WO2023248668A1 - Rotor, rotary electric machine, and driving device - Google Patents

Rotor, rotary electric machine, and driving device Download PDF

Info

Publication number
WO2023248668A1
WO2023248668A1 PCT/JP2023/018894 JP2023018894W WO2023248668A1 WO 2023248668 A1 WO2023248668 A1 WO 2023248668A1 JP 2023018894 W JP2023018894 W JP 2023018894W WO 2023248668 A1 WO2023248668 A1 WO 2023248668A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
path portion
groove
axial direction
rotor
Prior art date
Application number
PCT/JP2023/018894
Other languages
French (fr)
Japanese (ja)
Inventor
将虎 美世
暁麗 韓
誠人 吉岡
響 ▲高▼田
祥平 大菅
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2023248668A1 publication Critical patent/WO2023248668A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium

Definitions

  • the present invention relates to a rotor, a rotating electric machine, and a drive device.
  • This application claims priority based on Japanese Patent Application No. 2022-101944 filed in Japan on June 24, 2022, the contents of which are incorporated herein.
  • Patent Document 1 describes a configuration in which an end plate is provided with a discharge passage capable of discharging a refrigerant, and the refrigerant discharged from an opening of the discharge passage is sprayed onto a coil end.
  • one of the objects of the present invention is to provide a rotor, a rotating electrical machine, and a drive device that have a structure that makes it easy to supply refrigerant to the coil ends via the end plates.
  • One aspect of the rotor of the present invention is a rotor that is arranged inside an annular stator and is rotatable about a central axis, the rotor comprising: a shaft extending along the central axis; a rotor core fixed to the shaft;
  • the rotor core includes an annular end plate provided with an insertion hole into which the shaft is inserted and arranged in line with the rotor core in the axial direction.
  • the shaft is provided with a cavity provided inside the shaft, and a through hole extending radially outward from the cavity and opening at an outer circumferential surface of the shaft.
  • the end plate has a first side surface facing one side in the axial direction.
  • the first side surface is provided with a groove portion having a first end portion connected to the opening of the through hole, and a second end portion located radially outward from the first end portion.
  • the groove portion has a first flow path portion extending in a direction inclined with respect to the radial direction.
  • the second end portion is located in the first flow path portion.
  • One aspect of the rotating electrical machine of the present invention includes the above-mentioned rotor and the above-mentioned stator.
  • One aspect of the drive device of the present invention includes the above-mentioned rotating electrical machine and a gear mechanism connected to the rotating electrical machine.
  • a rotor, a rotating electric machine, and a drive device that have a structure that makes it easy to supply refrigerant to the coil ends via the end plates.
  • FIG. 1 is a schematic diagram of a drive device of one embodiment.
  • FIG. 2 is a schematic cross-sectional view of a rotating electric machine according to an embodiment.
  • FIG. 3 is a perspective view of the end plate of one embodiment viewed from the first side.
  • FIG. 4 is a partially enlarged view of FIG. 3.
  • FIG. 5 is an axial view of the end plate of one embodiment.
  • FIG. 6 is a cross-sectional view along the extending direction of the first flow path portion of the end plate of one embodiment.
  • FIG. 7 is a perspective view of the end plate of one embodiment viewed from the second side.
  • FIG. 8 is an axial view of the end plate of Modification 1.
  • FIG. 9 is an axial view of the end plate of Modified Example 2.
  • FIG. 1 is a schematic diagram of a drive device of one embodiment.
  • FIG. 2 is a schematic cross-sectional view of a rotating electric machine according to an embodiment.
  • FIG. 3 is a perspective view of the end plate of one embodiment
  • FIG. 10 is an axial view of the end plate of Modification Example 3.
  • FIG. 11 is an axial view of the end plate of Modified Example 4.
  • FIG. 12 is an axial view of the end plate of Modification Example 5.
  • FIG. 13 is an axial view of the end plate of Modified Example 6.
  • FIG. 14 is an axial view of the end plate of Modification Example 7.
  • FIG. 15 is an axial view of the end plate of Modification Example 8.
  • FIG. 16 is an axial view of the end plate of Modification Example 9.
  • FIG. 17 is an axial view of the end plate of Modification 10.
  • the vertical direction will be defined based on the positional relationship when the drive device of the embodiment is mounted on a vehicle located on a horizontal road surface. That is, the relative positional relationship in the vertical direction described in the following embodiments only needs to be satisfied at least when the drive device is mounted on a vehicle located on a horizontal road surface.
  • an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
  • the Z-axis direction is the vertical direction.
  • the +Z side is the upper side in the vertical direction
  • the -Z side is the lower side in the vertical direction.
  • the upper side in the vertical direction is simply referred to as the "upper side”
  • the lower side in the vertical direction is simply referred to as the "lower side”.
  • the X-axis direction is a direction perpendicular to the Z-axis direction, and is the front-rear direction of the vehicle in which the drive device is mounted.
  • the +X side is the front side of the vehicle
  • the -X side is the rear side of the vehicle.
  • the Y-axis direction is a direction perpendicular to both the X-axis direction and the Z-axis direction, and is the left-right direction of the vehicle, that is, the vehicle width direction.
  • the +Y side is the left side of the vehicle
  • the -Y side is the right side of the vehicle.
  • the front-rear direction and the left-right direction are horizontal directions perpendicular to the vertical direction.
  • the positional relationship in the longitudinal direction is not limited to the positional relationship in the following embodiments, and the +X side may be the rear side of the vehicle and the -X side may be the front side of the vehicle.
  • the +Y side is the right side of the vehicle and the -Y side is the left side of the vehicle.
  • parallel directions include substantially parallel directions
  • orthogonal directions include substantially orthogonal directions.
  • a central axis J shown in the figures as appropriate is a virtual axis extending in a direction intersecting the vertical direction. More specifically, the central axis J extends in the Y-axis direction perpendicular to the vertical direction, that is, in the left-right direction of the vehicle.
  • the direction parallel to the central axis J is simply referred to as the "axial direction”
  • the radial direction centered on the central axis J is simply referred to as the "radial direction”
  • the central axis J is simply referred to as the "radial direction.”
  • the circumferential direction around the center, that is, around the central axis J is simply referred to as the "circumferential direction.”
  • FIG. 1 is a schematic diagram of a drive device 100 of this embodiment.
  • the drive device 100 of this embodiment shown in FIG. 1 is a drive device that is mounted on a vehicle and rotates an axle 64.
  • the vehicle in which the drive device 100 is mounted is a vehicle that uses a motor as a power source, such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or an electric vehicle (EV).
  • the drive device 100 includes a rotating electrical machine 10 and a transmission device 60.
  • the transmission device 60 is connected to the rotating electrical machine 10 and transmits the rotation of the rotating electrical machine 10, that is, the rotation of the rotor 30, which will be described later, to the axle 64 of the vehicle.
  • the transmission device 60 of this embodiment includes a gear housing 61, a speed reduction device 62 connected to the rotating electric machine 10, and a differential device 63 connected to the speed reduction device 62.
  • the gear housing 61 accommodates a reduction gear 62, a differential gear 63, and oil O therein.
  • Oil O is stored in a lower region within gear housing 61.
  • Oil O circulates within a refrigerant flow path 90, which will be described later.
  • Oil O is used as a refrigerant to cool rotating electric machine 10.
  • oil O is used as a lubricating oil for the reduction gear 62 and the differential gear 63.
  • As the oil O for example, in order to perform the functions of a refrigerant and a lubricant, it is preferable to use an oil equivalent to automatic transmission fluid (ATF), which has a relatively low viscosity.
  • ATF automatic transmission fluid
  • the differential device 63 has a ring gear 63a. Torque output from the rotating electrical machine 10 is transmitted to the ring gear 63a via the reduction gear device 62. The lower end of the ring gear 63a is immersed in oil O stored in the gear housing 61. The rotation of the ring gear 63a scrapes up the oil O. A portion of the oil O that has been scraped up is supplied, for example, to the reduction gear 62 and the differential gear 63 as lubricating oil. Further, another part of the scraped up oil O is stored in a reservoir 65 disposed within the gear housing 61. Oil O stored in the reservoir 65 flows into the interior of the shaft 31, which will be described later.
  • the rotating electric machine 10 is a part that drives the drive device 100.
  • the rotating electrical machine 10 is located on the right side of the transmission device 60, for example.
  • the rotating electric machine 10 is a motor.
  • the rotating electrical machine 10 includes a motor housing 20, a rotor 30 that is rotatable about a central axis J, and a stator 40 that faces the rotor 30 in the radial direction with a gap therebetween.
  • the motor housing 20 is a housing that accommodates the rotor 30 and stator 40 therein.
  • the motor housing 20 is connected to the right side of the gear housing 61.
  • the motor housing 20 has a peripheral wall portion 21, a partition wall portion 22, and a lid portion 23.
  • the peripheral wall portion 21 and the partition wall portion 22 are, for example, parts of the same single member.
  • the lid portion 23 is, for example, separate from the peripheral wall portion 21 and the partition wall portion 22.
  • the peripheral wall portion 21 has a cylindrical shape that surrounds the central axis J and opens on the right side.
  • the partition wall 22 is connected to the left end of the peripheral wall 21.
  • the partition wall portion 22 separates the inside of the motor housing 20 and the inside of the gear housing 61 in the axial direction.
  • the partition wall portion 22 has a partition opening 22 a that connects the inside of the motor housing 20 and the inside of the gear housing 61 .
  • a bearing 34 is held in the partition wall 22 .
  • the lid part 23 is fixed to the right end of the peripheral wall part 21.
  • the lid part 23 closes the opening on the right side of the peripheral wall part 21.
  • a bearing 35 is held in the lid portion 23.
  • the stator 40 is located outside the rotor 30 in the radial direction. Stator 40 is fixed inside motor housing 20.
  • FIG. 2 is a schematic cross-sectional view of the rotating electrical machine 10 of this embodiment.
  • the stator 40 has an annular shape centered on the central axis J.
  • Stator 40 has a stator core 41 and a coil assembly 42.
  • the stator core 41 has an annular shape surrounding the central axis J of the rotating electric machine 10. Stator core 41 is located on the outside of rotor 30 in the radial direction. Stator core 41 surrounds rotor 30.
  • the stator core 41 is configured by, for example, a plurality of plate members such as electromagnetic steel plates laminated in the axial direction.
  • the stator core 41 includes a cylindrical core back that extends in the axial direction, and a plurality of teeth that extend inward in the radial direction from the core back. The plurality of teeth are arranged at equal intervals all around the circumferential direction.
  • the coil assembly 42 has a plurality of coils 42c attached to the stator core 41.
  • Each coil 42c is constituted by, for example, a rectangular wire having a rectangular or substantially rectangular cross-sectional shape. Note that each coil 42c may be formed of, for example, a round wire with a circular cross-sectional shape.
  • the plurality of coils 42c are each attached to the stator core 41 via an insulator 43.
  • the insulators 43 are arranged, for example, between the teeth of the stator core 41 in the circumferential direction.
  • the insulator 43 is, for example, insulating paper.
  • the insulator 43 protrudes from the stator core 41 on both sides in the axial direction.
  • the coil assembly 42 may have a binding member that binds each coil 42c, or may have a crossover wire that connects each coil 42c.
  • the coil assembly 42 has coil ends 42a and 42b that protrude further in the axial direction than the stator core 41.
  • the coil end 42a is a portion that protrudes to the right side of the stator core 41.
  • the coil end 42b is a portion that protrudes to the left side of the stator core 41.
  • Coil end 42a includes a portion of each coil 42c included in coil assembly 42 that protrudes to the right side of stator core 41.
  • Coil end 42b includes a portion of each coil 42c included in coil assembly 42 that protrudes to the left of stator core 41.
  • the coil ends 42a and 42b have an annular shape centered on the central axis J.
  • the coil ends 42a and 42b may include a binding member for binding each coil 42c, or may include a crossover wire for connecting each coil 42c.
  • the right end of the coil end 42a is located to the right of the right end of the insulator 43.
  • the left end of the coil end 42b is located to the left of the left end of the insulator 43.
  • the rotor 30 is arranged inside the stator 40.
  • the rotor 30 includes a shaft 31, a rotor core 32, and a magnet 33.
  • the shaft 31 extends along the central axis J.
  • the shaft 31 is a cylindrical hollow shaft that extends in the axial direction centering on the central axis J.
  • the interior of the shaft 31, which is a hollow shaft, is a cavity 37. That is, a cavity 37 is provided inside the shaft 31.
  • the shaft 31 is rotatable around the central axis J. As shown in FIG. 1, the shaft 31 is rotatably supported by bearings 34 and 35.
  • the shaft 31 extends across the inside of the motor housing 20 and the inside of the gear housing 61.
  • the left end of the shaft 31 projects into the gear housing 61.
  • a speed reduction device 62 is connected to the left end of the shaft 31 .
  • the left end of the shaft 31 opens into the gear housing 61.
  • the left end of the cavity 37 opens into the gear housing 61 .
  • the right end of the shaft 31 may be open or closed. That is, the right end of the cavity 37 may be open or closed.
  • the oil O in the reservoir 65 flows into the cavity 37 from the left end of the cavity 37 .
  • the oil O that has flowed into the cavity 37 flows inside the cavity 37 to the right.
  • the shaft 31 is provided with a plurality of (eight in this embodiment) through holes 31a.
  • the through hole 31a extends radially outward from the cavity 37. Further, the through hole 31a opens at the outer circumferential surface of the shaft. That is, the through hole 31a radially penetrates a portion of the shaft 31 from the inner circumferential surface of the shaft 31 to the outer circumferential surface of the shaft 31.
  • the through hole 31a is, for example, a circular hole.
  • the opening of the through hole 31a on the inner circumferential surface of the shaft 31 is called an inner opening 31b
  • the opening on the outer circumferential surface of the shaft 31 is called an outer opening (opening) 31c.
  • the four through holes 31a located on the right side of the shaft 31 relative to the rotor core 32 are located at equal intervals along the circumferential direction.
  • the four through holes 31a located on the left side of the rotor core 32 are arranged at equal intervals along the circumferential direction.
  • the shaft 31 is provided with a flange portion 31e that protrudes radially outward with respect to the outer peripheral surface of the shaft 31. That is, the rotor 30 includes the flange portion 31e as a protruding portion that protrudes radially outward from the outer circumferential surface of the shaft 31.
  • the flange portion 31e is provided on the outer peripheral surface of a portion of the shaft 31 located on the left side of the rotor core 32.
  • the flange portion 31e and the shaft 31 are part of the same single member.
  • the flange portion 31e has an annular shape centered on the central axis J and surrounding the shaft 31.
  • the flange portion 31e is located on the left side of the plurality of through holes 31a.
  • the flange portion 31e is located inside the coil end 42b in the radial direction.
  • the left end of the flange portion 31e is located to the right of the left end of the coil end 42b.
  • the flange portion 31e sandwiches an end plate 50b, which will be described later, between the flange portion 31e and the rotor core 32 in the axial direction.
  • a nut 36 is attached to the shaft 31.
  • the nut 36 is a protrusion that protrudes radially outward from the outer peripheral surface of the shaft 31. That is, the rotor 30 includes the nut 36 as a protrusion.
  • the nut 36 is separate from the shaft 31.
  • the nut 36 is fixed to the outer peripheral surface of a portion of the shaft 31 located on the right side of the rotor core 32.
  • the nut 36 has an annular shape centered on the central axis J and surrounding the shaft 31.
  • the inner circumferential surface of the nut 36 is provided with a threaded portion that engages with a threaded portion provided on the outer circumferential surface of the shaft 31 .
  • the nut 36 is located on the right side of the plurality of through holes 31a.
  • the outer diameter of the nut 36 is larger than the outer diameter of the flange portion 31e.
  • the nut 36 is located radially inside the coil end 42a.
  • the right end of the nut 36 is arranged at approximately the same position in the axial direction as the right end of the coil end 42a.
  • the nut 36 sandwiches an end plate 50a, which will be described later, between the nut 36 and the rotor core 32 in the axial direction.
  • the rotor core 32 is fixed to the shaft 31.
  • the rotor core 32 has a cylindrical shape that surrounds the shaft 31 and extends in the axial direction.
  • the inner peripheral surface of the rotor core 32 is fixed to the outer peripheral surface of the shaft 31.
  • the rotor core 32 is configured by laminating a plurality of plate members, such as electromagnetic steel plates, in the axial direction.
  • the rotor core 32 has a magnet hole 32a that passes through the radially outer portion of the rotor core 32 in the axial direction.
  • a plurality of magnet holes 32a are provided at intervals in the circumferential direction.
  • the magnet 33 is fixed to the rotor core 32.
  • a plurality of magnets 33 are provided.
  • the plurality of magnets 33 are respectively inserted into the plurality of magnet holes 32a.
  • Each of the plurality of magnets 33 extends in the axial direction.
  • the axial dimension of the magnet 33 is approximately the same as the axial dimension of the rotor core 32.
  • the rotor 30 includes an end plate 50 arranged in line with the rotor core 32 in the axial direction.
  • the rotor 30 of this embodiment includes two end plates 50: an end plate 50a placed on the right side of the rotor core 32, and an end plate 50b placed on the left side of the rotor core 32.
  • the two end plates 50a and 50b are arranged to sandwich the rotor core 32 in the axial direction.
  • the two end plates 50a and 50b are sandwiched between the nut 36 and the flange portion 31e and fixed to the rotor core 32 by tightening the nut 36 onto the shaft 31.
  • Each end plate 50a, 50b closes both axial ends of the magnet hole 32a.
  • the magnet 33 is held down from both sides in the axial direction by the end plates 50a and 50b, and the magnet 33 is prevented from protruding from the magnet hole 32a in the axial direction.
  • the end plate 50a and the end plate 50b mainly have the same configuration except that they are arranged symmetrically in the axial direction with the rotor core 32 in between. Therefore, in the following description, only the end plate 50a may be described as a representative.
  • first end plate 50a one located on the right side of the rotor core 32
  • second end plate 50b the other located on the left side of the rotor core 32
  • one side in the axial direction is the side opposite to the side where the rotor core 32 is located with respect to each end plate 50
  • the other side in the axial direction is the side where the rotor core 32 is located with respect to each end plate 50. It's on the side. Therefore, in the first end plate 50a, one axial side means the right side (+Y side), and the other axial side means the left side (-Y side). Similarly, in the second end plate 50b, one axial side means the left side (-Y side), and the other axial side means the right side (+Y side).
  • FIG. 3 is a perspective view showing the end plate 50a of this embodiment.
  • FIG. 4 is a partially enlarged view of FIG. 3.
  • FIG. 5 is an axial view of the end plate 50a of this embodiment. Note that FIG. 5 shows a cross section of the shaft 31 inserted into the end plate 50a.
  • the end plate 50a has an annular shape centered on the central axis J.
  • the end plate 50a is a plate-shaped member whose plate surface faces in the axial direction.
  • the end plate 50a is provided with an insertion hole 50h into which the shaft 31 is inserted.
  • the outer diameter of the end plate 50a is approximately the same as the outer diameter of the rotor core 32.
  • the end plate 50a is arranged radially inside the coil end 42a with a gap.
  • the other end of the end plate 50a in the axial direction (+Y side) is in contact with the rotor core 32.
  • the end of the end plate 50a on one axial side (-Y side) is located on the other axial side (+Y side) of the end of the coil end 42a on the one axial side (-Y side).
  • the end plate 50a By removing a portion of the end plate 50a by cutting, it can also function as a balancer that corrects the balance of the rotor 30 in the circumferential direction.
  • the end plate 50a By using the end plate 50a as a balancer, it is possible to suppress deterioration of the magnetic properties of the rotor 30 compared to the case where the balance of the rotor 30 is adjusted by cutting the rotor core 32.
  • the end plate 50a has a first side surface 51 facing one side in the axial direction (-Y side) and a second side surface 52 facing the other side in the axial direction (+Y side).
  • the first side surface 51 and the second side surface 52 are flat surfaces perpendicular to the central axis J.
  • the first side surface 51 includes a plurality of (four in this embodiment) first recesses 53 that are recessed toward the other side in the axial direction (+Y side), one second recess 54, and a plurality of ( In this embodiment, four groove portions 55 are provided.
  • the plurality of first recesses 53 are arranged at equal intervals along the circumferential direction.
  • the plurality of first recesses 53 are located between the grooves 55 arranged in the circumferential direction. According to this embodiment, by providing the first recess 53 in the end plate 50a, it is possible to reduce the overall weight while leaving a cutting allowance for balance adjustment. Further, by arranging the plurality of first recesses 53 at equal intervals along the circumferential direction, it is possible to suppress deterioration of the weight balance of the end plate 50a due to the first recesses 53.
  • the first recess 53 of this embodiment has a groove shape extending along the circumferential direction. According to this embodiment, by forming the first recess 53 in the shape of a groove extending in the circumferential direction, variations in the weight distribution of the end plate 50a along the circumferential direction can be suppressed. Moreover, the dimension along the radial direction of the first recess 53 of this embodiment gradually becomes smaller toward one side in the circumferential direction. By changing the radial dimension of the first recess 53 along the circumferential direction, the first recess 53 can be arranged over the entire first side surface 51 of the end plate 50a while avoiding the groove 55.
  • the second recess 54 has a circular shape centered on the central axis J when viewed from the axial direction.
  • the second recess 54 has a bottom surface 54a facing one side in the axial direction (-Y side).
  • the second recess 54 contacts the nut 36 (or the flange portion 31e) as a protrusion at the bottom surface 54a.
  • a portion of the end plate 50a that contacts the nut 36 is reinforced by being sandwiched between the nut 36 and the rotor core 32 from both sides in the axial direction. Therefore, even if the portion of the end plate 50a that contacts the nut 36 is made thinner in the axial direction, sufficient rigidity can be ensured.
  • by providing the first recess 53 in the end plate 50a it is possible to reduce the weight of the end plate 50a without impairing the rigidity of the end plate 50a.
  • the groove portion 55 extends radially outward from the inner edge of the end plate 50.
  • the groove portion 55 guides the oil O discharged from the opening of the through hole 31a of the shaft 31 to the outside in the radial direction.
  • each portion of the groove portion 55 may be described as an upstream side or a downstream side based on the flow direction of the oil O within the groove portion 55.
  • the oil O flows in one direction within the groove portion 55 due to the centrifugal force accompanying the rotation of the rotor 30. Therefore, a region on the downstream side with respect to a given portion of the groove portion 55 is located radially outward than a region on the upstream side with respect to that portion.
  • the groove 55 has a first end 56 that is an upstream end and a second end 57 that is a downstream end. Oil O in the groove 55 flows from the first end 56 to the second end 57.
  • the first end 56 is located at the inner edge of the end plate 50a.
  • the first end portion 56 is located at the innermost position in the radial direction in the groove portion 55 .
  • the circumferential position of the first end 56 coincides with the circumferential position of the outer opening 31c of the through hole 31a of the shaft 31. Therefore, the first end 56 faces the outer opening 31c in the radial direction.
  • the first end 56 is connected to the opening of the through hole 31a.
  • the first end 56 of the groove 55 may be directly connected to the outer opening 31c, or may be connected indirectly through a gap. Oil O discharged from the outer opening 31c of the through hole 31a is guided into the groove 55 from the first end 56.
  • the second end 57 is located near the outer edge of the end plate 50a.
  • the second end portion 57 is located at the outermost position in the radial direction in the groove portion 55 . That is, the second end 57 is located radially outward from the first end 56.
  • the second end portion 57 opens radially outward.
  • the oil O in the groove portion 55 scatters radially outward from the second end portion 57.
  • the groove portion 55 has a first flow path portion 81 and a second flow path portion 82 that is connected to the first flow path portion 81 on the upstream side of the first flow path portion 81 . Therefore, the boundary portion 89 between the first flow path portion 81 and the second flow path portion 82 is located at the upstream end of the first flow path portion 81 and the downstream end of the second flow path portion 82. do.
  • the oil O flows through the groove portion 55 in the order of the second flow path portion 82 and the first flow path portion 81 .
  • the first flow path portion 81 and the second flow path portion 82 each extend linearly when viewed from the axial direction.
  • the first flow path portion 81 extends in a direction inclined with respect to the radial direction when viewed from the axial direction.
  • the second flow path portion 82 extends in the radial direction when viewed from the axial direction.
  • the first flow path section 81 and the second flow path section 82 are orthogonal to each other when viewed from the axial direction.
  • the "radial direction” is a direction in which a straight line passing through the central axis J extends within a plane orthogonal to the central axis J.
  • the "direction inclined with respect to the radial direction” is a direction inclined with respect to the above-mentioned "radial direction” within a plane orthogonal to the central axis J.
  • the steady rotation direction + ⁇ is determined.
  • the steady rotation direction + ⁇ is the rotation direction of the rotor 30 when the vehicle moves forward.
  • the first flow path portion 81 extends from the boundary portion 89 toward the opposite side of the steady rotation direction + ⁇ . That is, the first flow path portion 81 extends radially outwardly so as to be inclined toward one side in the circumferential direction (in the present embodiment, the steady rotation direction + ⁇ ).
  • the first end portion 56 of the groove portion 55 is located in the second flow path portion 82.
  • the first end 56 is the upstream end of the second flow path section 82 .
  • the oil O that has flowed from inside the cavity 37 to the outside of the shaft 31 through the through hole 31 a flows into the first end 56 of the groove 55 .
  • the second flow path portion has a first end portion 56 and extends in the radial direction. Therefore, the oil O flowing out from the outer opening 31c of the through hole 31a of the shaft 31 is smoothly guided into the groove portion 55 by the action of centrifugal force accompanying the rotation of the rotor 30.
  • the through hole 31a and the second flow path portion 82 in which the first end portion 56 is provided are arranged in the same straight line extending in the radial direction. According to this embodiment, the oil O smoothly flows from inside the shaft 31 into the groove 55 of the end plate 50 along the radial direction.
  • the oil O in the groove portion 55 flows from the second flow path portion 82 to the first flow path portion 81 at the boundary portion 89 between the first flow path portion 81 and the second flow path portion 82 .
  • the first flow path section 81 and the second flow path section 82 each extend linearly when viewed from the axial direction. Therefore, the groove portion 55 is bent at the boundary portion 89.
  • the groove portion 55 of this embodiment is bent at 90° at the boundary portion 89.
  • the oil O in the groove portion 55 suddenly changes its flow direction when flowing into the first flow path portion 81 from the second flow path portion 82 . Thereby, the flow velocity of the oil O in the groove portion 55 can be reduced at the boundary portion 89.
  • the flow velocity of the oil O that scatters radially outward from the second end 57 of the groove portion 55 is suppressed from increasing too much, and the scattering direction of the oil O that scatters from the second end 57 is controlled. And the scattering distance can be stabilized. As a result, it becomes possible to supply oil O to a desired position, and effective cooling of stator 40 becomes possible. Note that such an effect can be obtained if the groove portion 55 has a bent portion (boundary portion 89 in this embodiment) that bends the flow direction of the oil O.
  • the first flow path portion 81 extends in a direction inclined with respect to the radial direction when viewed from the axial direction.
  • the downstream end of the first channel section 81 is the second end 57 of the groove section 55 . That is, the second end portion 57 is located in the first flow path portion 81 .
  • the oil O in the first flow path section 81 reaches the second end section 57 and scatters toward the stator 40. More specifically, as shown in FIG.
  • the direction in which the first flow path portion 81 extends is inclined with respect to the radial direction. Further, in this embodiment, the direction in which the first flow path portion 81 is inclined with respect to the radial direction is the steady rotation direction + ⁇ . Therefore, during steady rotation of the rotor 30, the inner surface of the first flow path section 81 acts to push out the oil O within the first flow path section 81 to the outside in the radial direction. It is possible to increase the flow rate of oil O while rectifying the flow. Thereby, the oil O can be reliably scattered from the second end portion 57, and the oil O can be reliably supplied to the coil end 42a.
  • the second end portion 57 of the groove portion 55 is located in the first flow path portion 81.
  • the second end 57 is the downstream end of the first flow path section 81 .
  • the opening direction of the second end portion 57 can be made to be inclined with respect to the radial direction. Therefore, during steady rotation of the rotor 30, the end plate 50a is scattered from the second end 57 toward the rear side in the steady rotation direction + ⁇ . Thereby, the oil O can be dispersed in the circumferential direction, the oil O supplied to the coil end 42a can be made into fine droplets, and the oil O can be uniformly supplied to each part of the coil end 42a.
  • a portion of the groove portion 55 overlaps with the nut 36 as a protruding portion. More specifically, when viewed from the axial direction, the first end 56 of the groove 55 overlaps the nut 36, and the second end 57 of the groove 55 is located on the outer side of the nut 36 in the radial direction.
  • the first end portion 56 of the groove portion 55 is covered by the nut 36 from one side in the axial direction ( ⁇ Y side).
  • the groove 55 and the nut 36 can form a flow path for sending the oil O to the outside in the radial direction, allowing the oil O to flow more suitably within the groove 55.
  • the nut 36 can prevent the oil O flowing in the groove portion 55 from scattering in the axial direction.
  • the groove 55 does not allow the oil O to scatter from the second end 57 toward one side in the axial direction (-Y side). can.
  • the inner surface of the groove portion 55 has a groove bottom surface 55d located on the side where the rotor core 32 is located in the axial direction, that is, on the other axial side (+Y side).
  • the groove bottom surface 55d is a surface facing one side in the axial direction (-Y side) and extends in the radial direction when viewed in the axial direction.
  • the radially inner end 55de of the groove bottom surface 55d is disposed radially outward from the shaft 31. Therefore, even if the axial position of the end plate 50a with respect to the through hole 31a deviates due to dimensional tolerances, assembly tolerances, etc., the outer opening 31c of the through hole 31a is closed by the portion of the end plate 50a where the groove bottom surface 55d is provided. can be suppressed. Thereby, it is possible to suppress the oil O from flowing into the groove portion 55 through the through hole 31a.
  • the groove bottom surface 55d has a first surface 55a, a second surface 55b, and a third surface 55c.
  • the first surface 55a, the third surface 55c, and the second surface 55b are continuously connected in this order from the upstream side to the downstream side of the groove portion 55.
  • the second surface 55b is located at the second end 57 of the groove 55. Further, the second surface 55b is provided in the first flow path section 81. The second surface 55b is inclined toward one side in the axial direction (-Y side) as it goes radially outward. In other words, the second surface 55b is a surface that axially moves away from the rotor core 32 as it goes radially outward.
  • FIG. 6 is a cross-sectional view of the end plate 50a along the direction in which the first flow path section 81 extends.
  • illustrations of the rotor core 32, stator core 41, etc. are partially omitted.
  • the second surface 55b gives a velocity component on one axial side (-Y side) to the oil O flowing radially outward along the second surface 55b, as shown by the arrow in FIG.
  • the oil O injected from the second end 57 of the groove portion 55 toward the coil end 42a can be easily blown to a position further away from the rotor core 32 in the axial direction. Therefore, it is easy to suitably supply oil O to a portion of the coil end 42a that is relatively far away from the rotor core 32 in the axial direction. Further, the oil O injected from the groove portion 55 toward the coil end 42a spreads to some extent in the axial direction and scatters.
  • oil O is also supplied to a portion of the coil end 42a that is relatively close to the rotor core 32 in the axial direction.
  • oil O as a refrigerant can be easily supplied to the entire coil end 42a via the end plate 50a.
  • the oil O flowing out from the outer opening 31c is transferred from the rotor core 32 in the axial direction of the coil end 42a. It can be easily supplied to relatively far away areas. However, in this case, it is necessary to increase the size of the end plate 50a in the axial direction, causing a problem that the mass of the rotor 30 increases.
  • the oil O flowing out from the outer opening 31c is transferred to the rotor core in the axial direction of the coil end 42a without making the axial position of the outer opening 31c a large distance from the rotor core 32. It can be easily supplied to parts relatively far away from 32. Therefore, it is possible to easily supply oil O as a refrigerant to the coil end 42a via the end plate 50a while suppressing an increase in the mass of the rotor 30 and an increase in the size of the rotor 30 in the axial direction.
  • the coil 42c constituting the coil end 42a is made of a rectangular wire, the axial dimension of the coil end 42a tends to be large. Therefore, among the axial ends of the coil end 42a, the axial end farthest from the rotor core 32 is likely to be disposed at a position far from the rotor core 32, making it difficult to supply oil O. According to the present embodiment, as described above, it is possible to easily supply oil O to a portion of the coil end 42a that is axially distant from the rotor core 32. Therefore, even if the coil 42c is made of a rectangular wire and the axial dimension of the coil end 42a becomes large, oil O can be suitably supplied to the coil end 42a.
  • the inclination angle ⁇ b of the second surface 55b with respect to the plane perpendicular to the axial direction is, for example, approximately 5° or more and 30° or less.
  • the radially outer end of the second surface 55b is the radially outer end of the groove bottom surface 55d. Therefore, the direction of the oil O injected from the groove portion 55 toward the coil end 42a is easily set along the second surface 55b, and the oil O is directed to a portion of the coil end 42a that is relatively far away from the rotor core 32 in the axial direction. It is easier to supply it more suitably.
  • the inclination angle ⁇ b may be greater than 30° and less than 90°, or may be greater than 0° and less than 5°.
  • the imaginary line IL extending radially outward from the radially outer end of the second surface 55b in the direction along the second surface 55b is the coil end 42a. is passing through. Therefore, the oil O injected radially outward from inside the groove portion 55 along the second surface 55b can be more suitably supplied to the coil end 42a.
  • the virtual line IL is a line that extends obliquely in the axial direction with respect to the radial direction, and is located on one axial side (-Y side) as it goes radially outward.
  • the inclination of the virtual line IL with respect to the radial direction is the same as the inclination of the second surface 55b with respect to the radial direction.
  • the position where the virtual line IL intersects with the coil end 42a is a position further away from the stator core 41 in the axial direction than the axial center CL1 of the coil end 42a.
  • the oil O injected radially outward from inside the groove portion 55 along the second surface 55b can be easily supplied to a portion of the coil end 42a that is further away in the axial direction from the stator core 41 than the axial center CL1. This makes it easier to more appropriately supply oil O to a portion of the coil end 42a that is relatively far away from the rotor core 32 in the axial direction.
  • a portion of the coil end 42a that is relatively far away from the rotor core 32 in the axial direction refers to, for example, a portion of the coil end 42a that is axially farther away from the rotor core 32 than the center CL1 in the axial direction. ie, a portion of the coil end 42a located on one side in the axial direction (-Y side) with respect to the center CL1.
  • a portion of the coil end 42a that is relatively close to the rotor core 32 in the axial direction refers to, for example, a portion of the coil end 42a that is located axially closer to the rotor core 32 than the axial center CL1.
  • the center CL1 in the axial direction of the coil end 42a may be included in "a portion of the coil end 42a that is relatively far away from the rotor core 32 in the axial direction,” or may be included in the "portion of the coil end 42a that is relatively far away from the rotor core 32 in the axial direction.” may be included in the "portion relatively close to”.
  • the position where the imaginary line IL and the coil end 42a intersect is a portion of the coil end 42a that protrudes from the stator core 41 in the axial direction more than the insulator 43, that is, one of the coil ends 42a in the axial direction than the insulator 43.
  • This is approximately the same position in the axial direction as the axial center CL2 of the portion located on the side ( ⁇ Y side). More specifically, the position where the virtual line IL and the coil end 42a intersect is slightly closer to the stator core 41 in the axial direction than the center CL2.
  • the position where the imaginary line IL and the coil end 42a intersect is the same in the axial direction as the axial center CL2 of the portion of the coil end 42a that protrudes from the stator core 41 in the axial direction beyond the insulator 43, or the position where the stator core is more than the center CL2. 41 in the axial direction, the oil O injected radially outward from inside the groove 55 along the second surface 55b is directed to a portion of the coil end 42a that is relatively close to the rotor core 32 in the axial direction. This can prevent the supply from becoming difficult. Therefore, the oil O can be easily supplied to the coil end 42a.
  • the first surface 55a is located at the first end 56 of the groove 55.
  • the first surface 55a is inclined toward one side in the axial direction (-Y side) as it goes radially outward.
  • the first surface 55a is a surface that axially moves away from the rotor core 32 as it goes radially outward.
  • the first surface 55a faces the outer opening 31c of the through hole 31a of the shaft 31 in the radial direction. Therefore, the oil O discharged radially outward from the through hole 31a hits the first surface 55a. Thereby, the flow of the oil O flowing radially outward from the outer opening 31c can be adjusted by the first surface 55a before flowing into the groove portion 55. As a result, the flow of the oil O in the groove 55 can be stabilized, and as a result, the scattering of the oil O from the second end 57 of the groove 55 can be stabilized. Therefore, oil O can be stably and suitably supplied to the coil end 42a.
  • the first surface 55a faces the outer opening 31c in the radial direction means that the first surface 55a and the outer opening 31c face each other in at least one radial direction passing through the outer opening 31c. 31c, it is sufficient that they overlap at least in part, and it is not necessary that the first surface 55a and the outer opening 31c face each other in parallel.
  • the direction perpendicular to the first surface 55a is the direction intersecting the direction in which the outer opening 31c opens.
  • the radially inner end of the first surface 55a is the radially inner end of the groove bottom surface 55d. Therefore, the radially inner end of the groove bottom surface 55d can be disposed at a position close to the rotor core 32 in the axial direction while being inclined obliquely with respect to the radial direction. Thereby, the oil O flowing out from the outer opening 31c of the through hole 31a can be easily guided into the groove portion 55 by the radially inner end of the groove bottom surface 55d, that is, the radially inner end of the first surface 55a. . According to this embodiment, the oil O flowing out from the outer opening 31c can be easily caused to flow into the groove portion 55.
  • the first surface 55a of this embodiment is provided in the second flow path section 82.
  • the second flow path portion 82 extends in the radial direction, it is possible to smoothly guide the oil O flowing out from the through hole 31a of the shaft 31 to the outside in the radial direction. Further, by providing the first surface 55a in the second flow path portion 82, the oil flowing out radially outward from the through hole 31a can be reliably applied to the first surface 55a.
  • the first surface 55a is a planar inclined surface that extends linearly and is inclined in the axial direction with respect to the radial direction.
  • the inclination angle ⁇ a of the first surface 55a with respect to a plane perpendicular to the axial direction is larger than the inclination angle ⁇ b of the second surface 55b, which will be described later. Therefore, the radial dimension of the first surface 55a can be made relatively small, and the radially outer end of the first surface 55a can be positioned away from the rotor core 32 in the axial direction. Thereby, while suitably adjusting the axial position of the second surface 55b using the first surface 55a, it is possible to prevent the first surface 55a from becoming too large in the radial direction.
  • the inclination angle ⁇ a of the first surface 55a with respect to the plane perpendicular to the axial direction is, for example, approximately 5° or more and 30° or less.
  • the inclination angle ⁇ a may be greater than 30° and less than 90°, or may be greater than 0° and less than 5°.
  • the dimension of the first surface 55a in the direction in which the first surface 55a extends is smaller than the dimension of the second surface 55b in the direction in which the second surface 55b extends.
  • the radial dimension of the first surface 55a is smaller than the radial dimension of the second surface 55b.
  • the axial dimension of the first surface 55a is smaller than the axial dimension of the second surface 55b.
  • the radially outer end of the first surface 55a is located at the same position in the axial direction as the radially inner end of the second surface 55b.
  • the third surface 55c is a surface that connects the second surface 55b and the first surface 55a.
  • the third surface 55c is provided between both the first flow path section 81 and the second flow path section 82.
  • the third surface 55c is a flat surface along a plane perpendicular to the axial direction. Therefore, the oil O prepared by applying it to the first surface 55a can suitably flow radially outward along the third surface 55c. This makes it easy to increase the flow velocity of the oil O after hitting the first surface 55a, and allows the oil O to flow along the second surface 55b while the flow velocity of the oil O is relatively high.
  • the oil O can be more suitably supplied to the coil end 42a.
  • the oil O is radially applied along the third surface 55c. It can be guided outward. Therefore, the oil O can be guided to the second surface 55b without changing the axial and radial positions of the second surface 55b adjusted by the first surface 55a.
  • the third surface 55c extends in the radial direction.
  • the radially inner end of the third surface 55c is connected to the radially outer end of the first surface 55a.
  • the radially outer end of the third surface 55c is connected to the radially inner end of the second surface 55b.
  • the dimension of the third surface 55c in the direction in which the third surface 55c extends is larger than the dimension of the first surface 55a in the direction in which the first surface 55a extends, and the dimension of the second surface 55b in the direction in which the second surface 55b extends. small.
  • the radial dimension of the third surface 55c is larger than the radial dimension of the first surface 55a and smaller than the radial dimension of the second surface 55b.
  • the end plate 50a has a plurality of grooves 55.
  • the plurality of groove portions 55 are arranged at equal intervals in the circumferential direction. Therefore, the oil O injected radially outward from the plurality of grooves 55 can be supplied to the coil end 42a in a well-balanced manner in the circumferential direction. Thereby, the coil end 42a can be easily cooled suitably over the entire circumference.
  • four groove portions 55 are provided.
  • the four groove portions 55 are arranged at 90° intervals in the circumferential direction.
  • the radially inner end of each of the four groove portions 55 is connected to the outer opening 31c of the four through holes 31a, respectively.
  • FIG. 7 is a perspective view of the end plate 50a viewed from the second side surface 52 side.
  • the second side surface 52 of the end plate 50a includes a third recess 58 surrounding the insertion hole, and a recess groove 59 located on the radially outer side of the third recess 58 and extending along the circumferential direction. is provided.
  • the third recess 58 and the groove 59 are recessed from the second side surface 52 toward one side in the axial direction ( ⁇ Y side).
  • the third recess 58 has a circular shape centered on the central axis when viewed from the axial direction.
  • the groove portion 59 extends in an annular shape centered on the central axis J. Note that the groove portion 59 does not necessarily have to be annular as long as it extends along the circumferential direction. According to this embodiment, the weight of the end plate 50a can be further reduced.
  • the outer peripheral surface of the shaft 31 is circular when viewed from the axial direction. Furthermore, the insertion hole 50h of the end plate 50a is circular when viewed from the axial direction. A plurality of (two in this embodiment) protrusions 50k that protrude radially inward are provided on the inner edge of the insertion hole 50h. Further, the outer circumferential surface of the shaft 31 is provided with a plurality of (two in this embodiment) accommodation recesses 31k into which the projections 50k are inserted. Moreover, the accommodation recess 31k is arranged between the through holes 31a in the circumferential direction.
  • the accommodation recess 31k is recessed radially inward.
  • the accommodation recess 31k has a groove shape extending along the axial direction.
  • the second end plate 50b has the same configuration as the first end plate 50a located on the right side of the rotor core 32.
  • the second end plate 50b can have the same shape as the first end plate 50a.
  • the shape of the groove portion 55 of the second end plate 50b is reversed from that of the first end plate 50a with respect to the steady rotation direction + ⁇ . Therefore, the first end plate 50a can efficiently diffuse the oil O during steady rotation, while the second end plate 50b can efficiently diffuse the oil O during rotation in the opposite direction to the steady rotation.
  • the second end plate 50b may have a shape that is bilaterally symmetrical to the first end plate 50a.
  • the shape of the groove portion 55 of the second end plate 50b has the same configuration as that of the first end plate 50a in the steady rotation direction + ⁇ . Therefore, like the first end plate 50a, the second end plate 50b can efficiently diffuse the oil O during steady rotation.
  • the drive device 100 is provided with a refrigerant flow path 90 through which oil O as a refrigerant circulates.
  • the coolant flow path 90 is provided across the inside of the motor housing 20 and the inside of the gear housing 61.
  • the coolant flow path 90 is a path through which oil O stored in the gear housing 61 is supplied to the rotating electrical machine 10 and returns to the gear housing 61 again.
  • the refrigerant flow path 90 is provided with a pump 71, a cooler 72, and a refrigerant supply section 94.
  • the refrigerant flow path 90 includes a first refrigerant flow path 91 , a second refrigerant flow path 92 , a third refrigerant flow path 93 , and a refrigerant supply section 94 .
