WO2023248798A1 - Laser radar - Google Patents

Laser radar Download PDF

Info

Publication number
WO2023248798A1
WO2023248798A1 PCT/JP2023/021155 JP2023021155W WO2023248798A1 WO 2023248798 A1 WO2023248798 A1 WO 2023248798A1 JP 2023021155 W JP2023021155 W JP 2023021155W WO 2023248798 A1 WO2023248798 A1 WO 2023248798A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
reflective surface
laser radar
light
axis
Prior art date
Application number
PCT/JP2023/021155
Other languages
French (fr)
Japanese (ja)
Inventor
創太郎 山口
康行 加納
哲央 細川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023248798A1 publication Critical patent/WO2023248798A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present invention relates to a laser radar that detects objects using laser light.
  • laser radars that detect objects using laser light have been installed in intrusion detection systems, cars, robots, etc.
  • This type of laser radar projects a laser beam onto a target area and detects the presence or absence of an object in the projection direction based on the reflected light.
  • this type of laser radar may also have a function of measuring the distance to an object based on the time required from the timing of projecting the laser beam to the timing of receiving the reflected light.
  • This type of laser radar uses a configuration in which the projection direction of laser light is rotated about a rotation axis. Thereby, objects around the laser radar can be detected.
  • an arrangement may further be arranged for monitoring the operation of the laser radar at a predetermined rotational position.
  • a mirror that returns the projected laser light to the light receiving element of the laser radar under intended conditions without hitting the object to be detected is arranged at this rotational position.
  • an abnormality in the light emitting element and the light receiving element can be detected from the output of the light receiving element at the rotational position where the mirror is arranged. Furthermore, with the above configuration, by measuring the distance at the rotational position where the mirror is placed, it is possible to correct the deviation in the distance measurement value. That is, the distance measured at this rotational position is compared with the optical path length (reference value) of the laser beam fed back by the mirror, and a deviation in the distance measurement value at this rotational position is detected. Based on the deviation detected in this way, the distance actually measured at a rotational position other than this rotational position is corrected.
  • a plurality of laser beams are projected from the laser radar and the angles formed with the rotation axis differ by a predetermined angle, and the reflection of these laser beams.
  • a configuration is used in which light is received by each of a plurality of light receiving elements. Thereby, the range of object detection can be further expanded in the direction parallel to the rotation axis.
  • the optical path lengths of the laser beams reflected by the mirror and returned to each other are different from each other. It turns out to be a problem. Due to these differences in optical path length, the amount of light received by each laser beam differs from each other, so it is necessary to detect abnormalities in the light emitting element and light receiving element for each laser beam individually based on the output from the light receiving element. . Furthermore, if the optical path length differs between laser beams, it is necessary to detect the deviation in the distance measurement value and correct the distance measurement accordingly for each laser beam. This increases the processing load on the device, leading to an increase in cost.
  • the present invention provides a laser beam that is capable of monitoring the operation of a device through simpler processing in a configuration in which a plurality of laser beams rotate about a rotation axis, each having a predetermined angle different from the rotation axis.
  • the purpose is to provide radar.
  • a laser radar rotates and scans a plurality of laser beams whose angles with a rotation axis differ by a predetermined angle, respectively, and scans the plurality of laser beams by rotating them about the rotation axis, and detects reflected light from an object of the plurality of laser beams.
  • a scanning unit that individually receives the laser beams; and a guide that guides the plurality of laser beams emitted from the scanning unit to the plurality of photodetectors of the scanning unit at a predetermined rotational position, respectively, with optical path lengths that are substantially the same as each other. It is equipped with a section and a section.
  • the guiding section guides the plurality of laser beams to the photodetector with optical path lengths that are substantially the same.
  • the processing for each laser beam can be shared, and the operation of the device can be monitored using simpler processing.
  • the angles formed with the rotation axis differ by a predetermined angle, it is possible to monitor the operation of the device by simpler processing.
  • FIG. 1 is a perspective view schematically showing the configuration of a laser radar according to an embodiment.
  • FIG. 2 is a perspective view schematically showing the configuration of the optical system according to the embodiment.
  • FIG. 3A is a side view schematically showing the configuration of the projection optical system according to the embodiment.
  • FIG. 3(b) is a side view schematically showing the configuration of the light receiving optical system according to the embodiment.
  • FIG. 4 is a plan view schematically showing the configuration of the laser radar according to the embodiment.
  • FIG. 5 is a perspective view showing the configuration of the first reflecting member and the second reflecting member according to the embodiment.
  • FIG. 6 is a perspective view showing the configuration of a light shielding member and a structure according to the embodiment.
  • FIG. 7(a) is a perspective view showing the configuration of the guide section according to the embodiment.
  • FIG. 7(b) is a perspective view showing the C1-C2 cross section of FIG. 7(a) according to the embodiment.
  • FIGS. 8A and 8B are diagrams showing the configuration of the guiding section and the optical path of the laser beam when viewed in the negative direction of the y-axis, according to the embodiment.
  • FIG. 9 is a block diagram showing the configuration of the circuit section of the laser radar according to the embodiment.
  • FIG. 10A is a diagram schematically showing the emission timing of laser light according to the embodiment.
  • FIG. 10(b), FIG. 10(c), and FIG. 10(d) are diagrams schematically showing detection signals of the photodetector at temperature Tm1 according to the embodiment.
  • FIGS. 12(a) and 12(b) are diagrams schematically showing the reflective surfaces of the guide portions according to comparative examples.
  • FIGS. 13(a) and 13(b) are diagrams schematically showing the reflective surface of the guiding section according to the embodiment.
  • FIGS. 14(a) and 14(b) are diagrams schematically showing the reflective surface of the guiding section according to the embodiment.
  • FIGS. 15(a) and 15(b) are diagrams schematically showing the configurations of the guiding section and the optical system according to the embodiment.
  • FIGS. 16(a) and 16(b) are diagrams schematically showing reflective surfaces of guide portions according to a comparative example and an embodiment, respectively.
  • FIG. 17A is a diagram schematically illustrating the configuration of the guide section when two sets of reflective surfaces are used, according to Modification Example 1.
  • FIG. 17(b) is a diagram schematically showing the configuration of the guiding section when an ND filter is used according to modification example 2.
  • FIGS. 18(a) and 18(b) are diagrams schematically showing the configuration of the guiding section when an ND filter is used according to modification example 2.
  • FIG. FIGS. 19(a) to 19(c) are diagrams schematically showing the configuration of a guiding section according to modification example 3.
  • FIG. 20(a) and 20(b) are diagrams schematically showing a configuration when a prism is used according to modification example 4.
  • FIG. 21 is a diagram schematically showing a configuration when an optical fiber is used according to modification example 5.
  • 22(a) and 22(b) are diagrams schematically showing the configuration of a light shielding member according to modification example 6.
  • FIG. FIG. 23 is a side view schematically showing the configuration of a projection optical
  • FIG. 1 is a perspective view schematically showing the configuration of a laser radar 1.
  • the Z-axis positive direction is the height direction of the laser radar 1.
  • the laser radar 1 includes a scanning section 10, a supporting section 20, and a guiding section 200.
  • the scanning unit 10 rotates and scans the laser beam about the rotation axis R10, and receives reflected light from an object.
  • the scanning section 10 includes a fixed section 11, a rotating section 12, and an optical system 100. In FIG. 1, the positions of the rotating part 12 and the optical system 100 are shown by broken lines and dotted lines, respectively, for convenience.
  • the rotating part 12 is rotated by a motor in the fixed part 11 about a rotating axis R10 parallel to the Z-axis direction.
  • the rotating direction of the rotating part 12 is clockwise when viewed in the negative direction of the Z-axis.
  • the optical system 100 is installed inside the rotating section 12, and rotates in the circumferential direction of the rotation axis R10 as the rotating section 12 rotates.
  • the optical system 100 emits a plurality of laser beams in a direction away from the rotation axis R10, each having a predetermined angle different from the rotation axis R10, and emits reflected light reflected by an object existing at a scanning position of these laser beams. Receive light.
  • the side surface of the rotating part 12 is made of a member through which the laser beam emitted from the optical system 100 and the reflected light reflected by the object pass through. Note that an opening may be formed on the side surface of the rotating part 12 for the laser beam to pass through.
  • the configuration of the optical system 100 will be explained later with reference to FIG. 2.
  • the support portion 20 is an L-shaped member when viewed in the X-axis direction.
  • the support portion 20 includes a horizontal portion 21 extending in the Y-axis direction and a vertical portion 22 extending in the vertical direction (Z-axis direction).
  • One end of the horizontal portion 21 and one end of the vertical portion 22 are connected.
  • the other end of the horizontal part 21 supports the upper end of the rotating part 12 so that the rotating part 12 can rotate, and the other end of the vertical part 22 is installed on the outer periphery of the fixed part 11.
  • the guide section 200 is installed inside the vertical section 22 (on the side facing the rotating section 12).
  • the guiding unit 200 guides the plurality of laser beams emitted from the plurality of light sources 111 (see FIG. 2) of the optical system 100 at a predetermined rotational position of the optical system 100 with substantially the same optical path length.
  • Each of the light beams is guided to a plurality of photodetectors 122 (see FIG. 2).
  • the configuration of the guiding section 200 will be explained later with reference to FIGS. 5 to 7(a).
  • laser light is emitted from the light source 111 (see FIG. 2) of the optical system 100 to the outside of the laser radar 1.
  • the laser light emitted from the optical system 100 is emitted radially with respect to the rotation axis R10, as shown by the dashed-dotted arrow.
  • the laser light (reflected light) reflected by an object present at the scanning position of the laser light is received by the photodetector 122 (see FIG. 2) of the optical system 100, as shown by the dashed arrow.
  • the optical axis of the laser beam projected from the laser radar 1 rotates around the rotation axis R10 due to the rotation of the rotating part 12 around the rotation axis R10. Along with this, the scanning position of the laser beam also moves.
  • the laser radar 1 determines whether an object exists at the scanning position based on whether or not reflected light is received. Further, the laser radar 1 measures the distance to the object present at the scanning position based on the time difference (time of flight) between the timing of projecting the laser beam and the timing of receiving the reflected light. By rotating the rotating part 12 around the rotation axis R10, the laser radar 1 can detect objects existing in the surrounding range excluding the position of the supporting part 20.
  • the laser radar 1 projects a laser beam onto the guiding section 200 at a predetermined timing and receives reflected light from the guiding section 200.
  • the laser radar 1 determines whether an abnormality has occurred in the light source 111 and the photodetector 122 (see FIG. 2) based on the amount of reflected light received from the guide section 200. Further, the laser radar 1 corrects the distance measurement value (distance measurement value) at the scanning position based on the detection signal of the reflected light from the guiding section 200. Correction of the measured distance value will be explained later with reference to FIGS. 10(a) to 11.
  • FIG. 2 is a perspective view schematically showing the configuration of the optical system 100.
  • FIG. 2 the same X, Y, and Z axes as in FIG.
  • the optical system 100 is shown when the laser beam emission direction is in the negative direction of the Y-axis.
  • the laser light emitted from each light source 111 and heading toward the scanning position is shown by a dashed line, and the laser light (reflected light) reflected from the scanning position is shown by a broken line.
  • the optical system 100 includes a projection optical system 110 that projects a laser beam, and a light receiving optical system 120 that receives the reflected light of the laser beam reflected by an object.
  • the projection optical system 110 includes nine light sources 111 and a collimator lens 112. Projection optical system 110 projects nine laser beams.
  • the light receiving optical system 120 includes a condensing lens 121 and nine photodetectors 122. The light receiving optical system 120 guides nine reflected lights to nine photodetectors 122.
  • the output optical axis of the central light source 111 among the nine light sources 111 and the optical axis 112a of the collimator lens 112 are aligned.
  • the optical axis 112a of the collimator lens 112 (the optical axis of the projection optical system 110) and the optical axis 121a of the condenser lens 121 (the optical axis of the light receiving optical system 120) are spaced apart from each other in the X-axis direction.
  • the light source 111 is a semiconductor laser element that emits laser light of a predetermined wavelength.
  • the nine light sources 111 are installed on the substrate 113 so as to be lined up in the Z-axis direction at predetermined intervals.
  • the optical axis of the central light source 111 is parallel to the Y axis.
  • the optical axes of the light sources 111 at both ends are tilted by the same angle from being parallel to the Y axis to approach the optical axis of the light source 111 at the center. That is, the central light source 111 is installed so that its emitting end surface is parallel to the X-Z plane, and the other light sources 111 are installed so that their emitting end surfaces are slightly parallel to the X-Y plane from being parallel to the X-Z plane. It is set up so that it is tilted.
  • the collimator lens 112 converts the laser beams emitted from the nine light sources 111 into parallel beams.
  • the nine laser beams converted into parallel beams by the collimator lens 112 are projected onto the scanning position and reflected by an object present at the scanning position.
  • the nine laser beams (nine reflected beams) reflected by the object enter the Y-axis negative side surface (incident surface) of the condenser lens 121.
  • the condensing lens 121 has a circular shape with a part cut out in plan view.
  • the cut surface 121b of the condenser lens 121 is parallel to the YZ plane and is located on the negative side of the X-axis with respect to the optical axis 121a.
  • the cut surface 121b is adjacent to the collimator lens 112 in the X-axis direction.
  • the condensing lens 121 condenses the nine reflected lights onto the corresponding photodetectors 122, respectively. Since the condenser lens 121 has such a shape, the nine light sources 111 and collimator lenses 112 and the condenser lens 121 can be arranged close to each other. This makes it easier to properly guide reflected light from a nearby object to the photodetector 122.
  • the nine photodetectors 122 are installed on the substrate 123 so as to be lined up in the Z-axis direction at predetermined intervals.
  • the nine photodetectors 122 each receive the corresponding reflected light and output a detection signal according to the amount of received light.
  • Photodetector 122 is, for example, an avalanche photodiode.
  • FIG. 3(a) is a side view schematically showing the configuration of the projection optical system 110.
  • FIG. 3(a) The same X, Y, and Z axes as in FIG. 2 are also added to FIG. 3(a).
  • the emission optical axes of the laser beams emitted from the nine light sources 111 are shown by dashed-dotted lines.
  • the output optical axes of the nine laser beams intersect near the incident surface (the surface on the positive side of the Y-axis) of the collimator lens 112.
  • FIG. 3(b) is a side view schematically showing the configuration of the light receiving optical system 120.
  • FIG. 3(b) The same X, Y, and Z axes as in FIG. 2 are also added to FIG. 3(b).
  • the optical axes of the nine reflected lights reflected by the object are shown by broken lines.
  • the nine reflected lights condensed by the condensing lens 121 are incident on the nine photodetectors 122, respectively.
  • FIG. 4 is a plan view schematically showing the configuration of the laser radar 1.
  • illustration of the support portion 20 is omitted for convenience.
  • the optical system 100 rotates about the rotation axis R10 as the center of rotation in accordance with the rotation of the rotation unit 12. At this time, the optical system 100 projects nine laser beams in a direction away from the rotation axis R10 (radially when viewed in the Z-axis direction). The nine laser beams projected from the optical system 100 overlap when viewed in the Z-axis direction. The optical system 100 projects nine laser beams while rotating at a predetermined speed, and receives nine reflected beams from the scanning position. Thereby, the presence or absence of objects existing around the laser radar 1 is detected and the distance is measured.
  • the laser radar 1 determines whether an abnormality has occurred in the light source 111 and the photodetector 122, and corrects the distance measurement value (distance measurement value) at the scanning position, as will be described later.
  • x, y, and z axes that are orthogonal to each other are added to FIGS. 5 to 7(a).
  • the x-axis direction is the same axis as the X-axis shown in FIG. 1, and the y-axis and z-axis are the axes obtained by rotating the Y-axis and Z-axis shown in FIG. 1 by 45 degrees around the X-axis, respectively. .
  • FIG. 5 is a perspective view showing the configurations of the first reflecting member 210 and the second reflecting member 220.
  • the first reflecting member 210 is formed with reflecting surfaces 211 and 212, a cylindrical surface 213, holes 214 and 215, two installation surfaces 216, and an installation surface 217.
  • the reflective surfaces 211 and 212 have a conical side surface shape.
  • the reflective surface 211 has a shape in which the radius of the curved surface decreases as it advances in the negative direction of the x-axis
  • the diameter of the curved surface 212 has a shape that decreases in the diameter of the curved surface as it advances in the positive direction of the x-axis.
  • the reflective surfaces 211 and 212 have shapes that are substantially symmetrical to each other in the x-axis direction.
  • the reflectance of the reflective surface 211 is lower than the reflectance of the reflective surface 212 of the second reflective member 220.
  • the reflectance of the reflective surfaces 211, 212 can be adjusted by using different materials for the reflective surfaces 211, 212.
  • the cylindrical surface 213 has a cylindrical side shape and is formed between the reflective surfaces 211 and 212.
  • the holes 214 and 215 are formed at the end of the first reflecting member 210 on the negative side of the x-axis, and pass through the end of the negative side of the x-axis of the first reflecting member 210 in the x-axis direction.
  • the two installation surfaces 216 are formed near the ends of the first reflecting member 210 on the x-axis negative side and the x-axis positive side.
  • the installation surface 216 is composed of a surface shaped like a side surface of a cylinder and a surface parallel to the xz plane.
  • the installation surface 217 is formed on the negative side of the z-axis of the reflective surface 211 and the cylindrical surface 213, and includes a surface inclined to the xz plane and a surface parallel to the XZ plane.
  • the second reflecting member 220 is formed with a reflecting surface 221, a protrusion 222, a hole 223, and installation surfaces 224 and 225.
  • the reflective surface 221 has a conical side surface shape.
  • the reflective surface 221 has a shape in which the radius of the curved surface decreases as it advances in the negative direction of the x-axis.
  • the reflectance of the reflective surface 221 is higher than the reflectance of the reflective surface 211 of the first reflective member 210.
  • a material having a higher reflectance than the material applied to the reflective surface 211 is applied to the reflective surface 221.
  • a material that provides the desired reflectance for the reflective surface 221 is selected.
  • the protrusion 222 and the hole 223 are formed at the end of the second reflecting member 220 on the negative side of the x-axis.
  • the installation surface 224 is composed of a surface shaped like a cylindrical side surface and a surface parallel to the xz plane.
  • the installation surface 225 is composed of a surface inclined to the xz plane and a surface parallel to the xz plane.
  • the protrusion 222 is passed through the hole 214 and the installation surface 225 is installed on the installation surface 217. In this state, the holes 215 and 223 are screwed together. As a result, the structure 240 shown in FIG. 6 is completed.
  • FIG. 6 is a perspective view showing the configuration of the light shielding member 230 and the structure 240.
  • the installation surface 216 and the installation surface 224 on the negative side of the x-axis are connected without a step difference.
  • An opening 241 is formed in a portion surrounded by the installation surface 216 and the installation surface 224.
  • the reflective surface 211 is exposed to the outside through the opening 241.
  • an opening 242 is formed between the end of the second reflecting member 220 on the positive side of the x-axis and the cylindrical surface 213.
  • the reflective surface 211 is opened in the positive x-axis direction through the opening 242 and faces the reflective surface 212 in the x-axis direction.
  • the reflective surface 221 also faces the reflective surface 212 in the x-axis direction.
  • the light shielding member 230 is composed of a cylindrical side surface and a surface parallel to the xz plane.
  • the light shielding member 230 is a limiter for limiting the amount of laser light emitted from the light source 111 and incident on the photodetector 122.
  • Apertures 231, 232, and 233 are formed in the light shielding member 230.
  • the openings 231, 232, and 233 penetrate the light shielding member 230.
  • the openings 231 and 232 have a rectangular shape when viewed in a direction parallel to the yz plane (for example, the Y-axis direction in FIG. 1).
  • the openings 231 and 232 have a shape in which the lengths in the y-axis direction and the z-axis direction are longer than in the x-axis direction.
  • the lengths of the apertures 231 and 232 in the y-axis direction and the z-axis direction are set such that the optical axes of the nine laser beams emitted from the optical system 100 are positioned within the apertures 231 and 232.
  • the length of the opening 233 in the y-axis direction and the z-axis direction is the same as the length of the openings 231 and 232 in the y-axis direction and the z-axis direction, and the length in the x-axis direction is the same as that of the openings 231 and 232 in the x-axis direction. It has a shape that is longer than its length.
  • the light shielding member 230 is installed on the installation surfaces 216 and 224 of the structure 240 with adhesive or the like. As a result, the guide portion 200 is completed as shown in FIG. 7(a).
  • FIG. 7(a) is a perspective view showing the configuration of the guiding section 200.
  • the opening 231 of the light shielding member 230 is located in front of the opening 241 of the structure 240 and the reflective surface 211 shown in FIG.
  • the opening 232 of the light shielding member 230 is located in front of the reflective surface 221, and the opening 233 is located in front of the reflective surface 212.
  • the amount of laser light that enters the photodetector 122 via the guide section 200 can be adjusted.
  • FIG. 7(b) is a perspective view showing the C1-C2 cross section of FIG. 7(a).
  • FIGS. 8A and 8B are diagrams showing the configuration of the guide section 200 and the optical path of the laser beam when viewed in the negative direction of the y-axis.
  • the optical axis of the laser beam that passes through the position where the positive side of the y-axis is open is shown by a solid line
  • the optical axis of the laser beam that is hidden by the guiding part 200 is shown as a solid line. , shown by the dotted line.
  • the plurality of laser beams emitted by the optical system 100 When the rotational position of the plurality of laser beams emitted by the optical system 100 is positioned at a position corresponding to the aperture 231, the plurality of laser beams enter the reflective surface 211 via the aperture 231 and the aperture 241 (see FIG. 6).
  • the laser light incident on the reflective surface 211 is reflected by the reflective surface 211 in the positive direction of the x-axis.
  • the reflected light reflected by the reflective surface 211 passes through the opening 242 as shown in FIG. 7(b), and enters the reflective surface 212 as shown in FIG. 8(a).
  • the reflected light incident on the reflective surface 212 is reflected by the reflective surface 212, passes through the aperture 233, travels in a direction parallel to the yz plane, and heads toward the condenser lens 121.
  • the reflected light is condensed.
  • the light is focused by a lens 121 and guided to a photodetector 122.
  • the plurality of laser beams enter the reflective surface 221 through the aperture 232.
  • the laser light incident on the reflective surface 221 is reflected by the reflective surface 221 in the positive direction of the x-axis.
  • the reflected light reflected by the reflective surface 221 enters the reflective surface 212 as shown in FIG. 8(b).
  • the reflected light incident on the reflective surface 212 is reflected by the reflective surface 212, passes through the aperture 233, travels in a direction parallel to the yz plane, and heads toward the condenser lens 121. In this case, as shown in FIG.
  • the optical axis of the reflected light that has passed through the aperture 233 and the optical axis 121a of the condensing lens 121 match in the x-axis direction, and the reflected light is condensed.
  • the light is focused by a lens 121 and guided to a photodetector 122.
  • FIG. 9 is a block diagram showing the configuration of the circuit section 30 of the laser radar 1.
  • the circuit section 30 includes a control circuit 31, a drive circuit 32, and a processing circuit 33.
  • the drive circuit 32 is connected to nine light sources 111, and the processing circuit 33 is connected to nine photodetectors 122.
  • the control circuit 31 includes an arithmetic processing unit such as a CPU or FPGA, and a memory, and controls each part according to a program stored in the memory.
  • the drive circuit 32 causes the nine light sources 111 to simultaneously emit pulsed light in accordance with the control from the control circuit 31.
  • the processing circuit 33 performs processing such as amplification and noise removal on the analog detection signals output from the nine photodetectors 122, converts the processed detection signals into digital signals, and outputs the digital signals to the control circuit 31. .
  • the control circuit 31 determines that an object is present in the projection direction of the laser beam if reflected light is detected by the corresponding photodetector 122 within a certain period of time after the light source 111 emits pulsed light, and further, The distance to the object is calculated based on the time difference between the pulse emission timing and the reflected light detection timing. In this way, detection of the presence or absence of an object in the projection direction and calculation of the distance to the object are performed every predetermined rotation angle (for example, 1°) of the rotating section 12.
  • the object detection results (presence or absence of the object and distance to the object) obtained by the circuit section 30 of the optical system 100 are sent to the circuit section on the fixed section 11 side via a communication section (for example, a non-contact communication section) at any time. and further transmitted from the circuit section on the fixed section 11 side to an external device.
  • External devices include, for example, intrusion detection systems, cars, robots, and the like.
  • FIG. 10(a) is a diagram schematically showing the emission timing of laser light.
  • the drive circuit 32 Based on the control signal from the control circuit 31, the drive circuit 32 causes the light source 111 to emit laser light, for example, at time Ts.
  • the reflected light reflected by the object at the scanning position is received by the corresponding photodetector 122, and the photodetector 122 outputs a wave-shaped detection signal as shown in FIG. 10(b).
  • FIG. 10(b) is a diagram schematically showing the detection signal of the photodetector 122.
  • the photodetector 122 outputs a detection signal according to the amount of reflected light it receives.
  • the control circuit 31 determines the distance D0 to the object at the scanning position based on the time from time Ts to time T0. Calculate.
  • the amount of reflected light changes depending on the reflectance of the object at the scanning position. For example, if the reflectance of the object is the reference value, a detection signal like that shown in FIG. A detection signal like this is obtained.
  • a detection signal like that shown in FIG. A detection signal like this is obtained.
  • the distance is calculated in the same manner as in FIG. 10(b)
  • a distance longer than the actual distance will be calculated. That is, in the case of FIG. 10(c), the distance D1 is calculated based on the time from time Ts to time T1, and in the case of FIG. 10(d), the distance D2 is calculated based on the time from time Ts to time T2. be done. In this way, in the cases of FIGS. 10(c) and 10(d), the calculated distances D1 and D2 are separated from the appropriate distance D0.
  • the distance value is corrected according to the slope (rise angle) of the detection signal.
  • the control circuit 31 estimates the slope of the detection signal from the pulse width based on the threshold value Lth, and calculates the distance correction amount according to the estimated slope. For example, in the case of FIG. 10(c), the control circuit 31 corrects the distance based on the reference relational expression that defines the relationship between the pulse width and the distance correction amount based on the pulse width w1 obtained from the detection signal.
  • An appropriate distance D0 is calculated by obtaining the distance correction amount A1 of and subtracting the distance correction amount A1 from the distance D1.
  • FIG. 10(c) the control circuit 31 corrects the distance based on the reference relational expression that defines the relationship between the pulse width and the distance correction amount based on the pulse width w1 obtained from the detection signal.
  • An appropriate distance D0 is calculated by obtaining the distance correction amount A1 of and subtracting the distance correction amount A1 from the distance D1.
  • the control circuit 31 obtains the distance correction amount A2 for correcting the distance from the above-mentioned reference relational expression based on the pulse width w2 obtained from the detection signal, and An appropriate distance D0 is calculated by subtracting the distance correction amount A2 from D2.
  • the distance measurement value can be corrected by correction based on the pulse width of the detection signal.
  • the environmental temperature of the laser radar 1 changes, the characteristics of the light source 111 and the photodetector 122 change, and the detection signal output from the photodetector 122 changes. Therefore, if the distance correction amounts obtained from the above-mentioned standard relational expressions (distance correction amounts A1 and A2 in the case of FIGS. 10(c) and (d)) are used as they are, there will be a difference between them and the true distance correction amount. may occur.
  • control circuit 31 modifies the relational expression between the pulse width and the distance correction amount based on the detection signal of the reflected light from the guiding section 200.
  • FIG. 11 is a graph schematically showing the relationship between pulse width and distance correction amount.
  • the solid line in FIG. 11 shows the relationship between the pulse width and the distance correction amount when the environmental temperature of the laser radar 1 is at the reference temperature Tm1.
  • the control circuit 31 projects a laser beam onto the low-reflectance reflective surface 211 and the high-reflectance reflective surface 221, and acquires two detection signals as in FIGS. 10(c) and 10(d).
  • the light shielding member 230 limits the amount of laser light that enters the photodetector 122. Thereby, saturation of the output of the photodetector 122 can be suppressed, and the waveform of the detection signal of the photodetector 122 can be smoothly varied according to the difference in reflectance between the reflective surfaces 211 and 221.
  • the control circuit 31 describes the distances D11 and D12 when the laser beam is projected onto the low reflectance reflecting surface 211 and the high reflectance reflecting surface 221, respectively, with reference to FIGS. 10(c) and 10(d). Calculated by processing. In this case, the control circuit 31 obtains the distance correction amount used for each distance calculation from the reference temperature relational expression (reference relational expression) shown by the solid line in FIG. 11 .
  • the optical path length from the light source 111 to the photodetector 122 when passing through the reflective surface 211 (distance D01)
  • the optical path length from the light source 111 to the photodetector 122 when passing through the reflective surface 221 (distance D02) ) are known respectively.
  • the control circuit 31 calculates a difference A11 from the difference between the known distance D01 and the calculated distance D11, and calculates a difference A12 from the difference between the known distance D02 and the calculated distance D12.
  • the control circuit 31 corrects the relational expression of the reference temperature from these differences A11 and A12, and determines the relational expression used for measurement.
  • the relational expression shown by the dotted line is determined as the relational expression used for measurement.
  • the relational expression shown by the broken line is determined as the relational expression used for measurement.
  • the control circuit 31 obtains the distance correction amount during actual distance measurement based on the relational expression determined in this way. For example, when the environmental temperature is temperature Tm2, the control circuit 31 obtains the distance correction amount A3 when the pulse width during distance measurement is w5, and when the environmental temperature is temperature Tm3, the control circuit 31 obtains the distance correction amount A3. When the pulse width during distance measurement is w5, a distance correction amount A4 is obtained. The control circuit 31 uses the distance correction amount thus obtained to calculate the distance at each scanning position by the process shown in FIGS. 10(c) and 10(d).
  • the known optical path lengths (the above distances D01 and D02) cannot be used in common.
  • the degree of spread of each laser beam will vary, and therefore the amount of reflected light guided to the photodetector 122 will vary. When such a variation in the amount of light occurs, it becomes necessary to change the threshold value Lth for each laser beam.
  • the magnitude of the light amount can be determined using a common threshold value. It disappears. Therefore, processing based on reflected light becomes complicated.
  • the optical system 100 and the guiding section 200 are arranged so that the optical path length from the light source 111 to the photodetector 122 via the guiding section 200 is approximately the same for each laser beam. It is configured. This suppresses variations in the amount of reflected light guided to the photodetector 122 via the guide section 200.
  • the magnitude of the amount of light can be determined using a common threshold value. Furthermore, when performing distance correction, the pulse width can be obtained using a common threshold Lth, and the relational expression between the pulse width and the distance correction amount can be obtained using a common optical path length (distances D01 and D02 above). . Therefore, since the processing for each laser beam can be shared, the operation of the laser radar 1 can be monitored with simpler processing.
  • FIGS. 12(a) and 12(b) are diagrams schematically showing reflective surfaces 301, 302, and 311 of the guiding section 300 according to a comparative example.
  • FIG. 12(a) shows the reflective surfaces 301 and 302 in a transparent state when the guiding section 300 is viewed in the negative direction of the X-axis
  • FIG. 12(b) shows the guiding section 300 in the negative direction of the X-axis
  • the reflective surfaces 311, 302 are shown in perspective when viewed in the direction.
  • the reflective surfaces 301 and 311 reflect the laser light from the light source 111 in the positive direction of the X-axis
  • the reflective surface 302 reflects the reflected light from the reflective surfaces 301 and 311 toward the condenser lens 121.
  • the optical axis of the laser beam emitted from the optical system 100 toward the guide section 300 is shown by a dashed line.
  • the reflective surfaces 301 and 302 have a planar shape.
  • the optical path length of each laser beam from the output surface of the collimator lens 112 to the reflective surface 301 varies.
  • the reflection positions of the nine laser beams on the reflective surface 311 are aligned along a straight line, the optical path length of each laser beam from the output surface of the collimator lens 112 to the reflective surface 311 varies.
  • FIGS. 13(a) and 13(b) are diagrams schematically showing reflective surfaces 211 and 212 of the guiding section 200, respectively, according to the embodiment.
  • FIG. 13(a) shows the shape of a cross section when the reflective surface 211 is cut along a plane parallel to the rotation axis R10 and including the optical axes of nine laser beams incident on the reflective surface 211 from the aperture 231.
