WO2023248815A1 - Elastic wave filter and communication device - Google Patents

Elastic wave filter and communication device Download PDF

Info

Publication number
WO2023248815A1
WO2023248815A1 PCT/JP2023/021366 JP2023021366W WO2023248815A1 WO 2023248815 A1 WO2023248815 A1 WO 2023248815A1 JP 2023021366 W JP2023021366 W JP 2023021366W WO 2023248815 A1 WO2023248815 A1 WO 2023248815A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
resonator
wave resonator
wave filter
band
Prior art date
Application number
PCT/JP2023/021366
Other languages
French (fr)
Japanese (ja)
Inventor
直史 笠松
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023248815A1 publication Critical patent/WO2023248815A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves

Definitions

  • One aspect of the present disclosure relates to an elastic wave filter.
  • Patent Document 1 discloses a configuration example of an elastic wave filter.
  • An elastic wave filter is an elastic wave filter having a first elastic wave resonator, in which the width of the frequency band of the first elastic wave resonator is expressed as ⁇ f, and the elastic wave filter passes through the elastic wave filter.
  • a band extending from a first end point indicating a frequency at the end of the high frequency side of the band to a second end point indicating a frequency higher than the first end point by ⁇ f is referred to as a first band, and the band extends through the passage of the elastic wave filter.
  • a band extending from a third end point indicating a frequency at the end of the low frequency side of the band to a fourth end point indicating a frequency lower by ⁇ f than the third end point is referred to as a second band, and the first elastic wave resonance
  • the child spurious is located outside the frequency band of the first elastic wave resonator and within either the pass band, the first band, or the second band of the elastic wave filter.
  • the elastic wave filter further includes an element connected in parallel or series to the first elastic wave resonator, and the element is a capacitor or an inductor.
  • FIG. 1 is a diagram illustrating the basic configuration of an elastic wave filter of Embodiment 1.
  • FIG. 3 is a diagram showing an example of the configuration of an elastic wave resonator in the elastic wave filter of Embodiment 1.
  • FIG. 2 is a diagram schematically showing an example of frequency characteristics of an elastic wave filter according to one aspect of the present disclosure.
  • FIG. 3 is a diagram schematically showing an example of frequency characteristics of a first elastic wave resonator according to one aspect of the present disclosure.
  • 2 is a diagram showing a first configuration example of an elastic wave filter according to the basic configuration of FIG. 1.
  • FIG. 2 is a diagram showing a second configuration example of an elastic wave filter according to the basic configuration of FIG. 1.
  • FIG. 2 is a diagram showing a third configuration example of an elastic wave filter according to the basic configuration of FIG. 1.
  • FIG. FIG. 3 is a diagram showing a fourth configuration example of an elastic wave filter according to the basic configuration of FIG. 1; It is a figure which shows an example of the phase characteristic and impedance characteristic of the 1st elastic wave resonator in the elastic wave filter based on the 1st example of a structure. It is a figure which shows an example of the phase characteristic and impedance characteristic of the 1st elastic wave resonator in the elastic wave filter based on the 2nd example of a structure.
  • FIG. 7 is a diagram showing another example of the phase characteristics and impedance characteristics of the first elastic wave resonator in the elastic wave filter according to the first configuration example.
  • FIG. 3 is a diagram for explaining a change in phase characteristics of a first elastic wave resonator in an elastic wave filter according to a first configuration example.
  • FIG. 7 is a diagram for explaining a change in phase characteristics of a first elastic wave resonator in an elastic wave filter according to a second configuration example.
  • FIG. 7 is a diagram for explaining a change in phase characteristics of the first elastic wave resonator according to a third configuration example. It is a figure for explaining the change of the phase characteristic of the 1st elastic wave resonator concerning the 4th example of composition.
  • 3 is a diagram illustrating a schematic configuration of a communication device in Embodiment 2.
  • Embodiment 1 will be described below.
  • components having the same functions as the components (components) described in Embodiment 1 are given the same reference numerals in each of the subsequent embodiments, and the description thereof will not be repeated.
  • descriptions of known technical matters will be omitted as appropriate.
  • Each component, each material, and each numerical value described in this specification is merely an example unless there is a contradiction. Therefore, for example, unless there is a particular contradiction, the positional relationship and connection relationship of each component is not limited to the example shown in each figure. Further, each figure is not necessarily shown to scale.
  • FIG. 1 illustrates the basic configuration of an elastic wave filter 100 according to a first embodiment.
  • an elastic wave filter 100 as a ladder type filter is illustrated.
  • the elastic wave filter according to one aspect of the present disclosure is not limited to the ladder type filter.
  • the elastic wave filter 100 may have at least one elastic wave resonator including a first elastic wave resonator. Therefore, for example, the elastic wave filter 100 may include a plurality of elastic wave resonators. In other words, the elastic wave filter 100 may further include a second elastic wave resonator different from the first elastic wave resonator. In the example of FIG. 1, the elastic wave filter 100 has three elastic wave resonators 1.
  • the elastic wave filter 100 may include, as the elastic wave resonator 1, an elastic wave resonator (series resonator) located in the series arm SL.
  • the elastic wave filter 100 includes a series resonator 1S-1 and a series resonator 1S-2.
  • the series resonator 1S-1 and the series resonator 1S-2 are also generically referred to as the series resonator 1S.
  • the series arm SL may be connected to the input terminal Pin and the output terminal Pout.
  • the series resonator 1S-1 is the series resonator on the side closer to the input terminal Pin (the series resonator on the input side)
  • the series resonator 1S-2 is the series resonator on the side closer to the output terminal Pout. (series resonator on the output side).
  • the elastic wave filter 100 may include, as the elastic wave resonator 1, an elastic wave resonator (parallel resonator) located in the parallel arm PL.
  • the elastic wave filter 100 has a parallel resonator 1P.
  • the parallel arm PL may extend from between the series resonator 1S-1 and the series resonator 1S-2, and may be connected to the ground terminal GND via the parallel resonator 1P.
  • the series resonator 1S-1 is the first elastic wave resonator.
  • the first elastic wave resonator may be any one of the at least one elastic wave resonator 1 included in the elastic wave filter 100. Therefore, as described later, the parallel resonator 1P may be the first elastic wave resonator.
  • the elastic wave filter 100 may further include an element EL connected in parallel or series to the first elastic wave resonator.
  • element EL is connected in parallel to series resonator 1S-1.
  • element EL may be a capacitor or an inductor.
  • element EL may be embodied by a discrete component.
  • the element EL may be realized by electrode wiring on the piezoelectric layer 2 described below.
  • the acoustic wave filter 100 may have a multilayer substrate including a dielectric layer and a conductor layer. In this case, the element EL may be embodied by an electrode pattern within the multilayer substrate.
  • FIG. 2 shows an example of the configuration of the elastic wave resonator 1 in the elastic wave filter 100.
  • the laminated structure of the elastic wave resonator 1 is schematically shown.
  • the orthogonal coordinate system (xyz coordinate system) shown in FIG. 2 will be introduced.
  • the x direction in the example of the first embodiment is the propagation direction of the elastic wave propagating within the piezoelectric layer 2 in the elastic wave filter 100.
  • the y direction is an example of a direction intersecting the x direction.
  • the z direction is the thickness direction of each member of the elastic wave resonator 1.
  • the positive direction in the z direction is assumed to be an upward direction. Therefore, the negative direction in the z direction is downward.
  • the elastic wave filter 100 may include (i) a support substrate 5 and (ii) a piezoelectric layer 2 located on the support substrate 5.
  • the support substrate 5 and the piezoelectric layer 2 may be common to at least one elastic wave resonator 1.
  • the elastic wave resonator 1 may include an IDT (Interdigital Transduce) electrode 3 located on the piezoelectric layer 2 .
  • Each of the at least one acoustic wave resonator 1 may have an individual IDT electrode 3 .
  • the support substrate 5 supports each part of the acoustic wave filter 100.
  • the support substrate 5 may be a Si substrate.
  • the piezoelectric layer 2 may be made of a single crystal material having piezoelectricity.
  • the material of the piezoelectric layer 2 may be lithium tantalate (also referred to as LiTaO 3 :LT) or lithium niobate (also referred to as LiNbO 3 :LN).
  • the piezoelectric layer 2 may be an LT layer.
  • the IDT electrode 3 may include, for example, a conductive layer made of metal.
  • the metal may be Al.
  • the IDT electrode 3 may further include a protective layer covering the conductive layer.
  • the material of the protective layer may be TEOS (Tetraethyl Orthosilicate).
  • the IDT electrode 3 may include a first bus bar and a second bus bar (not shown) that face each other in the y direction.
  • the IDT electrode 3 includes (i) a plurality of first electrode fingers 32a connected to the first bus bar, and (ii) a plurality of second electrode fingers 32b connected to the second bus bar. good.
  • the first electrode finger 32a may extend from the first bus bar toward the second bus bar in the y direction.
  • the second electrode finger 32b may extend from the second bus bar toward the first bus bar in the y direction. Therefore, the second electrode finger 32b may be inserted into each of the plurality of first electrode fingers 32a in the y direction.
  • the first electrode fingers 32a and the second electrode fingers 32b may be alternately and repeatedly positioned on the piezoelectric layer 2 at approximately constant intervals in the x direction.
  • the first electrode finger 32a and the second electrode finger 32b are also generically referred to as electrode fingers 32.
  • the electrode finger pitch of the IDT electrode 3 is expressed as p.
  • p may be, for example, the pitch (repetition interval) between the centers of two adjacent electrode fingers 32 in the x direction.
  • p may be set equal to the half value ( ⁇ /2) of the wavelength ⁇ of the elastic wave excited by the IDT electrode 3.
  • the length of the electrode finger 32 in the x direction is referred to as the width w of the electrode finger 32.
  • w may be set as appropriate, for example, depending on the electrical characteristics required of the elastic wave resonator 1.
  • w may be set according to p.
  • the ratio (w/p) of the width of the electrode finger to the pitch of the electrode finger is referred to as the duty of the electrode finger.
  • the frequency characteristics of the elastic wave resonator 1 can also be controlled by changing either w or p. In this specification, a case will be illustrated later in which the frequency characteristics of the elastic wave resonator 1 are controlled by changing p.
  • the thickness of the piezoelectric layer 2 is expressed as T.
  • Embodiment 1 exemplifies a case where the piezoelectric layer 2 is sufficiently thin, that is, a case where T is sufficiently small.
  • T may be less than or equal to ⁇ .
  • the IDT electrode 3 can excite plate waves (Lamb waves) as elastic waves.
  • the IDT electrode 3 can excite an A1 Lamb wave as a plate wave.
  • FIG. 3 schematically shows an example of frequency characteristics (more specifically, attenuation characteristics) of an elastic wave filter (eg, elastic wave filter 100) according to one aspect of the present disclosure.
  • the horizontal axis (Frequency) indicates frequency (unit: Hz)
  • the vertical axis (transmission) indicates attenuation (unit: dB).
  • the amount of attenuation can also be read as the amount of transmission. Therefore, the attenuation characteristic can also be read as the transmission characteristic.
  • the passband of an elastic wave filter refers to a frequency band from a low frequency side cutoff frequency to a high frequency side cutoff frequency.
  • the attenuation characteristic of the elastic wave filter 100 there are -3 dB attenuation points on each of the low frequency side and the high frequency side with respect to the peak frequency indicating the frequency at the minimum attenuation amount of 0 dB.
  • the high frequency side cutoff frequency (fcut1 in FIG. 3) is the frequency of the ⁇ 3 dB attenuation point on the high frequency side of the passband of the elastic wave filter.
  • fcut1 can also be expressed as the frequency at the end of the high frequency side of the passband.
  • the low frequency side cutoff frequency (fcut2 in FIG. 3) is the frequency of the ⁇ 3 dB attenuation point on the low frequency side.
  • fcut2 can also be expressed as the frequency at the lower frequency side end of the passband. Therefore, the passband of the elastic wave filter is a band extending from fcut2 to fcut1.
  • the width of the frequency band of the first elastic wave resonator is expressed as ⁇ f.
  • ⁇ f the band extending from the first end point to the second end point.
  • the first end point may be a point indicating the frequency at the end of the high frequency side of the passband of the elastic wave filter (ie, fcut1).
  • the second end point may point to a frequency that is + ⁇ f higher than the first starting point (ie, fcut1+ ⁇ f).
  • the band from the third end point to the fourth end point is referred to as a second band.
  • the third end point may be a point indicating the frequency at the lower frequency side end of the passband of the elastic wave filter (ie, fcut2).
  • the fourth endpoint may be a point pointing to a frequency that is ⁇ f lower than the third endpoint (ie, fcut2 ⁇ f).
  • the spurious of the first elastic wave resonator is located within a band extending from the fourth end point (fcut2- ⁇ f) to the second end point (fcut1+ ⁇ f). I can do it.
  • the spurious of the first elastic wave resonator may be located within the pass band, within the first band, or within the second band of the elastic wave filter.
  • FIG. 4 schematically shows an example of frequency characteristics (more specifically, phase characteristics) of the first elastic wave resonator according to one aspect of the present disclosure.
  • the vertical axis (Phase) in the graph of FIG. 4 represents the phase (hereinafter simply referred to as "phase") of the impedance of the first elastic wave resonator (unit: degrees).
  • FIG. 4 shows the phase characteristics of the first elastic wave resonator before being connected to the element EL (that is, the phase characteristics of the first elastic wave resonator alone).
  • fr is the resonant frequency of the first elastic wave resonator
  • fa is the anti-resonant frequency of the first elastic wave resonator.
  • the frequency band of the first elastic wave resonator may range from fr to fa.
  • fr ⁇ fa is illustrated.
  • the frequency band of the first elastic wave resonator is located on the lower frequency side than the above-mentioned second band.
  • the magnitude (absolute value) of the impedance of the first elastic wave resonator is expressed as
  • fr is defined as the frequency at which the impedance is minimum.
  • fa is determined as the frequency at which the impedance is maximum.
  • the phase peak of the first elastic wave resonator is generally located within the frequency band of the first elastic wave resonator.
  • the spurious of the first elastic wave resonator is generally located outside the frequency band of the first elastic wave resonator.
  • the spurious of the first elastic wave resonator can be located within the pass band, the first band, or the second band of the elastic wave filter. In the example of FIG. 4, the spurious of the first elastic wave resonator is located within the passband of the elastic wave filter.
  • FIG. 5 shows a first configuration example of an elastic wave filter according to the basic configuration of FIG.
  • the elastic wave filter shown in FIG. 5 is referred to as an elastic wave filter 100-1.
  • the first elastic wave resonator in the elastic wave filter 100-1 may be a series resonator (eg, series resonator 1S-1).
  • the elastic wave filter 100-1 may include a capacitor CP connected in parallel to the first elastic wave resonator (eg, series resonator 1S-1) as an element EL. Therefore, the elastic wave filter 100-1 may include a first unit UN1 configured by connecting a series resonator, which is a first elastic wave resonator, and a capacitor CP in parallel. As will be described later, in the elastic wave filter 100-1, the spurious of the first elastic wave resonator may be located within the first band.
  • FIG. 6 shows a second configuration example of an elastic wave filter according to the basic configuration of FIG. 1.
  • the elastic wave filter shown in FIG. 6 is referred to as an elastic wave filter 100-2.
  • the first elastic wave resonator may be a series resonator (eg, series resonator 1S-1).
  • the elastic wave filter 100-2 may include an inductor LP connected in parallel to the first elastic wave resonator (eg, series resonator 1S-1) as an element EL. Therefore, the elastic wave filter 100-2 may include a second unit UN2 configured by connecting a series resonator, which is a first elastic wave resonator, and an inductor LP in parallel. Elastic wave filter 100-2 is another configuration example of elastic wave filter 100-1. As described later, in the elastic wave filter 100-2, the spurious of the first elastic wave resonator may be located within the second band.
  • FIG. 7 shows a third configuration example of an elastic wave filter according to the basic configuration of FIG. 1.
  • the elastic wave filter shown in FIG. 7 is referred to as an elastic wave filter 100-3.
  • the first elastic wave resonator in the elastic wave filter 100-3 may be a parallel resonator (eg, parallel resonator 1P).
  • the elastic wave filter 100-3 may have an inductor LS connected in series to the first elastic wave resonator (eg, parallel resonator 1P) as an element EL. Therefore, the elastic wave filter 100-3 may include a third unit UN3 configured by connecting a parallel resonator, which is a first elastic wave resonator, and an inductor LS in series. As described later, in the elastic wave filter 100-3, the spurious of the first elastic wave resonator may be located within the first band.
  • FIG. 8 shows a fourth configuration example of an elastic wave filter according to the basic configuration of FIG. 1.
  • the elastic wave filter shown in FIG. 8 is referred to as an elastic wave filter 100-4.
  • the first elastic wave resonator may be a parallel resonator (eg, parallel resonator 1P).
  • the elastic wave filter 100-4 may have a capacitor CS connected in series to the first elastic wave resonator (eg, parallel resonator 1P) as an element EL. Therefore, the elastic wave filter 100-4 may include a fourth unit UN4 configured by connecting a parallel resonator, which is a first elastic wave resonator, and a capacitor CS in series. Elastic wave filter 100-4 is another configuration example of elastic wave filter 100-3. As will be described later, in the elastic wave filter 100-4, the spurious of the first elastic wave resonator may be located within the second band.
  • the design conditions for the first elastic wave resonator are: ⁇ p (electrode finger pitch of IDT electrode): 1.26 ⁇ m ⁇ Duty of IDT electrode: 0.7 ⁇ Number of electrode fingers of IDT electrode: 150 ⁇ Intersection width of electrode fingers of IDT electrode: 61.2 ⁇ m It is. However, in the example of FIG. 13 described later, different design conditions may be applied.
  • the horizontal axis of each graph shown below indicates the normalized frequency fn. fn is given as the frequency f divided by fa. Therefore, the horizontal axis of each graph shown below may be read as f.
  • the frequency characteristics shown below are the frequency characteristics of the first elastic wave resonator in a state connected to the element EL in the elastic wave filter. That is, it should be noted that the frequency characteristics shown below are not the frequency characteristics of the first elastic wave resonator in a state before being connected to the element EL (the frequency characteristics of the first elastic wave resonator alone). Therefore, fr and fa in each of the following descriptions are the resonant frequency and anti-resonant frequency of the first elastic wave resonator in a state connected to the element EL, respectively, unless otherwise specified.
  • FIG. 9 shows an example of the phase characteristics and impedance characteristics of the first elastic wave resonator in the elastic wave filter 100-1.
  • reference numeral 900A indicates the phase characteristic of the first elastic wave resonator in the elastic wave filter 100-1
  • reference numeral 900B indicates the impedance characteristic of the first elastic wave resonator.
  • the capacitance of the capacitor CP is also expressed as CP.
  • characteristics corresponding to various values of CP are shown.
  • FIG. 10 shows an example of the phase characteristics and impedance characteristics of the first elastic wave resonator in the elastic wave filter 100-2.
  • the reference numeral 1000A indicates the phase characteristic of the first elastic wave resonator in the elastic wave filter 100-2
  • the reference numeral 1000B indicates the impedance characteristic of the first elastic wave resonator.
  • the inductance of the inductor LP is also expressed as LP.
  • each characteristic corresponding to various values of LP is shown.
  • FIG. 11 shows an example of the phase characteristics and impedance characteristics of the first elastic wave resonator in the elastic wave filter 100-3.
  • reference numeral 1100A indicates the phase characteristic of the first elastic wave resonator in the elastic wave filter 100-3
  • reference numeral 1100B indicates the impedance characteristic of the first elastic wave resonator.
  • the inductance of the inductor LS is also expressed as LS.
  • characteristics corresponding to various values of LS are shown.
  • FIG. 12 shows an example of the phase characteristics and impedance characteristics of the first elastic wave resonator in the elastic wave filter 100-4.
  • reference numeral 1200A indicates the phase characteristic of the first elastic wave resonator in the elastic wave filter 100-4
  • reference numeral 1200B indicates the impedance characteristic of the first elastic wave resonator.
  • the capacitance of the capacitor CS is also expressed as CS.
  • the frequency characteristics of the first elastic wave resonator in the elastic wave filter depend on (i) the type of element EL connected to the first elastic wave resonator, and (ii) the first elastic wave It may change depending on at least one of the connection manner between the resonator and the element EL. Therefore, for example, the first elastic wave resonator connected to the element EL may be redesigned according to the required specifications of the elastic wave filter.
  • FIG. 13 an example of redesigning the first elastic wave resonator will be described.
  • FIG. 13 shows another example of the phase characteristics and impedance characteristics of the first elastic wave resonator in the elastic wave filter 100-1.
  • reference numeral 1300A is a diagram paired with the above-mentioned reference numeral 900A
  • reference numeral 1300B is a diagram paired with the above-mentioned reference numeral 900B.
  • the legend "c2" in FIG. 13 represents a redesign that increases the capacitance of the first elastic wave resonator by 0.6 times.
  • the number of electrode fingers of the IDT electrode in the first acoustic wave resonator from 150 to 90, it is possible to redesign the capacitance of the first acoustic wave resonator to increase it by 0.6. being done.
  • the legend "p2" in FIG. 13 represents a redesign in which the electrode finger pitch (p) of the IDT electrode in the first acoustic wave resonator is changed from 1.26 ⁇ m to 1.215 ⁇ m. In this redesign, p is multiplied by about 0.964.
  • FIG. 13 shows that the magnitude of spurious can be reduced by redesigning the first acoustic wave resonator to reduce its capacitance.
  • the elastic wave filter 100-1 a part of the capacitance value of the first elastic wave resonator before redesign can be compensated for by the capacitor CP. Therefore, according to the elastic wave filter 100-1, such redesign can be applied. As is clear to those skilled in the art, such redesign can also be applied to the elastic wave filter 100-4.
  • the first elastic wave resonator may be a series resonator or a parallel resonator
  • the element EL may be a capacitor connected in series or in parallel to the first elastic wave resonator. It's fine.
  • FIG. 13 further shows that the frequency characteristics of the first acoustic wave resonator can be generally shifted by redesigning to change p. For example, fa and fr can be increased by redesigning p to be smaller. Conversely, fa and fr can also be decreased by redesigning to increase p.
  • FIG. 14 is a diagram for explaining changes in the phase characteristics of the series resonator, which is the first elastic wave resonator, in the elastic wave filter 100-1.
  • Reference numeral 1400A in FIG. 14 shows the phase characteristics of the first elastic wave resonator before connecting the capacitor CP (the phase characteristics of the first elastic wave resonator alone), and the phase characteristics of the first elastic wave resonator after connecting the capacitor CP. is shown schematically.
  • Reference numeral 1400B in FIG. 14 schematically shows the phase characteristics of the redesigned first acoustic wave resonator after the capacitor CP is connected.
  • the spurious of the first elastic wave resonator is located within the passband of the elastic wave filter both before and after the capacitor CP is connected. Specifically, the spurious of the first elastic wave resonator is located near the above-mentioned first end point within the passband of the elastic wave filter.
  • fa before the element EL is connected will be expressed as fa0.
  • fa0 in the example of FIG. 14 indicates fa before the capacitor CP is connected.
  • fa after connecting the capacitor CP in the example 1400A is expressed as fa_cp.
  • fa of the redesigned first acoustic wave resonator after connecting the capacitor CP is expressed as fa_cp'.
  • the first elastic wave resonator may be redesigned so that fa_cp' matches fa0. In this case, due to the redesign of the first acoustic wave resonator, fa_cp' becomes higher than fa_cp.
  • the frequency characteristics of the first elastic wave resonator can be shifted to the high frequency side. Therefore, compared to the example with reference numeral 1400A, the spurious of the first elastic wave resonator can be shifted to the higher frequency side. Therefore, as shown in the example at 1400B, the spurious of the first acoustic wave resonator can be located within the first band.
  • the first elastic wave resonator in the elastic wave filter is a series resonator and the element EL is a capacitor connected in parallel to the first elastic wave resonator
  • the spurious of one acoustic wave resonator may be located within the first band.
  • FIG. 15 is a diagram for explaining changes in the phase characteristics of the series resonator, which is the first elastic wave resonator, in the elastic wave filter 100-2.
  • Reference numeral 1500A in FIG. 15 shows the phase characteristics of the first elastic wave resonator before the inductor LP is connected (the phase characteristics of the first elastic wave resonator alone), and the phase characteristics of the first elastic wave resonator after the inductor LP is connected. is shown schematically.
  • Reference numeral 1500B in FIG. 15 schematically shows the phase characteristics of the redesigned first acoustic wave resonator after the inductor LP is connected.
  • the spurious of the first elastic wave resonator is located within the passband of the elastic wave filter both before and after the inductor LP is connected. Specifically, the spurious of the first elastic wave resonator is located near the above-mentioned third end point within the passband of the elastic wave filter.
  • the magnitude of the spurious of the first acoustic wave resonator may increase compared to before the inductor LP is connected. This behavior is due to the duality between the frequency characteristics of the inductor and the frequency characteristics of the capacitor. Furthermore, as described above, after the inductor LP is connected, fa can increase compared to before the inductor LP is connected.
  • fa0 in the example of FIG. 15 indicates fa before the inductor LP is connected.
  • fa after the inductor LP is connected in the example of code 1500A is expressed as fa_lp.
  • fa of the redesigned first acoustic wave resonator after the inductor LP is connected is expressed as fa_lp'.
  • the first elastic wave resonator may be redesigned so that fa_lp' matches fa0. In this case, due to the redesign of the first acoustic wave resonator, fa_lp' becomes lower than fa_lp.
  • the frequency characteristics of the first elastic wave resonator can be shifted to the lower frequency side. Therefore, compared to the example with reference numeral 1500A, the spurious of the first elastic wave resonator can be shifted to the lower frequency side. Therefore, as shown in the example at 1500B, the spurious of the first acoustic wave resonator can be located within the second band.
  • the first elastic wave resonator in the elastic wave filter is a series resonator and the element EL is an inductor connected in parallel to the first elastic wave resonator
  • the spurious of one acoustic wave resonator may be located within the second band.
  • FIG. 16 is a diagram for explaining changes in the phase characteristics of the parallel resonator, which is the first elastic wave resonator, in the elastic wave filter 100-3.
  • Reference numeral 1600A in FIG. 16 indicates the phase characteristics of the first elastic wave resonator before the inductor LS is connected (the phase characteristics of the first elastic wave resonator alone), and the phase characteristics of the first elastic wave resonator after the inductor LS is connected. is shown schematically.
  • Reference numeral 1600B in FIG. 16 schematically shows the phase characteristics of the redesigned first acoustic wave resonator after the inductor LS is connected.
  • the spurious of the first elastic wave resonator is located within the passband of the elastic wave filter both before and after the inductor LS is connected. Specifically, the spurious of the first elastic wave resonator is located near the first end point within the passband of the elastic wave filter.
  • fr before the element EL is connected will be expressed as fr0.
  • fr0 in the example of FIG. 16 indicates fr before the inductor LS is connected.
  • fr after the inductor LS is connected in the example 1600A is written as fr_ls.
  • fr of the redesigned first acoustic wave resonator after the inductor LS is connected is expressed as fr_ls'.
  • fr_ls can become lower than fr0 due to the connection of the inductor LS. Therefore, as an example, the first elastic wave resonator may be redesigned so that fr_ls' matches fr0. In this case, fr_ls' becomes higher than fr_ls due to the redesign of the first elastic wave resonator.
  • the frequency characteristics of the first elastic wave resonator can be shifted to the high frequency side. Therefore, compared to the example with reference numeral 1600A, the spurious of the first elastic wave resonator can be shifted to the higher frequency side. Therefore, as shown in the example at 1600B, the spurious of the first acoustic wave resonator can be located within the first band.
  • the first elastic wave resonator in the elastic wave filter is a parallel resonator and the element EL is an inductor connected in series with the first elastic wave resonator
  • the spurious of one acoustic wave resonator may be located within the first band.
  • FIG. 17 is a diagram for explaining changes in the phase characteristics of the parallel resonator, which is the first elastic wave resonator, in the elastic wave filter 100-4.
  • Reference numeral 1700A in FIG. 17 shows the phase characteristics of the first elastic wave resonator before connecting the capacitor CS (the phase characteristics of the first elastic wave resonator alone), and the phase characteristics of the first elastic wave resonator after connecting the capacitor CS. is shown schematically.
  • Reference numeral 1700B in FIG. 17 schematically shows the phase characteristics of the redesigned first acoustic wave resonator after connecting the capacitor CS.
  • the spurious of the first elastic wave resonator is located within the passband of the elastic wave filter both before and after the capacitor CS is connected. Specifically, the spurious of the first elastic wave resonator is located near the third end point within the passband of the elastic wave filter.
  • fr may increase compared to before connecting the capacitor CS.
  • fr_cs fr after the capacitor CS is connected in the example of 1700A is expressed as fr_cs.
  • fr of the redesigned first acoustic wave resonator after connecting the capacitor CS is expressed as fr_cs'.
  • fr_cs can become higher than fr0 due to the connection of the capacitor CS. Therefore, as an example, the first elastic wave resonator may be redesigned so that fr_cs' matches fr0. In this case, fr_cs' becomes lower than fr_cs due to the redesign of the first elastic wave resonator.
  • the frequency characteristics of the first elastic wave resonator can be shifted to the lower frequency side. Therefore, compared to the example with reference numeral 1700A, the spurious of the first elastic wave resonator can be shifted to the lower frequency side. Therefore, as shown in the example at 1700B, the spurious of the first acoustic wave resonator can be located within the second band.
  • the first elastic wave resonator in the elastic wave filter is a parallel resonator and the element EL is a capacitor connected in series to the first elastic wave resonator
  • the spurious of one acoustic wave resonator may be located within the second band.
  • the first elastic wave resonator in the elastic wave filter may be connected in parallel or in series with the element EL.
  • Element EL may then be a capacitor or an inductor.
  • the spurious of the first elastic wave resonator can be located within the pass band, the first band, or the second band of the elastic wave filter. Moreover, the spurious of the first elastic wave resonator can also be located outside the frequency band of the first elastic wave resonator.
  • the passband of the elastic wave filter may be located between the resonant frequency of the first elastic wave resonator and the spurious of the first elastic wave resonator (e.g., see reference numeral 1600B in FIG. 16).
  • the passband of the elastic wave filter may be located between the anti-resonance frequency of the first elastic wave resonator and the spurious of the first elastic wave resonator (see e.g. 1400B in FIG. 14). ).
  • the passband of the elastic wave filter does not need to include either the resonant frequency or the anti-resonant frequency of the first elastic wave resonator (for example, see reference numeral 1400B in FIG. 14). ).
  • the passband of the elastic wave filter is located on the higher frequency side than the frequency band of the first elastic wave resonator.
  • the passband of the elastic wave filter may be located on the lower frequency side than the frequency band of the first elastic wave resonator. Therefore, for example, the spurious of the first elastic wave resonator may also be located on the lower frequency side than the frequency band of the first elastic wave resonator.
  • the elastic wave filter according to one aspect of the present disclosure may further include a second elastic wave resonator different from the first elastic wave resonator.
  • the elastic wave filter does not need to have an element (eg, a capacitor or an inductor) connected in parallel or in series with the second elastic wave resonator. Therefore, as an example, the second elastic wave resonator may be any one of the two elastic wave resonators other than the first elastic wave resonator (e.g., series resonance child 1S-2).
  • the second elastic wave resonator may be designed so that the spurious of the second elastic wave resonator does not overlap with the spurious of the first elastic wave resonator. Therefore, for example, the second elastic wave resonator is designed so that the spurious of the second elastic wave resonator is not located within the pass band, the first band, or the second band of the elastic wave filter. It's okay to be.
  • the first elastic wave resonator may be designed to have a higher anti-resonance frequency than the second elastic wave resonator. From this, for example, the first elastic wave resonator may be designed to have the highest anti-resonance frequency among the plurality of elastic wave resonators in the elastic wave filter.
  • ⁇ f the first (the width of the frequency band of the elastic wave resonator) may be reduced. Therefore, in this case, ⁇ f may be smaller than the average value of the frequency band widths of the plurality of elastic wave resonators.
  • ⁇ f when the element EL connected in parallel or series to the first acoustic wave resonator is an inductor, the ⁇ f may increase. Therefore, in this case, ⁇ f can be larger than the average value of the frequency band widths of the plurality of elastic wave resonators.
  • FIG. 18 illustrates a schematic configuration of a communication device 151 in the second embodiment.
  • the communication device 151 is an application example of an elastic wave filter according to one aspect of the present disclosure, and performs wireless communication using radio waves.
  • the communication device 151 may include one duplexer 101 as a transmission filter 109 and another duplexer 101 as a reception filter 111.
  • Each of the two duplexers 101 may include an elastic wave filter according to one aspect of the present disclosure.
  • the communication device 151 may include an elastic wave filter according to one aspect of the present disclosure.
  • a transmission information signal TIS containing information to be transmitted is modulated and frequency-increased (converted to a high-frequency signal having a carrier frequency) by an RF-IC (Radio Frequency-Integrated Circuit) 153, and the transmission information signal TIS is converted into a transmission signal. It may be converted to TS.
  • the bandpass filter 155 may remove unnecessary components other than the transmission passband for the TS.
  • the TS after removing unnecessary components may be amplified by the amplifier 157 and input to the transmission filter 109.
  • the transmission filter 109 may remove unnecessary components outside the transmission passband from the input transmission signal TS.
  • the transmission filter 109 may output the TS from which unnecessary components have been removed to the antenna 159 via an antenna terminal (eg, TCin described above).
  • the antenna 159 may convert the TS, which is an electrical signal input to itself, into a radio wave as a wireless signal, and transmit the radio wave to the outside of the communication device 151.
  • the antenna 159 may convert the received radio waves from the outside into a reception signal RS, which is an electrical signal, and input the RS to the reception filter 111 via the antenna terminal.
  • the reception filter 111 may remove unnecessary components other than the reception passband from the input RS.
  • the reception filter 111 may output the reception signal RS from which unnecessary components have been removed to the amplifier 161.
  • the output RS may be amplified by the amplifier 161.
  • the bandpass filter 163 may remove unnecessary components other than the receiving passband from the amplified RS.
  • the frequency of the RS after unnecessary component removal is lowered and demodulated by the RF-IC 153, and may be converted into a received information signal RIS.
  • An elastic wave filter according to aspect 1 of the present disclosure is an elastic wave filter having a first elastic wave resonator, in which the width of the frequency band of the first elastic wave resonator is expressed as ⁇ f, and the elastic wave filter passes through the elastic wave filter.
  • a band extending from a first end point indicating a frequency at the end of the high frequency side of the band to a second end point indicating a frequency higher than the first end point by ⁇ f is referred to as a first band, and the band extends through the passage of the elastic wave filter.
  • a band extending from a third end point indicating a frequency at the end of the low frequency side of the band to a fourth end point indicating a frequency lower by ⁇ f than the third end point is referred to as a second band, and the first elastic wave resonance
  • the child spurious is located outside the frequency band of the first elastic wave resonator and within either the pass band, the first band, or the second band of the elastic wave filter.
  • the elastic wave filter further includes an element connected in parallel or series to the first elastic wave resonator, and the element is a capacitor or an inductor.
  • the first elastic wave resonator is a series resonator, the spurious is located within the first band, and the element is , may be a capacitor connected in parallel to the first acoustic wave resonator.
  • the first elastic wave resonator is a parallel resonator
  • the spurious is located within the first band
  • the element is , may be an inductor connected in series with the first elastic wave resonator.
  • the first elastic wave resonator is a parallel resonator
  • the spurious is located within the second band
  • the element is , may be a capacitor connected in series to the first elastic wave resonator.
  • the first elastic wave resonator is a series resonator or a parallel resonator, and the spurious is within the passband of the elastic wave filter. and the element may be a capacitor connected in series or in parallel to the first acoustic wave resonator.
  • the elastic wave filter according to aspect 7 of the present disclosure is the same as in aspect 1, further comprising a second elastic wave resonator different from the first elastic wave resonator, and the spurious of the second elastic wave resonator is , which is not located within the passband, the first band, or the second band of the elastic wave filter, and is connected in parallel or series to the second elastic wave resonator. It may not have a capacitor or inductor.
  • An elastic wave filter according to an aspect 8 of the present disclosure in the aspect 1, includes a plurality of elastic wave resonators including the first elastic wave resonator, the element is a capacitor, and ⁇ f is a plurality of elastic wave resonators. may be smaller than the average width of the frequency band in the elastic wave resonator.
  • the elastic wave filter according to aspect 9 of the present disclosure is the same as in aspect 1, and includes a plurality of elastic wave resonators including the first elastic wave resonator, the element is an inductor, and ⁇ f is a plurality of elastic wave resonators. may be larger than the average width of the frequency band in the elastic wave resonator.
  • the elastic wave filter according to aspect 10 of the present disclosure in any one of aspects 1 to 9, includes a plurality of elastic wave resonators including the first elastic wave resonator, and the elastic wave filter includes a plurality of elastic wave resonators including the first elastic wave resonator, and The resonator may have the highest anti-resonance frequency among the plurality of elastic wave resonators.
  • the passband of the elastic wave filter includes (i) the resonance frequency of the first elastic wave resonator and the spurious or (ii) between the anti-resonance frequency of the first elastic wave resonator and the spurious.
  • a communication device may include the elastic wave filter according to any one of aspects 1 to 13.

