WO2023248995A1 - Cleaning method and cleaning device - Google Patents

Cleaning method and cleaning device Download PDF

Info

Publication number
WO2023248995A1
WO2023248995A1 PCT/JP2023/022674 JP2023022674W WO2023248995A1 WO 2023248995 A1 WO2023248995 A1 WO 2023248995A1 JP 2023022674 W JP2023022674 W JP 2023022674W WO 2023248995 A1 WO2023248995 A1 WO 2023248995A1
Authority
WO
WIPO (PCT)
Prior art keywords
humidity control
cleaning
humidity
control material
cleaning device
Prior art date
Application number
PCT/JP2023/022674
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 井出
豪 鎌田
奨 越智
恭子 松浦
洋香 濱田
勇佑 清水
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2023248995A1 publication Critical patent/WO2023248995A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents

Definitions

  • the present disclosure relates to a cleaning method and a cleaning device for cleaning particle dirt attached to a humidity control material.
  • Patent Document 1 discloses a method for producing a silver-based antibacterial agent, and discloses washing with aqueous ammonia to remove nitrate ions and silver nitrate remaining on the surface.
  • the present disclosure provides a cleaning method and a cleaning device that are capable of cleaning particle dirt attached to a humidity control material.
  • a cleaning method for cleaning particle stains attached to a humidity control material the method using a second humidity control liquid having a lower equilibrium humidity than a first humidity control liquid included in the humidity control material.
  • the method is characterized by having a cleaning step of cleaning with water.
  • FIG. 1 is a process diagram schematically showing a cleaning method according to the present disclosure.
  • FIG. 2 is a cross-sectional view schematically showing the humidity control material.
  • FIG. 3 is a diagram schematically showing a humidity control material.
  • FIG. 4 is a cross-sectional view schematically showing the humidity control material.
  • FIG. 5 is a cross-sectional view schematically showing the humidity control material.
  • FIG. 6 is a diagram showing equilibrium humidity with respect to temperature and absolute humidity.
  • FIG. 7 is a diagram showing the humidity when heat and water vapor from the outside air are absorbed by the total heat exchanger.
  • FIG. 8 is a diagram showing the humidity when heat and water vapor from the outside air are absorbed by the total heat exchanger.
  • FIG. 9 is a schematic diagram of a cleaning device according to the present disclosure.
  • FIG. 1 is a process diagram schematically showing a cleaning method according to the present disclosure.
  • the cleaning method according to the present disclosure is a method for cleaning particle dirt attached to a humidity control material, and includes a cleaning step S10.
  • the humidity control material Since the cleaning method according to the present disclosure cleans dirt from particles attached to the humidity control material, the humidity control material will be explained first.
  • Humidity control materials regulate the amount of moisture contained in the air. Furthermore, the humidity control material has the property of absorbing moisture when the surrounding humidity is relatively high with respect to the equilibrium humidity, and releasing moisture when the surrounding area becomes dry. Unlike desiccant agents such as A-type silica gel and zeolite, they repeatedly absorb and release moisture, so in principle, as long as the balance between the two is maintained within the range of not exceeding the maximum amount of water vapor that can be retained, Effective semi-permanently. The structure of the humidity control material will be explained in detail below.
  • FIG. 2 is a cross-sectional view schematically showing the humidity control material 1.
  • the cleaning method according to the present disclosure cleans particle stains X attached to the humidity control material 1 as shown in FIG.
  • the humidity control material 1 includes a water absorbing material 2 containing a resin and/or a clay mineral, and a humidity control liquid 3, which is a humidity control component that absorbs or releases moisture and has a humidity control function.
  • the moisture control liquid 3 is impregnated into the water absorbing material 2.
  • the humidity control material 1 absorbs and absorbs moisture contained in the air at that location, or releases moisture contained in the humidity control material 1 into the air for humidification.
  • the humidity control liquid 3 may be impregnated not only in the water absorbent material 2 but also in the carrier 5 that supports the humidity control material 1 (water absorbent material 2).
  • the carrier 5 will be described later.
  • the shape of the humidity control material 1 may be powder, particulate, or block, or it may be used by supporting the resin on a ventilation base material so that it can be brought into efficient contact with air.
  • the water absorbing material 2 has a function of holding the humidity control liquid 3. Since the water-absorbing material 2 holds the humidity control liquid 3, it is possible to realize the humidity control material 1 having a high ratio of surface area to volume. Therefore, the rate of moisture absorption or release can be increased. Therefore, the humidity control material 1 can have a high humidity control speed.
  • the water-absorbing material 2 is used for the first humidity control liquid included in the humidity control material 1 and the second humidity control liquid that is a cleaning liquid for cleaning the humidity control material 1 in the cleaning method according to the present disclosure.
  • the water-absorbing material 2 is preferably a water-absorbing resin (particles, powder). In this way, the water-absorbing material 2 can be suitably impregnated with the humidity control liquid 3, and the humidity control effect can be further enhanced.
  • the water-absorbing resin material ionic resins and nonionic resins are preferred.
  • the ionic resin include alkali metal salts of polyacrylic acid, starch-acrylate graft polymers, and the like.
  • alkali metal salts of polyacrylic acid include sodium polyacrylate.
  • the nonionic resin include vinyl acetate copolymer, maleic anhydride copolymer, polyvinyl alcohol, polyalkylene oxide, and the like.
  • the humidity conditioning liquid 3 preferably contains at least one selected from the group consisting of a deliquescent substance that absorbs moisture in the air and deliquesces, and a polyhydric alcohol. In this way, the humidity control effect can be further enhanced.
  • polyhydric alcohols include at least one selected from the group consisting of glycerin, propanediol, butanediol, pentanediol, trimethylolpropane, butanetriol, ethylene glycol, diethylene glycol, triethylene glycol, and lactic acid.
  • polyhydric alcohols having three or more hydroxyl groups such as glycerin are more preferably used.
  • the polyhydric alcohol may constitute a dimer or a polymer.
  • Deliquescent substances are classified into salts and water-soluble organic substances.
  • Specific examples of salts include sodium formate, potassium formate, ammonium formate, sodium acetate, potassium acetate, lithium acetate, ammonium acetate, sodium lactate, potassium lactate, sodium benzoate, potassium benzoate, sodium propionate, propionic acid.
  • Potassium calcium chloride, lithium chloride, magnesium chloride, calcium chloride, lithium chloride, potassium chloride, sodium chloride, zinc chloride, aluminum chloride, lithium bromide, calcium bromide, potassium bromide, sodium hydroxide, sodium pyrrolidone carboxylate
  • Examples include potassium carbonate, calcium citrate, sodium citrate, potassium citrate, lithium citrate, and the like.
  • salts only one type may be included, or two or more types may be included.
  • preferred are sodium formate, potassium formate, sodium acetate, potassium acetate, and potassium carbonate, which absorb and desorb a large amount of moisture per weight.
  • water-soluble organic substances include sugars such as sucrose, pullulan, glucose, xylol, fructose, mannitol, and sorbitol, carboxylic acids such as citric acid, and amides such as urea.
  • the amount of humidity conditioning liquid 3 relative to the water-absorbing material 2 is preferably 1 part by weight or more and 1000 parts by weight or less based on 100 parts by weight of the water-absorbing material. In this way, the amounts of the water absorbing material 2 and the humidity control liquid 3 will be appropriate, and the humidity control function can be further enhanced. Moreover, it is preferable that the water-absorbing material 2 is in the form of powder or particles.
  • FIG. 3 is a diagram schematically showing the humidity control material. As shown in FIG. 3, the humidity control material 1 may be supported on a carrier 5.
  • FIG. 4 is a diagram schematically showing another form of the humidity control material 1, and is a cross-sectional view of a sheet in which a binder (carrier 5) is disposed between water absorbers 4 and a humidity control material 1 is dispersed in the binder.
  • the humidity control material 1 water absorbing material 2
  • the water absorbent body 4 may include the water absorbing material 2.
  • a humidity control liquid 3 may be contained between the water-absorbing material 2 and the water-absorbing material 2. In this way, a humidity control material 1 having a high ratio of surface area to volume can be realized, and the rate of moisture absorption or release can be increased.
  • the carrier 5 can also be impregnated with water.
  • the carrier 5 supporting the humidity control material 1 is selected optimally depending on the application. If heat transfer is involved, such as in a total heat exchanger, it is preferable to use a metal material such as aluminum.If you want to increase the moisture absorption and release capacity for humidity control, use humidity control liquid 3. Materials that retain moisture are preferred. In the latter case, it is made of, for example, a porous material, a nonwoven fabric, a woven fabric, or other hydrophilic fiber. In particular, nonwoven fabrics with high water vapor permeability are preferred. Moreover, the carrier 5 can also contain a binder.
  • the shape of the carrier 5 is a sheet, and it may be formed into various shapes such as a flat plate, pleated shape, or honeycomb shape.
  • a sheet material is first formed into a corrugated (flute) shape using a corrugator, and then fixed with an adhesive and integrated with a flat liner made of the same or different material as the sheet. be done.
  • the carrier 5 may have flexibility.
  • the carrier 5 may be deformable. In other words, it may be possible to hold it in any shape (bent shape, curved shape, etc.).
  • FIG. 5 is a cross-sectional view schematically showing the humidity control material 1.
  • the humidity control material 1 may be supported on a carrier 5 and held on the water absorbent body 4, and may be provided in a total heat exchanger or an element (holding section 50), which will be described later. In this way, the amount of contact with air is increased, and the humidity control function can be improved.