  • the reflective surface 212 is cut by a plane that is parallel to the rotation axis R10 and includes the optical axes of nine laser beams that are reflected by the reflective surfaces 211 and 212 after entering from the aperture 231.
  • the cross-sectional shape is shown.
  • the reflective surfaces 211 and 212 are concave in the shape of a circular arc in the direction away from the rotation axis R10.
  • the shapes of the reflective surfaces 211 and 212 at the laser beam incident position are curved in an arc shape in the laser beam incident direction when viewed in the rotation direction around the rotation axis R10.
  • FIGS. 14(a) and 14(b) are diagrams schematically showing the reflective surfaces 221 and 212 of the guiding section 200, respectively, according to the embodiment.
  • FIG. 14(a) shows the shape of a cross section when the reflective surface 221 is cut along a plane parallel to the rotation axis R10 and including the optical axes of nine laser beams incident on the reflective surface 221 from the aperture 232.
  • the reflective surface 212 is cut by a plane that is parallel to the rotation axis R10 and includes the optical axes of nine laser beams that are reflected by the reflective surfaces 221 and 212 after entering from the aperture 232.
  • the cross-sectional shape is shown.
  • the reflective surfaces 221 and 212 are concave in the shape of a circular arc in the direction away from the rotation axis R10.
  • the shapes of the reflecting surfaces 221 and 212 at the laser beam incident position are curved in an arc shape in the laser beam incident direction when viewed in the rotation direction around the rotation axis R10.
  • the shapes of the reflective surfaces 211 and 212 are such that nine laser beams emitted from the optical system 100 are directed from the corresponding light sources 111 to the reflective surfaces. 211 and 212 to the corresponding photodetector 122 are adjusted so that the optical path lengths are approximately the same. Further, as shown in FIGS. 14(a) and 14(b), the shapes of the reflecting surfaces 221 and 212 are such that nine laser beams emitted from the optical system 100 are directed from the corresponding light sources 111 to the reflecting surfaces 221 and 212. , 212 to the corresponding photodetector 122 are adjusted so that the optical path lengths are approximately the same.
  • the optical system 100 can be When the nine emitted laser beams are guided by the guiding section 200, the optical path lengths of the nine laser beams can be made substantially the same.
  • the shape of the reflecting surfaces 211, 212, 221 when viewed in the direction of rotation around the rotation axis R10 does not have to be a perfect circular arc, but in order to make the optical path lengths of all laser beams approximately the same, It may be slightly deformed. Further, the shapes of the reflecting surfaces 211 and 212 when viewed in the direction of rotation around the rotation axis R10 do not have to be the same, and may be slightly different in order to make the optical path lengths of all laser beams approximately the same. You can leave it there.
  • the shapes of the reflecting surfaces 221 and 212 when viewed in the direction of rotation around the rotation axis R10 do not have to be the same, but may be slightly different in order to make the optical path lengths of all laser beams approximately the same. You may do so.
  • the guiding section 200 guides the laser beam to the photodetector 122, the laser beam is reflected by a pair of two reflecting surfaces. Therefore, reflected light can be efficiently guided to the photodetector 122. This effect will be explained with reference to FIGS. 15(a) and 15(b).
  • FIGS. 15(a) and 15(b) are diagrams schematically showing the configurations of the guiding section 200 and the optical system 100 according to the embodiment.
  • FIG. 15(a) shows a state in which the light source 111 and the collimator lens 112 face the reflective surface 211
  • FIG. 15(b) shows a state in which the light source 111 and the collimator lens 112 face the reflective surface 221.
  • FIGS. 15A and 15B the reflective surfaces 211, 212, and 221 of the guide section 200 are shown in a transparent state.
  • a reflective surface 212 is arranged opposite to the reflective surface 211, and a reflective surface 212 is arranged opposite to the reflective surface 221.
  • the laser beam incident on the reflective surface 211 can be reflected by the two reflective surfaces 211 and 212 in directions different by 90 degrees, and can be reflected in directions different by 90 degrees by the two reflective surfaces 221 and 212. can be done. Therefore, when viewed in the Z-axis direction, the reflected light reflected by the reflective surface 212 is parallel to the direction of the optical axis 121a of the condenser lens 121 (Y-axis direction), so that the reflected light is directed to the photodetector 122. Can be guided efficiently.
  • the reflected light reflected by the reflective surfaces 211 and 221 can be reflected by one reflective surface 212 and guided to the photodetector 122. This effect will be explained with reference to FIGS. 16(a) and 16(b).
  • FIGS. 16(a) and 16(b) are diagrams schematically showing reflective surfaces of guiding parts according to a comparative example and an embodiment, respectively.
  • FIG. 16(a) shows reflective surfaces 301, 302, 311, and 312 in a transparent state when the guiding section 300 according to the comparative example is viewed in the negative Z-axis direction
  • FIG. 16(b) shows reflective surfaces 301, 302, 311, and 312 in a transparent state
  • reflective surfaces 211, 212, and 221 are shown in a transparent state when the guiding section 200 according to the embodiment is viewed in the negative Z-axis direction.
  • illustration of the collimator lens 112, the condensing lens 121, and the light shielding member 230 is omitted for convenience.
  • FIGS. 16A and 16B show the light source 111, the photodetector 122, and the optical path of the laser beam when the light source 111 is in two rotational positions facing the reflective surfaces 211 and 221, respectively. It is shown.
  • reflective surfaces 311 and 312 are arranged corresponding to reflective surfaces 301 and 302, respectively.
  • the width of the guiding section 300 in the X-axis direction becomes long.
  • the reflected light reflected by the reflective surface 211 and the reflected light reflected by the reflective surface 221 are both reflected by the reflective surface 212. That is, one reflective surface 212 is arranged corresponding to both of the two reflective surfaces 211 and 221. In this case, the number of reflective surfaces aligned in the X-axis direction is reduced compared to the comparative example, so the width of the guide section 200 in the X-axis direction can be reduced.
  • the guiding unit 200 allows the plurality of laser beams emitted from the scanning unit 10 to be detected by a plurality of optical paths with substantially the same optical path length. They are each guided to a vessel 122. Thereby, when determining whether an abnormality has occurred in the light source 111 and the photodetector 122 based on the amount of received reflected light, the magnitude of the amount of light can be determined using a common threshold value. Furthermore, when performing distance correction, the pulse width can be obtained using a common threshold Lth, and the relational expression between the pulse width and the distance correction amount can be obtained using a common optical path length (distances D01 and D02 above). . Therefore, since the processing for each laser beam can be shared, the operation of the laser radar 1 can be monitored by simpler processing.
  • the reflective surface 211 when the reflective surface 211 is cut along a plane that is parallel to the rotational axis R10 and includes the optical axis of the laser beam incident on the reflective surface 211, the shape of the cross section is far from the rotational axis R10. It is concave in the shape of a circular arc.
  • the reflective surface 211 has a shape curved into an arc in the direction of incidence of the laser beam when viewed in the direction of rotation about the rotation axis R10. Thereby, the optical path lengths of the plurality of laser beams up to the reflecting surface 211 can be made close to each other with a simple configuration.
  • the reflective surfaces 211 and 221 direct the incident laser beams from the optical axis 112a of the collimator lens 112 (the optical axis of the projection optical system 110) to the condenser lens 121. is reflected in the direction toward the optical axis 121a (optical axis of the light receiving optical system 120).
  • the reflective surface 212 (second reflective surface) reflects the plurality of laser beams reflected by the reflective surfaces 211 and 221 in a direction along the optical axis 121a of the condenser lens 121 (optical axis of the light receiving optical system 120).
  • the light is guided to a plurality of photodetectors 122, respectively. As shown in FIGS.
  • the reflecting surface 212 (The cross-sectional shape of the second reflective surface (second reflective surface) when cut is an arc-shaped concave shape in the direction away from the rotation axis R10.
  • the reflective surface 212 (second reflective surface) has an arc-shaped shape curved in the same direction as the reflective surface 211.
  • the plurality of laser beams are directed to the condenser lens 121.
  • the light can be made incident on the condenser lens 121 in the direction along the optical axis 121a.
  • This allows the photodetector 122 to output a detection signal of sufficient magnitude, making it possible to appropriately monitor the state of the device.
  • the optical path lengths from the reflective surface 212 to the corresponding photodetectors 122 can be made closer to each other for a plurality of laser beams. can.
  • the plurality of laser beams are incident on the reflective surface 221 (third reflective surface) at a position shifted by a predetermined rotation angle from a predetermined rotation position.
  • the reflective surface 221 (third reflective surface) is a plane that is parallel to the rotation axis R10 and includes the optical axis of the laser beam incident on the reflective surface 221 (third reflective surface).
  • the cross-sectional shape when cut is a circular arc-shaped concave shape in the direction away from the rotation axis R10.
  • the reflective surface 221 (third reflective surface) has a shape curved into a circular arc in the direction of incidence of the laser beam when viewed in the rotation direction around the rotation axis R10.
  • the reflective surface 221 (third reflective surface) reflects the plurality of incident laser beams toward the reflective surface 212 (second reflective surface). According to this configuration, the amount of laser light that enters the photodetector 122 via the reflective surface 211 and the amount of laser light that enters the photodetector 122 via the reflective surface 221 are made different from each other. Thereby, as explained with reference to FIG. 11, the relational expression between the pulse width and the distance correction amount can be obtained with high accuracy.
  • the reflective surface 211 and the reflective surface 221 have different reflectances from each other. According to this configuration, the amount of laser light that enters the photodetector 122 via the reflective surface 211 and the amount of laser light that enters the photodetector 122 via the reflective surface 221 can be adjusted with a simple configuration. can be made different from each other.
  • the guiding section 200 includes a light blocking member 230 (limiting body) for limiting the amount of laser light emitted from the light source 111 and entering the photodetector 122.
  • a light blocking member 230 limiting body
  • saturation of the output of the photodetector 122 can be suppressed, and the waveform of the detection signal of the photodetector 122 can be smoothly varied according to the reflectance of the reflective surfaces 211 and 221. Therefore, the distance correction as described above can be performed appropriately.
  • Openings 231 and 232 are formed in the light shielding member 230 (limiting body). According to this configuration, the amount of laser light incident on the photodetector 122 can be adjusted depending on the size of the apertures 231 and 232. Therefore, the waveforms of the two detection signals based on the laser beams that have passed through the reflective surfaces 211 and 221 can be adjusted to desired waveforms.
  • the openings 231 and 232 are narrow slits in the rotation direction of the plurality of laser beams. According to this configuration, since the incident area of the laser beam onto the reflective surfaces 211, 212, and 221 can be restricted in the X-axis direction, the reflective surfaces 211, 212, and 221 can be made smaller in the X-axis direction, and the guide section 200 can be made compact. .
  • one reflective surface 212 is arranged corresponding to both the reflective surfaces 211 and 221, but the reflective surfaces 212a and 212b are arranged corresponding to the reflective surfaces 211 and 221, respectively, as shown below. Good too.
  • FIG. 17(a) is a diagram schematically showing the configuration of the guiding section 200 when two reflective surfaces 212a and 212b are used.
  • FIG. 17A shows the light source 111, the photodetector 122, and the optical path of the laser beam when the light source 111 is in two rotational positions facing the reflective surfaces 211 and 221, respectively.
  • a reflective surface 212a is arranged opposite to the reflective surface 211, and a reflective surface 212b is arranged opposite to the reflective surface 221.
  • the reflective surfaces 212a and 212b both have a conical side surface shape, similar to the reflective surface 212 of the above embodiment.
  • the reflective surfaces 212a and 212b are formed as separate reflective surfaces.
  • the reflected light reflected by the reflective surfaces 211 and 221 can be reflected by the reflective surfaces 212a and 212b, respectively, and properly guided to the photodetector 122.
  • the optical path lengths from the nine light sources 111 to the photodetector 122 via the guide section 200 can be made substantially the same.
  • the light shielding member 230 is used as a limiter for limiting the amount of laser light emitted from the light source 111 and incident on the photodetector 122, but the limiter is not limited to this, for example, an ND filter is used as a limiter. may be used.
  • FIG. 17(b) is a diagram schematically showing the configuration of the guiding section 200 when an ND filter is used as the restrictor.
  • FIG. 17B shows the light source 111, the photodetector 122, and the optical path of the laser beam when the light source 111 is in two rotational positions facing the reflective surfaces 211 and 221, respectively.
  • ND filters 251 and 252 are disposed upstream of the reflective surfaces 211 and 221, respectively, and the light shielding member 230 is omitted.
  • the amount of laser light that enters the photodetector 122 via the reflective surface 211 can be set by the reflectance of the reflective surfaces 211 and 212 and the transmittance of the ND filter 251.
  • the amount of laser light incident on the detector 122 can be set by the reflectance of the reflective surfaces 221 and 212 and the transmittance of the ND filter 252.
  • the amounts of light from these two paths are set to differ by a predetermined difference so that the correction described with reference to FIG. 11 can be performed.
  • the reflectances of the reflecting surfaces 211 and 221 may be higher or the same, and the transmittance of the ND filters 251 and 252 may be higher. Either one of them may be higher, or they may be the same.
  • an ND filter may be installed at a position facing only one of the reflective surface 211 and the reflective surface 221.
  • the ND filter 251 may be placed only at a position facing the reflective surface 211.
  • the amount of laser light that enters the photodetector 122 via the reflective surface 211 can be set by the reflectance of the reflective surfaces 211 and 212 and the transmittance of the ND filter 251.
  • the amount of laser light incident on the detector 122 can be set by the reflectance of the reflective surfaces 221 and 212.
  • the amount of laser light that enters the photodetector 122 via the reflective surface 211 and the amount of laser light that enters the photodetector 122 via the reflective surface 221 are different by a predetermined difference.
  • the reflectances of the reflective surfaces 211 and 221 and the reflectance of the ND filter 251 are set so as to. Note that in this configuration, the reflectances of the reflective surfaces 211 and 221 may be different from each other or may be the same.
  • the ND filter 252 may be placed only at a position facing the reflective surface 221.
  • the amount of laser light that enters the photodetector 122 via the reflective surface 211 can be set by the reflectance of the reflective surfaces 211 and 212
  • the amount of laser light that enters the photodetector 122 via the reflective surface 221 can be set by the reflectance of the reflective surfaces 211 and 212.
  • the amount of light can be set by the reflectance of the reflective surfaces 221 and 212 and the transmittance of the ND filter 252.
  • the amount of laser light that enters the photodetector 122 via the reflective surface 211 and the amount of laser light that enters the photodetector 122 via the reflective surface 221 are different by a predetermined difference.
  • the reflectances of the reflective surfaces 211 and 221 and the reflectance of the ND filter 252 are set so as to. Note that also in this configuration, the reflectances of the reflective surfaces 211 and 221 may be different from each other or may be the same.
  • the light shielding member 230 and ND filters 251 and 252 may be combined.
  • the amount of laser light that enters the photodetector 122 via the reflective surface 211 can be set by the reflectance of the reflective surfaces 211 and 212, the transmittance of the ND filter 251, and the size of the aperture 231.
  • the amount of laser light that enters the photodetector 122 via the filter 221 can be set by the reflectance of the reflective surfaces 221 and 212, the transmittance of the ND filter 252, and the size of the aperture 232.
  • the reflectances of the reflective surfaces 211 and 221, the reflectances of the ND filters 251 and 252, and the sizes of the apertures 231 and 232 may be set so that these two amounts of light differ by a predetermined difference. Note that either one of the ND filters 251 and 252 may be omitted from the configuration of FIG. 18(b).
  • the light shielding member 230 is arranged on the Y-axis positive side of the reflective surfaces 211, 221, 212 so as to correspond to the reflective surfaces 211, 221, 212.
  • the light shielding member 230 may be arranged so as to correspond to at least one or more reflecting surfaces, and the arrangement position of the light shielding member 230 is not limited to the Y-axis positive side of the reflecting surfaces 211, 221, and 212.
  • FIG. 19(a) is a diagram schematically showing the configuration of the guide section 200 when the light shielding member 230 is disposed only on the positive side of the Y-axis of the reflective surface 211.
  • the laser beam directed toward the reflective surface 211 passes through the opening 234 provided in the light shielding member 230.
  • FIG. 19(b) is a diagram schematically showing the configuration of the guide section 200 when the light shielding member 230 is disposed only between the reflective surface 211 and the reflective surface 212.
  • the laser light traveling from the reflective surface 211 to the reflective surface 212 passes through the opening 234 provided in the light shielding member 230.
  • FIG. 19(c) is a diagram schematically showing the configuration of the guide section 200 when the light shielding member 230 is disposed only in the region on the negative side of the X-axis among the regions on the positive side of the Y-axis of the reflective surface 212.
  • the laser light that is directed from the reflective surface 211 to the reflective surface 212 and reflected by the reflective surface 212 passes through the opening 234 provided in the light shielding member 230 .
  • the amount of laser light that enters the photodetector 122 via the reflective surfaces 211 and 212 can be adjusted by changing the size of the aperture 234.
  • the light shielding member 230 may be disposed only on the Y-axis positive side of the reflective surface 221, or the light shielding member 230 may be disposed only between the reflective surface 221 and the reflective surface 212, and the light shielding member 230 may be disposed only on the Y-axis positive side of the reflective surface 212.
  • the light shielding member 230 may be arranged only in the region on the positive side of the X-axis among the regions on the positive side. Further, the light shielding members 230 may be arranged at a plurality of the six arrangement positions of the light shielding members 230.
  • the guiding section 200 has a configuration including the first reflecting member 210 and the second reflecting member 220, but the present invention is not limited to this, and other configurations may be used.
  • a prism 410 shown below may be used as the guide section 200.
  • FIG. 20(a) is a diagram schematically showing a configuration when a prism 410 is used.
  • the prism 410 guides the plurality of laser beams to the plurality of photodetectors 122.
  • Prism 410 includes reflective surfaces 411 and 412 having a conical side surface shape.
  • the shapes of the reflective surfaces 411 and 412 are similar to the reflective surfaces 211 and 212 of the above embodiment.
  • the reflective surfaces 411 and 412 are formed to totally reflect the laser beam. In the configuration of FIG. 20(a), reflective surfaces having different reflectances are not provided, and substantially all of the laser light incident on the reflective surfaces 411 and 412 is reflected.
  • the light shielding member 230 includes openings 231 and 233, and the openings 231 and 233 are positioned on the positive side of the Y-axis of the reflective surfaces 411 and 412, respectively.
  • the laser beam emitted from the light source 111 can be appropriately guided to the photodetector 122. Furthermore, the optical path lengths from the nine light sources 111 to the photodetector 122 via the prism 410 can be made substantially the same. Further, depending on the size of the aperture 231, the amount of laser light that enters the photodetector 122 via the prism 410 can be adjusted.
  • the light shielding member 230 and the ND filter 251 may be combined.
  • the amount of laser light that enters the photodetector 122 via the prism 410 can be adjusted by the transmittance of the ND filter 251 and the size of the aperture 231.
  • the prism 410 may include another reflective surface corresponding to the reflective surface 221 of the above embodiment. Thereby, laser light passing through the reflective surface 411 and laser light passing through other reflective surfaces can be guided to the photodetector 122.
  • the width of the opening 233 in the X-axis direction may be adjusted, and an ND filter may be placed at the position of the opening 233. Thereby, the amount of laser light incident on the photodetector 122 can be further adjusted.
  • An optical fiber 420 shown below may be used as the guide section 200.
  • FIG. 21 is a diagram schematically showing a configuration when an optical fiber 420 is used.
  • a plurality of optical fibers 420 are arranged side by side in the Z-axis direction. More specifically, the input ends 420a of the nine optical fibers 420 are installed at the positions where the nine laser beams shown in FIG. 2 enter.
  • the input ends 420a of the nine optical fibers 420 are arranged, for example, along an arc defining the reflective surface 211 in FIG. 13(a) and the reflective surface 221 in FIG. 14(a).
  • the output ends 420b of the nine optical fibers 420 are installed so that the laser beams emitted from these output ends 420b are guided to the corresponding photodetectors 122 by the condenser lenses 121.
  • the lengths of the nine optical fibers 420 are approximately the same. The lengths of these optical fibers 420 may be adjusted so that the optical path lengths of the laser beams from the light source 111 to the photodetector 122 via each optical fiber 420 are approximately the same.
  • the laser beam emitted from the light source 111 can be appropriately guided to the photodetector 122. Furthermore, the optical path lengths from the nine light sources 111 to the photodetector 122 via the optical fibers 420 can be made substantially the same.
  • a light shielding member may be arranged on the Y-axis positive side of the optical fiber 420.
  • openings of the light shielding member are positioned corresponding to the input end 420a and the output end 420b of the optical fiber 420, respectively.
  • optical fibers as shown in Fig. 21, there is an optical fiber group in which an ND filter having a first transmittance is arranged at the entrance, and an ND filter having a second transmittance different from the first transmittance at the entrance. It is sufficient that the arranged optical fiber groups are arranged side by side in the rotation direction. Thereby, as in the above embodiment, highly accurate distance correction can be performed using reflected light of two types of intensities.
  • the openings 231 and 232 formed in the light shielding member 230 have a rectangular shape when viewed in a direction parallel to the YZ plane, but the shape is not limited to this. Any shape is sufficient as long as it is approximately the same regardless of the position through which it passes.
  • FIG. 22(a) is a diagram schematically showing the configuration of a light shielding member 230 according to modification example 5.
  • the optical axis of the central laser beam among the nine laser beams is positioned at the central position P11 in the length direction (Z-axis direction) of the apertures 231 and 232, and the optical axis of the laser beams at both ends is assumed to be positioned at an end position P12 in the length direction (Z-axis direction) of the openings 231 and 232.
  • the width of the apertures 231, 232 is constant, the amount of laser light passing through the apertures 231, 232 at the end position P12 is smaller than the amount of laser light passing through the apertures 231, 232 at the center position P11. turn into.
  • the aperture 231, The shape of 232 is adjusted. That is, the width of the end portions of the openings 231 and 232 is set wider than the width of the central portion of the openings 231 and 232.
  • the width of the openings 231 and 232 in the X-axis direction increases from the center position P11 to the end position P12.
  • the width of the other ranges is constant.
  • the shapes of the apertures 231 and 232 are determined by taking into account the size of the laser light incident on the apertures 231 and 232, the deviation from both ends of the apertures 231 and 232, and the Gaussian distribution of the laser light intensity after passing through the aperture 231.
  • the light intensity of the nine laser beams may be substantially the same, and the light intensity of the nine laser beams after passing through the aperture 232 may be set to be substantially the same. This makes it possible to suppress the difference in the amount of laser light passing through the center position P11 and the amount of laser light passing through the end position P12.
  • the configuration of the laser radar 1 can be modified in various ways in addition to the configurations shown in the above embodiments and modified examples.
  • the number of light sources 111 arranged in the projection optical system 110 is not limited to nine.
  • the number of light sources 111 may be 2 to 8, or 10 or more.
  • the plurality of light sources 111 are arranged such that the angles formed by the emission direction of each laser beam and the rotation axis R10 differ by a predetermined angle.
  • a plurality of light sources 111 are arranged in the projection optical system 110 in order to generate a plurality of laser beams, but the present invention is not limited to this.
  • One laser beam emitted from 111 may be divided.
  • FIG. 23 is a side view schematically showing the configuration of the projection optical system 110 when dividing one laser beam.
  • one light source 111 is arranged on the substrate 113, compared to the configuration in FIG. Furthermore, a diffraction element 114 is arranged on the downstream side of the collimator lens 112 in the laser beam emission direction.
  • the diffraction element 114 splits one laser beam converted into parallel light by the collimator lens 112, and generates 0th-order diffraction light, +1st-order diffraction light, and +1st-order diffraction light.
  • the diffraction element 114 is, for example, a step-type diffraction element.
  • the number of laser beams generated by the diffraction element 114 may be two or four or more.
  • the reflective surfaces 211 and 212 are configured such that the reflectance of the reflective surface 211 is lower than the reflectance of the reflective surface 212, but the present invention is not limited to this.
  • the amount of laser light incident on the photodetector 122 and the amount of laser light incident on the photodetector 122 via the reflective surface 221 are set to have a predetermined difference so that the correction described with reference to FIG. 11 can be made. It is sufficient if they are set to be different. That is, as long as these amounts of light differ by a predetermined difference, the reflectances of the reflecting surfaces 211 and 221 may be higher or may be the same.
  • nine photodetectors 122 are arranged on a substrate 123 parallel to the XZ plane, and the light receiving surfaces of the nine photodetectors 122 are , parallel to the XZ plane.
  • the present invention is not limited to this, and the photodetectors 122 on the positive side of the Z-axis and the photodetectors on the negative side of the Z-axis are arranged so that the distances between the light receiving surfaces of the nine photodetectors 122 and the condensing lens 121 are approximately the same.
  • the vessel 122 may be tilted with respect to the XZ plane and brought closer to the condenser lens 121.
  • the laser beam emitted from the light source 111 is reflected by the reflective surfaces 211 and 221 of the guide section 200, and then further reflected by the reflective surface 212.
  • the reflective surface 212 may be omitted and the laser beam may be directly guided to the photodetector 122 from the reflective surfaces 211 and 221.
  • the laser beam heads toward the photodetector 122 from an oblique direction, it is difficult to make the laser beam enter the photodetector 122 with a sufficient amount of light while avoiding collision with other members such as the collimator lens 112. Have difficulty.
  • the reflective surface 212 is arranged to guide the laser beam from the front of the condensing lens 121 to the photodetector 122. It is preferable.
  • the configurations of the projection optical system 110 and the light receiving optical system 120 are not limited to those described above.
  • the light receiving optical system 120 may include two or more condensing lenses.
  • the rotating direction of the rotating part 12 was clockwise when viewed in the negative direction of the Z-axis, but it may be rotated counterclockwise when viewed in the negative direction of the Z-axis.
  • one optical system 100 is installed in the laser radar 1, but a plurality of optical systems 100 may be installed along the circumferential direction of the rotation axis R10.
  • the plurality of optical systems 100 can scan the scanning area with high frequency.
  • the projection angles in the Z-axis direction of the projection lights emitted from the central light source 111 of the plurality of optical systems 100 may be different from each other. This makes it possible to detect objects located at different positions in the Z-axis direction.
  • the configuration of the scanning unit 10 is not limited to the configuration shown in the above embodiment.
  • a plurality of laser beams emitted vertically upward from the fixed part 11 along the rotation axis R10 may be reflected by a mirror rotating about the rotation axis R10, and the plurality of laser beams may be rotated and scanned. good.
  • a circular condenser lens 121 is arranged on the fixed part 11 side so that the optical axis 121a is aligned with the rotation axis R10.
  • the reflected light of each laser beam from the scanning position is reflected by a mirror and then guided by a condenser lens 121 to a corresponding photodetector 122.
  • a plurality of light sources 111 that emit a plurality of laser beams and a collimator lens 112 are embedded in the center of a condenser lens 121, for example.
  • the structure according to the present invention to a device that does not have a distance measurement function and only has a function of detecting whether or not an object exists in the projection direction based on a signal from the photodetector 122.
  • the optical path length from the light source 111 to the photodetector 122 via the guide section 200 can be made substantially the same for a plurality of laser beams.
  • a scanning unit that rotates and scans a plurality of laser beams whose angles with the rotation axis differ by a predetermined angle, and that individually receives reflected light from an object of the plurality of laser beams; a guide section that guides the plurality of laser beams emitted from the scanning section to the plurality of photodetectors of the scanning section at a predetermined rotational position, respectively, with optical path lengths that are substantially the same as each other;
  • a laser radar characterized by: According to this technique, a plurality of laser beams are guided to a photodetector by the guiding section with optical path lengths that are substantially the same. As a result, the processing for each laser beam can be shared, and the operation of the device can be monitored using simpler processing.
  • the guide section has a reflective surface on which the plurality of laser beams are incident at the predetermined rotational position, When the reflective surface is cut along a plane that is parallel to the rotational axis and includes the optical axis of the laser beam incident on the reflective surface, the cross-sectional shape is concave in a circular arc shape in a direction away from the rotational axis.
  • a laser radar characterized by: According to this technique, the optical path lengths of a plurality of laser beams to the reflecting surface can be made close to each other with a simple configuration.
  • the scanning unit includes: a projection optical system that projects the plurality of laser beams; a light receiving optical system that guides the plurality of reflected lights to the plurality of photodetectors, The optical axis of the projection optical system and the optical axis of the light receiving optical system are separated from each other,
  • the reflective surface reflects the plurality of incident laser beams in a direction from the optical axis of the projection optical system toward the optical axis of the light receiving optical system
  • the guiding section includes a second reflecting surface that reflects the plurality of laser beams reflected by the reflecting surface in a direction along the optical axis of the light receiving optical system and guides them to the plurality of photodetectors, respectively,
  • the second reflective surface is cut along a plane that is parallel to the rotation axis and includes the optical axis of the laser beam reflected by the second reflection surface, the shape of the cross section is circular in the direction away from the rotation axis.
  • a laser radar characterized by: According to this technique, at a predetermined rotational position where the projection optical system faces the guide section, a plurality of laser beams can be made to respectively enter the condenser lens in a direction along the optical axis of the condenser lens. Thereby, the photodetector can output a detection signal of sufficient magnitude, and the state of the device can be appropriately monitored. Furthermore, by curving the shape of the second reflective surface into an arc in the same direction as the reflective surface, the optical path lengths from the second reflective surface to the corresponding photodetectors for the plurality of laser beams can be made closer to each other. be able to.
  • the guide section includes a third reflective surface on which the plurality of laser beams are incident at a position shifted by a predetermined rotation angle from the predetermined rotation position,
  • the third reflective surface is cut along a plane that is parallel to the rotation axis and includes the optical axis of the laser beam incident on the third reflection surface, the cross-sectional shape is a circular arc in the direction away from the rotation axis.
  • a laser radar characterized by: According to this technology, for example, the amount of laser light that enters the photodetector via the reflective surface and the amount of laser light that enters the photodetector via the third reflective surface are set to be different from each other. By doing so, the distance to the object can be accurately corrected based on the detection signal of the laser beam that has passed through the reflective surface and the detection signal of the laser beam that has passed through the third reflective surface.
  • a laser radar characterized by: According to this technology, the amount of laser light that enters the photodetector via the reflective surface and the amount of laser light that enters the photodetector via the third reflective surface can be controlled with a simple configuration. They can be made different from each other.
  • the guide section includes a prism that guides the plurality of laser beams to the plurality of photodetectors.
  • the guide section includes an optical fiber that guides the plurality of laser beams to the plurality of photodetectors.
  • the guide section has a limiter for limiting the amount of the laser beam incident on the photodetector.
  • a laser radar characterized by: According to this technique, the amount of laser light incident on the photodetector can be adjusted as appropriate using the limiter. Thereby, for example, it is possible to suppress the output of the photodetector from becoming saturated, and it is also possible to appropriately perform the distance correction described above by giving a difference in the amount of light received by the photodetector depending on the optical path.
  • the limiter is a light shielding member in which an opening is formed.
  • a laser radar characterized by: According to this technique, the amount of laser light incident on the photodetector can be adjusted by changing the size of the aperture. Thereby, the waveform of the detection signal based on the laser beam can be adjusted to a desired waveform. Therefore, the distance correction described above can be performed appropriately.
  • a laser radar characterized by: According to this technique, for example, in the configuration of the above embodiment, the area of incidence of the laser beam on the reflective surface of the guiding section can be restricted, so the reflective surface can be made small and the guiding section can be made compact.
  • the aperture has a shape such that the amount of light of the plurality of laser beams transmitted therethrough is substantially the same regardless of the position through which the aperture is transmitted;
  • a laser radar characterized by: According to this technique, since the light quantities of the plurality of laser beams after passing through the aperture are approximately the same, the light quantities of the laser beams incident on the plurality of photodetectors can be made close to each other. Therefore, common processing can be applied to each detection signal.
  • the restrictor is an ND filter

