WO2023249010A1 - Seal ring - Google Patents

Seal ring Download PDF

Info

Publication number
WO2023249010A1
WO2023249010A1 PCT/JP2023/022747 JP2023022747W WO2023249010A1 WO 2023249010 A1 WO2023249010 A1 WO 2023249010A1 JP 2023022747 W JP2023022747 W JP 2023022747W WO 2023249010 A1 WO2023249010 A1 WO 2023249010A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal ring
ring
thin
diameter
less
Prior art date
Application number
PCT/JP2023/022747
Other languages
French (fr)
Japanese (ja)
Inventor
真也 小田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2023249010A1 publication Critical patent/WO2023249010A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3268Mounting of sealing rings
    • F16J15/3272Mounting of sealing rings the rings having a break or opening, e.g. to enable mounting on a shaft otherwise than from a shaft end

Definitions

  • the present invention is intended for sealing fluid in devices that utilize the fluid pressure of fluids such as hydraulic oil, such as automatic transmissions (hereinafter referred to as AT) and continuously variable transmissions (hereinafter referred to as CVT). Concerning the seal ring used.
  • fluids such as hydraulic oil
  • AT automatic transmissions
  • CVT continuously variable transmissions
  • seal rings are installed at key points to seal hydraulic oil.
  • the seal ring is attached to a pair of spaced apart annular grooves provided on the rotating shaft that is inserted into the shaft hole of the housing, and the hydraulic oil supplied from the oil passage between the two annular grooves is supplied to the side and inner peripheral surfaces of both seal rings.
  • the side wall of the annular groove and the inner circumferential surface of the housing are sealed by the opposite side surface and outer circumferential surface.
  • Each sealing surface of the seal ring is in sliding contact with the side wall of the annular groove and the inner circumferential surface of the housing, respectively, and maintains the hydraulic pressure of the hydraulic oil between both seal rings.
  • Patent Document 1 describes a seal ring that suppresses problems due to diameter expansion when assembling the small-diameter ring to a rotating shaft by providing a thin-walled portion on the inner diameter portion of the seal ring. There is.
  • seal rings made of polyphenylene sulfide (hereinafter referred to as "PPS") resin which has excellent wear resistance, have been adopted in locations where the limiting PV value (product of circumferential speed (V) and surface pressure (P)) is low. is increasing.
  • PV value product of circumferential speed (V) and surface pressure (P)
  • V circumferential speed
  • P surface pressure
  • a small-diameter seal ring made of PPS resin which is a relatively highly elastic resin material (hereinafter referred to as a small-diameter PPS seal ring), is required to further improve its resistance to diameter expansion.
  • the present invention has been made to address such problems, and an object of the present invention is to provide a seal ring with improved durability when incorporated into an annular groove, even if it is a small diameter PPS seal ring.
  • the seal ring of the present invention is a seal ring having one joint, which is a molded product of a polyphenylene sulfide resin composition, and has a bending modulus of elasticity of 10,000 MPa or less and a bending strain of more than 2.0%. It has a thin wall portion that reduces the radial thickness of the ring on both sides of the inner circumferential surface of the ring at a position facing the abutment, and the radial thickness of the thin wall portion is equal to It is characterized by being 50% to 70% of the radial thickness.
  • the thin-walled portions on both sides of the position facing the abutment are formed in areas separated from each other.
  • the seal ring is characterized in that it has a bending modulus of elasticity of 8500 MPa or less and a bending strain of 2.5% or more.
  • the above seal ring is characterized in that its outer diameter is ⁇ 30 mm or less.
  • the seal ring is an injection molded product, and is characterized by having gate marks during injection molding at a position opposite to the abutment.
  • the seal ring has an outer diameter of ⁇ 30 mm or less, a bending modulus of elasticity of 8,500 MPa or less, and a bending strain of 2.5% or more, and is an injection molded product, and the gate marks from injection molding are removed from the abutment. It is characterized in that it is located at opposing positions.
  • the seal ring of the present invention is a seal ring having one joint, which is a molded product of a polyphenylene sulfide resin composition, and has a bending modulus of elasticity of 10,000 MPa or less and a bending strain of more than 2.0%. Therefore, it has excellent toughness.
  • the joint facing part there is a thin part that reduces the radial thickness of the ring on the inner peripheral surface of the ring on both sides of the position facing the joint (hereinafter referred to as the joint facing part), and the radial thickness of the thin part is Since it is 50% to 70% of the radial thickness of the mouth-facing portion, stress easily escapes to the thin-walled portion when the ring diameter is expanded. Thereby, even if the PPS seal ring has a small diameter, it is possible to improve the durability when assembling it into the annular groove.
  • the seal ring has an outer diameter of ⁇ 30 mm or less, it can be applied to smaller devices.
  • the seal ring is an injection molded product, and even if it has gate marks from injection molding on the part facing the abutment, it is difficult for force to concentrate around the gate marks, which are weak in strength, when the ring diameter is expanded. It is possible to suppress the concentration of force around the gate mark due to the diameter expansion of the ring during assembly. Moreover, a seal ring with good molding balance can be obtained.
  • FIG. 2 is a plan view showing an example of a seal ring of the present invention.
  • FIG. 2 is an enlarged view of part A of the seal ring in FIG. 1;
  • FIG. 2 is a perspective view of the seal ring of FIG. 1;
  • FIG. 2 is a side view of an assembly jig and a schematic diagram of a jig passing test. It is a top view which shows the shape of the seal ring after heat setting.
  • FIG. 1 is a plan view of the seal ring
  • FIG. 2 is an enlarged view of portion A in FIG.
  • the seal ring 1 shown in FIG. 1 is an annular body having a perfect circular outer diameter and a substantially rectangular cross section.
  • the ring outer peripheral surface 2 and the ring inner peripheral surface 3 are surfaces parallel to the axial direction of the seal ring 1.
  • the corners of the ring inner circumferential surface 3 and the ring side surfaces 4 may be chamfered in a straight or curved manner.
  • the seal ring 1 is a cut-type PPS resin ring having one abutment 5 in which both ends in the circumferential direction face each other, and is expanded in diameter by elastic deformation and is installed in an annular groove of a rotating shaft. .
  • the seal ring 1 is set to have approximately the same outer diameter as the sealing surface (inner wall of the housing) in a free state without being subjected to external force, and is brought into close contact with the sealing surface by the pressure of the sealing fluid.
  • the shape of the joint 5 can be a straight cut shape, an angle cut shape, etc., it is preferable to adopt the compound step cut shape shown in FIG. 1 because it has excellent sealing properties for the sealing fluid.
  • the seal ring 1 is provided with a plurality of V-shaped recesses 4a along the ring circumferential direction at the inner diameter side ends of both side surfaces 4 of the ring.
  • one of the ring side surfaces 4 is a sliding surface with the side wall surface of the annular groove
  • the V-shaped recess 4a formed in the ring side surface 4 (sliding surface) is a non-contact part with the side wall surface. becomes.
  • the boundary between the sliding surface X between adjacent recesses 4a and the recess 4a has a continuous shape
  • the boundary between the sliding surface Y on the outer diameter side of the recess 4a and the recess 4a has a continuous shape. Because of the discontinuous shape (steps), fluid easily flows out to the sliding surface X, and fluid flows out less easily to the sliding surface Y compared to the sliding surface X.
  • a fluid film such as an oil film is formed on the sliding surfaces, thereby reducing rotational torque and wear.
  • This recess can be formed on one or both sides of the ring, as required. Note that the shape of the recess may be other than the above shape.
  • the seal ring 1 has a plurality of thin portions 6 on the inner peripheral surface side of the ring to reduce the radial thickness (hereinafter also simply referred to as "thickness") of the ring.
  • the thin portion 6 is formed by reducing the radial thickness while maintaining the outer diameter of the seal ring 1.
  • the radial thickness of the portion other than the thin portion 6 is a non-thin portion 7 which is thicker than the thin portion 6.
  • the abutment facing portion 5F of the seal ring 1 is a non-thin portion 7, and thin portions 6 are formed on both sides in the circumferential direction.
  • the non-thin portions 7 are formed between the thin portions 6 adjacent to each other in the circumferential direction, and are formed in the same number or approximately the same number as the thin portions 6.
  • the thin portions 6 and the non-thin portions 7 are provided alternately along the ring circumferential direction. Note that the number of thin portions 6 and non-thin portions 7 is not limited to the configuration shown in FIG. 1 .
  • the side surface of the stepped portion 71 of the non-thin portion 7 is formed at a lower position (thinner width) than the ring side surface 4, but it may be an extension surface of the ring side surface 4.
  • the non-thin portion 7 is formed to have a small width in the axial direction, the non-thin portion 7 is configured not to come into contact with the side wall surface of the annular groove. Further, this may be used as a protruding surface during injection molding of the seal ring 1.
  • the thickness of the thin portion 6 and the thickness of the non-thin portion 7 are each constant.
  • the thickness of the thin portion 6 and the thickness of the non-thin portion 7 may not be constant.
  • the thickness of the thin portion 6 is defined as the thickness of the region where the thickness of the thin portion 6 is the smallest.
  • the thickness of the non-thin part 7 is the thickness of the region where the non-thin part 7 has the largest thickness. Note that the center point of the outer diameter of the seal ring 1 and the center point of the inner diameter of the non-thin portion 7 are the same.
  • the thickness of the seal ring 1 is partially reduced while maintaining the outer diameter.
  • only the inner diameter of the seal ring 1 is enlarged and the thickness is partially reduced, so that the inner circumferential surface of the housing can maintain adhesion with the material, and sealing performance is less likely to deteriorate.
  • the amount of strain generated in the thin portion is reduced, resistance to diameter expansion can be improved.
  • the thickness B of the thin portion 6 is 50% to 70% of the thickness C of the non-thin portion 7.
  • the thickness B of the thin portion 6 is preferably 55% to 70% of the thickness C of the non-thin portion 7, and more preferably 55% to 65%.
  • the thickness B of the thin portion 6 is specifically 0.9 mm to 2.3 mm.
  • the step portion 71 located in the non-thin portion 7 on the inner peripheral side of the virtual curved surface obtained by extending the ring inner peripheral surface 3 of the thin portion 6 will be described.