Abstract

In the present invention, the frequency characteristics of an elastic wave filter are improved. This elastic wave filter has a first elastic wave resonator. The width of the frequency band of the first elastic wave resonator is represented as Δf, a band ranging from a first end point indicating the frequency at the high-frequency end of a passband of the elastic wave filter to a second end point indicating a frequency exactly Δf higher than the first end point is referred to as a first band, and a band ranging from a third end point indicating the frequency at the low-frequency end of the passband of the elastic wave filter to a fourth end point indicating a frequency exactly Δf lower than the third end point is referred to as a second band. Spuriousness of the first elastic wave resonator is located outside of the frequency band of the first elastic wave resonator and is located either in the passband of the elastic wave filter, in the first band, or in the second band. The elastic wave filter further has an element connected in parallel or in series to the first elastic wave resonator. The element is a capacitor or an inductor.

Description

弾性波フィルタおよび通信装置Elastic wave filters and communication devices
 本開示の一態様は、弾性波フィルタに関する。 One aspect of the present disclosure relates to an elastic wave filter.
 下記の特許文献1には、弾性波フィルタの構成例が開示されている。 Patent Document 1 below discloses a configuration example of an elastic wave filter.
国際公開第2019/009271号International Publication No. 2019/009271
 本開示の一態様に係る弾性波フィルタは、第1弾性波共振子を有する弾性波フィルタであって、前記第1弾性波共振子の周波数帯域の幅をΔfとして表し、前記弾性波フィルタの通過帯域の高周波側の端の周波数を指す第1端点から、前記第1端点に対してΔfだけ高い周波数を指す第2端点までに亘る帯域を、第1帯域と称し、前記弾性波フィルタの前記通過帯域の低周波側の端の周波数を指す第3端点から、前記第3端点に対してΔfだけ低い周波数を指す第4端点までに亘る帯域を、第2帯域と称し、前記第1弾性波共振子のスプリアスは、前記第1弾性波共振子の前記周波数帯域外に位置しているとともに、前記弾性波フィルタの前記通過帯域内、前記第1帯域内、または前記第2帯域内のいずれかに位置しており、前記弾性波フィルタは、前記第1弾性波共振子に対して並列または直列に接続された要素をさらに有しており、前記要素は、キャパシタまたはインダクタである。 An elastic wave filter according to an aspect of the present disclosure is an elastic wave filter having a first elastic wave resonator, in which the width of the frequency band of the first elastic wave resonator is expressed as Δf, and the elastic wave filter passes through the elastic wave filter. A band extending from a first end point indicating a frequency at the end of the high frequency side of the band to a second end point indicating a frequency higher than the first end point by Δf is referred to as a first band, and the band extends through the passage of the elastic wave filter. A band extending from a third end point indicating a frequency at the end of the low frequency side of the band to a fourth end point indicating a frequency lower by Δf than the third end point is referred to as a second band, and the first elastic wave resonance The child spurious is located outside the frequency band of the first elastic wave resonator and within either the pass band, the first band, or the second band of the elastic wave filter. The elastic wave filter further includes an element connected in parallel or series to the first elastic wave resonator, and the element is a capacitor or an inductor.
実施形態1の弾性波フィルタの基本構成を例示する図である。1 is a diagram illustrating the basic configuration of an elastic wave filter of Embodiment 1. FIG. 実施形態1の弾性波フィルタにおける弾性波共振子の一構成例を示す図である。3 is a diagram showing an example of the configuration of an elastic wave resonator in the elastic wave filter of Embodiment 1. FIG. 本開示の一態様に係る弾性波フィルタの周波数特性の一例を模式的に示す図である。FIG. 2 is a diagram schematically showing an example of frequency characteristics of an elastic wave filter according to one aspect of the present disclosure. 本開示の一態様に係る第1弾性波共振子の周波数特性の一例を模式的に示す図である。FIG. 3 is a diagram schematically showing an example of frequency characteristics of a first elastic wave resonator according to one aspect of the present disclosure. 図1の基本構成に従う弾性波フィルタについての第1の構成例を示す図である。2 is a diagram showing a first configuration example of an elastic wave filter according to the basic configuration of FIG. 1. FIG. 図1の基本構成に従う弾性波フィルタについての第2の構成例を示す図である。2 is a diagram showing a second configuration example of an elastic wave filter according to the basic configuration of FIG. 1. FIG. 図1の基本構成に従う弾性波フィルタについての第3の構成例を示す図である。2 is a diagram showing a third configuration example of an elastic wave filter according to the basic configuration of FIG. 1. FIG. 図1の基本構成に従う弾性波フィルタについての第4の構成例を示す図である。FIG. 3 is a diagram showing a fourth configuration example of an elastic wave filter according to the basic configuration of FIG. 1; 第1の構成例に係る弾性波フィルタにおける第1弾性波共振子の位相特性およびインピーダンス特性の一例を示す図である。It is a figure which shows an example of the phase characteristic and impedance characteristic of the 1st elastic wave resonator in the elastic wave filter based on the 1st example of a structure. 第2の構成例に係る弾性波フィルタにおける第1弾性波共振子の位相特性およびインピーダンス特性の一例を示す図である。It is a figure which shows an example of the phase characteristic and impedance characteristic of the 1st elastic wave resonator in the elastic wave filter based on the 2nd example of a structure. 第3の構成例に係る弾性波フィルタにおける第1弾性波共振子の位相特性およびインピーダンス特性の一例を示す図である。It is a figure which shows an example of the phase characteristic and impedance characteristic of the 1st elastic wave resonator in the elastic wave filter based on the 3rd example of a structure. 第4の構成例に係る弾性波フィルタにおける第1弾性波共振子の位相特性およびインピーダンス特性の一例を示す図である。It is a figure which shows an example of the phase characteristic and impedance characteristic of the 1st elastic wave resonator in the elastic wave filter based on the 4th example of a structure. 第1の構成例に係る弾性波フィルタにおける第1弾性波共振子の位相特性およびインピーダンス特性の別の例を示す図である。FIG. 7 is a diagram showing another example of the phase characteristics and impedance characteristics of the first elastic wave resonator in the elastic wave filter according to the first configuration example. 第1の構成例に係る弾性波フィルタにおける第1弾性波共振子の位相特性の変化について説明するための図である。FIG. 3 is a diagram for explaining a change in phase characteristics of a first elastic wave resonator in an elastic wave filter according to a first configuration example. 第2の構成例に係る弾性波フィルタにおける第1弾性波共振子の位相特性の変化について説明するための図である。FIG. 7 is a diagram for explaining a change in phase characteristics of a first elastic wave resonator in an elastic wave filter according to a second configuration example. 第3の構成例に係るにおける第1弾性波共振子の位相特性の変化について説明するための図である。FIG. 7 is a diagram for explaining a change in phase characteristics of the first elastic wave resonator according to a third configuration example. 第4の構成例に係るにおける第1弾性波共振子の位相特性の変化について説明するための図である。It is a figure for explaining the change of the phase characteristic of the 1st elastic wave resonator concerning the 4th example of composition. 実施形態2における通信装置の概略的な構成を例示する図である。3 is a diagram illustrating a schematic configuration of a communication device in Embodiment 2. FIG.
 〔実施形態1〕
 実施形態1について以下に説明する。説明の便宜上、実施形態1にて説明したコンポーネント(構成要素)と同じ機能を有するコンポーネントについては、以降の各実施形態では同じ符号を付し、その説明を繰り返さない。簡潔化のため、公知の技術事項についても説明を適宜省略する。本明細書において述べる各コンポーネント、各材料、および各数値は、特に矛盾のない限り、いずれも単なる一例である。それゆえ、例えば、特に矛盾のない限り、各コンポーネントの位置関係および接続関係は、各図の例に限定されない。また、各図は、必ずしもスケール通りに図示されていない。
[Embodiment 1]
Embodiment 1 will be described below. For convenience of explanation, components having the same functions as the components (components) described in Embodiment 1 are given the same reference numerals in each of the subsequent embodiments, and the description thereof will not be repeated. For the sake of brevity, descriptions of known technical matters will be omitted as appropriate. Each component, each material, and each numerical value described in this specification is merely an example unless there is a contradiction. Therefore, for example, unless there is a particular contradiction, the positional relationship and connection relationship of each component is not limited to the example shown in each figure. Further, each figure is not necessarily shown to scale.
 (弾性波フィルタの基本構成)
 図1は、実施形態1の弾性波フィルタ100の基本構成を例示する。実施形態1では、ラダー型フィルタとしての弾性波フィルタ100を例示する。ただし、当業者であれば明らかである通り、本開示の一態様に係る弾性波フィルタは、ラダー型フィルタに限定されない。
(Basic configuration of elastic wave filter)
FIG. 1 illustrates the basic configuration of an elastic wave filter 100 according to a first embodiment. In the first embodiment, an elastic wave filter 100 as a ladder type filter is illustrated. However, as is clear to those skilled in the art, the elastic wave filter according to one aspect of the present disclosure is not limited to the ladder type filter.
 弾性波フィルタ100は、第1弾性波共振子を含む少なくとも1つの弾性波共振子を有していてよい。したがって、例えば、弾性波フィルタ100は、複数の弾性波共振子を有していてよい。言い換えれば、弾性波フィルタ100は、第1弾性波共振子とは異なる第2弾性波共振子をさらに有していてよい。図1の例では、弾性波フィルタ100は、3つの弾性波共振子1を有している。 The elastic wave filter 100 may have at least one elastic wave resonator including a first elastic wave resonator. Therefore, for example, the elastic wave filter 100 may include a plurality of elastic wave resonators. In other words, the elastic wave filter 100 may further include a second elastic wave resonator different from the first elastic wave resonator. In the example of FIG. 1, the elastic wave filter 100 has three elastic wave resonators 1.
 図1に示す通り、弾性波フィルタ100は、弾性波共振子1として、直列腕SLに位置する弾性波共振子(直列共振子)を有していてよい。図1の例では、弾性波フィルタ100は、直列共振子1S-1および直列共振子1S-2を有している。本明細書では、直列共振子1S-1および直列共振子1S-2を総称的に、直列共振子1Sとも称する。 As shown in FIG. 1, the elastic wave filter 100 may include, as the elastic wave resonator 1, an elastic wave resonator (series resonator) located in the series arm SL. In the example of FIG. 1, the elastic wave filter 100 includes a series resonator 1S-1 and a series resonator 1S-2. In this specification, the series resonator 1S-1 and the series resonator 1S-2 are also generically referred to as the series resonator 1S.
 直列腕SLは、入力端子Pinおよび出力端子Poutに接続されていてよい。図1の例では、直列共振子1S-1は入力端子Pinに近い側の直列共振子(入力側の直列共振子)であり、直列共振子1S-2は出力端子Poutに近い側の直列共振子(出力側の直列共振子)である。 The series arm SL may be connected to the input terminal Pin and the output terminal Pout. In the example of FIG. 1, the series resonator 1S-1 is the series resonator on the side closer to the input terminal Pin (the series resonator on the input side), and the series resonator 1S-2 is the series resonator on the side closer to the output terminal Pout. (series resonator on the output side).
 そして、弾性波フィルタ100は、弾性波共振子1として、並列腕PLに位置する弾性波共振子(並列共振子)を有していてもよい。図1の例では、弾性波フィルタ100は、並列共振子1Pを有している。並列腕PLは、直列共振子1S-1と直列共振子1S-2との間から延び、かつ、並列共振子1Pを介して接地端子GNDとに接続されていてよい。 The elastic wave filter 100 may include, as the elastic wave resonator 1, an elastic wave resonator (parallel resonator) located in the parallel arm PL. In the example of FIG. 1, the elastic wave filter 100 has a parallel resonator 1P. The parallel arm PL may extend from between the series resonator 1S-1 and the series resonator 1S-2, and may be connected to the ground terminal GND via the parallel resonator 1P.
 図1では、直列共振子1S-1が第1弾性波共振子である場合が例示されている。ただし、以下の各説明から明らかである通り、第1弾性波共振子は、弾性波フィルタ100が有する少なくとも1つの弾性波共振子1のうちの任意の1つであってよい。したがって、後述する通り、並列共振子1Pが第1弾性波共振子であってもよい。 In FIG. 1, a case is illustrated in which the series resonator 1S-1 is the first elastic wave resonator. However, as is clear from each description below, the first elastic wave resonator may be any one of the at least one elastic wave resonator 1 included in the elastic wave filter 100. Therefore, as described later, the parallel resonator 1P may be the first elastic wave resonator.
 弾性波フィルタ100は、第1弾性波共振子に対して並列または直列に接続された要素ELをさらに有していてよい。図1の例では、要素ELは、直列共振子1S-1に対して並列に接続されている。以下により詳細に述べる通り、要素ELは、キャパシタまたはインダクタであってよい。図1の基本構成に従う弾性波フィルタの複数のバリエーションについては、後述する。 The elastic wave filter 100 may further include an element EL connected in parallel or series to the first elastic wave resonator. In the example of FIG. 1, element EL is connected in parallel to series resonator 1S-1. As discussed in more detail below, element EL may be a capacitor or an inductor. A plurality of variations of the elastic wave filter according to the basic configuration shown in FIG. 1 will be described later.
 一例として、要素ELは、ディスクリート部品によって具現化されてよい。別の例として、要素ELは、以下に述べる圧電体層2上の電極配線によって具現化されてもよい。さらに別の例として、弾性波フィルタ100は、誘電体層と導体層とを含む多層基板を有していてもよい。この場合、要素ELは、多層基板内の電極パターンによって具現化されてもよい。 As an example, element EL may be embodied by a discrete component. As another example, the element EL may be realized by electrode wiring on the piezoelectric layer 2 described below. As yet another example, the acoustic wave filter 100 may have a multilayer substrate including a dielectric layer and a conductor layer. In this case, the element EL may be embodied by an electrode pattern within the multilayer substrate.
 (弾性波共振子の一構成例)
 図2は、弾性波フィルタ100における弾性波共振子1の一構成例を示す。図2では、弾性波共振子1の積層構造が模式的に示されている。以下の説明では、便宜的に、図2に示されている直交座標系(xyz座標系)を導入する。実施形態1の例におけるx方向は、弾性波フィルタ100における圧電体層2内を伝搬する弾性波の伝搬方向である。これに対し、y方向は、x方向と交差する方向の一例である。z方向は、弾性波共振子1の各部材の厚み方向である。以下では、z方向の正の向きを上方向として説明する。したがって、z方向の負の向きは下方向である。
(Example of configuration of elastic wave resonator)
FIG. 2 shows an example of the configuration of the elastic wave resonator 1 in the elastic wave filter 100. In FIG. 2, the laminated structure of the elastic wave resonator 1 is schematically shown. In the following description, for convenience, the orthogonal coordinate system (xyz coordinate system) shown in FIG. 2 will be introduced. The x direction in the example of the first embodiment is the propagation direction of the elastic wave propagating within the piezoelectric layer 2 in the elastic wave filter 100. On the other hand, the y direction is an example of a direction intersecting the x direction. The z direction is the thickness direction of each member of the elastic wave resonator 1. In the following description, the positive direction in the z direction is assumed to be an upward direction. Therefore, the negative direction in the z direction is downward.
 弾性波フィルタ100は、(i)支持基板5と、(ii)支持基板5上に位置する圧電体層2を有していてよい。支持基板5および圧電体層2は、少なくとも1つの弾性波共振子1において共通であってよい。弾性波共振子1は、圧電体層2上に位置しているIDT(Interdigital Transduce)電極3を有していてよい。少なくとも1つの弾性波共振子1のそれぞれは、個別のIDT電極3を有していてよい。 The elastic wave filter 100 may include (i) a support substrate 5 and (ii) a piezoelectric layer 2 located on the support substrate 5. The support substrate 5 and the piezoelectric layer 2 may be common to at least one elastic wave resonator 1. The elastic wave resonator 1 may include an IDT (Interdigital Transduce) electrode 3 located on the piezoelectric layer 2 . Each of the at least one acoustic wave resonator 1 may have an individual IDT electrode 3 .
 支持基板5は、弾性波フィルタ100の各部を支持する。一例として、支持基板5は、Si基板であってよい。圧電体層2は、圧電性を有する単結晶材料によって構成されてよい。例えば、圧電体層2の材料は、タンタル酸リチウム(LiTaO:LTとも称される)またはニオブ酸リチウム(LiNbO:LNとも称される)であってよい。一例として、圧電体層2は、LT層であってよい。 The support substrate 5 supports each part of the acoustic wave filter 100. As an example, the support substrate 5 may be a Si substrate. The piezoelectric layer 2 may be made of a single crystal material having piezoelectricity. For example, the material of the piezoelectric layer 2 may be lithium tantalate (also referred to as LiTaO 3 :LT) or lithium niobate (also referred to as LiNbO 3 :LN). As an example, the piezoelectric layer 2 may be an LT layer.
 IDT電極3は、例えば、金属からなる導電層を含んでいてよい。一例として、当該金属は、Alであってよい。IDT電極3は、当該導電層を覆う保護層をさらに含んでいてもよい。一例として、当該保護層の材料は、TEOS(Tetraethyl Orthosilicate,テトラエチルオルトシリケート)であってよい。IDT電極3は、y方向において互いに対向している不図示の第1バスバーおよび第2バスバーを有していてよい。 The IDT electrode 3 may include, for example, a conductive layer made of metal. As an example, the metal may be Al. The IDT electrode 3 may further include a protective layer covering the conductive layer. As an example, the material of the protective layer may be TEOS (Tetraethyl Orthosilicate). The IDT electrode 3 may include a first bus bar and a second bus bar (not shown) that face each other in the y direction.
 そして、IDT電極3は、(i)第1バスバーに接続された複数の第1電極指32aと、(ii)第2バスバーに接続された複数の第2電極指32bと、を有していてよい。第1電極指32aは、y方向において、第1バスバーから第2バスバー側へと延びていてよい。第2電極指32bは、y方向において、第2バスバーから第1バスバー側へと延びていてよい。したがって、第2電極指32bは、y方向において、複数の第1電極指32aのそれぞれと互いに間挿し合っていてよい。 The IDT electrode 3 includes (i) a plurality of first electrode fingers 32a connected to the first bus bar, and (ii) a plurality of second electrode fingers 32b connected to the second bus bar. good. The first electrode finger 32a may extend from the first bus bar toward the second bus bar in the y direction. The second electrode finger 32b may extend from the second bus bar toward the first bus bar in the y direction. Therefore, the second electrode finger 32b may be inserted into each of the plurality of first electrode fingers 32a in the y direction.