Abstract

A laser radar (1) comprises: a scanning unit (10) that scans using a plurality of laser beams, in which angles formed with respect to a rotation axis (R10) are different from each other by a predetermined angle, while rotating the laser beams about the rotation axis (R10), and that individually receives reflected beams, of the plurality of laser beams, from an object; and a guiding unit (200) that guides, at a predetermined rotational position, the plurality of laser beams emitted from the scanning unit (10) to a plurality of photodetectors of the scanning unit (10) through approximately the same optical path length.

Description

レーザレーダlaser radar
 本発明は、レーザ光を用いて物体を検出するレーザレーダに関する。 The present invention relates to a laser radar that detects objects using laser light.
 近年、レーザ光を用いて物体を検出するレーザレーダが、侵入検知システム、車、ロボットなどに搭載されている。この種のレーザレーダは、目標領域にレーザ光を投射し、その反射光に基づいて、投射方向における物体の有無を検出する。また、この種のレーザレーダは、レーザ光の投射タイミングから反射光の受光タイミングまでの所要時間に基づいて、物体までの距離を測定する機能も備え得る。 In recent years, laser radars that detect objects using laser light have been installed in intrusion detection systems, cars, robots, etc. This type of laser radar projects a laser beam onto a target area and detects the presence or absence of an object in the projection direction based on the reflected light. Further, this type of laser radar may also have a function of measuring the distance to an object based on the time required from the timing of projecting the laser beam to the timing of receiving the reflected light.
 この種のレーザレーダでは、レーザ光の投射方向を回転軸について回転させる構成が用いられる。これにより、レーザレーダ周囲の物体を検知できる。この場合、所定の回転位置において、レーザレーダの動作を監視するための構成が、さらに配置され得る。たとえば、投射されたレーザ光を検知対象物に当たることなく意図した条件でレーザレーダの受光素子に帰還させるミラーがこの回転位置に配置される。このような構成が、たとえば、以下の特許文献1に記載されている。 This type of laser radar uses a configuration in which the projection direction of laser light is rotated about a rotation axis. Thereby, objects around the laser radar can be detected. In this case, an arrangement may further be arranged for monitoring the operation of the laser radar at a predetermined rotational position. For example, a mirror that returns the projected laser light to the light receiving element of the laser radar under intended conditions without hitting the object to be detected is arranged at this rotational position. Such a configuration is described, for example, in Patent Document 1 below.
特開2011-75287号公報Japanese Patent Application Publication No. 2011-75287
 上記構成では、ミラーが配置された回転位置における受光素子の出力から、発光素子および受光素子の異常を検出できる。さらに、上記構成では、ミラーが配置された回転位置において距離を測定することにより、距離測定値のずれを補正できる。すなわち、この回転位置で測定された距離と、ミラーで帰還されるレーザ光の光路長(基準値)とが比較されて、この回転位置における距離測定値のずれが検出される。こうして検出されたずれから、この回転位置以外の回転位置において実際に測定される距離が補正される。 With the above configuration, an abnormality in the light emitting element and the light receiving element can be detected from the output of the light receiving element at the rotational position where the mirror is arranged. Furthermore, with the above configuration, by measuring the distance at the rotational position where the mirror is placed, it is possible to correct the deviation in the distance measurement value. That is, the distance measured at this rotational position is compared with the optical path length (reference value) of the laser beam fed back by the mirror, and a deviation in the distance measurement value at this rotational position is detected. Based on the deviation detected in this way, the distance actually measured at a rotational position other than this rotational position is corrected.
 また、上記のようにレーザ光の投射方向を回転軸について回転させる構成では、さらに、回転軸と成す角度がそれぞれ所定の角度分異なる複数のレーザ光がレーザレーダから投射され、これらレーザ光の反射光が複数の受光素子でそれぞれ受光される構成が用いられる。これにより、物体検知の範囲を回転軸に平行な方向にさらに広げることができる。 In addition, in the configuration in which the projection direction of the laser beam is rotated about the rotation axis as described above, a plurality of laser beams are projected from the laser radar and the angles formed with the rotation axis differ by a predetermined angle, and the reflection of these laser beams. A configuration is used in which light is received by each of a plurality of light receiving elements. Thereby, the range of object detection can be further expanded in the direction parallel to the rotation axis.
 しかし、この構成において、装置の動作状態を監視するために、上記のように所定の回転位置にミラーが配置されると、各レーザ光がミラーで反射されて帰還される光路長が互いに相違することになってしまう。このような光路長の差異により、各レーザ光の受光光量が互いに異なることとなるため、受光素子からの出力に基づく発光素子および受光素子の異常検知を、レーザ光ごとに個別に行う必要がある。また、このようにレーザ光ごとに光路長に差異があると、距離測定値のずれの検出およびこれによる距離測定の補正も、レーザ光ごとに個別に行う必要がある。このため、装置の処理負荷が増大し、コストの増加を招いてしまう。 However, in this configuration, when the mirror is placed at a predetermined rotational position as described above in order to monitor the operating status of the device, the optical path lengths of the laser beams reflected by the mirror and returned to each other are different from each other. It turns out to be a problem. Due to these differences in optical path length, the amount of light received by each laser beam differs from each other, so it is necessary to detect abnormalities in the light emitting element and light receiving element for each laser beam individually based on the output from the light receiving element. . Furthermore, if the optical path length differs between laser beams, it is necessary to detect the deviation in the distance measurement value and correct the distance measurement accordingly for each laser beam. This increases the processing load on the device, leading to an increase in cost.
 かかる課題に鑑み、本発明は、回転軸と成す角度がそれぞれ所定の角度分異なる複数のレーザ光が回転軸について回転する構成において、より簡素な処理により装置の動作を監視することが可能なレーザレーダを提供することを目的とする。 In view of such problems, the present invention provides a laser beam that is capable of monitoring the operation of a device through simpler processing in a configuration in which a plurality of laser beams rotate about a rotation axis, each having a predetermined angle different from the rotation axis. The purpose is to provide radar.
 本発明の主たる態様に係るレーザレーダは、回転軸と成す角度がそれぞれ所定の角度分異なる複数のレーザ光を前記回転軸について回転させて走査させるとともに、前記複数のレーザ光の物体からの反射光を個別に受光する走査部と、所定の回転位置において、前記走査部から出射された前記複数のレーザ光を、互いに略同一となる光路長で前記走査部の複数の光検出器にそれぞれ導く誘導部と、を備える。 A laser radar according to a main aspect of the present invention rotates and scans a plurality of laser beams whose angles with a rotation axis differ by a predetermined angle, respectively, and scans the plurality of laser beams by rotating them about the rotation axis, and detects reflected light from an object of the plurality of laser beams. a scanning unit that individually receives the laser beams; and a guide that guides the plurality of laser beams emitted from the scanning unit to the plurality of photodetectors of the scanning unit at a predetermined rotational position, respectively, with optical path lengths that are substantially the same as each other. It is equipped with a section and a section.
 本態様に係るレーザレーダによれば、誘導部により、複数のレーザ光が、互いに略同一となる光路長で光検出器へと導かれる。これにより、各レーザ光に対する処理を共通化できるため、より簡素な処理により装置の動作を監視することができる。 According to the laser radar according to this aspect, the guiding section guides the plurality of laser beams to the photodetector with optical path lengths that are substantially the same. As a result, the processing for each laser beam can be shared, and the operation of the device can be monitored using simpler processing.
 以上のとおり、本発明によれば、回転軸と成す角度がそれぞれ所定の角度分異なる複数のレーザ光が回転軸について回転する構成において、より簡素な処理により装置の動作を監視することが可能なレーザレーダを提供できる。 As described above, according to the present invention, in a configuration in which a plurality of laser beams rotate about the rotation axis, the angles formed with the rotation axis differ by a predetermined angle, it is possible to monitor the operation of the device by simpler processing. We can provide laser radar.
 本発明の効果ないし意義は、以下に示す実施形態の説明により更に明らかとなろう。ただし、以下に示す実施形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施形態に記載されたものに何ら制限されるものではない。 The effects and significance of the present invention will become clearer from the description of the embodiments shown below. However, the embodiment shown below is merely one example of implementing the present invention, and the present invention is not limited to what is described in the embodiment below.
図1は、実施形態に係る、レーザレーダの構成を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing the configuration of a laser radar according to an embodiment. 図2は、実施形態に係る、光学系の構成を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing the configuration of the optical system according to the embodiment. 図3(a)は、実施形態に係る、投射光学系の構成を模式的に示す側面図である。図3(b)は、実施形態に係る、受光光学系の構成を模式的に示す側面図である。FIG. 3A is a side view schematically showing the configuration of the projection optical system according to the embodiment. FIG. 3(b) is a side view schematically showing the configuration of the light receiving optical system according to the embodiment. 図4は、実施形態に係る、レーザレーダの構成を模式的に示す平面図である。FIG. 4 is a plan view schematically showing the configuration of the laser radar according to the embodiment. 図5は、実施形態に係る、第1反射部材および第2反射部材の構成を示す斜視図である。FIG. 5 is a perspective view showing the configuration of the first reflecting member and the second reflecting member according to the embodiment. 図6は、実施形態に係る、遮光部材および構造体の構成を示す斜視図である。FIG. 6 is a perspective view showing the configuration of a light shielding member and a structure according to the embodiment. 図7(a)は、実施形態に係る、誘導部の構成を示す斜視図である。図7(b)は、実施形態に係る、図7(a)のC1-C2断面を示す斜視図である。FIG. 7(a) is a perspective view showing the configuration of the guide section according to the embodiment. FIG. 7(b) is a perspective view showing the C1-C2 cross section of FIG. 7(a) according to the embodiment. 図8(a)および図8(b)は、実施形態に係る、y軸負方向に見た場合の誘導部の構成およびレーザ光の光路を示す図である。FIGS. 8A and 8B are diagrams showing the configuration of the guiding section and the optical path of the laser beam when viewed in the negative direction of the y-axis, according to the embodiment. 図9は、実施形態に係る、レーザレーダの回路部の構成を示すブロック図である。FIG. 9 is a block diagram showing the configuration of the circuit section of the laser radar according to the embodiment. 図10(a)は、実施形態に係る、レーザ光の発光タイミングを模式的に示す図である。図10(b)、図10(c)および図10(d)は、実施形態に係る、温度Tm1における光検出器の検出信号を模式的に示す図である。FIG. 10A is a diagram schematically showing the emission timing of laser light according to the embodiment. FIG. 10(b), FIG. 10(c), and FIG. 10(d) are diagrams schematically showing detection signals of the photodetector at temperature Tm1 according to the embodiment. 図11は、実施形態に係る、パルス幅と距離補正量との関係を模式的に示すグラフである。FIG. 11 is a graph schematically showing the relationship between pulse width and distance correction amount according to the embodiment. 図12(a)および図12(b)は、比較例に係る、誘導部の反射面を模式的に示す図である。FIGS. 12(a) and 12(b) are diagrams schematically showing the reflective surfaces of the guide portions according to comparative examples. 図13(a)および図13(b)は、実施形態に係る、誘導部の反射面を模式的に示す図である。FIGS. 13(a) and 13(b) are diagrams schematically showing the reflective surface of the guiding section according to the embodiment. 図14(a)および図14(b)は、実施形態に係る、誘導部の反射面を模式的に示す図である。FIGS. 14(a) and 14(b) are diagrams schematically showing the reflective surface of the guiding section according to the embodiment. 図15(a)および図15(b)は、実施形態に係る、誘導部および光学系の構成を模式的に示す図である。FIGS. 15(a) and 15(b) are diagrams schematically showing the configurations of the guiding section and the optical system according to the embodiment. 図16(a)および図16(b)は、それぞれ、比較例および実施形態に係る、誘導部の反射面を模式的に示す図である。FIGS. 16(a) and 16(b) are diagrams schematically showing reflective surfaces of guide portions according to a comparative example and an embodiment, respectively. 図17(a)は、変更例1に係る、2組の反射面が用いられる場合の誘導部の構成を模式的に示す図である。図17(b)は、変更例2に係る、NDフィルターが用いられる場合の誘導部の構成を模式的に示す図である。FIG. 17A is a diagram schematically illustrating the configuration of the guide section when two sets of reflective surfaces are used, according to Modification Example 1. FIG. 17(b) is a diagram schematically showing the configuration of the guiding section when an ND filter is used according to modification example 2. 図18(a)および図18(b)は、変更例2に係る、NDフィルターが用いられる場合の誘導部の構成を模式的に示す図である。FIGS. 18(a) and 18(b) are diagrams schematically showing the configuration of the guiding section when an ND filter is used according to modification example 2. FIG. 図19(a)~図19(c)は、変更例3に係る、誘導部の構成を模式的に示す図である。FIGS. 19(a) to 19(c) are diagrams schematically showing the configuration of a guiding section according to modification example 3. FIG. 図20(a)および図20(b)は、変更例4に係る、プリズムが用いられる場合の構成を模式的に示す図である。20(a) and 20(b) are diagrams schematically showing a configuration when a prism is used according to modification example 4. 図21は、変更例5に係る、光ファイバーが用いられる場合の構成を模式的に示す図である。FIG. 21 is a diagram schematically showing a configuration when an optical fiber is used according to modification example 5. 図22(a)および図22(b)は、変更例6に係る、遮光部材の構成を模式的に示す図である。22(a) and 22(b) are diagrams schematically showing the configuration of a light shielding member according to modification example 6. FIG. 図23は、その他の変更例に係る、投射光学系の構成を模式的に示す側面図である。FIG. 23 is a side view schematically showing the configuration of a projection optical system according to another modification.
 ただし、図面はもっぱら説明のためのものであって、この発明の範囲を限定するものではない。 However, the drawings are solely for illustrative purposes and do not limit the scope of the invention.
 以下、本発明の実施形態について、図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、レーザレーダ1の構成を模式的に示す斜視図である。 FIG. 1 is a perspective view schematically showing the configuration of a laser radar 1.
 図1には、便宜上、互いに直交するX、Y、Z軸が付記されている。Z軸正方向は、レーザレーダ1の高さ方向である。 In FIG. 1, for convenience, X, Y, and Z axes that are orthogonal to each other are added. The Z-axis positive direction is the height direction of the laser radar 1.
 レーザレーダ1は、走査部10と、支持部20と、誘導部200と、を備える。走査部10は、レーザ光を回転軸R10について回転させて走査させるとともに、物体からの反射光を受光する。走査部10は、固定部11と、回転部12と、光学系100と、を備える。図1では、回転部12および光学系100の位置が、便宜上、それぞれ、破線および点線で示されている。 The laser radar 1 includes a scanning section 10, a supporting section 20, and a guiding section 200. The scanning unit 10 rotates and scans the laser beam about the rotation axis R10, and receives reflected light from an object. The scanning section 10 includes a fixed section 11, a rotating section 12, and an optical system 100. In FIG. 1, the positions of the rotating part 12 and the optical system 100 are shown by broken lines and dotted lines, respectively, for convenience.
 回転部12は、固定部11内のモータにより、Z軸方向に平行な回転軸R10について回転する。回転部12の回転方向は、Z軸負方向に見て時計回りである。光学系100は、回転部12の内部に設置されており、回転部12の回転により回転軸R10の周方向に回転する。光学系100は、回転軸R10と成す角度がそれぞれ所定の角度分異なる複数のレーザ光を回転軸R10から離れる方向に出射し、これらレーザ光の走査位置に存在する物体によって反射された反射光を受光する。回転部12の側面は、光学系100から出射されたレーザ光および物体によって反射された反射光が透過する部材により構成されている。なお、回転部12の側面に、レーザ光が通過するための開口が形成されてもよい。光学系100の構成については、追って図2を参照して説明する。 The rotating part 12 is rotated by a motor in the fixed part 11 about a rotating axis R10 parallel to the Z-axis direction. The rotating direction of the rotating part 12 is clockwise when viewed in the negative direction of the Z-axis. The optical system 100 is installed inside the rotating section 12, and rotates in the circumferential direction of the rotation axis R10 as the rotating section 12 rotates. The optical system 100 emits a plurality of laser beams in a direction away from the rotation axis R10, each having a predetermined angle different from the rotation axis R10, and emits reflected light reflected by an object existing at a scanning position of these laser beams. Receive light. The side surface of the rotating part 12 is made of a member through which the laser beam emitted from the optical system 100 and the reflected light reflected by the object pass through. Note that an opening may be formed on the side surface of the rotating part 12 for the laser beam to pass through. The configuration of the optical system 100 will be explained later with reference to FIG. 2.
 支持部20は、X軸方向に見てL字形状の部材である。支持部20は、Y軸方向に延びた水平部21と、鉛直方向(Z軸方向)に延びた鉛直部22と、を備える。水平部21の一端と鉛直部22の一端とは、接続されている。水平部21の他端は、回転部12が回転可能となるよう回転部12の上端を支持しており、鉛直部22の他端は、固定部11の外周に設置されている。 The support portion 20 is an L-shaped member when viewed in the X-axis direction. The support portion 20 includes a horizontal portion 21 extending in the Y-axis direction and a vertical portion 22 extending in the vertical direction (Z-axis direction). One end of the horizontal portion 21 and one end of the vertical portion 22 are connected. The other end of the horizontal part 21 supports the upper end of the rotating part 12 so that the rotating part 12 can rotate, and the other end of the vertical part 22 is installed on the outer periphery of the fixed part 11.
 誘導部200は、鉛直部22の内側(回転部12に対向する側)に設置されている。誘導部200は、レーザ光の所定の回転位置において、光学系100の複数の光源111(図2参照)からそれぞれ出射された複数のレーザ光を、互いに略同一となる光路長で光学系100の複数の光検出器122(図2参照)にそれぞれ導く。誘導部200の構成については、追って図5~図7(a)を参照して説明する。 The guide section 200 is installed inside the vertical section 22 (on the side facing the rotating section 12). The guiding unit 200 guides the plurality of laser beams emitted from the plurality of light sources 111 (see FIG. 2) of the optical system 100 at a predetermined rotational position of the optical system 100 with substantially the same optical path length. Each of the light beams is guided to a plurality of photodetectors 122 (see FIG. 2). The configuration of the guiding section 200 will be explained later with reference to FIGS. 5 to 7(a).
 レーザレーダ1による物体の検出の際には、レーザ光が光学系100の光源111(図2参照)からレーザレーダ1の外部に出射される。光学系100から出射されたレーザ光は、一点鎖線の矢印に示すように、回転軸R10に対して放射状に出射される。レーザ光の走査位置に存在する物体によって反射されたレーザ光(反射光)は、破線の矢印に示すように、光学系100の光検出器122(図2参照)によって受光される。レーザレーダ1から投射されるレーザ光の光軸は、回転軸R10を中心とした回転部12の回転により、回転軸R10を中心に回転する。これに伴い、レーザ光の走査位置も移動する。 When the laser radar 1 detects an object, laser light is emitted from the light source 111 (see FIG. 2) of the optical system 100 to the outside of the laser radar 1. The laser light emitted from the optical system 100 is emitted radially with respect to the rotation axis R10, as shown by the dashed-dotted arrow. The laser light (reflected light) reflected by an object present at the scanning position of the laser light is received by the photodetector 122 (see FIG. 2) of the optical system 100, as shown by the dashed arrow. The optical axis of the laser beam projected from the laser radar 1 rotates around the rotation axis R10 due to the rotation of the rotating part 12 around the rotation axis R10. Along with this, the scanning position of the laser beam also moves.
 レーザレーダ1は、反射光の受光の有無に基づいて、走査位置に物体が存在するか否かを判定する。また、レーザレーダ1は、レーザ光を投射したタイミングと、反射光を受光したタイミングとの間の時間差(タイムオブフライト)に基づいて、走査位置に存在する物体までの距離を計測する。回転部12が回転軸R10を中心に回転することにより、レーザレーダ1は、支持部20の位置を除く周囲の範囲に存在する物体を検出できる。 The laser radar 1 determines whether an object exists at the scanning position based on whether or not reflected light is received. Further, the laser radar 1 measures the distance to the object present at the scanning position based on the time difference (time of flight) between the timing of projecting the laser beam and the timing of receiving the reflected light. By rotating the rotating part 12 around the rotation axis R10, the laser radar 1 can detect objects existing in the surrounding range excluding the position of the supporting part 20.
 また、レーザレーダ1は、走査位置に対する物体の有無の検出および距離の測定とは別に、所定のタイミングで誘導部200にレーザ光を投射し、誘導部200からの反射光を受光する。レーザレーダ1は、誘導部200からの反射光の受光量に基づいて、光源111および光検出器122(図2参照)に異常が生じているか否かを判定する。さらに、レーザレーダ1は、誘導部200からの反射光の検出信号に基づいて、走査位置における距離の測定値(測距値)を補正する。測距値の補正については、追って図10(a)~図11を参照して説明する。 In addition to detecting the presence or absence of an object to the scanning position and measuring the distance, the laser radar 1 projects a laser beam onto the guiding section 200 at a predetermined timing and receives reflected light from the guiding section 200. The laser radar 1 determines whether an abnormality has occurred in the light source 111 and the photodetector 122 (see FIG. 2) based on the amount of reflected light received from the guide section 200. Further, the laser radar 1 corrects the distance measurement value (distance measurement value) at the scanning position based on the detection signal of the reflected light from the guiding section 200. Correction of the measured distance value will be explained later with reference to FIGS. 10(a) to 11.
 図2は、光学系100の構成を模式的に示す斜視図である。 FIG. 2 is a perspective view schematically showing the configuration of the optical system 100.
 図2には、図1と同様のX、Y、Z軸が付記されており、光学系100の回転位置が誘導部200に対向する位置にあるとき、すなわち、中央の光源111から出射されたレーザ光の出射方向がY軸負方向であるときの光学系100が示されている。図2では、各光源111から出射されて走査位置へと向かうレーザ光が一点鎖線で示され、走査位置から反射されたレーザ光(反射光)が破線で示されている。 In FIG. 2, the same X, Y, and Z axes as in FIG. The optical system 100 is shown when the laser beam emission direction is in the negative direction of the Y-axis. In FIG. 2, the laser light emitted from each light source 111 and heading toward the scanning position is shown by a dashed line, and the laser light (reflected light) reflected from the scanning position is shown by a broken line.
 光学系100は、レーザ光を投射する投射光学系110と、物体により反射されたレーザ光の反射光を受光する受光光学系120と、を備える。投射光学系110は、9個の光源111と、コリメータレンズ112と、を備える。投射光学系110は、9個のレーザ光を投射する。受光光学系120は、集光レンズ121と、9個の光検出器122と、を備える。受光光学系120は、9個の反射光を9個の光検出器122に導く。 The optical system 100 includes a projection optical system 110 that projects a laser beam, and a light receiving optical system 120 that receives the reflected light of the laser beam reflected by an object. The projection optical system 110 includes nine light sources 111 and a collimator lens 112. Projection optical system 110 projects nine laser beams. The light receiving optical system 120 includes a condensing lens 121 and nine photodetectors 122. The light receiving optical system 120 guides nine reflected lights to nine photodetectors 122.
 9個の光源111のうち中央の光源111の出射光軸と、コリメータレンズ112の光軸112aとが整合している。コリメータレンズ112の光軸112a(投射光学系110の光軸)と集光レンズ121の光軸121a(受光光学系120の光軸)とは、X軸方向に互いに離間している。 The output optical axis of the central light source 111 among the nine light sources 111 and the optical axis 112a of the collimator lens 112 are aligned. The optical axis 112a of the collimator lens 112 (the optical axis of the projection optical system 110) and the optical axis 121a of the condenser lens 121 (the optical axis of the light receiving optical system 120) are spaced apart from each other in the X-axis direction.
 光源111は、所定波長のレーザ光を出射する半導体レーザ素子である。9個の光源111は、所定の間隔をあけてZ軸方向に並ぶように基板113上に設置されている。中央の光源111の光軸は、Y軸に平行である。両端の光源111の光軸は、Y軸に平行な状態から中央の光源111の光軸に近づくように同じ角度だけ傾いている。すなわち、中央の光源111は、出射端面がX-Z平面に平行となるように設置され、その他の光源111は、出射端面がX-Z平面に平行な状態からX-Y平面に対してやや傾くように設置されている。 The light source 111 is a semiconductor laser element that emits laser light of a predetermined wavelength. The nine light sources 111 are installed on the substrate 113 so as to be lined up in the Z-axis direction at predetermined intervals. The optical axis of the central light source 111 is parallel to the Y axis. The optical axes of the light sources 111 at both ends are tilted by the same angle from being parallel to the Y axis to approach the optical axis of the light source 111 at the center. That is, the central light source 111 is installed so that its emitting end surface is parallel to the X-Z plane, and the other light sources 111 are installed so that their emitting end surfaces are slightly parallel to the X-Y plane from being parallel to the X-Z plane. It is set up so that it is tilted.
 コリメータレンズ112は、9個の光源111から出射されたレーザ光を平行光に変換する。コリメータレンズ112によって平行光に変換された9個のレーザ光は、走査位置に投射され、走査位置に存在する物体によって反射される。物体によって反射された9個のレーザ光(9個の反射光)は、集光レンズ121のY軸負側の面(入射面)に入射する。 The collimator lens 112 converts the laser beams emitted from the nine light sources 111 into parallel beams. The nine laser beams converted into parallel beams by the collimator lens 112 are projected onto the scanning position and reflected by an object present at the scanning position. The nine laser beams (nine reflected beams) reflected by the object enter the Y-axis negative side surface (incident surface) of the condenser lens 121.
 集光レンズ121は、平面視において、円形の一部が切欠かれた形状を有する。集光レンズ121の切断面121bは、Y-Z平面に平行であり、光軸121aよりもX軸負側に位置する。切断面121bは、コリメータレンズ112とX軸方向に隣り合っている。集光レンズ121は、9個の反射光を、それぞれ対応する光検出器122に集光する。集光レンズ121がこのような形状を有することにより、9個の光源111およびコリメータレンズ112と、集光レンズ121とを接近して配置できる。これにより、近距離の物体からの反射光を適正に光検出器122へと導きやすくなる。 The condensing lens 121 has a circular shape with a part cut out in plan view. The cut surface 121b of the condenser lens 121 is parallel to the YZ plane and is located on the negative side of the X-axis with respect to the optical axis 121a. The cut surface 121b is adjacent to the collimator lens 112 in the X-axis direction. The condensing lens 121 condenses the nine reflected lights onto the corresponding photodetectors 122, respectively. Since the condenser lens 121 has such a shape, the nine light sources 111 and collimator lenses 112 and the condenser lens 121 can be arranged close to each other. This makes it easier to properly guide reflected light from a nearby object to the photodetector 122.