  • the stepped portion 71 has an upper curved surface 71a disposed on the inner circumferential side and a lower curved surface 71b disposed on the outer circumferential side at one end in the circumferential direction, and similarly has an upper curved surface 71a at the other end.
  • a lower curved surface 71b is formed.
  • the upper curved surface 71a and the lower curved surface 71b are connected via a plane.
  • the upper curved surface 71a and the lower curved surface 71b may be directly connected to each other without using a plane.
  • one end portion and the other end portion of the stepped portion 71 may be formed only of a flat surface instead of a curved surface.
  • FIG. 3(a) is a perspective view of the seal ring shown in FIG. 1, and FIG. 3(b) is an enlarged view of portion D in FIG. 3(a).
  • the side surface 71c of the stepped portion 71 in the non-thin portion 7 is a concave surface formed lower than the ring side surface 4 by a depth E.
  • both side surfaces of the stepped portion 71 are formed to be lower than the ring side surface 4 by a depth E, the width of the stepped portion 71 is smaller than the width of the thin portion 6 by 2E.
  • the two side surfaces 71c, 71c of the stepped portion 71 may be formed to have different depths from the ring side surface 4, and only one side surface may be a concave surface and the other side surface may be an extension surface of the ring side surface 4. . Further, it is not necessary to form concave surfaces on both side surfaces.
  • the PPS resin composition forming the seal ring of the present invention has a bending elastic modulus of 10,000 MPa or less and a bending strain of more than 2.0%. By having such bending characteristics, the seal ring can be elastically deformed when assembled, and durability can be improved. From the viewpoint of durability, the flexural modulus is preferably 8,500 MPa or less, more preferably 7,000 MPa or less, and even more preferably 5,500 MPa or less. On the other hand, the bending elastic modulus is preferably 3500 MPa or more.
  • the bending strain is preferably 2.5% or more, more preferably 3.0% or more, and even more preferably 3.5% or more. On the other hand, the bending strain is preferably 5.0% or less.
  • the bending elastic modulus and bending strain were determined by a three-point bending test using a test piece (127 mm x 12.7 mm x thickness 3.1 mm) based on ASTM D790, with a distance between fulcrums of 50 mm, and a crosshead speed of 1.3 mm/min. It can be measured by In addition, in this specification, the bending elastic modulus and bending strain mean values obtained by a test at room temperature (23° C.).
  • a small diameter seal ring for example, an outer diameter of ⁇ 30 mm or less, has lower resistance during diameter expansion than a seal ring with an outer diameter of more than ⁇ 30 mm.
  • the outer diameter of the seal ring is a small diameter of ⁇ 30 mm or less, the ratio of the diameter expansion amount to the outer diameter dimension when the seal ring is assembled is likely to be larger than that of a seal ring whose outer diameter exceeds ⁇ 30 mm. Therefore, it is thought that a seal ring with a small diameter tends to have a large amount of strain when the diameter is expanded, and has low resistance when the diameter is expanded.
  • a seal ring with a diameter of about 50 mm has a diameter expansion rate of 110% or less
  • a seal ring with a diameter of about 40 mm has a diameter expansion rate of 115% or less
  • a seal ring with a diameter of 30 mm or less has a diameter expansion rate of 110% or less. 120% or more, and the resistance during diameter expansion becomes low.
  • the thickness of the thin part when the thickness of the thin part is 70% or less of the thickness of the non-thin part, the surface pressure applied to the side surface of the seal ring does not become excessive and abnormal wear is less likely to occur. In addition, a predetermined sealing area can be secured and the sealing performance is excellent (small leakage).
  • the thickness of the thin wall portion is 50% or more of the thickness of the non-thin wall portion, stress tends to escape to the thin wall portion, and the amount of strain is difficult to increase in the thin wall portion.
  • the seal ring of the present invention is a small-diameter PPS seal ring with a diameter expansion ratio of 120% or more, the seal ring has improved durability when assembled into an annular groove of a rotating shaft or the like.
  • the outer diameter of the seal ring can be freely set, and from the viewpoint of application to small hydraulic equipment, etc., it is preferably ⁇ 30 mm or less, more preferably ⁇ 25 mm or less, and even more preferably ⁇ 20 mm or less.
  • the outer diameter of the seal ring is preferably ⁇ 15 mm to 30 mm, more preferably ⁇ 15 mm to 25 mm, and even more preferably ⁇ 15 mm to 20 mm.
  • the seal ring of the present invention is an injection molded product of a resin composition, and the gate marks 8 are formed at the gate positions where molten resin is injected during injection molding (see FIG. 1).
  • the position of the gate mark is not particularly limited, it is preferably formed on the inner peripheral side of the ring from the viewpoint of ensuring sealing performance and eliminating the need for post-processing.
  • the seal ring at the center of the developed length of the seal ring 1 on the ring inner circumferential surface 3.
  • gate marks 8 are formed on the inner circumferential surface of the abutment facing portion 5F. Since the abutment facing portion 5F is a non-thin wall portion 7, it is preferable from the viewpoint of durability.
  • the gate mark 8 may be provided at a position other than the center of the developed length of the seal ring 1. Further, the gate mark 8 may be provided in the thin portion 6.
  • the seal ring of the present invention is a molded article of a PPS resin composition containing PPS resin as a main component, and may contain components other than PPS resin.
  • PPS resin is a crystalline thermoplastic resin having a polymer structure shown in the following formula (1) in which benzene rings are connected at para positions by sulfur bonds.
  • PPS resin has a melting point of about 280° C. and has excellent chemical resistance, so it can be used even when the temperature of the hydraulic oil to be sealed is high.
  • PPS resins include crosslinked PPS resins and semi-crosslinked PPS resins obtained by oxidative crosslinking of low molecular weight ones, and linear PPS resins that do not have a crosslinked structure. It can be used without being limited to.
  • the diameter is expanded when it is incorporated into the annular groove, it is preferable to use a linear PPS resin that has excellent toughness.
  • the PPS resin that can be used in the present invention include MA-520 and T-4AG (trade name of DIC Corporation).
  • the resin component of the PPS resin composition may be a PPS resin alone or may contain other resins.
  • the PPS resin composition can include, for example, an elastomer.
  • the elastomer may be either a thermosetting elastomer or a thermoplastic elastomer, but a thermoplastic elastomer that can increase the toughness of the PPS resin is preferred.
  • the thermoplastic elastomer include polyamide elastomer, polyurethane elastomer, polyester elastomer, polystyrene elastomer, and olefin elastomer.
  • the decomposition start temperature of the elastomer is equal to or higher than the molding temperature of the PPS resin (280 to 320° C.). However, decomposition of low molecular weight components during seal ring molding shall be allowed.
  • fibrous reinforcing materials such as carbon fiber, glass fiber, and aramid fiber, spherical fillers such as spherical silica and spherical carbon, scaly reinforcing materials such as mica and talc, potassium titanate whiskers, etc. are added to the PPS resin composition as necessary. can be blended with microfiber reinforcing material.
  • solid lubricants such as PTFE resin, graphite, tungsten disulfide, molybdenum disulfide, and boron nitride, sliding reinforcement materials such as calcium phosphate and calcium sulfate, and coloring agents such as carbon powder, iron oxide, and titanium oxide can be added. . These can be blended alone or in combination.
  • the bending elastic modulus and bending strain of the seal ring of the present invention are appropriately set depending on the type and amount of the PPS resin, the type and amount of components (elastomer, fibrous reinforcing material, etc.) added to the PPS resin, and the like.
  • the means for mixing and kneading the above raw materials is not particularly limited.
  • a PPS resin alone may be used, and carbon fibers, glass fibers, etc. may be side-fed and kneaded using a twin-screw extruder or the like.
  • only the powder raw materials are dry mixed using a Henschel mixer, ball mixer, ribbon blender, Ledige mixer, Ultra Henschel mixer, etc., and then melt-kneaded using a melt extruder such as a twin-screw extruder to obtain pellets for molding. You can.
  • the molding method it is preferable to employ injection molding because it is easy to form a complicated joint shape and a recess on the side surface of the ring.
  • a treatment such as annealing treatment may be applied to the molded article in order to improve its physical properties.
  • the above raw materials were melt-kneaded using a twin-screw extruder to produce pellets for injection molding.
  • the glass fibers of Examples 1 to 3 and Comparative Examples 1 and 2 were 30% by mass, and the glass fibers of Comparative Example 3 were 40% by mass.
  • FIG. 4(a) is a side view of an assembly jig (tapered jig)
  • FIG. 4(b) is a schematic diagram of a seal ring assembly jig passing test.
  • the dimensions of the taper jig 12 used in the test are as follows, and the inner diameter of the seal ring is expanded by 1.25 times (diameter expansion rate: 125%) (see FIG. 4(a)).
  • Seal rings used in Examples and Comparative Examples were manufactured by injection molding using the above pellets, and the outer diameter was adjusted to ⁇ 26 mm by heat setting.
  • the shape of the seal ring after heat setting is the shape shown in Fig. 5, which is 26 mm in outer diameter x 22 mm in inner diameter x 1.9 mm in width, and has a radial length of 0.3 mm and a depth of 0.3 mm on the inner peripheral surface. It has a step part on both sides), and the joint is a compound step cut.
  • the inner peripheral surface of this seal ring was additionally machined to create a thinner part using a milling machine, and 100 seal rings were manufactured for each example and comparative example.
  • Examples 1 to 3 in which the ratio of the thin wall portion (thickness of the thin wall portion/thickness of the non-thin wall portion x 100) is 50% to 70% have a bending elastic modulus of 8300 MPa and a bending strain of 2.5. %, and the number of samples without resistance was 0.
  • both Comparative Examples 1 and 2 in which the ratio of thin-walled parts is greater than 70% had a bending elastic modulus of 8300 MPa and a bending strain of 2.5%, similar to Examples 1 to 3, but were samples with no resistance. The numbers were 4 and 9, respectively.
  • the ratio of thin wall portions was 50% as in Example 1, but the bending elastic modulus was 11,600 MPa, the bending strain was 2.0%, and the number of samples with no resistance was 7. Ta.
  • the seal ring of the present invention has improved resistance when assembled into an annular groove even if it is a small diameter PPS seal ring, so it is particularly suitable as a seal ring for sealing hydraulic oil in an annular passage of small hydraulic equipment, etc. available for use. Moreover, it can be suitably used not only for hydraulic equipment but also for seal rings having abutment and attached to an annular groove with an enlarged diameter.