 図2に示す通り、第1電極指32aおよび第2電極指32bは、圧電体層2上において、x方向に概ね一定の間隔を有するように交互に繰り返して位置していてよい。本明細書では、第1電極指32aおよび第2電極指32bを、総称的に電極指32とも称する。本明細書では、IDT電極3の電極指ピッチをpとして表す。pは、例えば、隣り合う2つの電極指32の中心間の、x方向におけるピッチ(繰り返し間隔)であってよい。一例として、pは、IDT電極3によって励振される弾性波の波長λの半値(λ/2)と等しく設定されてよい。この場合、λは、pの2倍の長さとして規定されてよい。そこで、実施形態1では、λ=2pである場合を例示する。 As shown in FIG. 2, the first electrode fingers 32a and the second electrode fingers 32b may be alternately and repeatedly positioned on the piezoelectric layer 2 at approximately constant intervals in the x direction. In this specification, the first electrode finger 32a and the second electrode finger 32b are also generically referred to as electrode fingers 32. In this specification, the electrode finger pitch of the IDT electrode 3 is expressed as p. p may be, for example, the pitch (repetition interval) between the centers of two adjacent electrode fingers 32 in the x direction. As an example, p may be set equal to the half value (λ/2) of the wavelength λ of the elastic wave excited by the IDT electrode 3. In this case, λ may be defined as twice the length of p. Therefore, in the first embodiment, a case where λ=2p is exemplified.
 また、本明細書では、x方向における電極指32の長さを、電極指32の幅wと称する。wは、例えば、弾性波共振子1に要求される電気特性に応じて適宜設定されてよい。一例として、wは、pに応じて設定されてよい。本明細書では、電極指ピッチに対する当該電極指の幅の比率(w/p)を、当該電極指のDuty(デューティ)と称する。Dutyを変更することにより、弾性波共振子1の周波数特性を制御できる。このため、Dutyを変更することにより、弾性波フィルタ100の周波数特性を制御できる。 Furthermore, in this specification, the length of the electrode finger 32 in the x direction is referred to as the width w of the electrode finger 32. w may be set as appropriate, for example, depending on the electrical characteristics required of the elastic wave resonator 1. As an example, w may be set according to p. In this specification, the ratio (w/p) of the width of the electrode finger to the pitch of the electrode finger is referred to as the duty of the electrode finger. By changing the duty, the frequency characteristics of the elastic wave resonator 1 can be controlled. Therefore, by changing the Duty, the frequency characteristics of the elastic wave filter 100 can be controlled.
 ただし、wまたはpの一方を変更することにより、弾性波共振子1の周波数特性を制御することもできる。本明細書では、pを変更することにより、弾性波共振子1の周波数特性が制御される場合を後に例示する。 However, the frequency characteristics of the elastic wave resonator 1 can also be controlled by changing either w or p. In this specification, a case will be illustrated later in which the frequency characteristics of the elastic wave resonator 1 are controlled by changing p.
 本明細書では、圧電体層2の厚みをTとして表す。実施形態1では、圧電体層2が十分に薄い場合、すなわちTが十分に小さい場合を例示する。一例として、Tは、λ以下であってよい。この場合、IDT電極3は、弾性波として板波(ラム波,Lamb waves)を励振しうる。一例として、IDT電極3は、板波としてA1ラム波を励振しうる。 In this specification, the thickness of the piezoelectric layer 2 is expressed as T. Embodiment 1 exemplifies a case where the piezoelectric layer 2 is sufficiently thin, that is, a case where T is sufficiently small. As an example, T may be less than or equal to λ. In this case, the IDT electrode 3 can excite plate waves (Lamb waves) as elastic waves. As an example, the IDT electrode 3 can excite an A1 Lamb wave as a plate wave.
 (弾性波フィルタの減衰特性についての模式的な例)
 図3は、本開示の一態様に係る弾性波フィルタ(例:弾性波フィルタ100)の周波数特性(より具体的には、減衰特性)の一例を模式的に示す。図3のグラフにおいて、横軸(Frequency)は周波数(単位:Hz)を示し、縦軸(Transmission)は減衰量(単位:dB)を示す。減衰量は、透過量と読み換えることもできる。このため、減衰特性は、透過特性と読み換えることもできる。
(Schematic example of attenuation characteristics of elastic wave filter)
FIG. 3 schematically shows an example of frequency characteristics (more specifically, attenuation characteristics) of an elastic wave filter (eg, elastic wave filter 100) according to one aspect of the present disclosure. In the graph of FIG. 3, the horizontal axis (Frequency) indicates frequency (unit: Hz), and the vertical axis (transmission) indicates attenuation (unit: dB). The amount of attenuation can also be read as the amount of transmission. Therefore, the attenuation characteristic can also be read as the transmission characteristic.
 本明細書では、弾性波フィルタの通過帯域とは、低周波側カットオフ周波数から高周波側カットオフ周波数までの周波数帯域を指す。弾性波フィルタ100の減衰特性では、最小減衰量0dBにおける周波数を示すピーク周波数に対して、低周波側および高周波側のそれぞれに-3dB減衰点が存在する。 In this specification, the passband of an elastic wave filter refers to a frequency band from a low frequency side cutoff frequency to a high frequency side cutoff frequency. In the attenuation characteristic of the elastic wave filter 100, there are -3 dB attenuation points on each of the low frequency side and the high frequency side with respect to the peak frequency indicating the frequency at the minimum attenuation amount of 0 dB.
 高周波側カットオフ周波数(図3のfcut1)は、弾性波フィルタの通過帯域の高周波側における-3dB減衰点の周波数である。fcut1は、当該通過帯域の高周波側の端の周波数とも表現できる。低周波側カットオフ周波数(図3のfcut2)は、低周波側における-3dB減衰点の周波数である。fcut2は、当該通過帯域の低周波側の端の周波数とも表現できる。したがって、弾性波フィルタの通過帯域は、fcut2からfcut1までに亘る帯域である。 The high frequency side cutoff frequency (fcut1 in FIG. 3) is the frequency of the −3 dB attenuation point on the high frequency side of the passband of the elastic wave filter. fcut1 can also be expressed as the frequency at the end of the high frequency side of the passband. The low frequency side cutoff frequency (fcut2 in FIG. 3) is the frequency of the −3 dB attenuation point on the low frequency side. fcut2 can also be expressed as the frequency at the lower frequency side end of the passband. Therefore, the passband of the elastic wave filter is a band extending from fcut2 to fcut1.
 本明細書では、第1弾性波共振子の周波数帯域の幅をΔfとして表す。Δfの定義については後述する。そして、本明細書では、第1端点から第2端点までに亘る帯域を第1帯域と称する。第1端点は、弾性波フィルタの通過帯域の高周波側の端の周波数(すなわち、fcut1)を指す点であってよい。第2端点は、前記第1始点に対して+Δfだけ高い周波数(すなわちfcut1+Δf)を指す点であってよい。 In this specification, the width of the frequency band of the first elastic wave resonator is expressed as Δf. The definition of Δf will be described later. In this specification, the band extending from the first end point to the second end point is referred to as a first band. The first end point may be a point indicating the frequency at the end of the high frequency side of the passband of the elastic wave filter (ie, fcut1). The second end point may point to a frequency that is +Δf higher than the first starting point (ie, fcut1+Δf).
 また、本明細書では、第3端点から第4端点までの帯域を第2帯域と称する。第3端点は、弾性波フィルタの通過帯域の低周波側の端の周波数(すなわち、fcut2)を指す点であってよい。第4端点は、第3端点に対してΔfだけ低い周波数(すなわち、fcut2-Δf)を指す点であってよい。 Furthermore, in this specification, the band from the third end point to the fourth end point is referred to as a second band. The third end point may be a point indicating the frequency at the lower frequency side end of the passband of the elastic wave filter (ie, fcut2). The fourth endpoint may be a point pointing to a frequency that is Δf lower than the third endpoint (ie, fcut2−Δf).
 図3に示す通り、本開示の一態様に係る弾性波フィルタでは、第1弾性波共振子のスプリアスは、第4端点(fcut2-Δf)から第2端点(fcut1+Δf)までに亘る帯域内に位置しうる。言い換えれば、第1弾性波共振子のスプリアスは、弾性波フィルタの通過帯域内、第1帯域内、または第2帯域内のいずれかに位置しうる。 As shown in FIG. 3, in the elastic wave filter according to one aspect of the present disclosure, the spurious of the first elastic wave resonator is located within a band extending from the fourth end point (fcut2-Δf) to the second end point (fcut1+Δf). I can do it. In other words, the spurious of the first elastic wave resonator may be located within the pass band, within the first band, or within the second band of the elastic wave filter.
 (第1弾性波共振子の位相特性についての模式的な例)
 図4は、本開示の一態様に係る第1弾性波共振子の周波数特性(より具体的には、位相特性)の一例を模式的に示す。図4のグラフにおける縦軸(Phase)は、第1弾性波共振子のインピーダンスの位相(以下、単に「位相」と略称する)(単位:°)を表す。図4では、要素ELに接続される前の第1弾性波共振子の位相特性(つまり、第1弾性波共振子単独での位相特性)が示されている。
(Schematic example of phase characteristics of the first elastic wave resonator)
FIG. 4 schematically shows an example of frequency characteristics (more specifically, phase characteristics) of the first elastic wave resonator according to one aspect of the present disclosure. The vertical axis (Phase) in the graph of FIG. 4 represents the phase (hereinafter simply referred to as "phase") of the impedance of the first elastic wave resonator (unit: degrees). FIG. 4 shows the phase characteristics of the first elastic wave resonator before being connected to the element EL (that is, the phase characteristics of the first elastic wave resonator alone).
 図4に示す通り、第1弾性波共振子の周波数帯域の幅は、Δf=|fa-fr|として定められてよい。frは第1弾性波共振子の共振周波数であり、faは第1弾性波共振子の反共振周波数である。このように、第1弾性波共振子の周波数帯域は、frからfaまでに亘る帯域であってよい。実施形態1では、fr<faの場合を例示する。図4の例では、第1弾性波共振子の周波数帯域は、上述の第2帯域よりも低周波側に位置している。 As shown in FIG. 4, the width of the frequency band of the first elastic wave resonator may be determined as Δf=|fa−fr|. fr is the resonant frequency of the first elastic wave resonator, and fa is the anti-resonant frequency of the first elastic wave resonator. In this way, the frequency band of the first elastic wave resonator may range from fr to fa. In the first embodiment, a case where fr<fa is illustrated. In the example of FIG. 4, the frequency band of the first elastic wave resonator is located on the lower frequency side than the above-mentioned second band.
 本明細書では、第1弾性波共振子のインピーダンスの大きさ(絶対値)を|Z|と表記する。以下の説明では、特に矛盾のない限り、インピーダンスの大きさを、単にインピーダンスと略記する。本明細書において、frは、インピーダンスが最小となる周波数として定められる。これに対し、faは、インピーダンスが最大となる周波数として定められる。第1弾性波共振子のインピーダンス特性を示すグラフの例については、後述する。 In this specification, the magnitude (absolute value) of the impedance of the first elastic wave resonator is expressed as |Z|. In the following description, the magnitude of impedance will be simply abbreviated as impedance unless there is a particular contradiction. In this specification, fr is defined as the frequency at which the impedance is minimum. On the other hand, fa is determined as the frequency at which the impedance is maximum. An example of a graph showing the impedance characteristics of the first elastic wave resonator will be described later.
 図4に示す通り、一般的には、第1弾性波共振子の位相のピークは、第1弾性波共振子の周波数帯域内に位置している。これに対し、第1弾性波共振子のスプリアスは、第1弾性波共振子の周波数帯域外に位置していることが一般的である。そして、上述の図3においても述べた通り、第1弾性波共振子のスプリアスは、弾性波フィルタの通過帯域内、第1帯域内、または第2帯域内のいずれかに位置しうる。図4の例では、第1弾性波共振子のスプリアスは、弾性波フィルタの通過帯域内に位置している。 As shown in FIG. 4, the phase peak of the first elastic wave resonator is generally located within the frequency band of the first elastic wave resonator. On the other hand, the spurious of the first elastic wave resonator is generally located outside the frequency band of the first elastic wave resonator. As described in FIG. 3 above, the spurious of the first elastic wave resonator can be located within the pass band, the first band, or the second band of the elastic wave filter. In the example of FIG. 4, the spurious of the first elastic wave resonator is located within the passband of the elastic wave filter.
 (弾性波フィルタの各構成例)
 図5は、図1の基本構成に従う弾性波フィルタについての第1の構成例を示す。図5の弾性波フィルタを、弾性波フィルタ100-1と称する。弾性波フィルタ100-1における第1弾性波共振子は、直列共振子(例:直列共振子1S-1)であってよい。
(Each configuration example of elastic wave filter)
FIG. 5 shows a first configuration example of an elastic wave filter according to the basic configuration of FIG. The elastic wave filter shown in FIG. 5 is referred to as an elastic wave filter 100-1. The first elastic wave resonator in the elastic wave filter 100-1 may be a series resonator (eg, series resonator 1S-1).
 弾性波フィルタ100-1は、第1弾性波共振子(例:直列共振子1S-1)に対して並列に接続されたキャパシタCPを、要素ELとして有していてよい。したがって、弾性波フィルタ100-1は、第1弾性波共振子である直列共振子とキャパシタCPとを並列接続することによって構成された第1ユニットUN1を有していてよい。後述する通り、弾性波フィルタ100-1では、第1弾性波共振子のスプリアスは、第1帯域内に位置しうる。 The elastic wave filter 100-1 may include a capacitor CP connected in parallel to the first elastic wave resonator (eg, series resonator 1S-1) as an element EL. Therefore, the elastic wave filter 100-1 may include a first unit UN1 configured by connecting a series resonator, which is a first elastic wave resonator, and a capacitor CP in parallel. As will be described later, in the elastic wave filter 100-1, the spurious of the first elastic wave resonator may be located within the first band.
 図6は、図1の基本構成に従う弾性波フィルタについての第2の構成例を示す。図6の弾性波フィルタを、弾性波フィルタ100-2と称する。弾性波フィルタ100-2においても、第1弾性波共振子は、直列共振子(例:直列共振子1S-1)であってよい。 FIG. 6 shows a second configuration example of an elastic wave filter according to the basic configuration of FIG. 1. The elastic wave filter shown in FIG. 6 is referred to as an elastic wave filter 100-2. In the elastic wave filter 100-2 as well, the first elastic wave resonator may be a series resonator (eg, series resonator 1S-1).
 弾性波フィルタ100-2は、第1弾性波共振子(例:直列共振子1S-1)に対して並列に接続されたインダクタLPを、要素ELとして有していてよい。したがって、弾性波フィルタ100-2は、第1弾性波共振子である直列共振子とインダクタLPとを並列接続することによって構成された第2ユニットUN2を有していてよい。弾性波フィルタ100-2は、弾性波フィルタ100-1の別の構成例である。後述する通り、弾性波フィルタ100-2では、第1弾性波共振子のスプリアスは、第2帯域内に位置しうる。 The elastic wave filter 100-2 may include an inductor LP connected in parallel to the first elastic wave resonator (eg, series resonator 1S-1) as an element EL. Therefore, the elastic wave filter 100-2 may include a second unit UN2 configured by connecting a series resonator, which is a first elastic wave resonator, and an inductor LP in parallel. Elastic wave filter 100-2 is another configuration example of elastic wave filter 100-1. As described later, in the elastic wave filter 100-2, the spurious of the first elastic wave resonator may be located within the second band.
 図7は、図1の基本構成に従う弾性波フィルタについての第3の構成例を示す。図7の弾性波フィルタを、弾性波フィルタ100-3と称する。弾性波フィルタ100-3における第1弾性波共振子は、並列共振子(例:並列共振子1P)であってよい。 FIG. 7 shows a third configuration example of an elastic wave filter according to the basic configuration of FIG. 1. The elastic wave filter shown in FIG. 7 is referred to as an elastic wave filter 100-3. The first elastic wave resonator in the elastic wave filter 100-3 may be a parallel resonator (eg, parallel resonator 1P).
 弾性波フィルタ100-3は、第1弾性波共振子(例:並列共振子1P)に対して直列に接続されたインダクタLSを、要素ELとして有していてよい。したがって、弾性波フィルタ100-3は、第1弾性波共振子である並列共振子とインダクタLSとを直列接続することによって構成された第3ユニットUN3を有していてよい。後述する通り、弾性波フィルタ100-3では、第1弾性波共振子のスプリアスは、第1帯域内に位置しうる。 The elastic wave filter 100-3 may have an inductor LS connected in series to the first elastic wave resonator (eg, parallel resonator 1P) as an element EL. Therefore, the elastic wave filter 100-3 may include a third unit UN3 configured by connecting a parallel resonator, which is a first elastic wave resonator, and an inductor LS in series. As described later, in the elastic wave filter 100-3, the spurious of the first elastic wave resonator may be located within the first band.
 図8は、図1の基本構成に従う弾性波フィルタについての第4の構成例を示す。図8の弾性波フィルタを、弾性波フィルタ100-4と称する。弾性波フィルタ100-4においても、第1弾性波共振子は、並列共振子(例:並列共振子1P)であってよい。 FIG. 8 shows a fourth configuration example of an elastic wave filter according to the basic configuration of FIG. 1. The elastic wave filter shown in FIG. 8 is referred to as an elastic wave filter 100-4. In the elastic wave filter 100-4 as well, the first elastic wave resonator may be a parallel resonator (eg, parallel resonator 1P).
 弾性波フィルタ100-4は、第1弾性波共振子(例:並列共振子1P)に対して直列に接続されたキャパシタCSを、要素ELとして有していてよい。したがって、弾性波フィルタ100-4は、第1弾性波共振子である並列共振子とキャパシタCSとを直列接続することによって構成された第4ユニットUN4を有していてよい。弾性波フィルタ100-4は、弾性波フィルタ100-3の別の構成例である。後述する通り、弾性波フィルタ100-4では、第1弾性波共振子のスプリアスは、第2帯域内に位置しうる。 The elastic wave filter 100-4 may have a capacitor CS connected in series to the first elastic wave resonator (eg, parallel resonator 1P) as an element EL. Therefore, the elastic wave filter 100-4 may include a fourth unit UN4 configured by connecting a parallel resonator, which is a first elastic wave resonator, and a capacitor CS in series. Elastic wave filter 100-4 is another configuration example of elastic wave filter 100-3. As will be described later, in the elastic wave filter 100-4, the spurious of the first elastic wave resonator may be located within the second band.
 (各弾性波フィルタにおける第1弾性波共振子の周波数特性)
 続いて、上述の各弾性波フィルタにおける第1弾性波共振子の周波数特性の例について述べる。以下に述べる各例において、第1弾性波共振子の設計条件は、
  ・p(IDT電極の電極指ピッチ):1.26μm
  ・IDT電極のDuty:0.7
  ・IDT電極の電極指の数:150
  ・IDT電極の電極指の交差幅:61.2μm
である。ただし、後述の図13の例では、異なる設計条件が適用される場合がある。
(Frequency characteristics of the first elastic wave resonator in each elastic wave filter)
Next, an example of the frequency characteristics of the first elastic wave resonator in each of the above elastic wave filters will be described. In each example described below, the design conditions for the first elastic wave resonator are:
・p (electrode finger pitch of IDT electrode): 1.26 μm