 9個の光検出器122は、所定の間隔をあけてZ軸方向に並ぶように基板123上に設置されている。9個の光検出器122は、それぞれ対応する反射光を受光して、受光光量に応じた検出信号を出力する。光検出器122は、たとえば、アバランシェフォトダイオードである。 The nine photodetectors 122 are installed on the substrate 123 so as to be lined up in the Z-axis direction at predetermined intervals. The nine photodetectors 122 each receive the corresponding reflected light and output a detection signal according to the amount of received light. Photodetector 122 is, for example, an avalanche photodiode.
 図3(a)は、投射光学系110の構成を模式的に示す側面図である。 FIG. 3(a) is a side view schematically showing the configuration of the projection optical system 110.
 図3(a)にも、図2と同様のX、Y、Z軸が付記されている。図3(a)には、9個の光源111から出射されたレーザ光の出射光軸が一点鎖線で示されている。9個のレーザ光の出射光軸は、コリメータレンズ112の入射面(Y軸正側の面)付近で交差する。 The same X, Y, and Z axes as in FIG. 2 are also added to FIG. 3(a). In FIG. 3(a), the emission optical axes of the laser beams emitted from the nine light sources 111 are shown by dashed-dotted lines. The output optical axes of the nine laser beams intersect near the incident surface (the surface on the positive side of the Y-axis) of the collimator lens 112.
 図3(b)は、受光光学系120の構成を模式的に示す側面図である。 FIG. 3(b) is a side view schematically showing the configuration of the light receiving optical system 120.
 図3(b)にも、図2と同様のX、Y、Z軸が付記されている。図3(b)には、物体によって反射された9個の反射光の光軸が破線で示されている。集光レンズ121により集光された9個の反射光は、それぞれ、9個の光検出器122に入射する。 The same X, Y, and Z axes as in FIG. 2 are also added to FIG. 3(b). In FIG. 3(b), the optical axes of the nine reflected lights reflected by the object are shown by broken lines. The nine reflected lights condensed by the condensing lens 121 are incident on the nine photodetectors 122, respectively.
 図4は、レーザレーダ1の構成を模式的に示す平面図である。図4では、便宜上、支持部20の図示が省略されている。 FIG. 4 is a plan view schematically showing the configuration of the laser radar 1. In FIG. 4, illustration of the support portion 20 is omitted for convenience.
 光学系100は、回転部12の回転に応じて、回転軸R10を回転の中心として回転する。このとき、光学系100は、回転軸R10から離れる方向に(Z軸方向に見て放射状に)9個のレーザ光を投射する。光学系100から投射される9個のレーザ光は、Z軸方向に見て重なっている。光学系100は所定の速度で回転しながら9個のレーザ光を投射し、走査位置からの9個の反射光を受光する。これにより、レーザレーダ1の周囲に存在する物体に対して、有無の検出および距離の測定が行われる。 The optical system 100 rotates about the rotation axis R10 as the center of rotation in accordance with the rotation of the rotation unit 12. At this time, the optical system 100 projects nine laser beams in a direction away from the rotation axis R10 (radially when viewed in the Z-axis direction). The nine laser beams projected from the optical system 100 overlap when viewed in the Z-axis direction. The optical system 100 projects nine laser beams while rotating at a predetermined speed, and receives nine reflected beams from the scanning position. Thereby, the presence or absence of objects existing around the laser radar 1 is detected and the distance is measured.
 また、光学系100におけるレーザ光の出射位置が誘導部200の前方(Y軸正側)に位置づけられると、光学系100から出射されたレーザ光は、誘導部200により反射され、光学系100により受光される。これにより、レーザレーダ1は、後述のように、光源111および光検出器122に異常が生じているか否かを判定するとともに、走査位置における距離の測定値(測距値)を補正する。 Further, when the laser beam emission position in the optical system 100 is positioned in front of the guiding section 200 (on the positive side of the Y axis), the laser beam emitted from the optical system 100 is reflected by the guiding section 200, and the laser beam emitted from the optical system 100 is Light is received. Thereby, the laser radar 1 determines whether an abnormality has occurred in the light source 111 and the photodetector 122, and corrects the distance measurement value (distance measurement value) at the scanning position, as will be described later.
 次に、図5~図7(a)を参照して、誘導部200の組み立て手順について説明する。 Next, the assembly procedure of the guide section 200 will be described with reference to FIGS. 5 to 7(a).
 図5~図7(a)には、便宜上、互いに直交するx、y、z軸が付記されている。x軸方向は、図1に示したX軸と同じ軸であり、y軸およびz軸は、それぞれ、図1に示したY軸およびZ軸を、X軸まわりに45°回転した軸である。 For convenience, x, y, and z axes that are orthogonal to each other are added to FIGS. 5 to 7(a). The x-axis direction is the same axis as the X-axis shown in FIG. 1, and the y-axis and z-axis are the axes obtained by rotating the Y-axis and Z-axis shown in FIG. 1 by 45 degrees around the X-axis, respectively. .
 図5は、第1反射部材210および第2反射部材220の構成を示す斜視図である。 FIG. 5 is a perspective view showing the configurations of the first reflecting member 210 and the second reflecting member 220.
 第1反射部材210には、反射面211、212と、筒状面213と、孔214、215と、2つの設置面216と、設置面217と、が形成されている。 The first reflecting member 210 is formed with reflecting surfaces 211 and 212, a cylindrical surface 213, holes 214 and 215, two installation surfaces 216, and an installation surface 217.
 反射面211、212は、円錐の側面形状を有する。反射面211は、x軸負方向に進むにつれて、曲面の径が小さくなる形状を有し、反射面212は、x軸正方向に進むにつれて、曲面の径が小さくなる形状を有する。反射面211、212は、x軸方向に互いに略対称な形状を有する。 The reflective surfaces 211 and 212 have a conical side surface shape. The reflective surface 211 has a shape in which the radius of the curved surface decreases as it advances in the negative direction of the x-axis, and the diameter of the curved surface 212 has a shape that decreases in the diameter of the curved surface as it advances in the positive direction of the x-axis. The reflective surfaces 211 and 212 have shapes that are substantially symmetrical to each other in the x-axis direction.
 反射面211の反射率は、第2反射部材220の反射面212の反射率よりも低い。たとえば、反射面211、212に付される素材を相違させることで、反射面211、212の反射率が調整される。筒状面213は、円筒の側面形状を有し、反射面211、212の間に形成されている。 The reflectance of the reflective surface 211 is lower than the reflectance of the reflective surface 212 of the second reflective member 220. For example, the reflectance of the reflective surfaces 211, 212 can be adjusted by using different materials for the reflective surfaces 211, 212. The cylindrical surface 213 has a cylindrical side shape and is formed between the reflective surfaces 211 and 212.
 孔214、215は、第1反射部材210のx軸負側の端部に形成されており、第1反射部材210のx軸負側の端部をx軸方向に貫通している。2つの設置面216は、第1反射部材210のx軸負側およびx軸正側の端部付近に形成されている。設置面216は、円筒の側面形状の面およびx-z平面に平行な面により構成される。設置面217は、反射面211および筒状面213のz軸負側に形成されており、x-z平面に傾いた面およびX-Z平面に平行な面により構成される。 The holes 214 and 215 are formed at the end of the first reflecting member 210 on the negative side of the x-axis, and pass through the end of the negative side of the x-axis of the first reflecting member 210 in the x-axis direction. The two installation surfaces 216 are formed near the ends of the first reflecting member 210 on the x-axis negative side and the x-axis positive side. The installation surface 216 is composed of a surface shaped like a side surface of a cylinder and a surface parallel to the xz plane. The installation surface 217 is formed on the negative side of the z-axis of the reflective surface 211 and the cylindrical surface 213, and includes a surface inclined to the xz plane and a surface parallel to the XZ plane.
 第2反射部材220には、反射面221と、突部222と、孔223と、設置面224、225と、が形成されている。 The second reflecting member 220 is formed with a reflecting surface 221, a protrusion 222, a hole 223, and installation surfaces 224 and 225.
 反射面221は、円錐の側面形状を有する。反射面221は、x軸負方向に進むにつれて、曲面の径が小さくなる形状を有する。反射面221の反射率は、第1反射部材210の反射面211の反射率よりも高い。たとえば、反射面211に付される素材の反射率よりも高い反射率の素材が、反射面221に付される。この場合、反射面221に対して、所望の反射率となるような素材が選択される。 The reflective surface 221 has a conical side surface shape. The reflective surface 221 has a shape in which the radius of the curved surface decreases as it advances in the negative direction of the x-axis. The reflectance of the reflective surface 221 is higher than the reflectance of the reflective surface 211 of the first reflective member 210. For example, a material having a higher reflectance than the material applied to the reflective surface 211 is applied to the reflective surface 221. In this case, a material that provides the desired reflectance for the reflective surface 221 is selected.
 突部222および孔223は、第2反射部材220のx軸負側の端部に形成されている。設置面224は、円筒の側面形状の面およびx-z平面に平行な面により構成される。設置面225は、x-z平面に傾いた面およびx-z平面に平行な面により構成される。 The protrusion 222 and the hole 223 are formed at the end of the second reflecting member 220 on the negative side of the x-axis. The installation surface 224 is composed of a surface shaped like a cylindrical side surface and a surface parallel to the xz plane. The installation surface 225 is composed of a surface inclined to the xz plane and a surface parallel to the xz plane.
 組み立ての際には、突部222が孔214に通され、設置面225が設置面217に設置される。この状態で、孔215と孔223とがネジ留めされる。これにより、図6に示す構造体240が完成する。 During assembly, the protrusion 222 is passed through the hole 214 and the installation surface 225 is installed on the installation surface 217. In this state, the holes 215 and 223 are screwed together. As a result, the structure 240 shown in FIG. 6 is completed.
 図6は、遮光部材230および構造体240の構成を示す斜視図である。 FIG. 6 is a perspective view showing the configuration of the light shielding member 230 and the structure 240.
 構造体240において、x軸負側の設置面216および設置面224は、段差なく繋がっている。設置面216および設置面224に囲まれた部分に、開口241が形成されている。開口241を介して、反射面211が外部に開放されている。また、構造体240において、第2反射部材220のx軸正側の端部と、筒状面213との間には、開口242が形成されている。開口242を介して、反射面211が、x軸正方向に開放され、反射面212に対してx軸方向に対向している。また、構造体240において、反射面221も、反射面212に対してx軸方向に対向している。 In the structure 240, the installation surface 216 and the installation surface 224 on the negative side of the x-axis are connected without a step difference. An opening 241 is formed in a portion surrounded by the installation surface 216 and the installation surface 224. The reflective surface 211 is exposed to the outside through the opening 241. Furthermore, in the structure 240, an opening 242 is formed between the end of the second reflecting member 220 on the positive side of the x-axis and the cylindrical surface 213. The reflective surface 211 is opened in the positive x-axis direction through the opening 242 and faces the reflective surface 212 in the x-axis direction. Further, in the structure 240, the reflective surface 221 also faces the reflective surface 212 in the x-axis direction.
 遮光部材230は、円筒の側面形状の面およびx-z平面に平行な面により構成される。遮光部材230は、光源111から出射され光検出器122に入射するレーザ光の光量を制限するための制限体である。遮光部材230には、開口231、232、233が形成されている。 The light shielding member 230 is composed of a cylindrical side surface and a surface parallel to the xz plane. The light shielding member 230 is a limiter for limiting the amount of laser light emitted from the light source 111 and incident on the photodetector 122. Apertures 231, 232, and 233 are formed in the light shielding member 230.
 開口231、232、233は、遮光部材230を貫通している。開口231、232は、y-z平面に平行な方向(たとえば、図1のY軸方向)に見て長方形形状を有する。開口231、232は、y軸方向およびz軸方向の長さがx軸方向よりも長い形状を有する。開口231、232のy軸方向およびz軸方向の長さは、光学系100から出射された9個のレーザ光の光軸が開口231、232内に位置づけられるように設定される。開口233は、y軸方向およびz軸方向の長さが開口231、232のy軸方向およびz軸方向の長さと同じであり、x軸方向の長さが開口231、232のx軸方向の長さよりも長い形状を有する。 The openings 231, 232, and 233 penetrate the light shielding member 230. The openings 231 and 232 have a rectangular shape when viewed in a direction parallel to the yz plane (for example, the Y-axis direction in FIG. 1). The openings 231 and 232 have a shape in which the lengths in the y-axis direction and the z-axis direction are longer than in the x-axis direction. The lengths of the apertures 231 and 232 in the y-axis direction and the z-axis direction are set such that the optical axes of the nine laser beams emitted from the optical system 100 are positioned within the apertures 231 and 232. The length of the opening 233 in the y-axis direction and the z-axis direction is the same as the length of the openings 231 and 232 in the y-axis direction and the z-axis direction, and the length in the x-axis direction is the same as that of the openings 231 and 232 in the x-axis direction. It has a shape that is longer than its length.
 組み立ての際には、遮光部材230が、接着剤等により、構造体240の設置面216、224に設置される。これにより、図7(a)に示すように、誘導部200が完成する。 During assembly, the light shielding member 230 is installed on the installation surfaces 216 and 224 of the structure 240 with adhesive or the like. As a result, the guide portion 200 is completed as shown in FIG. 7(a).
 図7(a)は、誘導部200の構成を示す斜視図である。 FIG. 7(a) is a perspective view showing the configuration of the guiding section 200.
 遮光部材230の開口231は、図6に示した構造体240の開口241および反射面211の手前に位置している。遮光部材230の開口232は、反射面221の手前に位置しており、開口233は、反射面212の手前に位置している。開口231、232の大きさによって、誘導部200を経由して光検出器122に入射するレーザ光の光量を調節できる。 The opening 231 of the light shielding member 230 is located in front of the opening 241 of the structure 240 and the reflective surface 211 shown in FIG. The opening 232 of the light shielding member 230 is located in front of the reflective surface 221, and the opening 233 is located in front of the reflective surface 212. Depending on the size of the openings 231 and 232, the amount of laser light that enters the photodetector 122 via the guide section 200 can be adjusted.
 図7(b)~図8(b)を参照して、開口231、232から誘導部200内に入射するレーザ光の光路を説明する。 With reference to FIGS. 7(b) to 8(b), the optical path of the laser beam that enters the guide portion 200 from the apertures 231 and 232 will be described.
 図7(b)は、図7(a)のC1-C2断面を示す斜視図である。図8(a)、(b)は、y軸負方向に見た場合の誘導部200の構成およびレーザ光の光路を示す図である。図7(b)~図8(b)において、y軸正側が開放された位置を通るレーザ光の光軸が、実線で示されており、誘導部200により隠れているレーザ光の光軸が、点線で示されている。 FIG. 7(b) is a perspective view showing the C1-C2 cross section of FIG. 7(a). FIGS. 8A and 8B are diagrams showing the configuration of the guide section 200 and the optical path of the laser beam when viewed in the negative direction of the y-axis. In FIGS. 7(b) to 8(b), the optical axis of the laser beam that passes through the position where the positive side of the y-axis is open is shown by a solid line, and the optical axis of the laser beam that is hidden by the guiding part 200 is shown as a solid line. , shown by the dotted line.
 光学系100が出射する複数のレーザ光の回転位置が開口231に対応する位置に位置づけられると、複数のレーザ光が開口231および開口241(図6参照)を介して反射面211に入射する。反射面211に入射したレーザ光は、反射面211によりx軸正方向に反射される。反射面211で反射された反射光は、図7(b)に示すように開口242を通り、図8(a)に示すように反射面212に入射する。反射面212に入射した反射光は、反射面212により反射され、開口233を通ってy-z平面に平行な方向に進み集光レンズ121に向かう。この場合、図8(a)に示すように、x軸方向において、開口233を通過した反射光の光軸と、集光レンズ121の光軸121aとがずれているものの、反射光は集光レンズ121により集光され、光検出器122へと導かれる。 When the rotational position of the plurality of laser beams emitted by the optical system 100 is positioned at a position corresponding to the aperture 231, the plurality of laser beams enter the reflective surface 211 via the aperture 231 and the aperture 241 (see FIG. 6). The laser light incident on the reflective surface 211 is reflected by the reflective surface 211 in the positive direction of the x-axis. The reflected light reflected by the reflective surface 211 passes through the opening 242 as shown in FIG. 7(b), and enters the reflective surface 212 as shown in FIG. 8(a). The reflected light incident on the reflective surface 212 is reflected by the reflective surface 212, passes through the aperture 233, travels in a direction parallel to the yz plane, and heads toward the condenser lens 121. In this case, as shown in FIG. 8(a), although the optical axis of the reflected light passing through the aperture 233 and the optical axis 121a of the condensing lens 121 are shifted in the x-axis direction, the reflected light is condensed. The light is focused by a lens 121 and guided to a photodetector 122.
 光学系100が出射する複数のレーザ光の回転位置が開口232に対応する位置に位置づけられると、複数のレーザ光が開口232を介して反射面221に入射する。反射面221に入射したレーザ光は、反射面221によりx軸正方向に反射される。反射面221により反射された反射光は、図8(b)に示すように反射面212に入射する。反射面212に入射した反射光は、反射面212により反射され、開口233を通ってy-z平面に平行な方向に進み集光レンズ121に向かう。この場合、図8(b)に示すように、x軸方向において、開口233を通過した反射光の光軸と、集光レンズ121の光軸121aとが一致しており、反射光は集光レンズ121により集光され、光検出器122へと導かれる。 When the rotational position of the plurality of laser beams emitted by the optical system 100 is positioned at a position corresponding to the aperture 232, the plurality of laser beams enter the reflective surface 221 through the aperture 232. The laser light incident on the reflective surface 221 is reflected by the reflective surface 221 in the positive direction of the x-axis. The reflected light reflected by the reflective surface 221 enters the reflective surface 212 as shown in FIG. 8(b). The reflected light incident on the reflective surface 212 is reflected by the reflective surface 212, passes through the aperture 233, travels in a direction parallel to the yz plane, and heads toward the condenser lens 121. In this case, as shown in FIG. 8(b), the optical axis of the reflected light that has passed through the aperture 233 and the optical axis 121a of the condensing lens 121 match in the x-axis direction, and the reflected light is condensed. The light is focused by a lens 121 and guided to a photodetector 122.
 図9は、レーザレーダ1の回路部30の構成を示すブロック図である。 FIG. 9 is a block diagram showing the configuration of the circuit section 30 of the laser radar 1.
 回路部30は、制御回路31と、駆動回路32と、処理回路33と、を備える。駆動回路32は、9個の光源111に接続されており、処理回路33は、9個の光検出器122に接続されている。 The circuit section 30 includes a control circuit 31, a drive circuit 32, and a processing circuit 33. The drive circuit 32 is connected to nine light sources 111, and the processing circuit 33 is connected to nine photodetectors 122.
 制御回路31は、CPUやFPGA等の演算処理ユニットやメモリを備え、メモリに記憶されたプログラムに従って各部を制御する。駆動回路32は、制御回路31からの制御に応じて、9個の光源111を同時にパルス発光させる。処理回路33は、9個の光検出器122から出力されるアナログの検出信号に対して増幅やノイズ除去等の処理を施し、処理後の検出信号をデジタルに変換して制御回路31に出力する。 The control circuit 31 includes an arithmetic processing unit such as a CPU or FPGA, and a memory, and controls each part according to a program stored in the memory. The drive circuit 32 causes the nine light sources 111 to simultaneously emit pulsed light in accordance with the control from the control circuit 31. The processing circuit 33 performs processing such as amplification and noise removal on the analog detection signals output from the nine photodetectors 122, converts the processed detection signals into digital signals, and outputs the digital signals to the control circuit 31. .
 制御回路31は、光源111をパルス発光させてから一定期間内に、対応する光検出器122において反射光の検出がなされた場合に、レーザ光の投射方向に物体が存在すると判定し、さらに、パルス発光のタイミングと反射光の検出タイミングとの時間差に基づいて、当該物体までの距離を算出する。こうして、投射方向における物体の有無の検出および当該物体までの距離の算出が、回転部12の所定の回転角(たとえば1°)ごとに行われる。 The control circuit 31 determines that an object is present in the projection direction of the laser beam if reflected light is detected by the corresponding photodetector 122 within a certain period of time after the light source 111 emits pulsed light, and further, The distance to the object is calculated based on the time difference between the pulse emission timing and the reflected light detection timing. In this way, detection of the presence or absence of an object in the projection direction and calculation of the distance to the object are performed every predetermined rotation angle (for example, 1°) of the rotating section 12.
 光学系100の回路部30で取得された物体の検出結果(物体の有無および物体までの距離)は、随時、通信部(たとえば、非接触通信部)を介して、固定部11側の回路部に通信され、さらに、固定部11側の回路部から外部装置に送信される。外部装置は、たとえば、侵入検知システム、車、ロボットなどである。 The object detection results (presence or absence of the object and distance to the object) obtained by the circuit section 30 of the optical system 100 are sent to the circuit section on the fixed section 11 side via a communication section (for example, a non-contact communication section) at any time. and further transmitted from the circuit section on the fixed section 11 side to an external device. External devices include, for example, intrusion detection systems, cars, robots, and the like.
 次に、距離検出の際に行われる距離補正について説明する。 Next, distance correction performed during distance detection will be explained.
 図10(a)は、レーザ光の発光タイミングを模式的に示す図である。 FIG. 10(a) is a diagram schematically showing the emission timing of laser light.
 駆動回路32は、制御回路31からの制御信号に基づいて、たとえば、時刻Tsにおいて光源111からレーザ光を出射させる。走査位置の物体により反射された反射光は、対応する光検出器122により受光され、光検出器122は、図10(b)に示すような波形状の検出信号を出力する。 Based on the control signal from the control circuit 31, the drive circuit 32 causes the light source 111 to emit laser light, for example, at time Ts. The reflected light reflected by the object at the scanning position is received by the corresponding photodetector 122, and the photodetector 122 outputs a wave-shaped detection signal as shown in FIG. 10(b).
 図10(b)は、光検出器122の検出信号を模式的に示す図である。 FIG. 10(b) is a diagram schematically showing the detection signal of the photodetector 122.
 光検出器122は、受光した反射光の光量に応じた検出信号を出力する。このとき、光量が閾値Lthとなる時刻のうち、左側(立ち上がり側)の時刻をT0とすると、制御回路31は、時刻Tsから時刻T0までの時間に基づいて、走査位置の物体までの距離D0を算出する。 The photodetector 122 outputs a detection signal according to the amount of reflected light it receives. At this time, if the left side (rise side) time is T0 among the times when the light intensity reaches the threshold Lth, the control circuit 31 determines the distance D0 to the object at the scanning position based on the time from time Ts to time T0. Calculate.
 ここで、反射光の光量は、走査位置の物体の反射率に応じて変化する。たとえば、物体の反射率が基準値である場合、図10(b)のような検出信号が得られるとすると、物体の反射率が基準値よりも小さい場合、図10(c)、(d)のような検出信号が得られる。図10(c)、(d)の場合に、図10(b)と同様にして距離が算出されると、実際の距離よりも長い距離が算出されてしまう。すなわち、図10(c)の場合、時刻Tsから時刻T1までの時間に基づいて距離D1が算出され、図10(d)の場合、時刻Tsから時刻T2までの時間に基づいて距離D2が算出される。このように、図10(c)、(d)の場合、算出される距離D1、D2が適正な距離D0から解離してしまう。 Here, the amount of reflected light changes depending on the reflectance of the object at the scanning position. For example, if the reflectance of the object is the reference value, a detection signal like that shown in FIG. A detection signal like this is obtained. In the cases of FIGS. 10(c) and 10(d), if the distance is calculated in the same manner as in FIG. 10(b), a distance longer than the actual distance will be calculated. That is, in the case of FIG. 10(c), the distance D1 is calculated based on the time from time Ts to time T1, and in the case of FIG. 10(d), the distance D2 is calculated based on the time from time Ts to time T2. be done. In this way, in the cases of FIGS. 10(c) and 10(d), the calculated distances D1 and D2 are separated from the appropriate distance D0.
 そこで、算出される距離値を適正なものとするため、検出信号の傾き(立ち上がり角度)に応じて、距離値が補正される。具体的には、制御回路31は、閾値Lthに基づくパルス幅から検出信号の傾きを推定し、推定した傾きに応じて距離補正量を算出する。たとえば、図10(c)の場合、制御回路31は、検出信号から得られるパルス幅w1に基づいて、パルス幅と距離補正量との関係を規定する基準の関係式から、距離を補正するための距離補正量A1を取得し、距離D1から距離補正量A1を減算することにより、適正な距離D0を算出する。同様に、図10(d)の場合、制御回路31は、検出信号から得られるパルス幅w2に基づいて、上記基準の関係式から、距離を補正するための距離補正量A2を取得し、距離D2から距離補正量A2を減算することにより、適正な距離D0を算出する。 Therefore, in order to make the calculated distance value appropriate, the distance value is corrected according to the slope (rise angle) of the detection signal. Specifically, the control circuit 31 estimates the slope of the detection signal from the pulse width based on the threshold value Lth, and calculates the distance correction amount according to the estimated slope. For example, in the case of FIG. 10(c), the control circuit 31 corrects the distance based on the reference relational expression that defines the relationship between the pulse width and the distance correction amount based on the pulse width w1 obtained from the detection signal. An appropriate distance D0 is calculated by obtaining the distance correction amount A1 of and subtracting the distance correction amount A1 from the distance D1. Similarly, in the case of FIG. 10(d), the control circuit 31 obtains the distance correction amount A2 for correcting the distance from the above-mentioned reference relational expression based on the pulse width w2 obtained from the detection signal, and An appropriate distance D0 is calculated by subtracting the distance correction amount A2 from D2.
 このように、検出信号のパルス幅に基づく補正により、距離の測定値を補正できる。しかしながら、レーザレーダ1の環境温度が変動すると、光源111や光検出器122の特性が変化し、光検出器122から出力される検出信号に変動が生じる。このため、上記の基準の関係式から得られる距離補正量(図10(c)、(d)の場合、距離補正量A1、A2)をそのまま用いると、真の距離補正量との間にずれが生じる場合がある。 In this way, the distance measurement value can be corrected by correction based on the pulse width of the detection signal. However, when the environmental temperature of the laser radar 1 changes, the characteristics of the light source 111 and the photodetector 122 change, and the detection signal output from the photodetector 122 changes. Therefore, if the distance correction amounts obtained from the above-mentioned standard relational expressions (distance correction amounts A1 and A2 in the case of FIGS. 10(c) and (d)) are used as they are, there will be a difference between them and the true distance correction amount. may occur.
 これに対応するため、制御回路31は、パルス幅と距離補正量との関係式を、誘導部200からの反射光の検出信号に基づいて修正する。 In order to cope with this, the control circuit 31 modifies the relational expression between the pulse width and the distance correction amount based on the detection signal of the reflected light from the guiding section 200.
 図11は、パルス幅と距離補正量との関係を模式的に示すグラフである。 FIG. 11 is a graph schematically showing the relationship between pulse width and distance correction amount.
 図11の実線は、レーザレーダ1の環境温度が基準温度である温度Tm1にあるときのパルス幅と距離補正量との関係を示している。 The solid line in FIG. 11 shows the relationship between the pulse width and the distance correction amount when the environmental temperature of the laser radar 1 is at the reference temperature Tm1.