Abstract

Provided is a seal ring having improved resistance when assembled into an annular groove even if the seal ring is a small-diameter PPS seal ring. This seal ring 1 is a molded article of a polyphenylene sulfide resin composition and has a joint 5 in one location. The seal ring 1 also has, on both sides of a joint-opposing part 5F, thin-walled parts 6 where the radial-direction thickness of the ring is reduced at a ring inner peripheral surface 3, the thin-walled parts having a bending elastic modulus of 10,000 Mpa or less and a bending strain exceeding 2.0%. The radial-direction thickness of the thin-walled parts is 50-70% of the radial-direction thickness of the joint-opposing part 5F.

Description

シールリングSeal ring
 本発明は、オートマチックトランスミッション(以下、ATと記す)や無段変速機(以下、CVTと記す)など、油圧作動油などの流体の流体圧を利用した機器において、該流体を封止するために使用されるシールリングに関する。 The present invention is intended for sealing fluid in devices that utilize the fluid pressure of fluids such as hydraulic oil, such as automatic transmissions (hereinafter referred to as AT) and continuously variable transmissions (hereinafter referred to as CVT). Concerning the seal ring used.
 AT、CVTなどの機器では、作動油を密封するためのシールリングが要所に取り付けられている。例えば、ハウジングの軸孔に挿通される回転軸に設けられた対の離間した環状溝に取り付けられ、両環状溝間にある油路から供給される作動油を両シールリングの側面と内周面で受け、反対側の側面と外周面とで環状溝の側壁とハウジング内周面とをシールする。シールリングにおける各シール面は、環状溝の側壁、ハウジング内周面とそれぞれ摺動接触しつつ、両シールリング間の作動油の油圧を保持している。
 シールリングを環状溝に組み付ける際は、シールリングの合い口を拡げることでシールリングの内径寸法を回転軸の外径寸法以上に拡径(拡張)する必要がある。シールリングを拡径すると、合い口に対向する位置に応力が集中する場合がある。
In equipment such as ATs and CVTs, seal rings are installed at key points to seal hydraulic oil. For example, the seal ring is attached to a pair of spaced apart annular grooves provided on the rotating shaft that is inserted into the shaft hole of the housing, and the hydraulic oil supplied from the oil passage between the two annular grooves is supplied to the side and inner peripheral surfaces of both seal rings. The side wall of the annular groove and the inner circumferential surface of the housing are sealed by the opposite side surface and outer circumferential surface. Each sealing surface of the seal ring is in sliding contact with the side wall of the annular groove and the inner circumferential surface of the housing, respectively, and maintains the hydraulic pressure of the hydraulic oil between both seal rings.
When assembling the seal ring into the annular groove, it is necessary to expand the inner diameter of the seal ring to be larger than the outer diameter of the rotating shaft by widening the abutment of the seal ring. When the diameter of the seal ring is expanded, stress may be concentrated at the position facing the abutment.
 近年、機器の小型化に伴い、シールリングが小径化する傾向にある。小径シールリングに関し、例えば、特許文献1には、シールリングの内径部に薄肉の箇所を設けることで、小径リングを回転軸に組付ける時の拡径による不具合を抑制するシールリングが記載されている。 In recent years, as equipment has become smaller, seal rings have tended to become smaller in diameter. Regarding small-diameter seal rings, for example, Patent Document 1 describes a seal ring that suppresses problems due to diameter expansion when assembling the small-diameter ring to a rotating shaft by providing a thin-walled portion on the inner diameter portion of the seal ring. There is.
特許第4500007号公報Patent No. 4500007
 近年、限界PV値(周速(V)と面圧(P)の積)の低い使用箇所へ、耐摩耗性に優れるポリフェニレンサルファイド(以下、「PPS」と記す)樹脂製のシールリングの採用が増えている。例えば外径寸法がφ30mm以下の小径シールリングの場合、比較的柔軟(低弾性)な素材を用いても、外径寸法がφ30mmを超えるシールリングに比べて耐性が悪い。そのため、比較的高弾性な樹脂材料であるPPS樹脂からなる小径のシールリング(以下、小径PPSシールリングと言う)では、拡径による耐性をさらに向上させることが求められる。 In recent years, seal rings made of polyphenylene sulfide (hereinafter referred to as "PPS") resin, which has excellent wear resistance, have been adopted in locations where the limiting PV value (product of circumferential speed (V) and surface pressure (P)) is low. is increasing. For example, in the case of a small-diameter seal ring with an outer diameter of 30 mm or less, even if a relatively flexible (low elastic) material is used, the resistance is poorer than that of a seal ring with an outer diameter of more than 30 mm. Therefore, a small-diameter seal ring made of PPS resin, which is a relatively highly elastic resin material (hereinafter referred to as a small-diameter PPS seal ring), is required to further improve its resistance to diameter expansion.
 本発明はこのような問題に対処するためになされたものであり、小径PPSシールリングであっても環状溝への組込み時の耐性を向上させたシールリングを提供することを目的とする。 The present invention has been made to address such problems, and an object of the present invention is to provide a seal ring with improved durability when incorporated into an annular groove, even if it is a small diameter PPS seal ring.
 本発明のシールリングは、一箇所の合い口を有するシールリングであって、ポリフェニレンサルファイド樹脂組成物の成形体であり、曲げ弾性率が10000MPa以下で、曲げ歪みが2.0%をこえるシールリングであり、上記合い口に対向する位置の両側のリング内周面側にリングの径方向厚みを薄くする薄肉部を有し、上記薄肉部の径方向厚みが、上記合い口に対向する位置の径方向厚みの50%~70%であることを特徴とする。ここで、上記合い口に対向する位置の両側の上記薄肉部同士は、相互に離れた領域に形成される。 The seal ring of the present invention is a seal ring having one joint, which is a molded product of a polyphenylene sulfide resin composition, and has a bending modulus of elasticity of 10,000 MPa or less and a bending strain of more than 2.0%. It has a thin wall portion that reduces the radial thickness of the ring on both sides of the inner circumferential surface of the ring at a position facing the abutment, and the radial thickness of the thin wall portion is equal to It is characterized by being 50% to 70% of the radial thickness. Here, the thin-walled portions on both sides of the position facing the abutment are formed in areas separated from each other.
 上記シールリングは、曲げ弾性率が8500MPa以下で、曲げ歪みが2.5%以上であることを特徴とする。 The seal ring is characterized in that it has a bending modulus of elasticity of 8500 MPa or less and a bending strain of 2.5% or more.
 上記シールリングは、外径がφ30mm以下であることを特徴とする。 The above seal ring is characterized in that its outer diameter is φ30 mm or less.
 上記シールリングは、射出成形体であり、射出成形時のゲート痕を、上記合い口に対向する位置に有することを特徴とする。 The seal ring is an injection molded product, and is characterized by having gate marks during injection molding at a position opposite to the abutment.
 上記シールリングは、外径がφ30mm以下で、曲げ弾性率が8500MPa以下で、曲げ歪みが2.5%以上で、かつ、射出成形体であり、射出成形時のゲート痕を、上記合い口に対向する位置に有することを特徴とする。 The seal ring has an outer diameter of φ30 mm or less, a bending modulus of elasticity of 8,500 MPa or less, and a bending strain of 2.5% or more, and is an injection molded product, and the gate marks from injection molding are removed from the abutment. It is characterized in that it is located at opposing positions.
 本発明のシールリングは、一箇所の合い口を有するシールリングであって、ポリフェニレンサルファイド樹脂組成物の成形体であり、曲げ弾性率が10000MPa以下で、曲げ歪みが2.0%をこえるシールリングであるので、靭性に優れる。また、合い口に対向する位置(以下、合い口対向部と言う)の両側のリング内周面側にリングの径方向厚みを薄くする薄肉部を有し、薄肉部の径方向厚みが、合い口対向部の径方向厚みの50%~70%であるので、リング拡径時に薄肉部へ応力が逃げやすい。これにより、小径PPSシールリングであっても、環状溝への組込み時の耐性を向上させることができる。 The seal ring of the present invention is a seal ring having one joint, which is a molded product of a polyphenylene sulfide resin composition, and has a bending modulus of elasticity of 10,000 MPa or less and a bending strain of more than 2.0%. Therefore, it has excellent toughness. In addition, there is a thin part that reduces the radial thickness of the ring on the inner peripheral surface of the ring on both sides of the position facing the joint (hereinafter referred to as the joint facing part), and the radial thickness of the thin part is Since it is 50% to 70% of the radial thickness of the mouth-facing portion, stress easily escapes to the thin-walled portion when the ring diameter is expanded. Thereby, even if the PPS seal ring has a small diameter, it is possible to improve the durability when assembling it into the annular groove.
 シールリングは、外径がφ30mm以下であるので、より小型の機器に適用できる。 Since the seal ring has an outer diameter of φ30 mm or less, it can be applied to smaller devices.
 シールリングは、射出成形体であり、射出成形時のゲート痕を、合い口対向部に有していても、リング拡径時に強度的に弱いゲート痕周辺へ力が集中しにくい。組込み時のリングの拡径によるゲート痕周辺の力の集中を抑制できる。また、成形バランスのよいシールリングが得られる。 The seal ring is an injection molded product, and even if it has gate marks from injection molding on the part facing the abutment, it is difficult for force to concentrate around the gate marks, which are weak in strength, when the ring diameter is expanded. It is possible to suppress the concentration of force around the gate mark due to the diameter expansion of the ring during assembly. Moreover, a seal ring with good molding balance can be obtained.
本発明のシールリングの一例を示す平面図である。FIG. 2 is a plan view showing an example of a seal ring of the present invention. 図1のシールリングのA部分の拡大図である。FIG. 2 is an enlarged view of part A of the seal ring in FIG. 1; 図1のシールリングの斜視図である。FIG. 2 is a perspective view of the seal ring of FIG. 1; 組付け治具の側面図および治具通し試験の概略図である。FIG. 2 is a side view of an assembly jig and a schematic diagram of a jig passing test. 熱固定後のシールリングの形状を示す平面図である。It is a top view which shows the shape of the seal ring after heat setting.
 本発明のシールリングの一例を図1および図2に基づいて説明する。図1はシールリングの平面図であり、図2は図1のA部分の拡大図である。図1に示すシールリング1は、外径形状が真円状で、断面が略矩形の環状体である。リング外周面2とリング内周面3は、シールリング1の軸心方向に平行な面である。リング内周面3とリング側面4(両側面)との角部は、直線状、曲線状の面取りが設けられていてもよい。 An example of the seal ring of the present invention will be explained based on FIGS. 1 and 2. FIG. 1 is a plan view of the seal ring, and FIG. 2 is an enlarged view of portion A in FIG. The seal ring 1 shown in FIG. 1 is an annular body having a perfect circular outer diameter and a substantially rectangular cross section. The ring outer peripheral surface 2 and the ring inner peripheral surface 3 are surfaces parallel to the axial direction of the seal ring 1. The corners of the ring inner circumferential surface 3 and the ring side surfaces 4 (both side surfaces) may be chamfered in a straight or curved manner.