・Duty of IDT electrode: 0.7
・Number of electrode fingers of IDT electrode: 150
・Intersection width of electrode fingers of IDT electrode: 61.2 μm
It is. However, in the example of FIG. 13 described later, different design conditions may be applied.
 各例の弾性波フィルタでは、T(圧電体層の厚み)=0.48μmに設計されている。上述の設計条件によれば、λ=2.52μmである。したがって、各例の弾性波フィルタでは、Tはλより小さい。 The elastic wave filters of each example are designed to have T (thickness of the piezoelectric layer) = 0.48 μm. According to the above design conditions, λ=2.52 μm. Therefore, for each example elastic wave filter, T is smaller than λ.
 加えて、各例の弾性波フィルタでは、fa=4835.1MHzとなるように、第1弾性波共振子が設計されている。以下に示す各グラフの横軸は、規格化周波数fnを示す。fnは、周波数fをfaによって除算した値として与えられる。したがって、以下に示す各グラフの横軸は、fに読み換えられてよい。 In addition, in each example of the elastic wave filter, the first elastic wave resonator is designed so that fa=4835.1 MHz. The horizontal axis of each graph shown below indicates the normalized frequency fn. fn is given as the frequency f divided by fa. Therefore, the horizontal axis of each graph shown below may be read as f.
 上述の図4の例とは異なり、以下に示す周波数特性は、弾性波フィルタ内において、要素ELと接続された状態における第1弾性波共振子の周波数特性であることに留意されたい。すなわち、以下に示す周波数特性は、要素ELと接続される前の状態における第1弾性波共振子の周波数特性(第1弾性波共振子単体としての周波数特性)ではないことに留意されたい。したがって、以下の各説明におけるfrおよびfaはそれぞれ、別段の定めが無い限り、要素ELと接続された状態における第1弾性波共振子の共振周波数および反共振周波数である。 It should be noted that, unlike the example of FIG. 4 described above, the frequency characteristics shown below are the frequency characteristics of the first elastic wave resonator in a state connected to the element EL in the elastic wave filter. That is, it should be noted that the frequency characteristics shown below are not the frequency characteristics of the first elastic wave resonator in a state before being connected to the element EL (the frequency characteristics of the first elastic wave resonator alone). Therefore, fr and fa in each of the following descriptions are the resonant frequency and anti-resonant frequency of the first elastic wave resonator in a state connected to the element EL, respectively, unless otherwise specified.
 図9は、弾性波フィルタ100-1における第1弾性波共振子の位相特性およびインピーダンス特性の一例を示す。図9において、符号900Aは弾性波フィルタ100-1における第1弾性波共振子の位相特性を示し、符号900Bは当該第1弾性波共振子のインピーダンス特性を示す。図9の例では、キャパシタCPのキャパシタンスについてもCPと表記する。図9では、様々な値のCPに対応する各特性が示されている。CP=0.0pFのケースは、弾性波フィルタ100-1がキャパシタCPを有していない場合(比較例)に該当する。 FIG. 9 shows an example of the phase characteristics and impedance characteristics of the first elastic wave resonator in the elastic wave filter 100-1. In FIG. 9, reference numeral 900A indicates the phase characteristic of the first elastic wave resonator in the elastic wave filter 100-1, and reference numeral 900B indicates the impedance characteristic of the first elastic wave resonator. In the example of FIG. 9, the capacitance of the capacitor CP is also expressed as CP. In FIG. 9, characteristics corresponding to various values of CP are shown. The case of CP=0.0 pF corresponds to the case where the elastic wave filter 100-1 does not have a capacitor CP (comparative example).
 図9に示す通り、弾性波フィルタ100-1(すなわち、第1弾性波共振子である直列共振子に対してキャパシタが並列に接続されている構成)では、frは、CPの値によらず、ほぼ一定であることが確認された。また、弾性波フィルタ100-1がキャパシタCPを有している場合には、比較例(CP=0.0pF)に比べて、faが減少する傾向が確認された。 As shown in FIG. 9, in the elastic wave filter 100-1 (that is, a configuration in which a capacitor is connected in parallel to a series resonator that is a first elastic wave resonator), fr is independent of the value of CP. , was confirmed to be almost constant. Furthermore, when the elastic wave filter 100-1 includes the capacitor CP, it was confirmed that fa tends to decrease compared to the comparative example (CP=0.0 pF).
 図10は、弾性波フィルタ100-2における第1弾性波共振子の位相特性およびインピーダンス特性の一例を示す。図10において、符号1000Aは弾性波フィルタ100-2における第1弾性波共振子の位相特性を示し、符号1000Bは当該第1弾性波共振子のインピーダンス特性を示す。図10の例では、インダクタLPのインダクタンスについてもLPと表記する。図10では、様々なLPの値に対応する各特性が示されている。LP=0.0nHのケースは、弾性波フィルタ100-2がインダクタLPを有していない場合(比較例)に該当する。 FIG. 10 shows an example of the phase characteristics and impedance characteristics of the first elastic wave resonator in the elastic wave filter 100-2. In FIG. 10, the reference numeral 1000A indicates the phase characteristic of the first elastic wave resonator in the elastic wave filter 100-2, and the reference numeral 1000B indicates the impedance characteristic of the first elastic wave resonator. In the example of FIG. 10, the inductance of the inductor LP is also expressed as LP. In FIG. 10, each characteristic corresponding to various values of LP is shown. The case of LP=0.0 nH corresponds to the case where the elastic wave filter 100-2 does not have an inductor LP (comparative example).
 図10に示す通り、弾性波フィルタ100-2(すなわち、第1弾性波共振子である直列共振子に対してインダクタが並列に接続されている構成)では、frは、LPの値によらずほぼ一定であることが確認された。また、弾性波フィルタ100-2がインダクタLPを有している場合には、比較例(LP=0.0nH)に比べて、faが増加する傾向が確認された。 As shown in FIG. 10, in the elastic wave filter 100-2 (that is, the configuration in which the inductor is connected in parallel to the series resonator that is the first elastic wave resonator), fr is independent of the value of LP. It was confirmed that it is almost constant. Furthermore, when the elastic wave filter 100-2 includes the inductor LP, it was confirmed that fa tends to increase compared to the comparative example (LP=0.0 nH).
 図11は、弾性波フィルタ100-3における第1弾性波共振子の位相特性およびインピーダンス特性の一例を示す。図11において、符号1100Aは弾性波フィルタ100-3における第1弾性波共振子の位相特性を示し、符号1100Bは当該第1弾性波共振子のインピーダンス特性を示す。図11の例では、インダクタLSのインダクタンスについてもLSと表記する。図11では、様々なLSの値に対応する各特性が示されている。LS=0.0nHのケースは、弾性波フィルタ100-3がインダクタLSを有していない場合(比較例)に該当する。 FIG. 11 shows an example of the phase characteristics and impedance characteristics of the first elastic wave resonator in the elastic wave filter 100-3. In FIG. 11, reference numeral 1100A indicates the phase characteristic of the first elastic wave resonator in the elastic wave filter 100-3, and reference numeral 1100B indicates the impedance characteristic of the first elastic wave resonator. In the example of FIG. 11, the inductance of the inductor LS is also expressed as LS. In FIG. 11, characteristics corresponding to various values of LS are shown. The case of LS=0.0 nH corresponds to the case where the elastic wave filter 100-3 does not have an inductor LS (comparative example).
 図11に示す通り、弾性波フィルタ100-3(すなわち、第1弾性波共振子である並列共振子に対してインダクタが直列に接続されている構成)では、faは、LSの値によらずほぼ一定であることが確認された。また、弾性波フィルタ100-3がインダクタLSを有している場合には、比較例(LS=0.0nH)に比べて、frが減少する傾向が確認された。 As shown in FIG. 11, in the elastic wave filter 100-3 (that is, the configuration in which the inductor is connected in series with the parallel resonator that is the first elastic wave resonator), fa is independent of the value of LS. It was confirmed that it is almost constant. Furthermore, when the elastic wave filter 100-3 includes the inductor LS, it was confirmed that fr tends to decrease compared to the comparative example (LS=0.0 nH).
 図12は、弾性波フィルタ100-4における第1弾性波共振子の位相特性およびインピーダンス特性の一例を示す。図12において、符号1200Aは弾性波フィルタ100-4における第1弾性波共振子の位相特性を示し、符号1200Bは当該第1弾性波共振子のインピーダンス特性を示す。図12の例では、キャパシタCSのキャパシタンスについてもCSと表記する。CS=0.0pFのケースは、弾性波フィルタ100-4がキャパシタCSを有していない場合(比較例)に該当する。 FIG. 12 shows an example of the phase characteristics and impedance characteristics of the first elastic wave resonator in the elastic wave filter 100-4. In FIG. 12, reference numeral 1200A indicates the phase characteristic of the first elastic wave resonator in the elastic wave filter 100-4, and reference numeral 1200B indicates the impedance characteristic of the first elastic wave resonator. In the example of FIG. 12, the capacitance of the capacitor CS is also expressed as CS. The case of CS=0.0 pF corresponds to the case where the elastic wave filter 100-4 does not have the capacitor CS (comparative example).
 図12に示す通り、弾性波フィルタ100-4(すなわち、第1弾性波共振子である並列共振子に対してキャパシタが直列に接続されている構成)では、faは、CSの値によらずほぼ一定であることが確認された。また、弾性波フィルタ100-4がキャパシタCSを有している場合には、比較例(CS=0.0pF)に比べて、frが増加する傾向が確認された。 As shown in FIG. 12, in the elastic wave filter 100-4 (that is, a configuration in which a capacitor is connected in series with a parallel resonator that is a first elastic wave resonator), fa is independent of the value of CS. It was confirmed that it is almost constant. Furthermore, when the elastic wave filter 100-4 includes the capacitor CS, it was confirmed that fr tends to increase compared to the comparative example (CS=0.0 pF).
 以上の通り、弾性波フィルタ内における第1弾性波共振子の周波数特性は、(i)当該第1弾性波共振子に接続されている要素ELの種類、および、(ii)当該第1弾性波共振子と要素ELとの接続態様、の少なくとも一方に応じて変化しうる。そこで、例えば、弾性波フィルタの要求仕様に応じて、要素ELに接続される第1弾性波共振子が再設計されてもよい。以下、図13を参照し、第1弾性波共振子の再設計の一例について述べる。 As mentioned above, the frequency characteristics of the first elastic wave resonator in the elastic wave filter depend on (i) the type of element EL connected to the first elastic wave resonator, and (ii) the first elastic wave It may change depending on at least one of the connection manner between the resonator and the element EL. Therefore, for example, the first elastic wave resonator connected to the element EL may be redesigned according to the required specifications of the elastic wave filter. Hereinafter, with reference to FIG. 13, an example of redesigning the first elastic wave resonator will be described.
 図13は、弾性波フィルタ100-1における第1弾性波共振子の位相特性およびインピーダンス特性の別の例を示す。図13の例では、弾性波フィルタ100-1における第1弾性波共振子が、図9の例における第1弾性波共振子に対して再設計(設計変更)されているものとする。図13において、符号1300Aは上述の符号900Aと対になる図であり、符号1300Bは上述の符号900Bと対になる図である。 FIG. 13 shows another example of the phase characteristics and impedance characteristics of the first elastic wave resonator in the elastic wave filter 100-1. In the example of FIG. 13, it is assumed that the first elastic wave resonator in the elastic wave filter 100-1 has been redesigned (changed in design) from the first elastic wave resonator in the example of FIG. In FIG. 13, reference numeral 1300A is a diagram paired with the above-mentioned reference numeral 900A, and reference numeral 1300B is a diagram paired with the above-mentioned reference numeral 900B.
 図13における基準波形は、図9におけるCS=0.0pFの場合の波形と同等である。すなわち、図13における基準波形の場合には、第1弾性波共振子は再設計前である。図13における基準波形は、図13における比較例に該当する。図13の例では、当該比較例を除いては、CP=0.3pFである。 The reference waveform in FIG. 13 is equivalent to the waveform in FIG. 9 when CS=0.0 pF. That is, in the case of the reference waveform in FIG. 13, the first elastic wave resonator is before redesign. The reference waveform in FIG. 13 corresponds to the comparative example in FIG. In the example of FIG. 13, except for the comparative example, CP=0.3 pF.
 図13における凡例「c2」は、第1弾性波共振子のキャパシタンスを0.6倍にする再設計を表す。図13における例では、第1弾性波共振子におけるIDT電極の電極指の数を、150から90に変更することにより、当該第1弾性波共振子のキャパシタンスを0.6倍にする再設計がなされている。 The legend "c2" in FIG. 13 represents a redesign that increases the capacitance of the first elastic wave resonator by 0.6 times. In the example shown in FIG. 13, by changing the number of electrode fingers of the IDT electrode in the first acoustic wave resonator from 150 to 90, it is possible to redesign the capacitance of the first acoustic wave resonator to increase it by 0.6. being done.
 また、図13における凡例「p2」は、第1弾性波共振子におけるIDT電極の電極指ピッチ(p)を、1.26μmから1.215μmに変更する再設計を表す。当該再設計では、pは約0.964倍されている。 Furthermore, the legend "p2" in FIG. 13 represents a redesign in which the electrode finger pitch (p) of the IDT electrode in the first acoustic wave resonator is changed from 1.26 μm to 1.215 μm. In this redesign, p is multiplied by about 0.964.
 図13は、第1弾性波共振子のキャパシタンスを小さくする再設計を行うことにより、スプリアスの大きさを低下させることができることを示している。弾性波フィルタ100-1によれば、キャパシタCPによって、再設計前の第1弾性波共振子のキャパシタンス値の一部を補償できる。それゆえ、弾性波フィルタ100-1によれば、このような再設計を適用できる。当業者であれば明らかである通り、弾性波フィルタ100-4においても、このような再設計を適用できる。 FIG. 13 shows that the magnitude of spurious can be reduced by redesigning the first acoustic wave resonator to reduce its capacitance. According to the elastic wave filter 100-1, a part of the capacitance value of the first elastic wave resonator before redesign can be compensated for by the capacitor CP. Therefore, according to the elastic wave filter 100-1, such redesign can be applied. As is clear to those skilled in the art, such redesign can also be applied to the elastic wave filter 100-4.
 以上の通り、素子ELがキャパシタである場合、当該キャパシタによって第1弾性波共振子のスプリアスの大きさが低減しうる。したがって、例えば、第1弾性波共振子のスプリアスが弾性波フィルタの通過帯域内に位置している場合であっても、当該キャパシタによって当該スプリアスの大きさが低減しうる。このことから、第1弾性波共振子は、直列共振子または並列共振子であってよく、かつ、素子ELは、当該第1弾性波共振子に対して直列または並列に接続されたキャパシタであってよい。 As described above, when the element EL is a capacitor, the magnitude of the spurious of the first acoustic wave resonator can be reduced by the capacitor. Therefore, for example, even if the spurious of the first elastic wave resonator is located within the passband of the elastic wave filter, the magnitude of the spurious can be reduced by the capacitor. From this, the first elastic wave resonator may be a series resonator or a parallel resonator, and the element EL may be a capacitor connected in series or in parallel to the first elastic wave resonator. It's fine.
 図13は、pを変更する再設計を行うことにより、第1弾性波共振子の周波数特性を全般的にシフトさせることができることをさらに示している。例えば、pを小さくする再設計を行うことにより、faおよびfrを増加させることができる。逆に、pを大きくする再設計を行うことにより、faおよびfrを減少させることもできる。 FIG. 13 further shows that the frequency characteristics of the first acoustic wave resonator can be generally shifted by redesigning to change p. For example, fa and fr can be increased by redesigning p to be smaller. Conversely, fa and fr can also be decreased by redesigning to increase p.
 (各弾性波フィルタにおける第1弾性波共振子の位相特性の変化についての例)
 続いて、各弾性波フィルタにおける第1弾性波共振子の位相特性の変化についての様々な例について述べる。図14は、弾性波フィルタ100-1における第1弾性波共振子である直列共振子の位相特性の変化について説明するための図である。図14の符号1400Aでは、キャパシタCP接続前における第1弾性波共振子の位相特性(第1弾性波共振子単体の位相特性)と、キャパシタCP接続後における第1弾性波共振子の位相特性とが模式的に示されている。図14の符号1400Bでは、キャパシタCP接続後における、再設計後の第1弾性波共振子の位相特性が模式的に示されている。
(Example of change in phase characteristics of the first elastic wave resonator in each elastic wave filter)
Next, various examples of changes in the phase characteristics of the first elastic wave resonator in each elastic wave filter will be described. FIG. 14 is a diagram for explaining changes in the phase characteristics of the series resonator, which is the first elastic wave resonator, in the elastic wave filter 100-1. Reference numeral 1400A in FIG. 14 shows the phase characteristics of the first elastic wave resonator before connecting the capacitor CP (the phase characteristics of the first elastic wave resonator alone), and the phase characteristics of the first elastic wave resonator after connecting the capacitor CP. is shown schematically. Reference numeral 1400B in FIG. 14 schematically shows the phase characteristics of the redesigned first acoustic wave resonator after the capacitor CP is connected.
 符号1400Aにおける例では、キャパシタCP接続前後のいずれにおいても、第1弾性波共振子のスプリアスは、弾性波フィルタの通過帯域内に位置している。具体的には、第1弾性波共振子のスプリアスは、弾性波フィルタの通過帯域内における上述の第1端点付近に位置している。 In the example indicated by reference numeral 1400A, the spurious of the first elastic wave resonator is located within the passband of the elastic wave filter both before and after the capacitor CP is connected. Specifically, the spurious of the first elastic wave resonator is located near the above-mentioned first end point within the passband of the elastic wave filter.
 ただし、上述の通り、キャパシタCP接続後では、キャパシタCP接続前に比べて、第1弾性波共振子のスプリアスの大きさが低減しうる。加えて、キャパシタCP接続後では、キャパシタCP接続前に比べて、faが減少しうる。以下では、便宜上、素子EL接続前のfaを、fa0と表記する。図14の例におけるfa0は、キャパシタCP接続前のfaを示す。これに対し、符号1400Aの例におけるキャパシタCP接続後のfaを、fa_cpと表記する。さらに、再設計された第1弾性波共振子の、キャパシタCP接続後におけるfaを、fa_cp’と表記する。 However, as described above, after the capacitor CP is connected, the magnitude of the spurious of the first acoustic wave resonator can be reduced compared to before the capacitor CP is connected. In addition, after connecting the capacitor CP, fa can be reduced compared to before connecting the capacitor CP. In the following, for convenience, fa before the element EL is connected will be expressed as fa0. fa0 in the example of FIG. 14 indicates fa before the capacitor CP is connected. On the other hand, fa after connecting the capacitor CP in the example 1400A is expressed as fa_cp. Furthermore, fa of the redesigned first acoustic wave resonator after connecting the capacitor CP is expressed as fa_cp'.
 以上の通り、弾性波フィルタ100-1では、キャパシタCPの接続に伴い、fa_cpがfa0よりも低くなりうる。そこで、一例として、fa_cp’をfa0に一致させるよう、第1弾性波共振子が再設計されてよい。この場合、第1弾性波共振子の再設計に伴い、fa_cp’はfa_cpよりも高くなる。 As described above, in the elastic wave filter 100-1, fa_cp can become lower than fa0 due to the connection of the capacitor CP. Therefore, as an example, the first elastic wave resonator may be redesigned so that fa_cp' matches fa0. In this case, due to the redesign of the first acoustic wave resonator, fa_cp' becomes higher than fa_cp.