  • the first refrigerant flow path 91, the second refrigerant flow path 92, and the third refrigerant flow path 93 are provided in the wall of the gear housing 61, for example.
  • the first refrigerant flow path 91 connects the pump 71 with a portion of the inside of the gear housing 61 where oil O is stored.
  • the second refrigerant flow path 92 connects the pump 71 and the cooler 72.
  • the third refrigerant flow path 93 connects the cooler 72 and the inside of the refrigerant supply section 94 .
  • the third refrigerant flow path 93 is connected to the end of the refrigerant supply section 94 on the other axial side (+Y side).
  • the refrigerant supply section 94 is provided inside the motor housing 20.
  • the refrigerant supply section 94 has a tubular shape extending in the axial direction.
  • the refrigerant supply section 94 is a pipe extending in the axial direction. Both axial ends of the refrigerant supply section 94 are supported by the motor housing 20.
  • the other end of the refrigerant supply section 94 in the axial direction (+Y side) is supported by the partition wall section 22, for example.
  • One axial end (-Y side) of the refrigerant supply section 94 is supported by the lid section 23, for example.
  • Refrigerant supply section 94 is located on the radially outer side of stator 40 . In this embodiment, the refrigerant supply section 94 is located above the stator 40.
  • the refrigerant supply section 94 has a supply port 94a that supplies oil O as a refrigerant to the stator 40.
  • the supply port 94 a is an injection port that injects a part of the oil O that has flowed into the refrigerant supply section 94 to the outside of the refrigerant supply section 94 .
  • a plurality of supply ports 94a are provided.
  • a plurality of supply ports 94a are provided at intervals in the axial direction.
  • the axial positions of the plurality of supply ports 94a are included in the axial position of the stator core 41.
  • the plurality of supply ports 94a are located on the other axial side (+Y side) of the coil end 42a and on one axial side ( ⁇ Y side) of the coil end 42b.
  • the plurality of supply ports 94a are open toward the stator core 41. Therefore, the oil O injected from the plurality of supply ports 94a is supplied to the stator core 41. Thereby, the stator core 41 can be cooled by the oil O.
  • the oil O supplied to the stator core 41 easily travels along the surface of the stator core 41 and reaches a portion of each coil end 42a, 42b that is relatively close to the stator core 41 in the axial direction. Therefore, the portions of the coil ends 42a and 42b that are relatively close to the stator core 41 in the axial direction are easily cooled by the oil O supplied to the stator 40 from the supply port 94a.
  • the position where the virtual line IL and the coil end 42a intersect is a position relatively far away from the stator core 41 in the axial direction, and the grooves 55 and 57 are compared with each other in the axial direction from the stator core 41 among the coil ends 42a and 42b. Even if the oil O is likely to be injected to an off-target position, it is possible to prevent a portion of the coil ends 42a, 42b that is relatively close to the stator core 41 in the axial direction from becoming difficult to cool. Therefore, oil O as a refrigerant can be easily supplied to the entire coil ends 42a and 42b.
  • the refrigerant supply section 94 does not have a supply port that opens toward the coil ends 42a, 42b, and a supply port that directly supplies oil O to the coil ends 42a, 42b. Thereby, the amount of oil O supplied from the refrigerant supply section 94 to the stator core 41 can be suitably increased.
  • the oil O can be suitably supplied from the cavity 37 of the shaft 31 to the coil ends 42a, 42b via the end plates 50a, 50b, the oil O can be supplied from the refrigerant supply section 94 to the coil ends 42a, 42b. Even if O is not supplied, insufficient cooling of the coil ends 42a and 42b can be suppressed.
  • the refrigerant supply section 94 does not have a supply port that actively supplies oil O to the coil ends 42a and 42b, as described above, the oil supplied from the refrigerant supply section 94 to the stator core 41 It is possible that some of the O flows to the coil ends 42a, 42b.
  • the oil O stored in the gear housing 61 is sucked up through the first refrigerant flow path 91 and flows into the cooler 72 through the second refrigerant flow path 92.
  • the oil O that has flowed into the cooler 72 is cooled within the cooler 72 and then flows into the refrigerant supply section 94 through the third refrigerant flow path 93 .
  • the oil O that has flowed into the refrigerant supply section 94 is injected from the supply port 94a and supplied to the stator 40.
  • the oil O supplied to the stator 40 from the supply port 94a removes heat from the stator 40.
  • the oil O that has cooled the stator 40 falls downward and accumulates in the lower region within the motor housing 20.
  • the oil O accumulated in the lower region within the motor housing 20 returns into the gear housing 61 through the partition opening 22a provided in the partition wall portion 22.
  • the oil O is swept up by the ring gear 63a and then flows into the cavity 37 of the shaft 31 via the reservoir 65, and supplies the oil O from the grooves 55 and 57 to the coil ends 42a and 42b.
  • the rotating electrical machine 10 can be cooled by two routes: and a route for supplying oil O to the stator 40 through the refrigerant flow path 90.
  • FIG. 8 is an axial view of the end plate 150 of Modification 1. Similar to the embodiment described above, a groove 155 is provided on the first side surface 151 of the end plate 150 of this modification.
  • the groove portion 155 of this modification includes a first flow path portion 181, a second flow path portion 182, a third flow path portion 183, a first branch portion 189, a first end portion 156, a second end portion 157, and a third end. 158.
  • the groove portion 155 is connected to the through hole 31a of the shaft 31 at the first end portion 156. Oil O flows into the groove 155 from the first end 156 . Further, the groove portion 155 scatters the internal oil O outward in the radial direction at the second end portion 157 and the third end portion 158.
  • the first branch portion 189 is located radially outside the first end 156 , radially inside the second end 157 , and radially inside the third end 158 .
  • the first flow path portion 181 , the second flow path portion 182 , and the third flow path portion 183 are connected to each other at the first branch portion 189 .
  • the first branch portion 189 is located at the upstream end of the first flow path portion 181 , the upstream end of the third flow path portion 183 , and the downstream end of the second flow path portion 182 .
  • the first branch portion 189 is located at the boundary between the first flow path portion 181 and the second flow path portion 182. Further, the first branch portion 189 is located at the boundary between the first flow path portion 181 and the third flow path portion 183.
  • the oil O reaches the first branch section 189 from the second flow path section 182, branches at the first branch section 189, and flows into the first flow path section 181 and the third flow path section 183, respectively.
  • the first flow path section 181, the second flow path section 182, and the third flow path section 183 each extend linearly when viewed from the axial direction.
  • the second flow path section 182 is connected to the first flow path section 181 and the third flow path section 183 on the upstream side of the first flow path section 181 and the third flow path section 183.
  • the second flow path portion 182 extends in the radial direction when viewed from the axial direction.
  • the second flow path portion 182 is provided with a first end portion 156 and is connected to the through hole 31a of the shaft 31.
  • the second flow path portion 182 guides the oil O flowing from the through hole 31a to the outside in the radial direction.
  • the first flow path portion 181 is connected to the second flow path portion 182 at a first branch portion 189.
  • the first flow path portion 181 extends in a direction inclined with respect to the radial direction.
  • the first flow path section 181 and the second flow path section 182 are orthogonal to each other when viewed from the axial direction.
  • the second end portion 157 is located in the first flow path portion 181 .
  • the second end portion 157 is arranged radially outward from the first branch portion 189.
  • the third flow path portion 183 is connected to the second flow path portion 182 at the first branch portion 189.
  • the third flow path portion 183 branches from the first branch portion 189 .
  • the third flow path portion 183 extends in the radial direction when viewed from the axial direction.
  • the third flow path section 183 and the second flow path section 182 continuously extend in the same straight line when viewed from the axial direction.
  • the third end portion 158 is located in the third flow path portion 183.
  • the third end portion 158 is arranged radially outward from the first branch portion 189.
  • the first branch part 189 is provided in the groove part 155, and the oil O branched at the first branch part 189 can be scattered from the second end part 157 and the third end part 158. can. Therefore, the opening directions of the second end 157 and the third end 158 can be set in different directions in the circumferential direction, and the oil O can be appropriately scattered no matter which direction the rotor 30 rotates. be able to. Furthermore, since the third flow path portion 183 is linearly connected to the first flow path portion 181, it is difficult for the oil O to decelerate inside the groove portion 155 until it reaches the third end portion 158. Therefore, the oil O can be scattered at high speed from the third end portion 158.
  • FIG. 9 is an axial view of the end plate 250 of Modification 2.
  • a groove 255 is provided on the first side surface 251 of the end plate 250 of this modification.
  • the groove portion 255 of this modification includes a first flow path portion 281 , a second flow path portion 282 , a third flow path portion 283 , a boundary portion 288 , a first branch portion 289 , a first end portion 256 , a second end portion 257 and a third end 258.
  • the groove portion 255 is connected to the through hole 31a of the shaft 31 at the first end portion 256. Oil O flows into the groove 255 from the first end 256 . Further, the groove portion 255 scatters the internal oil O outward in the radial direction at the second end portion 257 and the third end portion 258.
  • the boundary portion 288 is located at the connection portion between the first flow path portion 281 and the second flow path portion 282.
  • the boundary portion 288 is located at the upstream end of the first flow path portion 281 and at the downstream end of the second flow path portion 282.
  • the first branch portion 289 is located radially outside the first end 256 , radially inside the second end 257 , and radially inside the third end 258 .
  • the third flow path portion 283 branches from the first flow path portion 281 at a first branch portion 289 .
  • the first branch portion 289 is located in the middle of the first flow path portion 281 and at the upstream end of the third flow path portion 283.
  • the oil O reaches the boundary portion 288 from the second flow path portion 282 and flows into the first flow path portion 281. Further, a portion of the oil O flowing through the first flow path portion 281 reaches the first branch portion 289, and a portion of the oil O flows through the third flow path portion 283.
  • the first flow path portion 281, the second flow path portion 282, and the third flow path portion 283 each extend linearly when viewed from the axial direction.
  • the second flow path section 282 is located upstream of the first flow path section 281 and the third flow path section 283, and is connected to the first flow path section 281.
  • the second flow path portion 282 extends in the radial direction when viewed from the axial direction.
  • the second flow path portion 282 is provided with a first end portion 256 and is connected to the through hole 31a of the shaft 31.
  • the second flow path portion 282 guides the oil O flowing from the through hole 31a to the outside in the radial direction.
  • the first flow path portion 281 is connected to the second flow path portion 282 at a boundary portion 288.
  • the first flow path portion 281 extends in a direction inclined with respect to the radial direction.
  • the first flow path section 281 and the second flow path section 282 are orthogonal to each other when viewed from the axial direction.
  • the second end portion 257 is located in the first flow path portion 281 .
  • the second end portion 257 is arranged radially outward from the first branch portion 289.
  • the first branch part 289 is provided in the groove part 255, and the oil O branched at the first branch part 289 can be dispersed and scattered from the second end part 257 and the third end part 258. Therefore, the opening directions of the plurality of ends (second end 257 and third end 258) for scattering the oil O can be set in different directions in the circumferential direction, and the rotor 30 can rotate in either direction. Even in this case, the oil O can be appropriately scattered.
  • FIG. 10 is an axial view of the end plate 350 of Modification 3. Similar to the embodiment described above, a groove 355 is provided on the first side surface 351 of the end plate 350 of this modification.
  • the groove portion 355 of this modification includes a first flow path portion 381, a second flow path portion 382, a third flow path portion 383, a first branch portion 389, a first end portion 356, a second end portion 357, and a third end. 358.
  • the groove portion 355 is connected to the through hole 31a of the shaft 31 at a first end portion 356. Oil O flows into the groove portion 355 from the first end portion 356 . Further, the groove portion 355 scatters the internal oil O outward in the radial direction at the second end portion 357 and the third end portion 358.
  • the first branch portion 389 is located radially outside the first end 356 , radially inside the second end 357 , and radially inside the third end 358 .
  • the first flow path portion 381 , the second flow path portion 382 , and the third flow path portion 383 are connected to each other at the first branch portion 389 .
  • the first branch portion 389 is located at the upstream end of the first flow path portion 381, the upstream end of the third flow path portion 383, and the downstream end of the second flow path portion 382.
  • the first branch portion 389 is located at the boundary between the first flow path portion 381 and the second flow path portion 382. Further, the first branch portion 389 is located at the boundary between the first flow path portion 381 and the third flow path portion 383.
  • the oil O reaches the first branch section 389 from the second flow path section 382, branches at the first branch section 389, and flows into the first flow path section 381 and the third flow path section 383, respectively.
  • the first flow path portion 381, the second flow path portion 382, and the third flow path portion 383 each extend linearly when viewed from the axial direction.
  • the second flow path section 382 is connected to the first flow path section 381 and the third flow path section 383 on the upstream side of the first flow path section 381 and the third flow path section 383.
  • the second flow path portion 382 extends in the radial direction when viewed from the axial direction.
  • the second flow path portion 382 is provided with a first end portion 356 and is connected to the through hole 31a of the shaft 31.
  • the second flow path portion 382 guides the oil O flowing from the through hole 31a to the outside in the radial direction.
  • the first flow path portion 381 is connected to the second flow path portion 382 at a first branch portion 389.
  • the first flow path portion 381 extends in a direction inclined with respect to the radial direction.
  • the first flow path section 381 and the second flow path section 382 are orthogonal to each other when viewed from the axial direction.
  • the second end portion 357 is located in the first flow path portion 381 .
  • the second end portion 357 is disposed radially outward from the first branch portion 389.
  • the third flow path portion 383 is connected to the second flow path portion 382 at the first branch portion 389.
  • the third flow path portion 383 branches from the first branch portion 389 .
  • the third flow path portion 383 extends in a direction inclined with respect to the radial direction.
  • the first flow path portion 381 and the third flow path portion 383 continuously extend in the same straight line when viewed from the axial direction.
  • the third end portion 358 is located in the third flow path portion 383.
  • the third end portion 358 is disposed radially outward from the first branch portion 389.
  • FIG. 11 is an axial view of the end plate 450 of Modified Example 4. Similar to the embodiment described above, a groove portion 455 is provided on the first side surface 451 of the end plate 450 of this modification.
  • the groove portion 455 of this modification includes a first flow path portion 481, a second flow path portion 482, a third flow path portion 483, a first branch portion 489, a first end portion 456, a second end portion 457, and a third end. 458.
  • the groove portion 455 is connected to the through hole 31a of the shaft 31 at a first end portion 456. Oil O flows into the groove 455 from the first end 456 . Further, the groove portion 455 scatters the internal oil O outward in the radial direction at the second end portion 457 and the third end portion 458.
  • the first branch portion 489 is located radially outside the first end 456, radially inside the second end 457, and radially inside the third end 458.
  • the first flow path portion 481, the second flow path portion 482, and the third flow path portion 483 are connected to each other at the first branch portion 489.
  • the first branch portion 489 is located at the upstream end of the first flow path portion 481, the upstream end of the third flow path portion 483, and the downstream end of the second flow path portion 482.
  • the first branch portion 489 is located at the boundary between the first flow path portion 481 and the second flow path portion 482. Further, the first branch portion 489 is located at the boundary between the first flow path portion 481 and the third flow path portion 483.
  • the oil O reaches the first branch section 489 from the second flow path section 482, branches at the first branch section 489, and flows into the first flow path section 481 and the third flow path section 483, respectively.
  • the first flow path portion 481 and the second flow path portion 482 each extend linearly when viewed from the axial direction.
  • the third flow path portion 483 is provided with a bending portion 483c in its path, and is bent at the bending portion 483c.
  • the second flow path section 482 is connected to the first flow path section 481 and the third flow path section 483 on the upstream side of the first flow path section 481 and the third flow path section 483.
  • the second flow path portion 482 extends in the radial direction when viewed from the axial direction.
  • the second flow path portion 482 is provided with a first end portion 456 and is connected to the through hole 31a of the shaft 31.
  • the second flow path portion 482 guides the oil O flowing from the through hole 31a to the outside in the radial direction.
  • the downstream portion 483b extends linearly between the bent portion 483c and the third end portion 458.
  • the downstream portion 483b extends parallel to the first flow path portion 481 when viewed from the axial direction.
  • the third end portion 458 is located in the third flow path portion 483.
  • the third end portion 458 is disposed radially outward from the first branch portion 489.
  • the third end 458 and the second end 457 are arranged on the same circumference around the central axis J.
  • the third flow path portion 483 extends in a direction inclined with respect to the radial direction at the downstream portion 483b. Further, the second end portion 457 and the third end portion 458 are arranged on the same circumferential side with respect to the first branch portion 489. According to this modification, the groove 455 has a plurality of ends (second end 457 and third end 458) that inject oil O, and further has a plurality of ends (second end 457 and third end 458). The opening directions of the three ends 458) can be the same in the circumferential direction. Thereby, the flow rate of the oil O scattered radially outward from the end plate 450 can be increased.
  • FIG. 12 is an axial view of the end plate 550 of Modified Example 5. Similar to the embodiment described above, a groove portion 555 is provided on the first side surface 551 of the end plate 550 of this modification.
  • the groove portion 555 of this modification includes a first flow path portion 581, a second flow path portion 582, a fourth flow path portion 584, a first boundary portion 588, a second boundary portion 589, a first end portion 556, and a second end portion. 557.
  • the groove portion 555 is connected to the through hole 31a of the shaft 31 at a first end portion 556. Oil O flows into the groove portion 555 from the first end portion 556 . Further, the groove portion 555 scatters the internal oil O outward in the radial direction at the second end portion 557.
  • the fourth flow path portion 584 is connected to the second flow path portion 582 at a first boundary portion 588.
  • the fourth flow path portion 584 extends in a direction inclined with respect to the radial direction.
  • the second flow path portion 582 and the fourth flow path portion 584 are orthogonal to each other when viewed from the axial direction.
  • the fourth flow path section 584 connects the second flow path section 582 and the first flow path section 581.
  • a fourth flow path portion 584 is provided between the first flow path portion 581 and the second flow path portion 582.
  • the groove portion 555 can connect the first flow path portion 581 and the second flow path portion 582 while increasing the degree of freedom in arrangement and shape thereof.
  • FIG. 13 is an axial view of an end plate 650 according to modification 6. Similar to the embodiment described above, a groove 655 is provided on the first side surface 651 of the end plate 650 of this modification.
  • the groove portion 655 of this modification includes a first flow path portion 681, a second flow path portion 682, a third flow path portion 683, a fifth flow path portion 685, a first branch portion 688, a second branch portion 689, and a It has an end 656, a second end 657, a third end 658, and a fourth end 659.
  • the groove portion 655 is connected to the through hole 31a of the shaft 31 at a first end portion 656. Oil O flows into the groove 655 from the first end 656 . Further, the groove portion 655 scatters the internal oil O radially outward at the second end 657, the third end 658, and the fourth end 659.
  • the first branch 688 is located radially outward from the first end 656, radially inward from the second end 657, radially inward from the third end 658, and radially inward from the fourth end 659. .
  • the first flow path portion 681, the second flow path portion 682, and the third flow path portion 683 are connected to each other at the first branch portion 688.
  • the first branch portion 688 is located at the upstream end of the first flow path portion 681, the upstream end of the third flow path portion 683, and the downstream end of the second flow path portion 682.
  • the first branch portion 688 is located at the boundary between the first flow path portion 681 and the second flow path portion 682.
  • first branch portion 688 is located at the boundary between the first flow path portion 681 and the third flow path portion 683.
  • the oil O reaches the first branch part 688 from the second passage part 682, branches at the first branch part 688, and flows into the first passage part 681 and the third passage part 683, respectively.
  • the first flow path portion 681, the second flow path portion 682, and the third flow path portion 683 each extend linearly when viewed from the axial direction.
  • the second branch part 689 is located radially outward from the first branch part 688, radially inward from the third end part 658, and radially inward from the fourth end part 659.
  • the fifth flow path portion 685 branches from the fifth flow path portion 685 at a second branch portion 689 .
  • the second branch portion 689 is located in the middle of the third flow path portion 683.
  • the second flow path section 682 is connected to the first flow path section 681 and the third flow path section 683 on the upstream side of the first flow path section 681 and the third flow path section 683.
  • the second flow path portion 682 extends in the radial direction when viewed from the axial direction.
  • the second flow path portion 682 is provided with a first end portion 656 and is connected to the through hole 31a of the shaft 31.
  • the second flow path portion 682 guides the oil O flowing from the through hole 31a to the outside in the radial direction.
  • the first flow path portion 681 is connected to the second flow path portion 682 at a first branch portion 688.
  • the first flow path portion 681 extends in a direction inclined with respect to the radial direction.
  • the first flow path section 681 and the second flow path section 682 are orthogonal to each other when viewed from the axial direction.
  • the second end portion 657 is located in the first flow path portion 681.
  • the second end portion 657 is arranged radially outward from the first branch portion 688.
  • the third flow path portion 683 is connected to the second flow path portion 682 at a first branch portion 688.
  • the third flow path portion 683 branches from the first branch portion 688 .
  • the third flow path portion 683 extends in the radial direction when viewed from the axial direction.
  • the third flow path portion 683 and the second flow path portion 682 continuously extend in the same straight line when viewed from the axial direction.
  • the third end portion 658 is located in the third flow path portion 683.
  • the third end portion 658 is disposed radially outward from the first branch portion 688.
  • the fifth flow path portion 685 is connected to the third flow path portion 683 at a second branch portion 689.
  • the fifth flow path portion 685 branches from the second branch portion 689 .
  • the fifth flow path portion 685 extends in a direction inclined with respect to the radial direction.
  • the fourth end portion 659 is located in the fifth flow path portion 685.
  • the fourth end portion 659 is arranged radially outward from the second branch portion 689.
  • FIG. 14 is an axial view of an end plate 750 of Modification Example 7. Similar to the embodiment described above, four grooves 755 are provided on the first side surface 751 of the end plate 750 of this modification. Each of the grooves 755 of this modification has a configuration similar to that of the above-described embodiment, but the relationship between grooves 755 adjacent to each other in the circumferential direction is mainly different.
  • the first flow path portion 781 and the second flow path portion 782 each extend linearly when viewed from the axial direction.
  • the second flow path portion 782 extends in the radial direction when viewed from the axial direction.
  • the second flow path portion 782 is provided with a first end portion 756 and is connected to the through hole 31a of the shaft 31.
  • the second flow path portion 782 guides the oil O flowing from the through hole 31a to the outside in the radial direction.
  • the first flow path portion 781 is connected to the second flow path portion 782 at a boundary portion 789.
  • the first flow path portion 781 extends in a direction inclined with respect to the radial direction.
  • first flow path portion 781 and the second flow path portion 782 are orthogonal to each other when viewed from the axial direction.
  • the second end portion 757 is located in the first flow path portion 781 .
  • the second end portion 757 is arranged radially outward from the boundary portion 789.
  • the plurality of grooves 755 include a first groove 755A and a second groove 755B.
  • the first side surface 751 is provided with two first grooves 755A and two second grooves 755B.
  • the first groove portions 755A and the second groove portions 755B are arranged alternately in the circumferential direction.
  • a reference line L passing through the central axis when viewed from the axial direction is assumed.
  • the reference line L is located between the first groove portion 755A and the second groove portion 755B that are adjacent to each other in the circumferential direction.
  • the first groove portion 755A and the second groove portion 755B are arranged symmetrically with respect to the reference line L. That is, in this modification, a plurality of grooves 755 are provided in the first side surface 751, and two of the plurality of grooves 755 are lined with respect to the reference line L passing through the central axis J when viewed from the axial direction. arranged symmetrically.
  • the first flow path portion 781 extends rearward in the steady rotation direction + ⁇ with respect to the boundary portion 789.
  • the first flow path portion 781 extends forward in the steady rotation direction + ⁇ with respect to the boundary portion 789.
  • the opening directions of the second end portions 757 of the first groove portion 755A and the second groove portion 755B can be set in different directions in the circumferential direction, so that when the rotor 30 rotates in either direction, Even if there is, the oil O can be appropriately scattered. Furthermore, even if the end plates 750 disposed on the left and right sides of the rotor core 32 are of the same shape, the amount of oil O scattered from the left and right end plates 750 of the rotor core 32 can be made approximately the same. .
  • FIG. 15 is an axial view of an end plate 850 of Modified Example 8. Similar to the embodiment described above, four grooves 855 are provided on the first side surface 851 of the end plate 850 of this modification. Each groove 855 of this modification has substantially the same configuration as the groove 855 of Modification 1 described above.
  • Each groove portion 855 has a first flow path portion 881, a second flow path portion 882, a third flow path portion 883, a first branch portion 889, a first end portion 856, a second end portion 857, and a third end portion 858. and has.
  • the groove portion 855 is connected to the through hole 31a of the shaft 31 at a first end portion 856. Oil O flows into the groove 855 from the first end 856 . Further, the groove portion 855 scatters the internal oil O outward in the radial direction at the second end portion 857 and the third end portion 858.
  • the first branch portion 889 is located radially outside the first end 856, radially inside the second end 857, and radially inside the third end 858. Located in The first flow path portion 881 , the second flow path portion 882 , and the third flow path portion 883 are connected to each other at the first branch portion 889 .
  • the first branch portion 889 is located at the upstream end of the first flow path portion 881, the upstream end of the third flow path portion 883, and the downstream end of the second flow path portion 882.
  • the first branch portion 889 is located at the boundary between the first flow path portion 881 and the second flow path portion 882. Further, the first branch portion 889 is located at the boundary between the first flow path portion 881 and the third flow path portion 883.
  • the oil O reaches the first branch part 889 from the second passage part 882, branches at the first branch part 889, and flows into the first passage part 881 and the third passage part 883, respectively.
  • the first flow path portion 881, the second flow path portion 882, and the third flow path portion 883 each extend linearly when viewed from the axial direction.
  • the second flow path section 882 is connected to the first flow path section 881 and the third flow path section 883 on the upstream side of the first flow path section 881 and the third flow path section 883.
  • the second flow path portion 882 extends in the radial direction when viewed from the axial direction.
  • the second flow path portion 882 is provided with a first end portion 856 and is connected to the through hole 31a of the shaft 31.
  • the second flow path portion 882 guides the oil O flowing from the through hole 31a to the outside in the radial direction.
  • the first flow path portion 881 is connected to the second flow path portion 882 at a first branch portion 889 .
  • the first flow path portion 881 extends in a direction inclined with respect to the radial direction.
  • first flow path section 881 and the second flow path section 882 are orthogonal to each other when viewed from the axial direction.
  • the second end portion 857 is located in the first flow path portion 881 .
  • the second end portion 857 is arranged radially outward from the first branch portion 889.
  • the third flow path portion 883 is connected to the second flow path portion 882 at a first branch portion 889 .
  • the third flow path portion 883 branches from the first branch portion 889 .
  • the third flow path portion 883 extends in the radial direction when viewed from the axial direction.
  • the third flow path portion 883 and the second flow path portion 882 continuously extend in the same straight line when viewed from the axial direction.
  • the third end portion 858 is located in the third flow path portion 883.
  • the third end portion 858 is disposed radially outward from the first branch portion 889.
  • first flow path portions 881 of the first groove portion 855A and the second groove portion 855B that are adjacent to each other in the circumferential direction may be connected to each other via a connecting flow path portion 887.
  • the connecting flow path portion 887, the first flow path portion 881 of the first groove portion 855A, and the first flow path portion 881 of the second groove portion 855B are arranged in the same straight line when viewed from the axial direction.
  • FIG. 16 is an axial view of an end plate 950 of Modification 9.
  • Each groove portion 955 includes a first flow path portion 981, a second flow path portion 982, a third flow path portion 983, a first branch portion 989, a first end portion 956, a second end portion 957, and a third end portion 958. and has.
  • the groove portion 955 is connected to the through hole 31a of the shaft 31 at a first end portion 956. Oil O flows into the groove portion 955 from the first end portion 956 . Further, the groove portion 955 scatters the internal oil O outward in the radial direction at the second end portion 957 and the third end portion 958.
  • the first branch portion 989 is located radially outside the first end 956, radially inside the second end 957, and radially inside the third end 958.
  • the first flow path portion 981 , the second flow path portion 982 , and the third flow path portion 983 are connected to each other at the first branch portion 989 .
  • the first branch portion 989 is located at the upstream end of the first flow path portion 981, the upstream end of the third flow path portion 983, and the downstream end of the second flow path portion 982.
  • the first branch portion 989 is located at the boundary between the first flow path portion 981 and the second flow path portion 982. Further, the first branch portion 989 is located at the boundary between the first flow path portion 981 and the third flow path portion 983.
  • the second flow path section 982 is connected to the first flow path section 981 and the third flow path section 983 on the upstream side of the first flow path section 981 and the third flow path section 983.
  • the second flow path portion 982 extends in a direction inclined with respect to the radial direction when viewed from the axial direction.
  • the first end portion 956 is located in the second flow path portion 982 .
  • the second flow path portion 982 is provided with a first end portion 956 and is connected to the through hole 31a of the shaft 31.
  • the second flow path portion 982 guides the oil O flowing from the through hole 31a to the outside in the radial direction.
  • the first flow path portion 981 is connected to the second flow path portion 982 at a first branch portion 989.
  • the first flow path portion 981 extends in a direction inclined with respect to the radial direction when viewed from the axial direction.
  • the second end portion 957 is located in the first flow path portion 981 .
  • the second end portion 957 is disposed radially outward from the first branch portion 989.
  • the third flow path portion 983 is connected to the second flow path portion 982 at a first branch portion 989.
  • the third flow path portion 983 branches from the first branch portion 989 .
  • the third flow path portion 983 extends in a direction inclined with respect to the radial direction when viewed from the axial direction.
  • the third flow path section 983 extends in the same direction as the second flow path section 982.
  • the third flow path portion 983 and the second flow path portion 982 continuously extend in the same straight line when viewed from the axial direction.
  • the third end portion 958 is located in the third flow path portion 983.
  • the third end portion 958 is disposed radially outward from the first branch portion 989.
  • the direction in which the first flow path section 981 extends, and the direction in which the second flow path section 982 and the third flow path section 983 extend are both directions inclined with respect to the radial direction. The difference is in which direction it leans.
  • the first flow path portion 981 is inclined to one side in the circumferential direction as it goes radially outward, and the second flow path portion 982 and the third flow path portion 983 are inclined in the radial direction. As it goes outward, it is inclined toward the other side in the circumferential direction. Therefore, the opening directions of the second end portion 957 and the third end portion 958 can be set in different directions in the circumferential direction, and the oil O can be appropriately scattered no matter which direction the rotor 30 rotates. can be done.
  • the plurality of grooves 955 include a first groove 955A and a second groove 955B.
  • the first groove portion 955A and the second groove portion 955B are arranged symmetrically with respect to a reference line L passing through the central axis J when viewed from the axial direction. Therefore, the groove portion 955 of this modification can obtain the same effect as Modification 7.
  • first groove 955A and second groove 955B are connected to each other at the downstream end 982a of each second flow path 982. .
  • the oil O can move between the first groove portion 955A and the second groove portion 955B.
  • Oil O can be stably scattered from the second end 957 and third end 958 of the first groove 955A and the second groove 955B.
  • FIG. 17 is an axial view of the end plate 1050 of Modified Example 10. Similar to the embodiment described above, four grooves 1055 are provided on the first side surface 1051 of the end plate 1050 of this modification. Each groove portion 1055 of this modification has a configuration similar to that of modification 9 described above. The groove portion 1055 of the end plate 1050 of this modification is different from that of the above-mentioned modification 9 in the direction in which the flow path portion is inclined in the circumferential direction. Moreover, the end plate 1050 of this modification differs from the above-described modification 9 in that the two grooves (first groove 1055A and second groove 1055B) intersect with each other.
  • Each groove portion 1055 includes a first flow path portion 1081, a second flow path portion 1082, a third flow path portion 1083, a first branch portion 1089, a first end portion 1056, a second end portion 1057, and a third end portion 1058. and has.
  • the first branch portion 1089 includes a first flow path portion 1081, a second flow path portion 1082, and a third flow path portion 1083 located radially outward from the first end portion 1056 and radially inside from the second end portion 1057. extend linearly when viewed from the axial direction.
  • the second flow path section 1082 is connected to the first flow path section 1081 and the third flow path section 1083 on the upstream side of the first flow path section 1081 and the third flow path section 1083.
  • the second flow path portion 1082 extends in a direction inclined with respect to the radial direction when viewed from the axial direction.
  • the first end 1056 is located in the second flow path section 1082.
  • the second flow path portion 1082 is provided with a first end portion 1056 and is connected to the through hole 31a of the shaft 31.
  • the second flow path portion 1082 guides the oil O flowing in from the through hole 31a to the outside in the radial direction.
  • the first flow path portion 1081 is connected to the second flow path portion 1082 at a first branch portion 1089.
  • the first flow path portion 1081 extends in a direction inclined with respect to the radial direction when viewed from the axial direction.
  • the second end portion 1057 is located in the first flow path portion 1081.
  • the second end portion 1057 is arranged radially outward than the first branch portion 1089.
  • the third flow path portion 1083 is connected to the second flow path portion 1082 at a first branch portion 1089.
  • the third flow path section 1083 branches from the first branch section 1089.
  • the third flow path portion 1083 extends in a direction inclined with respect to the radial direction when viewed from the axial direction.
  • the third flow path section 1083 and the second flow path section 1082 continuously extend in the same straight line when viewed from the axial direction.
  • the third end portion 1058 is located in the third flow path portion 1083.
  • the third end portion 1058 is arranged radially outward from the first branch portion 1089.
  • the direction in which the first flow path section 1081 extends, and the direction in which the second flow path section 1082 and the third flow path section 1083 extend are both inclined toward one side in the circumferential direction with respect to the radial direction. It is the direction. That is, in one groove portion 1055 of this modification, the first flow path portion 1081 is inclined toward one side in the circumferential direction as it goes radially outward, and the second flow path portion 1082 and the third flow path portion 1083 are As it goes radially outward, it is inclined toward one side in the circumferential direction. Therefore, the oil O can be scattered over a wide range in the circumferential direction from the end plate 1050 by setting the opening directions of the second end 1057 and the third end 1058 in the same direction in the circumferential direction.
  • the plurality of grooves 1055 include a first groove 1055A and a second groove 1055B.
  • the first groove portion 1055A and the second groove portion 1055B are arranged symmetrically with respect to a reference line L passing through the central axis J when viewed from the axial direction. Therefore, the groove portion 1055 of this modification can obtain the same effect as Modification 7.
  • two grooves 1055 (first groove 1055A and second groove 1055B) arranged line-symmetrically with respect to the reference line L intersect with each other at an intersection 1087 on the reference line L.
  • the oil O can move between the first groove portion 1055A and the second groove portion 1055B. Therefore, the oil O can be stably scattered from the second end 1057 and third end 1058 of the first groove 1055A and the second groove 1055B.
  • the present invention is not limited to the above-described embodiments, and other configurations and other methods may be adopted within the scope of the technical idea of the present invention.
  • the first surface and the second surface of the groove bottom surface of the groove portion may be any surface as long as it is a surface that slopes toward one side in the axial direction as it goes radially outward.
  • the first surface and the second surface may be curved surfaces. Further, the first surface may be provided anywhere on the groove bottom surface.
  • the angle of inclination of the first surface with respect to the plane orthogonal to the axial direction is not particularly limited.
  • the groove bottom surface of the first groove portion does not need to have a third surface that connects the first surface and the second surface.
  • the first surface and the second surface may be directly connected.
  • the radially inner end of the groove bottom surface of the first groove portion may be in contact with the outer circumferential surface of the shaft.
  • the number of first grooves is not particularly limited as long as it is one or more.
  • the protrusion that protrudes radially outward with respect to the outer peripheral surface of the shaft may be part of the same single member as the shaft, or may be separate from the shaft.
  • the shape of the protrusion is not particularly limited.
  • the protrusion may be a member other than the nut, such as a washer.
  • the end plate does not need to be provided with a wall portion that projects away from the rotor core in the axial direction.
  • the rotating electric machine to which the present invention is applied is not limited to a motor, but may be a generator.
  • the use of the rotating electric machine is not particularly limited.
  • the rotating electrical machine may be mounted on a vehicle for purposes other than rotating an axle, or may be mounted on equipment other than the vehicle.
  • the posture in which the rotating electric machine is used is not particularly limited.
  • the central axis of the rotating electric machine may extend in the vertical direction.
  • the refrigerant may be supplied into the cavity of the shaft in the rotating electrical machine in any manner.
  • the shaft may have any configuration as long as it has a cavity.
  • the refrigerant may be other than oil.
  • a rotor arranged inside an annular stator and rotatable about a central axis including a shaft extending along the central axis, a rotor core fixed to the shaft, and an insert into which the shaft is inserted.
  • an annular end plate provided with a hole and arranged axially side by side with the rotor core; the shaft has a cavity provided inside the shaft; and an annular end plate extending radially outward from the cavity.
  • the groove has a first flow path extending in a direction inclined with respect to the radial direction;
  • the second end portion is a rotor located in the first flow path portion.
  • the inner surface of the groove portion has a groove bottom surface facing one side in the axial direction, the groove bottom surface has a first surface facing the opening of the through hole in the radial direction, and the first surface includes: The rotor according to (1), which is inclined toward one side in the axial direction as it goes radially outward.
  • the groove portion has a second flow path portion extending in the radial direction, the first end portion is located in the second flow path portion, and the first surface is located in the second flow path portion.
  • the rotor according to (2) which is provided.
  • the groove bottom surface has a second surface located at the second end, and the second surface is inclined toward one side in the axial direction as it goes radially outward.
  • an imaginary line extending radially outward in the direction along the second surface from the radially outer end of the second surface passes through the coil end of the stator; 4).
  • the groove bottom surface has a third surface connecting the first surface and the second surface, and the third surface is a flat surface along a plane perpendicular to the axial direction. ) or the rotor described in (5).
  • the first side surface is provided with a plurality of first recesses, and the first recesses are arranged at equal intervals in the circumferential direction, according to any one of (1) to (6).
  • Rotor. (8) As described in (7), the first recess has a groove shape extending along the circumferential direction, and the dimension of the first recess along the radial direction gradually decreases toward one side in the circumferential direction. rotor.
  • the outer circumferential surface of the shaft is circular when viewed from the axial direction, and the insertion hole is circular when viewed from the axial direction, and either the outer circumferential surface of the shaft or the inner edge of the insertion hole
  • One side is provided with a plurality of projections protruding to the other side, the other side is provided with a plurality of accommodation recesses into which the projections are inserted, the shaft has a plurality of through holes, and the shaft has a plurality of through holes,
  • the rotor according to any one of (1) to (8), wherein the rotor is arranged between the through holes in the circumferential direction.
  • the end plate has a second side surface facing the rotor core side, and the second side surface includes a third recess surrounding the insertion hole and a third recess located radially outward of the third recess in the circumferential direction.
  • the rotor according to any one of (1) to (11), wherein the rotor is provided with a concave groove extending along the rotor.
  • the groove portion has a second flow path portion extending in the radial direction, and the first end portion is located in the second flow path portion. Rotor listed.
  • the groove portion includes a first branch portion located radially outward from the first end portion and radially inward from the second end portion, and a third flow path portion branched from the first branch portion.
  • the rotor according to any one of (1) to (14), further comprising: a third end portion located in the third flow path portion and disposed radially outward than the first branch portion.
  • the groove portion has a second flow path portion extending in the radial direction, the first end portion is located in the second flow path portion, and the first branch portion is located in the second flow path portion. and the second flow path section.
  • the groove portion has a second flow path portion extending in a direction inclined with respect to the radial direction, the first end portion is located in the second flow path portion, and the third flow path portion is located in the second flow path portion.
  • the first flow path section is inclined toward one side in the circumferential direction as it goes radially outward, and the second flow path section and the third flow path section are inclined toward the other side in the circumferential direction as they go outward in the radial direction.
  • the first flow path section is inclined toward one side in the circumferential direction as it goes radially outward, and the second flow path section and the third flow path section are inclined toward one side in the circumferential direction as they go outward in the radial direction.
  • the third flow path portion extends in a direction inclined with respect to the radial direction, and the second end portion and the third end portion are arranged on the opposite side in the circumferential direction with respect to the first branch portion. , (15).
  • the third flow path portion extends in a direction inclined with respect to the radial direction, and the second end portion and the third end portion are arranged on the same side in the circumferential direction with respect to the first branch portion. , (15).
  • the groove portion includes a second branch portion located radially outward from the first branch portion and radially inward from the third end portion, and a fifth flow path portion branched from the second branch portion. , a fourth end portion located in the fifth flow path portion and disposed radially outward than the second branch portion.
  • the groove portion has a second flow path portion and a fourth flow path portion, the first end portion is located in the second flow path portion, and the fourth flow path portion is located in the second flow path portion.
  • the rotor according to any one of (1) to (23), which connects the second flow path portion and the first flow path portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

