200a…開口部、1000…全固体リチウム二次電池 DESCRIPTION OF SYMBOLS 1... Separator, 2... Positive electrode, 3... Negative electrode, 4... Electrode group, 5... Battery can, 6... Electrolyte, 7... Top insulator, 8... Sealing body, 10... Lithium secondary battery, 21... Positive electrode lead, 31 ...Negative electrode lead, 51... Lithium metal composite oxide, 61... Lithium compound, 71... Active point, 100... Laminate, 110... Positive electrode, 111... Positive electrode active material layer for lithium secondary battery, 112... Positive electrode current collector, 113... External terminal, 120... Negative electrode, 121... Negative electrode active material layer, 122... Negative electrode current collector, 123... External terminal, 130... Solid electrolyte layer, 200... Exterior body, 200a... Opening, 1000... All solid lithium secondary next battery

Claims (14)

  1.  Li元素、Ni元素、および元素Mを含む、層状構造のリチウム金属複合酸化物と、
     水酸化リチウムおよび炭酸リチウムを含むリチウム化合物と
     を有するリチウム二次電池用正極活物質であって、
     前記元素Mが、Co、Mn、Fe、Cu、Ti、Mg、Ca、Ba、Al、Zn、Sn、Zr、Nb、B、Si、S、およびPからなる群から選択される少なくとも1種の元素であり、
     水蒸気吸着法の吸着等温線において水蒸気圧pと飽和蒸気圧pとの相対圧力p/pが0.5であるときの水蒸気吸着量Va0.5、前記水蒸気吸着法の吸着等温線において前記相対圧力p/pが0.9であるときの水蒸気吸着量Va0.9、および、前記水蒸気吸着法の脱着等温線において前記相対圧力p/pが0.5であるときの水蒸気吸着量Vd0.5が、下記の(式A)に示す関係を満たし、
     窒素吸着法により計測されるBET比表面積Smが下記の(式B)に示す関係を満たし、かつ、
     前記水酸化リチウムの質量割合W1と前記炭酸リチウムの質量割合W2とが下記の(式C)に示す関係を満たす、
     リチウム二次電池用正極活物質。
     (Vd0.5-Va0.5)/Va0.9≦0.90   ・・・(式A)
     Sm≦0.8m/g   ・・・(式B)
     W2/W1≦1.40   ・・・(式C)
    A lithium metal composite oxide with a layered structure containing Li element, Ni element, and element M;
    A positive electrode active material for a lithium secondary battery, comprising: a lithium compound containing lithium hydroxide and lithium carbonate;
    The element M is at least one selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, Ca, Ba, Al, Zn, Sn, Zr, Nb, B, Si, S, and P. is an element,
    In the adsorption isotherm of the water vapor adsorption method, the water vapor adsorption amount Va 0.5 when the relative pressure p/p 0 between the water vapor pressure p and the saturated vapor pressure p 0 is 0.5, in the adsorption isotherm of the water vapor adsorption method Water vapor adsorption amount Va 0.9 when the relative pressure p/p 0 is 0.9, and water vapor when the relative pressure p/p 0 is 0.5 in the desorption isotherm of the water vapor adsorption method. The adsorption amount Vd 0.5 satisfies the relationship shown in the following (formula A),
    The BET specific surface area Sm measured by the nitrogen adsorption method satisfies the relationship shown in the following (formula B), and
    The mass proportion W1 of the lithium hydroxide and the mass proportion W2 of the lithium carbonate satisfy the relationship shown in the following (Formula C),
    Positive electrode active material for lithium secondary batteries.
    (Vd 0.5 - Va 0.5 )/Va 0.9 ≦0.90 (Formula A)
    Sm≦0.8m 2 /g (Formula B)
    W2/W1≦1.40 (Formula C)
  2.  前記リチウム金属複合酸化物は、
     下記(組成式I)で表される、
     請求項1に記載のリチウム二次電池用正極活物質。
     Li[Li(Ni(1-x-y)CoM11-m]O   ・・・(組成式I)
    ((組成式I)において、M1は、Mn、Fe、Cu、Ti、Mg、Ca、Ba,Al、Zn、Nb、Sn、Zr、B、Si、SおよびPからなる群から選択される少なくとも1種の元素であり、m、x、およびyは、-0.1≦m≦0.2、0≦x≦0.5、0<y≦0.7、およびx+y<1に示す関係を満足する。)
    The lithium metal composite oxide is
    Represented by the following (compositional formula I),
    The positive electrode active material for a lithium secondary battery according to claim 1.
    Li[Li m (Ni (1-x-y) C x M1 y ) 1-m ] O 2 ... (compositional formula I)
    (In (compositional formula I), M1 is at least one selected from the group consisting of Mn, Fe, Cu, Ti, Mg, Ca, Ba, Al, Zn, Nb, Sn, Zr, B, Si, S, and P. is one type of element, and m, x, and y have the relationships shown in -0.1≦m≦0.2, 0≦x≦0.5, 0<y≦0.7, and x+y<1. satisfied.)
  3.  前記Smが下記の式(B1)に示す関係を満たす、
     請求項1または2に記載のリチウム二次電池用正極活物質。
     0.2m/g≦Sm≦0.7m/g   ・・・(式B1)
    The Sm satisfies the relationship shown in the following formula (B1),
    The positive electrode active material for a lithium secondary battery according to claim 1 or 2.
    0.2m 2 /g≦Sm≦0.7m 2 /g (Formula B1)
  4.  前記W2は、下記の式(D)に示す関係を満たす、
     請求項1または2に記載のリチウム二次電池用正極活物質。
     W2≦0.70質量%   ・・・(式D)
    The W2 satisfies the relationship shown in the following formula (D),
    The positive electrode active material for a lithium secondary battery according to claim 1 or 2.
    W2≦0.70% by mass (Formula D)