 シールリング1は、円周方向の両端部が相互に対向する一箇所の合い口5を有するカットタイプのPPS樹脂製リングであり、弾性変形により拡径して回転軸の環状溝に装着される。シールリング1は、外力を受けない自由状態でシール面(ハウジング内壁)とほぼ同じ外径寸法に設定されており、封止流体の圧力によってシール面に密着する。合い口5の形状は、ストレートカット形状、アングルカット形状などにすることも可能であるが、封止流体のシール性に優れることから、図1に示す複合ステップカット形状を採用することが好ましい。 The seal ring 1 is a cut-type PPS resin ring having one abutment 5 in which both ends in the circumferential direction face each other, and is expanded in diameter by elastic deformation and is installed in an annular groove of a rotating shaft. . The seal ring 1 is set to have approximately the same outer diameter as the sealing surface (inner wall of the housing) in a free state without being subjected to external force, and is brought into close contact with the sealing surface by the pressure of the sealing fluid. Although the shape of the joint 5 can be a straight cut shape, an angle cut shape, etc., it is preferable to adopt the compound step cut shape shown in FIG. 1 because it has excellent sealing properties for the sealing fluid.
 シールリング1は、リングの両側面4の内径側端部に、リング周方向に沿ったV字状の凹部4aが複数設けられている。シールリング1は、リング側面4の一方が環状溝の側壁面との摺動面となり、リング側面4(摺動面)に形成されたV字状の凹部4aは該側壁面との非接触部となる。凹部4aを設けることで、流体が該凹部を介して摺動面に適度に流出しやすくなる。詳細には、隣り合う凹部4a同士の間の摺動面Xと凹部4aとの境界部は連続的な形状であり、凹部4aの外径側の摺動面Yと凹部4aとの境界部は非連続な形状(段差)であるため、流体が摺動面Xには流出しやすく、摺動面Yは摺動面Xと比較すると流出しにくい。摺動面XやYに流体が流出することで、該摺動面で油膜等の流体膜が形成され、回転トルクや摩耗の低減が図れる。また、摺動面Yへの流出を抑制することで、低リーク性に繋がる。この凹部は、必要に応じて、リングの一方の側面、または、両方の側面に形成できる。なお、凹部の形状は上記形状以外でもよい。 The seal ring 1 is provided with a plurality of V-shaped recesses 4a along the ring circumferential direction at the inner diameter side ends of both side surfaces 4 of the ring. In the seal ring 1, one of the ring side surfaces 4 is a sliding surface with the side wall surface of the annular groove, and the V-shaped recess 4a formed in the ring side surface 4 (sliding surface) is a non-contact part with the side wall surface. becomes. By providing the recess 4a, fluid can appropriately flow out to the sliding surface through the recess. Specifically, the boundary between the sliding surface X between adjacent recesses 4a and the recess 4a has a continuous shape, and the boundary between the sliding surface Y on the outer diameter side of the recess 4a and the recess 4a has a continuous shape. Because of the discontinuous shape (steps), fluid easily flows out to the sliding surface X, and fluid flows out less easily to the sliding surface Y compared to the sliding surface X. When the fluid flows out onto the sliding surfaces X and Y, a fluid film such as an oil film is formed on the sliding surfaces, thereby reducing rotational torque and wear. Moreover, by suppressing the outflow to the sliding surface Y, it leads to low leakage performance. This recess can be formed on one or both sides of the ring, as required. Note that the shape of the recess may be other than the above shape.
 シールリング1は、リング内周面側にリングの径方向厚み(以下、単に「厚み」ともいう)を薄くする薄肉部6を複数有する。薄肉部6は、シールリング1の外径を保持しつつ径方向厚みを薄肉化して形成される。薄肉部6以外の径方向厚みは薄肉部6よりも厚みが大きい非薄肉部7である。シールリング1の合い口対向部5Fは非薄肉部7であり、その周方向両側に薄肉部6が形成される。非薄肉部7は周方向で隣り合う薄肉部6と薄肉部6の間に形成され、薄肉部6と同数または同程度の数が形成される。薄肉部6と非薄肉部7は、リング周方向に沿って交互に設けられている。なお、薄肉部6および非薄肉部7の数は、図1の構成に限定されない。図1において、非薄肉部7の段差部71の側面はリング側面4よりも低い位置(幅が薄い)に形成されているが、リング側面4の延長面でもよい。非薄肉部7の軸方向の幅を薄く形成した場合、環状溝の側壁面に当接しない構成になっている。また、ここをシールリング1の射出成形時の突出し面としてもよい。図1のシールリング1では、薄肉部6の厚みと非薄肉部7の厚みは、それぞれ一定となっている。 The seal ring 1 has a plurality of thin portions 6 on the inner peripheral surface side of the ring to reduce the radial thickness (hereinafter also simply referred to as "thickness") of the ring. The thin portion 6 is formed by reducing the radial thickness while maintaining the outer diameter of the seal ring 1. The radial thickness of the portion other than the thin portion 6 is a non-thin portion 7 which is thicker than the thin portion 6. The abutment facing portion 5F of the seal ring 1 is a non-thin portion 7, and thin portions 6 are formed on both sides in the circumferential direction. The non-thin portions 7 are formed between the thin portions 6 adjacent to each other in the circumferential direction, and are formed in the same number or approximately the same number as the thin portions 6. The thin portions 6 and the non-thin portions 7 are provided alternately along the ring circumferential direction. Note that the number of thin portions 6 and non-thin portions 7 is not limited to the configuration shown in FIG. 1 . In FIG. 1, the side surface of the stepped portion 71 of the non-thin portion 7 is formed at a lower position (thinner width) than the ring side surface 4, but it may be an extension surface of the ring side surface 4. When the non-thin portion 7 is formed to have a small width in the axial direction, the non-thin portion 7 is configured not to come into contact with the side wall surface of the annular groove. Further, this may be used as a protruding surface during injection molding of the seal ring 1. In the seal ring 1 of FIG. 1, the thickness of the thin portion 6 and the thickness of the non-thin portion 7 are each constant.
 なお、薄肉部6の厚みと非薄肉部7の厚みは、それぞれ一定でなくてもよい。本明細書において、一つの薄肉部6における厚みが一定でない場合、薄肉部6の厚みは、薄肉部6の厚みが最も小さい領域の厚みとする。一つの非薄肉部7における厚みが一定でない場合、非薄肉部7の厚みは、非薄肉部7の厚みが最も大きい領域の厚みとする。なお、シールリング1の外径中心点と非薄肉部7の内径中心点は同じである。 Note that the thickness of the thin portion 6 and the thickness of the non-thin portion 7 may not be constant. In this specification, when the thickness of one thin portion 6 is not constant, the thickness of the thin portion 6 is defined as the thickness of the region where the thickness of the thin portion 6 is the smallest. When the thickness of one non-thin part 7 is not constant, the thickness of the non-thin part 7 is the thickness of the region where the non-thin part 7 has the largest thickness. Note that the center point of the outer diameter of the seal ring 1 and the center point of the inner diameter of the non-thin portion 7 are the same.
 上述のように、シールリング1は外径を保持しながら部分的に厚みが薄肉化される、すなわち、シールリング1の内径のみを拡大して厚みを部分的に薄くするため、ハウジング内周面との密着性を維持でき、シール性が低下しにくい。また、薄肉部に発生する歪量が減少するので、拡径による耐性を向上させることができる。 As mentioned above, the thickness of the seal ring 1 is partially reduced while maintaining the outer diameter. In other words, only the inner diameter of the seal ring 1 is enlarged and the thickness is partially reduced, so that the inner circumferential surface of the housing can maintain adhesion with the material, and sealing performance is less likely to deteriorate. Furthermore, since the amount of strain generated in the thin portion is reduced, resistance to diameter expansion can be improved.
 図2に示すように、本発明のシールリングは、薄肉部6の厚みBが、非薄肉部7の厚みCの50%~70%の厚みである。これらの厚みの比率を所定の数値範囲にすることで、後述の実施例に示すように、拡径による耐性を向上させることができる。また、薄肉部6の厚みBは、非薄肉部7の厚みCの55%~70%であることが好ましく、55%~65%であることがより好ましい。また、薄肉部6の厚みBは、具体的には、0.9mm~2.3mmである。 As shown in FIG. 2, in the seal ring of the present invention, the thickness B of the thin portion 6 is 50% to 70% of the thickness C of the non-thin portion 7. By setting the ratio of these thicknesses within a predetermined numerical range, it is possible to improve resistance to diameter expansion, as shown in Examples described later. Further, the thickness B of the thin portion 6 is preferably 55% to 70% of the thickness C of the non-thin portion 7, and more preferably 55% to 65%. Further, the thickness B of the thin portion 6 is specifically 0.9 mm to 2.3 mm.
 非薄肉部7において薄肉部6のリング内周面3を延長した仮想曲面よりも内周側に位置する段差部71について説明する。段差部71は、周方向の一端部に内周側に配置される上部湾曲面71aと外周側に配置される下部湾曲面71bが形成されており、他端部にも同様に上部湾曲面71aと下部湾曲面71bが形成されている。各端部において、上部湾曲面71aと下部湾曲面71bの間は平面を介して繋がっている。なお、上部湾曲面71aと下部湾曲面71bは平面を介さず直接繋がっていてもよい。また、段差部71の一端部および他端部は、湾曲面でなく平面のみによって形成されていてもよい。 The step portion 71 located in the non-thin portion 7 on the inner peripheral side of the virtual curved surface obtained by extending the ring inner peripheral surface 3 of the thin portion 6 will be described. The stepped portion 71 has an upper curved surface 71a disposed on the inner circumferential side and a lower curved surface 71b disposed on the outer circumferential side at one end in the circumferential direction, and similarly has an upper curved surface 71a at the other end. A lower curved surface 71b is formed. At each end, the upper curved surface 71a and the lower curved surface 71b are connected via a plane. Note that the upper curved surface 71a and the lower curved surface 71b may be directly connected to each other without using a plane. Further, one end portion and the other end portion of the stepped portion 71 may be formed only of a flat surface instead of a curved surface.
 段差部の軸方向の幅について図3に基づいて説明する。図3(a)は図1に示したシールリングの斜視図であり、図3(b)は図3(a)のD部分の拡大図である。図3(b)に示すように、非薄肉部7における段差部71の側面71cは、リング側面4よりも深さEだけ低く形成された凹面とされている。そして、段差部71の両側面がともに、リング側面4よりも深さEだけ低く形成されているため、段差部71の幅は薄肉部6の幅よりも、2E小さい。なお、段差部71の2つの側面71c、71cは、リング側面4からそれぞれ異なる深さとなるように形成されてもよく、一方の側面だけを凹面とし他方の側面はリング側面4の延長面でもよい。また、両側面に凹面を形成しなくてもよい。 The axial width of the stepped portion will be explained based on FIG. 3. 3(a) is a perspective view of the seal ring shown in FIG. 1, and FIG. 3(b) is an enlarged view of portion D in FIG. 3(a). As shown in FIG. 3(b), the side surface 71c of the stepped portion 71 in the non-thin portion 7 is a concave surface formed lower than the ring side surface 4 by a depth E. As shown in FIG. Since both side surfaces of the stepped portion 71 are formed to be lower than the ring side surface 4 by a depth E, the width of the stepped portion 71 is smaller than the width of the thin portion 6 by 2E. Note that the two side surfaces 71c, 71c of the stepped portion 71 may be formed to have different depths from the ring side surface 4, and only one side surface may be a concave surface and the other side surface may be an extension surface of the ring side surface 4. . Further, it is not necessary to form concave surfaces on both side surfaces.