One aspect of a rotor according to the present invention is a rotor which is disposed inside an annular stator and can rotate about a center axis line, the rotor comprising: a shaft extending along the center axis line; a rotor core fixed to the shaft; and an annular end plate which is provided with an insertion hole into which the shaft is inserted, and is disposed axially side by side with the rotor core. The shaft is provided with: a cavity part provided inside the shaft; and a through-hole which extends radially outside from the cavity part and is open in the outer circumferential surface of the shaft. The end plate has a first side surface facing one side in the axial direction. The first side surface is provided with a groove part having: a first end section connected to the opening of the through-hole; and a second end section located radially outside the first end section. The groove part has a first flow path section extending in a direction oblique to the radial direction. The second end section is located at the first flow path section.

Description

ロータ、回転電機、および駆動装置Rotor, rotating electric machine, and drive device
 本発明は、ロータ、回転電機、および駆動装置に関する。
 本願は、2022年6月24日に日本に出願された特願2022-101944号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a rotor, a rotating electric machine, and a drive device.
This application claims priority based on Japanese Patent Application No. 2022-101944 filed in Japan on June 24, 2022, the contents of which are incorporated herein.
 冷媒を用いてコイルエンドを冷却する回転電機が知られている。例えば、特許文献1には、エンドプレートに冷媒を排出可能な排出路が設けられ、排出路の開口部から排出された冷媒がコイルエンドに吹き付けられる構成が記載されている。 A rotating electrical machine that cools a coil end using a refrigerant is known. For example, Patent Document 1 describes a configuration in which an end plate is provided with a discharge passage capable of discharging a refrigerant, and the refrigerant discharged from an opening of the discharge passage is sprayed onto a coil end.
特開2009-81953号公報Japanese Patent Application Publication No. 2009-81953
 上記のようにエンドプレートに排出路を設ける場合、例えばコイルエンドの軸方向端部に冷媒を吹き付けにくい場合があるなど、エンドプレートの排出路から排出される冷媒をコイルエンドに十分に供給できない場合があった。 When providing a discharge passage in the end plate as described above, if the refrigerant discharged from the discharge passage of the end plate cannot be sufficiently supplied to the coil end, for example, it may be difficult to spray the refrigerant to the axial end of the coil end. was there.
 本発明は、上記事情に鑑みて、エンドプレートを介してコイルエンドに冷媒を供給しやすくできる構造を有するロータ、回転電機、駆動装置を提供することを目的の一つとする。 In view of the above circumstances, one of the objects of the present invention is to provide a rotor, a rotating electrical machine, and a drive device that have a structure that makes it easy to supply refrigerant to the coil ends via the end plates.
 本発明のロータの一つの態様は、環状のステータの内側に配置され中心軸線を中心として回転可能なロータであって、前記中心軸線に沿って延びるシャフトと、前記シャフトに固定されるロータコアと、前記シャフトが挿入される挿入孔が設けられ前記ロータコアと軸方向に並んで配置される円環状のエンドプレートと、を備える。前記シャフトには、前記シャフトの内部に設けられる空隙部と、前記空隙部から径方向外側に延び前記シャフトの外周面で開口する貫通孔と、が設けられる。前記エンドプレートは、軸方向一方側を向く第1側面を有する。前記第1側面には、前記貫通孔の開口に繋がる第1端部、および前記第1端部より径方向外側に位置する第2端部を有する溝部が設けられる。前記溝部は、径方向に対し傾く方向に延びる第1流路部を有する。前記第2端部は、前記第1流路部に位置する。 One aspect of the rotor of the present invention is a rotor that is arranged inside an annular stator and is rotatable about a central axis, the rotor comprising: a shaft extending along the central axis; a rotor core fixed to the shaft; The rotor core includes an annular end plate provided with an insertion hole into which the shaft is inserted and arranged in line with the rotor core in the axial direction. The shaft is provided with a cavity provided inside the shaft, and a through hole extending radially outward from the cavity and opening at an outer circumferential surface of the shaft. The end plate has a first side surface facing one side in the axial direction. The first side surface is provided with a groove portion having a first end portion connected to the opening of the through hole, and a second end portion located radially outward from the first end portion. The groove portion has a first flow path portion extending in a direction inclined with respect to the radial direction. The second end portion is located in the first flow path portion.
 本発明の回転電機の一つの態様は、上述のロータと、前記ステータとを備える。 One aspect of the rotating electrical machine of the present invention includes the above-mentioned rotor and the above-mentioned stator.
 本発明の駆動装置の一つの態様は、上述の回転電機と、回転電機に接続されるギヤ機構と、を備える。 One aspect of the drive device of the present invention includes the above-mentioned rotating electrical machine and a gear mechanism connected to the rotating electrical machine.
 本発明の一つの態様によれば、エンドプレートを介してコイルエンドに冷媒を供給しやすくできる構造を有するロータ、回転電機、駆動装置を提供する。 According to one aspect of the present invention, there is provided a rotor, a rotating electric machine, and a drive device that have a structure that makes it easy to supply refrigerant to the coil ends via the end plates.
図1は、一実施形態の駆動装置の模式図である。FIG. 1 is a schematic diagram of a drive device of one embodiment. 図2は、一実施形態の回転電機の断面模式図である。FIG. 2 is a schematic cross-sectional view of a rotating electric machine according to an embodiment. 図3は、一実施形態のエンドプレートを第1側面側から見た斜視図である。FIG. 3 is a perspective view of the end plate of one embodiment viewed from the first side. 図4は、図3の部分拡大図である。FIG. 4 is a partially enlarged view of FIG. 3. 図5は、一実施形態のエンドプレートを軸方向に見た図である。FIG. 5 is an axial view of the end plate of one embodiment. 図6は、一実施形態のエンドプレートの第1流路部の延びる方向に沿う断面図である。FIG. 6 is a cross-sectional view along the extending direction of the first flow path portion of the end plate of one embodiment. 図7は、一実施形態のエンドプレートを第2側面側から見た斜視図である。FIG. 7 is a perspective view of the end plate of one embodiment viewed from the second side. 図8は、変形例1のエンドプレートを軸方向に見た図である。FIG. 8 is an axial view of the end plate of Modification 1. 図9は、変形例2のエンドプレートを軸方向に見た図である。FIG. 9 is an axial view of the end plate of Modified Example 2. 図10は、変形例3のエンドプレートを軸方向に見た図である。FIG. 10 is an axial view of the end plate of Modification Example 3. 図11は、変形例4のエンドプレートを軸方向に見た図である。FIG. 11 is an axial view of the end plate of Modified Example 4. 図12は、変形例5のエンドプレートを軸方向に見た図である。FIG. 12 is an axial view of the end plate of Modification Example 5. 図13は、変形例6のエンドプレートを軸方向に見た図である。FIG. 13 is an axial view of the end plate of Modified Example 6. 図14は、変形例7のエンドプレートを軸方向に見た図である。FIG. 14 is an axial view of the end plate of Modification Example 7. 図15は、変形例8のエンドプレートを軸方向に見た図である。FIG. 15 is an axial view of the end plate of Modification Example 8. 図16は、変形例9のエンドプレートを軸方向に見た図である。FIG. 16 is an axial view of the end plate of Modification Example 9. 図17は、変形例10のエンドプレートを軸方向に見た図である。FIG. 17 is an axial view of the end plate of Modification 10.
 以下の説明では、実施形態の駆動装置が水平な路面上に位置する車両に搭載された場合の位置関係を基に、鉛直方向を規定して説明する。つまり、以下の実施形態において説明する鉛直方向に関する相対位置関係は、駆動装置が水平な路面上に位置する車両に搭載された場合に少なくとも満たしていればよい。 In the following description, the vertical direction will be defined based on the positional relationship when the drive device of the embodiment is mounted on a vehicle located on a horizontal road surface. That is, the relative positional relationship in the vertical direction described in the following embodiments only needs to be satisfied at least when the drive device is mounted on a vehicle located on a horizontal road surface.
 図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、鉛直方向である。+Z側は、鉛直方向上側であり、-Z側は、鉛直方向下側である。以下の説明では、鉛直方向上側を単に「上側」と呼び、鉛直方向下側を単に「下側」と呼ぶ。X軸方向は、Z軸方向と直交する方向であって駆動装置が搭載される車両の前後方向である。以下の実施形態において、+X側は、車両における前側であり、-X側は、車両における後側である。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向であって、車両の左右方向、すなわち車幅方向である。以下の実施形態において、+Y側は、車両における左側であり、-Y側は、車両における右側である。前後方向および左右方向は、鉛直方向と直交する水平方向である。 In the drawings, an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system. In the XYZ coordinate system, the Z-axis direction is the vertical direction. The +Z side is the upper side in the vertical direction, and the -Z side is the lower side in the vertical direction. In the following description, the upper side in the vertical direction is simply referred to as the "upper side", and the lower side in the vertical direction is simply referred to as the "lower side". The X-axis direction is a direction perpendicular to the Z-axis direction, and is the front-rear direction of the vehicle in which the drive device is mounted. In the following embodiments, the +X side is the front side of the vehicle, and the -X side is the rear side of the vehicle. The Y-axis direction is a direction perpendicular to both the X-axis direction and the Z-axis direction, and is the left-right direction of the vehicle, that is, the vehicle width direction. In the embodiments below, the +Y side is the left side of the vehicle, and the -Y side is the right side of the vehicle. The front-rear direction and the left-right direction are horizontal directions perpendicular to the vertical direction.
 なお、前後方向の位置関係は、以下の実施形態の位置関係に限られず、+X側が車両の後側であり、-X側が車両の前側であってもよい。この場合には、+Y側は、車両の右側であり、-Y側は、車両の左側である。また、本明細書において、「平行な方向」は略平行な方向も含み、「直交する方向」は略直交する方向も含む。 Note that the positional relationship in the longitudinal direction is not limited to the positional relationship in the following embodiments, and the +X side may be the rear side of the vehicle and the -X side may be the front side of the vehicle. In this case, the +Y side is the right side of the vehicle and the -Y side is the left side of the vehicle. Furthermore, in this specification, "parallel directions" include substantially parallel directions, and "orthogonal directions" include substantially orthogonal directions.
 適宜図に示す中心軸線Jは、鉛直方向と交差する方向に延びる仮想軸である。より詳細には、中心軸線Jは、鉛直方向と直交するY軸方向、つまり車両の左右方向に延びている。以下の説明においては、特に断りのない限り、中心軸線Jに平行な方向を単に「軸方向」と呼び、中心軸線Jを中心とする径方向を単に「径方向」と呼び、中心軸線Jを中心とする周方向、つまり中心軸線Jの軸回りを単に「周方向」と呼ぶ。 A central axis J shown in the figures as appropriate is a virtual axis extending in a direction intersecting the vertical direction. More specifically, the central axis J extends in the Y-axis direction perpendicular to the vertical direction, that is, in the left-right direction of the vehicle. In the following description, unless otherwise specified, the direction parallel to the central axis J is simply referred to as the "axial direction," the radial direction centered on the central axis J is simply referred to as the "radial direction," and the central axis J is simply referred to as the "radial direction." The circumferential direction around the center, that is, around the central axis J is simply referred to as the "circumferential direction."
 図1は、本実施形態の駆動装置100の模式図である。
 図1に示す本実施形態の駆動装置100は、車両に搭載され、車軸64を回転させる駆動装置である。駆動装置100が搭載される車両は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)などのモータを動力源とする車両である。図1に示すように、駆動装置100は、回転電機10と、伝達装置60と、を備える。伝達装置60は、回転電機10に接続され、回転電機10の回転、つまり後述するロータ30の回転を車両の車軸64に伝達する。本実施形態の伝達装置60は、ギヤハウジング61と、回転電機10に接続される減速装置62と、減速装置62に接続される差動装置63と、を有する。
FIG. 1 is a schematic diagram of a drive device 100 of this embodiment.
The drive device 100 of this embodiment shown in FIG. 1 is a drive device that is mounted on a vehicle and rotates an axle 64. The vehicle in which the drive device 100 is mounted is a vehicle that uses a motor as a power source, such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or an electric vehicle (EV). As shown in FIG. 1, the drive device 100 includes a rotating electrical machine 10 and a transmission device 60. The transmission device 60 is connected to the rotating electrical machine 10 and transmits the rotation of the rotating electrical machine 10, that is, the rotation of the rotor 30, which will be described later, to the axle 64 of the vehicle. The transmission device 60 of this embodiment includes a gear housing 61, a speed reduction device 62 connected to the rotating electric machine 10, and a differential device 63 connected to the speed reduction device 62.
 ギヤハウジング61は、減速装置62と差動装置63とオイルOとを内部に収容している。オイルOは、ギヤハウジング61内の下部領域に貯留されている。オイルOは、後述する冷媒流路90内を循環する。オイルOは、回転電機10を冷却する冷媒として使用される。また、オイルOは、減速装置62および差動装置63に対して潤滑油として使用される。オイルOとしては、例えば、冷媒および潤滑油の機能を奏するために、比較的粘度の低いオートマチックトランスミッション用潤滑油(ATF:Automatic Transmission Fluid)と同等のオイルを用いることが好ましい。 The gear housing 61 accommodates a reduction gear 62, a differential gear 63, and oil O therein. Oil O is stored in a lower region within gear housing 61. Oil O circulates within a refrigerant flow path 90, which will be described later. Oil O is used as a refrigerant to cool rotating electric machine 10. Further, oil O is used as a lubricating oil for the reduction gear 62 and the differential gear 63. As the oil O, for example, in order to perform the functions of a refrigerant and a lubricant, it is preferable to use an oil equivalent to automatic transmission fluid (ATF), which has a relatively low viscosity.
 差動装置63は、リングギヤ63aを有する。リングギヤ63aには、回転電機10から出力されるトルクが減速装置62を介して伝えられる。リングギヤ63aの下側の端部は、ギヤハウジング61内に貯留されたオイルOに浸漬している。リングギヤ63aが回転することで、オイルOがかき上げられる。かき上げられたオイルOの一部は、例えば、減速装置62および差動装置63に潤滑油として供給される。また、かき上げられたオイルOの他の一部は、ギヤハウジング61内に配置されたリザーバ65内に貯留される。リザーバ65内に貯留されたオイルOは、後述するシャフト31の内部に流れる。 The differential device 63 has a ring gear 63a. Torque output from the rotating electrical machine 10 is transmitted to the ring gear 63a via the reduction gear device 62. The lower end of the ring gear 63a is immersed in oil O stored in the gear housing 61. The rotation of the ring gear 63a scrapes up the oil O. A portion of the oil O that has been scraped up is supplied, for example, to the reduction gear 62 and the differential gear 63 as lubricating oil. Further, another part of the scraped up oil O is stored in a reservoir 65 disposed within the gear housing 61. Oil O stored in the reservoir 65 flows into the interior of the shaft 31, which will be described later.
 回転電機10は、駆動装置100を駆動する部分である。回転電機10は、例えば、伝達装置60の右側に位置する。本実施形態において回転電機10は、モータである。 The rotating electric machine 10 is a part that drives the drive device 100. The rotating electrical machine 10 is located on the right side of the transmission device 60, for example. In this embodiment, the rotating electric machine 10 is a motor.
 回転電機10は、モータハウジング20と、中心軸線Jを中心として回転可能なロータ30と、ロータ30と径方向に隙間を介して対向するステータ40と、を備える。 The rotating electrical machine 10 includes a motor housing 20, a rotor 30 that is rotatable about a central axis J, and a stator 40 that faces the rotor 30 in the radial direction with a gap therebetween.
 モータハウジング20は、ロータ30およびステータ40を内部に収容するハウジングである。モータハウジング20は、ギヤハウジング61の右側に繋がっている。モータハウジング20は、周壁部21と、隔壁部22と、蓋部23と、を有する。周壁部21と隔壁部22とは、例えば、同一の単一部材の一部である。蓋部23は、例えば、周壁部21および隔壁部22とは別体である。 The motor housing 20 is a housing that accommodates the rotor 30 and stator 40 therein. The motor housing 20 is connected to the right side of the gear housing 61. The motor housing 20 has a peripheral wall portion 21, a partition wall portion 22, and a lid portion 23. The peripheral wall portion 21 and the partition wall portion 22 are, for example, parts of the same single member. The lid portion 23 is, for example, separate from the peripheral wall portion 21 and the partition wall portion 22.
 周壁部21は、中心軸線Jを囲み、右側に開口する筒状である。隔壁部22は、周壁部21の左側の端部に繋がっている。隔壁部22は、モータハウジング20の内部とギヤハウジング61の内部とを軸方向に隔てている。隔壁部22は、モータハウジング20の内部とギヤハウジング61の内部とを繋ぐ隔壁開口22aを有する。隔壁部22には、ベアリング34が保持されている。蓋部23は、周壁部21の右側の端部に固定されている。蓋部23は、周壁部21の右側の開口を塞いでいる。蓋部23には、ベアリング35が保持されている。 The peripheral wall portion 21 has a cylindrical shape that surrounds the central axis J and opens on the right side. The partition wall 22 is connected to the left end of the peripheral wall 21. The partition wall portion 22 separates the inside of the motor housing 20 and the inside of the gear housing 61 in the axial direction. The partition wall portion 22 has a partition opening 22 a that connects the inside of the motor housing 20 and the inside of the gear housing 61 . A bearing 34 is held in the partition wall 22 . The lid part 23 is fixed to the right end of the peripheral wall part 21. The lid part 23 closes the opening on the right side of the peripheral wall part 21. A bearing 35 is held in the lid portion 23.
 ステータ40は、ロータ30の径方向外側に位置する。ステータ40は、モータハウジング20の内部に固定されている。 The stator 40 is located outside the rotor 30 in the radial direction. Stator 40 is fixed inside motor housing 20.
 図2は、本実施形態の回転電機10の断面模式図である。
 ステータ40は、中心軸線Jを中心とする環状である。ステータ40は、ステータコア41と、コイルアセンブリ42と、を有する。
FIG. 2 is a schematic cross-sectional view of the rotating electrical machine 10 of this embodiment.
The stator 40 has an annular shape centered on the central axis J. Stator 40 has a stator core 41 and a coil assembly 42.
 ステータコア41は、回転電機10の中心軸線Jを囲む環状である。ステータコア41は、ロータ30の径方向外側に位置する。ステータコア41は、ロータ30を囲んでいる。ステータコア41は、例えば、電磁鋼板などの板部材が軸方向に複数積層されて構成されている。図示は省略するが、ステータコア41は、軸方向に延びる円筒状のコアバックと、コアバックから径方向内側に延びる複数のティースと、を有する。複数のティースは、周方向に沿って一周に亘って等間隔に配置されている。 The stator core 41 has an annular shape surrounding the central axis J of the rotating electric machine 10. Stator core 41 is located on the outside of rotor 30 in the radial direction. Stator core 41 surrounds rotor 30. The stator core 41 is configured by, for example, a plurality of plate members such as electromagnetic steel plates laminated in the axial direction. Although not shown, the stator core 41 includes a cylindrical core back that extends in the axial direction, and a plurality of teeth that extend inward in the radial direction from the core back. The plurality of teeth are arranged at equal intervals all around the circumferential direction.
 コイルアセンブリ42は、ステータコア41に取り付けられる複数のコイル42cを有する。各コイル42cは、例えば、断面形状が四角形状、又は略四角形状の平角線によって構成されている。なお、各コイル42cは、例えば、断面形状が円形状の丸線によって構成されていてもよい。複数のコイル42cは、インシュレータ43を介してステータコア41にそれぞれ装着されている。インシュレータ43は、例えば、ステータコア41のティース同士の周方向の間にそれぞれ配置されている。インシュレータ43は、例えば、絶縁紙である。インシュレータ43は、ステータコア41よりも軸方向両側に突出している。図示は省略するが、コイルアセンブリ42は、各コイル42cを結束する結束部材などを有してもよいし、各コイル42c同士を繋ぐ渡り線を有してもよい。 The coil assembly 42 has a plurality of coils 42c attached to the stator core 41. Each coil 42c is constituted by, for example, a rectangular wire having a rectangular or substantially rectangular cross-sectional shape. Note that each coil 42c may be formed of, for example, a round wire with a circular cross-sectional shape. The plurality of coils 42c are each attached to the stator core 41 via an insulator 43. The insulators 43 are arranged, for example, between the teeth of the stator core 41 in the circumferential direction. The insulator 43 is, for example, insulating paper. The insulator 43 protrudes from the stator core 41 on both sides in the axial direction. Although not shown, the coil assembly 42 may have a binding member that binds each coil 42c, or may have a crossover wire that connects each coil 42c.
 コイルアセンブリ42は、ステータコア41よりも軸方向に突出するコイルエンド42a,42bを有する。コイルエンド42aは、ステータコア41よりも右側に突出する部分である。コイルエンド42bは、ステータコア41よりも左側に突出する部分である。コイルエンド42aは、コイルアセンブリ42に含まれる各コイル42cのうちステータコア41よりも右側に突出する部分を含む。コイルエンド42bは、コイルアセンブリ42に含まれる各コイル42cのうちステータコア41よりも左側に突出する部分を含む。本実施形態においてコイルエンド42a,42bは、中心軸線Jを中心とする円環状である。図示は省略するが、コイルエンド42a,42bは、各コイル42cを結束する結束部材などを含んでもよいし、各コイル42c同士を繋ぐ渡り線を含んでもよい。コイルエンド42aの右側の端部は、インシュレータ43の右側の端部よりも右側に位置する。コイルエンド42bの左側の端部は、インシュレータ43の左側の端部よりも左側に位置する。 The coil assembly 42 has coil ends 42a and 42b that protrude further in the axial direction than the stator core 41. The coil end 42a is a portion that protrudes to the right side of the stator core 41. The coil end 42b is a portion that protrudes to the left side of the stator core 41. Coil end 42a includes a portion of each coil 42c included in coil assembly 42 that protrudes to the right side of stator core 41. Coil end 42b includes a portion of each coil 42c included in coil assembly 42 that protrudes to the left of stator core 41. In this embodiment, the coil ends 42a and 42b have an annular shape centered on the central axis J. Although not shown, the coil ends 42a and 42b may include a binding member for binding each coil 42c, or may include a crossover wire for connecting each coil 42c. The right end of the coil end 42a is located to the right of the right end of the insulator 43. The left end of the coil end 42b is located to the left of the left end of the insulator 43.
 ロータ30は、ステータ40の内側に配置される。ロータ30は、シャフト31と、ロータコア32と、マグネット33と、を備える。シャフト31は、中心軸線Jに沿って延びる。本実施形態においてシャフト31は、中心軸線Jを中心として軸方向に延びる円筒状の中空シャフトである。中空シャフトであるシャフト31の内部は、空隙部37である。つまり、シャフト31の内部には、空隙部37が設けられる。シャフト31は、中心軸線Jを中心として回転可能である。図1に示すように、シャフト31は、ベアリング34,35によって回転可能に支持されている。 The rotor 30 is arranged inside the stator 40. The rotor 30 includes a shaft 31, a rotor core 32, and a magnet 33. The shaft 31 extends along the central axis J. In this embodiment, the shaft 31 is a cylindrical hollow shaft that extends in the axial direction centering on the central axis J. The interior of the shaft 31, which is a hollow shaft, is a cavity 37. That is, a cavity 37 is provided inside the shaft 31. The shaft 31 is rotatable around the central axis J. As shown in FIG. 1, the shaft 31 is rotatably supported by bearings 34 and 35.
 シャフト31は、モータハウジング20の内部とギヤハウジング61の内部とに跨って延びている。シャフト31の左側の端部は、ギヤハウジング61の内部に突出している。シャフト31の左側の端部には、減速装置62が接続されている。シャフト31の左側の端部は、ギヤハウジング61の内部に開口している。つまり、空隙部37の左側の端部は、ギヤハウジング61の内部に開口している。シャフト31の右側の端部は、開口していてもよいし、閉塞されていてもよい。つまり、空隙部37の右側の端部は、開口していてもよいし、閉塞されていてもよい。空隙部37内には、空隙部37の左側の端部からリザーバ65内のオイルOが流入する。空隙部37内に流入したオイルOは、空隙部37内を右側に流れる。 The shaft 31 extends across the inside of the motor housing 20 and the inside of the gear housing 61. The left end of the shaft 31 projects into the gear housing 61. A speed reduction device 62 is connected to the left end of the shaft 31 . The left end of the shaft 31 opens into the gear housing 61. In other words, the left end of the cavity 37 opens into the gear housing 61 . The right end of the shaft 31 may be open or closed. That is, the right end of the cavity 37 may be open or closed. The oil O in the reservoir 65 flows into the cavity 37 from the left end of the cavity 37 . The oil O that has flowed into the cavity 37 flows inside the cavity 37 to the right.
 図2に示すように、シャフト31には、複数(本実施形態では8つ)の貫通孔31aが設けられる。貫通孔31aは、空隙部37から径方向外側に延びる。また、貫通孔31aは、シャフトの外周面で開口する。すなわち、貫通孔31aは、シャフト31の内周面からシャフト31の外周面までシャフト31の一部を径方向に貫通している。貫通孔31aは、例えば、円形状の孔である。以下の説明において、貫通孔31aのシャフト31の内周面における開口を内側開口31bと呼び、シャフト31の外周面における開口を外側開口(開口)31cと呼ぶ。 As shown in FIG. 2, the shaft 31 is provided with a plurality of (eight in this embodiment) through holes 31a. The through hole 31a extends radially outward from the cavity 37. Further, the through hole 31a opens at the outer circumferential surface of the shaft. That is, the through hole 31a radially penetrates a portion of the shaft 31 from the inner circumferential surface of the shaft 31 to the outer circumferential surface of the shaft 31. The through hole 31a is, for example, a circular hole. In the following description, the opening of the through hole 31a on the inner circumferential surface of the shaft 31 is called an inner opening 31b, and the opening on the outer circumferential surface of the shaft 31 is called an outer opening (opening) 31c.
 8つの貫通孔31aのうち4つは、シャフト31のうちロータコア32よりも右側に位置し、残る4つはシャフト31のうちロータコア32よりも左側に位置する。ロータコア32よりも右側に位置する4つの貫通孔31aは、周方向に沿って等間隔に配置される。同様に、ロータコア32よりも左側に位置する4つの貫通孔31aは、周方向に沿って等間隔に配置される。 Four of the eight through holes 31a are located on the right side of the shaft 31 relative to the rotor core 32, and the remaining four are located on the left side of the shaft 31 relative to the rotor core 32. The four through holes 31a located on the right side of the rotor core 32 are arranged at equal intervals along the circumferential direction. Similarly, the four through holes 31a located on the left side of the rotor core 32 are arranged at equal intervals along the circumferential direction.
 図2に示すように、シャフト31には、シャフト31の外周面に対し径方向外側に突出するフランジ部31eが設けられている。つまり、ロータ30は、シャフト31の外周面から径方向外側に突出する突出部としてフランジ部31eを備える。フランジ部31eは、シャフト31のうちロータコア32よりも左側に位置する部分の外周面に設けられている。フランジ部31eとシャフト31とは、同一の単一部材の一部である。フランジ部31eは、中心軸線Jを中心とし、シャフト31を囲む円環状である。フランジ部31eは、複数の貫通孔31aよりも左側に位置する。フランジ部31eは、コイルエンド42bの径方向内側に位置する。フランジ部31eの左側の端部は、コイルエンド42bの左側の端部よりも右側に位置する。フランジ部31eは、ロータコア32との軸方向の間で後述するエンドプレート50bを挟む。 As shown in FIG. 2, the shaft 31 is provided with a flange portion 31e that protrudes radially outward with respect to the outer peripheral surface of the shaft 31. That is, the rotor 30 includes the flange portion 31e as a protruding portion that protrudes radially outward from the outer circumferential surface of the shaft 31. The flange portion 31e is provided on the outer peripheral surface of a portion of the shaft 31 located on the left side of the rotor core 32. The flange portion 31e and the shaft 31 are part of the same single member. The flange portion 31e has an annular shape centered on the central axis J and surrounding the shaft 31. The flange portion 31e is located on the left side of the plurality of through holes 31a. The flange portion 31e is located inside the coil end 42b in the radial direction. The left end of the flange portion 31e is located to the right of the left end of the coil end 42b. The flange portion 31e sandwiches an end plate 50b, which will be described later, between the flange portion 31e and the rotor core 32 in the axial direction.
 シャフト31には、ナット36が取り付けられている。ナット36は、シャフト31の外周面に対し径方向外側に突出する突出部である。つまり、ロータ30は、突出部としてナット36を備える。ナット36は、シャフト31と別体である。ナット36は、シャフト31のうちロータコア32よりも右側に位置する部分の外周面に固定されている。ナット36は、中心軸線Jを中心とし、シャフト31を囲む円環状である。ナット36の内周面には、シャフト31の外周面に設けられたねじ部と噛み合うねじ部が設けられている。ナット36は、複数の貫通孔31aよりも右側に位置する。ナット36の外径は、フランジ部31eの外径よりも大きい。ナット36は、コイルエンド42aの径方向内側に位置する。ナット36の右側の端部は、コイルエンド42aの右側の端部と軸方向においてほぼ同じ位置に配置されている。ナット36は、ロータコア32との軸方向の間で後述するエンドプレート50aを挟む。 A nut 36 is attached to the shaft 31. The nut 36 is a protrusion that protrudes radially outward from the outer peripheral surface of the shaft 31. That is, the rotor 30 includes the nut 36 as a protrusion. The nut 36 is separate from the shaft 31. The nut 36 is fixed to the outer peripheral surface of a portion of the shaft 31 located on the right side of the rotor core 32. The nut 36 has an annular shape centered on the central axis J and surrounding the shaft 31. The inner circumferential surface of the nut 36 is provided with a threaded portion that engages with a threaded portion provided on the outer circumferential surface of the shaft 31 . The nut 36 is located on the right side of the plurality of through holes 31a. The outer diameter of the nut 36 is larger than the outer diameter of the flange portion 31e. The nut 36 is located radially inside the coil end 42a. The right end of the nut 36 is arranged at approximately the same position in the axial direction as the right end of the coil end 42a. The nut 36 sandwiches an end plate 50a, which will be described later, between the nut 36 and the rotor core 32 in the axial direction.
 ロータコア32は、シャフト31に固定されている。ロータコア32は、シャフト31を囲み、軸方向に延びる円筒状である。ロータコア32の内周面は、シャフト31の外周面に固定されている。ロータコア32は、例えば、電磁鋼板などの板部材が軸方向に複数積層されて構成されている。ロータコア32は、ロータコア32の径方向外側部分を軸方向に貫通するマグネット孔32aを有する。マグネット孔32aは、周方向に間隔を空けて複数設けられている。 The rotor core 32 is fixed to the shaft 31. The rotor core 32 has a cylindrical shape that surrounds the shaft 31 and extends in the axial direction. The inner peripheral surface of the rotor core 32 is fixed to the outer peripheral surface of the shaft 31. The rotor core 32 is configured by laminating a plurality of plate members, such as electromagnetic steel plates, in the axial direction. The rotor core 32 has a magnet hole 32a that passes through the radially outer portion of the rotor core 32 in the axial direction. A plurality of magnet holes 32a are provided at intervals in the circumferential direction.
 マグネット33は、ロータコア32に固定されている。マグネット33は、複数設けられている。複数のマグネット33は、複数のマグネット孔32aの内部にそれぞれ挿入されている。複数のマグネット33は、それぞれ軸方向に延びている。マグネット33の軸方向の寸法は、ロータコア32の軸方向の寸法とほぼ同じである。 The magnet 33 is fixed to the rotor core 32. A plurality of magnets 33 are provided. The plurality of magnets 33 are respectively inserted into the plurality of magnet holes 32a. Each of the plurality of magnets 33 extends in the axial direction. The axial dimension of the magnet 33 is approximately the same as the axial dimension of the rotor core 32.
 ロータ30は、ロータコア32と軸方向に並んで配置されたエンドプレート50を備える。本実施形態のロータ30は、ロータコア32の右側に配置されたエンドプレート50aと、ロータコア32の左側に配置されたエンドプレート50bと、の2つのエンドプレート50を備える。 The rotor 30 includes an end plate 50 arranged in line with the rotor core 32 in the axial direction. The rotor 30 of this embodiment includes two end plates 50: an end plate 50a placed on the right side of the rotor core 32, and an end plate 50b placed on the left side of the rotor core 32.
 2つのエンドプレート50a,50bは、ロータコア32を軸方向に挟んで配置されている。2つのエンドプレート50a,50bは、ナット36がシャフト31に締め込まれることで、ナット36とフランジ部31eとの間に挟まれてロータコア32に対して固定されている。このように、突出部としてのナット36およびフランジ部31eが設けられることで、エンドプレート50a,50bがロータコア32に対して軸方向にずれることを抑制できる。 The two end plates 50a and 50b are arranged to sandwich the rotor core 32 in the axial direction. The two end plates 50a and 50b are sandwiched between the nut 36 and the flange portion 31e and fixed to the rotor core 32 by tightening the nut 36 onto the shaft 31. By providing the nut 36 and the flange portion 31e as protrusions in this way, it is possible to suppress the end plates 50a, 50b from shifting in the axial direction with respect to the rotor core 32.
 各エンドプレート50a,50bは、マグネット孔32aの軸方向両端部のそれぞれを塞ぐ。これにより、各エンドプレート50a,50bによってマグネット33が軸方向両側から押さえられ、マグネット33がマグネット孔32aから軸方向に飛び出すことが抑制されている。エンドプレート50aとエンドプレート50bとは、ロータコア32を挟んで軸方向に対称に配置されている点を除いて、主に同様の構成である。そのため、以下の説明においては、代表してエンドプレート50aについてのみ説明する場合がある。以下の説明において、2つのエンドプレート50を互いに区別する場合、ロータコア32の右側に位置する一方を第1エンドプレート50aと呼び、ロータコア32の左側に位置する他方を第2エンドプレート50bと呼ぶ場合がある。 Each end plate 50a, 50b closes both axial ends of the magnet hole 32a. As a result, the magnet 33 is held down from both sides in the axial direction by the end plates 50a and 50b, and the magnet 33 is prevented from protruding from the magnet hole 32a in the axial direction. The end plate 50a and the end plate 50b mainly have the same configuration except that they are arranged symmetrically in the axial direction with the rotor core 32 in between. Therefore, in the following description, only the end plate 50a may be described as a representative. In the following description, when two end plates 50 are to be distinguished from each other, one located on the right side of the rotor core 32 is referred to as a first end plate 50a, and the other located on the left side of the rotor core 32 is referred to as a second end plate 50b. There is.
 以下のエンドプレート50の説明において、軸方向一方側とは各エンドプレート50に対しロータコア32が位置する側の反対側であり、軸方向他方側とは各エンドプレート50に対しロータコア32が位置する側である。したがって、第1エンドプレート50aにおいて、軸方向一方側とは右側(+Y側)を意味し、軸方向他方側とは左側(-Y側)を意味する。同様に、第2エンドプレート50bにおいて、軸方向一方側とは左側(-Y側)を意味し、軸方向他方側とは右側(+Y側)を意味する。 In the following description of the end plates 50, one side in the axial direction is the side opposite to the side where the rotor core 32 is located with respect to each end plate 50, and the other side in the axial direction is the side where the rotor core 32 is located with respect to each end plate 50. It's on the side. Therefore, in the first end plate 50a, one axial side means the right side (+Y side), and the other axial side means the left side (-Y side). Similarly, in the second end plate 50b, one axial side means the left side (-Y side), and the other axial side means the right side (+Y side).
 図3は、本実施形態のエンドプレート50aを示す斜視図である。図4は、図3の部分拡大図である。図5は、本実施形態のエンドプレート50aを軸方向に見た図である。なお、図5には、エンドプレート50aに挿入されるシャフト31の断面を図示する。 FIG. 3 is a perspective view showing the end plate 50a of this embodiment. FIG. 4 is a partially enlarged view of FIG. 3. FIG. 5 is an axial view of the end plate 50a of this embodiment. Note that FIG. 5 shows a cross section of the shaft 31 inserted into the end plate 50a.
 図5に示すように、エンドプレート50aは、中心軸線Jを中心とする円環状である。エンドプレート50aは、板面が軸方向を向く板状の部材である。エンドプレート50aには、シャフト31が挿入される挿入孔50hが設けられる。 As shown in FIG. 5, the end plate 50a has an annular shape centered on the central axis J. The end plate 50a is a plate-shaped member whose plate surface faces in the axial direction. The end plate 50a is provided with an insertion hole 50h into which the shaft 31 is inserted.
 図2に示すように、エンドプレート50aの外径は、ロータコア32の外径とほぼ同じである。エンドプレート50aは、コイルエンド42aの径方向内側に隙間を空けて配置されている。エンドプレート50aの軸方向他方側(+Y側)の端部は、ロータコア32に接触している。エンドプレート50aの軸方向一方側(-Y側)の端部は、コイルエンド42aの軸方向一方側(-Y側)の端部よりも軸方向他方側(+Y側)に位置する。 As shown in FIG. 2, the outer diameter of the end plate 50a is approximately the same as the outer diameter of the rotor core 32. The end plate 50a is arranged radially inside the coil end 42a with a gap. The other end of the end plate 50a in the axial direction (+Y side) is in contact with the rotor core 32. The end of the end plate 50a on one axial side (-Y side) is located on the other axial side (+Y side) of the end of the coil end 42a on the one axial side (-Y side).
 エンドプレート50aは、一部を切削により除去することで、ロータ30の周方向のバランス修正を行うバランサとしても機能させることができる。エンドプレート50aをバランサとして使用することで、ロータコア32を切削してロータ30のバランス調整を行う場合と比較してロータ30の磁気特性が低下することを抑制できる。 By removing a portion of the end plate 50a by cutting, it can also function as a balancer that corrects the balance of the rotor 30 in the circumferential direction. By using the end plate 50a as a balancer, it is possible to suppress deterioration of the magnetic properties of the rotor 30 compared to the case where the balance of the rotor 30 is adjusted by cutting the rotor core 32.
 エンドプレート50aは、軸方向一方側(-Y側)を向く第1側面51と、軸方向他方側(+Y側)を向く第2側面52と、を有する。第1側面51、および第2側面52は、中心軸線Jと直交する平坦面である。 The end plate 50a has a first side surface 51 facing one side in the axial direction (-Y side) and a second side surface 52 facing the other side in the axial direction (+Y side). The first side surface 51 and the second side surface 52 are flat surfaces perpendicular to the central axis J.
 図3に示すように、第1側面51には、軸方向他方側(+Y側)に凹む複数(本実施形態では4つ)の第1凹部53と、1つの第2凹部54と、複数(本実施形態では4つ)の溝部55と、が設けられる。 As shown in FIG. 3, the first side surface 51 includes a plurality of (four in this embodiment) first recesses 53 that are recessed toward the other side in the axial direction (+Y side), one second recess 54, and a plurality of ( In this embodiment, four groove portions 55 are provided.
 複数の第1凹部53は、周方向に沿って等間隔に配置される。複数の第1凹部53は、それぞれ周方向に並ぶ溝部55の間に位置する。本実施形態によれば、エンドプレート50aに第1凹部53が設けられることで、バランス調整用の切削代を残しつつ、全体の軽量化を図ることができる。また、複数の第1凹部53を周方向に沿って等間隔に配置することで、第1凹部53に起因してエンドプレート50aの重量バランスが悪化することを抑制できる。 The plurality of first recesses 53 are arranged at equal intervals along the circumferential direction. The plurality of first recesses 53 are located between the grooves 55 arranged in the circumferential direction. According to this embodiment, by providing the first recess 53 in the end plate 50a, it is possible to reduce the overall weight while leaving a cutting allowance for balance adjustment. Further, by arranging the plurality of first recesses 53 at equal intervals along the circumferential direction, it is possible to suppress deterioration of the weight balance of the end plate 50a due to the first recesses 53.
 本実施形態の第1凹部53は、周方向に沿って延びる溝状である。本実施形態によれば、第1凹部53を周方向に延びる溝状とすることで、周方向に沿うエンドプレート50aの重量分布のばらつきを抑制できる。また、本実施形態の第1凹部53の径方向に沿う寸法は、周方向の一方側に向かうに従い徐々に小さくなる。第1凹部53の径方向の寸法を周方向に沿って変化させることで、溝部55を避けつつ、第1凹部53をエンドプレート50aの第1側面51の全体に配置できる。 The first recess 53 of this embodiment has a groove shape extending along the circumferential direction. According to this embodiment, by forming the first recess 53 in the shape of a groove extending in the circumferential direction, variations in the weight distribution of the end plate 50a along the circumferential direction can be suppressed. Moreover, the dimension along the radial direction of the first recess 53 of this embodiment gradually becomes smaller toward one side in the circumferential direction. By changing the radial dimension of the first recess 53 along the circumferential direction, the first recess 53 can be arranged over the entire first side surface 51 of the end plate 50a while avoiding the groove 55.
 第2凹部54は、軸方向から見て中心軸線Jを中心とする円形である。第2凹部54は、軸方向一方側(-Y側)を向く底面54aを有する。図2に示すように、第2凹部54は、底面54aにおいて、突出部としてのナット36(又はフランジ部31e)に接触する。エンドプレート50aにおいてナット36に接触する部分は、軸方向両側からナット36とロータコア32とによって挟み込まれことで補強されている。このため、エンドプレート50aにおいてナット36に接触する部分は、軸方向に薄くしても十分な剛性を確保できる。本実施形態によれば、エンドプレート50aに第1凹部53を設けることで、エンドプレート50aの剛性を損なうことなく、エンドプレート50aの軽量化を図ることができる。 The second recess 54 has a circular shape centered on the central axis J when viewed from the axial direction. The second recess 54 has a bottom surface 54a facing one side in the axial direction (-Y side). As shown in FIG. 2, the second recess 54 contacts the nut 36 (or the flange portion 31e) as a protrusion at the bottom surface 54a. A portion of the end plate 50a that contacts the nut 36 is reinforced by being sandwiched between the nut 36 and the rotor core 32 from both sides in the axial direction. Therefore, even if the portion of the end plate 50a that contacts the nut 36 is made thinner in the axial direction, sufficient rigidity can be ensured. According to this embodiment, by providing the first recess 53 in the end plate 50a, it is possible to reduce the weight of the end plate 50a without impairing the rigidity of the end plate 50a.
 図3に示すように、溝部55は、エンドプレート50の内縁から径方向外側に延びる。溝部55は、シャフト31の貫通孔31aの開口から吐出されるオイルOを径方向外側に導く。以下の溝部55の説明において、オイルOの溝部55内での流動方向を基に溝部55の各部を上流側又は下流側として説明する場合がある。オイルOは、ロータ30の回転に伴う遠心力によって溝部55内を一方向に流動する。このため、溝部55の任意の部分に対し下流側の領域は、当該部分に対し上流側の領域よりも径方向外側に位置する。 As shown in FIG. 3, the groove portion 55 extends radially outward from the inner edge of the end plate 50. The groove portion 55 guides the oil O discharged from the opening of the through hole 31a of the shaft 31 to the outside in the radial direction. In the following description of the groove portion 55, each portion of the groove portion 55 may be described as an upstream side or a downstream side based on the flow direction of the oil O within the groove portion 55. The oil O flows in one direction within the groove portion 55 due to the centrifugal force accompanying the rotation of the rotor 30. Therefore, a region on the downstream side with respect to a given portion of the groove portion 55 is located radially outward than a region on the upstream side with respect to that portion.
 溝部55は、上流側の端部である第1端部56と下流側の端部である第2端部57とを有する。溝部55内のオイルOは、第1端部56から第2端部57に向かって流れる。 The groove 55 has a first end 56 that is an upstream end and a second end 57 that is a downstream end. Oil O in the groove 55 flows from the first end 56 to the second end 57.
 第1端部56は、エンドプレート50aの内縁に位置する。第1端部56は、溝部55において最も径方向内側に位置する。第1端部56の周方向の位置は、シャフト31の貫通孔31aの外側開口31cの周方向の位置と一致する。したがって、第1端部56は、外側開口31cと径方向において対向する。第1端部56は、貫通孔31aの開口に繋がる。溝部55の第1端部56は、外側開口31cに直接的に繋がっていてもよいし、隙間を介して間接的に繋がっていてもよい。貫通孔31aの外側開口31cから吐出されるオイルOは、第1端部56から溝部55の内部に導かれる。 The first end 56 is located at the inner edge of the end plate 50a. The first end portion 56 is located at the innermost position in the radial direction in the groove portion 55 . The circumferential position of the first end 56 coincides with the circumferential position of the outer opening 31c of the through hole 31a of the shaft 31. Therefore, the first end 56 faces the outer opening 31c in the radial direction. The first end 56 is connected to the opening of the through hole 31a. The first end 56 of the groove 55 may be directly connected to the outer opening 31c, or may be connected indirectly through a gap. Oil O discharged from the outer opening 31c of the through hole 31a is guided into the groove 55 from the first end 56.
 第2端部57は、エンドプレート50aの外縁の近傍に位置する。第2端部57は、溝部55において最も径方向外側に位置する。すなわち、第2端部57は、第1端部56より径方向外側に位置する。第2端部57は、径方向外側に開口する。溝部55内のオイルOは、第2端部57から径方向外側に飛散する。 The second end 57 is located near the outer edge of the end plate 50a. The second end portion 57 is located at the outermost position in the radial direction in the groove portion 55 . That is, the second end 57 is located radially outward from the first end 56. The second end portion 57 opens radially outward. The oil O in the groove portion 55 scatters radially outward from the second end portion 57.
 溝部55は、第1流路部81と、第1流路部81の上流側で第1流路部81に繋がる第2流路部82と、を有する。したがって、第1流路部81と第2流路部82との境界部89は、第1流路部81の上流側の端部、かつ第2流路部82の下流側の端部に位置する。オイルOは、第2流路部82、第1流路部81の順で溝部55内を流れる。 The groove portion 55 has a first flow path portion 81 and a second flow path portion 82 that is connected to the first flow path portion 81 on the upstream side of the first flow path portion 81 . Therefore, the boundary portion 89 between the first flow path portion 81 and the second flow path portion 82 is located at the upstream end of the first flow path portion 81 and the downstream end of the second flow path portion 82. do. The oil O flows through the groove portion 55 in the order of the second flow path portion 82 and the first flow path portion 81 .
 第1流路部81と第2流路部82とは、軸方向から見て、それぞれ直線状に延びる。第1流路部81は、軸方向から見て、径方向に対し傾く方向に延びる。一方で、第2流路部82は、軸方向から見て、径方向に延びる。本実施形態において、第1流路部81と第2流路部82とは、軸方向から見て、互いに直交する。 The first flow path portion 81 and the second flow path portion 82 each extend linearly when viewed from the axial direction. The first flow path portion 81 extends in a direction inclined with respect to the radial direction when viewed from the axial direction. On the other hand, the second flow path portion 82 extends in the radial direction when viewed from the axial direction. In this embodiment, the first flow path section 81 and the second flow path section 82 are orthogonal to each other when viewed from the axial direction.
 なお、本明細書において「径方向」とは、中心軸線Jと直交する平面内において中心軸線Jを通過する直線が延びる方向である。また、「径方向に対し傾く方向」とは、中心軸線Jと直交する平面内において上述の「径方向」に対して傾く方向である。 Note that in this specification, the "radial direction" is a direction in which a straight line passing through the central axis J extends within a plane orthogonal to the central axis J. Moreover, the "direction inclined with respect to the radial direction" is a direction inclined with respect to the above-mentioned "radial direction" within a plane orthogonal to the central axis J.
 ここで、図5に示すように、定常回転方向+θを決める。本実施形態において、定常回転方向+θとは、車両が前方に進行する際のロータ30の回転方向である。本実施形態において、第1流路部81は、境界部89から定常回転方向+θの反対側に向かって延びる。すなわち、第1流路部81は、径方向外側に向かうに従い周方向一方側(本実施形態では、定常回転方向+θ)に向かって傾斜して延びる。 Here, as shown in FIG. 5, the steady rotation direction +θ is determined. In this embodiment, the steady rotation direction +θ is the rotation direction of the rotor 30 when the vehicle moves forward. In this embodiment, the first flow path portion 81 extends from the boundary portion 89 toward the opposite side of the steady rotation direction +θ. That is, the first flow path portion 81 extends radially outwardly so as to be inclined toward one side in the circumferential direction (in the present embodiment, the steady rotation direction +θ).