 当該再設計によれば、第1弾性波共振子の周波数特性を高周波側にシフトさせることができる。したがって、符号1400Aにおける例に比べて、第1弾性波共振子のスプリアスを高周波側にシフトさせることができる。それゆえ、符号1400Bにおける例に示す通り、第1弾性波共振子のスプリアスを第1帯域内に位置させることができる。 According to the redesign, the frequency characteristics of the first elastic wave resonator can be shifted to the high frequency side. Therefore, compared to the example with reference numeral 1400A, the spurious of the first elastic wave resonator can be shifted to the higher frequency side. Therefore, as shown in the example at 1400B, the spurious of the first acoustic wave resonator can be located within the first band.
 以上の通り、弾性波フィルタにおける第1弾性波共振子が直列共振子であり、かつ、要素ELが当該第1弾性波共振子に対して並列に接続されたキャパシタである場合には、当該第1弾性波共振子のスプリアスは第1帯域内に位置しうる。 As mentioned above, when the first elastic wave resonator in the elastic wave filter is a series resonator and the element EL is a capacitor connected in parallel to the first elastic wave resonator, The spurious of one acoustic wave resonator may be located within the first band.
 図15は、弾性波フィルタ100-2における第1弾性波共振子である直列共振子の位相特性の変化について説明するための図である。図15の符号1500Aでは、インダクタLP接続前における第1弾性波共振子の位相特性(第1弾性波共振子単体の位相特性)と、インダクタLP接続後における第1弾性波共振子の位相特性とが模式的に示されている。図15の符号1500Bでは、インダクタLP接続後における、再設計後の第1弾性波共振子の位相特性が模式的に示されている。 FIG. 15 is a diagram for explaining changes in the phase characteristics of the series resonator, which is the first elastic wave resonator, in the elastic wave filter 100-2. Reference numeral 1500A in FIG. 15 shows the phase characteristics of the first elastic wave resonator before the inductor LP is connected (the phase characteristics of the first elastic wave resonator alone), and the phase characteristics of the first elastic wave resonator after the inductor LP is connected. is shown schematically. Reference numeral 1500B in FIG. 15 schematically shows the phase characteristics of the redesigned first acoustic wave resonator after the inductor LP is connected.
 符号1500Aにおける例では、インダクタLP接続前後のいずれにおいても、第1弾性波共振子のスプリアスは、弾性波フィルタの通過帯域内に位置している。具体的には、第1弾性波共振子のスプリアスは、弾性波フィルタの通過帯域内における上述の第3端点付近に位置している。 In the example indicated by reference numeral 1500A, the spurious of the first elastic wave resonator is located within the passband of the elastic wave filter both before and after the inductor LP is connected. Specifically, the spurious of the first elastic wave resonator is located near the above-mentioned third end point within the passband of the elastic wave filter.
 符号1500Aにおける例に示す通り、インダクタLP接続後では、インダクタLP接続前に比べて、第1弾性波共振子のスプリアスの大きさが増加しうる。この挙動は、インダクタの周波数特性とキャパシタの周波数特性との双対性に起因している。また、上述の通り、インダクタLP接続後では、インダクタLP接続前に比べて、faが増加しうる。 As shown in the example at 1500A, after the inductor LP is connected, the magnitude of the spurious of the first acoustic wave resonator may increase compared to before the inductor LP is connected. This behavior is due to the duality between the frequency characteristics of the inductor and the frequency characteristics of the capacitor. Furthermore, as described above, after the inductor LP is connected, fa can increase compared to before the inductor LP is connected.
 図15の例におけるfa0は、インダクタLP接続前のfaを示す。図15の例では、符号1500Aの例におけるインダクタLP接続後のfaを、fa_lpと表記する。さらに、再設計された第1弾性波共振子の、インダクタLP接続後におけるfaを、fa_lp’と表記する。 fa0 in the example of FIG. 15 indicates fa before the inductor LP is connected. In the example of FIG. 15, fa after the inductor LP is connected in the example of code 1500A is expressed as fa_lp. Furthermore, fa of the redesigned first acoustic wave resonator after the inductor LP is connected is expressed as fa_lp'.
 以上の通り、弾性波フィルタ100-2では、インダクタLPの接続に伴い、fa_lpがfa0よりも高くなりうる。そこで、一例として、fa_lp’をfa0に一致させるよう、第1弾性波共振子が再設計されてよい。この場合、第1弾性波共振子の再設計に伴い、fa_lp’はfa_lpよりも低くなる。 As described above, in the elastic wave filter 100-2, fa_lp can become higher than fa0 due to the connection of the inductor LP. Therefore, as an example, the first elastic wave resonator may be redesigned so that fa_lp' matches fa0. In this case, due to the redesign of the first acoustic wave resonator, fa_lp' becomes lower than fa_lp.
 当該再設計によれば、第1弾性波共振子の周波数特性を低周波側にシフトさせることができる。したがって、符号1500Aにおける例に比べて、第1弾性波共振子のスプリアスを低周波側にシフトさせることができる。それゆえ、符号1500Bにおける例に示す通り、第1弾性波共振子のスプリアスを第2帯域内に位置させることができる。 According to the redesign, the frequency characteristics of the first elastic wave resonator can be shifted to the lower frequency side. Therefore, compared to the example with reference numeral 1500A, the spurious of the first elastic wave resonator can be shifted to the lower frequency side. Therefore, as shown in the example at 1500B, the spurious of the first acoustic wave resonator can be located within the second band.
 以上の通り、弾性波フィルタにおける第1弾性波共振子が直列共振子であり、かつ、要素ELが当該第1弾性波共振子に対して並列に接続されたインダクタである場合には、当該第1弾性波共振子のスプリアスは第2帯域内に位置しうる。 As mentioned above, when the first elastic wave resonator in the elastic wave filter is a series resonator and the element EL is an inductor connected in parallel to the first elastic wave resonator, The spurious of one acoustic wave resonator may be located within the second band.
 図16は、弾性波フィルタ100-3における第1弾性波共振子である並列共振子の位相特性の変化について説明するための図である。図16の符号1600Aでは、インダクタLS接続前における第1弾性波共振子の位相特性(第1弾性波共振子単体の位相特性)と、インダクタLS接続後における第1弾性波共振子の位相特性とが模式的に示されている。図16の符号1600Bでは、インダクタLS接続後における、再設計後の第1弾性波共振子の位相特性が模式的に示されている。 FIG. 16 is a diagram for explaining changes in the phase characteristics of the parallel resonator, which is the first elastic wave resonator, in the elastic wave filter 100-3. Reference numeral 1600A in FIG. 16 indicates the phase characteristics of the first elastic wave resonator before the inductor LS is connected (the phase characteristics of the first elastic wave resonator alone), and the phase characteristics of the first elastic wave resonator after the inductor LS is connected. is shown schematically. Reference numeral 1600B in FIG. 16 schematically shows the phase characteristics of the redesigned first acoustic wave resonator after the inductor LS is connected.
 符号1600Aにおける例では、インダクタLS接続前後のいずれにおいても、第1弾性波共振子のスプリアスは、弾性波フィルタの通過帯域内に位置している。具体的には、第1弾性波共振子のスプリアスは、弾性波フィルタの通過帯域内における第1端点付近に位置している。 In the example indicated by reference numeral 1600A, the spurious of the first elastic wave resonator is located within the passband of the elastic wave filter both before and after the inductor LS is connected. Specifically, the spurious of the first elastic wave resonator is located near the first end point within the passband of the elastic wave filter.
 図15に関する上述の説明からも理解できる通り、インダクタLS接続後では、インダクタLS接続前に比べて、第1弾性波共振子のスプリアスの大きさが増加しうる。また、インダクタLS接続後では、インダクタLS接続前に比べて、frが減少しうる。以下では、便宜上、素子EL接続前のfrを、fr0と表記する。図16の例におけるfr0は、インダクタLS接続前のfrを示す。これに対し、符号1600Aの例におけるインダクタLS接続後のfrを、fr_lsと表記する。さらに、再設計された第1弾性波共振子の、インダクタLS接続後におけるfrを、fr_ls’と表記する。 As can be understood from the above description regarding FIG. 15, after the inductor LS is connected, the magnitude of the spurious of the first acoustic wave resonator may increase compared to before the inductor LS is connected. Further, after connecting the inductor LS, fr may decrease compared to before connecting the inductor LS. In the following, for convenience, fr before the element EL is connected will be expressed as fr0. fr0 in the example of FIG. 16 indicates fr before the inductor LS is connected. On the other hand, fr after the inductor LS is connected in the example 1600A is written as fr_ls. Furthermore, fr of the redesigned first acoustic wave resonator after the inductor LS is connected is expressed as fr_ls'.
 以上の通り、弾性波フィルタ100-3では、インダクタLSの接続に伴い、fr_lsがfr0よりも低くなりうる。そこで、一例として、fr_ls’をfr0に一致させるよう、第1弾性波共振子が再設計されてよい。この場合、第1弾性波共振子の再設計に伴い、fr_ls’はfr_lsよりも高くなる。 As described above, in the elastic wave filter 100-3, fr_ls can become lower than fr0 due to the connection of the inductor LS. Therefore, as an example, the first elastic wave resonator may be redesigned so that fr_ls' matches fr0. In this case, fr_ls' becomes higher than fr_ls due to the redesign of the first elastic wave resonator.
 当該再設計によれば、第1弾性波共振子の周波数特性を高周波側にシフトさせることができる。したがって、符号1600Aにおける例に比べて、第1弾性波共振子のスプリアスを高周波側にシフトさせることができる。それゆえ、符号1600Bにおける例に示す通り、第1弾性波共振子のスプリアスを第1帯域内に位置させることができる。 According to the redesign, the frequency characteristics of the first elastic wave resonator can be shifted to the high frequency side. Therefore, compared to the example with reference numeral 1600A, the spurious of the first elastic wave resonator can be shifted to the higher frequency side. Therefore, as shown in the example at 1600B, the spurious of the first acoustic wave resonator can be located within the first band.
 以上の通り、弾性波フィルタにおける第1弾性波共振子が並列共振子であり、かつ、要素ELが当該第1弾性波共振子に対して直列に接続されたインダクタである場合には、当該第1弾性波共振子のスプリアスは第1帯域内に位置しうる。 As mentioned above, when the first elastic wave resonator in the elastic wave filter is a parallel resonator and the element EL is an inductor connected in series with the first elastic wave resonator, The spurious of one acoustic wave resonator may be located within the first band.
 図17は、弾性波フィルタ100-4における第1弾性波共振子である並列共振子の位相特性の変化について説明するための図である。図17の符号1700Aでは、キャパシタCS接続前における第1弾性波共振子の位相特性(第1弾性波共振子単体の位相特性)と、キャパシタCS接続後における第1弾性波共振子の位相特性とが模式的に示されている。図17の符号1700Bでは、キャパシタCS接続後における、再設計後の第1弾性波共振子の位相特性が模式的に示されている。 FIG. 17 is a diagram for explaining changes in the phase characteristics of the parallel resonator, which is the first elastic wave resonator, in the elastic wave filter 100-4. Reference numeral 1700A in FIG. 17 shows the phase characteristics of the first elastic wave resonator before connecting the capacitor CS (the phase characteristics of the first elastic wave resonator alone), and the phase characteristics of the first elastic wave resonator after connecting the capacitor CS. is shown schematically. Reference numeral 1700B in FIG. 17 schematically shows the phase characteristics of the redesigned first acoustic wave resonator after connecting the capacitor CS.
 符号1700Aにおける例では、キャパシタCS接続前後のいずれにおいても、第1弾性波共振子のスプリアスは、弾性波フィルタの通過帯域内に位置している。具体的には、第1弾性波共振子のスプリアスは、弾性波フィルタの通過帯域内における第3端点付近に位置している。 In the example indicated by reference numeral 1700A, the spurious of the first elastic wave resonator is located within the passband of the elastic wave filter both before and after the capacitor CS is connected. Specifically, the spurious of the first elastic wave resonator is located near the third end point within the passband of the elastic wave filter.
 上述の通り、キャパシタCS接続後では、キャパシタCS接続前に比べて、第1弾性波共振子のスプリアスの大きさが低減しうる。また、キャパシタCS接続後では、キャパシタCS接続前に比べて、frが増加しうる。図17の例におけるfr0は、キャパシタCS接続前のfrを示す。図17の例では、符号1700Aの例におけるキャパシタCS接続後のfrを、fr_csと表記する。さらに、再設計された第1弾性波共振子の、キャパシタCS接続後におけるfrを、fr_cs’と表記する。 As described above, after the capacitor CS is connected, the magnitude of the spurious of the first acoustic wave resonator can be reduced compared to before the capacitor CS is connected. Furthermore, after connecting the capacitor CS, fr may increase compared to before connecting the capacitor CS. fr0 in the example of FIG. 17 indicates fr before capacitor CS is connected. In the example of FIG. 17, fr after the capacitor CS is connected in the example of 1700A is expressed as fr_cs. Furthermore, fr of the redesigned first acoustic wave resonator after connecting the capacitor CS is expressed as fr_cs'.
 以上の通り、弾性波フィルタ100-4では、キャパシタCSの接続に伴い、fr_csがfr0よりも高くなりうる。そこで、一例として、fr_cs’をfr0に一致させるよう、第1弾性波共振子が再設計されてよい。この場合、第1弾性波共振子の再設計に伴い、fr_cs’はfr_csよりも低くなる。 As described above, in the elastic wave filter 100-4, fr_cs can become higher than fr0 due to the connection of the capacitor CS. Therefore, as an example, the first elastic wave resonator may be redesigned so that fr_cs' matches fr0. In this case, fr_cs' becomes lower than fr_cs due to the redesign of the first elastic wave resonator.
 当該再設計によれば、第1弾性波共振子の周波数特性を低周波側にシフトさせることができる。したがって、符号1700Aにおける例に比べて、第1弾性波共振子のスプリアスを低周波側にシフトさせることができる。それゆえ、符号1700Bにおける例に示す通り、第1弾性波共振子のスプリアスを第2帯域内に位置させることができる。 According to the redesign, the frequency characteristics of the first elastic wave resonator can be shifted to the lower frequency side. Therefore, compared to the example with reference numeral 1700A, the spurious of the first elastic wave resonator can be shifted to the lower frequency side. Therefore, as shown in the example at 1700B, the spurious of the first acoustic wave resonator can be located within the second band.
 以上の通り、弾性波フィルタにおける第1弾性波共振子が並列共振子であり、かつ、要素ELが当該第1弾性波共振子に対して直列に接続されたキャパシタである場合には、当該第1弾性波共振子のスプリアスは第2帯域内に位置しうる。 As mentioned above, when the first elastic wave resonator in the elastic wave filter is a parallel resonator and the element EL is a capacitor connected in series to the first elastic wave resonator, The spurious of one acoustic wave resonator may be located within the second band.
 図14~図17についての各説明から明らかである通り、弾性波フィルタにおける第1弾性波共振子は、要素ELに対して並列または直列に接続されていてよい。そして、要素ELは、キャパシタまたはインダクタであってよい。これにより、弾性波フィルタの要求仕様に応じて、第1弾性波共振子のスプリアスの位置を設定できる。それゆえ、本開示の一態様によれば、弾性波フィルタの周波数特性を改善できる。 As is clear from the descriptions of FIGS. 14 to 17, the first elastic wave resonator in the elastic wave filter may be connected in parallel or in series with the element EL. Element EL may then be a capacitor or an inductor. Thereby, the spurious position of the first elastic wave resonator can be set according to the required specifications of the elastic wave filter. Therefore, according to one aspect of the present disclosure, the frequency characteristics of the elastic wave filter can be improved.
 例えば、図14~図17に示す通り、第1弾性波共振子のスプリアスを、弾性波フィルタの通過帯域内、第1帯域内、または第2帯域内のいずれかに位置させることができる。また、第1弾性波共振子のスプリアスを、当該第1弾性波共振子の周波数帯域外に位置させることもできる。 For example, as shown in FIGS. 14 to 17, the spurious of the first elastic wave resonator can be located within the pass band, the first band, or the second band of the elastic wave filter. Moreover, the spurious of the first elastic wave resonator can also be located outside the frequency band of the first elastic wave resonator.
 したがって、一例として、弾性波フィルタの通過帯域は、第1弾性波共振子の共振周波数と当該第1弾性波共振子のスプリアスとの間に位置しうる(例:図16の符号1600Bを参照)。別の例として、弾性波フィルタの通過帯域は、第1弾性波共振子の反共振周波数と当該第1弾性波共振子のスプリアスとの間に位置しうる(例:図14の符号1400Bを参照)。 Therefore, as an example, the passband of the elastic wave filter may be located between the resonant frequency of the first elastic wave resonator and the spurious of the first elastic wave resonator (e.g., see reference numeral 1600B in FIG. 16). . As another example, the passband of the elastic wave filter may be located between the anti-resonance frequency of the first elastic wave resonator and the spurious of the first elastic wave resonator (see e.g. 1400B in FIG. 14). ).
 これらのことから理解される通り、弾性波フィルタの通過帯域は、第1弾性波共振子の共振周波数および反共振周波数のいずれをも含んでいなくともよい(例:図14の符号1400Bを参照)。 As understood from these, the passband of the elastic wave filter does not need to include either the resonant frequency or the anti-resonant frequency of the first elastic wave resonator (for example, see reference numeral 1400B in FIG. 14). ).
 図14~図17の例では、弾性波フィルタの通過帯域が、第1弾性波共振子の周波数帯域よりも高周波側に位置している。ただし、当業者であれば明らかである通り、弾性波フィルタの通過帯域は、第1弾性波共振子の周波数帯域よりも低周波側に位置していてもよい。したがって、例えば、第1弾性波共振子のスプリアスも、第1弾性波共振子の周波数帯域よりも低周波側に位置しうる。 In the examples shown in FIGS. 14 to 17, the passband of the elastic wave filter is located on the higher frequency side than the frequency band of the first elastic wave resonator. However, as is clear to those skilled in the art, the passband of the elastic wave filter may be located on the lower frequency side than the frequency band of the first elastic wave resonator. Therefore, for example, the spurious of the first elastic wave resonator may also be located on the lower frequency side than the frequency band of the first elastic wave resonator.
 ところで、上述の通り、本開示の一態様に係る弾性波フィルタは、第1弾性波共振子とは異なる第2弾性波共振子をさらに有していてよい。加えて、当該弾性波フィルタは、第2弾性波共振子に対して並列または直列に接続された要素(例:キャパシタまたはインダクタ)を有していなくともよい。したがって、一例として、第2弾性波共振子は、図5~図8の各例における、第1弾性波共振子を除いた2つの弾性波共振子のうちの任意の1つ(例:直列共振子1S-2)であってよい。 By the way, as described above, the elastic wave filter according to one aspect of the present disclosure may further include a second elastic wave resonator different from the first elastic wave resonator. In addition, the elastic wave filter does not need to have an element (eg, a capacitor or an inductor) connected in parallel or in series with the second elastic wave resonator. Therefore, as an example, the second elastic wave resonator may be any one of the two elastic wave resonators other than the first elastic wave resonator (e.g., series resonance child 1S-2).