 本発明のシールリングを形成するPPS樹脂組成物は、曲げ弾性率が10000MPa以下であり、かつ、曲げ歪みが2.0%をこえるものである。このような曲げ特性を有することで、シールリングの組込み時に弾性変形し、耐性を向上させることができる。曲げ弾性率は、耐性の観点から8500MPa以下であることが好ましく、7000MPa以下であることがより好ましく、5500MPa以下であることがさらに好ましい。一方、曲げ弾性率は、3500MPa以上であることが好ましい。 The PPS resin composition forming the seal ring of the present invention has a bending elastic modulus of 10,000 MPa or less and a bending strain of more than 2.0%. By having such bending characteristics, the seal ring can be elastically deformed when assembled, and durability can be improved. From the viewpoint of durability, the flexural modulus is preferably 8,500 MPa or less, more preferably 7,000 MPa or less, and even more preferably 5,500 MPa or less. On the other hand, the bending elastic modulus is preferably 3500 MPa or more.
 また、曲げ歪みは、耐性の観点から、2.5%以上であることが好ましく、3.0%以上であることがより好ましく、3.5%以上であることがさらに好ましい。一方、曲げ歪みは、5.0%以下であることが好ましい。 Furthermore, from the viewpoint of durability, the bending strain is preferably 2.5% or more, more preferably 3.0% or more, and even more preferably 3.5% or more. On the other hand, the bending strain is preferably 5.0% or less.
 曲げ弾性率および曲げ歪みは、ASTM D790準拠の試験片(127mm×12.7mm×厚さ3.1mm)を用いて、支点間距離50mm、クロスヘッド速度1.3mm/minとした3点曲げ試験により測定できる。なお、本明細書において、曲げ弾性率および曲げ歪みは、室温(23℃)下での試験により得られる値を意味する。 The bending elastic modulus and bending strain were determined by a three-point bending test using a test piece (127 mm x 12.7 mm x thickness 3.1 mm) based on ASTM D790, with a distance between fulcrums of 50 mm, and a crosshead speed of 1.3 mm/min. It can be measured by In addition, in this specification, the bending elastic modulus and bending strain mean values obtained by a test at room temperature (23° C.).
 ここで、例えば外径φ30mm以下の小径のシールリングが外径φ30mmを超えるシールリングよりも拡径時の耐性が低い理由について考察する。シールリングの外径が、φ30mm以下の小径である場合、シールリング組込み時の拡径量の外径寸法に対する比率は、外径φ30mmを超えるシールリングよりも大きくなりやすいと考えられる。そのため、小径のシールリングは、拡径時に発生する歪量が大きくなりやすく、拡径時の耐性が低いと考えられる。例えばφ50mm程度のシールリングであれば拡径率は110%以下であり、φ40mm程度のシールリングであれば拡径率は115%以下であるが、φ30mm以下のシールリングであれば拡径率は120%以上になり、拡径時の耐性が低くなる。 Here, we will consider the reason why a small diameter seal ring, for example, an outer diameter of φ30 mm or less, has lower resistance during diameter expansion than a seal ring with an outer diameter of more than φ30 mm. When the outer diameter of the seal ring is a small diameter of φ30 mm or less, the ratio of the diameter expansion amount to the outer diameter dimension when the seal ring is assembled is likely to be larger than that of a seal ring whose outer diameter exceeds φ30 mm. Therefore, it is thought that a seal ring with a small diameter tends to have a large amount of strain when the diameter is expanded, and has low resistance when the diameter is expanded. For example, a seal ring with a diameter of about 50 mm has a diameter expansion rate of 110% or less, a seal ring with a diameter of about 40 mm has a diameter expansion rate of 115% or less, but a seal ring with a diameter of 30 mm or less has a diameter expansion rate of 110% or less. 120% or more, and the resistance during diameter expansion becomes low.
 本発明のシールリングは、薄肉部の厚みが、非薄肉部の厚みの70%以下の場合、シールリングの側面にかかる面圧が過大にならず、異常摩耗が発生しにくい。また、所定のシール面積を確保でき、シール性に優れる(リーク小)。一方、薄肉部の厚みが、非薄肉部の厚みの50%以上の場合、薄肉部へ応力が逃げやすく、薄肉部では歪量が大きくなりにくい。これにより、本発明のシールリングは、拡径率が120%以上になる小径PPSシールリングであっても、回転軸等の環状溝への組込み時の耐性が向上する。 In the seal ring of the present invention, when the thickness of the thin part is 70% or less of the thickness of the non-thin part, the surface pressure applied to the side surface of the seal ring does not become excessive and abnormal wear is less likely to occur. In addition, a predetermined sealing area can be secured and the sealing performance is excellent (small leakage). On the other hand, when the thickness of the thin wall portion is 50% or more of the thickness of the non-thin wall portion, stress tends to escape to the thin wall portion, and the amount of strain is difficult to increase in the thin wall portion. As a result, even if the seal ring of the present invention is a small-diameter PPS seal ring with a diameter expansion ratio of 120% or more, the seal ring has improved durability when assembled into an annular groove of a rotating shaft or the like.
 シールリングの外径寸法は自由に設定でき、小型油圧機器等への適用の観点から、φ30mm以下であることが好ましく、φ25mm以下であることがより好ましく、φ20mm以下であることがさらに好ましい。耐性を鑑みると、シールリングの外径はφ15mm~30mmであることが好ましく、φ15mm~25mmであることがより好ましく、φ15mm~20mmであることがさらに好ましい。本発明のシールリングは、薄肉部を設けることにより、従来のシールリングに用いられているPPS樹脂組成物の成形体では適用困難な、より小型の油圧機器等に適用できる。 The outer diameter of the seal ring can be freely set, and from the viewpoint of application to small hydraulic equipment, etc., it is preferably φ30 mm or less, more preferably φ25 mm or less, and even more preferably φ20 mm or less. In view of durability, the outer diameter of the seal ring is preferably φ15 mm to 30 mm, more preferably φ15 mm to 25 mm, and even more preferably φ15 mm to 20 mm. By providing a thin wall portion, the seal ring of the present invention can be applied to smaller hydraulic equipment, etc., which is difficult to apply to molded bodies of PPS resin compositions used in conventional seal rings.
 本発明のシールリングは、樹脂組成物の射出成形体であり、ゲート痕8は射出成形時に溶融樹脂が注入されるゲートの位置に形成される(図1参照)。ゲート痕の位置は、特に限定されないが、シール性の確保の観点および後加工が不要になることからリング内周側に形成されることが好ましい。さらに、図1に示すように、射出成形における流動バランスの面から、リング内周面3においてシールリング1の展開長さの中央部に有することが好ましい。具体的には、ゲート痕8が合い口対向部5Fの内周面に形成される。合い口対向部5Fは非薄肉部7であるため、耐性の観点からも好ましい。 The seal ring of the present invention is an injection molded product of a resin composition, and the gate marks 8 are formed at the gate positions where molten resin is injected during injection molding (see FIG. 1). Although the position of the gate mark is not particularly limited, it is preferably formed on the inner peripheral side of the ring from the viewpoint of ensuring sealing performance and eliminating the need for post-processing. Further, as shown in FIG. 1, from the viewpoint of flow balance in injection molding, it is preferable to have the seal ring at the center of the developed length of the seal ring 1 on the ring inner circumferential surface 3. Specifically, gate marks 8 are formed on the inner circumferential surface of the abutment facing portion 5F. Since the abutment facing portion 5F is a non-thin wall portion 7, it is preferable from the viewpoint of durability.
 このように、シールリングの展開長さの中央部の非薄肉部にゲート痕を有することで、リング拡径時に強度的に弱いゲート痕周辺へ力が集中しにくくなる。これにより、組込み時のリングの拡径によって特にゲート痕周辺への力の集中を防止できる。 In this way, by having the gate mark in the non-thin part at the center of the expanded length of the seal ring, it becomes difficult for force to concentrate around the gate mark, which is weak in strength, when the ring diameter is expanded. This makes it possible to prevent force from being concentrated especially around the gate mark due to the diameter expansion of the ring during assembly.
 なお、ゲート痕8をシールリング1の展開長さの中央部以外の位置に有してもよい。また、ゲート痕8を薄肉部6に有してもよい。 Note that the gate mark 8 may be provided at a position other than the center of the developed length of the seal ring 1. Further, the gate mark 8 may be provided in the thin portion 6.
 本発明のシールリングは、PPS樹脂を主成分とするPPS樹脂組成物の成形体であり、PPS樹脂以外の成分を含んでもよい。PPS樹脂は、ベンゼン環がパラの位置で、硫黄結合によって連結された下記式(1)に示すポリマー構造を持つ結晶性の熱可塑性樹脂である。PPS樹脂は、融点が約280℃であり、耐薬品性にも優れるため、シールする作動油の油温が高くなる場合でも使用できる。また、PPS樹脂は、低分子量のものを酸化架橋させて得られる架橋PPS樹脂や半架橋PPS樹脂、架橋構造をとらない直鎖状PPS樹脂などがあるが、本発明ではこれらの分子構造や分子量に限定されることなく使用できる。環状溝へ組み込む際に拡径させることから、靭性に優れる直鎖状PPS樹脂を用いることが好ましい。本発明で使用できるPPS樹脂としては、例えば、MA-520やT-4AG(DIC社商品名)が挙げられる。 The seal ring of the present invention is a molded article of a PPS resin composition containing PPS resin as a main component, and may contain components other than PPS resin. PPS resin is a crystalline thermoplastic resin having a polymer structure shown in the following formula (1) in which benzene rings are connected at para positions by sulfur bonds. PPS resin has a melting point of about 280° C. and has excellent chemical resistance, so it can be used even when the temperature of the hydraulic oil to be sealed is high. In addition, PPS resins include crosslinked PPS resins and semi-crosslinked PPS resins obtained by oxidative crosslinking of low molecular weight ones, and linear PPS resins that do not have a crosslinked structure. It can be used without being limited to. Since the diameter is expanded when it is incorporated into the annular groove, it is preferable to use a linear PPS resin that has excellent toughness. Examples of the PPS resin that can be used in the present invention include MA-520 and T-4AG (trade name of DIC Corporation).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 PPS樹脂組成物の樹脂成分は、PPS樹脂単独でも、その他の樹脂を含んでもよい。PPS樹脂組成物は、例えば、エラストマーを含むことができる。エラストマーとしては、熱硬化性エラストマー、熱可塑性エラストマーのいずれでもよいが、PPS樹脂の靱性をより高くできる熱可塑性エラストマーが好ましい。熱可塑性エラストマーとしては、例えば、ポリアミド系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリスチレン系エラストマー、オレフィン系エラストマーなどが挙げられる。なお、エラストマーの分解開始温度がPPS樹脂の成形温度(280~320℃)以上であることが好ましい。ただし、シールリング成形時の低分子量成分の分解は許容するものとする。 The resin component of the PPS resin composition may be a PPS resin alone or may contain other resins. The PPS resin composition can include, for example, an elastomer. The elastomer may be either a thermosetting elastomer or a thermoplastic elastomer, but a thermoplastic elastomer that can increase the toughness of the PPS resin is preferred. Examples of the thermoplastic elastomer include polyamide elastomer, polyurethane elastomer, polyester elastomer, polystyrene elastomer, and olefin elastomer. Note that it is preferable that the decomposition start temperature of the elastomer is equal to or higher than the molding temperature of the PPS resin (280 to 320° C.). However, decomposition of low molecular weight components during seal ring molding shall be allowed.