 本実施形態において、溝部55の第1端部56は、第2流路部82に位置する。第1端部56は、第2流路部82の上流側の端部である。溝部55の第1端部56には、空隙部37内から貫通孔31aを介してシャフト31の外部に流れたオイルOが流入する。本実施形態によれば、第2流路部が、第1端部56を有しており、径方向に延びる。このため、シャフト31の貫通孔31aの外側開口31cから流出するオイルOが、ロータ30の回転に伴う遠心力の作用で溝部55内にスムーズに導かれる。特に、本実施形態では、貫通孔31aと、第1端部56が設けられる第2流路部82とは、径方向に延びる同一直線状に配置される。本実施形態によれば、オイルOが、シャフト31内からエンドプレート50の溝部55内に径方向に沿って円滑に流入する。 In this embodiment, the first end portion 56 of the groove portion 55 is located in the second flow path portion 82. The first end 56 is the upstream end of the second flow path section 82 . The oil O that has flowed from inside the cavity 37 to the outside of the shaft 31 through the through hole 31 a flows into the first end 56 of the groove 55 . According to this embodiment, the second flow path portion has a first end portion 56 and extends in the radial direction. Therefore, the oil O flowing out from the outer opening 31c of the through hole 31a of the shaft 31 is smoothly guided into the groove portion 55 by the action of centrifugal force accompanying the rotation of the rotor 30. In particular, in the present embodiment, the through hole 31a and the second flow path portion 82 in which the first end portion 56 is provided are arranged in the same straight line extending in the radial direction. According to this embodiment, the oil O smoothly flows from inside the shaft 31 into the groove 55 of the end plate 50 along the radial direction.
 溝部55内のオイルOは、第1流路部81と第2流路部82との境界部89において、第2流路部82から第1流路部81に流入する。上述したように、第1流路部81、および第2流路部82は、軸方向から見てそれぞれ直線状に延びる。このため、溝部55は、境界部89において屈曲する。本実施形態の溝部55は、境界部89において90°屈曲する。溝部55内のオイルOは、第2流路部82から第1流路部81に流入する際に流動方向を急激に変化させる。これにより、溝部55内のオイルOの流速を境界部89において低下させることができる。また、ロータ30の高速回転時に、溝部55の第2端部57から径方向外側に飛散するオイルOの流速が高まり過ぎることを抑制し、第2端部57から飛散するオイルOの飛散方向、および飛散距離を安定させることができる。結果的に、所望の位置にオイルOを供給することが可能となり、ステータ40の効果的な冷却が可能となる。なお、このような効果は、溝部55が、オイルOの流動方向を屈曲させる屈曲部(本実施形態における境界部89)を有していれば得ることができる効果である。 The oil O in the groove portion 55 flows from the second flow path portion 82 to the first flow path portion 81 at the boundary portion 89 between the first flow path portion 81 and the second flow path portion 82 . As described above, the first flow path section 81 and the second flow path section 82 each extend linearly when viewed from the axial direction. Therefore, the groove portion 55 is bent at the boundary portion 89. The groove portion 55 of this embodiment is bent at 90° at the boundary portion 89. The oil O in the groove portion 55 suddenly changes its flow direction when flowing into the first flow path portion 81 from the second flow path portion 82 . Thereby, the flow velocity of the oil O in the groove portion 55 can be reduced at the boundary portion 89. Furthermore, when the rotor 30 rotates at high speed, the flow velocity of the oil O that scatters radially outward from the second end 57 of the groove portion 55 is suppressed from increasing too much, and the scattering direction of the oil O that scatters from the second end 57 is controlled. And the scattering distance can be stabilized. As a result, it becomes possible to supply oil O to a desired position, and effective cooling of stator 40 becomes possible. Note that such an effect can be obtained if the groove portion 55 has a bent portion (boundary portion 89 in this embodiment) that bends the flow direction of the oil O.
 第1流路部81は、軸方向から見て、径方向に対し傾く方向に延びる。第1流路部81内のオイルOに遠心力が付与されることで、オイルOは、第1流路部81の内面に沿って径方向に対し傾く方向に沿って径方向外側に向かって流れる。第1流路部81の下流側の端部は、溝部55の第2端部57である。すなわち、第2端部57は、第1流路部81に位置する。第1流路部81内のオイルOは、第2端部57に達して、ステータ40に向かって飛散する。より具体的には、図1に示すように、オイルOは、エンドプレート50からステータ40のコイルエンド42aに供給されコイルエンド42aが冷却される。コイルエンド42aに供給されたオイルOは、下側に落下して、モータハウジング20内の下部領域に溜まる。モータハウジング20内の下部領域に溜ったオイルOは、隔壁部22に設けられた隔壁開口22aを介してギヤハウジング61内に戻る。このように、本実施形態の駆動装置100には、ギヤハウジング61内でリングギヤ63aによってかき上げられたオイルOがシャフト31の空隙部37およびエンドプレート50aを介してコイルエンド42aに供給された後に再びギヤハウジング61内に戻るオイルOの循環経路が設けられている。 The first flow path portion 81 extends in a direction inclined with respect to the radial direction when viewed from the axial direction. By applying centrifugal force to the oil O in the first flow path section 81, the oil O is directed toward the outside in the radial direction along the inner surface of the first flow path section 81 in a direction that is inclined with respect to the radial direction. flows. The downstream end of the first channel section 81 is the second end 57 of the groove section 55 . That is, the second end portion 57 is located in the first flow path portion 81 . The oil O in the first flow path section 81 reaches the second end section 57 and scatters toward the stator 40. More specifically, as shown in FIG. 1, oil O is supplied from the end plate 50 to the coil end 42a of the stator 40, and the coil end 42a is cooled. The oil O supplied to the coil end 42a falls downward and accumulates in the lower region within the motor housing 20. The oil O accumulated in the lower region within the motor housing 20 returns into the gear housing 61 through the partition opening 22a provided in the partition wall portion 22. In this way, in the drive device 100 of this embodiment, after the oil O scraped up by the ring gear 63a in the gear housing 61 is supplied to the coil end 42a via the gap 37 of the shaft 31 and the end plate 50a, A circulation path for oil O to return to the gear housing 61 is provided.
 本実施形態によれば、第1流路部81の延びる方向は、径方向に対して傾斜する。また、本実施形態では、第1流路部81が径方向に対し傾斜する方向が、定常回転方向+θである。このため、ロータ30の定常回転時に、第1流路部81の内面が第1流路部81内のオイルOを径方向外側に押し出すように作用し、第1流路部81内のオイルOを整流しつつオイルOの流速を高めることができる。これにより、第2端部57からオイルOを確実に飛散させることができオイルOをコイルエンド42aに確実に供給できる。 According to this embodiment, the direction in which the first flow path portion 81 extends is inclined with respect to the radial direction. Further, in this embodiment, the direction in which the first flow path portion 81 is inclined with respect to the radial direction is the steady rotation direction +θ. Therefore, during steady rotation of the rotor 30, the inner surface of the first flow path section 81 acts to push out the oil O within the first flow path section 81 to the outside in the radial direction. It is possible to increase the flow rate of oil O while rectifying the flow. Thereby, the oil O can be reliably scattered from the second end portion 57, and the oil O can be reliably supplied to the coil end 42a.
 本実施形態によれば、溝部55の第2端部57は、第1流路部81に位置する。第2端部57は、第1流路部81の下流側の端部である。第2端部57が第1流路部81に設けられることで第2端部57の開口方向を、径方向に対し傾斜する方向とすることができる。このため、ロータ30の定常回転時に、エンドプレート50aは、第2端部57から定常回転方向+θの後方側に向かって飛散させる。これにより、オイルOを周方向に分散させることができ、コイルエンド42aに供給されるオイルOを微細な液滴とし、コイルエンド42aの各部にオイルOを斑なく供給できる。 According to this embodiment, the second end portion 57 of the groove portion 55 is located in the first flow path portion 81. The second end 57 is the downstream end of the first flow path section 81 . By providing the second end portion 57 in the first flow path portion 81, the opening direction of the second end portion 57 can be made to be inclined with respect to the radial direction. Therefore, during steady rotation of the rotor 30, the end plate 50a is scattered from the second end 57 toward the rear side in the steady rotation direction +θ. Thereby, the oil O can be dispersed in the circumferential direction, the oil O supplied to the coil end 42a can be made into fine droplets, and the oil O can be uniformly supplied to each part of the coil end 42a.
 なお、ロータ30が定常回転方向+θの反対側に回転する場合であっても、溝部55の第2端部57からはオイルOが飛散するが、第1流路部81内でオイルOが加速し難く、オイルOの飛散速度が小さくなる。なお、ロータ30が定常回転方向+θの反対側に回転することは、車両が後進することを意味する。車両が後進する際の、回転電機10の回転速度は遅く回転時間も短いことから、飛散速度が低下し冷却効果が下がっても回転電機10の信頼性を十分に確保できる。 Note that even when the rotor 30 rotates in the opposite direction to the steady rotation direction +θ, the oil O is scattered from the second end portion 57 of the groove portion 55, but the oil O is accelerated within the first flow path portion 81. It is difficult to do so, and the scattering speed of oil O becomes small. Note that rotating the rotor 30 in the opposite direction to the steady rotation direction +θ means that the vehicle moves backward. Since the rotational speed of the rotating electrical machine 10 is slow and the rotation time is short when the vehicle moves backward, the reliability of the rotating electrical machine 10 can be sufficiently ensured even if the scattering speed decreases and the cooling effect decreases.
 図5に示すように、軸方向から見て、溝部55の一部は、突出部としてのナット36に重なる。より具体的には、軸方向から見て、溝部55の第1端部56はナット36に重なり、溝部55の第2端部57はナット36よりも径方向外側に位置する。 As shown in FIG. 5, when viewed from the axial direction, a portion of the groove portion 55 overlaps with the nut 36 as a protruding portion. More specifically, when viewed from the axial direction, the first end 56 of the groove 55 overlaps the nut 36, and the second end 57 of the groove 55 is located on the outer side of the nut 36 in the radial direction.
 本実施形態によれば、溝部55の第1端部56は、ナット36によって軸方向一方側(-Y側)から覆われている。これにより、溝部55とナット36とによってオイルOを径方向外側に送る流路を構成することができ、溝部55内にオイルOをより好適に流すことができる。また、溝部55内を流れるオイルOが軸方向に飛散することをナット36によって抑制できる。また、溝部55の第2端部57は、ナット36に覆われていないため、溝部55は、第2端部57から軸方向一方側(-Y側)に向かってオイルOを飛散させることができる。 According to the present embodiment, the first end portion 56 of the groove portion 55 is covered by the nut 36 from one side in the axial direction (−Y side). As a result, the groove 55 and the nut 36 can form a flow path for sending the oil O to the outside in the radial direction, allowing the oil O to flow more suitably within the groove 55. Further, the nut 36 can prevent the oil O flowing in the groove portion 55 from scattering in the axial direction. Furthermore, since the second end 57 of the groove 55 is not covered by the nut 36, the groove 55 does not allow the oil O to scatter from the second end 57 toward one side in the axial direction (-Y side). can.
 図4に示すように、溝部55の内面は、軸方向においてロータコア32が位置する側、すなわち軸方向他方側(+Y側)に位置する溝底面55dを有する。溝底面55dは、軸方向一方側(-Y側)を向く面であり、軸方向に見て径方向に延びている。 As shown in FIG. 4, the inner surface of the groove portion 55 has a groove bottom surface 55d located on the side where the rotor core 32 is located in the axial direction, that is, on the other axial side (+Y side). The groove bottom surface 55d is a surface facing one side in the axial direction (-Y side) and extends in the radial direction when viewed in the axial direction.
 本実施形態において溝底面55dの径方向内側の端部55deは、シャフト31から径方向外側に離れて配置されている。そのため、寸法公差および組立公差などによって貫通孔31aに対するエンドプレート50aの軸方向位置がずれても、エンドプレート50aのうち溝底面55dが設けられた部分によって貫通孔31aの外側開口31cが塞がれることを抑制できる。これにより、貫通孔31aを介して溝部55内にオイルOが流入しにくくなることを抑制できる。 In this embodiment, the radially inner end 55de of the groove bottom surface 55d is disposed radially outward from the shaft 31. Therefore, even if the axial position of the end plate 50a with respect to the through hole 31a deviates due to dimensional tolerances, assembly tolerances, etc., the outer opening 31c of the through hole 31a is closed by the portion of the end plate 50a where the groove bottom surface 55d is provided. can be suppressed. Thereby, it is possible to suppress the oil O from flowing into the groove portion 55 through the through hole 31a.
 溝底面55dは、第1面55aと、第2面55bと、第3面55cと、を有する。第1面55a、第3面55c、および第2面55bは、溝部55の上流側から下流側に向かうに従って、この順で連続して繋がって配置されている。 The groove bottom surface 55d has a first surface 55a, a second surface 55b, and a third surface 55c. The first surface 55a, the third surface 55c, and the second surface 55b are continuously connected in this order from the upstream side to the downstream side of the groove portion 55.
 第2面55bは、溝部55の第2端部57に位置する。また、第2面55bは、第1流路部81に設けられる。第2面55bは、径方向外側に向かうに従って軸方向一方側(-Y側)に傾斜する。つまり、第2面55bは、径方向外側に向かうに従ってロータコア32から軸方向に離れる面である。 The second surface 55b is located at the second end 57 of the groove 55. Further, the second surface 55b is provided in the first flow path section 81. The second surface 55b is inclined toward one side in the axial direction (-Y side) as it goes radially outward. In other words, the second surface 55b is a surface that axially moves away from the rotor core 32 as it goes radially outward.
 図6は、第1流路部81の延びる方向に沿うエンドプレート50aの断面図である。図6において、ロータコア32、およびステータコア41などの図示を部分的に省略する。 FIG. 6 is a cross-sectional view of the end plate 50a along the direction in which the first flow path section 81 extends. In FIG. 6, illustrations of the rotor core 32, stator core 41, etc. are partially omitted.
 第2面55bは、図6において矢印で示すように、第2面55bに沿って径方向外側に流れるオイルOに軸方向一方側(-Y側)の速度成分を与える。これにより、溝部55の第2端部57からコイルエンド42aに向かって噴射されるオイルOを、よりロータコア32から軸方向に離れた位置まで飛ばしやすくできる。したがって、コイルエンド42aのうち軸方向においてロータコア32から比較的遠く離れた部分までオイルOを好適に供給しやすい。また、溝部55からコイルエンド42aに向かって噴射されるオイルOは、軸方向に或る程度広がって飛散する。そのため、コイルエンド42aのうち軸方向においてロータコア32に比較的近い部分にもオイルOが供給される。以上により、本実施形態によれば、エンドプレート50aを介してコイルエンド42a全体に冷媒としてのオイルOを供給しやすくできる。 The second surface 55b gives a velocity component on one axial side (-Y side) to the oil O flowing radially outward along the second surface 55b, as shown by the arrow in FIG. Thereby, the oil O injected from the second end 57 of the groove portion 55 toward the coil end 42a can be easily blown to a position further away from the rotor core 32 in the axial direction. Therefore, it is easy to suitably supply oil O to a portion of the coil end 42a that is relatively far away from the rotor core 32 in the axial direction. Further, the oil O injected from the groove portion 55 toward the coil end 42a spreads to some extent in the axial direction and scatters. Therefore, oil O is also supplied to a portion of the coil end 42a that is relatively close to the rotor core 32 in the axial direction. As described above, according to the present embodiment, oil O as a refrigerant can be easily supplied to the entire coil end 42a via the end plate 50a.
 なお、例えば、貫通孔31aの外側開口31cの軸方向位置をよりロータコア32から軸方向に離れた位置とすれば、外側開口31cから流出したオイルOをコイルエンド42aのうち軸方向においてロータコア32から比較的遠く離れた部分に供給しやすくできる。しかしながら、この場合には、エンドプレート50aを軸方向に大型化する必要があり、ロータ30の質量が大きくなるという問題が生じる。 For example, if the axial position of the outer opening 31c of the through hole 31a is set further away from the rotor core 32 in the axial direction, the oil O flowing out from the outer opening 31c is transferred from the rotor core 32 in the axial direction of the coil end 42a. It can be easily supplied to relatively far away areas. However, in this case, it is necessary to increase the size of the end plate 50a in the axial direction, causing a problem that the mass of the rotor 30 increases.
 これに対して、本実施形態によれば、外側開口31cの軸方向位置をロータコア32から大きく離した位置とすることなく、外側開口31cから流出したオイルOをコイルエンド42aのうち軸方向においてロータコア32から比較的遠く離れた部分に供給しやすくできる。そのため、ロータ30の質量が大きくなること、およびロータ30が軸方向に大型化することを抑制しつつ、エンドプレート50aを介してコイルエンド42aに冷媒としてのオイルOを供給しやすくできる。 On the other hand, according to the present embodiment, the oil O flowing out from the outer opening 31c is transferred to the rotor core in the axial direction of the coil end 42a without making the axial position of the outer opening 31c a large distance from the rotor core 32. It can be easily supplied to parts relatively far away from 32. Therefore, it is possible to easily supply oil O as a refrigerant to the coil end 42a via the end plate 50a while suppressing an increase in the mass of the rotor 30 and an increase in the size of the rotor 30 in the axial direction.
 コイルエンド42aを構成するコイル42cが平角線で作られている場合、コイルエンド42aの軸方向の寸法が大きくなりやすい。そのため、コイルエンド42aの軸方向端部のうちロータコア32から遠い方の軸方向端部がロータコア32から遠い位置に配置されやすくオイルOを供給し難い。本実施形態によれば、上述したように、コイルエンド42aのうちロータコア32から軸方向に離れた部分にもオイルOを供給しやすくできる。そのため、コイル42cが平角線で作られてコイルエンド42aの軸方向の寸法が大きくなった場合であっても、コイルエンド42aに対して好適にオイルOを供給できる。 If the coil 42c constituting the coil end 42a is made of a rectangular wire, the axial dimension of the coil end 42a tends to be large. Therefore, among the axial ends of the coil end 42a, the axial end farthest from the rotor core 32 is likely to be disposed at a position far from the rotor core 32, making it difficult to supply oil O. According to the present embodiment, as described above, it is possible to easily supply oil O to a portion of the coil end 42a that is axially distant from the rotor core 32. Therefore, even if the coil 42c is made of a rectangular wire and the axial dimension of the coil end 42a becomes large, oil O can be suitably supplied to the coil end 42a.
 本実施形態において、軸方向と直交する平面に対する第2面55bの傾斜角度θbは、例えば、5°以上、30°以下程度である。第2面55bの径方向外側の端部は、溝底面55dの径方向外側の端部である。そのため、溝部55からコイルエンド42aに向けて噴射されるオイルOの方向を第2面55bに沿った方向としやすく、コイルエンド42aのうち軸方向においてロータコア32から比較的遠く離れた部分にオイルOをより好適に供給しやすい。なお、傾斜角度θbは、30°より大きく90°未満であってもよく、0°より大きく5°未満であってもよい。 In the present embodiment, the inclination angle θb of the second surface 55b with respect to the plane perpendicular to the axial direction is, for example, approximately 5° or more and 30° or less. The radially outer end of the second surface 55b is the radially outer end of the groove bottom surface 55d. Therefore, the direction of the oil O injected from the groove portion 55 toward the coil end 42a is easily set along the second surface 55b, and the oil O is directed to a portion of the coil end 42a that is relatively far away from the rotor core 32 in the axial direction. It is easier to supply it more suitably. Note that the inclination angle θb may be greater than 30° and less than 90°, or may be greater than 0° and less than 5°.
 図6に示すように、軸方向に沿った断面において、第2面55bの径方向外側の端部から第2面55bに沿う方向に径方向外側に延長された仮想線ILは、コイルエンド42aを通っている。そのため、溝部55内から第2面55bに沿って径方向外側に噴射されるオイルOをより好適にコイルエンド42aに供給できる。 As shown in FIG. 6, in the cross section along the axial direction, the imaginary line IL extending radially outward from the radially outer end of the second surface 55b in the direction along the second surface 55b is the coil end 42a. is passing through. Therefore, the oil O injected radially outward from inside the groove portion 55 along the second surface 55b can be more suitably supplied to the coil end 42a.
 仮想線ILは、径方向に対して軸方向に傾いて延びる線であり、径方向外側に向かうに従って軸方向一方側(-Y側)に位置する。仮想線ILにおける径方向に対する傾きは、第2面55bの径方向に対する傾きと同じである。仮想線ILとコイルエンド42aとが交差する位置は、コイルエンド42aの軸方向の中心CL1よりもステータコア41から軸方向に離れた位置である。そのため、溝部55内から第2面55bに沿って径方向外側に噴射されるオイルOをコイルエンド42aのうち軸方向の中心CL1よりもステータコア41から軸方向に離れた部分に供給しやすくできる。これにより、コイルエンド42aのうち軸方向においてロータコア32から比較的遠く離れた部分にオイルOをより好適に供給しやすい。 The virtual line IL is a line that extends obliquely in the axial direction with respect to the radial direction, and is located on one axial side (-Y side) as it goes radially outward. The inclination of the virtual line IL with respect to the radial direction is the same as the inclination of the second surface 55b with respect to the radial direction. The position where the virtual line IL intersects with the coil end 42a is a position further away from the stator core 41 in the axial direction than the axial center CL1 of the coil end 42a. Therefore, the oil O injected radially outward from inside the groove portion 55 along the second surface 55b can be easily supplied to a portion of the coil end 42a that is further away in the axial direction from the stator core 41 than the axial center CL1. This makes it easier to more appropriately supply oil O to a portion of the coil end 42a that is relatively far away from the rotor core 32 in the axial direction.
 なお、本実施形態において「コイルエンド42aのうち軸方向においてロータコア32から比較的遠く離れた部分」とは、例えば、コイルエンド42aのうち軸方向の中心CL1よりもロータコア32から軸方向に離れた位置に位置する部分、すなわちコイルエンド42aのうち中心CL1よりも軸方向一方側(-Y側)に位置する部分を含む。また、本実施形態において「コイルエンド42aのうち軸方向においてロータコア32に比較的近い部分」とは、例えば、コイルエンド42aのうち軸方向の中心CL1よりもロータコア32に軸方向に近い位置に位置する部分、すなわちコイルエンド42aのうち中心CL1よりも軸方向他方側(+Y側)に位置する部分を含む。コイルエンド42aのうち軸方向の中心CL1は、「コイルエンド42aのうち軸方向においてロータコア32から比較的遠く離れた部分」に含まれてもよいし、「コイルエンド42aのうち軸方向においてロータコア32に比較的近い部分」に含まれてもよい。 In this embodiment, "a portion of the coil end 42a that is relatively far away from the rotor core 32 in the axial direction" refers to, for example, a portion of the coil end 42a that is axially farther away from the rotor core 32 than the center CL1 in the axial direction. ie, a portion of the coil end 42a located on one side in the axial direction (-Y side) with respect to the center CL1. In the present embodiment, "a portion of the coil end 42a that is relatively close to the rotor core 32 in the axial direction" refers to, for example, a portion of the coil end 42a that is located axially closer to the rotor core 32 than the axial center CL1. , that is, a portion of the coil end 42a located on the other axial side (+Y side) of the center CL1. The center CL1 in the axial direction of the coil end 42a may be included in "a portion of the coil end 42a that is relatively far away from the rotor core 32 in the axial direction," or may be included in the "portion of the coil end 42a that is relatively far away from the rotor core 32 in the axial direction." may be included in the "portion relatively close to".
 本実施形態において仮想線ILとコイルエンド42aとが交差する位置は、コイルエンド42aのうちインシュレータ43よりもステータコア41から軸方向に突出した部分、すなわちコイルエンド42aのうちインシュレータ43よりも軸方向一方側(-Y側)に位置する部分における軸方向の中心CL2と軸方向においてほぼ同じ位置である。より詳細には、仮想線ILとコイルエンド42aとが交差する位置は、中心CL2よりも僅かにステータコア41に軸方向に近い位置である。仮想線ILとコイルエンド42aとが交差する位置を、コイルエンド42aのうちインシュレータ43よりもステータコア41から軸方向に突出した部分の軸方向の中心CL2と軸方向において同じ、又は中心CL2よりもステータコア41に軸方向に近い位置とすることで、溝部55内から第2面55bに沿って径方向外側に噴射されるオイルOが、コイルエンド42aのうち軸方向においてロータコア32に比較的近い部分に供給されにくくなることを抑制できる。したがって、コイルエンド42aにオイルOをより好適に供給しやすくできる。 In this embodiment, the position where the imaginary line IL and the coil end 42a intersect is a portion of the coil end 42a that protrudes from the stator core 41 in the axial direction more than the insulator 43, that is, one of the coil ends 42a in the axial direction than the insulator 43. This is approximately the same position in the axial direction as the axial center CL2 of the portion located on the side (−Y side). More specifically, the position where the virtual line IL and the coil end 42a intersect is slightly closer to the stator core 41 in the axial direction than the center CL2. The position where the imaginary line IL and the coil end 42a intersect is the same in the axial direction as the axial center CL2 of the portion of the coil end 42a that protrudes from the stator core 41 in the axial direction beyond the insulator 43, or the position where the stator core is more than the center CL2. 41 in the axial direction, the oil O injected radially outward from inside the groove 55 along the second surface 55b is directed to a portion of the coil end 42a that is relatively close to the rotor core 32 in the axial direction. This can prevent the supply from becoming difficult. Therefore, the oil O can be easily supplied to the coil end 42a.
 図4に示すように、第1面55aは、溝部55の第1端部56に位置する。第1面55aは、径方向外側に向かうに従って軸方向一方側(-Y側)に傾斜する。つまり、第1面55aは、径方向外側に向かうに従ってロータコア32から軸方向に離れる面である。 As shown in FIG. 4, the first surface 55a is located at the first end 56 of the groove 55. The first surface 55a is inclined toward one side in the axial direction (-Y side) as it goes radially outward. In other words, the first surface 55a is a surface that axially moves away from the rotor core 32 as it goes radially outward.
 図2に示すように、第1面55aは、シャフト31の貫通孔31aの外側開口31cと径方向に対向する。このため、貫通孔31aから径方向外側に吐出されるオイルOは、第1面55aに当たる。これにより、外側開口31cから径方向外側に流出したオイルOの流れを第1面55aによって整えてから溝部55内へと流すことができる。これより、溝部55内のオイルOの流れを安定させることができ、結果的に、溝部55の第2端部57からのオイルOの飛散を安定させることができる。そのため、コイルエンド42aに安定して好適にオイルOを供給できる。 As shown in FIG. 2, the first surface 55a faces the outer opening 31c of the through hole 31a of the shaft 31 in the radial direction. Therefore, the oil O discharged radially outward from the through hole 31a hits the first surface 55a. Thereby, the flow of the oil O flowing radially outward from the outer opening 31c can be adjusted by the first surface 55a before flowing into the groove portion 55. As a result, the flow of the oil O in the groove 55 can be stabilized, and as a result, the scattering of the oil O from the second end 57 of the groove 55 can be stabilized. Therefore, oil O can be stably and suitably supplied to the coil end 42a.
 なお、本明細書において“或る対象同士が或る方向に対向している”とは、或る方向に見た際に、或る対象同士が少なくとも一部で重なり合っていればよく、或る対象同士における他方の対象と向き合う部分の形状および向きがどのような方向を向いていてもよい。例えば、“第1面55aが外側開口31cと径方向に対向している”とは、径方向のうち外側開口31cを通る径方向の少なくとも一つの方向に見て、第1面55aと外側開口31cとが少なくとも一部で重なり合っていればよく、第1面55aと外側開口31cとが平行に向かい合っている必要はない。本実施形態において第1面55aに直交する方向は、外側開口31cが開口する方向に対して交差する方向である。 In addition, in this specification, "certain objects are facing each other in a certain direction" may mean that certain objects overlap at least in part when viewed in a certain direction; The shape and direction of the portions of the objects facing the other object may be in any direction. For example, "the first surface 55a faces the outer opening 31c in the radial direction" means that the first surface 55a and the outer opening 31c face each other in at least one radial direction passing through the outer opening 31c. 31c, it is sufficient that they overlap at least in part, and it is not necessary that the first surface 55a and the outer opening 31c face each other in parallel. In this embodiment, the direction perpendicular to the first surface 55a is the direction intersecting the direction in which the outer opening 31c opens.
 本実施形態において第1面55aの径方向内側の端部は、溝底面55dの径方向内側の端部である。そのため、溝底面55dの径方向内側の端部を、径方向に対して斜めに傾けつつ、ロータコア32に軸方向に近い位置に配置することができる。これにより、貫通孔31aの外側開口31cから流出したオイルOを、溝底面55dの径方向内側の端部、すなわち第1面55aの径方向内側の端部によって、溝部55内へと導きやすくできる。本実施形態によれば、外側開口31cから流出したオイルOを溝部55内に流入させやすくできる。 In this embodiment, the radially inner end of the first surface 55a is the radially inner end of the groove bottom surface 55d. Therefore, the radially inner end of the groove bottom surface 55d can be disposed at a position close to the rotor core 32 in the axial direction while being inclined obliquely with respect to the radial direction. Thereby, the oil O flowing out from the outer opening 31c of the through hole 31a can be easily guided into the groove portion 55 by the radially inner end of the groove bottom surface 55d, that is, the radially inner end of the first surface 55a. . According to this embodiment, the oil O flowing out from the outer opening 31c can be easily caused to flow into the groove portion 55.
 本実施形態の第1面55aは、第2流路部82に設けられる。上述したように、第2流路部82は、径方向に延びるため、シャフト31の貫通孔31aから流出するオイルOを径方向外側にスムーズに導くことができる。また、第2流路部82に第1面55aが設けられることで、貫通孔31aから径方向外側に流出したオイル)を、確実に第1面55aに当てることができる。 The first surface 55a of this embodiment is provided in the second flow path section 82. As described above, since the second flow path portion 82 extends in the radial direction, it is possible to smoothly guide the oil O flowing out from the through hole 31a of the shaft 31 to the outside in the radial direction. Further, by providing the first surface 55a in the second flow path portion 82, the oil flowing out radially outward from the through hole 31a can be reliably applied to the first surface 55a.
 図4に示すように、第1面55aは、径方向に対して軸方向に傾いて直線状に延びる平面状の傾斜面である。軸方向と直交する平面に対する第1面55aの傾斜角度θaは、後述する第2面55bの傾斜角度θbよりも大きい。そのため、第1面55aの径方向の寸法を比較的小さくしつつ、第1面55aの径方向外側の端部を軸方向においてロータコア32から離れた位置にすることができる。これにより、第1面55aによって第2面55bの軸方向位置を好適に調整しつつ、第1面55aが径方向に大きくなり過ぎることを抑制できる。したがって、第2面55bの傾斜角度θbを好適な角度としつつ、第1面55aによって第2面55bの軸方向位置および径方向位置を調整しやすい。また、外側開口31cから流出したオイルOを第1面55aに好適に当てやすく、第1面55aによってオイルOの流れをより好適に整えやすい。軸方向と直交する平面に対する第1面55aの傾斜角度θaは、例えば、5°以上、30°以下程度である。傾斜角度θaは、30°より大きく90°未満であってもよく、0°より大きく5°未満であってもよい。 As shown in FIG. 4, the first surface 55a is a planar inclined surface that extends linearly and is inclined in the axial direction with respect to the radial direction. The inclination angle θa of the first surface 55a with respect to a plane perpendicular to the axial direction is larger than the inclination angle θb of the second surface 55b, which will be described later. Therefore, the radial dimension of the first surface 55a can be made relatively small, and the radially outer end of the first surface 55a can be positioned away from the rotor core 32 in the axial direction. Thereby, while suitably adjusting the axial position of the second surface 55b using the first surface 55a, it is possible to prevent the first surface 55a from becoming too large in the radial direction. Therefore, while setting the inclination angle θb of the second surface 55b to a suitable angle, it is easy to adjust the axial and radial positions of the second surface 55b using the first surface 55a. Moreover, it is easy to apply the oil O flowing out from the outer opening 31c to the first surface 55a, and it is easy to adjust the flow of the oil O more suitably by the first surface 55a. The inclination angle θa of the first surface 55a with respect to the plane perpendicular to the axial direction is, for example, approximately 5° or more and 30° or less. The inclination angle θa may be greater than 30° and less than 90°, or may be greater than 0° and less than 5°.
 第1面55aが延びる方向における第1面55aの寸法は、第2面55bが延びる方向における第2面55bの寸法よりも小さい。第1面55aの径方向の寸法は、第2面55bの径方向の寸法よりも小さい。第1面55aの軸方向の寸法は、第2面55bの軸方向の寸法よりも小さい。第1面55aの径方向外側の端部は、軸方向において、第2面55bの径方向内側の端部と同じ位置に配置されている。 The dimension of the first surface 55a in the direction in which the first surface 55a extends is smaller than the dimension of the second surface 55b in the direction in which the second surface 55b extends. The radial dimension of the first surface 55a is smaller than the radial dimension of the second surface 55b. The axial dimension of the first surface 55a is smaller than the axial dimension of the second surface 55b. The radially outer end of the first surface 55a is located at the same position in the axial direction as the radially inner end of the second surface 55b.
 第3面55cは、第2面55bと第1面55aとを繋ぐ面である。第3面55cは、第1流路部81と第2流路部82との両方の間に設けられる。第3面55cは、軸方向と直交する平面に沿った平坦面である。そのため、第1面55aに当てることで整えたオイルOを第3面55cに沿って径方向外側に好適に流すことができる。これにより、第1面55aに当たった後のオイルOの流速を大きくしやすく、オイルOの流速が比較的大きい状態で第2面55bに沿ってオイルOを流すことができる。したがって、第2面55bからコイルエンド42aへと噴射されるオイルOの勢いを好適に大きくしやすく、より好適にコイルエンド42aにオイルOを供給できる。また、第2面55bの径方向内側の端部における軸方向位置を第1面55aの径方向外側の端部における軸方向位置と同じにしたまま、第3面55cに沿ってオイルOを径方向外側へと導くことができる。そのため、第1面55aによって調整された第2面55bの軸方向位置および径方向位置を変えずに、第2面55bまでオイルOを導くことができる。 The third surface 55c is a surface that connects the second surface 55b and the first surface 55a. The third surface 55c is provided between both the first flow path section 81 and the second flow path section 82. The third surface 55c is a flat surface along a plane perpendicular to the axial direction. Therefore, the oil O prepared by applying it to the first surface 55a can suitably flow radially outward along the third surface 55c. This makes it easy to increase the flow velocity of the oil O after hitting the first surface 55a, and allows the oil O to flow along the second surface 55b while the flow velocity of the oil O is relatively high. Therefore, it is easy to suitably increase the force of the oil O injected from the second surface 55b to the coil end 42a, and the oil O can be more suitably supplied to the coil end 42a. Further, while keeping the axial position of the radially inner end of the second surface 55b the same as the axial position of the radially outer end of the first surface 55a, the oil O is radially applied along the third surface 55c. It can be guided outward. Therefore, the oil O can be guided to the second surface 55b without changing the axial and radial positions of the second surface 55b adjusted by the first surface 55a.
 第3面55cは、径方向に延びている。第3面55cの径方向内側の端部は、第1面55aの径方向外側の端部に繋がっている。第3面55cの径方向外側の端部は、第2面55bの径方向内側の端部に繋がっている。第3面55cが延びる方向における第3面55cの寸法は、第1面55aが延びる方向における第1面55aの寸法よりも大きく、第2面55bが延びる方向における第2面55bの寸法よりも小さい。第3面55cの径方向の寸法は、第1面55aの径方向の寸法よりも大きく、第2面55bの径方向の寸法よりも小さい。 The third surface 55c extends in the radial direction. The radially inner end of the third surface 55c is connected to the radially outer end of the first surface 55a. The radially outer end of the third surface 55c is connected to the radially inner end of the second surface 55b. The dimension of the third surface 55c in the direction in which the third surface 55c extends is larger than the dimension of the first surface 55a in the direction in which the first surface 55a extends, and the dimension of the second surface 55b in the direction in which the second surface 55b extends. small. The radial dimension of the third surface 55c is larger than the radial dimension of the first surface 55a and smaller than the radial dimension of the second surface 55b.
 図5に示すように、エンドプレート50aは、複数の溝部55を有する。複数の溝部55は、周方向に等間隔に配置されている。そのため、複数の溝部55から径方向外側に噴射されるオイルOを、コイルエンド42aに対して周方向にバランスよく供給できる。これにより、コイルエンド42aを全周に亘って好適に冷却しやすい。本実施形態において溝部55は、4つ設けられている。4つの溝部55は、周方向に90°間隔で配置されている。4つの溝部55のそれぞれにおける径方向内側の端部には、4つの貫通孔31aの外側開口31cがそれぞれ繋がっている。 As shown in FIG. 5, the end plate 50a has a plurality of grooves 55. The plurality of groove portions 55 are arranged at equal intervals in the circumferential direction. Therefore, the oil O injected radially outward from the plurality of grooves 55 can be supplied to the coil end 42a in a well-balanced manner in the circumferential direction. Thereby, the coil end 42a can be easily cooled suitably over the entire circumference. In this embodiment, four groove portions 55 are provided. The four groove portions 55 are arranged at 90° intervals in the circumferential direction. The radially inner end of each of the four groove portions 55 is connected to the outer opening 31c of the four through holes 31a, respectively.
 図7は、エンドプレート50aを第2側面52側から見た斜視図である。
 図7に示すように、エンドプレート50aの第2側面52には、挿入孔を囲む第3凹部58と、第3凹部58の径方向外側に位置し周方向に沿って延びる凹溝部59と、が設けられる。第3凹部58および凹溝部59は、第2側面52から軸方向一方側(-Y側)に凹む。第3凹部58は、軸方向から見て中心軸線を中心とする円形である。また、凹溝部59は、中心軸線Jを中心として円環状に延びる。なお、凹溝部59は、周方向に沿って延びていれば必ずしも円環状でなくてもよい。本実施形態によれば、エンドプレート50aをより軽量化できる。
FIG. 7 is a perspective view of the end plate 50a viewed from the second side surface 52 side.
As shown in FIG. 7, the second side surface 52 of the end plate 50a includes a third recess 58 surrounding the insertion hole, and a recess groove 59 located on the radially outer side of the third recess 58 and extending along the circumferential direction. is provided. The third recess 58 and the groove 59 are recessed from the second side surface 52 toward one side in the axial direction (−Y side). The third recess 58 has a circular shape centered on the central axis when viewed from the axial direction. Further, the groove portion 59 extends in an annular shape centered on the central axis J. Note that the groove portion 59 does not necessarily have to be annular as long as it extends along the circumferential direction. According to this embodiment, the weight of the end plate 50a can be further reduced.
 図5に示すように、シャフト31の外周面は、軸方向から見て円形である。また、エンドプレート50aの挿入孔50hは、軸方向から見て円形である。挿入孔50hの内縁には、径方向内側に突出する複数(本実施形態では2つ)の突起部50kが設けられる。また、シャフト31の外周面には、突起部50kが挿入される複数(本実施形態では2つ)の収容凹部31kが設けられる。また、収容凹部31kは、周方向において貫通孔31aの間に配置される。 As shown in FIG. 5, the outer peripheral surface of the shaft 31 is circular when viewed from the axial direction. Furthermore, the insertion hole 50h of the end plate 50a is circular when viewed from the axial direction. A plurality of (two in this embodiment) protrusions 50k that protrude radially inward are provided on the inner edge of the insertion hole 50h. Further, the outer circumferential surface of the shaft 31 is provided with a plurality of (two in this embodiment) accommodation recesses 31k into which the projections 50k are inserted. Moreover, the accommodation recess 31k is arranged between the through holes 31a in the circumferential direction.
 収容凹部31kは、径方向内側に凹む。本実施形態において、収容凹部31kは、軸方向に沿って延びる溝状である。突起部50kが収容凹部31kに挿入されることで、エンドプレート50aがシャフト31に対して周方向に相対移動することが抑制される。これにより、エンドプレート50aをシャフト31に対して周方向に精度よく位置決めすることができる。したがって、貫通孔31aの外側開口31cの周方向位置を、溝部55の周方向位置に好適に合わせることができる。そのため、外側開口31cから流出したオイルOを溝部55内に好適に流入させることができる。 The accommodation recess 31k is recessed radially inward. In this embodiment, the accommodation recess 31k has a groove shape extending along the axial direction. By inserting the protrusion 50k into the accommodation recess 31k, relative movement of the end plate 50a with respect to the shaft 31 in the circumferential direction is suppressed. Thereby, the end plate 50a can be precisely positioned with respect to the shaft 31 in the circumferential direction. Therefore, the circumferential position of the outer opening 31c of the through hole 31a can be suitably adjusted to the circumferential position of the groove portion 55. Therefore, the oil O flowing out from the outer opening 31c can suitably flow into the groove portion 55.
 なお、このような効果は、シャフト31の外周面に突起部が設けられ、挿入孔の内縁に収容凹部が設けられていても得られる効果である。すなわち、シャフト31の外周面、又は前記挿入孔の内縁のうち、何れか一方には他方側に突出する複数の突起部が設けられ、他方には突起部が挿入される複数の収容凹部が設けられていればよい。 Note that such an effect can be obtained even if a protrusion is provided on the outer peripheral surface of the shaft 31 and a housing recess is provided on the inner edge of the insertion hole. That is, either the outer peripheral surface of the shaft 31 or the inner edge of the insertion hole is provided with a plurality of protrusions that protrude toward the other side, and the other is provided with a plurality of accommodation recesses into which the protrusions are inserted. It would be fine if it was.
 図2に示すように、第2エンドプレート50bは、ロータコア32の右側に位置する第1エンドプレート50aと同様の構成を有する。本実施形態において、第2エンドプレート50bは、第1エンドプレート50aと同形状とすることができる。この場合、第2エンドプレート50bの溝部55の形状が、定常回転方向+θに対し、第1エンドプレート50aと反転した構成となる。このため、第1エンドプレート50aが、定常回転時に効率的にオイルOを拡散する一方で、第2エンドプレート50bが、定常回転の反対方向の回転時に効率的にオイルOを拡散できる。 As shown in FIG. 2, the second end plate 50b has the same configuration as the first end plate 50a located on the right side of the rotor core 32. In this embodiment, the second end plate 50b can have the same shape as the first end plate 50a. In this case, the shape of the groove portion 55 of the second end plate 50b is reversed from that of the first end plate 50a with respect to the steady rotation direction +θ. Therefore, the first end plate 50a can efficiently diffuse the oil O during steady rotation, while the second end plate 50b can efficiently diffuse the oil O during rotation in the opposite direction to the steady rotation.
 なお、第2エンドプレート50bとして、第1エンドプレート50aと左右対称形状としてもよい。この場合、第2エンドプレート50bの溝部55の形状が、定常回転方向+θに対し第1エンドプレート50aと同様の構成となる。したがって、第2エンドプレート50bは、第1エンドプレート50aと同様に、定常回転時に効率的にオイルOを拡散できる。 Note that the second end plate 50b may have a shape that is bilaterally symmetrical to the first end plate 50a. In this case, the shape of the groove portion 55 of the second end plate 50b has the same configuration as that of the first end plate 50a in the steady rotation direction +θ. Therefore, like the first end plate 50a, the second end plate 50b can efficiently diffuse the oil O during steady rotation.
 図1に示すように、本実施形態において駆動装置100には、冷媒としてのオイルOが循環する冷媒流路90が設けられている。冷媒流路90は、モータハウジング20の内部とギヤハウジング61の内部とに跨って設けられている。冷媒流路90は、ギヤハウジング61内に貯留されたオイルOが回転電機10に供給されて再びギヤハウジング61内に戻る経路である。冷媒流路90には、ポンプ71と、クーラ72と、冷媒供給部94と、が設けられている。冷媒流路90は、第1冷媒流路91と、第2冷媒流路92と、第3冷媒流路93と、冷媒供給部94と、を有する。 As shown in FIG. 1, in this embodiment, the drive device 100 is provided with a refrigerant flow path 90 through which oil O as a refrigerant circulates. The coolant flow path 90 is provided across the inside of the motor housing 20 and the inside of the gear housing 61. The coolant flow path 90 is a path through which oil O stored in the gear housing 61 is supplied to the rotating electrical machine 10 and returns to the gear housing 61 again. The refrigerant flow path 90 is provided with a pump 71, a cooler 72, and a refrigerant supply section 94. The refrigerant flow path 90 includes a first refrigerant flow path 91 , a second refrigerant flow path 92 , a third refrigerant flow path 93 , and a refrigerant supply section 94 .
 第1冷媒流路91、第2冷媒流路92、および第3冷媒流路93は、例えば、ギヤハウジング61の壁部に設けられている。第1冷媒流路91は、ギヤハウジング61の内部のうちオイルOが貯留されている部分とポンプ71とを繋いでいる。第2冷媒流路92は、ポンプ71とクーラ72とを繋いでいる。第3冷媒流路93は、クーラ72と冷媒供給部94の内部とを繋いでいる。本実施形態において第3冷媒流路93は、冷媒供給部94の軸方向他方側(+Y側)の端部に繋がっている。 The first refrigerant flow path 91, the second refrigerant flow path 92, and the third refrigerant flow path 93 are provided in the wall of the gear housing 61, for example. The first refrigerant flow path 91 connects the pump 71 with a portion of the inside of the gear housing 61 where oil O is stored. The second refrigerant flow path 92 connects the pump 71 and the cooler 72. The third refrigerant flow path 93 connects the cooler 72 and the inside of the refrigerant supply section 94 . In this embodiment, the third refrigerant flow path 93 is connected to the end of the refrigerant supply section 94 on the other axial side (+Y side).
 冷媒供給部94は、モータハウジング20の内部に設けられている。本実施形態において冷媒供給部94は、軸方向に延びる管状である。言い換えれば、本実施形態において冷媒供給部94は、軸方向に延びるパイプである。冷媒供給部94の軸方向両端部は、モータハウジング20に支持されている。冷媒供給部94の軸方向他方側(+Y側)の端部は、例えば、隔壁部22に支持されている。冷媒供給部94の軸方向一方側(-Y側)の端部は、例えば、蓋部23に支持されている。冷媒供給部94は、ステータ40の径方向外側に位置する。本実施形態において冷媒供給部94は、ステータ40の上側に位置する。 The refrigerant supply section 94 is provided inside the motor housing 20. In this embodiment, the refrigerant supply section 94 has a tubular shape extending in the axial direction. In other words, in this embodiment, the refrigerant supply section 94 is a pipe extending in the axial direction. Both axial ends of the refrigerant supply section 94 are supported by the motor housing 20. The other end of the refrigerant supply section 94 in the axial direction (+Y side) is supported by the partition wall section 22, for example. One axial end (-Y side) of the refrigerant supply section 94 is supported by the lid section 23, for example. Refrigerant supply section 94 is located on the radially outer side of stator 40 . In this embodiment, the refrigerant supply section 94 is located above the stator 40.
 冷媒供給部94は、ステータ40に冷媒としてのオイルOを供給する供給口94aを有する。本実施形態において供給口94aは、冷媒供給部94内に流入したオイルOの一部を冷媒供給部94の外部に噴射させる噴射口である。供給口94aは、複数設けられている。供給口94aは、軸方向に間隔を空けて複数設けられている。複数の供給口94aの軸方向位置は、ステータコア41の軸方向位置に含まれている。複数の供給口94aは、コイルエンド42aよりも軸方向他方側(+Y側)で、かつ、コイルエンド42bよりも軸方向一方側(-Y側)に位置する。 The refrigerant supply section 94 has a supply port 94a that supplies oil O as a refrigerant to the stator 40. In the present embodiment, the supply port 94 a is an injection port that injects a part of the oil O that has flowed into the refrigerant supply section 94 to the outside of the refrigerant supply section 94 . A plurality of supply ports 94a are provided. A plurality of supply ports 94a are provided at intervals in the axial direction. The axial positions of the plurality of supply ports 94a are included in the axial position of the stator core 41. The plurality of supply ports 94a are located on the other axial side (+Y side) of the coil end 42a and on one axial side (−Y side) of the coil end 42b.