  • the water absorbent body 4 may include the water absorbent material 2. Further, the water absorbent body 4 may be in the form of powder, particles, or sheet.
  • the humidity control material 1 may also be made of B-type silica gel, polymer sorbent, or the like.
  • humidity control means adjusting the relative humidity so that it approaches a predetermined humidity range. Specifically, for example, assuming that 50% RH is a predetermined relative humidity, when the relative humidity is higher than 50% RH, the humidity control material 1 absorbs moisture (moisture absorption), and when the relative humidity is higher than 50% RH. When the humidity is low, the humidity control material 1 releases moisture (releases moisture).
  • the predetermined relative humidity range correlates with the material and moisture content of the humidity control material 1. Specifically, for example, the predetermined relative humidity range correlates with the water content in the humidity control liquid.
  • the cleaning method according to the present disclosure will be explained in detail.
  • particle dirt X adhering to the humidity control material 1 is cleaned.
  • the dirt X is dust, sand, sand dust, dust, salt, and the like.
  • cleaning is performed using a humidity conditioning liquid whose equilibrium humidity is lower than that contained in the above-mentioned humidity conditioning material.
  • the humidity control liquid contained in the humidity control material will be referred to as a first humidity control liquid
  • the humidity control liquid whose equilibrium humidity is lower than that of the first humidity control liquid will be referred to as a second humidity control liquid.
  • cleaning is performed using a second humidity control liquid whose equilibrium humidity is lower than that of the first humidity control liquid contained in the humidity control material.
  • the above-mentioned humidity control liquid is used as the first humidity control liquid and the second humidity control liquid.
  • the first humidity control liquid has a higher equilibrium humidity than the second humidity control liquid.
  • the second humidity control liquid is a humidity control liquid whose equilibrium humidity is lower than that of the first humidity control liquid.
  • the humidity control function of the humidity control material can be restored to its original state.
  • heating is performed to restore the humidity control function of the humidity control material, but when the humidity control material is heated, the equilibrium humidity of the humidity control material does not drop suddenly but gradually. . In other words, it takes time to restore the humidity control function of the humidity control material to its original state by heating or the like. Therefore, by going through the cleaning step S10, the humidity control function of the humidity control material can be restored to its original state without adding a process such as heating and taking time.
  • the humidity control material is in the form of a gel.
  • the humidity conditioning liquid (first humidity conditioning liquid) of the humidity conditioning material is more strongly retained, so that it can be further prevented from being eluted into the cleaning water (second humidity conditioning liquid).
  • FIG. 6 is a diagram showing equilibrium humidity with respect to temperature and absolute humidity.
  • the absolute humidity differs depending on the temperature, for example, the equilibrium humidity differs in summer and winter, and depending on the conditions, humidity control components may be eluted into the washing water. Therefore, the equilibrium humidity of the second humidity control liquid is preferably 50% RH or less. In this way, it is possible to further suppress the humidity control component from being eluted into the washing water, and to more reliably wash away particle stains adhering to the humidity control material.
  • the cleaning step S10 it is preferable to use ultrasonic waves at a frequency that dirt particles can follow and to clean the humidity conditioning material using the filtered second humidity conditioning liquid.
  • ultrasonic waves with a frequency that can be tracked by dirt particles, dirt can be more reliably cleaned, and if the humidity control material is washed with the filtered second humidity control liquid, dirt will not be reattached. It is possible to wash with a cleaning solution that causes less dirt without causing any stains, and it is possible to wash efficiently.
  • the humidity control material is in the form of a gel
  • the cleaning method according to the present disclosure preferably further includes a removal step S20.
  • the removal step S20 removes the second humidity control liquid remaining in the holding part 50 that holds the humidity control material after the cleaning step S10.
  • the humidity control material 1 is supported on a carrier 5 as shown in FIGS. 3, 4, and 5, or is further supported by an element or a total heat exchanger to be described later. Therefore, in the removal step S20, the second humidity control liquid remaining thereon is removed by blowing with air or applying vibration.
  • the operating air volume is preferably at a level that does not cause carryover.
  • the cleaning method according to the present disclosure preferably further includes a recovery step S30.
  • a recovery step S30 surplus water in the humidity control material is collected after cleaning the humidity control material. Surplus water is moisture absorbed (moisture absorbed) by the humidity control material.
  • the cleaning method according to the present disclosure preferably further includes a regeneration step S40.
  • the regeneration step S40 regenerates the humidity control material.
  • the regeneration step S40 is performed by lowering the relative humidity of the surrounding air below the equilibrium humidity of the humidity control material. For example, this is carried out by ventilating dry air or heated air through a humidity control material, an element, or a total heat exchanger to be described later, or by reducing the pressure.
  • cleaning step S10, the recovery step S30, and the regeneration step S40 are shown as separate steps in FIG. 1, these steps may be performed simultaneously.
  • the humidity control material is retained by a total heat exchanger.
  • a total heat exchanger is an energy-saving device that exchanges and recovers all the heat of air conditioning energy lost through ventilation.
  • silica gel and zeolite have been used as substances held in the total heat exchanger, but in the cleaning method of the present disclosure, a humidity control material is used.
  • FIG. 7 is a diagram showing the humidity when heat and water vapor from the outside air are absorbed by the total heat exchanger.
  • FIG. 8 is a diagram showing the humidity when heat and water vapor from the outside air are absorbed by the total heat exchanger. Both figures are examples from summer. As shown in Figure 7, when air is sent indoors from outdoors, the humidity control material held in the total heat exchanger absorbs the heat and water vapor from the outside air, and sends air indoors that is lower in temperature and humidity than outdoors. be able to.
  • the total heat exchanger also requires heat capacity control, it is preferable to consider the influence of cleaning when a latent heat storage material (heat storage material) is also provided. If the latent heat storage material is a capsule or a water-insoluble gel, there is no effect because the latent heat storage material is covered with a capsule. On the other hand, if the latent heat storage material is a water-soluble gel (thermal storage gel), it is necessary to consider the diffusion of the humidity control component, and in the cleaning step S10, it is necessary to wash at a temperature below the temperature at which the latent heat storage material solidifies.
  • a latent heat storage material heat storage material
  • the cleaning device 100 according to the present disclosure is a device that cleans particle dirt attached to a humidity control material. As shown in FIG. 9, a cleaning device 100 according to the present disclosure includes a storage section 9 and a cleaning section 10.
  • the storage section 9 stores a second humidity control liquid that has a lower equilibrium humidity than the first humidity control liquid contained in the humidity control material.
  • the first humidity control liquid and the second humidity control liquid are as described above.
  • the storage section 9 may be a tank or the like, but is not limited to these as long as it can store the second humidity control liquid.
  • the cleaning device 100 further includes a collection unit 30 that collects surplus water from the humidity control material after cleaning the humidity control material.
  • the collection unit 30 may be a container, a tank, or the like that can store surplus water, but is not limited to these as long as it can store surplus water.
  • the recovery step S30 described above is performed.
  • the cleaning device 100 further includes a regeneration unit 40 that regenerates the humidity control material.
  • the regeneration unit 40 include a compressor for ventilating dry air or heated air, a blower, a heater, a pressure reducer for reducing the pressure, etc., but if the relative humidity of the surrounding air can be lowered from the equilibrium humidity of the humidity control material, any of these may be used. but not limited to.
  • the reproducing unit 40 the above-described reproducing step S40 is performed.
  • the cleaning device 100 further includes a removing section 20 that removes the second humidity conditioning liquid remaining in the holding section 50 that holds the humidity conditioning material when cleaning the humidity conditioning material.
  • the removal unit 20 may be an air blower, but is not limited to these as long as it can remove the second humidity control liquid remaining in the holding unit 50 that holds the humidity control material.
  • Examples of the holding section 50 include a total heat exchanger and an element. In the removal section 20, the above-mentioned removal step S20 is performed.
  • the cleaning device 100 includes a filtration unit 60 that filters the second humidity conditioning liquid, and an ultrasonic cleaning unit that cleans the humidity conditioning material with ultrasonic waves whose amplitude is smaller than the particle size of dirt particles. It is preferable to further include 70.
  • the filtration unit 60 may include a filtration device, but is not limited to these as long as it can perform filtration.
  • the ultrasonic cleaning section 70 may be an ultrasonic device equipped with a vibrator. Further, the cleaning liquid filtered by the filtering section 60 may be put into the storage section 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Gases (AREA)