 制御回路31は、低反射率の反射面211および高反射率の反射面221にレーザ光を投射し、図10(c)、(d)と同様に、2つの検出信号を取得する。このとき、遮光部材230により、光検出器122に入射するレーザ光の光量が制限される。これにより、光検出器122の出力が飽和することを抑制でき、反射面211、221の反射率の違いに応じて光検出器122の検出信号の波形を円滑に相違させることができる。 The control circuit 31 projects a laser beam onto the low-reflectance reflective surface 211 and the high-reflectance reflective surface 221, and acquires two detection signals as in FIGS. 10(c) and 10(d). At this time, the light shielding member 230 limits the amount of laser light that enters the photodetector 122. Thereby, saturation of the output of the photodetector 122 can be suppressed, and the waveform of the detection signal of the photodetector 122 can be smoothly varied according to the difference in reflectance between the reflective surfaces 211 and 221.
 制御回路31は、低反射率の反射面211および高反射率の反射面221にそれぞれレーザ光を投射したときの距離D11、D12を、図10(c)、(d)を参照して説明した処理により算出する。この場合、制御回路31は、それぞれの距離算出に用いる距離補正量を、図11に実線で示した基準温度の関係式(基準の関係式)から取得する。 The control circuit 31 describes the distances D11 and D12 when the laser beam is projected onto the low reflectance reflecting surface 211 and the high reflectance reflecting surface 221, respectively, with reference to FIGS. 10(c) and 10(d). Calculated by processing. In this case, the control circuit 31 obtains the distance correction amount used for each distance calculation from the reference temperature relational expression (reference relational expression) shown by the solid line in FIG. 11 .
 ここで、反射面211を経由した場合の光源111から光検出器122までの光路長(距離D01)と、反射面221を経由した場合の光源111から光検出器122までの光路長(距離D02)とはそれぞれ既知である。制御回路31は、既知の距離D01と算出した距離D11との差から差分A11を算出し、既知の距離D02と算出した距離D12との差から差分A12を算出する。 Here, the optical path length from the light source 111 to the photodetector 122 when passing through the reflective surface 211 (distance D01), and the optical path length from the light source 111 to the photodetector 122 when passing through the reflective surface 221 (distance D02) ) are known respectively. The control circuit 31 calculates a difference A11 from the difference between the known distance D01 and the calculated distance D11, and calculates a difference A12 from the difference between the known distance D02 and the calculated distance D12.
 制御回路31は、これらの差分A11、A12から基準温度の関係式を修正し、測定に用いる関係式を決定する。図11の例では、環境温度が温度Tm1(基準温度)より高い温度Tm2である場合、点線で示す関係式が測定に用いる関係式に決定される。また、環境温度が温度Tm1(基準温度)より低い温度Tm3である場合、破線で示す関係式が測定に用いる関係式に決定される。 The control circuit 31 corrects the relational expression of the reference temperature from these differences A11 and A12, and determines the relational expression used for measurement. In the example of FIG. 11, when the environmental temperature is Tm2 higher than temperature Tm1 (reference temperature), the relational expression shown by the dotted line is determined as the relational expression used for measurement. Further, when the environmental temperature is a temperature Tm3 lower than the temperature Tm1 (reference temperature), the relational expression shown by the broken line is determined as the relational expression used for measurement.
 制御回路31は、こうして決定した関係式に基づいて、実際の距離測定時の距離補正量を取得する。たとえば、環境温度が温度Tm2である場合、制御回路31は、距離測定時のパルス幅がw5であると、距離補正量A3を取得し、環境温度が温度Tm3である場合、制御回路31は、距離測定時のパルス幅がw5であると、距離補正量A4を取得する。制御回路31は、こうして取得した距離補正量を用いて、各走査位置における距離を、図10(c)、(d)に示した処理により算出する。 The control circuit 31 obtains the distance correction amount during actual distance measurement based on the relational expression determined in this way. For example, when the environmental temperature is temperature Tm2, the control circuit 31 obtains the distance correction amount A3 when the pulse width during distance measurement is w5, and when the environmental temperature is temperature Tm3, the control circuit 31 obtains the distance correction amount A3. When the pulse width during distance measurement is w5, a distance correction amount A4 is obtained. The control circuit 31 uses the distance correction amount thus obtained to calculate the distance at each scanning position by the process shown in FIGS. 10(c) and 10(d).
 ところで、誘導部200を介して光源111から光検出器122に至るまでの光路長がレーザ光ごとに異なると、既知の光路長(上記の距離D01、D02)を共通して用いることができなくなる。また、レーザ光ごとに光路長が異なると、各レーザ光において拡がり具合にばらつきが生じるため、光検出器122に導かれる反射光の光量にばらつきが生じる。このような光量のばらつきが生じると、レーザ光ごとに上記閾値Lthを変更する処理が必要になる。また、誘導部200を介した反射光の受光量に基づいて光源111および光検出器122に異常が生じているか否かを判定する際に、共通の閾値を用いて光量の大きさを判定できなくなる。このため、反射光に基づく処理が煩雑になる。 By the way, if the optical path length from the light source 111 to the photodetector 122 via the guide section 200 differs for each laser beam, the known optical path lengths (the above distances D01 and D02) cannot be used in common. . Furthermore, if the optical path length differs for each laser beam, the degree of spread of each laser beam will vary, and therefore the amount of reflected light guided to the photodetector 122 will vary. When such a variation in the amount of light occurs, it becomes necessary to change the threshold value Lth for each laser beam. Further, when determining whether or not an abnormality has occurred in the light source 111 and the photodetector 122 based on the amount of reflected light received via the guide section 200, the magnitude of the light amount can be determined using a common threshold value. It disappears. Therefore, processing based on reflected light becomes complicated.
 これに対し、本実施形態では、誘導部200を経由して光源111から光検出器122に至るまでの光路長が、レーザ光ごとに互いに略同一となるよう、光学系100および誘導部200が構成されている。これにより、誘導部200を経由して光検出器122に導かれる反射光の光量のばらつきが抑制される。 On the other hand, in this embodiment, the optical system 100 and the guiding section 200 are arranged so that the optical path length from the light source 111 to the photodetector 122 via the guiding section 200 is approximately the same for each laser beam. It is configured. This suppresses variations in the amount of reflected light guided to the photodetector 122 via the guide section 200.
 このため、反射光の受光量に基づいて光源111および光検出器122に異常が生じているか否かを判定する際に、共通の閾値を用いて光量の大きさを判定できる。また、距離補正を行う際に、共通の閾値Lthを用いてパルス幅を取得でき、共通の光路長(上記の距離D01、D02)を用いてパルス幅と距離補正量との関係式を取得できる。よって、各レーザ光に対する処理を共通化できるため、より簡素な処理でレーザレーダ1の動作を監視できる。 Therefore, when determining whether an abnormality has occurred in the light source 111 and the photodetector 122 based on the amount of received reflected light, the magnitude of the amount of light can be determined using a common threshold value. Furthermore, when performing distance correction, the pulse width can be obtained using a common threshold Lth, and the relational expression between the pulse width and the distance correction amount can be obtained using a common optical path length (distances D01 and D02 above). . Therefore, since the processing for each laser beam can be shared, the operation of the laser radar 1 can be monitored with simpler processing.
 図12(a)、(b)は、比較例に係る、誘導部300の反射面301、302、311を模式的に示す図である。 FIGS. 12(a) and 12(b) are diagrams schematically showing reflective surfaces 301, 302, and 311 of the guiding section 300 according to a comparative example.
 図12(a)には、誘導部300をX軸負方向に見た場合の反射面301、302が透視状態で示されており、図12(b)には、誘導部300をX軸負方向に見た場合の反射面311、302が透視状態で示されている。反射面301、311は、光源111からのレーザ光をX軸正方向に反射し、反射面302は、反射面301、311で反射された反射光を集光レンズ121に向けて反射している。図12(a)、(b)には、光学系100から誘導部300に向かって出射されたレーザ光の光軸が、一点鎖線で示されている。 FIG. 12(a) shows the reflective surfaces 301 and 302 in a transparent state when the guiding section 300 is viewed in the negative direction of the X-axis, and FIG. 12(b) shows the guiding section 300 in the negative direction of the X-axis. The reflective surfaces 311, 302 are shown in perspective when viewed in the direction. The reflective surfaces 301 and 311 reflect the laser light from the light source 111 in the positive direction of the X-axis, and the reflective surface 302 reflects the reflected light from the reflective surfaces 301 and 311 toward the condenser lens 121. . In FIGS. 12(a) and 12(b), the optical axis of the laser beam emitted from the optical system 100 toward the guide section 300 is shown by a dashed line.
 図12(a)、(b)に示すように、比較例の場合、反射面301、302が平面形状を有する。この場合、反射面301における9個のレーザ光の反射位置が直線に沿って並ぶため、コリメータレンズ112の出射面から反射面301に至るまでの各レーザ光の光路長にばらつきが生じる。同様に、反射面311における9個のレーザ光の反射位置が直線に沿って並ぶため、コリメータレンズ112の出射面から反射面311に至るまでの各レーザ光の光路長にばらつきが生じる。 As shown in FIGS. 12(a) and 12(b), in the case of the comparative example, the reflective surfaces 301 and 302 have a planar shape. In this case, since the reflection positions of the nine laser beams on the reflective surface 301 are aligned along a straight line, the optical path length of each laser beam from the output surface of the collimator lens 112 to the reflective surface 301 varies. Similarly, since the reflection positions of the nine laser beams on the reflective surface 311 are aligned along a straight line, the optical path length of each laser beam from the output surface of the collimator lens 112 to the reflective surface 311 varies.
 よって、比較例では、誘導部300を介して光源111から光検出器122に至るまでの光路長にばらつきが生じ、このような光路長のばらつきにより、光検出器122に導かれる反射光の光量にもばらつきが生じる。さらに、比較例では、誘導部300の反射面が平面であるため、各レーザ光の反射面への入射角度にばらつきが生じ、結果、光検出器122への入射角度にもばらつきが生じる。このため、光検出器122に導かれる反射光の光量のばらつきがさらに大きくなる。 Therefore, in the comparative example, variations occur in the optical path length from the light source 111 to the photodetector 122 via the guide section 300, and due to such variations in the optical path length, the amount of reflected light guided to the photodetector 122 decreases. There are also variations. Furthermore, in the comparative example, since the reflective surface of the guide section 300 is a flat surface, the angle of incidence of each laser beam on the reflective surface varies, and as a result, the angle of incidence on the photodetector 122 also varies. Therefore, the variation in the amount of reflected light guided to the photodetector 122 becomes even larger.
 図13(a)、(b)は、それぞれ、実施形態に係る、誘導部200の反射面211、212を模式的に示す図である。 FIGS. 13(a) and 13(b) are diagrams schematically showing reflective surfaces 211 and 212 of the guiding section 200, respectively, according to the embodiment.
 図13(a)には、回転軸R10に平行且つ開口231から反射面211に入射する9個のレーザ光の光軸を含む平面で反射面211を切断したときの断面の形状が示されている。また、図13(b)には、回転軸R10に平行且つ開口231から入射した後、反射面211、212で反射された9個のレーザ光の光軸を含む平面で反射面212を切断したときの断面の形状が示されている。 FIG. 13(a) shows the shape of a cross section when the reflective surface 211 is cut along a plane parallel to the rotation axis R10 and including the optical axes of nine laser beams incident on the reflective surface 211 from the aperture 231. There is. In addition, in FIG. 13(b), the reflective surface 212 is cut by a plane that is parallel to the rotation axis R10 and includes the optical axes of nine laser beams that are reflected by the reflective surfaces 211 and 212 after entering from the aperture 231. The cross-sectional shape is shown.
 図13(a)、(b)に示すように、反射面211、212は、回転軸R10から離れる方向に円孤状に凹んだ形状である。換言すると、レーザ光の入射位置における反射面211、212の形状は、回転軸R10を中心とする回転方向に見たときに、レーザ光の入射方向に円弧状に湾曲した形状である。 As shown in FIGS. 13(a) and 13(b), the reflective surfaces 211 and 212 are concave in the shape of a circular arc in the direction away from the rotation axis R10. In other words, the shapes of the reflective surfaces 211 and 212 at the laser beam incident position are curved in an arc shape in the laser beam incident direction when viewed in the rotation direction around the rotation axis R10.
 図14(a)、(b)は、それぞれ、実施形態に係る、誘導部200の反射面221、212を模式的に示す図である。 FIGS. 14(a) and 14(b) are diagrams schematically showing the reflective surfaces 221 and 212 of the guiding section 200, respectively, according to the embodiment.
 図14(a)には、回転軸R10に平行且つ開口232から反射面221に入射する9個のレーザ光の光軸を含む平面で反射面221を切断したときの断面の形状が示されている。また、図14(b)には、回転軸R10に平行且つ開口232から入射した後、反射面221、212で反射された9個のレーザ光の光軸を含む平面で反射面212を切断したときの断面の形状が示されている。 FIG. 14(a) shows the shape of a cross section when the reflective surface 221 is cut along a plane parallel to the rotation axis R10 and including the optical axes of nine laser beams incident on the reflective surface 221 from the aperture 232. There is. In addition, in FIG. 14(b), the reflective surface 212 is cut by a plane that is parallel to the rotation axis R10 and includes the optical axes of nine laser beams that are reflected by the reflective surfaces 221 and 212 after entering from the aperture 232. The cross-sectional shape is shown.
 図14(a)、(b)に示すように、反射面221、212は、回転軸R10から離れる方向に円孤状に凹んだ形状である。換言すると、レーザ光の入射位置における反射面221、212の形状は、回転軸R10を中心とする回転方向に見たときに、レーザ光の入射方向に円弧状に湾曲した形状である。 As shown in FIGS. 14(a) and 14(b), the reflective surfaces 221 and 212 are concave in the shape of a circular arc in the direction away from the rotation axis R10. In other words, the shapes of the reflecting surfaces 221 and 212 at the laser beam incident position are curved in an arc shape in the laser beam incident direction when viewed in the rotation direction around the rotation axis R10.
 ここで、図13(a)、(b)に示したように、反射面211、212の形状は、光学系100から出射される9個のレーザ光が、それぞれ、対応する光源111から反射面211、212を経由して対応する光検出器122に至るまでの光路長が略同一となるように調整されている。また、図14(a)、(b)に示したように、反射面221、212の形状は、光学系100から出射される9個のレーザ光が、それぞれ、対応する光源111から反射面221、212を経由して対応する光検出器122に至るまでの光路長が略同一となるように調整されている。 Here, as shown in FIGS. 13(a) and 13(b), the shapes of the reflective surfaces 211 and 212 are such that nine laser beams emitted from the optical system 100 are directed from the corresponding light sources 111 to the reflective surfaces. 211 and 212 to the corresponding photodetector 122 are adjusted so that the optical path lengths are approximately the same. Further, as shown in FIGS. 14(a) and 14(b), the shapes of the reflecting surfaces 221 and 212 are such that nine laser beams emitted from the optical system 100 are directed from the corresponding light sources 111 to the reflecting surfaces 221 and 212. , 212 to the corresponding photodetector 122 are adjusted so that the optical path lengths are approximately the same.
 このように、回転軸R10を中心とする回転方向に見たときの反射面211、212、221の形状を、レーザ光の入射方向に円弧状に湾曲させて調整することにより、光学系100から出射される9個のレーザ光が誘導部200により誘導される場合の各レーザ光の光路長を、略同一にすることができる。 In this way, by adjusting the shapes of the reflective surfaces 211, 212, and 221 when viewed in the direction of rotation about the rotation axis R10 by curving them in an arc shape in the incident direction of the laser beam, the optical system 100 can be When the nine emitted laser beams are guided by the guiding section 200, the optical path lengths of the nine laser beams can be made substantially the same.
 回転軸R10を中心とする回転方向に見たときの反射面211、212、221の形状は、完全な円弧でなくてもよく、全てのレーザ光の光路長を略同一とするために、円弧からやや変形していてもよい。また、回転軸R10を中心とする回転方向に見たときの反射面211、212の形状は、同一でなくてもよく、全てのレーザ光の光路長を略同一とするために、やや相違していてもよい。同様に、回転軸R10を中心とする回転方向に見たときの反射面221、212の形状は、同一でなくてもよく、全てのレーザ光の光路長を略同一とするために、やや相違していてもよい。 The shape of the reflecting surfaces 211, 212, 221 when viewed in the direction of rotation around the rotation axis R10 does not have to be a perfect circular arc, but in order to make the optical path lengths of all laser beams approximately the same, It may be slightly deformed. Further, the shapes of the reflecting surfaces 211 and 212 when viewed in the direction of rotation around the rotation axis R10 do not have to be the same, and may be slightly different in order to make the optical path lengths of all laser beams approximately the same. You can leave it there. Similarly, the shapes of the reflecting surfaces 221 and 212 when viewed in the direction of rotation around the rotation axis R10 do not have to be the same, but may be slightly different in order to make the optical path lengths of all laser beams approximately the same. You may do so.
 また、本実施形態では、誘導部200によってレーザ光を光検出器122に導く際に、レーザ光が、ペアとなる2つの反射面によって反射される。このため、反射光を効率良く光検出器122へと導くことができる。この効果について、図15(a)、(b)を参照して説明する。 Furthermore, in this embodiment, when the guiding section 200 guides the laser beam to the photodetector 122, the laser beam is reflected by a pair of two reflecting surfaces. Therefore, reflected light can be efficiently guided to the photodetector 122. This effect will be explained with reference to FIGS. 15(a) and 15(b).
 図15(a)、(b)は、実施形態に係る、誘導部200および光学系100の構成を模式的に示す図である。 FIGS. 15(a) and 15(b) are diagrams schematically showing the configurations of the guiding section 200 and the optical system 100 according to the embodiment.
 図15(a)は、光源111およびコリメータレンズ112が反射面211に対向する状態を示しており、図15(b)は、光源111およびコリメータレンズ112が反射面221に対向する状態を示している。図15(a)、(b)には、誘導部200の反射面211、212、221が透視状態で示されている。 15(a) shows a state in which the light source 111 and the collimator lens 112 face the reflective surface 211, and FIG. 15(b) shows a state in which the light source 111 and the collimator lens 112 face the reflective surface 221. There is. In FIGS. 15A and 15B, the reflective surfaces 211, 212, and 221 of the guide section 200 are shown in a transparent state.
 図15(a)、(b)に示すように、実施形態では、反射面211に対向して反射面212が配置されており、反射面221に対向して反射面212が配置されている。これにより、反射面211に入射したレーザ光を、2つの反射面211、212によって、それぞれ90°異なる方向に反射させることができ、2つの反射面221、212によって、それぞれ90°異なる方向に反射させることができる。よって、Z軸方向に見て、反射面212で反射された反射光と、集光レンズ121の光軸121aの方向(Y軸方向)とが平行になるため、反射光を光検出器122に効率良く導くことができる。 As shown in FIGS. 15(a) and 15(b), in the embodiment, a reflective surface 212 is arranged opposite to the reflective surface 211, and a reflective surface 212 is arranged opposite to the reflective surface 221. As a result, the laser beam incident on the reflective surface 211 can be reflected by the two reflective surfaces 211 and 212 in directions different by 90 degrees, and can be reflected in directions different by 90 degrees by the two reflective surfaces 221 and 212. can be done. Therefore, when viewed in the Z-axis direction, the reflected light reflected by the reflective surface 212 is parallel to the direction of the optical axis 121a of the condenser lens 121 (Y-axis direction), so that the reflected light is directed to the photodetector 122. Can be guided efficiently.
 また、本実施形態では、反射面211および反射面221で反射された反射光を、1つの反射面212によって反射させて光検出器122へと導くことができる。この効果について、図16(a)、(b)を参照して説明する。 Furthermore, in this embodiment, the reflected light reflected by the reflective surfaces 211 and 221 can be reflected by one reflective surface 212 and guided to the photodetector 122. This effect will be explained with reference to FIGS. 16(a) and 16(b).
 図16(a)、(b)は、それぞれ、比較例および実施形態に係る、誘導部の反射面を模式的に示す図である。 FIGS. 16(a) and 16(b) are diagrams schematically showing reflective surfaces of guiding parts according to a comparative example and an embodiment, respectively.
 図16(a)には、比較例に係る誘導部300をZ軸負方向に見た場合の反射面301、302、311、312が透視状態で示されており、図16(b)には、実施形態に係る誘導部200をZ軸負方向に見た場合の反射面211、212、221が透視状態で示されている。図16(a)、(b)では、便宜上、コリメータレンズ112、集光レンズ121および遮光部材230の図示が省略されている。また、図16(a)、(b)には、便宜上、光源111が反射面211、221にそれぞれ対向する2つの回転位置にあるときの光源111および光検出器122とレーザ光の光路とが示されている。 FIG. 16(a) shows reflective surfaces 301, 302, 311, and 312 in a transparent state when the guiding section 300 according to the comparative example is viewed in the negative Z-axis direction, and FIG. 16(b) shows reflective surfaces 301, 302, 311, and 312 in a transparent state. , reflective surfaces 211, 212, and 221 are shown in a transparent state when the guiding section 200 according to the embodiment is viewed in the negative Z-axis direction. In FIGS. 16A and 16B, illustration of the collimator lens 112, the condensing lens 121, and the light shielding member 230 is omitted for convenience. For convenience, FIGS. 16A and 16B show the light source 111, the photodetector 122, and the optical path of the laser beam when the light source 111 is in two rotational positions facing the reflective surfaces 211 and 221, respectively. It is shown.
 図16(a)に示すように、比較例の場合、反射面301および反射面302に対応して、それぞれ、反射面311、312が配置されている。この場合、4つの反射面301、302、311、312がX軸方向に並ぶため、誘導部300のX軸方向の幅が長くなってしまう。 As shown in FIG. 16(a), in the case of the comparative example, reflective surfaces 311 and 312 are arranged corresponding to reflective surfaces 301 and 302, respectively. In this case, since the four reflective surfaces 301, 302, 311, and 312 are lined up in the X-axis direction, the width of the guiding section 300 in the X-axis direction becomes long.
 一方、図16(b)に示すように、実施形態の場合、反射面211で反射された反射光と、反射面221で反射された反射光とが、いずれも反射面212によって反射される。すなわち、1つの反射面212が、2つの反射面211、221の両方に対応して配置されている。この場合、比較例と比べて、X軸方向に並ぶ反射面の数が少なくなるため、誘導部200のX軸方向の幅を小さくできる。 On the other hand, as shown in FIG. 16(b), in the case of the embodiment, the reflected light reflected by the reflective surface 211 and the reflected light reflected by the reflective surface 221 are both reflected by the reflective surface 212. That is, one reflective surface 212 is arranged corresponding to both of the two reflective surfaces 211 and 221. In this case, the number of reflective surfaces aligned in the X-axis direction is reduced compared to the comparative example, so the width of the guide section 200 in the X-axis direction can be reduced.
 <実施形態の効果>
 以上、実施形態によれば、以下の効果が奏される。
<Effects of embodiment>
As described above, according to the embodiment, the following effects are achieved.
 図13(a)~図14(b)を参照して説明したように、誘導部200により、走査部10から出射された複数のレーザ光が、互いに略同一となる光路長で複数の光検出器122にそれぞれ導かれる。これにより、反射光の受光量に基づいて光源111および光検出器122に異常が生じているか否かを判定する際に、共通の閾値を用いて光量の大きさを判定できる。また、距離補正を行う際に、共通の閾値Lthを用いてパルス幅を取得でき、共通の光路長(上記の距離D01、D02)を用いてパルス幅と距離補正量との関係式を取得できる。よって、各レーザ光に対する処理を共通化できるため、より簡素な処理によりレーザレーダ1の動作を監視できる。 As described with reference to FIGS. 13(a) to 14(b), the guiding unit 200 allows the plurality of laser beams emitted from the scanning unit 10 to be detected by a plurality of optical paths with substantially the same optical path length. They are each guided to a vessel 122. Thereby, when determining whether an abnormality has occurred in the light source 111 and the photodetector 122 based on the amount of received reflected light, the magnitude of the amount of light can be determined using a common threshold value. Furthermore, when performing distance correction, the pulse width can be obtained using a common threshold Lth, and the relational expression between the pulse width and the distance correction amount can be obtained using a common optical path length (distances D01 and D02 above). . Therefore, since the processing for each laser beam can be shared, the operation of the laser radar 1 can be monitored by simpler processing.
 図13(a)に示したように、回転軸R10に平行且つ反射面211に入射するレーザ光の光軸を含む平面で反射面211を切断したときの断面の形状は、回転軸R10から離れる方向に円孤状に凹んだ形状である。言い換えれば、反射面211は、回転軸R10を中心とする回転方向に見たときに、レーザ光の入射方向に円孤状に湾曲した形状を有する。これにより、複数のレーザ光の反射面211までの光路長を、簡素な構成で互いに接近させることができる。 As shown in FIG. 13(a), when the reflective surface 211 is cut along a plane that is parallel to the rotational axis R10 and includes the optical axis of the laser beam incident on the reflective surface 211, the shape of the cross section is far from the rotational axis R10. It is concave in the shape of a circular arc. In other words, the reflective surface 211 has a shape curved into an arc in the direction of incidence of the laser beam when viewed in the direction of rotation about the rotation axis R10. Thereby, the optical path lengths of the plurality of laser beams up to the reflecting surface 211 can be made close to each other with a simple configuration.
 図8(a)、(b)に示したように、反射面211、221は、入射する複数のレーザ光をコリメータレンズ112の光軸112a(投射光学系110の光軸)から集光レンズ121の光軸121a(受光光学系120の光軸)に向かう方向に反射する。反射面212(第2の反射面)は、反射面211、221で反射された複数のレーザ光を集光レンズ121の光軸121a(受光光学系120の光軸)に沿う方向に反射して複数の光検出器122にそれぞれ導く。図13(b)および図14(b)に示したように、回転軸R10に平行且つ反射面212(第2の反射面)により反射されたレーザ光の光軸を含む平面で反射面212(第2の反射面)を切断したときの断面の形状は、回転軸R10から離れる方向に円孤状に凹んだ形状である。言い換えれば、反射面212(第2の反射面)は、反射面211と同様の方向に円孤状に湾曲した形状を有する。 As shown in FIGS. 8A and 8B, the reflective surfaces 211 and 221 direct the incident laser beams from the optical axis 112a of the collimator lens 112 (the optical axis of the projection optical system 110) to the condenser lens 121. is reflected in the direction toward the optical axis 121a (optical axis of the light receiving optical system 120). The reflective surface 212 (second reflective surface) reflects the plurality of laser beams reflected by the reflective surfaces 211 and 221 in a direction along the optical axis 121a of the condenser lens 121 (optical axis of the light receiving optical system 120). The light is guided to a plurality of photodetectors 122, respectively. As shown in FIGS. 13(b) and 14(b), the reflecting surface 212 ( The cross-sectional shape of the second reflective surface (second reflective surface) when cut is an arc-shaped concave shape in the direction away from the rotation axis R10. In other words, the reflective surface 212 (second reflective surface) has an arc-shaped shape curved in the same direction as the reflective surface 211.