 複数の供給口94aは、ステータコア41に向けて開口している。そのため、複数の供給口94aから噴射されたオイルOは、ステータコア41に供給される。これにより、オイルOによってステータコア41を冷却できる。ここで、ステータコア41に供給されたオイルOは、ステータコア41の表面を伝って、各コイルエンド42a,42bのうち軸方向においてステータコア41に比較的近い部分に到達しやすい。したがって、供給口94aからステータ40に供給されるオイルOによってコイルエンド42a,42bのうち軸方向においてステータコア41に比較的近い部分を冷却しやすい。そのため、仮想線ILとコイルエンド42aとが交差する位置がステータコア41から軸方向に比較的遠く離れた位置であり、溝部55,57から各コイルエンド42a,42bのうちステータコア41から軸方向に比較的離れた位置にオイルOが噴射されやすい場合でも、コイルエンド42a,42bのうち軸方向においてステータコア41に比較的近い部分が冷却されにくくなることを抑制できる。したがって、コイルエンド42a,42bの全体に冷媒としてのオイルOを好適に供給しやすくできる。 The plurality of supply ports 94a are open toward the stator core 41. Therefore, the oil O injected from the plurality of supply ports 94a is supplied to the stator core 41. Thereby, the stator core 41 can be cooled by the oil O. Here, the oil O supplied to the stator core 41 easily travels along the surface of the stator core 41 and reaches a portion of each coil end 42a, 42b that is relatively close to the stator core 41 in the axial direction. Therefore, the portions of the coil ends 42a and 42b that are relatively close to the stator core 41 in the axial direction are easily cooled by the oil O supplied to the stator 40 from the supply port 94a. Therefore, the position where the virtual line IL and the coil end 42a intersect is a position relatively far away from the stator core 41 in the axial direction, and the grooves 55 and 57 are compared with each other in the axial direction from the stator core 41 among the coil ends 42a and 42b. Even if the oil O is likely to be injected to an off-target position, it is possible to prevent a portion of the coil ends 42a, 42b that is relatively close to the stator core 41 in the axial direction from becoming difficult to cool. Therefore, oil O as a refrigerant can be easily supplied to the entire coil ends 42a and 42b.
 本実施形態において冷媒供給部94は、コイルエンド42a,42bに向かって開口する供給口、およびコイルエンド42a,42bに直接的にオイルOを供給する供給口を有しない。これにより、冷媒供給部94からステータコア41へと供給されるオイルOの量を好適に多くすることができる。本実施形態では、シャフト31の空隙部37内からエンドプレート50a,50bを介してコイルエンド42a,42bへとオイルOを好適に供給できるため、冷媒供給部94からコイルエンド42a,42bへとオイルOが供給されなくても、コイルエンド42a,42bの冷却が不十分となることを抑制できる。なお、冷媒供給部94は、積極的にコイルエンド42a,42bへとオイルOを供給する供給口を有していないが、上述したように、冷媒供給部94からステータコア41へと供給されたオイルOの一部がコイルエンド42a,42bへと流れることは有り得る。 In this embodiment, the refrigerant supply section 94 does not have a supply port that opens toward the coil ends 42a, 42b, and a supply port that directly supplies oil O to the coil ends 42a, 42b. Thereby, the amount of oil O supplied from the refrigerant supply section 94 to the stator core 41 can be suitably increased. In this embodiment, since the oil O can be suitably supplied from the cavity 37 of the shaft 31 to the coil ends 42a, 42b via the end plates 50a, 50b, the oil O can be supplied from the refrigerant supply section 94 to the coil ends 42a, 42b. Even if O is not supplied, insufficient cooling of the coil ends 42a and 42b can be suppressed. Although the refrigerant supply section 94 does not have a supply port that actively supplies oil O to the coil ends 42a and 42b, as described above, the oil supplied from the refrigerant supply section 94 to the stator core 41 It is possible that some of the O flows to the coil ends 42a, 42b.
 ポンプ71が駆動されると、ギヤハウジング61内に貯留されたオイルOが第1冷媒流路91を通って吸い上げられ、第2冷媒流路92を通ってクーラ72内に流入する。クーラ72内に流入したオイルOは、クーラ72内で冷却された後、第3冷媒流路93を通って、冷媒供給部94の内部へと流れる。冷媒供給部94内に流入したオイルOは、供給口94aから噴射されて、ステータ40に供給される。 When the pump 71 is driven, the oil O stored in the gear housing 61 is sucked up through the first refrigerant flow path 91 and flows into the cooler 72 through the second refrigerant flow path 92. The oil O that has flowed into the cooler 72 is cooled within the cooler 72 and then flows into the refrigerant supply section 94 through the third refrigerant flow path 93 . The oil O that has flowed into the refrigerant supply section 94 is injected from the supply port 94a and supplied to the stator 40.
 供給口94aからステータ40に供給されたオイルOは、ステータ40から熱を奪う。ステータ40を冷却したオイルOは、下側に落下して、モータハウジング20内の下部領域に溜まる。モータハウジング20内の下部領域に溜ったオイルOは、隔壁部22に設けられた隔壁開口22aを介してギヤハウジング61内に戻る。 The oil O supplied to the stator 40 from the supply port 94a removes heat from the stator 40. The oil O that has cooled the stator 40 falls downward and accumulates in the lower region within the motor housing 20. The oil O accumulated in the lower region within the motor housing 20 returns into the gear housing 61 through the partition opening 22a provided in the partition wall portion 22.
 以上のように本実施形態では、リングギヤ63aによってかき上げられた後にリザーバ65を介してシャフト31の空隙部37内に流入して溝部55,57からコイルエンド42a,42bにオイルOを供給する経路と、冷媒流路90によってステータ40にオイルOを供給する経路との、2つの経路によって回転電機10を冷却することができる。 As described above, in this embodiment, the oil O is swept up by the ring gear 63a and then flows into the cavity 37 of the shaft 31 via the reservoir 65, and supplies the oil O from the grooves 55 and 57 to the coil ends 42a and 42b. The rotating electrical machine 10 can be cooled by two routes: and a route for supplying oil O to the stator 40 through the refrigerant flow path 90.
 <変形例>
 次に、上述の実施形態のロータ30に採用可能な変形例のエンドプレートについて説明する。なお、以下に説明する各変形例の説明において、すでに説明した実施形態又は変形例と同一態様の構成要素については、同一符号を付し、その説明を省略する。
<Modified example>
Next, a modified end plate that can be employed in the rotor 30 of the above-described embodiment will be described. In addition, in the description of each modified example described below, the same reference numerals are given to the same components as those of the already described embodiment or modified example, and the description thereof will be omitted.
 (変形例1)
 図8は、変形例1のエンドプレート150を軸方向に見た図である。
 上述の実施形態と同様に、本変形例のエンドプレート150の第1側面151には、溝部155が設けられる。本変形例の溝部155は、第1流路部181と第2流路部182と第3流路部183と第1分岐部189と第1端部156と第2端部157と第3端部158とを有する。溝部155は、第1端部156において、シャフト31の貫通孔31aに繋がる。溝部155内には、第1端部156からオイルOが流入する。また、溝部155は、第2端部157、および第3端部158において、内部のオイルOを径方向外側に飛散させる。
(Modification 1)
FIG. 8 is an axial view of the end plate 150 of Modification 1.
Similar to the embodiment described above, a groove 155 is provided on the first side surface 151 of the end plate 150 of this modification. The groove portion 155 of this modification includes a first flow path portion 181, a second flow path portion 182, a third flow path portion 183, a first branch portion 189, a first end portion 156, a second end portion 157, and a third end. 158. The groove portion 155 is connected to the through hole 31a of the shaft 31 at the first end portion 156. Oil O flows into the groove 155 from the first end 156 . Further, the groove portion 155 scatters the internal oil O outward in the radial direction at the second end portion 157 and the third end portion 158.
 第1分岐部189は、第1端部156より径方向外側、第2端部157より径方向内側、かつ第3端部158より径方向内側に位置する。第1流路部181、第2流路部182、および第3流路部183は、第1分岐部189において互いに接続されている。第1分岐部189は、第1流路部181の上流側の端部、第3流路部183の上流側の端部、かつ第2流路部182の下流側の端部に位置する。第1分岐部189は、第1流路部181と第2流路部182との境界部に位置する。また、第1分岐部189は、第1流路部181と第3流路部183との境界部に位置する。オイルOは、第2流路部182から第1分岐部189に達し、第1分岐部189で分岐して第1流路部181と第3流路部183とにそれぞれ流れる。第1流路部181と第2流路部182と第3流路部183は、軸方向から見て、それぞれ直線状に延びる。 The first branch portion 189 is located radially outside the first end 156 , radially inside the second end 157 , and radially inside the third end 158 . The first flow path portion 181 , the second flow path portion 182 , and the third flow path portion 183 are connected to each other at the first branch portion 189 . The first branch portion 189 is located at the upstream end of the first flow path portion 181 , the upstream end of the third flow path portion 183 , and the downstream end of the second flow path portion 182 . The first branch portion 189 is located at the boundary between the first flow path portion 181 and the second flow path portion 182. Further, the first branch portion 189 is located at the boundary between the first flow path portion 181 and the third flow path portion 183. The oil O reaches the first branch section 189 from the second flow path section 182, branches at the first branch section 189, and flows into the first flow path section 181 and the third flow path section 183, respectively. The first flow path section 181, the second flow path section 182, and the third flow path section 183 each extend linearly when viewed from the axial direction.
 第2流路部182は、第1流路部181、および第3流路部183の上流側で第1流路部181、および第3流路部183に繋がる。第2流路部182は、軸方向から見て、径方向に延びる。第2流路部182には、第1端部156が設けられ、シャフト31の貫通孔31aに繋がる。第2流路部182は、貫通孔31aから流入したオイルOを径方向外側に導く。 The second flow path section 182 is connected to the first flow path section 181 and the third flow path section 183 on the upstream side of the first flow path section 181 and the third flow path section 183. The second flow path portion 182 extends in the radial direction when viewed from the axial direction. The second flow path portion 182 is provided with a first end portion 156 and is connected to the through hole 31a of the shaft 31. The second flow path portion 182 guides the oil O flowing from the through hole 31a to the outside in the radial direction.
 第1流路部181は、第1分岐部189において第2流路部182に繋がる。第1流路部181は、径方向に対し傾く方向に延びる。本変形例において、第1流路部181と第2流路部182とは、軸方向から見て、互いに直交する。第2端部157は、第1流路部181に位置する。第2端部157は、第1分岐部189よりも径方向外側に配置される。 The first flow path portion 181 is connected to the second flow path portion 182 at a first branch portion 189. The first flow path portion 181 extends in a direction inclined with respect to the radial direction. In this modification, the first flow path section 181 and the second flow path section 182 are orthogonal to each other when viewed from the axial direction. The second end portion 157 is located in the first flow path portion 181 . The second end portion 157 is arranged radially outward from the first branch portion 189.
 第3流路部183は、第1分岐部189において第2流路部182に繋がる。第3流路部183は、第1分岐部189から分岐する。第3流路部183は、軸方向から見て、径方向に延びる。本変形例において、第3流路部183と第2流路部182とは、軸方向から見て、同一直線状に連続して延びる。第3端部158は、第3流路部183に位置する。第3端部158は、第1分岐部189よりも径方向外側に配置される。 The third flow path portion 183 is connected to the second flow path portion 182 at the first branch portion 189. The third flow path portion 183 branches from the first branch portion 189 . The third flow path portion 183 extends in the radial direction when viewed from the axial direction. In this modification, the third flow path section 183 and the second flow path section 182 continuously extend in the same straight line when viewed from the axial direction. The third end portion 158 is located in the third flow path portion 183. The third end portion 158 is arranged radially outward from the first branch portion 189.
 本変形例によれば、溝部155に第1分岐部189が設けられて、第1分岐部189で分岐したオイルOを第2端部157および第3端部158からオイルOを飛散させることができる。このため、第2端部157および第3端部158の開口方向を周方向において異なる方向とすることができ、ロータ30が何れの方向に回転する場合であってもオイルOを適切に飛散させることができる。さらに、第3流路部183が、第1流路部181と直線状に繋がため、第3端部158に達するまでオイルOが溝部155の内部で減速しがたい。このため、第3端部158からオイルOを高速で飛散させることができる。 According to this modification, the first branch part 189 is provided in the groove part 155, and the oil O branched at the first branch part 189 can be scattered from the second end part 157 and the third end part 158. can. Therefore, the opening directions of the second end 157 and the third end 158 can be set in different directions in the circumferential direction, and the oil O can be appropriately scattered no matter which direction the rotor 30 rotates. be able to. Furthermore, since the third flow path portion 183 is linearly connected to the first flow path portion 181, it is difficult for the oil O to decelerate inside the groove portion 155 until it reaches the third end portion 158. Therefore, the oil O can be scattered at high speed from the third end portion 158.
 (変形例2)
 図9は、変形例2のエンドプレート250を軸方向に見た図である。
 上述の実施形態と同様に、本変形例のエンドプレート250の第1側面251には、溝部255が設けられる。本変形例の溝部255は、第1流路部281と第2流路部282と第3流路部283と境界部288と第1分岐部289と第1端部256と第2端部257と第3端部258とを有する。溝部255は、第1端部256において、シャフト31の貫通孔31aに繋がる。溝部255内には、第1端部256からオイルOが流入する。また、溝部255は、第2端部257、および第3端部258において、内部のオイルOを径方向外側に飛散させる。
(Modification 2)
FIG. 9 is an axial view of the end plate 250 of Modification 2. As shown in FIG.
Similar to the embodiment described above, a groove 255 is provided on the first side surface 251 of the end plate 250 of this modification. The groove portion 255 of this modification includes a first flow path portion 281 , a second flow path portion 282 , a third flow path portion 283 , a boundary portion 288 , a first branch portion 289 , a first end portion 256 , a second end portion 257 and a third end 258. The groove portion 255 is connected to the through hole 31a of the shaft 31 at the first end portion 256. Oil O flows into the groove 255 from the first end 256 . Further, the groove portion 255 scatters the internal oil O outward in the radial direction at the second end portion 257 and the third end portion 258.
 境界部288は、第1流路部281と第2流路部282との接続部分に位置する。境界部288は、第1流路部281の上流側の端部、かつ第2流路部282の下流側の端部に位置する。 The boundary portion 288 is located at the connection portion between the first flow path portion 281 and the second flow path portion 282. The boundary portion 288 is located at the upstream end of the first flow path portion 281 and at the downstream end of the second flow path portion 282.
 第1分岐部289は、第1端部256より径方向外側、第2端部257より径方向内側、かつ第3端部258より径方向内側に位置する。第3流路部283は、第1分岐部289において第1流路部281から分岐する。第1分岐部289は、第1流路部281の途中、かつ第3流路部283の上流側の端部に位置する。 The first branch portion 289 is located radially outside the first end 256 , radially inside the second end 257 , and radially inside the third end 258 . The third flow path portion 283 branches from the first flow path portion 281 at a first branch portion 289 . The first branch portion 289 is located in the middle of the first flow path portion 281 and at the upstream end of the third flow path portion 283.
 オイルOは、第2流路部282から境界部288に達し第1流路部281に流入する。また、第1流路部281を流れるオイルOの一部は、第1分岐部289に達し、一部が第3流路部283に分岐して流れる。第1流路部281と第2流路部282と第3流路部283は、軸方向から見て、それぞれ直線状に延びる。 The oil O reaches the boundary portion 288 from the second flow path portion 282 and flows into the first flow path portion 281. Further, a portion of the oil O flowing through the first flow path portion 281 reaches the first branch portion 289, and a portion of the oil O flows through the third flow path portion 283. The first flow path portion 281, the second flow path portion 282, and the third flow path portion 283 each extend linearly when viewed from the axial direction.
 第2流路部282は、第1流路部281、および第3流路部283の上流側に位置し、第1流路部281に繋がる。第2流路部282は、軸方向から見て、径方向に延びる。第2流路部282には、第1端部256が設けられ、シャフト31の貫通孔31aに繋がる。第2流路部282は、貫通孔31aから流入したオイルOを径方向外側に導く。 The second flow path section 282 is located upstream of the first flow path section 281 and the third flow path section 283, and is connected to the first flow path section 281. The second flow path portion 282 extends in the radial direction when viewed from the axial direction. The second flow path portion 282 is provided with a first end portion 256 and is connected to the through hole 31a of the shaft 31. The second flow path portion 282 guides the oil O flowing from the through hole 31a to the outside in the radial direction.
 第1流路部281は、境界部288において第2流路部282に繋がる。第1流路部281は、径方向に対し傾く方向に延びる。本変形例において、第1流路部281と第2流路部282とは、軸方向から見て、互いに直交する。第2端部257は、第1流路部281に位置する。第2端部257は、第1分岐部289よりも径方向外側に配置される。 The first flow path portion 281 is connected to the second flow path portion 282 at a boundary portion 288. The first flow path portion 281 extends in a direction inclined with respect to the radial direction. In this modification, the first flow path section 281 and the second flow path section 282 are orthogonal to each other when viewed from the axial direction. The second end portion 257 is located in the first flow path portion 281 . The second end portion 257 is arranged radially outward from the first branch portion 289.
 第3流路部283は、第1分岐部289において第1流路部281から分岐する。第3流路部283は、径方向に対し傾く方向に延びる。本変形例において、第1流路部281と第3流路部283とは、軸方向から見て、互いに直交する。第3端部258は、第3流路部283に位置する。第3端部258は、第1分岐部289よりも径方向外側に配置される。 The third flow path portion 283 branches from the first flow path portion 281 at a first branch portion 289 . The third flow path portion 283 extends in a direction inclined with respect to the radial direction. In this modification, the first flow path section 281 and the third flow path section 283 are orthogonal to each other when viewed from the axial direction. The third end portion 258 is located in the third flow path portion 283. The third end portion 258 is arranged radially outward from the first branch portion 289.
 本変形例によれば、溝部255に第1分岐部289が設けられて、第1分岐部289で分岐したオイルOを第2端部257および第3端部258から分散して飛散できる。このため、オイルOを飛散するための複数の端部(第2端部257および第3端部258)の開口方向を周方向において異なる方向とすることができ、ロータ30が何れの方向に回転する場合であってもオイルOを適切に飛散させることができる。 According to this modification, the first branch part 289 is provided in the groove part 255, and the oil O branched at the first branch part 289 can be dispersed and scattered from the second end part 257 and the third end part 258. Therefore, the opening directions of the plurality of ends (second end 257 and third end 258) for scattering the oil O can be set in different directions in the circumferential direction, and the rotor 30 can rotate in either direction. Even in this case, the oil O can be appropriately scattered.
 (変形例3)
 図10は、変形例3のエンドプレート350を軸方向に見た図である。
 上述の実施形態と同様に、本変形例のエンドプレート350の第1側面351には、溝部355が設けられる。本変形例の溝部355は、第1流路部381と第2流路部382と第3流路部383と第1分岐部389と第1端部356と第2端部357と第3端部358とを有する。溝部355は、第1端部356において、シャフト31の貫通孔31aに繋がる。溝部355内には、第1端部356からオイルOが流入する。また、溝部355は、第2端部357、および第3端部358において、内部のオイルOを径方向外側に飛散させる。
(Modification 3)
FIG. 10 is an axial view of the end plate 350 of Modification 3.
Similar to the embodiment described above, a groove 355 is provided on the first side surface 351 of the end plate 350 of this modification. The groove portion 355 of this modification includes a first flow path portion 381, a second flow path portion 382, a third flow path portion 383, a first branch portion 389, a first end portion 356, a second end portion 357, and a third end. 358. The groove portion 355 is connected to the through hole 31a of the shaft 31 at a first end portion 356. Oil O flows into the groove portion 355 from the first end portion 356 . Further, the groove portion 355 scatters the internal oil O outward in the radial direction at the second end portion 357 and the third end portion 358.
 第1分岐部389は、第1端部356より径方向外側、第2端部357より径方向内側、かつ第3端部358より径方向内側に位置する。第1流路部381、第2流路部382、および第3流路部383は、第1分岐部389において互いに接続されている。第1分岐部389は、第1流路部381の上流側の端部、第3流路部383の上流側の端部、かつ第2流路部382の下流側の端部に位置する。第1分岐部389は、第1流路部381と第2流路部382との境界部に位置する。また、第1分岐部389は、第1流路部381と第3流路部383との境界部に位置する。オイルOは、第2流路部382から第1分岐部389に達し、第1分岐部389で分岐して第1流路部381と第3流路部383とにそれぞれ流れる。第1流路部381と第2流路部382と第3流路部383は、軸方向から見て、それぞれ直線状に延びる。 The first branch portion 389 is located radially outside the first end 356 , radially inside the second end 357 , and radially inside the third end 358 . The first flow path portion 381 , the second flow path portion 382 , and the third flow path portion 383 are connected to each other at the first branch portion 389 . The first branch portion 389 is located at the upstream end of the first flow path portion 381, the upstream end of the third flow path portion 383, and the downstream end of the second flow path portion 382. The first branch portion 389 is located at the boundary between the first flow path portion 381 and the second flow path portion 382. Further, the first branch portion 389 is located at the boundary between the first flow path portion 381 and the third flow path portion 383. The oil O reaches the first branch section 389 from the second flow path section 382, branches at the first branch section 389, and flows into the first flow path section 381 and the third flow path section 383, respectively. The first flow path portion 381, the second flow path portion 382, and the third flow path portion 383 each extend linearly when viewed from the axial direction.
 第2流路部382は、第1流路部381、および第3流路部383の上流側で第1流路部381、および第3流路部383に繋がる。第2流路部382は、軸方向から見て、径方向に延びる。第2流路部382には、第1端部356が設けられ、シャフト31の貫通孔31aに繋がる。第2流路部382は、貫通孔31aから流入したオイルOを径方向外側に導く。 The second flow path section 382 is connected to the first flow path section 381 and the third flow path section 383 on the upstream side of the first flow path section 381 and the third flow path section 383. The second flow path portion 382 extends in the radial direction when viewed from the axial direction. The second flow path portion 382 is provided with a first end portion 356 and is connected to the through hole 31a of the shaft 31. The second flow path portion 382 guides the oil O flowing from the through hole 31a to the outside in the radial direction.
 第1流路部381は、第1分岐部389において第2流路部382に繋がる。第1流路部381は、径方向に対し傾く方向に延びる。本変形例において、第1流路部381と第2流路部382とは、軸方向から見て、互いに直交する。第2端部357は、第1流路部381に位置する。第2端部357は、第1分岐部389よりも径方向外側に配置される。 The first flow path portion 381 is connected to the second flow path portion 382 at a first branch portion 389. The first flow path portion 381 extends in a direction inclined with respect to the radial direction. In this modification, the first flow path section 381 and the second flow path section 382 are orthogonal to each other when viewed from the axial direction. The second end portion 357 is located in the first flow path portion 381 . The second end portion 357 is disposed radially outward from the first branch portion 389.
 第3流路部383は、第1分岐部389において第2流路部382に繋がる。第3流路部383は、第1分岐部389から分岐する。第3流路部383は、径方向に対し傾く方向に延びる。本変形例において、第1流路部381と第3流路部383とは、軸方向から見て、同一直線状に連続して延びる。第3端部358は、第3流路部383に位置する。第3端部358は、第1分岐部389よりも径方向外側に配置される。 The third flow path portion 383 is connected to the second flow path portion 382 at the first branch portion 389. The third flow path portion 383 branches from the first branch portion 389 . The third flow path portion 383 extends in a direction inclined with respect to the radial direction. In this modification, the first flow path portion 381 and the third flow path portion 383 continuously extend in the same straight line when viewed from the axial direction. The third end portion 358 is located in the third flow path portion 383. The third end portion 358 is disposed radially outward from the first branch portion 389.
 本変形例において、第1流路部381と第3流路部383とは、ともに径方向に対し傾く方向に延びるが、傾く方向が周方向において逆側である。このため、オイルOを径方向外側に飛散させる第2端部357と第3端部358とは、第1分岐部389に対し周方向の反対側に配置される。すなわち、本変形例によれば、オイルOを飛散するための複数の端部(第2端部357および第3端部358)の開口方向を周方向において異なる方向とすることができ、ロータ30が何れの方向に回転する場合であってもオイルOを適切に飛散させることができる。 In this modification, the first flow path portion 381 and the third flow path portion 383 both extend in a direction inclined with respect to the radial direction, but the directions of inclination are on opposite sides in the circumferential direction. Therefore, the second end 357 and the third end 358 that scatter the oil O radially outward are disposed on the opposite side of the first branch 389 in the circumferential direction. That is, according to this modification, the opening directions of the plurality of ends (the second end 357 and the third end 358) for scattering the oil O can be set in different directions in the circumferential direction, and the rotor 30 The oil O can be appropriately scattered no matter which direction the is rotated.
 (変形例4)
 図11は、変形例4のエンドプレート450を軸方向に見た図である。
 上述の実施形態と同様に、本変形例のエンドプレート450の第1側面451には、溝部455が設けられる。本変形例の溝部455は、第1流路部481と第2流路部482と第3流路部483と第1分岐部489と第1端部456と第2端部457と第3端部458とを有する。溝部455は、第1端部456において、シャフト31の貫通孔31aに繋がる。溝部455内には、第1端部456からオイルOが流入する。また、溝部455は、第2端部457、および第3端部458において、内部のオイルOを径方向外側に飛散させる。
(Modification 4)
FIG. 11 is an axial view of the end plate 450 of Modified Example 4.
Similar to the embodiment described above, a groove portion 455 is provided on the first side surface 451 of the end plate 450 of this modification. The groove portion 455 of this modification includes a first flow path portion 481, a second flow path portion 482, a third flow path portion 483, a first branch portion 489, a first end portion 456, a second end portion 457, and a third end. 458. The groove portion 455 is connected to the through hole 31a of the shaft 31 at a first end portion 456. Oil O flows into the groove 455 from the first end 456 . Further, the groove portion 455 scatters the internal oil O outward in the radial direction at the second end portion 457 and the third end portion 458.
 第1分岐部489は、第1端部456より径方向外側、第2端部457より径方向内側、かつ第3端部458より径方向内側に位置する。第1流路部481、第2流路部482、および第3流路部483は、第1分岐部489において互いに接続されている。第1分岐部489は、第1流路部481の上流側の端部、第3流路部483の上流側の端部、かつ第2流路部482の下流側の端部に位置する。第1分岐部489は、第1流路部481と第2流路部482との境界部に位置する。また、第1分岐部489は、第1流路部481と第3流路部483との境界部に位置する。オイルOは、第2流路部482から第1分岐部489に達し、第1分岐部489で分岐して第1流路部481と第3流路部483とにそれぞれ流れる。第1流路部481と第2流路部482は、軸方向から見て、それぞれ直線状に延びる。一方で、後述するように、第3流路部483は、経路中に屈曲部483cが設けられ、当該屈曲部483cにおいて屈曲する。 The first branch portion 489 is located radially outside the first end 456, radially inside the second end 457, and radially inside the third end 458. The first flow path portion 481, the second flow path portion 482, and the third flow path portion 483 are connected to each other at the first branch portion 489. The first branch portion 489 is located at the upstream end of the first flow path portion 481, the upstream end of the third flow path portion 483, and the downstream end of the second flow path portion 482. The first branch portion 489 is located at the boundary between the first flow path portion 481 and the second flow path portion 482. Further, the first branch portion 489 is located at the boundary between the first flow path portion 481 and the third flow path portion 483. The oil O reaches the first branch section 489 from the second flow path section 482, branches at the first branch section 489, and flows into the first flow path section 481 and the third flow path section 483, respectively. The first flow path portion 481 and the second flow path portion 482 each extend linearly when viewed from the axial direction. On the other hand, as will be described later, the third flow path portion 483 is provided with a bending portion 483c in its path, and is bent at the bending portion 483c.
 第2流路部482は、第1流路部481、および第3流路部483の上流側で第1流路部481、および第3流路部483に繋がる。第2流路部482は、軸方向から見て、径方向に延びる。第2流路部482には、第1端部456が設けられ、シャフト31の貫通孔31aに繋がる。第2流路部482は、貫通孔31aから流入したオイルOを径方向外側に導く。 The second flow path section 482 is connected to the first flow path section 481 and the third flow path section 483 on the upstream side of the first flow path section 481 and the third flow path section 483. The second flow path portion 482 extends in the radial direction when viewed from the axial direction. The second flow path portion 482 is provided with a first end portion 456 and is connected to the through hole 31a of the shaft 31. The second flow path portion 482 guides the oil O flowing from the through hole 31a to the outside in the radial direction.
 第1流路部481は、第1分岐部489において第2流路部482に繋がる。第1流路部481は、径方向に対し傾く方向に延びる。本変形例において、第1流路部481と第2流路部482とは、軸方向から見て、互いに直交する。第2端部457は、第1流路部481に位置する。第2端部457は、第1分岐部489よりも径方向外側に配置される。 The first flow path portion 481 is connected to the second flow path portion 482 at a first branch portion 489. The first flow path portion 481 extends in a direction inclined with respect to the radial direction. In this modification, the first flow path section 481 and the second flow path section 482 are orthogonal to each other when viewed from the axial direction. The second end portion 457 is located in the first flow path portion 481 . The second end portion 457 is arranged radially outward from the first branch portion 489.
 第3流路部483は、第1分岐部489において第2流路部482に繋がる。第3流路部483は、第1分岐部489から分岐する。第3流路部483は、上流部483aと下流部483bと屈曲部483cとを有する。上流部483aと下流部483bとは、屈曲部483cで繋がる。上流部483aと下流部483bとは、屈曲部483cにおいて互いに直交する。上流部483aは、第1分岐部489から屈曲部483cとの間を直線状に延びる。上流部483aは、軸方向から見て、径方向に延びる。下流部483bは、屈曲部483cと第3端部458との間を直線状に延びる。下流部483bは、軸方向から見て、第1流路部481と平行に延びる。第3端部458は、第3流路部483に位置する。第3端部458は、第1分岐部489よりも径方向外側に配置される。第3端部458と第2端部457とは、中心軸線Jを中心とする同一円周状に配置される。 The third flow path portion 483 is connected to the second flow path portion 482 at the first branch portion 489. The third flow path portion 483 branches from the first branch portion 489 . The third flow path section 483 has an upstream section 483a, a downstream section 483b, and a bent section 483c. The upstream portion 483a and the downstream portion 483b are connected at a bent portion 483c. The upstream portion 483a and the downstream portion 483b are perpendicular to each other at the bent portion 483c. The upstream portion 483a extends linearly between the first branch portion 489 and the bent portion 483c. The upstream portion 483a extends in the radial direction when viewed from the axial direction. The downstream portion 483b extends linearly between the bent portion 483c and the third end portion 458. The downstream portion 483b extends parallel to the first flow path portion 481 when viewed from the axial direction. The third end portion 458 is located in the third flow path portion 483. The third end portion 458 is disposed radially outward from the first branch portion 489. The third end 458 and the second end 457 are arranged on the same circumference around the central axis J.
 本変形例において、第3流路部483は、下流部483bにおいて径方向に対し傾く方向に延びる。また、第2端部457と第3端部458とは、第1分岐部489に対し周方向の同じ側に配置される。本変形例によれば、溝部455は、オイルOを噴射する端部(第2端部457および第3端部458)を複数有し、さらに、これらの端部(第2端部457および第3端部458)の開口方向を周方向において同じ方向とすることができる。これにより、エンドプレート450から径方向外側に飛散させるオイルOの流量を増加させることができる。 In this modification, the third flow path portion 483 extends in a direction inclined with respect to the radial direction at the downstream portion 483b. Further, the second end portion 457 and the third end portion 458 are arranged on the same circumferential side with respect to the first branch portion 489. According to this modification, the groove 455 has a plurality of ends (second end 457 and third end 458) that inject oil O, and further has a plurality of ends (second end 457 and third end 458). The opening directions of the three ends 458) can be the same in the circumferential direction. Thereby, the flow rate of the oil O scattered radially outward from the end plate 450 can be increased.
 (変形例5)
 図12は、変形例5のエンドプレート550を軸方向に見た図である。
 上述の実施形態と同様に、本変形例のエンドプレート550の第1側面551には、溝部555が設けられる。本変形例の溝部555は、第1流路部581と第2流路部582と第4流路部584と第1境界部588と第2境界部589と第1端部556と第2端部557とを有する。溝部555は、第1端部556において、シャフト31の貫通孔31aに繋がる。溝部555内には、第1端部556からオイルOが流入する。また、溝部555は、第2端部557において、内部のオイルOを径方向外側に飛散させる。
(Modification 5)
FIG. 12 is an axial view of the end plate 550 of Modified Example 5.
Similar to the embodiment described above, a groove portion 555 is provided on the first side surface 551 of the end plate 550 of this modification. The groove portion 555 of this modification includes a first flow path portion 581, a second flow path portion 582, a fourth flow path portion 584, a first boundary portion 588, a second boundary portion 589, a first end portion 556, and a second end portion. 557. The groove portion 555 is connected to the through hole 31a of the shaft 31 at a first end portion 556. Oil O flows into the groove portion 555 from the first end portion 556 . Further, the groove portion 555 scatters the internal oil O outward in the radial direction at the second end portion 557.
 第1境界部588は、第2流路部582と第4流路部584との接続部分に位置する。第1境界部588は、第2流路部582の下流側の端部、かつ第4流路部584の上流側の端部に位置する。 The first boundary portion 588 is located at the connection portion between the second flow path portion 582 and the fourth flow path portion 584. The first boundary portion 588 is located at the downstream end of the second flow path portion 582 and at the upstream end of the fourth flow path portion 584.
 第2境界部589は、第1流路部581と第4流路部584との接続部分に位置する。第2境界部589は、第1流路部581の上流側の端部、かつ第4流路部584の下流側の端部に位置する。 The second boundary portion 589 is located at the connection portion between the first flow path portion 581 and the fourth flow path portion 584. The second boundary portion 589 is located at the upstream end of the first flow path portion 581 and at the downstream end of the fourth flow path portion 584.
 オイルOは、第2流路部582から第1境界部588に達し第4流路部584に流入する。さらに、第4流路部584を流れるオイルOは、第2境界部589に達し第1流路部581に流入する。第1流路部581と第2流路部582と第4流路部584は、軸方向から見て、それぞれ直線状に延びる。 The oil O reaches the first boundary portion 588 from the second flow path portion 582 and flows into the fourth flow path portion 584. Further, the oil O flowing through the fourth flow path portion 584 reaches the second boundary portion 589 and flows into the first flow path portion 581 . The first flow path portion 581, the second flow path portion 582, and the fourth flow path portion 584 each extend linearly when viewed from the axial direction.
 第2流路部582は、第1流路部581、および第4流路部584の上流側に位置し、第4流路部584に繋がる。第2流路部582は、軸方向から見て、径方向に延びる。第2流路部582には、第1端部556が設けられ、シャフト31の貫通孔31aに繋がる。第2流路部582は、貫通孔31aから流入したオイルOを径方向外側に導く。 The second flow path section 582 is located upstream of the first flow path section 581 and the fourth flow path section 584, and is connected to the fourth flow path section 584. The second flow path portion 582 extends in the radial direction when viewed from the axial direction. The second flow path portion 582 is provided with a first end portion 556 and is connected to the through hole 31a of the shaft 31. The second flow path portion 582 guides the oil O flowing from the through hole 31a to the outside in the radial direction.
 第4流路部584は、第1境界部588において第2流路部582に繋がる。第4流路部584は、径方向に対し傾く方向に延びる。本変形例において、第2流路部582と第4流路部584とは、軸方向から見て、互いに直交する。第4流路部584は、第2流路部582と第1流路部581とを繋ぐ。 The fourth flow path portion 584 is connected to the second flow path portion 582 at a first boundary portion 588. The fourth flow path portion 584 extends in a direction inclined with respect to the radial direction. In this modification, the second flow path portion 582 and the fourth flow path portion 584 are orthogonal to each other when viewed from the axial direction. The fourth flow path section 584 connects the second flow path section 582 and the first flow path section 581.
 第1流路部581は、第2境界部589において第4流路部584に繋がる。第1流路部581は、径方向に対し傾く方向に延びる。本変形例において、第1流路部581と第4流路部584とは、軸方向から見て、互いに直交する。第2端部557は、第1流路部581に位置する。第2端部557は、第1境界部588、および第2境界部589よりも径方向外側に配置される。 The first flow path portion 581 is connected to the fourth flow path portion 584 at a second boundary portion 589. The first flow path portion 581 extends in a direction inclined with respect to the radial direction. In this modification, the first flow path portion 581 and the fourth flow path portion 584 are orthogonal to each other when viewed from the axial direction. The second end portion 557 is located in the first flow path portion 581. The second end portion 557 is arranged radially outward from the first boundary portion 588 and the second boundary portion 589.
 本変形例によれば、第1流路部581と第2流路部582との間に第4流路部584が設けられる。これにより、溝部555は、第1流路部581および第2流路部582の配置および形状の自由度を高めつつこれらを繋ぐことが出来る。 According to this modification, a fourth flow path portion 584 is provided between the first flow path portion 581 and the second flow path portion 582. Thereby, the groove portion 555 can connect the first flow path portion 581 and the second flow path portion 582 while increasing the degree of freedom in arrangement and shape thereof.
 (変形例6)
 図13は、変形例6のエンドプレート650を軸方向に見た図である。
 上述の実施形態と同様に、本変形例のエンドプレート650の第1側面651には、溝部655が設けられる。本変形例の溝部655は、第1流路部681と第2流路部682と第3流路部683と第5流路部685と第1分岐部688と第2分岐部689と第1端部656と第2端部657と第3端部658と第4端部659とを有する。溝部655は、第1端部656において、シャフト31の貫通孔31aに繋がる。溝部655内には、第1端部656からオイルOが流入する。また、溝部655は、第2端部657、第3端部658、および第4端部659において、内部のオイルOを径方向外側に飛散させる。
(Modification 6)
FIG. 13 is an axial view of an end plate 650 according to modification 6.
Similar to the embodiment described above, a groove 655 is provided on the first side surface 651 of the end plate 650 of this modification. The groove portion 655 of this modification includes a first flow path portion 681, a second flow path portion 682, a third flow path portion 683, a fifth flow path portion 685, a first branch portion 688, a second branch portion 689, and a It has an end 656, a second end 657, a third end 658, and a fourth end 659. The groove portion 655 is connected to the through hole 31a of the shaft 31 at a first end portion 656. Oil O flows into the groove 655 from the first end 656 . Further, the groove portion 655 scatters the internal oil O radially outward at the second end 657, the third end 658, and the fourth end 659.
 第1分岐部688は、第1端部656より径方向外側、第2端部657より径方向内側、第3端部658より径方向内側、かつ第4端部659より径方向内側に位置する。第1流路部681、第2流路部682、および第3流路部683は、第1分岐部688において互いに接続されている。第1分岐部688は、第1流路部681の上流側の端部、第3流路部683の上流側の端部、かつ第2流路部682の下流側の端部に位置する。第1分岐部688は、第1流路部681と第2流路部682との境界部に位置する。また、第1分岐部688は、第1流路部681と第3流路部683との境界部に位置する。オイルOは、第2流路部682から第1分岐部688に達し、第1分岐部688で分岐して第1流路部681と第3流路部683とにそれぞれ流れる。第1流路部681と第2流路部682と第3流路部683は、軸方向から見て、それぞれ直線状に延びる。 The first branch 688 is located radially outward from the first end 656, radially inward from the second end 657, radially inward from the third end 658, and radially inward from the fourth end 659. . The first flow path portion 681, the second flow path portion 682, and the third flow path portion 683 are connected to each other at the first branch portion 688. The first branch portion 688 is located at the upstream end of the first flow path portion 681, the upstream end of the third flow path portion 683, and the downstream end of the second flow path portion 682. The first branch portion 688 is located at the boundary between the first flow path portion 681 and the second flow path portion 682. Further, the first branch portion 688 is located at the boundary between the first flow path portion 681 and the third flow path portion 683. The oil O reaches the first branch part 688 from the second passage part 682, branches at the first branch part 688, and flows into the first passage part 681 and the third passage part 683, respectively. The first flow path portion 681, the second flow path portion 682, and the third flow path portion 683 each extend linearly when viewed from the axial direction.
 第2分岐部689は、第1分岐部688より径方向外側、第3端部658より径方向内側、かつ第4端部659より径方向内側に位置する。第5流路部685は、第2分岐部689において第5流路部685から分岐する。第2分岐部689は、第3流路部683の途中に位置する。 The second branch part 689 is located radially outward from the first branch part 688, radially inward from the third end part 658, and radially inward from the fourth end part 659. The fifth flow path portion 685 branches from the fifth flow path portion 685 at a second branch portion 689 . The second branch portion 689 is located in the middle of the third flow path portion 683.
 第2流路部682は、第1流路部681、および第3流路部683の上流側で第1流路部681、および第3流路部683に繋がる。第2流路部682は、軸方向から見て、径方向に延びる。第2流路部682には、第1端部656が設けられ、シャフト31の貫通孔31aに繋がる。第2流路部682は、貫通孔31aから流入したオイルOを径方向外側に導く。 The second flow path section 682 is connected to the first flow path section 681 and the third flow path section 683 on the upstream side of the first flow path section 681 and the third flow path section 683. The second flow path portion 682 extends in the radial direction when viewed from the axial direction. The second flow path portion 682 is provided with a first end portion 656 and is connected to the through hole 31a of the shaft 31. The second flow path portion 682 guides the oil O flowing from the through hole 31a to the outside in the radial direction.
 第1流路部681は、第1分岐部688において第2流路部682に繋がる。第1流路部681は、径方向に対し傾く方向に延びる。本変形例において、第1流路部681と第2流路部682とは、軸方向から見て、互いに直交する。第2端部657は、第1流路部681に位置する。第2端部657は、第1分岐部688よりも径方向外側に配置される。 The first flow path portion 681 is connected to the second flow path portion 682 at a first branch portion 688. The first flow path portion 681 extends in a direction inclined with respect to the radial direction. In this modification, the first flow path section 681 and the second flow path section 682 are orthogonal to each other when viewed from the axial direction. The second end portion 657 is located in the first flow path portion 681. The second end portion 657 is arranged radially outward from the first branch portion 688.
 第3流路部683は、第1分岐部688において第2流路部682に繋がる。第3流路部683は、第1分岐部688から分岐する。第3流路部683は、軸方向から見て、径方向に延びる。本変形例において、第3流路部683と第2流路部682とは、軸方向から見て、同一直線状に連続して延びる。第3端部658は、第3流路部683に位置する。第3端部658は、第1分岐部688よりも径方向外側に配置される。 The third flow path portion 683 is connected to the second flow path portion 682 at a first branch portion 688. The third flow path portion 683 branches from the first branch portion 688 . The third flow path portion 683 extends in the radial direction when viewed from the axial direction. In this modification, the third flow path portion 683 and the second flow path portion 682 continuously extend in the same straight line when viewed from the axial direction. The third end portion 658 is located in the third flow path portion 683. The third end portion 658 is disposed radially outward from the first branch portion 688.
 第5流路部685は、第2分岐部689において第3流路部683に繋がる。第5流路部685は、第2分岐部689から分岐する。第5流路部685は、径方向に対し傾く方向に延びる。第4端部659は、第5流路部685に位置する。第4端部659は、第2分岐部689よりも径方向外側に配置される。 The fifth flow path portion 685 is connected to the third flow path portion 683 at a second branch portion 689. The fifth flow path portion 685 branches from the second branch portion 689 . The fifth flow path portion 685 extends in a direction inclined with respect to the radial direction. The fourth end portion 659 is located in the fifth flow path portion 685. The fourth end portion 659 is arranged radially outward from the second branch portion 689.
 本変形例によれば、溝部655に第1分岐部688、および第2分岐部689が設けられて、第1分岐部688、および第2分岐部689で分岐したオイルOを第2端部657、第3端部658、および第4端部659からオイルOを飛散させることができる。このため、第2端部657、第3端部658、および第4端部659の開口方向を周方向において異なる方向とすることができ、ロータ30が何れの方向に回転する場合であってもオイルOを適切に飛散させることができる。 According to this modification, the first branch part 688 and the second branch part 689 are provided in the groove part 655, and the oil O branched at the first branch part 688 and the second branch part 689 is transferred to the second end 657. , the third end 658 , and the fourth end 659 . Therefore, the opening directions of the second end 657, the third end 658, and the fourth end 659 can be set in different directions in the circumferential direction, and no matter which direction the rotor 30 rotates, Oil O can be dispersed appropriately.
 (変形例7)
 図14は、変形例7のエンドプレート750を軸方向に見た図である。
 上述の実施形態と同様に、本変形例のエンドプレート750の第1側面751には、4つの溝部755が設けられる。本変形例のそれぞれの溝部755は、上述の実施形態と類似の構成を有するが、周方向に隣り合う溝部755同士の関係が主に異なる。
(Modification 7)
FIG. 14 is an axial view of an end plate 750 of Modification Example 7.
Similar to the embodiment described above, four grooves 755 are provided on the first side surface 751 of the end plate 750 of this modification. Each of the grooves 755 of this modification has a configuration similar to that of the above-described embodiment, but the relationship between grooves 755 adjacent to each other in the circumferential direction is mainly different.