Abstract

The present disclosure provides a cleaning method and a cleaning device that enable cleaning of soiling particles adhered to a humidity adjusting member. The present disclosure is a cleaning method for cleaning soiling particles adhered to a humidity adjusting member, the method being characterized by including a cleaning step for cleaning using a second humidity adjusting liquid that has a lower equilibrium humidity than a first humidity adjusting liquid contained in the humidity adjusting member.

Description

洗浄方法及び洗浄装置Cleaning method and cleaning equipment
 本開示は、調湿材に付着した粒子の汚れを洗浄する洗浄方法及び洗浄装置に関する。本出願は、2022年6月23日に日本に出願された特願2022-100740号に優先権を主張し、その内容をここに援用する。 The present disclosure relates to a cleaning method and a cleaning device for cleaning particle dirt attached to a humidity control material. This application claims priority to Japanese Patent Application No. 2022-100740 filed in Japan on June 23, 2022, the contents of which are incorporated herein.
 従来から様々な洗浄方法が開示されている。 Various cleaning methods have been disclosed in the past.
 例えば、特許文献1では、銀系抗菌剤の製造方法が開示され、表面に残留した硝酸イオン、硝酸銀を除去するためにアンモニア水で洗浄することが開示されている。 For example, Patent Document 1 discloses a method for producing a silver-based antibacterial agent, and discloses washing with aqueous ammonia to remove nitrate ions and silver nitrate remaining on the surface.
特許第4203572号公報Patent No. 4203572
 しかしながら、水分を放出又は吸収する調湿材のような材料は、水に浸漬すると内部と外部との濃度差から、吸湿成分である塩が水の方に溶出してしまう。そのため、湿式による洗浄を行うことが出来なかった。エアーブロー等による乾式の洗浄では、微細な粒子を除去することが難しく、湿式による洗浄が必要とされていた。 However, when a material such as a humidity control material that releases or absorbs moisture is immersed in water, salt, which is a hygroscopic component, will be eluted into the water due to the difference in concentration between the inside and outside. Therefore, wet cleaning could not be performed. Dry cleaning using air blowing or the like makes it difficult to remove fine particles, so wet cleaning is required.
 本開示は上記問題に鑑み、調湿材に付着した粒子の汚れを洗浄可能な洗浄方法及び洗浄装置を提供する。 In view of the above problems, the present disclosure provides a cleaning method and a cleaning device that are capable of cleaning particle dirt attached to a humidity control material.
 本開示の一態様では、調湿材に付着した粒子の汚れを洗浄する洗浄方法であって、前記調湿材に含まれる第1調湿液よりも平衡湿度が低い第2調湿液を用いて洗浄する洗浄工程を、有することを特徴とする。 In one aspect of the present disclosure, there is provided a cleaning method for cleaning particle stains attached to a humidity control material, the method using a second humidity control liquid having a lower equilibrium humidity than a first humidity control liquid included in the humidity control material. The method is characterized by having a cleaning step of cleaning with water.
 以上説明したように本開示によれば、調湿材に付着した粒子の汚れを洗浄可能な洗浄方法及び洗浄装置を提供することができる。 As explained above, according to the present disclosure, it is possible to provide a cleaning method and a cleaning device that are capable of cleaning particle dirt attached to a humidity control material.
図1は、本開示に係る洗浄方法の概略を示す工程図である。FIG. 1 is a process diagram schematically showing a cleaning method according to the present disclosure. 図2は、調湿材を模式的に示した断面図である。FIG. 2 is a cross-sectional view schematically showing the humidity control material. 図3は、調湿材を模式的に示した図である。FIG. 3 is a diagram schematically showing a humidity control material. 図4は、調湿材を模式的に示した断面図である。FIG. 4 is a cross-sectional view schematically showing the humidity control material. 図5は、調湿材を模式的に示した断面図である。FIG. 5 is a cross-sectional view schematically showing the humidity control material. 図6は、温度と絶対湿度に対する平衡湿度を示した図である。FIG. 6 is a diagram showing equilibrium humidity with respect to temperature and absolute humidity. 図7は、全熱交換器で外気の熱及び水蒸気を吸収したときの湿度を表した図である。FIG. 7 is a diagram showing the humidity when heat and water vapor from the outside air are absorbed by the total heat exchanger. 図8は、全熱交換器で外気の熱及び水蒸気を吸収したときの湿度を表した図である。FIG. 8 is a diagram showing the humidity when heat and water vapor from the outside air are absorbed by the total heat exchanger. 図9は、本開示に係る洗浄装置の概略図である。FIG. 9 is a schematic diagram of a cleaning device according to the present disclosure.
 以下、図面を参照して、本開示の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本開示の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本開示の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the drawings. Note that this embodiment described below does not unduly limit the content of the present disclosure described in the claims, and all of the configurations described in this embodiment are essential as a solution to the present disclosure. Not necessarily.
[洗浄方法]
 図1は、本開示に係る洗浄方法の概略を示す工程図である。図1に示すように本開示に係る洗浄方法は、調湿材に付着した粒子の汚れを洗浄する方法であって、洗浄工程S10を有する。
[Cleaning method]
FIG. 1 is a process diagram schematically showing a cleaning method according to the present disclosure. As shown in FIG. 1, the cleaning method according to the present disclosure is a method for cleaning particle dirt attached to a humidity control material, and includes a cleaning step S10.
 本開示に係る洗浄方法は、調湿材に付着した粒子の汚れを洗浄するため、まず調湿材について説明する。調湿材は、空気中に含まれる水分の量を調節する。また、調湿材は、平衡湿度に対し、周りの湿度が相対的に高いときに吸湿し、反対に周りが乾燥してくると放湿する特性をもつ。A型シリカゲルやゼオライトに代表されるような乾燥剤と違い、繰り返し吸放湿を行うので、保持できる最大の水蒸気量を超えない範囲で、両者の収支バランスが取れていれば、原理的には半永久に効果がある。以下に調湿材の構成について詳述する。 Since the cleaning method according to the present disclosure cleans dirt from particles attached to the humidity control material, the humidity control material will be explained first. Humidity control materials regulate the amount of moisture contained in the air. Furthermore, the humidity control material has the property of absorbing moisture when the surrounding humidity is relatively high with respect to the equilibrium humidity, and releasing moisture when the surrounding area becomes dry. Unlike desiccant agents such as A-type silica gel and zeolite, they repeatedly absorb and release moisture, so in principle, as long as the balance between the two is maintained within the range of not exceeding the maximum amount of water vapor that can be retained, Effective semi-permanently. The structure of the humidity control material will be explained in detail below.
 図2は、調湿材1を模式的に示した断面図である。本開示に係る洗浄方法は、図2に示すような調湿材1に付着した粒子の汚れXを洗浄する。調湿材1は、図2に示すように、樹脂及び/又は粘土鉱物を含む吸水材2と、水分を吸湿又は放出し調湿機能を有する調湿成分である調湿液3と、を含む。調湿液3は、吸水材2に含浸されている。調湿材1は、置かれた環境の湿度に応じて、その場所の空気に含まれる水分を吸収して吸湿、又は調湿材1に含まれる水分を空気中に放出して加湿する。なお、調湿液3は、吸水材2のみならず、調湿材1(吸水材2)を担持する担持体5に含浸されていてもよい。担持体5については、後述する。 FIG. 2 is a cross-sectional view schematically showing the humidity control material 1. The cleaning method according to the present disclosure cleans particle stains X attached to the humidity control material 1 as shown in FIG. As shown in FIG. 2, the humidity control material 1 includes a water absorbing material 2 containing a resin and/or a clay mineral, and a humidity control liquid 3, which is a humidity control component that absorbs or releases moisture and has a humidity control function. . The moisture control liquid 3 is impregnated into the water absorbing material 2. Depending on the humidity of the environment in which it is placed, the humidity control material 1 absorbs and absorbs moisture contained in the air at that location, or releases moisture contained in the humidity control material 1 into the air for humidification. Note that the humidity control liquid 3 may be impregnated not only in the water absorbent material 2 but also in the carrier 5 that supports the humidity control material 1 (water absorbent material 2). The carrier 5 will be described later.
 調湿材1の形状としては、粉末状、粒子状、ブロック状にしてもよいし、樹脂を通気基材に担持させることで効率的に空気と接触させて使用してもよい。 The shape of the humidity control material 1 may be powder, particulate, or block, or it may be used by supporting the resin on a ventilation base material so that it can be brought into efficient contact with air.
 吸水材2は、調湿液3を保持する機能を有する。吸水材2が調湿液3を保持しているため、体積に対する表面積の割合が高い調湿材1を実現することができる。よって、水分の吸収又は放出の速度を高くし得る。従って、高い調湿速度を有する調湿材1とすることができる。 The water absorbing material 2 has a function of holding the humidity control liquid 3. Since the water-absorbing material 2 holds the humidity control liquid 3, it is possible to realize the humidity control material 1 having a high ratio of surface area to volume. Therefore, the rate of moisture absorption or release can be increased. Therefore, the humidity control material 1 can have a high humidity control speed.
 吸水材2は、本開示に係る洗浄方法における調湿材1に含まれる第1調湿液、及び調湿材1を洗浄する洗浄液である第2調湿液に用いられる。 The water-absorbing material 2 is used for the first humidity control liquid included in the humidity control material 1 and the second humidity control liquid that is a cleaning liquid for cleaning the humidity control material 1 in the cleaning method according to the present disclosure.