 必要に応じてPPS樹脂組成物に、炭素繊維、ガラス繊維、アラミド繊維などの繊維状補強材、球状シリカや球状炭素などの球状充填材、マイカやタルクなどの鱗状補強材、チタン酸カリウムウィスカなどの微小繊維補強材を配合できる。また、PTFE樹脂、グラファイト、二硫化タングステン、二硫化モリブデン、窒化ホウ素などの固体潤滑剤、リン酸カルシウム、硫酸カルシウムなどの摺動補強材、炭素粉末、酸化鉄、酸化チタンなどの着色剤なども配合できる。これらは単独で配合することも、組み合わせて配合することもできる。 If necessary, fibrous reinforcing materials such as carbon fiber, glass fiber, and aramid fiber, spherical fillers such as spherical silica and spherical carbon, scaly reinforcing materials such as mica and talc, potassium titanate whiskers, etc. are added to the PPS resin composition as necessary. can be blended with microfiber reinforcing material. In addition, solid lubricants such as PTFE resin, graphite, tungsten disulfide, molybdenum disulfide, and boron nitride, sliding reinforcement materials such as calcium phosphate and calcium sulfate, and coloring agents such as carbon powder, iron oxide, and titanium oxide can be added. . These can be blended alone or in combination.
 本発明のシールリングの曲げ弾性率および曲げ歪みは、PPS樹脂の種類や配合量、PPS樹脂に配合される成分(エラストマーや繊維状補強材など)の種類や配合量などによって適宜設定される。 The bending elastic modulus and bending strain of the seal ring of the present invention are appropriately set depending on the type and amount of the PPS resin, the type and amount of components (elastomer, fibrous reinforcing material, etc.) added to the PPS resin, and the like.
 以上の諸原材料を混合し、混練する手段は、特に限定するものではない。例えば、PPS樹脂単独を使用し、二軸押出し機などで炭素繊維、ガラス繊維などをサイドフィードして混練してもよい。また、粉末原料のみをヘンシェルミキサー、ボールミキサー、リボンブレンダー、レディゲミキサー、ウルトラヘンシェルミキサーなどにて乾式混合し、さらに二軸押出し機などの溶融押出し機にて溶融混練し、成形用ペレットを得てもよい。成形方法は、複雑な合い口形状やリング側面への凹部の形成が容易であることから、射出成形を採用することが好ましい。なお、成形品に対して物性改善のためにアニール処理などの処理を採用してもよい。 The means for mixing and kneading the above raw materials is not particularly limited. For example, a PPS resin alone may be used, and carbon fibers, glass fibers, etc. may be side-fed and kneaded using a twin-screw extruder or the like. In addition, only the powder raw materials are dry mixed using a Henschel mixer, ball mixer, ribbon blender, Ledige mixer, Ultra Henschel mixer, etc., and then melt-kneaded using a melt extruder such as a twin-screw extruder to obtain pellets for molding. You can. As the molding method, it is preferable to employ injection molding because it is easy to form a complicated joint shape and a recess on the side surface of the ring. Note that a treatment such as annealing treatment may be applied to the molded article in order to improve its physical properties.
 実施例および比較例に用いた樹脂組成物の原材料を一括して以下に示す。
(1)PPS樹脂〔PPS〕
(2)ガラス繊維〔GF〕
The raw materials for the resin compositions used in Examples and Comparative Examples are listed below.
(1) PPS resin [PPS]
(2) Glass fiber [GF]
 以上の原材料を用いて、二軸押出し機によって溶融混練し、射出成形用ペレットを作製した。なお、実施例1~3、比較例1、2のガラス繊維は30質量%、比較例3のガラス繊維は40質量%の配合である。 The above raw materials were melt-kneaded using a twin-screw extruder to produce pellets for injection molding. The glass fibers of Examples 1 to 3 and Comparative Examples 1 and 2 were 30% by mass, and the glass fibers of Comparative Example 3 were 40% by mass.
(1)曲げ試験
 上記ペレットを用いてASTM D790準拠の試験片(127mm×12.7mm×厚さ3.1mm)を作成し、これを用いて支点間距離50mm、クロスヘッド速度1.3mm/minとした3点曲げ試験を行い、曲げ弾性率および曲げ歪みを測定した。各試験片の原料組成と、曲げ弾性率および曲げ歪みを表1に示す。
(1) Bending test A test piece (127 mm x 12.7 mm x thickness 3.1 mm) compliant with ASTM D790 was created using the above pellet, and using this, the distance between fulcrums was 50 mm, and the crosshead speed was 1.3 mm/min. A three-point bending test was conducted using the following methods, and the bending elastic modulus and bending strain were measured. Table 1 shows the raw material composition, flexural modulus, and flexural strain of each test piece.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(2)組付け治具通し試験(シールリング拡径試験)
 図4を用いて、組付け治具通し試験について説明する。図4(a)は組付け治具(テーパー治具)の側面図であり、図4(b)はシールリングの組付け治具通し試験の概略図である。
(2) Assembly jig passing test (seal ring diameter expansion test)
The assembly jig passing test will be explained using FIG. 4. FIG. 4(a) is a side view of an assembly jig (tapered jig), and FIG. 4(b) is a schematic diagram of a seal ring assembly jig passing test.
 試験に用いたテーパー治具12の寸法は以下のとおりであり、シールリングの内径寸法が1.25倍(拡径率125%)になるように押し拡げられる(図4(a)参照)。
  L:147.0mm
  Dl:27.6mm
  Ds:21.0mm
The dimensions of the taper jig 12 used in the test are as follows, and the inner diameter of the seal ring is expanded by 1.25 times (diameter expansion rate: 125%) (see FIG. 4(a)).
L: 147.0mm
Dl: 27.6mm
Ds: 21.0mm
 上記ペレットを用いて、実施例、比較例に使用するシールリングを射出成形により製造し、熱固定により外径寸法をφ26mmに整えた。熱固定後のシールリングの形状は、図5に示した形状で、外径φ26mm×内径φ22mm×幅1.9mmであり、内周面に径方向長さ0.3mm、深さ0.3mm(両側面)の段差部を有し、合い口は複合ステップカットである。このシールリングの内周面をフライス盤を用いて薄肉部の追加工を行い、各実施例、比較例それぞれ100個ずつ製造した。なお、追加工後のシールリングの形状および非薄肉部の位置は図1相当である。テーパー治具12を用いて、図4(b)に示すように、各実施例、比較例それぞれ100個のシールリング11をテーパー治具12へ速度1mm/sで挿入し、耐性の有無と耐性の有無数を評価した。試験結果および薄肉部の厚みの非薄肉部の厚みに対する比率(薄肉部の比率)を表2に示す。 Seal rings used in Examples and Comparative Examples were manufactured by injection molding using the above pellets, and the outer diameter was adjusted to φ26 mm by heat setting. The shape of the seal ring after heat setting is the shape shown in Fig. 5, which is 26 mm in outer diameter x 22 mm in inner diameter x 1.9 mm in width, and has a radial length of 0.3 mm and a depth of 0.3 mm on the inner peripheral surface. It has a step part on both sides), and the joint is a compound step cut. The inner peripheral surface of this seal ring was additionally machined to create a thinner part using a milling machine, and 100 seal rings were manufactured for each example and comparative example. Note that the shape of the seal ring after additional machining and the position of the non-thin wall portion correspond to those in FIG. Using the taper jig 12, as shown in FIG. 4(b), 100 seal rings 11 of each example and comparative example were inserted into the taper jig 12 at a speed of 1 mm/s, and the presence or absence of resistance and resistance were determined. The presence/absence of these was evaluated. Table 2 shows the test results and the ratio of the thickness of the thin part to the thickness of the non-thin part (ratio of the thin part).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示したとおり、薄肉部の比率(薄肉部の厚み/非薄肉部の厚み×100)が50%~70%である実施例1~3は、曲げ弾性率8300MPa、曲げ歪み2.5%で、耐性の無いサンプル数は0個であった。一方、薄肉部の比率が70%よりも大きい比較例1および比較例2はともに、実施例1~3と同様に曲げ弾性率8300MPa、曲げ歪み2.5%であったものの、耐性の無いサンプル数はそれぞれ、4個、9個であった。また、比較例3は、実施例1と同様に、薄肉部の比率が50%であったものの、曲げ弾性率11600MPa、曲げ歪み2.0%であり、耐性の無いサンプル数は7個であった。 As shown in Table 2, Examples 1 to 3 in which the ratio of the thin wall portion (thickness of the thin wall portion/thickness of the non-thin wall portion x 100) is 50% to 70% have a bending elastic modulus of 8300 MPa and a bending strain of 2.5. %, and the number of samples without resistance was 0. On the other hand, both Comparative Examples 1 and 2, in which the ratio of thin-walled parts is greater than 70%, had a bending elastic modulus of 8300 MPa and a bending strain of 2.5%, similar to Examples 1 to 3, but were samples with no resistance. The numbers were 4 and 9, respectively. In addition, in Comparative Example 3, the ratio of thin wall portions was 50% as in Example 1, but the bending elastic modulus was 11,600 MPa, the bending strain was 2.0%, and the number of samples with no resistance was 7. Ta.
 表2の結果より、曲げ弾性率8300MPa、曲げ歪み2.5%で、薄肉部の比率が50%~70%の場合、小径PPSシールリングであっても、環状溝への組込み時に耐性があることが分かった。また、曲げ弾性率8300MPa、曲げ歪み2.5%であっても、薄肉部の比率が70%よりも大きい場合、小径PPSシールリングは、環状溝への組込み時に耐性が無いことが分かった。このように、シールリングにおいて曲げ特性および薄肉部の比率を好適な範囲で組み合わせることで、環状溝への組込み時の耐性を向上させることができる。 From the results in Table 2, when the bending elastic modulus is 8300 MPa, the bending strain is 2.5%, and the ratio of thin wall parts is 50% to 70%, even a small diameter PPS seal ring has resistance when assembled into an annular groove. That's what I found out. Furthermore, even with a bending modulus of elasticity of 8300 MPa and a bending strain of 2.5%, it was found that the small-diameter PPS seal ring lacks resistance when assembled into an annular groove when the ratio of the thin wall portion is greater than 70%. In this way, by combining the bending characteristics and the ratio of the thin wall portion in a suitable range in the seal ring, it is possible to improve the durability when assembled into the annular groove.
 本発明のシールリングは、小径PPSシールリングであっても環状溝への組込み時の耐性を向上させているため、特に、小型の油圧機器等の環状通路で作動油を密閉するシールリングとして好適に利用できる。また、油圧機器に限らず合い口を有し環状溝に拡径して取り付けるシールリングに好適に利用できる。 The seal ring of the present invention has improved resistance when assembled into an annular groove even if it is a small diameter PPS seal ring, so it is particularly suitable as a seal ring for sealing hydraulic oil in an annular passage of small hydraulic equipment, etc. available for use. Moreover, it can be suitably used not only for hydraulic equipment but also for seal rings having abutment and attached to an annular groove with an enlarged diameter.
 1、11 シールリング
 2 リング外周面
 3 リング内周面
 4 リング側面
 4a 凹部
 5 合い口
 5F 対向部(合い口対向部)
 6 薄肉部
 7 非薄肉部
 71 段差部
 71a 上部湾曲面
 71b 下部湾曲面
 71c 側面
 8 ゲート痕
 12 テーパー治具
1, 11 Seal ring 2 Ring outer circumferential surface 3 Ring inner circumferential surface 4 Ring side surface 4a Recessed portion 5 Abutment 5F Opposing part (Abutment opposing part)
6 Thin wall portion 7 Non-thin wall portion 71 Step portion 71a Upper curved surface 71b Lower curved surface 71c Side surface 8 Gate mark 12 Taper jig