 この構成によれば、図15(a)、(b)に示したように、光学系100が誘導部200に対向する回転位置(所定の回転位置)において、複数のレーザ光を集光レンズ121の光軸121aに沿う方向に集光レンズ121に対してそれぞれ入射させることができる。これにより、光検出器122から十分な大きさの検出信号を出力させることができ、装置状態の監視を適切に行うことができる。また、反射面212の形状を反射面211と同様の方向に円弧状に湾曲させることにより、複数のレーザ光について、反射面212から対応する光検出器122までの光路長を互いに接近させることができる。 According to this configuration, as shown in FIGS. 15(a) and 15(b), at the rotational position (predetermined rotational position) where the optical system 100 faces the guide section 200, the plurality of laser beams are directed to the condenser lens 121. The light can be made incident on the condenser lens 121 in the direction along the optical axis 121a. This allows the photodetector 122 to output a detection signal of sufficient magnitude, making it possible to appropriately monitor the state of the device. Furthermore, by curving the shape of the reflective surface 212 into an arc in the same direction as the reflective surface 211, the optical path lengths from the reflective surface 212 to the corresponding photodetectors 122 can be made closer to each other for a plurality of laser beams. can.
 反射面221(第3の反射面)には、所定の回転位置から所定の回転角だけずれた位置において前記複数のレーザ光が入射する。図14(a)に示したように、回転軸R10に平行且つ反射面221(第3の反射面)に入射するレーザ光の光軸を含む平面で反射面221(第3の反射面)を切断したときの断面の形状は、回転軸R10から離れる方向に円孤状に凹んだ形状である。言い換えれば、反射面221(第3の反射面)は、回転軸R10を中心とする回転方向に見たときに、レーザ光の入射方向に円孤状に湾曲した形状を有する。反射面221(第3の反射面)は、入射する複数のレーザ光を反射面212(第2の反射面)に向けて反射する。この構成によれば、反射面211を経由して光検出器122に入射するレーザ光の光量と、反射面221を経由して光検出器122に入射するレーザ光の光量とを、互いに相違させることにより、図11を参照して説明したように、パルス幅と距離補正量との関係式を精度良く取得できる。 The plurality of laser beams are incident on the reflective surface 221 (third reflective surface) at a position shifted by a predetermined rotation angle from a predetermined rotation position. As shown in FIG. 14(a), the reflective surface 221 (third reflective surface) is a plane that is parallel to the rotation axis R10 and includes the optical axis of the laser beam incident on the reflective surface 221 (third reflective surface). The cross-sectional shape when cut is a circular arc-shaped concave shape in the direction away from the rotation axis R10. In other words, the reflective surface 221 (third reflective surface) has a shape curved into a circular arc in the direction of incidence of the laser beam when viewed in the rotation direction around the rotation axis R10. The reflective surface 221 (third reflective surface) reflects the plurality of incident laser beams toward the reflective surface 212 (second reflective surface). According to this configuration, the amount of laser light that enters the photodetector 122 via the reflective surface 211 and the amount of laser light that enters the photodetector 122 via the reflective surface 221 are made different from each other. Thereby, as explained with reference to FIG. 11, the relational expression between the pulse width and the distance correction amount can be obtained with high accuracy.
 反射面211と反射面221(第3の反射面)とは、互いに反射率が相違している。この構成によれば、反射面211を経由して光検出器122に入射するレーザ光の光量と、反射面221を経由して光検出器122に入射するレーザ光の光量とを、簡素な構成で互いに相違させることができる。 The reflective surface 211 and the reflective surface 221 (third reflective surface) have different reflectances from each other. According to this configuration, the amount of laser light that enters the photodetector 122 via the reflective surface 211 and the amount of laser light that enters the photodetector 122 via the reflective surface 221 can be adjusted with a simple configuration. can be made different from each other.
 誘導部200は、光源111から出射され光検出器122に入射するレーザ光の光量を制限するための遮光部材230(制限体)を有する。この構成によれば、光検出器122の出力が飽和することを抑制でき、反射面211、221の反射率に応じて光検出器122の検出信号の波形を円滑に相違させることができる。よって、上記のような距離補正を適正に行うことができる。 The guiding section 200 includes a light blocking member 230 (limiting body) for limiting the amount of laser light emitted from the light source 111 and entering the photodetector 122. According to this configuration, saturation of the output of the photodetector 122 can be suppressed, and the waveform of the detection signal of the photodetector 122 can be smoothly varied according to the reflectance of the reflective surfaces 211 and 221. Therefore, the distance correction as described above can be performed appropriately.
 遮光部材230(制限体)には、開口231、232が形成されている。この構成によれば、開口231、232の大きさによって、光検出器122に入射するレーザ光の光量を調節できる。よって、反射面211、221を経由したレーザ光に基づく2つの検出信号の波形を、所望の波形に調節できる。 Openings 231 and 232 are formed in the light shielding member 230 (limiting body). According to this configuration, the amount of laser light incident on the photodetector 122 can be adjusted depending on the size of the apertures 231 and 232. Therefore, the waveforms of the two detection signals based on the laser beams that have passed through the reflective surfaces 211 and 221 can be adjusted to desired waveforms.
 開口231、232は、複数のレーザ光の回転方向に幅狭のスリットである。この構成によれば、反射面211、212、221に対するレーザ光の入射領域をX軸方向に制限できるため、反射面211、212、221をX軸方向に小さくでき、誘導部200をコンパクトにできる。 The openings 231 and 232 are narrow slits in the rotation direction of the plurality of laser beams. According to this configuration, since the incident area of the laser beam onto the reflective surfaces 211, 212, and 221 can be restricted in the X-axis direction, the reflective surfaces 211, 212, and 221 can be made smaller in the X-axis direction, and the guide section 200 can be made compact. .
 <変更例1>
 上記実施形態では、反射面211、221の両方に対応して、1つの反射面212が配置されたが、以下のように反射面211、221にそれぞれ対応する反射面212a、212bが配置されてもよい。
<Change example 1>
In the above embodiment, one reflective surface 212 is arranged corresponding to both the reflective surfaces 211 and 221, but the reflective surfaces 212a and 212b are arranged corresponding to the reflective surfaces 211 and 221, respectively, as shown below. Good too.
 図17(a)は、2つの反射面212a、212bが用いられる場合の誘導部200の構成を模式的に示す図である。便宜上、図17(a)には、光源111が反射面211、221にそれぞれ対向する2つの回転位置にあるときの光源111および光検出器122とレーザ光の光路とが示されている。 FIG. 17(a) is a diagram schematically showing the configuration of the guiding section 200 when two reflective surfaces 212a and 212b are used. For convenience, FIG. 17A shows the light source 111, the photodetector 122, and the optical path of the laser beam when the light source 111 is in two rotational positions facing the reflective surfaces 211 and 221, respectively.
 本変更例では、反射面211に対向して反射面212aが配置され、反射面221に対向して反射面212bが配置されている。反射面212a、212bは、上記実施形態の反射面212と同様、いずれも円錐の側面形状を有する。反射面212a、212bは、別々の反射面として形成されている。 In this modified example, a reflective surface 212a is arranged opposite to the reflective surface 211, and a reflective surface 212b is arranged opposite to the reflective surface 221. The reflective surfaces 212a and 212b both have a conical side surface shape, similar to the reflective surface 212 of the above embodiment. The reflective surfaces 212a and 212b are formed as separate reflective surfaces.
 この場合も、反射面211、221で反射された反射光を、それぞれ反射面212a、212bで反射させ、光検出器122へと適正に導くことができる。また、9個の光源111から誘導部200を経由して光検出器122へと至る光路長を、互いに略同一とすることができる。 Also in this case, the reflected light reflected by the reflective surfaces 211 and 221 can be reflected by the reflective surfaces 212a and 212b, respectively, and properly guided to the photodetector 122. Further, the optical path lengths from the nine light sources 111 to the photodetector 122 via the guide section 200 can be made substantially the same.
 <変更例2>
 上記実施形態では、光源111から出射され光検出器122に入射するレーザ光の光量を制限するための制限体として遮光部材230が用いられたが、これに限らず、たとえば、制限体としてNDフィルターが用いられてもよい。
<Change example 2>
In the above embodiment, the light shielding member 230 is used as a limiter for limiting the amount of laser light emitted from the light source 111 and incident on the photodetector 122, but the limiter is not limited to this, for example, an ND filter is used as a limiter. may be used.
 図17(b)は、制限体としてNDフィルターが用いられる場合の誘導部200の構成を模式的に示す図である。便宜上、図17(b)には、光源111が反射面211、221にそれぞれ対向する2つの回転位置にあるときの光源111および光検出器122とレーザ光の光路とが示されている。図17(b)の構成では、反射面211、221の前段にそれぞれNDフィルター251、252が配置されており、遮光部材230は省略されている。 FIG. 17(b) is a diagram schematically showing the configuration of the guiding section 200 when an ND filter is used as the restrictor. For convenience, FIG. 17B shows the light source 111, the photodetector 122, and the optical path of the laser beam when the light source 111 is in two rotational positions facing the reflective surfaces 211 and 221, respectively. In the configuration of FIG. 17(b), ND filters 251 and 252 are disposed upstream of the reflective surfaces 211 and 221, respectively, and the light shielding member 230 is omitted.
 この場合、反射面211を経由して光検出器122に入射するレーザ光の光量を、反射面211、212の反射率およびNDフィルター251の透過率により設定でき、反射面221を経由して光検出器122に入射するレーザ光の光量を、反射面221、212の反射率およびNDフィルター252の透過率により設定できる。これら2つの経路による光量は、図11を参照して説明した補正が可能となるよう、所定の差で相違するように設定される。これら光量が所定の差で相違する限りにおいて、反射面211、221の反射率は、どちらか一方が高くてもよく、互いに同じであってもよく、NDフィルター251、252の透過率は、どちらか一方が高くてもよく、互いに同じであってもよい。 In this case, the amount of laser light that enters the photodetector 122 via the reflective surface 211 can be set by the reflectance of the reflective surfaces 211 and 212 and the transmittance of the ND filter 251. The amount of laser light incident on the detector 122 can be set by the reflectance of the reflective surfaces 221 and 212 and the transmittance of the ND filter 252. The amounts of light from these two paths are set to differ by a predetermined difference so that the correction described with reference to FIG. 11 can be performed. As long as these amounts of light differ by a predetermined difference, the reflectances of the reflecting surfaces 211 and 221 may be higher or the same, and the transmittance of the ND filters 251 and 252 may be higher. Either one of them may be higher, or they may be the same.
 また、反射面211および反射面221のいずれか一方のみに対向する位置にNDフィルターが設置されてもよい。 Furthermore, an ND filter may be installed at a position facing only one of the reflective surface 211 and the reflective surface 221.
 たとえば、図18(a)に示すように、反射面211に対向する位置のみに、NDフィルター251が配置されてもよい。この場合、反射面211を経由して光検出器122に入射するレーザ光の光量を、反射面211、212の反射率およびNDフィルター251の透過率により設定でき、反射面221を経由して光検出器122に入射するレーザ光の光量を、反射面221、212の反射率により設定できる。この場合も、反射面211を経由して光検出器122に入射するレーザ光の光量と、反射面221を経由して光検出器122に入射するレーザ光の光量とが、所定の差で相違するように、反射面211、221の反射率およびNDフィルター251の反射率が設定される。なお、この構成では、反射面211、221の反射率は、互いに相違してもよく、あるいは、同じであってもよい。 For example, as shown in FIG. 18(a), the ND filter 251 may be placed only at a position facing the reflective surface 211. In this case, the amount of laser light that enters the photodetector 122 via the reflective surface 211 can be set by the reflectance of the reflective surfaces 211 and 212 and the transmittance of the ND filter 251. The amount of laser light incident on the detector 122 can be set by the reflectance of the reflective surfaces 221 and 212. Also in this case, the amount of laser light that enters the photodetector 122 via the reflective surface 211 and the amount of laser light that enters the photodetector 122 via the reflective surface 221 are different by a predetermined difference. The reflectances of the reflective surfaces 211 and 221 and the reflectance of the ND filter 251 are set so as to. Note that in this configuration, the reflectances of the reflective surfaces 211 and 221 may be different from each other or may be the same.
 同様に、反射面221に対向する位置のみに、NDフィルター252が配置されてもよい。この場合、反射面211を経由して光検出器122に入射するレーザ光の光量を、反射面211、212の反射率により設定でき、反射面221を経由して光検出器122に入射するレーザ光の光量を、反射面221、212の反射率およびNDフィルター252の透過率により設定できる。この場合も、反射面211を経由して光検出器122に入射するレーザ光の光量と、反射面221を経由して光検出器122に入射するレーザ光の光量とが、所定の差で相違するように、反射面211、221の反射率およびNDフィルター252の反射率が設定される。なお、この構成においても、反射面211、221の反射率は、互いに相違してもよく、あるいは、同じであってもよい。 Similarly, the ND filter 252 may be placed only at a position facing the reflective surface 221. In this case, the amount of laser light that enters the photodetector 122 via the reflective surface 211 can be set by the reflectance of the reflective surfaces 211 and 212, and the amount of laser light that enters the photodetector 122 via the reflective surface 221 can be set by the reflectance of the reflective surfaces 211 and 212. The amount of light can be set by the reflectance of the reflective surfaces 221 and 212 and the transmittance of the ND filter 252. Also in this case, the amount of laser light that enters the photodetector 122 via the reflective surface 211 and the amount of laser light that enters the photodetector 122 via the reflective surface 221 are different by a predetermined difference. The reflectances of the reflective surfaces 211 and 221 and the reflectance of the ND filter 252 are set so as to. Note that also in this configuration, the reflectances of the reflective surfaces 211 and 221 may be different from each other or may be the same.
 また、図18(b)に示すように、遮光部材230とNDフィルター251、252とが組み合わされてもよい。この場合、反射面211を経由して光検出器122に入射するレーザ光の光量を、反射面211、212の反射率、NDフィルター251の透過率および開口231の大きさにより設定でき、反射面221を経由して光検出器122に入射するレーザ光の光量を、反射面221、212の反射率、NDフィルター252の透過率および開口232の大きさにより設定できる。この場合も、これら2つの光量が所定の差で相違するように、反射面211、221の反射率、NDフィルター251、252の反射率および開口231、232の大きさが設定されればよい。なお、図18(b)の構成から、NDフィルター251、252のいずれか一方が省略されてもよい。 Furthermore, as shown in FIG. 18(b), the light shielding member 230 and ND filters 251 and 252 may be combined. In this case, the amount of laser light that enters the photodetector 122 via the reflective surface 211 can be set by the reflectance of the reflective surfaces 211 and 212, the transmittance of the ND filter 251, and the size of the aperture 231. The amount of laser light that enters the photodetector 122 via the filter 221 can be set by the reflectance of the reflective surfaces 221 and 212, the transmittance of the ND filter 252, and the size of the aperture 232. In this case as well, the reflectances of the reflective surfaces 211 and 221, the reflectances of the ND filters 251 and 252, and the sizes of the apertures 231 and 232 may be set so that these two amounts of light differ by a predetermined difference. Note that either one of the ND filters 251 and 252 may be omitted from the configuration of FIG. 18(b).
 <変更例3>
 上記実施形態では、反射面211、221、212に対応するように、これら反射面のY軸正側に遮光部材230が配置されたが、遮光部材230は、反射面211、221、212のうち、少なくとも1つ以上の反射面に対応するように配置されてもよく、遮光部材230の配置位置は、反射面211、221、212のY軸正側に限らない。
<Change example 3>
In the above embodiment, the light shielding member 230 is arranged on the Y-axis positive side of the reflective surfaces 211, 221, 212 so as to correspond to the reflective surfaces 211, 221, 212. The light shielding member 230 may be arranged so as to correspond to at least one or more reflecting surfaces, and the arrangement position of the light shielding member 230 is not limited to the Y-axis positive side of the reflecting surfaces 211, 221, and 212.
 図19(a)は、反射面211のY軸正側にのみ遮光部材230が配置される場合の誘導部200の構成を模式的に示す図である。この場合、反射面211に向かうレーザ光は、遮光部材230に設けられた開口234を通過する。 FIG. 19(a) is a diagram schematically showing the configuration of the guide section 200 when the light shielding member 230 is disposed only on the positive side of the Y-axis of the reflective surface 211. In this case, the laser beam directed toward the reflective surface 211 passes through the opening 234 provided in the light shielding member 230.
 図19(b)は、反射面211と反射面212との間にのみ遮光部材230が配置される場合の誘導部200の構成を模式的に示す図である。この場合、反射面211から反射面212に向かうレーザ光は、遮光部材230に設けられた開口234を通過する。 FIG. 19(b) is a diagram schematically showing the configuration of the guide section 200 when the light shielding member 230 is disposed only between the reflective surface 211 and the reflective surface 212. In this case, the laser light traveling from the reflective surface 211 to the reflective surface 212 passes through the opening 234 provided in the light shielding member 230.
 図19(c)は、反射面212のY軸正側の領域のうちX軸負側の領域にのみ遮光部材230が配置される場合の誘導部200の構成を模式的に示す図である。この場合、反射面211から反射面212に向かい反射面212によって反射されたレーザ光は、遮光部材230に設けられた開口234を通過する。 FIG. 19(c) is a diagram schematically showing the configuration of the guide section 200 when the light shielding member 230 is disposed only in the region on the negative side of the X-axis among the regions on the positive side of the Y-axis of the reflective surface 212. In this case, the laser light that is directed from the reflective surface 211 to the reflective surface 212 and reflected by the reflective surface 212 passes through the opening 234 provided in the light shielding member 230 .
 図19(a)~(c)のいずれの場合も、開口234の大きさによって、反射面211、212を経由して光検出器122に入射するレーザ光の光量を調節できる。 In any case of FIGS. 19A to 19C, the amount of laser light that enters the photodetector 122 via the reflective surfaces 211 and 212 can be adjusted by changing the size of the aperture 234.
 なお、反射面221のY軸正側にのみ遮光部材230が配置されてもよく、反射面221と反射面212との間にのみ遮光部材230が配置されてもよく、反射面212のY軸正側の領域のうちX軸正側の領域にのみ遮光部材230が配置されてもよい。また、これら6つの遮光部材230の配置位置のうち、複数の配置位置に遮光部材230が配置されてもよい。 Note that the light shielding member 230 may be disposed only on the Y-axis positive side of the reflective surface 221, or the light shielding member 230 may be disposed only between the reflective surface 221 and the reflective surface 212, and the light shielding member 230 may be disposed only on the Y-axis positive side of the reflective surface 212. The light shielding member 230 may be arranged only in the region on the positive side of the X-axis among the regions on the positive side. Further, the light shielding members 230 may be arranged at a plurality of the six arrangement positions of the light shielding members 230.
 <変更例4>
 上記実施形態では、誘導部200が第1反射部材210および第2反射部材220を備える構成であったが、これに限らず、他の構成が用いられてもよい。たとえば、以下に示すプリズム410が誘導部200として用いられてもよい。
<Change example 4>
In the embodiment described above, the guiding section 200 has a configuration including the first reflecting member 210 and the second reflecting member 220, but the present invention is not limited to this, and other configurations may be used. For example, a prism 410 shown below may be used as the guide section 200.
 図20(a)は、プリズム410が用いられる場合の構成を模式的に示す図である。 FIG. 20(a) is a diagram schematically showing a configuration when a prism 410 is used.
 プリズム410は、複数のレーザ光を複数の光検出器122へと導く。プリズム410は、円錐の側面形状を有する反射面411、412を備える。反射面411、412の形状は、上記実施形態の反射面211、212と同様である。反射面411、412は、レーザ光を全反射するように形成されている。図20(a)の構成では、反射率が異なる反射面は設けられておらず、反射面411、412に入射したレーザ光は、略全てが反射される。遮光部材230は、開口231、233を備え、反射面411、412のY軸正側には、それぞれ、開口231、233が位置づけられている。 The prism 410 guides the plurality of laser beams to the plurality of photodetectors 122. Prism 410 includes reflective surfaces 411 and 412 having a conical side surface shape. The shapes of the reflective surfaces 411 and 412 are similar to the reflective surfaces 211 and 212 of the above embodiment. The reflective surfaces 411 and 412 are formed to totally reflect the laser beam. In the configuration of FIG. 20(a), reflective surfaces having different reflectances are not provided, and substantially all of the laser light incident on the reflective surfaces 411 and 412 is reflected. The light shielding member 230 includes openings 231 and 233, and the openings 231 and 233 are positioned on the positive side of the Y-axis of the reflective surfaces 411 and 412, respectively.
 本変更例においても、光源111から出射されたレーザ光を光検出器122へと適正に導くことができる。また、9個の光源111からプリズム410を経由して光検出器122へと至る光路長を、互いに略同一とすることができる。また、開口231の大きさによって、プリズム410を経由して光検出器122に入射するレーザ光の光量を調節できる。 Also in this modified example, the laser beam emitted from the light source 111 can be appropriately guided to the photodetector 122. Furthermore, the optical path lengths from the nine light sources 111 to the photodetector 122 via the prism 410 can be made substantially the same. Further, depending on the size of the aperture 231, the amount of laser light that enters the photodetector 122 via the prism 410 can be adjusted.
 また、図20(b)に示すように、遮光部材230とNDフィルター251とが組み合わされてもよい。この場合、プリズム410を経由して光検出器122に入射するレーザ光の光量を、NDフィルター251の透過率および開口231の大きさにより調節できる。 Furthermore, as shown in FIG. 20(b), the light shielding member 230 and the ND filter 251 may be combined. In this case, the amount of laser light that enters the photodetector 122 via the prism 410 can be adjusted by the transmittance of the ND filter 251 and the size of the aperture 231.
 なお、プリズム410は、上記実施形態の反射面211、212にそれぞれ対応する反射面411、412に加えて、上記実施形態の反射面221に対応する他の反射面を備えてもよい。これにより、反射面411を経由するレーザ光と、他の反射面を経由するレーザ光とを、光検出器122へと導くことができる。 Note that in addition to the reflective surfaces 411 and 412 corresponding to the reflective surfaces 211 and 212 of the above embodiment, the prism 410 may include another reflective surface corresponding to the reflective surface 221 of the above embodiment. Thereby, laser light passing through the reflective surface 411 and laser light passing through other reflective surfaces can be guided to the photodetector 122.
 また、開口233のX軸方向の幅が調整されてもよく、開口233の位置にNDフィルターが配置されてもよい。これにより、さらに、光検出器122に入射するレーザ光の光量を調整できる。 Furthermore, the width of the opening 233 in the X-axis direction may be adjusted, and an ND filter may be placed at the position of the opening 233. Thereby, the amount of laser light incident on the photodetector 122 can be further adjusted.
 また、図20(a)、(b)のようにプリズムを用いる場合、低反射率の反射面を有するプリズムおよび遮光部材の組と、高反射率の反射面を有するプリズムおよび遮光部材の組とを回転方向に並べることにより、上記実施形態と同様、2種類の強度の反射光を用いて高精度な距離補正を行うことができる。 In addition, when using prisms as shown in FIGS. 20(a) and 20(b), there is a set of a prism and a light shielding member having a reflective surface with a low reflectance, and a set of a prism and a light shielding member having a reflective surface with a high reflectance. By arranging them in the rotational direction, it is possible to perform highly accurate distance correction using reflected light of two types of intensities, as in the above embodiment.
 <変更例5>
 以下に示す光ファイバー420が誘導部200として用いられてもよい。
<Change example 5>
An optical fiber 420 shown below may be used as the guide section 200.
 図21は、光ファイバー420が用いられる場合の構成を模式的に示す図である。 FIG. 21 is a diagram schematically showing a configuration when an optical fiber 420 is used.
 図21の構成では、複数の光ファイバー420がZ軸方向に並んで配置されている。より詳細には、図2に示した9個のレーザ光がそれぞれ入射する位置に、9個の光ファイバー420の入射端420aが設置される。9個の光ファイバー420の入射端420aは、たとえば、図13(a)の反射面211および図14(a)の反射面221を規定する円弧に沿って配置される。9個の光ファイバー420の出射端420bは、これら出射端420bから出射されたレーザ光が、集光レンズ121によって、それぞれ対応する光検出器122に導かれるように設置される。9個の光ファイバー420の長さは、略同じである。光源111から各光ファイバー420を経由して光検出器122へと至るレーザ光の光路長が互いに略同じとなるように、これら光ファイバー420の長さが調整されてもよい。 In the configuration of FIG. 21, a plurality of optical fibers 420 are arranged side by side in the Z-axis direction. More specifically, the input ends 420a of the nine optical fibers 420 are installed at the positions where the nine laser beams shown in FIG. 2 enter. The input ends 420a of the nine optical fibers 420 are arranged, for example, along an arc defining the reflective surface 211 in FIG. 13(a) and the reflective surface 221 in FIG. 14(a). The output ends 420b of the nine optical fibers 420 are installed so that the laser beams emitted from these output ends 420b are guided to the corresponding photodetectors 122 by the condenser lenses 121. The lengths of the nine optical fibers 420 are approximately the same. The lengths of these optical fibers 420 may be adjusted so that the optical path lengths of the laser beams from the light source 111 to the photodetector 122 via each optical fiber 420 are approximately the same.
 本変更例においても、光源111から出射されたレーザ光を光検出器122へと適正に導くことができる。また、光ファイバー420を経由して9個の光源111から光検出器122へと至る光路長を、互いに略同一とすることができる。 Also in this modified example, the laser beam emitted from the light source 111 can be appropriately guided to the photodetector 122. Furthermore, the optical path lengths from the nine light sources 111 to the photodetector 122 via the optical fibers 420 can be made substantially the same.
 なお、図21において、光ファイバー420のY軸正側に遮光部材が配置されてもよい。この場合、たとえば、光ファイバー420の入射端420aおよび出射端420bにそれぞれ対応して、遮光部材の開口が位置づけられる。 Note that in FIG. 21, a light shielding member may be arranged on the Y-axis positive side of the optical fiber 420. In this case, for example, openings of the light shielding member are positioned corresponding to the input end 420a and the output end 420b of the optical fiber 420, respectively.
 また、図21のように光ファイバーを用いる場合、第1の透過率を有するNDフィルターを入口に配置した光ファイバー群と、第1の透過率とは異なる第2の透過率を有するNDフィルターを入口に配置した光ファイバー群とが、回転方向に並べて配置されればよい。これにより、上記実施形態と同様、2種類の強度の反射光を用いて高精度な距離補正を行うことができる。 In addition, when using optical fibers as shown in Fig. 21, there is an optical fiber group in which an ND filter having a first transmittance is arranged at the entrance, and an ND filter having a second transmittance different from the first transmittance at the entrance. It is sufficient that the arranged optical fiber groups are arranged side by side in the rotation direction. Thereby, as in the above embodiment, highly accurate distance correction can be performed using reflected light of two types of intensities.
 <変更例6>
 上記実施形態では、遮光部材230に形成された開口231、232は、Y-Z平面に平行な方向に見て長方形形状を有したが、これに限らず、透過する複数のレーザ光の光量が透過する位置に依らず略同一となる形状であればよい。
<Change example 6>
In the above embodiment, the openings 231 and 232 formed in the light shielding member 230 have a rectangular shape when viewed in a direction parallel to the YZ plane, but the shape is not limited to this. Any shape is sufficient as long as it is approximately the same regardless of the position through which it passes.
 図22(a)は、変更例5に係る、遮光部材230の構成を模式的に示す図である。 FIG. 22(a) is a diagram schematically showing the configuration of a light shielding member 230 according to modification example 5.