 吸水材2は、吸水性樹脂(粒子、粉末)であることが好ましい。このようにすれば、吸水材2が調湿液3を好適に含浸することができ、調湿効果をより高めることができる。吸水性樹脂材の具体例としては、イオン性樹脂、非イオン性樹脂が好ましい。イオン性樹脂としては、ポリアクリル酸のアルカリ金属塩、デンプン-アクリル酸塩グラフトポリマー等があげられる。ポリアクリル酸のアルカリ金属塩の具体例としては、ポリアクリル酸ナトリウム等が挙げられる。非イオン性樹脂としては、酢酸ビニル共重合体、無水マレイン酸共重合体、ポリビニルアルコール、ポリアルキレンオキサイド等が挙げられる。 The water-absorbing material 2 is preferably a water-absorbing resin (particles, powder). In this way, the water-absorbing material 2 can be suitably impregnated with the humidity control liquid 3, and the humidity control effect can be further enhanced. As specific examples of the water-absorbing resin material, ionic resins and nonionic resins are preferred. Examples of the ionic resin include alkali metal salts of polyacrylic acid, starch-acrylate graft polymers, and the like. Specific examples of alkali metal salts of polyacrylic acid include sodium polyacrylate. Examples of the nonionic resin include vinyl acetate copolymer, maleic anhydride copolymer, polyvinyl alcohol, polyalkylene oxide, and the like.
 調湿液3としては、空気中の水分を吸収し、潮解する潮解性物質及び多価アルコールからなる群より選択される少なくとも1種を含むことが好ましい。このようにすれば、調湿効果をより高めることができる。 The humidity conditioning liquid 3 preferably contains at least one selected from the group consisting of a deliquescent substance that absorbs moisture in the air and deliquesces, and a polyhydric alcohol. In this way, the humidity control effect can be further enhanced.
 多価アルコールの具体例としては、グリセリン、プロパンジオール、ブタンジオール、ペンタンジオール、トリメチロールプロパン、ブタントリオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、及び乳酸等からなる群より選択される少なくとも一種を含み、なかでも、グリセリン等の水酸基を3つ以上有する多価アルコールがより好ましく用いられる。なお、多価アルコールは、二量体または重合体を構成していてもよい。 Specific examples of polyhydric alcohols include at least one selected from the group consisting of glycerin, propanediol, butanediol, pentanediol, trimethylolpropane, butanetriol, ethylene glycol, diethylene glycol, triethylene glycol, and lactic acid. Among them, polyhydric alcohols having three or more hydroxyl groups such as glycerin are more preferably used. Note that the polyhydric alcohol may constitute a dimer or a polymer.
 潮解性物質としては、塩類と水溶性有機物に分類される。塩類の具体例としては、例えば、ギ酸ナトリウム、ギ酸カリウム、ギ酸アンモニウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸アンモニウム、乳酸ナトリウム、乳酸カリウム、安息香酸ナトリウム、安息香酸カリウム、プロピオン酸ナトリウム、プロピオン酸カリウム、塩化カルシウム、塩化リチウム、塩化マグネシウム、塩化カルシウム、塩化リチウム、塩化カリウム、塩化ナトリウム、塩化亜鉛、塩化アルミニウム、臭化リチウム、臭化カルシウム、臭化カリウム、水酸化ナトリウム、ピロリドンカルボン酸ナトリウム、炭酸カリウム、クエン酸カルシウム、クエン酸ナトリウム、クエン酸カリウム、クエン酸リチウム等が挙げられる。これらの塩のうち、1種のみを含んでいてもよいし、2種以上を含んでいてもよい。これらの中でも、重量あたりの吸放湿する水分量の多い、ギ酸ナトリウム、ギ酸カリウム、酢酸ナトリウム、酢酸カリウム、炭酸カリウムが好ましい。水溶性有機物の具体例としては、例えば、スクロース、プルラン、グルコース、キシロール、フラクトース、マンニトール、ソルビトール等の糖類、クエン酸などのカルボン酸、尿素などのアミド類が挙げられる。 Deliquescent substances are classified into salts and water-soluble organic substances. Specific examples of salts include sodium formate, potassium formate, ammonium formate, sodium acetate, potassium acetate, lithium acetate, ammonium acetate, sodium lactate, potassium lactate, sodium benzoate, potassium benzoate, sodium propionate, propionic acid. Potassium, calcium chloride, lithium chloride, magnesium chloride, calcium chloride, lithium chloride, potassium chloride, sodium chloride, zinc chloride, aluminum chloride, lithium bromide, calcium bromide, potassium bromide, sodium hydroxide, sodium pyrrolidone carboxylate, Examples include potassium carbonate, calcium citrate, sodium citrate, potassium citrate, lithium citrate, and the like. Among these salts, only one type may be included, or two or more types may be included. Among these, preferred are sodium formate, potassium formate, sodium acetate, potassium acetate, and potassium carbonate, which absorb and desorb a large amount of moisture per weight. Specific examples of water-soluble organic substances include sugars such as sucrose, pullulan, glucose, xylol, fructose, mannitol, and sorbitol, carboxylic acids such as citric acid, and amides such as urea.
 吸水材2に対する調湿液3の量は、吸水材100重量部に対して、1重量部以上1000重量部以下であることが好ましい。このようにすれば、吸水材2と調湿液3の量が適切となり、より調湿機能を高めることができる。また、吸水材2は、粉末状又は粒子状であることが好ましい。 The amount of humidity conditioning liquid 3 relative to the water-absorbing material 2 is preferably 1 part by weight or more and 1000 parts by weight or less based on 100 parts by weight of the water-absorbing material. In this way, the amounts of the water absorbing material 2 and the humidity control liquid 3 will be appropriate, and the humidity control function can be further enhanced. Moreover, it is preferable that the water-absorbing material 2 is in the form of powder or particles.
 図3は、調湿材を模式的に示した図である。図3に示すように、調湿材1は、担持体5に担持されてもよい。 FIG. 3 is a diagram schematically showing the humidity control material. As shown in FIG. 3, the humidity control material 1 may be supported on a carrier 5.
 図4は、調湿材1の別形態を模式的に示した図であり、吸水体4の間にバインダ(担持体5)、バインダ中に調湿材1を分散させたシートの断面図である。図4に示すように、調湿材1(吸水材2)は、担持体5に担持されてもよい。また、吸水体4は吸水材2を含んでよい。さらに、吸水材2との間に調湿液3を内在させてもよい。このようにすれば、体積に対する表面積の割合が高い調湿材1を実現することができ、水分の吸収又は放出の速度を速くし得る。また、担持体5に水分を含浸させることもできる。 FIG. 4 is a diagram schematically showing another form of the humidity control material 1, and is a cross-sectional view of a sheet in which a binder (carrier 5) is disposed between water absorbers 4 and a humidity control material 1 is dispersed in the binder. be. As shown in FIG. 4, the humidity control material 1 (water absorbing material 2) may be supported on a carrier 5. Further, the water absorbent body 4 may include the water absorbing material 2. Furthermore, a humidity control liquid 3 may be contained between the water-absorbing material 2 and the water-absorbing material 2. In this way, a humidity control material 1 having a high ratio of surface area to volume can be realized, and the rate of moisture absorption or release can be increased. Further, the carrier 5 can also be impregnated with water.
 また、調湿材1を担持する担持体5は、用途によって最適なものを選択することが好ましい。全熱交換器のように、熱の移動を伴う場合は、アルミのような金属材料であることが好ましく、湿度制御が目的で吸放湿の容量を大きく取りたい場合は、調湿液3を湿潤して保持する素材が好ましい。後者の場合、例えば、多孔質体、不織布、織布などの親水性繊維からなる。特に、水蒸気透過性の高い不織布のようなものが好ましい。また、担持体5は、バインダを含むこともできる。 Further, it is preferable that the carrier 5 supporting the humidity control material 1 is selected optimally depending on the application. If heat transfer is involved, such as in a total heat exchanger, it is preferable to use a metal material such as aluminum.If you want to increase the moisture absorption and release capacity for humidity control, use humidity control liquid 3. Materials that retain moisture are preferred. In the latter case, it is made of, for example, a porous material, a nonwoven fabric, a woven fabric, or other hydrophilic fiber. In particular, nonwoven fabrics with high water vapor permeability are preferred. Moreover, the carrier 5 can also contain a binder.
 担持体5の形状としては、シート状であり、平板状あるいはプリーツ状あるいは、ハニカム状等の種々の形状に成形されて使用されてもよい。例えば、シート状材料は、まずコルゲーターにより、波形(フルート)等の形状に成形され、次に、このシートと同一或いは異種の材料からなる、平板状のライナーと、接着剤により固着され、一体化される。また、担持体5は、可撓性を持ってもよい。担持体5は、変形可能であってもよい。換言すれば、任意の形状(折れ曲がり形状や、湾曲形状等)に保持可能であってもよい。 The shape of the carrier 5 is a sheet, and it may be formed into various shapes such as a flat plate, pleated shape, or honeycomb shape. For example, a sheet material is first formed into a corrugated (flute) shape using a corrugator, and then fixed with an adhesive and integrated with a flat liner made of the same or different material as the sheet. be done. Furthermore, the carrier 5 may have flexibility. The carrier 5 may be deformable. In other words, it may be possible to hold it in any shape (bent shape, curved shape, etc.).
 図5は、調湿材1を模式的に示した断面図である。図5に示すように、調湿材1を担持体5に担持させ吸水体4に保持し、後述する全熱交換器やエレメント(保持部50)に備えてもよい。このようにすれば、空気と触れる面接が増加し、調湿機能を向上させることができる。 FIG. 5 is a cross-sectional view schematically showing the humidity control material 1. As shown in FIG. 5, the humidity control material 1 may be supported on a carrier 5 and held on the water absorbent body 4, and may be provided in a total heat exchanger or an element (holding section 50), which will be described later. In this way, the amount of contact with air is increased, and the humidity control function can be improved.
 吸水体4は吸水材2を含んでよい。また、吸水体4は、粉末状、粒状、又はシート状としてもよい。 The water absorbent body 4 may include the water absorbent material 2. Further, the water absorbent body 4 may be in the form of powder, particles, or sheet.
 また、調湿材1は、上記の他、B型シリカゲル、高分子収着材等を用いてもよい。 In addition to the above, the humidity control material 1 may also be made of B-type silica gel, polymer sorbent, or the like.
 なお、「調湿」とは、所定の湿度帯に近づくように相対湿度を調整することを意味する。具体的には、例えば、50%RHを所定の相対湿度とすると、相対湿度が50%RHよりも高いときには、調湿材1は、水分を吸収(吸湿)し、相対湿度が50%RHよりも低いときには、調湿材1は、水分を放出(放湿)する。通常、所定の相対湿度帯は、調湿材1の材質と水分量に相関する。具体的には、例えば、所定の相対湿度帯は、調湿液中の水分含有量に相関する。 Note that "humidity control" means adjusting the relative humidity so that it approaches a predetermined humidity range. Specifically, for example, assuming that 50% RH is a predetermined relative humidity, when the relative humidity is higher than 50% RH, the humidity control material 1 absorbs moisture (moisture absorption), and when the relative humidity is higher than 50% RH. When the humidity is low, the humidity control material 1 releases moisture (releases moisture). Usually, the predetermined relative humidity range correlates with the material and moisture content of the humidity control material 1. Specifically, for example, the predetermined relative humidity range correlates with the water content in the humidity control liquid.