  5.  中和滴定法で測定される、前記リチウム二次電池用正極活物質の溶出リチウム量W3は、下記の式(E)に示す関係を満たす、
     請求項1または2に記載のリチウム二次電池用正極活物質。
     W3≦0.50質量%   ・・・(式E)
    The eluted lithium amount W3 of the positive electrode active material for lithium secondary batteries, measured by neutralization titration method, satisfies the relationship shown in the following formula (E),
    The positive electrode active material for a lithium secondary battery according to claim 1 or 2.
    W3≦0.50% by mass (Formula E)
  6.  CuKα線で測定した粉末X線回折の回折パターンにおいて、回折角2θが10°以上90°以下の範囲内に含まれる回折パターンから算出される結晶歪が、0.10°以下である、
     請求項1または2に記載のリチウム二次電池用正極活物質。
    In the diffraction pattern of powder X-ray diffraction measured with CuKα rays, the crystal strain calculated from the diffraction pattern in which the diffraction angle 2θ is within the range of 10° or more and 90° or less is 0.10° or less.
    The positive electrode active material for a lithium secondary battery according to claim 1 or 2.
  7.  窒素吸着法により計測される平均細孔径が、150nm以下である
     請求項1または2に記載のリチウム二次電池用正極活物質。
    The positive electrode active material for a lithium secondary battery according to claim 1 or 2, wherein the average pore diameter measured by a nitrogen adsorption method is 150 nm or less.
  8.  窒素吸着法により計測される細孔容積が、0.0005cm/g以上0.0150cm/g以下である、
     請求項1または2に記載のリチウム二次電池用正極活物質。
    The pore volume measured by nitrogen adsorption method is 0.0005 cm 3 /g or more and 0.0150 cm 3 /g or less,
    The positive electrode active material for a lithium secondary battery according to claim 1 or 2.
  9.  50%累積体積粒度D50が3μm以上30μm以下である、
     請求項1または2に記載のリチウム二次電池用正極活物質。
    50% cumulative volume particle size D50 is 3 μm or more and 30 μm or less,
    The positive electrode active material for a lithium secondary battery according to claim 1 or 2.
  10.  請求項1または2に記載のリチウム二次電池用正極活物質を有する、
     リチウム二次電池用正極。
    Comprising the positive electrode active material for a lithium secondary battery according to claim 1 or 2,
    Positive electrode for lithium secondary batteries.
  11.  請求項10に記載のリチウム二次電池用正極を有する、
     リチウム二次電池。
    It has a positive electrode for a lithium secondary battery according to claim 10,
    Lithium secondary battery.
  12.  リチウム二次電池用正極活物質の製造方法であって、
     リチウム金属複合酸化物の前駆体である金属複合化合物と、リチウム化合物との焼成粉を準備する準備工程と、
     前記準備工程で準備された前記焼成粉について加湿処理を施す加湿工程と、
     前記加湿工程において前記加湿処理が施された前記焼成粉について乾燥処理を施すことによって、前記リチウム二次電池用正極活物質を作製する乾燥工程と
     を有し、
     前記加湿工程では、露点が50℃以上90℃以下であってCO濃度が200ppm以下である雰囲気において、前記加湿処理を実行する、
     リチウム二次電池用正極活物質の製造方法。
    A method for producing a positive electrode active material for a lithium secondary battery, the method comprising:
    a preparation step of preparing a fired powder of a metal composite compound that is a precursor of a lithium metal composite oxide and a lithium compound;
    a humidification step of performing a humidification treatment on the baked powder prepared in the preparation step;
    a drying step of producing the positive electrode active material for a lithium secondary battery by performing a drying treatment on the fired powder subjected to the humidification treatment in the humidification step,
    In the humidification step, the humidification process is performed in an atmosphere where the dew point is 50 ° C. or more and 90 ° C. or less and the CO 2 concentration is 200 ppm or less.
    A method for producing a positive electrode active material for a lithium secondary battery.
  13.  前記加湿工程では、温度が80℃以上400℃以下である雰囲気において、前記加湿処理を実行する、
     請求項12に記載のリチウム二次電池用正極活物質の製造方法。
    In the humidification step, the humidification process is performed in an atmosphere with a temperature of 80° C. or higher and 400° C. or lower.
    The method for producing a positive electrode active material for a lithium secondary battery according to claim 12.
  14.  前記乾燥工程では、温度が100℃以上400℃以下である雰囲気において、前記乾燥処理を実行する、
     請求項12または13に記載のリチウム二次電池用正極活物質の製造方法。
    In the drying step, the drying process is performed in an atmosphere with a temperature of 100° C. or higher and 400° C. or lower.
    The method for producing a positive electrode active material for a lithium secondary battery according to claim 12 or 13.
PCT/JP2023/022772 2022-06-22 2023-06-20 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery WO2023249013A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-100002 2022-06-22
JP2022100002A JP2024001397A (en) 2022-06-22 2022-06-22 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2023249013A1 true WO2023249013A1 (en) 2023-12-28