 一例として、第2弾性波共振子のスプリアスが第1弾性波共振子のスプリアスと重なり合わないように、当該第2弾性波共振子が設計されてよい。したがって、例えば、第2弾性波共振子のスプリアスが、弾性波フィルタの通過帯域内、第1帯域内、および第2帯域内のいずれにも位置しないように、当該第2弾性波共振子が設計されてよい。 As an example, the second elastic wave resonator may be designed so that the spurious of the second elastic wave resonator does not overlap with the spurious of the first elastic wave resonator. Therefore, for example, the second elastic wave resonator is designed so that the spurious of the second elastic wave resonator is not located within the pass band, the first band, or the second band of the elastic wave filter. It's okay to be.
 そこで、一例として、第1弾性波共振子は、第2弾性波共振子よりも高い反共振周波数を有するように設計されてよい。このことから、例えば、第1弾性波共振子は、弾性波フィルタにおける複数の弾性波共振子のうち最も高い反共振周波数を有するように設計されてよい。 Therefore, as an example, the first elastic wave resonator may be designed to have a higher anti-resonance frequency than the second elastic wave resonator. From this, for example, the first elastic wave resonator may be designed to have the highest anti-resonance frequency among the plurality of elastic wave resonators in the elastic wave filter.
 上述の図14および図17から理解される通り、第1弾性波共振子に対して並列または直列に接続されている要素ELがキャパシタである場合には、当該キャパシタに起因してΔf(第1弾性波共振子の周波数帯域の幅)が減少しうる。したがって、この場合、Δfは、複数の弾性波共振子における周波数帯域の幅の平均値よりも小さくなりうる。 As understood from FIGS. 14 and 17 described above, when the element EL connected in parallel or series with the first acoustic wave resonator is a capacitor, Δf (the first (the width of the frequency band of the elastic wave resonator) may be reduced. Therefore, in this case, Δf may be smaller than the average value of the frequency band widths of the plurality of elastic wave resonators.
 これに対し、上述の図15および図16から理解される通り、第1弾性波共振子に対して並列または直列に接続されている要素ELがインダクタである場合には、当該インダクタに起因してΔfが増加しうる。したがって、この場合、Δfは、複数の弾性波共振子における周波数帯域の幅の平均値よりも大きくなりうる。 On the other hand, as understood from FIGS. 15 and 16 above, when the element EL connected in parallel or series to the first acoustic wave resonator is an inductor, the Δf may increase. Therefore, in this case, Δf can be larger than the average value of the frequency band widths of the plurality of elastic wave resonators.
 〔実施形態2〕
 図18は、実施形態2における通信装置151の概略的な構成を例示する。通信装置151は、本開示の一態様に係る弾性波フィルタの一適用例であり、電波を利用した無線通信を行う。通信装置151は、送信フィルタ109としての1つの分波器101と、受信フィルタ111としての別の1つの分波器101とを含んでいてよい。2つの分波器101のそれぞれは、本開示の一態様に係る弾性波フィルタを含んでいてよい。このように、通信装置151は、本開示の一態様に係る弾性波フィルタを含んでいてよい。
[Embodiment 2]
FIG. 18 illustrates a schematic configuration of a communication device 151 in the second embodiment. The communication device 151 is an application example of an elastic wave filter according to one aspect of the present disclosure, and performs wireless communication using radio waves. The communication device 151 may include one duplexer 101 as a transmission filter 109 and another duplexer 101 as a reception filter 111. Each of the two duplexers 101 may include an elastic wave filter according to one aspect of the present disclosure. In this way, the communication device 151 may include an elastic wave filter according to one aspect of the present disclosure.
 通信装置151において、送信すべき情報を含む送信情報信号TISは、RF-IC(Radio Frequency-Integrated Circuit)153によって変調および周波数の引き上げ(搬送波周波数を有する高周波信号への変換)がなされ、送信信号TSへと変換されてよい。バンドパスフィルタ155は、TSについて、送信用の通過帯以外の不要成分を除去してよい。次いで、不要成分除去後のTSは、増幅器157によって増幅されて、送信フィルタ109に入力されてよい。 In the communication device 151, a transmission information signal TIS containing information to be transmitted is modulated and frequency-increased (converted to a high-frequency signal having a carrier frequency) by an RF-IC (Radio Frequency-Integrated Circuit) 153, and the transmission information signal TIS is converted into a transmission signal. It may be converted to TS. The bandpass filter 155 may remove unnecessary components other than the transmission passband for the TS. Next, the TS after removing unnecessary components may be amplified by the amplifier 157 and input to the transmission filter 109.
 送信フィルタ109は、入力された送信信号TSから送信用の通過帯以外の不要成分を除去してよい。送信フィルタ109は、アンテナ端子(例:上述のTCin)を介して、不要成分除去後のTSをアンテナ159に出力してよい。アンテナ159は、自身に入力された電気信号であるTSを、無線信号としての電波に変換し、当該電波を通信装置151の外部に送信してよい。 The transmission filter 109 may remove unnecessary components outside the transmission passband from the input transmission signal TS. The transmission filter 109 may output the TS from which unnecessary components have been removed to the antenna 159 via an antenna terminal (eg, TCin described above). The antenna 159 may convert the TS, which is an electrical signal input to itself, into a radio wave as a wireless signal, and transmit the radio wave to the outside of the communication device 151.
 また、アンテナ159は、受信した外部からの電波を、電気信号である受信信号RSに変換し、アンテナ端子を介して当該RSを受信フィルタ111に入力してよい。受信フィルタ111は、入力されたRSから受信用の通過帯以外の不要成分を除去してよい。受信フィルタ111は、不要成分除去後の受信信号RSを増幅器161へ出力してよい。出力されたRSは、増幅器161によって増幅されてよい。バンドパスフィルタ163は、増幅後のRSについて、受信用の通過帯以外の不要成分を除去してよい。不要成分除去後のRSは、RF-IC153によって周波数の引き下げおよび復調がなされ、受信情報信号RISへと変換されてよい。 Additionally, the antenna 159 may convert the received radio waves from the outside into a reception signal RS, which is an electrical signal, and input the RS to the reception filter 111 via the antenna terminal. The reception filter 111 may remove unnecessary components other than the reception passband from the input RS. The reception filter 111 may output the reception signal RS from which unnecessary components have been removed to the amplifier 161. The output RS may be amplified by the amplifier 161. The bandpass filter 163 may remove unnecessary components other than the receiving passband from the amplified RS. The frequency of the RS after unnecessary component removal is lowered and demodulated by the RF-IC 153, and may be converted into a received information signal RIS.
 TISおよびRISは、適宜な情報を含む低周波信号(ベースバンド信号)であってよい。例えば、TISおよびRISは、アナログ音声信号であってもよいし、あるいはデジタル化された音声信号であってよい。無線信号の通過帯は、適宜に設定されてよく、公知の各種の規格に準拠してよい。 The TIS and RIS may be low frequency signals (baseband signals) containing appropriate information. For example, TIS and RIS may be analog audio signals or digitized audio signals. The passband of the wireless signal may be set as appropriate and may conform to various known standards.
 〔まとめ〕
 本開示の態様1に係る弾性波フィルタは、第1弾性波共振子を有する弾性波フィルタであって、前記第1弾性波共振子の周波数帯域の幅をΔfとして表し、前記弾性波フィルタの通過帯域の高周波側の端の周波数を指す第1端点から、前記第1端点に対してΔfだけ高い周波数を指す第2端点までに亘る帯域を、第1帯域と称し、前記弾性波フィルタの前記通過帯域の低周波側の端の周波数を指す第3端点から、前記第3端点に対してΔfだけ低い周波数を指す第4端点までに亘る帯域を、第2帯域と称し、前記第1弾性波共振子のスプリアスは、前記第1弾性波共振子の前記周波数帯域外に位置しているとともに、前記弾性波フィルタの前記通過帯域内、前記第1帯域内、または前記第2帯域内のいずれかに位置しており、前記弾性波フィルタは、前記第1弾性波共振子に対して並列または直列に接続された要素をさらに有しており、前記要素は、キャパシタまたはインダクタである。
〔summary〕
An elastic wave filter according to aspect 1 of the present disclosure is an elastic wave filter having a first elastic wave resonator, in which the width of the frequency band of the first elastic wave resonator is expressed as Δf, and the elastic wave filter passes through the elastic wave filter. A band extending from a first end point indicating a frequency at the end of the high frequency side of the band to a second end point indicating a frequency higher than the first end point by Δf is referred to as a first band, and the band extends through the passage of the elastic wave filter. A band extending from a third end point indicating a frequency at the end of the low frequency side of the band to a fourth end point indicating a frequency lower by Δf than the third end point is referred to as a second band, and the first elastic wave resonance The child spurious is located outside the frequency band of the first elastic wave resonator and within either the pass band, the first band, or the second band of the elastic wave filter. The elastic wave filter further includes an element connected in parallel or series to the first elastic wave resonator, and the element is a capacitor or an inductor.
 本開示の態様2に係る弾性波フィルタでは、前記態様1において、前記第1弾性波共振子は、直列共振子であり、前記スプリアスは、前記第1帯域内に位置しており、前記要素は、前記第1弾性波共振子に対して並列に接続されたキャパシタであってよい。 In the elastic wave filter according to Aspect 2 of the present disclosure, in Aspect 1, the first elastic wave resonator is a series resonator, the spurious is located within the first band, and the element is , may be a capacitor connected in parallel to the first acoustic wave resonator.
 本開示の態様3に係る弾性波フィルタでは、前記態様1において、前記第1弾性波共振子は、並列共振子であり、前記スプリアスは、前記第1帯域内に位置しており、前記要素は、前記第1弾性波共振子に対して直列に接続されたインダクタであってよい。 In the elastic wave filter according to aspect 3 of the present disclosure, in aspect 1, the first elastic wave resonator is a parallel resonator, the spurious is located within the first band, and the element is , may be an inductor connected in series with the first elastic wave resonator.
 本開示の態様4に係る弾性波フィルタでは、前記態様1において、前記第1弾性波共振子は、直列共振子であり、前記スプリアスは、前記第2帯域内に位置しており、前記要素は、前記第1弾性波共振子に対して並列に接続されたインダクタであってよい。 In the elastic wave filter according to Aspect 4 of the present disclosure, in Aspect 1, the first elastic wave resonator is a series resonator, the spurious is located within the second band, and the element is , may be an inductor connected in parallel to the first elastic wave resonator.
 本開示の態様5に係る弾性波フィルタでは、前記態様1において、前記第1弾性波共振子は、並列共振子であり、前記スプリアスは、前記第2帯域内に位置しており、前記要素は、前記第1弾性波共振子に対して直列に接続されたキャパシタであってよい。 In the elastic wave filter according to Aspect 5 of the present disclosure, in Aspect 1, the first elastic wave resonator is a parallel resonator, the spurious is located within the second band, and the element is , may be a capacitor connected in series to the first elastic wave resonator.
 本開示の態様6に係る弾性波フィルタでは、前記態様1において、前記第1弾性波共振子は、直列共振子または並列共振子であり、前記スプリアスは、前記弾性波フィルタの前記通過帯域内に位置しており、前記要素は、前記第1弾性波共振子に対して直列または並列に接続されたキャパシタであってよい。 In the elastic wave filter according to Aspect 6 of the present disclosure, in Aspect 1, the first elastic wave resonator is a series resonator or a parallel resonator, and the spurious is within the passband of the elastic wave filter. and the element may be a capacitor connected in series or in parallel to the first acoustic wave resonator.
 本開示の態様7に係る弾性波フィルタは、前記態様1において、前記第1弾性波共振子とは異なる第2弾性波共振子をさらに有しており、前記第2弾性波共振子のスプリアスは、前記弾性波フィルタの前記通過帯域内、前記第1帯域内、および前記第2帯域内のいずれにも位置しておらず、前記第2弾性波共振子に対して並列または直列に接続されたキャパシタまたはインダクタを有していなくてよい。 The elastic wave filter according to aspect 7 of the present disclosure is the same as in aspect 1, further comprising a second elastic wave resonator different from the first elastic wave resonator, and the spurious of the second elastic wave resonator is , which is not located within the passband, the first band, or the second band of the elastic wave filter, and is connected in parallel or series to the second elastic wave resonator. It may not have a capacitor or inductor.
 本開示の態様8に係る弾性波フィルタは、前記態様1において、前記第1弾性波共振子を含む複数の弾性波共振子を有しており、前記要素は、キャパシタであり、Δfは、複数の前記弾性波共振子における周波数帯域の幅の平均値よりも小さくともよい。 An elastic wave filter according to an aspect 8 of the present disclosure, in the aspect 1, includes a plurality of elastic wave resonators including the first elastic wave resonator, the element is a capacitor, and Δf is a plurality of elastic wave resonators. may be smaller than the average width of the frequency band in the elastic wave resonator.
 本開示の態様9に係る弾性波フィルタは、前記態様1において、前記第1弾性波共振子を含む複数の弾性波共振子を有しており、前記要素は、インダクタであり、Δfは、複数の前記弾性波共振子における周波数帯域の幅の平均値よりも大きくともよい。 The elastic wave filter according to aspect 9 of the present disclosure is the same as in aspect 1, and includes a plurality of elastic wave resonators including the first elastic wave resonator, the element is an inductor, and Δf is a plurality of elastic wave resonators. may be larger than the average width of the frequency band in the elastic wave resonator.
 本開示の態様10に係る弾性波フィルタは、前記態様1から9のいずれか1つにおいて、前記第1弾性波共振子を含む複数の弾性波共振子を有しており、前記第1弾性波共振子は、複数の前記弾性波共振子のうち最も高い反共振周波数を有していてよい。 The elastic wave filter according to aspect 10 of the present disclosure, in any one of aspects 1 to 9, includes a plurality of elastic wave resonators including the first elastic wave resonator, and the elastic wave filter includes a plurality of elastic wave resonators including the first elastic wave resonator, and The resonator may have the highest anti-resonance frequency among the plurality of elastic wave resonators.
 本開示の態様11に係る弾性波フィルタは、前記態様1から10のいずれか1つにおいて、圧電体層をさらに有しており、前記第1弾性波共振子は、前記圧電体層上に位置するIDT電極を有しており、前記IDT電極によって励振される弾性波の波長λを、前記IDT電極の電極指ピッチの2倍の長さとして規定した場合に、前記圧電体層の厚みはλ以下であり、前記IDT電極は、前記弾性波として板波を励振してよい。 The elastic wave filter according to aspect 11 of the present disclosure, in any one of aspects 1 to 10, further includes a piezoelectric layer, and the first elastic wave resonator is located on the piezoelectric layer. If the wavelength λ of the elastic wave excited by the IDT electrode is defined as twice the electrode finger pitch of the IDT electrode, the thickness of the piezoelectric layer is λ The IDT electrode may excite a plate wave as the elastic wave.
 本開示の態様12に係る弾性波フィルタでは、前記態様1から11のいずれか1つにおいて、前記弾性波フィルタの前記通過帯域は、(i)前記第1弾性波共振子の共振周波数と前記スプリアスとの間、または、(ii)前記第1弾性波共振子の反共振周波数と前記スプリアスとの間に位置していてよい。 In the elastic wave filter according to aspect 12 of the present disclosure, in any one of aspects 1 to 11, the passband of the elastic wave filter includes (i) the resonance frequency of the first elastic wave resonator and the spurious or (ii) between the anti-resonance frequency of the first elastic wave resonator and the spurious.
 本開示の態様13に係る弾性波フィルタでは、前記態様1から12のいずれか1つにおいて、前記弾性波フィルタの前記通過帯域は、前記第1弾性波共振子の共振周波数および反共振周波数のいずれをも含んでいなくともよい。 In the elastic wave filter according to aspect 13 of the present disclosure, in any one of aspects 1 to 12, the passband of the elastic wave filter may be any one of the resonant frequency and the anti-resonant frequency of the first elastic wave resonator. It is not necessary to include .
 本開示の態様14に係る通信装置は、前記態様1から13のいずれか1つに係る弾性波フィルタを有していてよい。 A communication device according to aspect 14 of the present disclosure may include the elastic wave filter according to any one of aspects 1 to 13.
 〔付記事項〕
 以上、本開示に係る発明について、諸図面および実施例に基づいて説明してきた。しかし、本開示に係る発明は上述した各実施形態に限定されるものではない。すなわち、本開示に係る発明は本開示で示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示に係る発明の技術的範囲に含まれる。つまり、当業者であれば本開示に基づき種々の変形または修正を行うことが容易であることに注意されたい。また、これらの変形または修正は本開示の範囲に含まれることに留意されたい。
[Additional notes]
The invention according to the present disclosure has been described above based on the drawings and examples. However, the invention according to the present disclosure is not limited to each embodiment described above. That is, the invention according to the present disclosure can be modified in various ways within the scope shown in the present disclosure, and the invention according to the present disclosure also applies to embodiments obtained by appropriately combining technical means disclosed in different embodiments. Included in technical scope. In other words, it should be noted that those skilled in the art can easily make various changes or modifications based on the present disclosure. It should also be noted that these variations or modifications are included within the scope of this disclosure.
 1 弾性波共振子
 1S-1 直列共振子(第1弾性波共振子の一例)
 1S-2 直列共振子(第2弾性波共振子の一例)
 1P 並列共振子(第1弾性波共振子の別の例)
 2 圧電体層
 3 IDT電極
 32 電極指
 100、100-1、100-2、100-3、100-4 弾性波フィルタ
 151 通信装置
 EL 要素
 CP キャパシタ(要素,第1弾性波共振子に対して並列に接続されたキャパシタ)
 CS キャパシタ(要素,第1弾性波共振子に対して直列に接続されたキャパシタ)
 LP インダクタ(要素,第1弾性波共振子に対して並列に接続されたインダクタ)
 LS インダクタ(要素,第1弾性波共振子に対して直列に接続されたインダクタ)
1 Elastic wave resonator 1S-1 Series resonator (an example of the first elastic wave resonator)
1S-2 Series resonator (an example of a second elastic wave resonator)
1P parallel resonator (another example of the first elastic wave resonator)
2 Piezoelectric layer 3 IDT electrode 32 Electrode fingers 100, 100-1, 100-2, 100-3, 100-4 Acoustic wave filter 151 Communication device EL element CP Capacitor (element, parallel to the first elastic wave resonator) capacitor connected to)
CS capacitor (element, capacitor connected in series to the first elastic wave resonator)
LP inductor (element, inductor connected in parallel to the first elastic wave resonator)
LS inductor (element, inductor connected in series with the first elastic wave resonator)