 以下、本開示に係る洗浄方法について詳しく説明する。洗浄工程S10にて調湿材1に付着した粒子の汚れXを洗浄する。なお、汚れXとは、ホコリ、砂、砂ホコリ、塵、塩等である。 Hereinafter, the cleaning method according to the present disclosure will be explained in detail. In the cleaning step S10, particle dirt X adhering to the humidity control material 1 is cleaned. Note that the dirt X is dust, sand, sand dust, dust, salt, and the like.
 図1に示す洗浄工程S10では、上述した調湿材に含まれる調湿液よりも平衡湿度が低い調湿液を用いて洗浄する。以下では、調湿材に含まれる調湿液を第1調湿液、第1調湿液よりも平衡湿度が低い調湿液を第2調湿液とする。洗浄工程S10では、調湿材に含まれる第1調湿液よりも平衡湿度が低い第2調湿液を用いて洗浄する。 In the cleaning step S10 shown in FIG. 1, cleaning is performed using a humidity conditioning liquid whose equilibrium humidity is lower than that contained in the above-mentioned humidity conditioning material. Hereinafter, the humidity control liquid contained in the humidity control material will be referred to as a first humidity control liquid, and the humidity control liquid whose equilibrium humidity is lower than that of the first humidity control liquid will be referred to as a second humidity control liquid. In the cleaning step S10, cleaning is performed using a second humidity control liquid whose equilibrium humidity is lower than that of the first humidity control liquid contained in the humidity control material.
 第1調湿液及び第2調湿液は、上述した調湿液が用いられる。第1調湿液は第2調湿液よりも平衡湿度が高い調湿液である。一方、第2調湿液は、第1調湿液よりも平衡湿度が低い調湿液である。 The above-mentioned humidity control liquid is used as the first humidity control liquid and the second humidity control liquid. The first humidity control liquid has a higher equilibrium humidity than the second humidity control liquid. On the other hand, the second humidity control liquid is a humidity control liquid whose equilibrium humidity is lower than that of the first humidity control liquid.
 調湿材表面に付着した汚れを湿式で洗浄する場合、通常の水などの洗浄水では水溶性の調湿成分が洗浄水の方に溶出し、例えばエレメント内の調湿材が減少、調湿性能が低下してしまう。そこで、調湿材に含まれる第1調湿液よりも平衡湿度が低い第2調湿液を用いて洗浄することによって、調湿材の調湿液(第1調湿液)が、洗浄水(第2調湿液)へ溶出することを防ぐことができる。ゆえに調湿材に付着した粒子の汚れを洗浄することができる。 When cleaning dirt adhering to the surface of a humidity control material using a wet method, water-soluble humidity control components will be eluted into the cleaning water using normal water or other cleaning water, for example, the humidity control material inside the element will decrease, resulting in humidity control. Performance will deteriorate. Therefore, by cleaning using a second humidity control liquid that has a lower equilibrium humidity than the first humidity control liquid contained in the humidity control material, the humidity control liquid (first humidity control liquid) in the humidity control material can be (Second humidity control liquid) can be prevented from being eluted. Therefore, dirt from particles adhering to the humidity control material can be cleaned.
 さらに、調湿材に含まれる第1調湿液よりも平衡湿度が低い第2調湿液を用いて洗浄することで、第2調湿液に含まれる塩が、第1調湿液に移動し、調湿材の調湿機能を元の通りとすることができる。通常、調湿材の調湿機能を元の通りとするためには、加熱等を行うが、調湿材を加熱した場合、調湿材の平衡湿度は急激には低下されず徐々に低下する。つまり、加熱等によって調湿材の調湿機能を元の通りとするためには時間がかかる。そこで、係る洗浄工程S10を経ることによって、加熱等の工程を追加し、時間をかけることなく調湿材の調湿機能を元の通りとすることができる。 Furthermore, by washing with a second humidity control liquid that has a lower equilibrium humidity than the first humidity control liquid contained in the humidity control material, the salt contained in the second humidity control liquid moves to the first humidity control liquid. Therefore, the humidity control function of the humidity control material can be restored to its original state. Normally, heating is performed to restore the humidity control function of the humidity control material, but when the humidity control material is heated, the equilibrium humidity of the humidity control material does not drop suddenly but gradually. . In other words, it takes time to restore the humidity control function of the humidity control material to its original state by heating or the like. Therefore, by going through the cleaning step S10, the humidity control function of the humidity control material can be restored to its original state without adding a process such as heating and taking time.
 また、上述したように、調湿材はゲル状とすることが好ましい。このようにすれば、調湿材の調湿液(第1調湿液)がより強く保持されるので、洗浄水(第2調湿液)へ溶出することをより防ぐことができる。 Moreover, as mentioned above, it is preferable that the humidity control material is in the form of a gel. In this way, the humidity conditioning liquid (first humidity conditioning liquid) of the humidity conditioning material is more strongly retained, so that it can be further prevented from being eluted into the cleaning water (second humidity conditioning liquid).
 図6は、温度と絶対湿度に対する平衡湿度を示した図である。図6に示すように、温度によって絶対湿度は異なり、例えば夏期や冬期で平衡湿度が異なり、条件により調湿成分が洗浄水の方に溶出する場合がある。よって、第2調湿液の平衡湿度は、50%RH以下であることが好ましい。このようにすれば、より調湿成分が洗浄水の方に溶出することを抑制し、調湿材に付着した粒子の汚れをより確実に洗浄することができる。 FIG. 6 is a diagram showing equilibrium humidity with respect to temperature and absolute humidity. As shown in FIG. 6, the absolute humidity differs depending on the temperature, for example, the equilibrium humidity differs in summer and winter, and depending on the conditions, humidity control components may be eluted into the washing water. Therefore, the equilibrium humidity of the second humidity control liquid is preferably 50% RH or less. In this way, it is possible to further suppress the humidity control component from being eluted into the washing water, and to more reliably wash away particle stains adhering to the humidity control material.
 また、洗浄工程S10では、汚れの粒子が追従できる周波数の超音波を用い、かつ濾過された第2調湿液を用いて調湿材を洗浄することが好ましい。汚れの粒子が追従できる周波数の超音波を用いることで、汚れをより確実に洗浄することができ、また濾過された第2調湿液を用いて調湿材を洗浄すれば、汚れを再付着させることなく汚れが少ない洗浄液で洗浄することができ、効率的に洗浄することができる。 In addition, in the cleaning step S10, it is preferable to use ultrasonic waves at a frequency that dirt particles can follow and to clean the humidity conditioning material using the filtered second humidity conditioning liquid. By using ultrasonic waves with a frequency that can be tracked by dirt particles, dirt can be more reliably cleaned, and if the humidity control material is washed with the filtered second humidity control liquid, dirt will not be reattached. It is possible to wash with a cleaning solution that causes less dirt without causing any stains, and it is possible to wash efficiently.
 なお、調湿材がゲル状の場合、振動子の周波数は、ゲル粒子が追従できず、汚れの粒子が追従できる周波数を選択することが好ましい。 Note that when the humidity control material is in the form of a gel, it is preferable to select a frequency of the vibrator that cannot be followed by gel particles but can be followed by dirt particles.
 図1に示すように、本開示に係る洗浄方法は、さらに除去工程S20を有することが好ましい。除去工程S20は、洗浄工程S10後にて、調湿材を保持する保持部50に残留する第2調湿液を除去する。 As shown in FIG. 1, the cleaning method according to the present disclosure preferably further includes a removal step S20. The removal step S20 removes the second humidity control liquid remaining in the holding part 50 that holds the humidity control material after the cleaning step S10.
 調湿材1は、図3、図4及び図5に示すような担持体5に担持した態様や、さらにエレメントや後述する全熱交換器によって保持される。よって、除去工程S20は、エアーブロー等で吹き付けたり、振動を加えて、それらに残留した第2調湿液を除去する。動作風量は、キャリーオーバーしない程度が好ましい。 The humidity control material 1 is supported on a carrier 5 as shown in FIGS. 3, 4, and 5, or is further supported by an element or a total heat exchanger to be described later. Therefore, in the removal step S20, the second humidity control liquid remaining thereon is removed by blowing with air or applying vibration. The operating air volume is preferably at a level that does not cause carryover.
 図1に示すように、本開示に係る洗浄方法は、さらに回収工程S30を有することが好ましい。回収工程S30は、調湿材を洗浄した後、調湿材の余剰水を回収する。余剰水は、調湿材が吸収(吸湿)した水分である。 As shown in FIG. 1, the cleaning method according to the present disclosure preferably further includes a recovery step S30. In the collection step S30, surplus water in the humidity control material is collected after cleaning the humidity control material. Surplus water is moisture absorbed (moisture absorbed) by the humidity control material.
 また、図1に示すように、本開示に係る洗浄方法は、さらに再生工程S40を有することが好ましい。再生工程S40は、調湿材を再生する。再生工程S40では、周囲空気の相対湿度を調湿材の平衡湿度よりさげることにより行われる。例えば、調湿材に若しくはエレメントや後述する全熱交換器に、乾燥空気を通気、又は加熱空気を通気、又は減圧することにより行われる。 Furthermore, as shown in FIG. 1, the cleaning method according to the present disclosure preferably further includes a regeneration step S40. The regeneration step S40 regenerates the humidity control material. The regeneration step S40 is performed by lowering the relative humidity of the surrounding air below the equilibrium humidity of the humidity control material. For example, this is carried out by ventilating dry air or heated air through a humidity control material, an element, or a total heat exchanger to be described later, or by reducing the pressure.
 なお、図1において、洗浄工程S10、回収工程S30、再生工程S40を別工程で表しているが、それらの工程を同時に行ってもよい。 Note that although the cleaning step S10, the recovery step S30, and the regeneration step S40 are shown as separate steps in FIG. 1, these steps may be performed simultaneously.