 それぞれの溝部755は、第1流路部781と第2流路部782と境界部789と第1端部756と第2端部757とを有する。溝部755は、第1端部756において、シャフト31の貫通孔31aに繋がる。溝部755内には、第1端部756からオイルOが流入する。また、溝部755は、第2端部757において、内部のオイルOを径方向外側に飛散させる。境界部789は、第1端部756より径方向外側、かつ第2端部757より径方向内側に位置する。第1流路部781、および第2流路部782は、境界部789において互いに接続されている。第1流路部781と第2流路部782は、軸方向から見て、それぞれ直線状に延びる。第2流路部782は、軸方向から見て、径方向に延びる。第2流路部782には、第1端部756が設けられ、シャフト31の貫通孔31aに繋がる。第2流路部782は、貫通孔31aから流入したオイルOを径方向外側に導く。第1流路部781は、境界部789において第2流路部782に繋がる。第1流路部781は、径方向に対し傾く方向に延びる。本変形例において、第1流路部781と第2流路部782とは、軸方向から見て、互いに直交する。第2端部757は、第1流路部781に位置する。第2端部757は、境界部789よりも径方向外側に配置される。 Each groove portion 755 has a first flow path portion 781, a second flow path portion 782, a boundary portion 789, a first end portion 756, and a second end portion 757. The groove portion 755 is connected to the through hole 31a of the shaft 31 at a first end portion 756. Oil O flows into the groove portion 755 from the first end portion 756 . Furthermore, the groove portion 755 scatters the internal oil O outward in the radial direction at the second end portion 757 . Boundary portion 789 is located radially outward from first end 756 and radially inward from second end 757 . The first flow path portion 781 and the second flow path portion 782 are connected to each other at a boundary portion 789. The first flow path portion 781 and the second flow path portion 782 each extend linearly when viewed from the axial direction. The second flow path portion 782 extends in the radial direction when viewed from the axial direction. The second flow path portion 782 is provided with a first end portion 756 and is connected to the through hole 31a of the shaft 31. The second flow path portion 782 guides the oil O flowing from the through hole 31a to the outside in the radial direction. The first flow path portion 781 is connected to the second flow path portion 782 at a boundary portion 789. The first flow path portion 781 extends in a direction inclined with respect to the radial direction. In this modification, the first flow path portion 781 and the second flow path portion 782 are orthogonal to each other when viewed from the axial direction. The second end portion 757 is located in the first flow path portion 781 . The second end portion 757 is arranged radially outward from the boundary portion 789.
 本変形例において、複数の溝部755は、第1溝部755Aと第2溝部755Bとを含む。本変形例において、第1側面751には、2つの第1溝部755Aと2つの第2溝部755Bとが設けられる。第1溝部755Aと第2溝部755Bとは、周方向において交互に配置される。 In this modification, the plurality of grooves 755 include a first groove 755A and a second groove 755B. In this modification, the first side surface 751 is provided with two first grooves 755A and two second grooves 755B. The first groove portions 755A and the second groove portions 755B are arranged alternately in the circumferential direction.
 図14に示すように、軸方向から見て中心軸線を通過する基準線Lを想定する。基準線Lは、周方向に隣り合う第1溝部755Aと第2溝部755Bとの間に位置する。第1溝部755Aと第2溝部755Bとは、基準線Lに対し線対称に配置される。すなわち、本変形例において、第1側面751には、複数の溝部755が設けられ、複数の溝部755のうち2つは、軸方向から見て中心軸線Jを通過する基準線Lに対し、線対称に配置される。 As shown in FIG. 14, a reference line L passing through the central axis when viewed from the axial direction is assumed. The reference line L is located between the first groove portion 755A and the second groove portion 755B that are adjacent to each other in the circumferential direction. The first groove portion 755A and the second groove portion 755B are arranged symmetrically with respect to the reference line L. That is, in this modification, a plurality of grooves 755 are provided in the first side surface 751, and two of the plurality of grooves 755 are lined with respect to the reference line L passing through the central axis J when viewed from the axial direction. arranged symmetrically.
 第1溝部755Aにおいて、第1流路部781は、境界部789に対し定常回転方向+θの後方側に延びる。一方で、第2溝部755Bにおいて、第1流路部781は、境界部789に対し定常回転方向+θの前方側に延びる。本変形例によれば、第1溝部755Aの第2溝部755Bのそれぞれの第2端部757の開口方向を周方向において異なる方向とすることができ、ロータ30が何れの方向に回転する場合であってもオイルOを適切に飛散させることができる。また、ロータコア32の左右に配置されるエンドプレート750として同形状のものを使う場合であっても、ロータコア32の左右のエンドプレート750から飛散するオイルOの飛散量を略同等とすることができる。 In the first groove portion 755A, the first flow path portion 781 extends rearward in the steady rotation direction +θ with respect to the boundary portion 789. On the other hand, in the second groove portion 755B, the first flow path portion 781 extends forward in the steady rotation direction +θ with respect to the boundary portion 789. According to this modification, the opening directions of the second end portions 757 of the first groove portion 755A and the second groove portion 755B can be set in different directions in the circumferential direction, so that when the rotor 30 rotates in either direction, Even if there is, the oil O can be appropriately scattered. Furthermore, even if the end plates 750 disposed on the left and right sides of the rotor core 32 are of the same shape, the amount of oil O scattered from the left and right end plates 750 of the rotor core 32 can be made approximately the same. .
 (変形例8)
 図15は、変形例8のエンドプレート850を軸方向に見た図である。
 上述の実施形態と同様に、本変形例のエンドプレート850の第1側面851には、4つの溝部855が設けられる。本変形例の各溝部855は、上述の変形例1の溝部855と略同様の構成を有する。
(Modification 8)
FIG. 15 is an axial view of an end plate 850 of Modified Example 8.
Similar to the embodiment described above, four grooves 855 are provided on the first side surface 851 of the end plate 850 of this modification. Each groove 855 of this modification has substantially the same configuration as the groove 855 of Modification 1 described above.
 それぞれの溝部855は、第1流路部881と第2流路部882と第3流路部883と第1分岐部889と第1端部856と第2端部857と第3端部858とを有する。溝部855は、第1端部856において、シャフト31の貫通孔31aに繋がる。溝部855内には、第1端部856からオイルOが流入する。また、溝部855は、第2端部857、および第3端部858において、内部のオイルOを径方向外側に飛散させる。 Each groove portion 855 has a first flow path portion 881, a second flow path portion 882, a third flow path portion 883, a first branch portion 889, a first end portion 856, a second end portion 857, and a third end portion 858. and has. The groove portion 855 is connected to the through hole 31a of the shaft 31 at a first end portion 856. Oil O flows into the groove 855 from the first end 856 . Further, the groove portion 855 scatters the internal oil O outward in the radial direction at the second end portion 857 and the third end portion 858.
 第1分岐部889は、第1端部856より径方向外側、第2端部857より径方向内側、かつ第3端部858より径方向内側に位置する。に位置する。第1流路部881、第2流路部882、および第3流路部883は、第1分岐部889において互いに接続されている。第1分岐部889は、第1流路部881の上流側の端部、第3流路部883の上流側の端部、かつ第2流路部882の下流側の端部に位置する。第1分岐部889は、第1流路部881と第2流路部882との境界部に位置する。また、第1分岐部889は、第1流路部881と第3流路部883との境界部に位置する。オイルOは、第2流路部882から第1分岐部889に達し、第1分岐部889で分岐して第1流路部881と第3流路部883とにそれぞれ流れる。第1流路部881と第2流路部882と第3流路部883は、軸方向から見て、それぞれ直線状に延びる。 The first branch portion 889 is located radially outside the first end 856, radially inside the second end 857, and radially inside the third end 858. Located in The first flow path portion 881 , the second flow path portion 882 , and the third flow path portion 883 are connected to each other at the first branch portion 889 . The first branch portion 889 is located at the upstream end of the first flow path portion 881, the upstream end of the third flow path portion 883, and the downstream end of the second flow path portion 882. The first branch portion 889 is located at the boundary between the first flow path portion 881 and the second flow path portion 882. Further, the first branch portion 889 is located at the boundary between the first flow path portion 881 and the third flow path portion 883. The oil O reaches the first branch part 889 from the second passage part 882, branches at the first branch part 889, and flows into the first passage part 881 and the third passage part 883, respectively. The first flow path portion 881, the second flow path portion 882, and the third flow path portion 883 each extend linearly when viewed from the axial direction.
 第2流路部882は、第1流路部881、および第3流路部883の上流側で第1流路部881、および第3流路部883に繋がる。第2流路部882は、軸方向から見て、径方向に延びる。第2流路部882には、第1端部856が設けられ、シャフト31の貫通孔31aに繋がる。第2流路部882は、貫通孔31aから流入したオイルOを径方向外側に導く。第1流路部881は、第1分岐部889において第2流路部882に繋がる。第1流路部881は、径方向に対し傾く方向に延びる。本変形例において、第1流路部881と第2流路部882とは、軸方向から見て、互いに直交する。第2端部857は、第1流路部881に位置する。第2端部857は、第1分岐部889よりも径方向外側に配置される。第3流路部883は、第1分岐部889において第2流路部882に繋がる。第3流路部883は、第1分岐部889から分岐する。第3流路部883は、軸方向から見て、径方向に延びる。本変形例において、第3流路部883と第2流路部882とは、軸方向から見て、同一直線状に連続して延びる。第3端部858は、第3流路部883に位置する。第3端部858は、第1分岐部889よりも径方向外側に配置される。 The second flow path section 882 is connected to the first flow path section 881 and the third flow path section 883 on the upstream side of the first flow path section 881 and the third flow path section 883. The second flow path portion 882 extends in the radial direction when viewed from the axial direction. The second flow path portion 882 is provided with a first end portion 856 and is connected to the through hole 31a of the shaft 31. The second flow path portion 882 guides the oil O flowing from the through hole 31a to the outside in the radial direction. The first flow path portion 881 is connected to the second flow path portion 882 at a first branch portion 889 . The first flow path portion 881 extends in a direction inclined with respect to the radial direction. In this modification, the first flow path section 881 and the second flow path section 882 are orthogonal to each other when viewed from the axial direction. The second end portion 857 is located in the first flow path portion 881 . The second end portion 857 is arranged radially outward from the first branch portion 889. The third flow path portion 883 is connected to the second flow path portion 882 at a first branch portion 889 . The third flow path portion 883 branches from the first branch portion 889 . The third flow path portion 883 extends in the radial direction when viewed from the axial direction. In this modification, the third flow path portion 883 and the second flow path portion 882 continuously extend in the same straight line when viewed from the axial direction. The third end portion 858 is located in the third flow path portion 883. The third end portion 858 is disposed radially outward from the first branch portion 889.
 本変形例において、複数の溝部855は、第1溝部855Aと第2溝部855Bとを含む。第1溝部855Aと第2溝部855Bとは、軸方向から見て、中心軸線Jを通過する基準線Lに対し線対称に配置される。このため、本変形例の溝部855は、変形例7と同様の効果を得ることができる。 In this modification, the plurality of grooves 855 include a first groove 855A and a second groove 855B. The first groove portion 855A and the second groove portion 855B are arranged symmetrically with respect to a reference line L passing through the central axis J when viewed from the axial direction. Therefore, the groove portion 855 of this modification can obtain the same effect as Modification 7.
 本変形例において、周方向に隣り合う第1溝部855Aと第2溝部855Bのそれぞれの第1流路部881同士は、連結流路部887を介して互いに繋がっていてもよい。連結流路部887と、第1溝部855Aの第1流路部881と、第2溝部855Bの第1流路部881とは、軸方向から見て、同一直線状に配置される。連結流路部887が設けられることで、オイルOは、第1溝部855Aと第2溝部855Bとの間を、連結流路部887を介して移動できる。第1溝部855Aおよび第2溝部855Bのそれぞれの第2端部857、および第3端部858から安定的にオイルOを飛散させることができる。 In this modification, the first flow path portions 881 of the first groove portion 855A and the second groove portion 855B that are adjacent to each other in the circumferential direction may be connected to each other via a connecting flow path portion 887. The connecting flow path portion 887, the first flow path portion 881 of the first groove portion 855A, and the first flow path portion 881 of the second groove portion 855B are arranged in the same straight line when viewed from the axial direction. By providing the connection flow path section 887, the oil O can move between the first groove section 855A and the second groove section 855B via the connection flow path section 887. Oil O can be stably scattered from the second end 857 and third end 858 of the first groove 855A and the second groove 855B.
 (変形例9)
 図16は、変形例9のエンドプレート950を軸方向に見た図である。
 上述の実施形態と同様に、本変形例のエンドプレート950の第1側面951には、4つの溝部955が設けられる。
(Modification 9)
FIG. 16 is an axial view of an end plate 950 of Modification 9. FIG.
Similar to the embodiment described above, four grooves 955 are provided on the first side surface 951 of the end plate 950 of this modification.
 それぞれの溝部955は、第1流路部981と第2流路部982と第3流路部983と第1分岐部989と第1端部956と第2端部957と第3端部958とを有する。溝部955は、第1端部956において、シャフト31の貫通孔31aに繋がる。溝部955内には、第1端部956からオイルOが流入する。また、溝部955は、第2端部957、および第3端部958において、内部のオイルOを径方向外側に飛散させる。 Each groove portion 955 includes a first flow path portion 981, a second flow path portion 982, a third flow path portion 983, a first branch portion 989, a first end portion 956, a second end portion 957, and a third end portion 958. and has. The groove portion 955 is connected to the through hole 31a of the shaft 31 at a first end portion 956. Oil O flows into the groove portion 955 from the first end portion 956 . Further, the groove portion 955 scatters the internal oil O outward in the radial direction at the second end portion 957 and the third end portion 958.
 第1分岐部989は、第1端部956より径方向外側、第2端部957より径方向内側、かつ第3端部958より径方向内側に位置する。第1流路部981、第2流路部982、および第3流路部983は、第1分岐部989において互いに接続されている。第1分岐部989は、第1流路部981の上流側の端部、第3流路部983の上流側の端部、かつ第2流路部982の下流側の端部に位置する。第1分岐部989は、第1流路部981と第2流路部982との境界部に位置する。また、第1分岐部989は、第1流路部981と第3流路部983との境界部に位置する。オイルOは、第2流路部982から第1分岐部989に達し、第1分岐部989で分岐して第1流路部981と第3流路部983とにそれぞれ流れる。第1流路部981と第2流路部982と第3流路部983は、軸方向から見て、それぞれ直線状に延びる。 The first branch portion 989 is located radially outside the first end 956, radially inside the second end 957, and radially inside the third end 958. The first flow path portion 981 , the second flow path portion 982 , and the third flow path portion 983 are connected to each other at the first branch portion 989 . The first branch portion 989 is located at the upstream end of the first flow path portion 981, the upstream end of the third flow path portion 983, and the downstream end of the second flow path portion 982. The first branch portion 989 is located at the boundary between the first flow path portion 981 and the second flow path portion 982. Further, the first branch portion 989 is located at the boundary between the first flow path portion 981 and the third flow path portion 983. The oil O reaches the first branch section 989 from the second flow path section 982, branches at the first branch section 989, and flows into the first flow path section 981 and the third flow path section 983, respectively. The first flow path portion 981, the second flow path portion 982, and the third flow path portion 983 each extend linearly when viewed from the axial direction.
 第2流路部982は、第1流路部981、および第3流路部983の上流側で第1流路部981、および第3流路部983に繋がる。第2流路部982は、軸方向から見て、径方向に対し傾く方向に延びる。第1端部956は、第2流路部982に位置する。第2流路部982には、第1端部956が設けられ、シャフト31の貫通孔31aに繋がる。第2流路部982は、貫通孔31aから流入したオイルOを径方向外側に導く。 The second flow path section 982 is connected to the first flow path section 981 and the third flow path section 983 on the upstream side of the first flow path section 981 and the third flow path section 983. The second flow path portion 982 extends in a direction inclined with respect to the radial direction when viewed from the axial direction. The first end portion 956 is located in the second flow path portion 982 . The second flow path portion 982 is provided with a first end portion 956 and is connected to the through hole 31a of the shaft 31. The second flow path portion 982 guides the oil O flowing from the through hole 31a to the outside in the radial direction.
 第1流路部981は、第1分岐部989において第2流路部982に繋がる。第1流路部981は、軸方向から見て、径方向に対し傾く方向に延びる。第2端部957は、第1流路部981に位置する。第2端部957は、第1分岐部989よりも径方向外側に配置される。 The first flow path portion 981 is connected to the second flow path portion 982 at a first branch portion 989. The first flow path portion 981 extends in a direction inclined with respect to the radial direction when viewed from the axial direction. The second end portion 957 is located in the first flow path portion 981 . The second end portion 957 is disposed radially outward from the first branch portion 989.
 第3流路部983は、第1分岐部989において第2流路部982に繋がる。第3流路部983は、第1分岐部989から分岐する。第3流路部983は、軸方向から見て、径方向に対し傾く方向に延びる。第3流路部983は、第2流路部982と同方向に延びる。本変形例において、第3流路部983と第2流路部982とは、軸方向から見て、同一直線状に連続して延びる。第3端部958は、第3流路部983に位置する。第3端部958は、第1分岐部989よりも径方向外側に配置される。 The third flow path portion 983 is connected to the second flow path portion 982 at a first branch portion 989. The third flow path portion 983 branches from the first branch portion 989 . The third flow path portion 983 extends in a direction inclined with respect to the radial direction when viewed from the axial direction. The third flow path section 983 extends in the same direction as the second flow path section 982. In this modification, the third flow path portion 983 and the second flow path portion 982 continuously extend in the same straight line when viewed from the axial direction. The third end portion 958 is located in the third flow path portion 983. The third end portion 958 is disposed radially outward from the first branch portion 989.
 本変形例によれば、第1流路部981の延びる方向と、第2流路部982、および第3流路部983が延びる方向とは、共に径方向に対し傾く方向であるが、周方向の何れの方向に傾くかが異なる。本変形例の1つの溝部955において、第1流路部981は、径方向外側に向かうに従い周方向一方側に傾斜し、第2流路部982および前記第3流路部983は、径方向外側に向かうに従い周方向他方側に傾斜する。このため、第2端部957、および第3端部958の開口方向を周方向において異なる方向とすることができ、ロータ30が何れの方向に回転する場合であってもオイルOを適切に飛散させることができる。 According to this modification, the direction in which the first flow path section 981 extends, and the direction in which the second flow path section 982 and the third flow path section 983 extend are both directions inclined with respect to the radial direction. The difference is in which direction it leans. In one groove portion 955 of this modification, the first flow path portion 981 is inclined to one side in the circumferential direction as it goes radially outward, and the second flow path portion 982 and the third flow path portion 983 are inclined in the radial direction. As it goes outward, it is inclined toward the other side in the circumferential direction. Therefore, the opening directions of the second end portion 957 and the third end portion 958 can be set in different directions in the circumferential direction, and the oil O can be appropriately scattered no matter which direction the rotor 30 rotates. can be done.
 本変形例において、複数の溝部955は、第1溝部955Aと第2溝部955Bとを含む。第1溝部955Aと第2溝部955Bとは、軸方向から見て、中心軸線Jを通過する基準線Lに対し線対称に配置される。このため、本変形例の溝部955は、変形例7と同様の効果を得ることができる。 In this modification, the plurality of grooves 955 include a first groove 955A and a second groove 955B. The first groove portion 955A and the second groove portion 955B are arranged symmetrically with respect to a reference line L passing through the central axis J when viewed from the axial direction. Therefore, the groove portion 955 of this modification can obtain the same effect as Modification 7.
 また、本変形例では、周方向に隣り合う2つの溝部955(第1溝部955A、および第2溝部955B)は、それぞれの第2流路部982の下流側端部982aにおいて互いに連結されている。これにより、オイルOは、第1溝部955Aと第2溝部955Bとの間を移動することができる。第1溝部955Aおよび第2溝部955Bのそれぞれの第2端部957、および第3端部958から安定的にオイルOを飛散させることができる。 Further, in this modification, two circumferentially adjacent grooves 955 (first groove 955A and second groove 955B) are connected to each other at the downstream end 982a of each second flow path 982. . Thereby, the oil O can move between the first groove portion 955A and the second groove portion 955B. Oil O can be stably scattered from the second end 957 and third end 958 of the first groove 955A and the second groove 955B.
 (変形例10)
 図17は、変形例10のエンドプレート1050を軸方向に見た図である。
 上述の実施形態と同様に、本変形例のエンドプレート1050の第1側面1051には、4つの溝部1055が設けられる。本変形例の各溝部1055は、上述の変形例9に類似する構成を有する。本変形例のエンドプレート1050の溝部1055は、上述の変形例9と比較して、流路部の周方向の傾く方向が異なる。また、本変形例のエンドプレート1050は、上述の変形例9と比較して、2つの溝部(第1溝部1055A、および第2溝部1055B)が互いに交差する点が異なる。
(Modification 10)
FIG. 17 is an axial view of the end plate 1050 of Modified Example 10.
Similar to the embodiment described above, four grooves 1055 are provided on the first side surface 1051 of the end plate 1050 of this modification. Each groove portion 1055 of this modification has a configuration similar to that of modification 9 described above. The groove portion 1055 of the end plate 1050 of this modification is different from that of the above-mentioned modification 9 in the direction in which the flow path portion is inclined in the circumferential direction. Moreover, the end plate 1050 of this modification differs from the above-described modification 9 in that the two grooves (first groove 1055A and second groove 1055B) intersect with each other.
 それぞれの溝部1055は、第1流路部1081と第2流路部1082と第3流路部1083と第1分岐部1089と第1端部1056と第2端部1057と第3端部1058とを有する。 Each groove portion 1055 includes a first flow path portion 1081, a second flow path portion 1082, a third flow path portion 1083, a first branch portion 1089, a first end portion 1056, a second end portion 1057, and a third end portion 1058. and has.
 第1分岐部1089は、第1端部1056より径方向外側、かつ第2端部1057より径方向内側に位置する第1流路部1081と第2流路部1082と第3流路部1083は、軸方向から見て、それぞれ直線状に延びる。 The first branch portion 1089 includes a first flow path portion 1081, a second flow path portion 1082, and a third flow path portion 1083 located radially outward from the first end portion 1056 and radially inside from the second end portion 1057. extend linearly when viewed from the axial direction.
 第2流路部1082は、第1流路部1081、および第3流路部1083の上流側で第1流路部1081、および第3流路部1083に繋がる。第2流路部1082は、軸方向から見て、径方向に対し傾く方向に延びる。第1端部1056は、第2流路部1082に位置する。第2流路部1082には、第1端部1056が設けられ、シャフト31の貫通孔31aに繋がる。第2流路部1082は、貫通孔31aから流入したオイルOを径方向外側に導く。 The second flow path section 1082 is connected to the first flow path section 1081 and the third flow path section 1083 on the upstream side of the first flow path section 1081 and the third flow path section 1083. The second flow path portion 1082 extends in a direction inclined with respect to the radial direction when viewed from the axial direction. The first end 1056 is located in the second flow path section 1082. The second flow path portion 1082 is provided with a first end portion 1056 and is connected to the through hole 31a of the shaft 31. The second flow path portion 1082 guides the oil O flowing in from the through hole 31a to the outside in the radial direction.
 第1流路部1081は、第1分岐部1089において第2流路部1082に繋がる。第1流路部1081は、軸方向から見て、径方向に対し傾く方向に延びる。第2端部1057は、第1流路部1081に位置する。第2端部1057は、第1分岐部1089よりも径方向外側に配置される。 The first flow path portion 1081 is connected to the second flow path portion 1082 at a first branch portion 1089. The first flow path portion 1081 extends in a direction inclined with respect to the radial direction when viewed from the axial direction. The second end portion 1057 is located in the first flow path portion 1081. The second end portion 1057 is arranged radially outward than the first branch portion 1089.
 第3流路部1083は、第1分岐部1089において第2流路部1082に繋がる。第3流路部1083は、第1分岐部1089から分岐する。第3流路部1083は、軸方向から見て、径方向に対し傾く方向に延びる。本変形例において、第3流路部1083と第2流路部1082とは、軸方向から見て、同一直線状に連続して延びる。第3端部1058は、第3流路部1083に位置する。第3端部1058は、第1分岐部1089よりも径方向外側に配置される。 The third flow path portion 1083 is connected to the second flow path portion 1082 at a first branch portion 1089. The third flow path section 1083 branches from the first branch section 1089. The third flow path portion 1083 extends in a direction inclined with respect to the radial direction when viewed from the axial direction. In this modification, the third flow path section 1083 and the second flow path section 1082 continuously extend in the same straight line when viewed from the axial direction. The third end portion 1058 is located in the third flow path portion 1083. The third end portion 1058 is arranged radially outward from the first branch portion 1089.
 本変形例によれば、第1流路部1081の延びる方向と、第2流路部1082、および第3流路部1083が延びる方向とは、共に径方向に対し周方向の一方側に傾く方向である。すなわち、本変形例の1つの溝部1055において、第1流路部1081は、径方向外側に向かうに従い周方向一方側に傾斜し、第2流路部1082および前記第3流路部1083は、径方向外側に向かうに従い周方向一方側に傾斜する。このため、第2端部1057、および第3端部1058の開口方向を周方向の同方向としてエンドプレート1050からオイルOを周方向の幅広い範囲に飛散させることができる。 According to this modification, the direction in which the first flow path section 1081 extends, and the direction in which the second flow path section 1082 and the third flow path section 1083 extend are both inclined toward one side in the circumferential direction with respect to the radial direction. It is the direction. That is, in one groove portion 1055 of this modification, the first flow path portion 1081 is inclined toward one side in the circumferential direction as it goes radially outward, and the second flow path portion 1082 and the third flow path portion 1083 are As it goes radially outward, it is inclined toward one side in the circumferential direction. Therefore, the oil O can be scattered over a wide range in the circumferential direction from the end plate 1050 by setting the opening directions of the second end 1057 and the third end 1058 in the same direction in the circumferential direction.
 本変形例において、複数の溝部1055は、第1溝部1055Aと第2溝部1055Bとを含む。第1溝部1055Aと第2溝部1055Bとは、軸方向から見て、中心軸線Jを通過する基準線Lに対し線対称に配置される。このため、本変形例の溝部1055は、変形例7と同様の効果を得ることができる。 In this modification, the plurality of grooves 1055 include a first groove 1055A and a second groove 1055B. The first groove portion 1055A and the second groove portion 1055B are arranged symmetrically with respect to a reference line L passing through the central axis J when viewed from the axial direction. Therefore, the groove portion 1055 of this modification can obtain the same effect as Modification 7.
 本変形例において、基準線Lに対し線対称に配置される2つの溝部1055(第1溝部1055A、および第2溝部1055B)は、基準線L上の交差部1087で互いに交差する。これにより、オイルOは、第1溝部1055Aと第2溝部1055Bとの間を移動することができる。したがって、第1溝部1055Aおよび第2溝部1055Bのそれぞれの第2端部1057、および第3端部1058から安定的にオイルOを飛散させることができる。 In this modification, two grooves 1055 (first groove 1055A and second groove 1055B) arranged line-symmetrically with respect to the reference line L intersect with each other at an intersection 1087 on the reference line L. Thereby, the oil O can move between the first groove portion 1055A and the second groove portion 1055B. Therefore, the oil O can be stably scattered from the second end 1057 and third end 1058 of the first groove 1055A and the second groove 1055B.
 本発明は上述の実施形態に限られず、本発明の技術的思想の範囲内において、他の構成および他の方法を採用することもできる。溝部における溝底面の第1面、第2面は、径方向外側に向かうに従って軸方向一方側に傾斜する面であれば、どのような面であってもよい。第1面、および第2面は、湾曲する面であってもよい。また、第1面は、溝底面のうちのいずれの箇所に設けられていてもよい。軸方向と直交する平面に対する第1面の傾斜角度は、特に限定されない。 The present invention is not limited to the above-described embodiments, and other configurations and other methods may be adopted within the scope of the technical idea of the present invention. The first surface and the second surface of the groove bottom surface of the groove portion may be any surface as long as it is a surface that slopes toward one side in the axial direction as it goes radially outward. The first surface and the second surface may be curved surfaces. Further, the first surface may be provided anywhere on the groove bottom surface. The angle of inclination of the first surface with respect to the plane orthogonal to the axial direction is not particularly limited.
 第1溝部における溝底面は、第1面と第2面とを繋ぐ第3面を有しなくてもよい。この場合、第1面と第2面とが直接繋がっていてもよい。第1溝部における溝底面の径方向内側の端部は、シャフトの外周面に接触していてもよい。第1溝部の数は、1つ以上であれば、特に限定されない。 The groove bottom surface of the first groove portion does not need to have a third surface that connects the first surface and the second surface. In this case, the first surface and the second surface may be directly connected. The radially inner end of the groove bottom surface of the first groove portion may be in contact with the outer circumferential surface of the shaft. The number of first grooves is not particularly limited as long as it is one or more.
 シャフトの外周面に対し径方向外側に突出する突出部は、シャフトと同一の単一部材の一部であってもよいし、シャフトと別体であってもよい。突出部の形状は、特に限定されない。突出部がシャフトと別体の場合、突出部は、ワッシャなどのナット以外の部材であってもよい。エンドプレートには、軸方向においてロータコアから離れる向きに突出する壁部が設けられなくてもよい。 The protrusion that protrudes radially outward with respect to the outer peripheral surface of the shaft may be part of the same single member as the shaft, or may be separate from the shaft. The shape of the protrusion is not particularly limited. When the protrusion is separate from the shaft, the protrusion may be a member other than the nut, such as a washer. The end plate does not need to be provided with a wall portion that projects away from the rotor core in the axial direction.
 本発明が適用される回転電機は、モータに限られず、発電機であってもよい。回転電機の用途は、特に限定されない。回転電機は、例えば、車軸を回転させる用途以外の用途で車両に搭載されてもよいし、車両以外の機器に搭載されてもよい。回転電機が用いられる際の姿勢は、特に限定されない。回転電機の中心軸は、鉛直方向に延びてもよい。回転電機におけるシャフトの空隙部内への冷媒の供給は、どのように行われてもよい。シャフトは、空隙部を有していれば、どのような構成であってもよい。冷媒は、オイル以外であってもよい。 The rotating electric machine to which the present invention is applied is not limited to a motor, but may be a generator. The use of the rotating electric machine is not particularly limited. For example, the rotating electrical machine may be mounted on a vehicle for purposes other than rotating an axle, or may be mounted on equipment other than the vehicle. The posture in which the rotating electric machine is used is not particularly limited. The central axis of the rotating electric machine may extend in the vertical direction. The refrigerant may be supplied into the cavity of the shaft in the rotating electrical machine in any manner. The shaft may have any configuration as long as it has a cavity. The refrigerant may be other than oil.
 なお、本技術は以下のような構成をとることが可能である。
(1) 環状のステータの内側に配置され中心軸線を中心として回転可能なロータであって、前記中心軸線に沿って延びるシャフトと、前記シャフトに固定されるロータコアと、前記シャフトが挿入される挿入孔が設けられ前記ロータコアと軸方向に並んで配置される円環状のエンドプレートと、を備え、前記シャフトには、前記シャフトの内部に設けられる空隙部と、前記空隙部から径方向外側に延び前記シャフトの外周面で開口する貫通孔と、が設けられ、前記エンドプレートは、軸方向一方側を向く第1側面を有し、前記第1側面には、前記貫通孔の開口に繋がる第1端部、および前記第1端部より径方向外側に位置する第2端部を有する溝部が設けられ、前記溝部は、径方向に対し傾く方向に延びる第1流路部を有し、前記第2端部は、前記第1流路部に位置する、ロータ。
(2) 前記溝部の内面は、軸方向一方側を向く溝底面を有し、前記溝底面は、前記貫通孔の開口と径方向に対向する第1面を有し、前記第1面は、径方向外側に向かうに従って軸方向一方側に傾斜する、(1)に記載のロータ。
(3) 前記溝部は、径方向に延びる第2流路部を有し、前記第1端部は、前記第2流路部に位置し、前記第1面は、前記第2流路部に設けられる、(2)に記載のロータ。(4) 前記溝底面は、前記第2端部に位置する第2面と、を有し、前記第2面は、径方向外側に向かうに従って軸方向一方側に傾斜する、(2)又は(3)に記載のロータ。(5) 軸方向に沿う断面において、前記第2面の径方向外側の端部から前記第2面に沿う方向に径方向外側に延長される仮想線は、前記ステータのコイルエンドを通る、(4)に記載のロータ。
(6) 前記溝底面は、前記第1面と前記第2面とを繋ぐ第3面と、を有し、前記第3面は、軸方向と直交する平面に沿う平坦面である、(4)又は(5)に記載のロータ。
(7) 前記第1側面には、複数の第1凹部が設けられ、前記第1凹部は、周方向に等間隔に配置される、(1)~(6)の何れか一項に記載のロータ。
(8) 前記第1凹部は、周方向に沿って延びる溝状であり、前記第1凹部の径方向に沿う寸法は、周方向の一方側に向かうに従い徐々に小さくなる、(7)に記載のロータ。
(9) 前記シャフトの外周面は、軸方向から見て円形であり、前記挿入孔は、軸方向から見て円形であり、前記シャフトの外周面、又は前記挿入孔の内縁のうち、何れか一方には他方側に突出する複数の突起部が設けられ、他方には前記突起部が挿入される複数の収容凹部が設けられ、前記シャフトは、複数の前記貫通孔を有し、前記収容凹部は、周方向において前記貫通孔の間に配置される、(1)~(8)の何れか一項に記載のロータ。
(10) 前記シャフトの外周面に対し径方向外側に突出する突出部を備え、前記突出部は、前記ロータコアとの軸方向の間で前記エンドプレートを挟み、前記第1側面には、軸方向から見て円形であり底面において前記突出部と接触する第2凹部が設けられる、(1)~(9)の何れか一項に記載のロータ。
(11) 軸方向から見て、前記第1端部は前記突出部に重なり、前記第2端部は前記突出部よりも径方向外側に位置する、(10)に記載のロータ。
(12) 前記エンドプレートは、前記ロータコア側を向く第2側面を有し、前記第2側面には、前記挿入孔を囲む第3凹部と、前記第3凹部の径方向外側に位置し周方向に沿って延びる凹溝部と、が設けられる、(1)~(11)の何れか一項に記載のロータ。
(13) 前記溝部は、径方向に延びる第2流路部を有し、前記第1端部は、前記第2流路部に位置する、(1)~(12)の何れか一項に記載のロータ。
(14) 前記第1流路部、および前記第2流路部は、軸方向から見てそれぞれ直線状に延びる、(13)に記載のロータ。
(15) 前記溝部は、前記第1端部より径方向外側、かつ前記第2端部より径方向内側に位置する第1分岐部と、前記第1分岐部から分岐する第3流路部と、前記第3流路部に位置し前記第1分岐部よりも径方向外側に配置される第3端部と、を有する、(1)~(14)の何れか一項に記載のロータ。
(16) 前記溝部は、径方向に延びる第2流路部を有し、前記第1端部は、前記第2流路部に位置し、前記第1分岐部が、前記第1流路部と前記第2流路部との境界部に位置する、(15)に記載のロータ。
(17) 前記第1分岐部が、前記第1流路部の途中に位置する、(15)に記載のロータ。
(18) 前記溝部は、径方向に対し傾く方向に延びる第2流路部を有し、前記第1端部は、前記第2流路部に位置し、前記第3流路部は、前記第1分岐部において前記第2流路部に繋がり、前記第2流路部と同方向に延びる、(15)に記載のロータ。
(19) 前記第1流路部は、径方向外側に向かうに従い周方向一方側に傾斜し、前記第2流路部および前記第3流路部は、径方向外側に向かうに従い周方向他方側に傾斜する、(18)に記載のロータ。
(20) 前記第1流路部は、径方向外側に向かうに従い周方向一方側に傾斜し、前記第2流路部および前記第3流路部は、径方向外側に向かうに従い周方向一方側に傾斜する、(18)に記載のロータ。
(21) 前記第3流路部は、径方向に対し傾く方向に延び、前記第2端部と前記第3端部とは、前記第1分岐部に対し周方向の反対側に配置される、(15)に記載のロータ。
(22) 前記第3流路部は、径方向に対し傾く方向に延び、前記第2端部と前記第3端部とは、前記第1分岐部に対し周方向の同じ側に配置される、(15)に記載のロータ。
(23) 前記溝部は、前記第1分岐部より径方向外側、かつ前記第3端部より径方向内側に位置する第2分岐部と、前記第2分岐部から分岐する第5流路部と、前記第5流路部に位置し前記第2分岐部よりも径方向外側に配置される第4端部と、を有する、(15)に記載のロータ。
(24) 前記溝部は、第2流路部と第4流路部とを有し、前記第1端部は、前記第2流路部に位置し、前記第4流路部は、前記第2流路部と前記第1流路部とを繋ぐ、(1)~(23)の何れか一項に記載のロータ。
(25) 前記第1側面には、複数の前記溝部が設けられ、複数の前記溝部は、周方向に等間隔に配置される、(1)~(24)の何れか一項に記載のロータ。
(26) 前記第1側面には、複数の前記溝部が設けられ、複数の前記溝部のうち2つは、軸方向から見て前記中心軸線を通過する基準線に対し、線対称に配置される、(1)~(25)の何れか一項に記載のロータ。
(27) 前記基準線に対し線対称に配置される2つの前記溝部は、前記基準線上で互いに交差する、(26)に記載のロータ。
(28) (1)~(27)の何れか一項に記載のロータと、前記ステータと、を備える、回転電機。
(29) (28)に記載の回転電機と、前記回転電機に接続されるギヤ機構と、を備える、駆動装置。
Note that the present technology can have the following configuration.
(1) A rotor arranged inside an annular stator and rotatable about a central axis, including a shaft extending along the central axis, a rotor core fixed to the shaft, and an insert into which the shaft is inserted. an annular end plate provided with a hole and arranged axially side by side with the rotor core; the shaft has a cavity provided inside the shaft; and an annular end plate extending radially outward from the cavity. a through hole that opens on the outer peripheral surface of the shaft, the end plate has a first side surface facing one side in the axial direction, and the first side surface has a first side surface that is connected to the opening of the through hole. and a second end located radially outward from the first end; the groove has a first flow path extending in a direction inclined with respect to the radial direction; The second end portion is a rotor located in the first flow path portion.
(2) The inner surface of the groove portion has a groove bottom surface facing one side in the axial direction, the groove bottom surface has a first surface facing the opening of the through hole in the radial direction, and the first surface includes: The rotor according to (1), which is inclined toward one side in the axial direction as it goes radially outward.
(3) The groove portion has a second flow path portion extending in the radial direction, the first end portion is located in the second flow path portion, and the first surface is located in the second flow path portion. The rotor according to (2), which is provided. (4) The groove bottom surface has a second surface located at the second end, and the second surface is inclined toward one side in the axial direction as it goes radially outward. The rotor described in 3). (5) In the cross section along the axial direction, an imaginary line extending radially outward in the direction along the second surface from the radially outer end of the second surface passes through the coil end of the stator; 4).
(6) The groove bottom surface has a third surface connecting the first surface and the second surface, and the third surface is a flat surface along a plane perpendicular to the axial direction. ) or the rotor described in (5).
(7) The first side surface is provided with a plurality of first recesses, and the first recesses are arranged at equal intervals in the circumferential direction, according to any one of (1) to (6). Rotor.
(8) As described in (7), the first recess has a groove shape extending along the circumferential direction, and the dimension of the first recess along the radial direction gradually decreases toward one side in the circumferential direction. rotor.
(9) The outer circumferential surface of the shaft is circular when viewed from the axial direction, and the insertion hole is circular when viewed from the axial direction, and either the outer circumferential surface of the shaft or the inner edge of the insertion hole One side is provided with a plurality of projections protruding to the other side, the other side is provided with a plurality of accommodation recesses into which the projections are inserted, the shaft has a plurality of through holes, and the shaft has a plurality of through holes, The rotor according to any one of (1) to (8), wherein the rotor is arranged between the through holes in the circumferential direction.
(10) A protrusion protruding radially outward with respect to the outer circumferential surface of the shaft, the protrusion sandwiching the end plate between the rotor core in the axial direction, and the first side having a protrusion in the axial direction. The rotor according to any one of (1) to (9), wherein the rotor is circular when viewed from above and is provided with a second recess that contacts the protrusion at the bottom surface.
(11) The rotor according to (10), wherein the first end overlaps the protrusion and the second end is located radially outward than the protrusion when viewed from the axial direction.
(12) The end plate has a second side surface facing the rotor core side, and the second side surface includes a third recess surrounding the insertion hole and a third recess located radially outward of the third recess in the circumferential direction. The rotor according to any one of (1) to (11), wherein the rotor is provided with a concave groove extending along the rotor.
(13) According to any one of (1) to (12), the groove portion has a second flow path portion extending in the radial direction, and the first end portion is located in the second flow path portion. Rotor listed.
(14) The rotor according to (13), wherein the first flow path portion and the second flow path portion each extend linearly when viewed from the axial direction.
(15) The groove portion includes a first branch portion located radially outward from the first end portion and radially inward from the second end portion, and a third flow path portion branched from the first branch portion. The rotor according to any one of (1) to (14), further comprising: a third end portion located in the third flow path portion and disposed radially outward than the first branch portion.
(16) The groove portion has a second flow path portion extending in the radial direction, the first end portion is located in the second flow path portion, and the first branch portion is located in the second flow path portion. and the second flow path section.
(17) The rotor according to (15), wherein the first branch part is located in the middle of the first flow path part.
(18) The groove portion has a second flow path portion extending in a direction inclined with respect to the radial direction, the first end portion is located in the second flow path portion, and the third flow path portion is located in the second flow path portion. The rotor according to (15), which is connected to the second flow path portion at the first branch portion and extends in the same direction as the second flow path portion.
(19) The first flow path section is inclined toward one side in the circumferential direction as it goes radially outward, and the second flow path section and the third flow path section are inclined toward the other side in the circumferential direction as they go outward in the radial direction. The rotor according to (18), which is inclined at .
(20) The first flow path section is inclined toward one side in the circumferential direction as it goes radially outward, and the second flow path section and the third flow path section are inclined toward one side in the circumferential direction as they go outward in the radial direction. The rotor according to (18), which is inclined at .
(21) The third flow path portion extends in a direction inclined with respect to the radial direction, and the second end portion and the third end portion are arranged on the opposite side in the circumferential direction with respect to the first branch portion. , (15).
(22) The third flow path portion extends in a direction inclined with respect to the radial direction, and the second end portion and the third end portion are arranged on the same side in the circumferential direction with respect to the first branch portion. , (15).
(23) The groove portion includes a second branch portion located radially outward from the first branch portion and radially inward from the third end portion, and a fifth flow path portion branched from the second branch portion. , a fourth end portion located in the fifth flow path portion and disposed radially outward than the second branch portion.
(24) The groove portion has a second flow path portion and a fourth flow path portion, the first end portion is located in the second flow path portion, and the fourth flow path portion is located in the second flow path portion. The rotor according to any one of (1) to (23), which connects the second flow path portion and the first flow path portion.
(25) The rotor according to any one of (1) to (24), wherein the first side surface is provided with a plurality of the grooves, and the plurality of grooves are arranged at equal intervals in the circumferential direction. .
(26) A plurality of the grooves are provided on the first side surface, and two of the plurality of grooves are arranged symmetrically with respect to a reference line passing through the central axis when viewed from the axial direction. , (1) to (25).
(27) The rotor according to (26), wherein the two grooves arranged symmetrically with respect to the reference line intersect with each other on the reference line.
(28) A rotating electrical machine comprising the rotor according to any one of (1) to (27) and the stator.
(29) A drive device comprising the rotating electrical machine according to (28) and a gear mechanism connected to the rotating electrical machine.
 以上、本明細書において説明した構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 The configurations described above in this specification can be combined as appropriate within a mutually consistent range.
10…回転電機、30…ロータ、31…シャフト、31a…貫通孔、31c…外側開口(開口)、31k…収容凹部、32…ロータコア、37…空隙部、40…ステータ、42a,42b…コイルエンド、42c…コイル、50,50a,50b,150,250,350,450,550,650,750,850,950,1050…エンドプレート、50h…挿入孔、50k…突起部、51,151,251,351,451,551,651,751,851,951,1051…第1側面、52…第2側面、53…第1凹部、54…第2凹部、54a…底面、55,155,255,355,455,555,655,755,855,955,1055…溝部、55a…第1面、55b…第2面、55c…第3面、55d…溝底面、56,156,256,356,456,556,656,756,856,956,1056…第1端部、57,157,257,357,457,557,657,757,857,957,1057…第2端部、58…第3凹部、59…凹溝部、81,181,281,381,481,581,681,781,881,981,1081…第1流路部、82,182,282,382,482,582,682,782,882,982,1082…第2流路部、89,288,789…境界部、183,283,383,483,683,883,983,1083…第3流路部、100…駆動装置、158,258,358,458,658,858,958,1058…第3端部、189,289,389,489,688,889,989,1089…第1分岐部、584…第4流路部、659…第4端部、685…第5流路部、689…第2分岐部、IL…仮想線、J…中心軸線、L…基準線 DESCRIPTION OF SYMBOLS 10... Rotating electric machine, 30... Rotor, 31... Shaft, 31a... Through hole, 31c... Outer opening (opening), 31k... Housing recess, 32... Rotor core, 37... Gap part, 40... Stator, 42a, 42b... Coil end , 42c... Coil, 50, 50a, 50b, 150, 250, 350, 450, 550, 650, 750, 850, 950, 1050... End plate, 50h... Insertion hole, 50k... Projection, 51, 151, 251, 351, 451, 551, 651, 751, 851, 951, 1051...first side surface, 52...second side surface, 53...first recessed portion, 54...second recessed portion, 54a...bottom surface, 55,155,255,355, 455,555,655,755,855,955,1055...Groove portion, 55a...First surface, 55b...Second surface, 55c...Third surface, 55d...Groove bottom surface, 56,156,256,356,456,556 , 656, 756, 856, 956, 1056... first end, 57, 157, 257, 357, 457, 557, 657, 757, 857, 957, 1057... second end, 58... third recess, 59 ...Concave groove part, 81,181,281,381,481,581,681,781,881,981,1081...First flow path part, 82,182,282,382,482,582,682,782,882, 982,1082...Second flow path section, 89,288,789...Boundary section, 183,283,383,483,683,883,983,1083...Third flow path section, 100...Drive device, 158,258, 358, 458, 658, 858, 958, 1058...Third end part, 189, 289, 389, 489, 688, 889, 989, 1089... First branch part, 584... Fourth flow path part, 659... Fourth End portion, 685...Fifth channel portion, 689...Second branch portion, IL...Virtual line, J...Center axis line, L...Reference line