Claims (14)

  1.  第1弾性波共振子を有する弾性波フィルタであって、
     前記第1弾性波共振子の周波数帯域の幅をΔfとして表し、
     前記弾性波フィルタの通過帯域の高周波側の端の周波数を指す第1端点から、前記第1端点に対してΔfだけ高い周波数を指す第2端点までに亘る帯域を、第1帯域と称し、
     前記弾性波フィルタの前記通過帯域の低周波側の端の周波数を指す第3端点から、前記第3端点に対してΔfだけ低い周波数を指す第4端点までに亘る帯域を、第2帯域と称し、
     前記第1弾性波共振子のスプリアスは、
      前記第1弾性波共振子の前記周波数帯域外に位置しているとともに、
      前記弾性波フィルタの前記通過帯域内、前記第1帯域内、または前記第2帯域内のいずれかに位置しており、
     前記弾性波フィルタは、前記第1弾性波共振子に対して並列または直列に接続された要素をさらに有しており、
     前記要素は、キャパシタまたはインダクタである、
    弾性波フィルタ。
    An elastic wave filter having a first elastic wave resonator,
    The width of the frequency band of the first elastic wave resonator is expressed as Δf,
    A band extending from a first end point indicating a frequency at the end of the high frequency side of the passband of the elastic wave filter to a second end point indicating a frequency higher than the first end point by Δf is referred to as a first band,
    A band extending from a third end point indicating a frequency at the low frequency side end of the passband of the elastic wave filter to a fourth end point indicating a frequency lower by Δf with respect to the third end point is referred to as a second band. ,
    The spurious of the first elastic wave resonator is
    located outside the frequency band of the first elastic wave resonator, and
    located within the passband, the first band, or the second band of the elastic wave filter;
    The elastic wave filter further includes an element connected in parallel or series to the first elastic wave resonator,
    the element is a capacitor or an inductor;
    elastic wave filter.
  2.  前記第1弾性波共振子は、直列共振子であり、
     前記スプリアスは、前記第1帯域内に位置しており、
     前記要素は、前記第1弾性波共振子に対して並列に接続されたキャパシタである、
    請求項1に記載の弾性波フィルタ。
    The first elastic wave resonator is a series resonator,
    the spurious is located within the first band;
    the element is a capacitor connected in parallel to the first acoustic wave resonator;
    The elastic wave filter according to claim 1.
  3.  前記第1弾性波共振子は、並列共振子であり、
     前記スプリアスは、前記第1帯域内に位置しており、
     前記要素は、前記第1弾性波共振子に対して直列に接続されたインダクタである、
    請求項1に記載の弾性波フィルタ。
    The first elastic wave resonator is a parallel resonator,
    the spurious is located within the first band;
    The element is an inductor connected in series with the first elastic wave resonator.
    The elastic wave filter according to claim 1.
  4.  前記第1弾性波共振子は、直列共振子であり、
     前記スプリアスは、前記第2帯域内に位置しており、
     前記要素は、前記第1弾性波共振子に対して並列に接続されたインダクタである、
    請求項1に記載の弾性波フィルタ。
    The first elastic wave resonator is a series resonator,
    the spurious is located within the second band,
    The element is an inductor connected in parallel to the first elastic wave resonator.
    The elastic wave filter according to claim 1.
  5.  前記第1弾性波共振子は、並列共振子であり、
     前記スプリアスは、前記第2帯域内に位置しており、
     前記要素は、前記第1弾性波共振子に対して直列に接続されたキャパシタである、
    請求項1に記載の弾性波フィルタ。
    The first elastic wave resonator is a parallel resonator,
    the spurious is located within the second band,
    The element is a capacitor connected in series with the first acoustic wave resonator.
    The elastic wave filter according to claim 1.
  6.  前記第1弾性波共振子は、直列共振子または並列共振子であり、
     前記スプリアスは、前記弾性波フィルタの前記通過帯域内に位置しており、
     前記要素は、前記第1弾性波共振子に対して直列または並列に接続されたキャパシタである、
    請求項1に記載の弾性波フィルタ。
    The first elastic wave resonator is a series resonator or a parallel resonator,
    The spurious is located within the passband of the elastic wave filter,
    The element is a capacitor connected in series or parallel to the first acoustic wave resonator.
    The elastic wave filter according to claim 1.
  7.  前記第1弾性波共振子とは異なる第2弾性波共振子をさらに有しており、
     前記第2弾性波共振子のスプリアスは、前記弾性波フィルタの前記通過帯域内、前記第1帯域内、および前記第2帯域内のいずれにも位置しておらず、
     前記第2弾性波共振子に対して並列または直列に接続されたキャパシタまたはインダクタを有していない、
    請求項1に記載の弾性波フィルタ。
    further comprising a second elastic wave resonator different from the first elastic wave resonator,
    The spurious of the second elastic wave resonator is not located within the pass band, the first band, or the second band of the elastic wave filter,
    does not have a capacitor or inductor connected in parallel or series with the second acoustic wave resonator;
    The elastic wave filter according to claim 1.
  8.  前記第1弾性波共振子を含む複数の弾性波共振子を有しており、
     前記要素は、キャパシタであり、
     Δfは、複数の前記弾性波共振子における周波数帯域の幅の平均値よりも小さい、
    請求項1に記載の弾性波フィルタ。
    It has a plurality of elastic wave resonators including the first elastic wave resonator,
    the element is a capacitor;
    Δf is smaller than the average value of the frequency band widths of the plurality of elastic wave resonators,
    The elastic wave filter according to claim 1.
  9.  前記第1弾性波共振子を含む複数の弾性波共振子を有しており、
     前記要素は、インダクタであり、
     Δfは、複数の前記弾性波共振子における周波数帯域の幅の平均値よりも大きい、
    請求項1に記載の弾性波フィルタ。
    It has a plurality of elastic wave resonators including the first elastic wave resonator,
    the element is an inductor;
    Δf is larger than the average value of the frequency band widths of the plurality of elastic wave resonators,
    The elastic wave filter according to claim 1.
  10.  前記第1弾性波共振子を含む複数の弾性波共振子を有しており、
     前記第1弾性波共振子は、複数の前記弾性波共振子のうち最も高い反共振周波数を有している、
    請求項1から9のいずれか1項に記載の弾性波フィルタ。
    It has a plurality of elastic wave resonators including the first elastic wave resonator,
    The first elastic wave resonator has the highest anti-resonance frequency among the plurality of elastic wave resonators,
    The elastic wave filter according to any one of claims 1 to 9.
  11.  圧電体層をさらに有しており、
     前記第1弾性波共振子は、前記圧電体層上に位置するIDT電極を有しており、
     前記IDT電極によって励振される弾性波の波長λを、前記IDT電極の電極指ピッチの2倍の長さとして規定した場合に、前記圧電体層の厚みはλ以下であり、
     前記IDT電極は、前記弾性波として板波を励振する、
    請求項1から10のいずれか1項に記載の弾性波フィルタ。
    It further has a piezoelectric layer,
    The first acoustic wave resonator has an IDT electrode located on the piezoelectric layer,
    When the wavelength λ of the elastic wave excited by the IDT electrode is defined as twice the electrode finger pitch of the IDT electrode, the thickness of the piezoelectric layer is λ or less,
    The IDT electrode excites a plate wave as the elastic wave.
    The elastic wave filter according to any one of claims 1 to 10.
  12.  前記弾性波フィルタの前記通過帯域は、(i)前記第1弾性波共振子の共振周波数と前記スプリアスとの間、または、(ii)前記第1弾性波共振子の反共振周波数と前記スプリアスとの間に位置している、
    請求項1から11のいずれか1項に記載の弾性波フィルタ。
    The pass band of the elastic wave filter is between (i) the resonant frequency of the first elastic wave resonator and the spurious, or (ii) between the anti-resonant frequency of the first elastic wave resonator and the spurious. located between
    The elastic wave filter according to any one of claims 1 to 11.
  13.  前記弾性波フィルタの前記通過帯域は、前記第1弾性波共振子の共振周波数および反共振周波数のいずれをも含んでいない、
    請求項1から12のいずれか1項に記載の弾性波フィルタ。
    The pass band of the elastic wave filter does not include either the resonant frequency or the anti-resonant frequency of the first elastic wave resonator.
    The elastic wave filter according to any one of claims 1 to 12.
  14.  請求項1から13のいずれか1項に記載の弾性波フィルタを有している、通信装置。 A communication device comprising the elastic wave filter according to any one of claims 1 to 13.
PCT/JP2023/021366 2022-06-22 2023-06-08 Elastic wave filter and communication device WO2023248815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-100435 2022-06-22
JP2022100435 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023248815A1 true WO2023248815A1 (en) 2023-12-28