 調湿材は、全熱交換器によって保持されることが好ましい。全熱交換器は、換気によって失われる空調エネルギーの全熱を交換回収する省エネルギー装置である。従来は、全熱交換器に保持させる物質として、シリカゲル、ゼオライトが使用されるが、本開示の洗浄方法では調湿材が使用される。 It is preferable that the humidity control material is retained by a total heat exchanger. A total heat exchanger is an energy-saving device that exchanges and recovers all the heat of air conditioning energy lost through ventilation. Conventionally, silica gel and zeolite have been used as substances held in the total heat exchanger, but in the cleaning method of the present disclosure, a humidity control material is used.
 図7は、全熱交換器で外気の熱及び水蒸気を吸収したときの湿度を表した図である。図8は、全熱交換器で外気の熱及び水蒸気を吸収したときの湿度を表した図である。両図とも夏期における例である。図7に示すように、空気を屋外から室内に送るとき、全熱交換器に保持された調湿材が外気の熱及び水蒸気を吸収し、室内に屋外よりも低温で低湿度の空気を送ることができる。 FIG. 7 is a diagram showing the humidity when heat and water vapor from the outside air are absorbed by the total heat exchanger. FIG. 8 is a diagram showing the humidity when heat and water vapor from the outside air are absorbed by the total heat exchanger. Both figures are examples from summer. As shown in Figure 7, when air is sent indoors from outdoors, the humidity control material held in the total heat exchanger absorbs the heat and water vapor from the outside air, and sends air indoors that is lower in temperature and humidity than outdoors. be able to.
 一方、図8に示すように、空気を室内から屋外に送るとき、全熱交換器に保持された調湿材が吸収した熱及び水蒸気を屋外に放出する。よって、図7及び図8に示すサイクルを繰り返し、時分割動作にすることで、外気負荷の80%を削減し、ダクトレスを実現することができる。 On the other hand, as shown in FIG. 8, when air is sent from indoors to outdoors, the heat and water vapor absorbed by the humidity control material held in the total heat exchanger are released outdoors. Therefore, by repeating the cycles shown in FIGS. 7 and 8 and performing time-division operation, it is possible to reduce the external air load by 80% and realize a ductless system.
 なお、全熱交換器の場合、調湿材の吸放湿性能と、吸放熱性能(容量、速度)のバランスをとることが重要である。 In the case of a total heat exchanger, it is important to balance the moisture absorption and release performance of the humidity control material with the heat absorption and release performance (capacity, speed).
 また、全熱交換器は、熱容量の制御も必要なため、潜熱蓄熱材(蓄熱材)を併用して備える場合の洗浄による影響も考慮することが好ましい。潜熱蓄熱材がカプセル及び非水溶性ゲルでは、カプセルで覆われている理由等により影響はない。一方、潜熱蓄熱材が水溶性ゲル(蓄熱ゲル)では、調湿成分の拡散についての算段が必要であり洗浄工程S10にて、潜熱蓄熱材が固化する温度以下で洗浄する必要がある。 Furthermore, since the total heat exchanger also requires heat capacity control, it is preferable to consider the influence of cleaning when a latent heat storage material (heat storage material) is also provided. If the latent heat storage material is a capsule or a water-insoluble gel, there is no effect because the latent heat storage material is covered with a capsule. On the other hand, if the latent heat storage material is a water-soluble gel (thermal storage gel), it is necessary to consider the diffusion of the humidity control component, and in the cleaning step S10, it is necessary to wash at a temperature below the temperature at which the latent heat storage material solidifies.
 以上より、本開示に係る洗浄方法によれば、調湿成分が洗浄水の方に溶出されることなく、調湿材に付着した粒子の汚れを洗浄することができる。 As described above, according to the cleaning method according to the present disclosure, it is possible to clean particle stains attached to the humidity conditioning material without the humidity conditioning component being eluted into the cleaning water.
[洗浄装置]
 本開示に係る洗浄装置100は、調湿材に付着した粒子の汚れを洗浄する装置である。図9に示すように、本開示に係る洗浄装置100は、貯留部9と、洗浄部10とを備える。
[Cleaning device]
The cleaning device 100 according to the present disclosure is a device that cleans particle dirt attached to a humidity control material. As shown in FIG. 9, a cleaning device 100 according to the present disclosure includes a storage section 9 and a cleaning section 10.
 貯留部9は、調湿材に含まれる第1調湿液よりも平衡湿度が低い第2調湿液を貯留する。第1調湿液と第2調湿液は上述した通りである。貯留部9はタンク等が挙げられるが、第2調湿液を貯留できればよく、これらに限定されない。 The storage section 9 stores a second humidity control liquid that has a lower equilibrium humidity than the first humidity control liquid contained in the humidity control material. The first humidity control liquid and the second humidity control liquid are as described above. The storage section 9 may be a tank or the like, but is not limited to these as long as it can store the second humidity control liquid.
 洗浄部10は、貯留部9に貯留された第2調湿液を用いて調湿材を洗浄する。洗浄部10は、洗い場、バット、調湿材を洗浄可能なスペースが挙げられる。洗浄部10は、上述した洗浄工程S10が行われる。 The cleaning unit 10 cleans the humidity conditioning material using the second humidity conditioning liquid stored in the storage unit 9. The cleaning section 10 includes a washing area, a bat, and a space where humidity control materials can be cleaned. In the cleaning section 10, the cleaning step S10 described above is performed.
 本開示に係る洗浄装置100は、調湿材を洗浄した後、調湿材の余剰水を回収する回収部30をさらに有することが好ましい。回収部30は、余剰水を貯めることができる容器やタンク等が挙げられるが、余剰水を貯めることができればよく、これらに限定されない。回収部30は、上述した回収工程S30が行われる。 It is preferable that the cleaning device 100 according to the present disclosure further includes a collection unit 30 that collects surplus water from the humidity control material after cleaning the humidity control material. The collection unit 30 may be a container, a tank, or the like that can store surplus water, but is not limited to these as long as it can store surplus water. In the recovery unit 30, the recovery step S30 described above is performed.
 本開示に係る洗浄装置100は、調湿材を再生する再生部40をさらに有することが好ましい。再生部40は、乾燥空気や加熱空気を通気させるためのコンプレッサー、送風機、ヒーター、減圧する減圧機等が挙げられるが、周囲空気の相対湿度を調湿材の平衡湿度よりさげることができれば、これらに限定されない。再生部40は、上述した再生工程S40が行われる。 It is preferable that the cleaning device 100 according to the present disclosure further includes a regeneration unit 40 that regenerates the humidity control material. Examples of the regeneration unit 40 include a compressor for ventilating dry air or heated air, a blower, a heater, a pressure reducer for reducing the pressure, etc., but if the relative humidity of the surrounding air can be lowered from the equilibrium humidity of the humidity control material, any of these may be used. but not limited to. In the reproducing unit 40, the above-described reproducing step S40 is performed.
 本開示に係る洗浄装置100は、調湿材を洗浄する際、調湿材を保持する保持部50に残留する第2調湿液を除去する除去部20をさらに有することが好ましい。除去部20は、エアーブロー等が挙げられるが、調湿材を保持する保持部50に残留する第2調湿液を除去できれば、これらに限定されない。保持部50としては、全熱交換器やエレメントが挙げられる。除去部20は、上述した除去工程S20が行われる。 It is preferable that the cleaning device 100 according to the present disclosure further includes a removing section 20 that removes the second humidity conditioning liquid remaining in the holding section 50 that holds the humidity conditioning material when cleaning the humidity conditioning material. The removal unit 20 may be an air blower, but is not limited to these as long as it can remove the second humidity control liquid remaining in the holding unit 50 that holds the humidity control material. Examples of the holding section 50 include a total heat exchanger and an element. In the removal section 20, the above-mentioned removal step S20 is performed.
 本開示に係る洗浄装置100は、第2調湿液を濾過する濾過部60と、汚れの粒子の粒径より超音波の振幅の方が小さい超音波によって調湿材を洗浄する超音波洗浄部70とを、さらに備えることが好ましい。濾過部60は、濾過装置等が挙げられ、濾過できれば、これらに限定されない。また、超音波洗浄部70は、振動子を備えた超音波装置が挙げられる。また、濾過部60で濾過された洗浄液は、貯留部9に入れてもよい。 The cleaning device 100 according to the present disclosure includes a filtration unit 60 that filters the second humidity conditioning liquid, and an ultrasonic cleaning unit that cleans the humidity conditioning material with ultrasonic waves whose amplitude is smaller than the particle size of dirt particles. It is preferable to further include 70. The filtration unit 60 may include a filtration device, but is not limited to these as long as it can perform filtration. Further, the ultrasonic cleaning section 70 may be an ultrasonic device equipped with a vibrator. Further, the cleaning liquid filtered by the filtering section 60 may be put into the storage section 9.
 以上より、本開示に係る洗浄装置100によれば、調湿成分が洗浄水の方に溶出されることなく、調湿材に付着した粒子の汚れを洗浄することができる。 As described above, according to the cleaning device 100 according to the present disclosure, it is possible to clean particle dirt attached to the humidity conditioning material without the humidity conditioning component being eluted into the cleaning water.
 なお、上記のように本開示の各実施形態及び各実施例について詳細に説明したが、本開示の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本開示の範囲に含まれるものとする。 Although each embodiment and each example of the present disclosure has been described in detail as above, those skilled in the art will appreciate that many modifications can be made without substantially departing from the novelty and effects of the present disclosure. , it will be easy to understand. Therefore, all such modifications are included within the scope of the present disclosure.
 例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、洗浄方法及び洗浄装置の構成、動作も本開示の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。 For example, a term that is described at least once in the specification or drawings together with a different term with a broader or synonymous meaning can be replaced by that different term anywhere in the specification or drawings. Further, the configuration and operation of the cleaning method and cleaning device are not limited to those described in each embodiment and each example of the present disclosure, and various modifications are possible.