Claims (29)

  1.  環状のステータの内側に配置され中心軸線を中心として回転可能なロータであって、
     前記中心軸線に沿って延びるシャフトと、
     前記シャフトに固定されるロータコアと、
     前記シャフトが挿入される挿入孔が設けられ前記ロータコアと軸方向に並んで配置される円環状のエンドプレートと、を備え、
     前記シャフトには、
      前記シャフトの内部に設けられる空隙部と、
      前記空隙部から径方向外側に延び前記シャフトの外周面で開口する貫通孔と、が設けられ、
     前記エンドプレートは、軸方向一方側を向く第1側面を有し、
     前記第1側面には、前記貫通孔の開口に繋がる第1端部、および前記第1端部より径方向外側に位置する第2端部を有する溝部が設けられ、
     前記溝部は、径方向に対し傾く方向に延びる第1流路部を有し、
     前記第2端部は、前記第1流路部に位置する、ロータ。
    A rotor arranged inside an annular stator and rotatable about a central axis,
    a shaft extending along the central axis;
    a rotor core fixed to the shaft;
    an annular end plate provided with an insertion hole into which the shaft is inserted and arranged in line with the rotor core in the axial direction;
    The shaft includes:
    a cavity provided inside the shaft;
    a through hole extending radially outward from the cavity and opening at the outer circumferential surface of the shaft;
    The end plate has a first side surface facing one side in the axial direction,
    The first side surface is provided with a groove portion having a first end portion connected to the opening of the through hole, and a second end portion located radially outward from the first end portion;
    The groove portion has a first flow path portion extending in a direction inclined with respect to the radial direction,
    The second end portion is a rotor located in the first flow path portion.
  2.  前記溝部の内面は、軸方向一方側を向く溝底面を有し、
     前記溝底面は、前記貫通孔の開口と径方向に対向する第1面を有し、
     前記第1面は、径方向外側に向かうに従って軸方向一方側に傾斜する、請求項1に記載のロータ。
    The inner surface of the groove portion has a groove bottom surface facing one side in the axial direction,
    The groove bottom surface has a first surface facing the opening of the through hole in the radial direction,
    The rotor according to claim 1, wherein the first surface is inclined toward one side in the axial direction as it goes radially outward.
  3.  前記溝部は、径方向に延びる第2流路部を有し、
     前記第1端部は、前記第2流路部に位置し、
     前記第1面は、前記第2流路部に設けられる、請求項2に記載のロータ。
    The groove portion has a second flow path portion extending in the radial direction,
    The first end portion is located in the second flow path portion,
    The rotor according to claim 2, wherein the first surface is provided in the second flow path section.
  4.  前記溝底面は、前記第2端部に位置する第2面と、を有し、
     前記第2面は、径方向外側に向かうに従って軸方向一方側に傾斜する、請求項2に記載のロータ。
    The groove bottom surface has a second surface located at the second end,
    The rotor according to claim 2, wherein the second surface is inclined toward one side in the axial direction as it goes radially outward.
  5.  軸方向に沿う断面において、前記第2面の径方向外側の端部から前記第2面に沿う方向に径方向外側に延長される仮想線は、前記ステータのコイルエンドを通る、請求項4に記載のロータ。 In a cross section along the axial direction, an imaginary line extending radially outward in a direction along the second surface from a radially outer end of the second surface passes through a coil end of the stator. Rotor listed.
  6.  前記溝底面は、前記第1面と前記第2面とを繋ぐ第3面と、を有し、
     前記第3面は、軸方向と直交する平面に沿う平坦面である、請求項4に記載のロータ。
    The groove bottom surface has a third surface connecting the first surface and the second surface,
    The rotor according to claim 4, wherein the third surface is a flat surface along a plane perpendicular to the axial direction.
  7.  前記第1側面には、複数の第1凹部が設けられ、
     前記第1凹部は、周方向に等間隔に配置される、請求項1に記載のロータ。
    The first side surface is provided with a plurality of first recesses,
    The rotor according to claim 1, wherein the first recesses are arranged at equal intervals in the circumferential direction.
  8.  前記第1凹部は、周方向に沿って延びる溝状であり、
     前記第1凹部の径方向に沿う寸法は、周方向の一方側に向かうに従い徐々に小さくなる、
    請求項7に記載のロータ。
    The first recess has a groove shape extending along the circumferential direction,
    The dimension along the radial direction of the first recess gradually decreases toward one side in the circumferential direction,
    A rotor according to claim 7.
  9.  前記シャフトの外周面は、軸方向から見て円形であり、
     前記挿入孔は、軸方向から見て円形であり、
     前記シャフトの外周面、又は前記挿入孔の内縁のうち、何れか一方には他方側に突出する複数の突起部が設けられ、他方には前記突起部が挿入される複数の収容凹部が設けられ、
     前記シャフトは、複数の前記貫通孔を有し、
     前記収容凹部は、周方向において前記貫通孔の間に配置される、請求項1に記載のロータ。
    The outer circumferential surface of the shaft is circular when viewed from the axial direction,
    The insertion hole is circular when viewed from the axial direction,
    Either the outer peripheral surface of the shaft or the inner edge of the insertion hole is provided with a plurality of protrusions that protrude toward the other side, and the other is provided with a plurality of accommodation recesses into which the protrusions are inserted. ,
    The shaft has a plurality of the through holes,
    The rotor according to claim 1, wherein the accommodation recess is arranged between the through holes in the circumferential direction.
  10.  前記シャフトの外周面に対し径方向外側に突出する突出部を備え、
     前記突出部は、前記ロータコアとの軸方向の間で前記エンドプレートを挟み、
     前記第1側面には、軸方向から見て円形であり底面において前記突出部と接触する第2凹部が設けられる、請求項1に記載のロータ。
    comprising a protrusion that protrudes radially outward with respect to the outer circumferential surface of the shaft,
    The protruding portion sandwiches the end plate between the protruding portion and the rotor core in the axial direction,
    The rotor according to claim 1, wherein the first side surface is provided with a second recess that is circular when viewed from the axial direction and contacts the protrusion at a bottom surface.
  11.  軸方向から見て、前記第1端部は前記突出部に重なり、前記第2端部は前記突出部よりも径方向外側に位置する、請求項10に記載のロータ。 The rotor according to claim 10, wherein the first end overlaps the protrusion and the second end is located radially outward than the protrusion when viewed from the axial direction.
  12.  前記エンドプレートは、前記ロータコア側を向く第2側面を有し、
     前記第2側面には、
      前記挿入孔を囲む第3凹部と、
      前記第3凹部の径方向外側に位置し周方向に沿って延びる凹溝部と、が設けられる、請求項1に記載のロータ。
    The end plate has a second side surface facing the rotor core side,
    The second side includes
    a third recess surrounding the insertion hole;
    The rotor according to claim 1, further comprising: a groove portion located on the radially outer side of the third recess portion and extending along the circumferential direction.
  13.  前記溝部は、径方向に延びる第2流路部を有し、
     前記第1端部は、前記第2流路部に位置する、請求項1に記載のロータ。
    The groove portion has a second flow path portion extending in the radial direction,
    The rotor according to claim 1, wherein the first end is located in the second flow path.
  14.  前記第1流路部、および前記第2流路部は、軸方向から見てそれぞれ直線状に延びる、請求項13に記載のロータ。 The rotor according to claim 13, wherein the first flow path portion and the second flow path portion each extend linearly when viewed from the axial direction.
  15.  前記溝部は、
      前記第1端部より径方向外側、かつ前記第2端部より径方向内側に位置する第1分岐部と、
      前記第1分岐部から分岐する第3流路部と、
      前記第3流路部に位置し前記第1分岐部よりも径方向外側に配置される第3端部と、を有する、請求項1に記載のロータ。
    The groove portion is
    a first branch portion located radially outward from the first end and radially inward from the second end;
    a third flow path section branching from the first branch section;
    The rotor according to claim 1, further comprising a third end portion located in the third flow path portion and disposed radially outward than the first branch portion.
  16.  前記溝部は、径方向に延びる第2流路部を有し、
     前記第1端部は、前記第2流路部に位置し、
     前記第1分岐部が、前記第1流路部と前記第2流路部との境界部に位置する、請求項15に記載のロータ。
    The groove portion has a second flow path portion extending in the radial direction,
    The first end portion is located in the second flow path portion,
    The rotor according to claim 15, wherein the first branch section is located at a boundary between the first flow path section and the second flow path section.
  17.  前記第1分岐部が、前記第1流路部の途中に位置する、請求項15に記載のロータ。 The rotor according to claim 15, wherein the first branch part is located in the middle of the first flow path part.
  18.  前記溝部は、径方向に対し傾く方向に延びる第2流路部を有し、
     前記第1端部は、前記第2流路部に位置し、
     前記第3流路部は、前記第1分岐部において前記第2流路部に繋がり、前記第2流路部と同方向に延びる、請求項15に記載のロータ。
    The groove portion has a second flow path portion extending in a direction inclined with respect to the radial direction,
    The first end portion is located in the second flow path portion,
    The rotor according to claim 15, wherein the third flow path portion is connected to the second flow path portion at the first branch portion and extends in the same direction as the second flow path portion.
  19.  前記第1流路部は、径方向外側に向かうに従い周方向一方側に傾斜し、
     前記第2流路部および前記第3流路部は、径方向外側に向かうに従い周方向他方側に傾斜する、請求項18に記載のロータ。
    The first flow path section is inclined toward one side in the circumferential direction as it goes radially outward,
    The rotor according to claim 18, wherein the second flow path portion and the third flow path portion are inclined toward the other side in the circumferential direction as they go radially outward.
  20.  前記第1流路部は、径方向外側に向かうに従い周方向一方側に傾斜し、
     前記第2流路部および前記第3流路部は、径方向外側に向かうに従い周方向一方側に傾斜する、請求項18に記載のロータ。
    The first flow path section is inclined toward one side in the circumferential direction as it goes radially outward,
    The rotor according to claim 18, wherein the second flow path portion and the third flow path portion are inclined toward one side in the circumferential direction as they go radially outward.
  21.  前記第3流路部は、径方向に対し傾く方向に延び、
     前記第2端部と前記第3端部とは、前記第1分岐部に対し周方向の反対側に配置される、
    請求項15に記載のロータ。
    The third flow path section extends in a direction inclined with respect to the radial direction,
    The second end portion and the third end portion are arranged on opposite sides in the circumferential direction with respect to the first branch portion,
    A rotor according to claim 15.
  22.  前記第3流路部は、径方向に対し傾く方向に延び、
     前記第2端部と前記第3端部とは、前記第1分岐部に対し周方向の同じ側に配置される、
    請求項15に記載のロータ。
    The third flow path section extends in a direction inclined with respect to the radial direction,
    The second end and the third end are arranged on the same side in the circumferential direction with respect to the first branch,
    A rotor according to claim 15.
  23.  前記溝部は、
      前記第1分岐部より径方向外側、かつ前記第3端部より径方向内側に位置する第2分岐部と、
      前記第2分岐部から分岐する第5流路部と、
      前記第5流路部に位置し前記第2分岐部よりも径方向外側に配置される第4端部と、を有する、請求項15に記載のロータ。
    The groove portion is
    a second branch part located radially outward from the first branch part and radially inward from the third end part;
    a fifth flow path section branching from the second branch section;
    The rotor according to claim 15, further comprising a fourth end portion located in the fifth flow path portion and disposed radially outward than the second branch portion.
  24.  前記溝部は、第2流路部と第4流路部とを有し、
     前記第1端部は、前記第2流路部に位置し、
     前記第4流路部は、前記第2流路部と前記第1流路部とを繋ぐ、請求項1に記載のロータ。
    The groove portion has a second flow path portion and a fourth flow path portion,
    The first end portion is located in the second flow path portion,
    The rotor according to claim 1, wherein the fourth flow path section connects the second flow path section and the first flow path section.
  25.  前記第1側面には、複数の前記溝部が設けられ、
     複数の前記溝部は、周方向に等間隔に配置される、請求項1に記載のロータ。
    A plurality of the grooves are provided on the first side surface,
    The rotor according to claim 1, wherein the plurality of grooves are arranged at equal intervals in the circumferential direction.
  26.  前記第1側面には、複数の前記溝部が設けられ、
     複数の前記溝部のうち2つは、軸方向から見て前記中心軸線を通過する基準線に対し、線対称に配置される、請求項1に記載のロータ。
    A plurality of the grooves are provided on the first side surface,
    The rotor according to claim 1, wherein two of the plurality of grooves are arranged symmetrically with respect to a reference line passing through the central axis when viewed from the axial direction.
  27.  前記基準線に対し線対称に配置される2つの前記溝部は、前記基準線上で互いに交差する、
    請求項26に記載のロータ。
    the two grooves arranged symmetrically with respect to the reference line intersect with each other on the reference line;
    A rotor according to claim 26.
  28.  請求項1~27の何れか一項に記載のロータと、
     前記ステータと、を備える、回転電機。
    A rotor according to any one of claims 1 to 27,
    A rotating electrical machine comprising the stator.
  29.  請求項28に記載の回転電機と、
     前記回転電機に接続されるギヤ機構と、を備える、駆動装置。
    A rotating electrical machine according to claim 28;
    A drive device comprising: a gear mechanism connected to the rotating electric machine.
PCT/JP2023/018894 2022-06-24 2023-05-22 Rotor, rotary electric machine, and driving device WO2023248668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-101944 2022-06-24
JP2022101944 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023248668A1 true WO2023248668A1 (en) 2023-12-28