Claims (5)

  1.  一箇所の合い口を有するシールリングであって、
     前記シールリングは、ポリフェニレンサルファイド樹脂組成物の成形体であり、曲げ弾性率が10000MPa以下で、曲げ歪みが2.0%をこえるシールリングであり、前記合い口に対向する位置から両側のそれぞれ離れた領域においてリング内周面側にリングの径方向厚みを薄くする薄肉部を有し、
     前記薄肉部の径方向厚みが、前記合い口に対向する位置の径方向厚みの50%~70%であることを特徴とするシールリング。
    A seal ring having one joint,
    The seal ring is a molded body of a polyphenylene sulfide resin composition, has a bending modulus of elasticity of 10,000 MPa or less, and a bending strain of more than 2.0%. It has a thin part on the inner peripheral surface side of the ring in the area where the ring is thinned in the radial direction,
    A seal ring characterized in that the radial thickness of the thin portion is 50% to 70% of the radial thickness at a position facing the abutment.
  2.  前記シールリングは、曲げ弾性率が8500MPa以下で、曲げ歪みが2.5%以上であることを特徴とする請求項1記載のシールリング。 The seal ring according to claim 1, wherein the seal ring has a bending elastic modulus of 8500 MPa or less and a bending strain of 2.5% or more.
  3.  前記シールリングは、外径がφ30mm以下であることを特徴とする請求項1記載のシールリング。 The seal ring according to claim 1, wherein the seal ring has an outer diameter of 30 mm or less.
  4.  前記シールリングは、射出成形体であり、射出成形時のゲート痕を、前記合い口に対向する位置に有することを特徴とする請求項1記載のシールリング。 2. The seal ring according to claim 1, wherein the seal ring is an injection molded product and has gate marks during injection molding at a position facing the abutment.
  5.  前記シールリングは、外径がφ30mm以下で、曲げ弾性率が8500MPa以下で、曲げ歪みが2.5%以上で、かつ、射出成形体であり、射出成形時のゲート痕を、前記合い口に対向する位置に有することを特徴とする請求項1記載のシールリング。 The seal ring has an outer diameter of 30 mm or less, a bending modulus of elasticity of 8,500 MPa or less, and a bending strain of 2.5% or more, and is an injection molded product, with gate marks from injection molding on the joint. The seal ring according to claim 1, characterized in that the seal rings are provided at opposing positions.
PCT/JP2023/022747 2022-06-21 2023-06-20 Seal ring WO2023249010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-099932 2022-06-21
JP2022099932A JP2024000928A (en) 2022-06-21 2022-06-21 Seal ring