Claims (14)

  1.  調湿材に付着した粒子の汚れを洗浄する洗浄方法であって、
     前記調湿材に含まれる第1調湿液よりも平衡湿度が低い第2調湿液を用いて洗浄する洗浄工程を、
    有することを特徴とする洗浄方法。
    A cleaning method for cleaning particle dirt adhering to humidity control material,
    A cleaning step of cleaning using a second humidity control liquid that has a lower equilibrium humidity than the first humidity control liquid contained in the humidity control material,
    A cleaning method characterized by comprising:
  2.  前記第2調湿液の平衡湿度は、50%RH以下であることを特徴とする請求項1に記載の洗浄方法。 The cleaning method according to claim 1, wherein the equilibrium humidity of the second humidity control liquid is 50% RH or less.
  3.  前記調湿材を洗浄した後、前記調湿材の余剰水を回収する回収工程と、
     前記調湿材を再生する再生工程とを、
    さらに有することを特徴とする請求項1に記載の洗浄方法。
    a recovery step of recovering surplus water from the humidity control material after washing the humidity control material;
    a regeneration step of regenerating the humidity control material;
    The cleaning method according to claim 1, further comprising:
  4.  前記洗浄工程後に、前記調湿材を保持する保持部に残留する前記第2調湿液を除去する除去工程を、
    さらに有することを特徴とする請求項1に記載の洗浄方法。
    After the cleaning step, a removal step of removing the second humidity control liquid remaining in the holding part that holds the humidity control material,
    The cleaning method according to claim 1, further comprising:
  5.  前記洗浄工程では、前記粒子の汚れに追従できる周波数の超音波を用い、かつ濾過された第2調湿液を用いて前記調湿材を洗浄することを特徴とする請求項1に記載の洗浄方法。 The cleaning according to claim 1, characterized in that in the cleaning step, the humidity conditioning material is cleaned using ultrasonic waves having a frequency that can follow the dirt of the particles and using a filtered second humidity conditioning liquid. Method.
  6.  前記調湿材は、全熱交換器によって保持されることを特徴とする請求項1に記載の洗浄方法。 The cleaning method according to claim 1, wherein the humidity control material is retained by a total heat exchanger.
  7.  前記全熱交換器は、蓄熱ゲルによって構成される蓄熱材を備え、
     前記洗浄工程は、前記蓄熱材が固化する温度以下で洗浄することを特徴とする請求項6項に記載の洗浄方法。
    The total heat exchanger includes a heat storage material made of heat storage gel,
    7. The cleaning method according to claim 6, wherein the cleaning step is performed at a temperature below that at which the heat storage material solidifies.
  8.  前記調湿材は、ゲル状であることを特徴とする請求項1~7のいずれか1項に記載の洗浄方法。 The cleaning method according to any one of claims 1 to 7, wherein the humidity control material is gel-like.
  9.  調湿材に付着した粒子の汚れを洗浄する洗浄装置であって、
     前記調湿材に含まれる第1調湿液よりも平衡湿度が低い第2調湿液を貯留する貯留部と、
     前記貯留部に貯留された前記第2調湿液を用いて前記調湿材を洗浄する洗浄部と、
    を備えることを特徴とする洗浄装置。
    A cleaning device for cleaning particle dirt attached to humidity control material,
    a storage section that stores a second humidity control liquid that has a lower equilibrium humidity than the first humidity control liquid contained in the humidity control material;
    a cleaning unit that cleans the humidity conditioning material using the second humidity conditioning liquid stored in the storage unit;
    A cleaning device comprising:
  10.  前記調湿材を洗浄した後、前記調湿材の余剰水を回収する回収部と、
     前記調湿材を再生する再生部と、
    をさらに備えることを特徴とする請求項9に記載の洗浄装置。
    a collection unit that recovers surplus water from the humidity control material after cleaning the humidity control material;
    a regeneration unit that regenerates the humidity control material;
    The cleaning device according to claim 9, further comprising:.
  11.  前記調湿材を洗浄する際、前記調湿材を保持する保持部に残留する前記第2調湿液を除去する除去部を、
    さらに備えることを特徴とする請求項9に記載の洗浄装置。
    When cleaning the humidity control material, a removal part that removes the second humidity control liquid remaining in the holding part that holds the humidity control material,
    The cleaning device according to claim 9, further comprising: a cleaning device according to claim 9;
  12.  前記第2調湿液を濾過する濾過部と、
     前記粒子の汚れに追従できる周波数の超音波によって前記調湿材を洗浄する超音波洗浄部とを、
    さらに備えることを特徴とする請求項9に記載の洗浄装置。
    a filtration unit that filters the second humidity control liquid;
    an ultrasonic cleaning unit that cleans the humidity control material with ultrasonic waves of a frequency that can follow the dirt of the particles;
    The cleaning device according to claim 9, further comprising: a cleaning device according to claim 9;
  13.  前記調湿材を保持する全熱交換器を、
    さらに備えることを特徴とする請求項9~12のいずれか1項に記載の洗浄装置。
    A total heat exchanger that holds the humidity control material,
    The cleaning device according to any one of claims 9 to 12, further comprising: a cleaning device according to claim 9;
  14.  前記全熱交換器は、蓄熱ゲルによって構成される蓄熱材を、
    さらに備えることを特徴とする請求項13項に記載の洗浄装置。
    The total heat exchanger includes a heat storage material made of heat storage gel,
    The cleaning device according to claim 13, further comprising: a cleaning device according to claim 13;
PCT/JP2023/022674 2022-06-23 2023-06-20 Cleaning method and cleaning device WO2023248995A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-100740 2022-06-23
JP2022100740 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023248995A1 true WO2023248995A1 (en) 2023-12-28