Family

ID=89379723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018894 WO2023248668A1 (en) 2022-06-24 2023-05-22 Rotor, rotary electric machine, and driving device

Country Status (1)

Country Link
WO (1) WO2023248668A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004630A (en) * 2008-06-19 2010-01-07 Honda Motor Co Ltd Motor
JP2010233291A (en) * 2009-03-26 2010-10-14 Aisin Seiki Co Ltd Rotor for motor
JP2013027244A (en) * 2011-07-25 2013-02-04 Toyota Motor Corp End plate of rotor and rotary electric machine
JP2017208883A (en) * 2016-05-16 2017-11-24 本田技研工業株式会社 Rotor of rotary electric machine and manufacturing method of rotor of rotary electric machine
JP2018027003A (en) * 2016-08-09 2018-02-15 日本電産株式会社 Motor unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004630A (en) * 2008-06-19 2010-01-07 Honda Motor Co Ltd Motor
JP2010233291A (en) * 2009-03-26 2010-10-14 Aisin Seiki Co Ltd Rotor for motor
JP2013027244A (en) * 2011-07-25 2013-02-04 Toyota Motor Corp End plate of rotor and rotary electric machine
JP2017208883A (en) * 2016-05-16 2017-11-24 本田技研工業株式会社 Rotor of rotary electric machine and manufacturing method of rotor of rotary electric machine
JP2018027003A (en) * 2016-08-09 2018-02-15 日本電産株式会社 Motor unit

Similar Documents

Publication Publication Date Title
TWI797895B (en) Rotating Motors and Drives
JP2022136835A (en) Rotary electric machine and driving device
WO2022107370A1 (en) Rotating electric machine and drive device
JP2022103967A (en) Driving device
WO2023248668A1 (en) Rotor, rotary electric machine, and driving device
US20230068403A1 (en) Rotor, rotary electric machine, and drive apparatus
JP6648169B2 (en) Stator cooling structure and rotating electric machine
WO2023228735A1 (en) Rotor, and rotating electric machine
US12081069B2 (en) Stator, rotary electric machine, drive device, and mobile unit
JP2020110027A (en) Motor, and driving device
JP7459622B2 (en) drive device
JP7415617B2 (en) drive device
JP7517145B2 (en) Drive unit
JP2023034576A (en) Rotor and rotary electric machine
JP7392551B2 (en) drive device
JP2023066955A (en) Rotary electric machine and driving device
JP7108529B2 (en) Rotating electric machine
JP7452056B2 (en) drive device
JP2021125894A (en) Drive device
WO2024202081A1 (en) Rotor, rotary electric machine, and drive device
JP7415616B2 (en) drive device
WO2022107372A1 (en) Rotating electrical machine and drive device
JP7415749B2 (en) drive device
WO2023190172A1 (en) Rotor, rotary electric machine, and drive device
WO2023243315A1 (en) Rotating electric machine and drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826856

Country of ref document: EP

Kind code of ref document: A1