Family

ID=89379738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021366 WO2023248815A1 (en) 2022-06-22 2023-06-08 Elastic wave filter and communication device

Country Status (1)

Country Link
WO (1) WO2023248815A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040817A (en) * 2009-08-06 2011-02-24 Taiyo Yuden Co Ltd Duplexer
WO2016190216A1 (en) * 2015-05-22 2016-12-01 京セラ株式会社 Elastic wave device and communication device
WO2021079830A1 (en) * 2019-10-24 2021-04-29 京セラ株式会社 Elastic wave device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040817A (en) * 2009-08-06 2011-02-24 Taiyo Yuden Co Ltd Duplexer
WO2016190216A1 (en) * 2015-05-22 2016-12-01 京セラ株式会社 Elastic wave device and communication device
WO2021079830A1 (en) * 2019-10-24 2021-04-29 京セラ株式会社 Elastic wave device

Similar Documents

Publication Publication Date Title
KR100434609B1 (en) Surface-acoustic-wave filter device
US8125298B2 (en) Acoustic wave filter, duplexer using the acoustic wave filter, and communication apparatus using the duplexer
US9762209B2 (en) Duplexer with a series trap element and a specifically connected capacitance or elastic wave resonator
KR100797833B1 (en) Surface acoustic wave filter and antenna common unit employing it
JP4640502B2 (en) SAW filter device
JP6637990B2 (en) Elastic wave resonator, elastic wave filter, duplexer, communication device, and method of designing elastic wave resonator
US7212086B2 (en) Surface acoustic wave device
KR100688885B1 (en) Surface acoustic wave filter, branching filter, and communication apparatus
US7868716B2 (en) Acoustic wave filter apparatus
US10958241B2 (en) Extractor
WO2013154113A1 (en) Ladder-type surface acoustic wave filter
JP3528049B2 (en) Surface acoustic wave device, communication device
EP1005153B1 (en) Surface acoustic wave filter
WO2010061496A1 (en) Elastic wave filter device
JP2002314366A (en) Surface acoustic wave filter, surface acoustic wave device and communication equipment
JPH0856135A (en) Surface acoustic wave device
CN114301422A (en) Filter, multiplexer, radio frequency front end and method for manufacturing filter
JPWO2006040923A1 (en) Duplexer
JP7386741B2 (en) Filters, duplexers and communication equipment
US7746199B2 (en) Acoustic wave device
WO2023248815A1 (en) Elastic wave filter and communication device
WO2020137263A1 (en) Filter device
US20200145030A1 (en) Multiplexer
WO2023132354A1 (en) Filter device, splitter, and communication device
JPH11340779A (en) Surface acoustic wave filter, duplexer, and communication equipment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827002

Country of ref document: EP

Kind code of ref document: A1