Family

ID=89379984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022674 WO2023248995A1 (en) 2022-06-23 2023-06-20 Cleaning method and cleaning device

Country Status (1)

Country Link
WO (1) WO2023248995A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117389A (en) * 2001-10-19 2003-04-22 Bridgestone Corp Ozone decomposition type gas adsorbent, filter medium using this adsorbent, method for regenerating the same and regenerated article
JP2005270958A (en) * 2004-02-27 2005-10-06 Fujio Abe Humidity conditioner and humidity conditioning method using the same
JP2010196042A (en) * 2009-01-28 2010-09-09 Unitika Ltd Highly flexible gel composition and use thereof
JP2014214479A (en) * 2013-04-25 2014-11-17 ミサワホーム株式会社 Housing with cool and dark space

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117389A (en) * 2001-10-19 2003-04-22 Bridgestone Corp Ozone decomposition type gas adsorbent, filter medium using this adsorbent, method for regenerating the same and regenerated article
JP2005270958A (en) * 2004-02-27 2005-10-06 Fujio Abe Humidity conditioner and humidity conditioning method using the same
JP2010196042A (en) * 2009-01-28 2010-09-09 Unitika Ltd Highly flexible gel composition and use thereof
JP2014214479A (en) * 2013-04-25 2014-11-17 ミサワホーム株式会社 Housing with cool and dark space

Similar Documents

Publication Publication Date Title
JP4975970B2 (en) Sorptive heat exchange module and method for producing the same
KR20180083403A (en) Heat recovery adsorber as building ventilation system
JP4840685B2 (en) Sorptive heat exchange module and method for producing the same
JP2007508928A (en) Air filter to remove particulate matter and volatile organic compounds
US20220001317A1 (en) Nano silver active filter element and a method for preparing the nano silver active filter
WO2023248995A1 (en) Cleaning method and cleaning device
KR20100011214A (en) Desiccant, dehumidifying element and manufacturing methods for them
US20070012186A1 (en) System and method of dehumidifying and filtering air
TW200403096A (en) Air filter
JP5140278B2 (en) Desiccant material and air dehumidification method using the same
JP2002292227A (en) Filter unit
CN115246953A (en) Antifreezing cooling liquid rapid absorption material and preparation method thereof
JP4122540B2 (en) Building material board that is mounted with a seat for environmental cleaning
JPH0115780B2 (en)
JP3221657B2 (en) Regeneration method of composite adsorbent
JPH06296858A (en) Acid gas absorbent
WO2023119722A1 (en) Humidity controlling material
WO2023248560A1 (en) Total heat exchange element and ventilator
WO1999012641A1 (en) Desiccant
JPS59203637A (en) Moisture absorbent regenerable at low temperature
JP2001310109A (en) Chemical filter
JP2005218967A (en) Filter for inactivating allergen and air conditioner for vehicle using the filter for inactivating allergen
JPWO2007083370A1 (en) Air conditioner filter that can remove harmful substances
JP6611429B2 (en) Sorbent and production method thereof
JP2003342865A (en) Cover material, filtering material for gas removal using the same and gas-removing unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827178

Country of ref document: EP

Kind code of ref document: A1