 本変更例では、9個のレーザ光のうち、中央のレーザ光の光軸は、開口231、232の長さ方向(Z軸方向)の中央位置P11に位置づけられ、両端のレーザ光の光軸は、開口231、232の長さ方向(Z軸方向)の端位置P12に位置づけられることが想定されている。この場合、開口231、232の幅が一定であると、端位置P12において開口231、232を通過するレーザ光の光量が、中央位置P11において開口231、232を通過するレーザ光の光量よりも小さくなってしまう。 In this modified example, the optical axis of the central laser beam among the nine laser beams is positioned at the central position P11 in the length direction (Z-axis direction) of the apertures 231 and 232, and the optical axis of the laser beams at both ends is assumed to be positioned at an end position P12 in the length direction (Z-axis direction) of the openings 231 and 232. In this case, if the width of the apertures 231, 232 is constant, the amount of laser light passing through the apertures 231, 232 at the end position P12 is smaller than the amount of laser light passing through the apertures 231, 232 at the center position P11. turn into.
 そこで本変更例では、開口231を通過した後の9個のレーザ光の光量が略同じとなり、開口232を透過した後の9個のレーザ光の光量が略同じとなるように、開口231、232の形状が調整される。すなわち、開口231、232の端部の幅は、開口231、232の中央部の幅よりも広く設定される。たとえば、図22(a)の例では、開口231、232のX軸方向の幅が、中央位置P11から端位置P12に進むにつれて大きくなっている。また、図22(b)の例では、端位置P12の所定の範囲のみ次第に広げられ、その他の範囲の幅は一定である。 Therefore, in this modified example, the aperture 231, The shape of 232 is adjusted. That is, the width of the end portions of the openings 231 and 232 is set wider than the width of the central portion of the openings 231 and 232. For example, in the example of FIG. 22(a), the width of the openings 231 and 232 in the X-axis direction increases from the center position P11 to the end position P12. Moreover, in the example of FIG. 22(b), only a predetermined range of the end position P12 is gradually widened, and the width of the other ranges is constant.
 開口231、232の形状は、開口231、232に入射するレーザ光のサイズおよび開口231、232の両端からの外れ具合と、レーザ光強度のガウス分布とを考慮して、開口231を通過した後の9個のレーザ光の光量が略同じとなり、開口232を透過した後の9個のレーザ光の光量が略同じとなるように設定されればよい。これにより、中央位置P11を通るレーザ光の光量と、端位置P12を通過するレーザ光の光量との光量差を抑制できる。 The shapes of the apertures 231 and 232 are determined by taking into account the size of the laser light incident on the apertures 231 and 232, the deviation from both ends of the apertures 231 and 232, and the Gaussian distribution of the laser light intensity after passing through the aperture 231. The light intensity of the nine laser beams may be substantially the same, and the light intensity of the nine laser beams after passing through the aperture 232 may be set to be substantially the same. This makes it possible to suppress the difference in the amount of laser light passing through the center position P11 and the amount of laser light passing through the end position P12.
 <その他の変更例>
 レーザレーダ1の構成は、上記実施形態および変更例に示した構成以外に、種々の変更が可能である。
<Other change examples>
The configuration of the laser radar 1 can be modified in various ways in addition to the configurations shown in the above embodiments and modified examples.
 上記実施形態では、投射光学系110に9個の光源111が配置されたが、投射光学系110に配置される光源111の数は9個に限らない。たとえば、光源111の数は2~8個でもよく、10個以上でもよい。これらの場合も、複数の光源111は、各レーザ光の出射方向と回転軸R10との成す角度がそれぞれ所定角度分異なるように配置される。 In the above embodiment, nine light sources 111 are arranged in the projection optical system 110, but the number of light sources 111 arranged in the projection optical system 110 is not limited to nine. For example, the number of light sources 111 may be 2 to 8, or 10 or more. In these cases as well, the plurality of light sources 111 are arranged such that the angles formed by the emission direction of each laser beam and the rotation axis R10 differ by a predetermined angle.
 上記実施形態では、複数のレーザ光を生成するために投射光学系110に複数の光源111が配置されたが、これに限らず、投射光学系110に1つの光源111が配置され、1つの光源111から出射された1つのレーザ光が分割されてもよい。 In the above embodiment, a plurality of light sources 111 are arranged in the projection optical system 110 in order to generate a plurality of laser beams, but the present invention is not limited to this. One laser beam emitted from 111 may be divided.
 図23は、1つのレーザ光を分割する場合の投射光学系110の構成を模式的に示す側面図である。 FIG. 23 is a side view schematically showing the configuration of the projection optical system 110 when dividing one laser beam.
 この場合の投射光学系110では、図2の構成と比較して、基板113に1つの光源111が配置されている。また、レーザ光の出射方向において、コリメータレンズ112の後段側に回折素子114が配置されている。回折素子114は、コリメータレンズ112によって平行光に変換された1つのレーザ光を分割し、0次回折光、+1次回折光および+1次回折光を生成する。回折素子114は、たとえば、ステップ型の回折素子である。 In the projection optical system 110 in this case, one light source 111 is arranged on the substrate 113, compared to the configuration in FIG. Furthermore, a diffraction element 114 is arranged on the downstream side of the collimator lens 112 in the laser beam emission direction. The diffraction element 114 splits one laser beam converted into parallel light by the collimator lens 112, and generates 0th-order diffraction light, +1st-order diffraction light, and +1st-order diffraction light. The diffraction element 114 is, for example, a step-type diffraction element.
 図23の構成においても、上記実施形態と同様、回転軸R10と成す角度がそれぞれ所定角度分異なる複数のレーザ光が、投射光学系110から出射される。 In the configuration of FIG. 23 as well, similar to the embodiment described above, a plurality of laser beams whose angles with the rotation axis R10 differ by a predetermined angle are emitted from the projection optical system 110.
 なお、図23に示す例では、回折素子114により3つのレーザ光が生じたが、回折素子114により生じるレーザ光の数は、2つでもよく、4つ以上でもよい。 Note that in the example shown in FIG. 23, three laser beams are generated by the diffraction element 114, but the number of laser beams generated by the diffraction element 114 may be two or four or more.
 上記実施形態では、反射面211の反射率が反射面212の反射率よりも低くなるよう、反射面211、212が構成されたが、これに限らず、反射面211を経由して光検出器122に入射するレーザ光の光量と、反射面221を経由して光検出器122に入射するレーザ光の光量とが、図11を参照して説明した補正が可能となるよう、所定の差で相違するように設定されればよい。すなわち、これら光量が所定の差で相違する限りにおいて、反射面211、221の反射率は、どちらが高くてもよく、互いに同じであってもよい。 In the above embodiment, the reflective surfaces 211 and 212 are configured such that the reflectance of the reflective surface 211 is lower than the reflectance of the reflective surface 212, but the present invention is not limited to this. The amount of laser light incident on the photodetector 122 and the amount of laser light incident on the photodetector 122 via the reflective surface 221 are set to have a predetermined difference so that the correction described with reference to FIG. 11 can be made. It is sufficient if they are set to be different. That is, as long as these amounts of light differ by a predetermined difference, the reflectances of the reflecting surfaces 211 and 221 may be higher or may be the same.
 上記実施形態において、図3(b)に示したように、9個の光検出器122は、X-Z平面に平行な基板123上に配置され、9個の光検出器122の受光面は、X-Z平面に平行とされた。しかしながら、これに限らず、9個の光検出器122の受光面と集光レンズ121との距離が互いに略同一となるよう、Z軸正側の光検出器122およびZ軸負側の光検出器122が、X-Z平面に対して傾き、かつ、集光レンズ121に近づけられてもよい。 In the above embodiment, as shown in FIG. 3(b), nine photodetectors 122 are arranged on a substrate 123 parallel to the XZ plane, and the light receiving surfaces of the nine photodetectors 122 are , parallel to the XZ plane. However, the present invention is not limited to this, and the photodetectors 122 on the positive side of the Z-axis and the photodetectors on the negative side of the Z-axis are arranged so that the distances between the light receiving surfaces of the nine photodetectors 122 and the condensing lens 121 are approximately the same. The vessel 122 may be tilted with respect to the XZ plane and brought closer to the condenser lens 121.
 上記実施形態では、図15(a)、(b)に示したように、光源111から出射されたレーザ光は、誘導部200の反射面211、221で反射された後、さらに反射面212により反射されて光検出器122に導かれたが、反射面212が省略されて反射面211、221から直接、レーザ光が光検出器122に導かれてもよい。ただし、この場合は、レーザ光が斜め方向から光検出器122に向かうため、コリメータレンズ112等の他の部材への抵触を避けつつ十分な光量で光検出器122にレーザ光を入射させることが困難である。したがって、レーザ光を十分な光量で光検出器122に入射させるためには、上記実施形態のように、反射面212を配置し、レーザ光を集光レンズ121の正面から光検出器122に導くことが好ましい。 In the above embodiment, as shown in FIGS. 15(a) and 15(b), the laser beam emitted from the light source 111 is reflected by the reflective surfaces 211 and 221 of the guide section 200, and then further reflected by the reflective surface 212. Although the laser beam is reflected and guided to the photodetector 122, the reflective surface 212 may be omitted and the laser beam may be directly guided to the photodetector 122 from the reflective surfaces 211 and 221. However, in this case, since the laser beam heads toward the photodetector 122 from an oblique direction, it is difficult to make the laser beam enter the photodetector 122 with a sufficient amount of light while avoiding collision with other members such as the collimator lens 112. Have difficulty. Therefore, in order to make the laser beam enter the photodetector 122 with a sufficient amount of light, as in the above embodiment, the reflective surface 212 is arranged to guide the laser beam from the front of the condensing lens 121 to the photodetector 122. It is preferable.
 上記実施形態において、投射光学系110および受光光学系120の構成は、上記に限らない。たとえば、受光光学系120は、2以上の集光レンズを備えてもよい。 In the embodiments described above, the configurations of the projection optical system 110 and the light receiving optical system 120 are not limited to those described above. For example, the light receiving optical system 120 may include two or more condensing lenses.
 上記実施形態では、回転部12の回転方向は、Z軸負方向に見て時計回りであったが、Z軸負方向に見て反時計回りでもよい。 In the above embodiment, the rotating direction of the rotating part 12 was clockwise when viewed in the negative direction of the Z-axis, but it may be rotated counterclockwise when viewed in the negative direction of the Z-axis.
 上記実施形態では、レーザレーダ1に1つの光学系100が設置されたが、複数の光学系100が、回転軸R10の周方向に沿って設置されてもよい。この場合、複数の光学系100により、走査領域に対する走査を高頻度に行うことができる。なお、この場合、複数の光学系100の中央の光源111から出射される投射光のZ軸方向における投射角度が、互いに異なってもよい。こうすると、Z軸方向において異なる位置に存在する物体を検出可能となる。 In the above embodiment, one optical system 100 is installed in the laser radar 1, but a plurality of optical systems 100 may be installed along the circumferential direction of the rotation axis R10. In this case, the plurality of optical systems 100 can scan the scanning area with high frequency. In this case, the projection angles in the Z-axis direction of the projection lights emitted from the central light source 111 of the plurality of optical systems 100 may be different from each other. This makes it possible to detect objects located at different positions in the Z-axis direction.
 また、走査部10の構成も、上記実施形態に示した構成に限られるものではない。たとえば、固定部11から回転軸R10に沿って鉛直上向きに出射された複数のレーザ光を、回転軸R10について回転するミラーで反射させて、これら複数のレーザ光を回転走査させる構成であってもよい。この場合、固定部11側には、回転軸R10に光軸121aが整合するように円形の集光レンズ121が配置される。走査位置からの各レーザ光の反射光は、ミラーで反射された後、集光レンズ121によって対応する光検出器122に導かれる。複数のレーザ光を出射する複数の光源111およびコリメータレンズ112は、たとえば、集光レンズ121の中心に埋め込まれる。 Further, the configuration of the scanning unit 10 is not limited to the configuration shown in the above embodiment. For example, a plurality of laser beams emitted vertically upward from the fixed part 11 along the rotation axis R10 may be reflected by a mirror rotating about the rotation axis R10, and the plurality of laser beams may be rotated and scanned. good. In this case, a circular condenser lens 121 is arranged on the fixed part 11 side so that the optical axis 121a is aligned with the rotation axis R10. The reflected light of each laser beam from the scanning position is reflected by a mirror and then guided by a condenser lens 121 to a corresponding photodetector 122. A plurality of light sources 111 that emit a plurality of laser beams and a collimator lens 112 are embedded in the center of a condenser lens 121, for example.
 また、距離測定機能がなく光検出器122からの信号により投射方向に物体が存在するか否かの検出機能のみを備えた装置に本発明に係る構造を適用することも可能である。この場合も、上記実施形態の構成によれば、誘導部200を経由して光源111から光検出器122までの光路長を、複数のレーザ光において互いに略同一にできるため、誘導部200を経由した反射光の受光量に基づいて、光源111および光検出器122に異常が生じているか否かを判定する際に、共通の閾値を用いて光量の大きさを判定できる。 Furthermore, it is also possible to apply the structure according to the present invention to a device that does not have a distance measurement function and only has a function of detecting whether or not an object exists in the projection direction based on a signal from the photodetector 122. Also in this case, according to the configuration of the above embodiment, the optical path length from the light source 111 to the photodetector 122 via the guide section 200 can be made substantially the same for a plurality of laser beams. When determining whether an abnormality has occurred in the light source 111 and the photodetector 122 based on the amount of received reflected light, the magnitude of the amount of light can be determined using a common threshold value.
 この他、本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。 In addition, the embodiments of the present invention can be appropriately modified in various ways within the scope of the technical idea shown in the claims.
(付記)
 以上の実施形態の記載により、下記の技術が開示される。
(Additional note)
The following technology is disclosed by the description of the above embodiments.
(技術1)
 回転軸と成す角度がそれぞれ所定の角度分異なる複数のレーザ光を前記回転軸について回転させて走査させるとともに、前記複数のレーザ光の物体からの反射光を個別に受光する走査部と、
 所定の回転位置において、前記走査部から出射された前記複数のレーザ光を、互いに略同一となる光路長で前記走査部の複数の光検出器にそれぞれ導く誘導部と、を備える、
ことを特徴とするレーザレーダ。
 この技術によれば、誘導部により、複数のレーザ光が、互いに略同一となる光路長で光検出器へと導かれる。これにより、各レーザ光に対する処理を共通化できるため、より簡素な処理により装置の動作を監視することができる。
(Technology 1)
a scanning unit that rotates and scans a plurality of laser beams whose angles with the rotation axis differ by a predetermined angle, and that individually receives reflected light from an object of the plurality of laser beams;
a guide section that guides the plurality of laser beams emitted from the scanning section to the plurality of photodetectors of the scanning section at a predetermined rotational position, respectively, with optical path lengths that are substantially the same as each other;
A laser radar characterized by:
According to this technique, a plurality of laser beams are guided to a photodetector by the guiding section with optical path lengths that are substantially the same. As a result, the processing for each laser beam can be shared, and the operation of the device can be monitored using simpler processing.
(技術2)
 技術1に記載のレーザレーダにおいて、
 前記誘導部は、前記所定の回転位置において前記複数のレーザ光が入射する反射面を有し、
 前記回転軸に平行且つ前記反射面に入射する前記レーザ光の光軸を含む平面で前記反射面を切断したときの断面の形状は、前記回転軸から離れる方向に円孤状に凹んだ形状である、
ことを特徴とするレーザレーダ。
 この技術によれば、複数のレーザ光の反射面までの光路長を、簡素な構成で互いに接近させることができる。
(Technology 2)
In the laser radar described in technology 1,
The guide section has a reflective surface on which the plurality of laser beams are incident at the predetermined rotational position,
When the reflective surface is cut along a plane that is parallel to the rotational axis and includes the optical axis of the laser beam incident on the reflective surface, the cross-sectional shape is concave in a circular arc shape in a direction away from the rotational axis. be,
A laser radar characterized by:
According to this technique, the optical path lengths of a plurality of laser beams to the reflecting surface can be made close to each other with a simple configuration.
(技術3)
 技術2に記載のレーザレーダにおいて、
 前記走査部は、
  前記複数のレーザ光を投射する投射光学系と、
  前記複数の反射光を前記複数の光検出器に導く受光光学系と、を備え、
 前記投射光学系の光軸と前記受光光学系の光軸とは互いに離間し、
 前記反射面は、入射する前記複数のレーザ光を前記投射光学系の光軸から前記受光光学系の光軸に向かう方向に反射し、
 前記誘導部は、前記反射面で反射された前記複数のレーザ光を前記受光光学系の光軸に沿う方向に反射して前記複数の光検出器にそれぞれ導く第2の反射面を備え、
 前記回転軸に平行且つ前記第2の反射面により反射された前記レーザ光の光軸を含む平面で前記第2の反射面を切断したときの断面の形状は、前記回転軸から離れる方向に円孤状に凹んだ形状を有する、
ことを特徴とするレーザレーダ。
 この技術によれば、投射光学系が誘導部に対向する所定の回転位置において、複数のレーザ光を集光レンズの光軸に沿う方向に集光レンズに対してそれぞれ入射させることができる。これにより、光検出器から十分な大きさの検出信号を出力させることができ、装置状態の監視を適切に行うことができる。また、第2の反射面の形状を反射面と同様の方向に円弧状に湾曲させることにより、複数のレーザ光について、第2の反射面から対応する光検出器までの光路長を互いに接近させることができる。
(Technology 3)
In the laser radar described in technology 2,
The scanning unit includes:
a projection optical system that projects the plurality of laser beams;
a light receiving optical system that guides the plurality of reflected lights to the plurality of photodetectors,
The optical axis of the projection optical system and the optical axis of the light receiving optical system are separated from each other,
The reflective surface reflects the plurality of incident laser beams in a direction from the optical axis of the projection optical system toward the optical axis of the light receiving optical system,
The guiding section includes a second reflecting surface that reflects the plurality of laser beams reflected by the reflecting surface in a direction along the optical axis of the light receiving optical system and guides them to the plurality of photodetectors, respectively,
When the second reflective surface is cut along a plane that is parallel to the rotation axis and includes the optical axis of the laser beam reflected by the second reflection surface, the shape of the cross section is circular in the direction away from the rotation axis. It has an arcuate concave shape,
A laser radar characterized by:
According to this technique, at a predetermined rotational position where the projection optical system faces the guide section, a plurality of laser beams can be made to respectively enter the condenser lens in a direction along the optical axis of the condenser lens. Thereby, the photodetector can output a detection signal of sufficient magnitude, and the state of the device can be appropriately monitored. Furthermore, by curving the shape of the second reflective surface into an arc in the same direction as the reflective surface, the optical path lengths from the second reflective surface to the corresponding photodetectors for the plurality of laser beams can be made closer to each other. be able to.
(技術4)
 技術3に記載のレーザレーダにおいて、
 前記誘導部は、前記所定の回転位置から所定の回転角だけずれた位置において前記複数のレーザ光が入射する第3の反射面を備え、
 前記回転軸に平行且つ前記第3の反射面に入射する前記レーザ光の光軸を含む平面で前記第3の反射面を切断したときの断面の形状は、前記回転軸から離れる方向に円孤状に凹んだ形状を有し、入射する前記複数のレーザ光を前記第2の反射面に向けて反射する、
ことを特徴とするレーザレーダ。
 この技術によれば、たとえば、反射面を経由して光検出器に入射するレーザ光の光量と、第3の反射面を経由して光検出器に入射するレーザ光の光量とを、互いに相違させることにより、反射面を経由したレーザ光の検出信号と、第3の反射面を経由したレーザ光の検出信号とに基づいて、物体までの距離を精度良く補正できる。
(Technology 4)
In the laser radar described in technology 3,
The guide section includes a third reflective surface on which the plurality of laser beams are incident at a position shifted by a predetermined rotation angle from the predetermined rotation position,
When the third reflective surface is cut along a plane that is parallel to the rotation axis and includes the optical axis of the laser beam incident on the third reflection surface, the cross-sectional shape is a circular arc in the direction away from the rotation axis. having a concave shape and reflecting the plurality of incident laser beams toward the second reflective surface;
A laser radar characterized by:
According to this technology, for example, the amount of laser light that enters the photodetector via the reflective surface and the amount of laser light that enters the photodetector via the third reflective surface are set to be different from each other. By doing so, the distance to the object can be accurately corrected based on the detection signal of the laser beam that has passed through the reflective surface and the detection signal of the laser beam that has passed through the third reflective surface.
(技術5)
 技術4に記載のレーザレーダにおいて、
 前記反射面と前記第3の反射面とは、互いに反射率が相違している、
ことを特徴とするレーザレーダ。
 この技術によれば、反射面を経由して光検出器に入射するレーザ光の光量と、第3の反射面を経由して光検出器に入射するレーザ光の光量とを、簡素な構成で互いに相違させることができる。
(Technique 5)
In the laser radar described in technology 4,
The reflective surface and the third reflective surface have different reflectances from each other,
A laser radar characterized by:
According to this technology, the amount of laser light that enters the photodetector via the reflective surface and the amount of laser light that enters the photodetector via the third reflective surface can be controlled with a simple configuration. They can be made different from each other.
(技術6)
 技術1ないし5の何れか一項に記載のレーザレーダにおいて、
 前記誘導部は、前記複数のレーザ光を前記複数の光検出器へと導くプリズムを備える、
ことを特徴とするレーザレーダ。
 この技術によれば、プリズムを設置することにより、反射面を配置できる。
(Technology 6)
In the laser radar according to any one of Techniques 1 to 5,
The guide section includes a prism that guides the plurality of laser beams to the plurality of photodetectors.
A laser radar characterized by:
According to this technique, a reflective surface can be arranged by installing a prism.
(技術7)
 技術1に記載のレーザレーダにおいて、
 前記誘導部は、前記複数のレーザ光を前記複数の光検出器へと導く光ファイバーを備える、
ことを特徴とするレーザレーダ。
 この技術によれば、光路長を調整しつつ誘導経路を柔軟に設定できる。
(Technology 7)
In the laser radar described in technology 1,
The guide section includes an optical fiber that guides the plurality of laser beams to the plurality of photodetectors.
A laser radar characterized by:
According to this technique, the guide path can be flexibly set while adjusting the optical path length.
(技術8)
 技術1ないし7の何れか一項に記載のレーザレーダにおいて、
 前記誘導部は、前記光検出器に入射する前記レーザ光の光量を制限するための制限体を有する、
ことを特徴とするレーザレーダ。
 この技術によれば、光検出器に入射するレーザ光の光量を制限体によって適宜調整できる。これにより、たとえば、光検出器の出力が飽和することを抑制でき、また、光路によって光検出器の受光光量に差を持たせて上記の距離補正を適正に行うことができる。
(Technology 8)
In the laser radar according to any one of Techniques 1 to 7,
The guide section has a limiter for limiting the amount of the laser beam incident on the photodetector.
A laser radar characterized by:
According to this technique, the amount of laser light incident on the photodetector can be adjusted as appropriate using the limiter. Thereby, for example, it is possible to suppress the output of the photodetector from becoming saturated, and it is also possible to appropriately perform the distance correction described above by giving a difference in the amount of light received by the photodetector depending on the optical path.
(技術9)
 技術8に記載のレーザレーダにおいて、
 前記制限体は、開口が形成された遮光部材である、
ことを特徴とするレーザレーダ。
 この技術によれば、開口の大きさによって、光検出器に入射するレーザ光の光量を調節できる。これにより、レーザ光に基づく検出信号の波形を、所望の波形に調節できる。よって、上記の距離補正を適正に行うことができる。
(Technology 9)
In the laser radar described in technology 8,
The limiter is a light shielding member in which an opening is formed.
A laser radar characterized by:
According to this technique, the amount of laser light incident on the photodetector can be adjusted by changing the size of the aperture. Thereby, the waveform of the detection signal based on the laser beam can be adjusted to a desired waveform. Therefore, the distance correction described above can be performed appropriately.
(技術10)
 技術9に記載のレーザレーダにおいて、
 前記開口は、前記複数のレーザ光の回転方向に幅狭のスリットである、
ことを特徴とするレーザレーダ。
 この技術によれば、たとえば、上記実施形態の構成において、誘導部の反射面に対するレーザ光の入射領域を制限できるため、反射面を小さくでき、誘導部をコンパクトにできる。
(Technology 10)
In the laser radar described in technology 9,
The opening is a narrow slit in the rotation direction of the plurality of laser beams,
A laser radar characterized by:
According to this technique, for example, in the configuration of the above embodiment, the area of incidence of the laser beam on the reflective surface of the guiding section can be restricted, so the reflective surface can be made small and the guiding section can be made compact.
(技術11)
 技術10に記載のレーザレーダにおいて、
 前記開口は、透過する複数のレーザ光の光量が透過する位置に依らず略同一となる形状である、
ことを特徴とするレーザレーダ。
 この技術によれば、開口を透過した後の複数のレーザ光の光量が略同じとなるため、複数の光検出器に入射するレーザ光の光量を互いに接近させることができる。このため、各検出信号に対して共通の処理を適用できる。
(Technology 11)
In the laser radar described in technology 10,
The aperture has a shape such that the amount of light of the plurality of laser beams transmitted therethrough is substantially the same regardless of the position through which the aperture is transmitted;
A laser radar characterized by:
According to this technique, since the light quantities of the plurality of laser beams after passing through the aperture are approximately the same, the light quantities of the laser beams incident on the plurality of photodetectors can be made close to each other. Therefore, common processing can be applied to each detection signal.
(技術12)
 技術8に記載のレーザレーダにおいて、
 前記制限体は、NDフィルターである、
ことを特徴とするレーザレーダ。
 この技術によれば、NDフィルターによって、光検出器に入射する各レーザ光の光量を調節できる。
(Technology 12)
In the laser radar described in technology 8,
the restrictor is an ND filter;
A laser radar characterized by:
According to this technique, the amount of each laser beam incident on the photodetector can be adjusted using the ND filter.
 1 レーザレーダ
 R10 回転軸
 10 走査部
 110 投射光学系
 111 光源
 112a 光軸
 120 受光光学系
 121a 光軸
 122 光検出器
 200 誘導部
 211 反射面
 212 反射面(第2の反射面)
 212a、212b 反射面(第2の反射面)
 221 反射面(第3の反射面)
 230 遮光部材(制限体)
 231、232、233、234 開口(スリット)
 251、252 NDフィルター(制限体)
 410 プリズム
 411 反射面
 412 反射面(第2の反射面)
 420 光ファイバー
1 Laser radar R10 Rotation axis 10 Scanning unit 110 Projection optical system 111 Light source 112a Optical axis 120 Light receiving optical system 121a Optical axis 122 Photodetector 200 Guide unit 211 Reflective surface 212 Reflective surface (second reflective surface)
212a, 212b reflective surface (second reflective surface)
221 Reflective surface (third reflective surface)
230 Light shielding member (limiting body)
231, 232, 233, 234 opening (slit)
251, 252 ND filter (restrictor)
410 Prism 411 Reflective surface 412 Reflective surface (second reflective surface)
420 optical fiber