Family

ID=89379975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022772 WO2023249013A1 (en) 2022-06-22 2023-06-20 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery

Country Status (2)

Country Link
JP (1) JP2024001397A (en)
WO (1) WO2023249013A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187953A1 (en) * 2018-03-30 2019-10-03 住友化学株式会社 Lithium composite metal compound, lithium-secondary-battery positive electrode active material, lithium-secondary-battery positive electrode, lithium secondary battery, and lithium composite metal compound production method
JP2021022576A (en) * 2016-06-23 2021-02-18 日立金属株式会社 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2021039933A (en) * 2019-03-28 2021-03-11 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022576A (en) * 2016-06-23 2021-02-18 日立金属株式会社 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
WO2019187953A1 (en) * 2018-03-30 2019-10-03 住友化学株式会社 Lithium composite metal compound, lithium-secondary-battery positive electrode active material, lithium-secondary-battery positive electrode, lithium secondary battery, and lithium composite metal compound production method
JP2021039933A (en) * 2019-03-28 2021-03-11 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP2024001397A (en) 2024-01-10

Similar Documents

Publication Publication Date Title
US7112291B2 (en) Cobalt oxide particles and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
EP2368851B1 (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
EP2581343A1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP7121165B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
TW202039371A (en) Precursor, method for producing precursor, cathode material, method for producing cathode material and lithium ion secondary battery
CN112005409A (en) Positive electrode active material and battery provided with same
WO2023249013A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
JP7441999B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
JP7441998B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
JP7483987B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP4305613B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7454642B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
WO2022264992A1 (en) Lithium secondary battery positive electrode active material, lithium secondary battery positive electrode, lithium secondary battery, and method for producing lithium secondary battery positive electrode active material
WO2023106313A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP7417675B1 (en) Metal composite hydroxide particles, method for producing metal composite compound, and method for producing positive electrode active material for lithium secondary batteries
WO2023181992A1 (en) Lithium secondary battery positive electrode active material, lithium secondary battery positive electrode, lithium secondary battery, and method for producing lithium secondary battery positive electrode active material
JP7412485B1 (en) Method for producing metal composite hydroxide particles and positive electrode active material for lithium secondary batteries
JP7353454B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
CN114400317B (en) Positive electrode material, preparation method thereof and lithium ion battery
JP7416897B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
WO2023106336A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7148685B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
WO2023106274A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP7359911B1 (en) Precursor and method for producing positive electrode active material for lithium secondary batteries
WO2024111226A1 (en) Lithium-metal complex oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827196

Country of ref document: EP

Kind code of ref document: A1