Publications (1)

Publication Number Publication Date
WO2023249010A1 true WO2023249010A1 (en) 2023-12-28

Family

ID=89379998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022747 WO2023249010A1 (en) 2022-06-21 2023-06-20 Seal ring

Country Status (2)

Country Link
JP (1) JP2024000928A (en)
WO (1) WO2023249010A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004353760A (en) * 2003-05-29 2004-12-16 Ntn Corp Sealing ring made of resin
JP2009085391A (en) * 2007-10-02 2009-04-23 Nok Corp Seal ring
JP2019168012A (en) * 2018-03-22 2019-10-03 Ntn株式会社 Seal ring
JP2020051555A (en) * 2018-09-27 2020-04-02 Ntn株式会社 Seal ring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004353760A (en) * 2003-05-29 2004-12-16 Ntn Corp Sealing ring made of resin
JP2009085391A (en) * 2007-10-02 2009-04-23 Nok Corp Seal ring
JP2019168012A (en) * 2018-03-22 2019-10-03 Ntn株式会社 Seal ring
JP2020051555A (en) * 2018-09-27 2020-04-02 Ntn株式会社 Seal ring

Also Published As

Publication number Publication date
JP2024000928A (en) 2024-01-09

Similar Documents

Publication Publication Date Title
JP7189989B2 (en) Seal ring
JP6483989B2 (en) Seal ring
JP6386814B2 (en) Seal ring
KR20130098383A (en) Composite slide bearing
JP4215785B2 (en) Manufacturing method of composite step cut type seal ring made of synthetic resin
JP2013155846A (en) Seal ring
JPH1061777A (en) Synthetic resin-made seal ring
JP7405599B2 (en) Seals for flow control valves and flow control valve devices
JPH0875007A (en) Seal ring of synthetic resin
WO2023249010A1 (en) Seal ring
JP2024028254A (en) Manufacturing method for seals for flow control valves
WO2015064059A1 (en) Sealing material and sealing structure using same
JP6109537B2 (en) Electric oil pump seal structure
JP4251860B2 (en) Seal ring
JPH0989111A (en) Synthetic resin made seal ring
JP2875773B2 (en) Oil seal ring made of synthetic resin
JP2008111477A (en) Seal ring
JPH02190677A (en) Valve device for faucet
JP2020051555A (en) Seal ring
JP3894752B2 (en) Synthetic resin seal ring
JP2005307090A (en) Resin composition for oil-submerged sliding member, oil-submerged sliding member and seal ring
JP6783273B2 (en) Seal ring
JP2015218205A (en) Backup ring, and sealing material and seal structure prepared using the same
KR20010024429A (en) Sliding key and continuously variable transmission
JPH1078112A (en) Power transmitting member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827193

Country of ref document: EP

Kind code of ref document: A1