Claims (12)

  1.  回転軸と成す角度がそれぞれ所定の角度分異なる複数のレーザ光を前記回転軸について回転させて走査させるとともに、前記複数のレーザ光の物体からの反射光を個別に受光する走査部と、
     所定の回転位置において、前記走査部から出射された前記複数のレーザ光を、互いに略同一となる光路長で前記走査部の複数の光検出器にそれぞれ導く誘導部と、を備える、
    ことを特徴とするレーザレーダ。
     
    a scanning unit that rotates and scans a plurality of laser beams whose angles with the rotation axis differ by a predetermined angle, and that individually receives reflected light from an object of the plurality of laser beams;
    a guide section that guides the plurality of laser beams emitted from the scanning section to the plurality of photodetectors of the scanning section at a predetermined rotational position, respectively, with optical path lengths that are substantially the same as each other;
    A laser radar characterized by:
  2.  請求項1に記載のレーザレーダにおいて、
     前記誘導部は、前記所定の回転位置において前記複数のレーザ光が入射する反射面を有し、
     前記回転軸に平行且つ前記反射面に入射する前記レーザ光の光軸を含む平面で前記反射面を切断したときの断面の形状は、前記回転軸から離れる方向に円孤状に凹んだ形状である、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to claim 1,
    The guide section has a reflective surface on which the plurality of laser beams are incident at the predetermined rotational position,
    When the reflective surface is cut along a plane that is parallel to the rotational axis and includes the optical axis of the laser beam incident on the reflective surface, the cross-sectional shape is concave in the shape of an arc in a direction away from the rotational axis. be,
    A laser radar characterized by:
  3.  請求項2に記載のレーザレーダにおいて、
     前記走査部は、
      前記複数のレーザ光を投射する投射光学系と、
      前記複数の反射光を前記複数の光検出器に導く受光光学系と、を備え、
     前記投射光学系の光軸と前記受光光学系の光軸とは互いに離間し、
     前記反射面は、入射する前記複数のレーザ光を前記投射光学系の光軸から前記受光光学系の光軸に向かう方向に反射し、
     前記誘導部は、前記反射面で反射された前記複数のレーザ光を前記受光光学系の光軸に沿う方向に反射して前記複数の光検出器にそれぞれ導く第2の反射面を備え、
     前記回転軸に平行且つ前記第2の反射面により反射された前記レーザ光の光軸を含む平面で前記第2の反射面を切断したときの断面の形状は、前記回転軸から離れる方向に円孤状に凹んだ形状を有する、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to claim 2,
    The scanning unit includes:
    a projection optical system that projects the plurality of laser beams;
    a light receiving optical system that guides the plurality of reflected lights to the plurality of photodetectors,
    The optical axis of the projection optical system and the optical axis of the light receiving optical system are separated from each other,
    The reflective surface reflects the plurality of incident laser beams in a direction from the optical axis of the projection optical system toward the optical axis of the light receiving optical system,
    The guiding section includes a second reflecting surface that reflects the plurality of laser beams reflected by the reflecting surface in a direction along the optical axis of the light receiving optical system and guides them to the plurality of photodetectors, respectively,
    When the second reflective surface is cut along a plane that is parallel to the rotation axis and includes the optical axis of the laser beam reflected by the second reflection surface, the shape of the cross section is circular in the direction away from the rotation axis. It has an arcuate concave shape,
    A laser radar characterized by:
  4.  請求項3に記載のレーザレーダにおいて、
     前記誘導部は、前記所定の回転位置から所定の回転角だけずれた位置において前記複数のレーザ光が入射する第3の反射面を備え、
     前記回転軸に平行且つ前記第3の反射面に入射する前記レーザ光の光軸を含む平面で前記第3の反射面を切断したときの断面の形状は、前記回転軸から離れる方向に円孤状に凹んだ形状を有し、入射する前記複数のレーザ光を前記第2の反射面に向けて反射する、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to claim 3,
    The guide section includes a third reflective surface on which the plurality of laser beams are incident at a position shifted by a predetermined rotation angle from the predetermined rotation position,
    When the third reflective surface is cut along a plane that is parallel to the rotation axis and includes the optical axis of the laser beam incident on the third reflection surface, the cross-sectional shape is a circular arc in the direction away from the rotation axis. having a concave shape and reflecting the plurality of incident laser beams toward the second reflective surface;
    A laser radar characterized by:
  5.  請求項4に記載のレーザレーダにおいて、
     前記反射面と前記第3の反射面とは、互いに反射率が相違している、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to claim 4,
    The reflective surface and the third reflective surface have different reflectances from each other,
    A laser radar characterized by:
  6.  請求項1に記載のレーザレーダにおいて、
     前記誘導部は、前記複数のレーザ光を前記複数の光検出器へと導くプリズムを備える、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to claim 1,
    The guide section includes a prism that guides the plurality of laser beams to the plurality of photodetectors.
    A laser radar characterized by:
  7.  請求項1に記載のレーザレーダにおいて、
     前記誘導部は、前記複数のレーザ光を前記複数の光検出器へと導く光ファイバーを備える、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to claim 1,
    The guide section includes an optical fiber that guides the plurality of laser beams to the plurality of photodetectors.
    A laser radar characterized by:
  8.  請求項1ないし7の何れか一項に記載のレーザレーダにおいて、
     前記誘導部は、前記光検出器に入射する前記レーザ光の光量を制限するための制限体を有する、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to any one of claims 1 to 7,
    The guide section has a limiter for limiting the amount of the laser beam incident on the photodetector.
    A laser radar characterized by:
  9.  請求項8に記載のレーザレーダにおいて、
     前記制限体は、開口が形成された遮光部材である、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to claim 8,
    The limiter is a light shielding member in which an opening is formed.
    A laser radar characterized by:
  10.  請求項9に記載のレーザレーダにおいて、
     前記開口は、前記複数のレーザ光の回転方向に幅狭のスリットである、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to claim 9,
    The opening is a narrow slit in the rotation direction of the plurality of laser beams,
    A laser radar characterized by:
  11.  請求項10に記載のレーザレーダにおいて、
     前記開口は、透過する複数のレーザ光の光量が透過する位置に依らず略同一となる形状である、
    ことを特徴とするレーザレーダ。
     
    The laser radar according to claim 10,
    The aperture has a shape such that the amount of light of the plurality of laser beams transmitted therethrough is substantially the same regardless of the position through which the aperture is transmitted;
    A laser radar characterized by:
  12.  請求項8に記載のレーザレーダにおいて、
     前記制限体は、NDフィルターである、
    ことを特徴とするレーザレーダ。
    The laser radar according to claim 8,
    the restrictor is an ND filter;
    A laser radar characterized by:
PCT/JP2023/021155 2022-06-23 2023-06-07 Laser radar WO2023248798A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-101272 2022-06-23
JP2022101272 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023248798A1 true WO2023248798A1 (en) 2023-12-28

Family

ID=89379910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021155 WO2023248798A1 (en) 2022-06-23 2023-06-07 Laser radar

Country Status (1)

Country Link
WO (1) WO2023248798A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229255A (en) * 2008-03-24 2009-10-08 Hokuyo Automatic Co Scanning range finder
JP2018151398A (en) * 2012-11-21 2018-09-27 ニコン メトロロジー エヌ.ブイ. Calibration device, laser distance measurement device, and structure manufacturing method
US20190064510A1 (en) * 2017-08-31 2019-02-28 Faro Technologies, Inc. Remote control of a scanner using movement of a mobile computing device
JP2020503533A (en) * 2016-12-30 2020-01-30 パノセンス インコーポレイテッド LIDAR sensor assembly calibration based on reference plane
JP2020051846A (en) * 2018-09-26 2020-04-02 株式会社デンソーウェーブ Distance measurement device
JP2022524316A (en) * 2019-03-14 2022-05-02 ウェイモ エルエルシー Methods and systems for detecting obstacles in the sensor housing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229255A (en) * 2008-03-24 2009-10-08 Hokuyo Automatic Co Scanning range finder
JP2018151398A (en) * 2012-11-21 2018-09-27 ニコン メトロロジー エヌ.ブイ. Calibration device, laser distance measurement device, and structure manufacturing method
JP2020503533A (en) * 2016-12-30 2020-01-30 パノセンス インコーポレイテッド LIDAR sensor assembly calibration based on reference plane
US20190064510A1 (en) * 2017-08-31 2019-02-28 Faro Technologies, Inc. Remote control of a scanner using movement of a mobile computing device
JP2020051846A (en) * 2018-09-26 2020-04-02 株式会社デンソーウェーブ Distance measurement device
JP2022524316A (en) * 2019-03-14 2022-05-02 ウェイモ エルエルシー Methods and systems for detecting obstacles in the sensor housing

Similar Documents

Publication Publication Date Title
US9568358B2 (en) Optical measurement device and vehicle
EP2381272B1 (en) Laser scanner
US5424834A (en) Optical displacement sensor for measurement of shape and coarseness of a target workpiece surface
JP2014182028A (en) Limited area reflection type photoelectric sensor
US20220128664A1 (en) Laser radar
US11703571B2 (en) Optical device
JP2014240782A (en) Measurement apparatus
JP2003232989A (en) Automatic focusing module for system of microscopic base, microscopic system having automatic focusing module and automatic focusing method for system of microscopic base
WO2023248798A1 (en) Laser radar
JP2013002819A (en) Flatness measuring device
US6204962B1 (en) Confocal microscope
US11333741B2 (en) Optical system and LIDAR device including such a system
US9823058B2 (en) Device for position determination
US6859266B2 (en) Optical movement detecting device and transport system using the same
US20220342042A1 (en) Apparatus for Optically Measuring the Distance to a Target Object
US20240118417A1 (en) Apparatus for Optically Measuring the Distance to a Scattering Target Object or a Reflecting Target Object
JP7432872B2 (en) laser radar
WO2023286114A1 (en) Ranging device
US20230258779A1 (en) Distance measurement apparatus
JP7311718B2 (en) rangefinder
US20220221559A1 (en) Scanning lidar system and method with compensation for transmit laser pulse effects
JP2004125554A (en) Mirror angle detection device
WO2022168378A1 (en) Laser radar
US10620418B2 (en) Optical pickup device
JPH10162699A (en) Reflection type photoelectric sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826985

Country of ref document: EP

Kind code of ref document: A1