WO2023246910A1 - 一种调节氧舱内氧气浓度的节能控制方法 - Google Patents

一种调节氧舱内氧气浓度的节能控制方法 Download PDF

Info

Publication number
WO2023246910A1
WO2023246910A1 PCT/CN2023/101873 CN2023101873W WO2023246910A1 WO 2023246910 A1 WO2023246910 A1 WO 2023246910A1 CN 2023101873 W CN2023101873 W CN 2023101873W WO 2023246910 A1 WO2023246910 A1 WO 2023246910A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
nitrogen
rich gas
chamber
concentration
Prior art date
Application number
PCT/CN2023/101873
Other languages
English (en)
French (fr)
Inventor
王耀武
吴升波
房爱玲
Original Assignee
青岛威奥轨道股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛威奥轨道股份有限公司 filed Critical 青岛威奥轨道股份有限公司
Publication of WO2023246910A1 publication Critical patent/WO2023246910A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/131Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components
    • G05D11/132Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components by controlling the flow of the individual components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention belongs to the technical field of adjusting oxygen concentration in an oxygen cabin, and in particular relates to an energy-saving control method for adjusting oxygen concentration in an oxygen cabin.
  • the human body when oxygen is injected into the oxygen chamber, the human body only consumes a small part, so the oxygen concentration in the oxygen chamber will continue to increase; existing technology dilutes the concentration in the oxygen chamber by inputting air with an oxygen concentration of 21% , the required volume of air is large, the energy consumption of the air compressor is high, resulting in energy waste, and the air compressor sucking in a large volume of air also produces high noise, and the user experience is low.
  • High oxygen concentration also has a high probability of catching fire.
  • the user wants to reduce the oxygen concentration in the oxygen chamber to 21% during use, it is not possible to dilute the oxygen concentration in the oxygen chamber by inputting air; in order to reduce the oxygen concentration
  • an energy-saving method for adjusting the oxygen concentration in the oxygen chamber is urgently needed.
  • the present invention provides an energy-saving control method for adjusting the oxygen concentration in the oxygen chamber.
  • the control method is implemented based on an oxygen generating device, a recovery device, an air compressor, an oxygen chamber, and a control system.
  • the recovery device includes a nitrogen-rich gas recovery tank
  • the oxygen generation device is connected to the recovery device
  • the oxygen generation device is connected to the oxygen chamber through the oxygen storage tank
  • the recovery device is connected to the air compressor
  • the air compressor is connected to the oxygen through the nitrogen-rich gas storage tank
  • the cabin is connected, and a flow meter and a valve are installed between the oxygen generating device and the nitrogen-rich gas recovery tank.
  • the valve and flow meter control the on-off and flow rate of the transportation pipeline according to the control system.
  • An oxygen concentration sensor is installed in the oxygen cabin for real-time Detect the oxygen concentration in the oxygen chamber, and electrically connect the flow meter, valve and control system.
  • the control method includes the following steps:
  • the remaining nitrogen-rich gas after the oxygen generator separates oxygen is collected by the recovery device and used to dilute the oxygen concentration in the oxygen chamber;
  • step (1) the ratio of the volume of oxygen separated by the oxygen generating device to the volume of air before separation is 1:12 ⁇ 1:16, that is, 12L ⁇ 16L air separates 1L of high-concentration oxygen, and the separated oxygen
  • the oxygen concentration is 93% ⁇ 3%.
  • the oxygen generator can extract 1L of oxygen from 14L of air.
  • the extracted oxygen concentration is about 93%, and the output nitrogen-rich gas has the smallest oxygen concentration. concentration.
  • the invention has low cost, high efficiency, and is relatively convenient to use. It is convenient to automatically adjust the oxygen concentration in the oxygen chamber through control, and uses a smaller volume of nitrogen-rich gas to dilute the oxygen concentration, thereby reducing the power of the air compressor and reducing noise. Save energy and reduce consumption, so that users can be in a suitable environment in the oxygen chamber.
  • An energy-saving control method for adjusting the oxygen concentration in an oxygen cabin is based on an oxygen generating device, a recovery device, an air compressor, an oxygen cabin, and a control system.
  • the recovery device includes a nitrogen-rich gas recovery tank, an oxygen generating device, and a recovery device.
  • the devices are connected.
  • the oxygen generating device is connected to the oxygen cabin through the oxygen storage tank.
  • the recovery device is connected to the air compressor.
  • the air compressor is connected to the oxygen cabin through the nitrogen-rich gas storage tank.
  • Flowmeters and valves The valves and flowmeters control the on-off and flow rate of the transportation pipeline according to the control system.
  • There is an oxygen concentration sensor in the oxygen chamber for real-time detection of the oxygen concentration in the oxygen chamber.
  • the flowmeter, valves and control system electrical sexual connection.
  • the control method includes the following steps:
  • Air containing 21% oxygen is separated from oxygen by the oxygen generator.
  • the ratio of the volume of oxygen separated by the oxygen generator to the volume of air before separation is 1:14, that is, 1L of high-concentration oxygen is separated from 14L of air.
  • the oxygen concentration is 93%;
  • the remaining nitrogen-rich gas after the oxygen generator separates oxygen is collected by the recovery device and used to dilute the oxygen concentration in the oxygen chamber.
  • the collected nitrogen-rich gas is diverted through the flow meter and valve at a ratio of 4:1, 80% Nitrogen-rich gas is used in the oxygen chamber to dilute the oxygen concentration in the oxygen chamber so that the oxygen concentration in the oxygen chamber is controlled at about 23%, and 20% of the nitrogen-rich gas is discharged into the air;
  • the control system transmits signals to the air compressor
  • the oxygen generator generally extracts about 1L of oxygen from 14L of air.
  • the extracted oxygen concentration is about 93%, and the output nitrogen-rich gas has the smallest oxygen concentration. concentration.
  • the oxygen chamber for four people being used for 2 hours as an example.
  • the oxygen input into the oxygen chamber is 10L/min, and the oxygen consumption per person is 0.18L/min.
  • the oxygen concentration in the oxygen chamber is diluted with air with an oxygen concentration of 21% to 23% per minute.
  • the air dosage A with an oxygen concentration of 21% is:
  • the volume of nitrogen-rich gas used is about 13920L
  • the oxygen concentration volume of the oxygen chamber used to dilute with air is 55680L
  • the use of nitrogen-rich gas saves the gas inhaled by the air compressor at 41760L. Because a smaller volume is used Nitrogen-rich gas dilutes the oxygen concentration, thereby reducing the energy consumption of the air compressor, reducing gas flow and producing less noise, improving user experience.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

一种调节氧舱内氧气浓度的节能控制方法,控制方法基于制氧装置、回收装置、空压机、氧舱、控制系统而实现的,回收装置包括富氮气体回收罐,制氧装置和回收装置相连,制氧装置通过储氧气罐和氧舱相连,回收装置和空压机相连,空压机通过储富氮气体罐和氧舱相连,制氧装置和富氮气体回收罐之间设有流量计和阀门,氧舱内设有氧浓度传感器,用于实时检测氧舱内的氧气浓度,流量计、阀门和控制系统电性连接;用氧气浓度21%的空气稀释氧舱内每分钟用量A为用氧气浓度15%的富氮气体稀释氧舱内氧浓度每分钟用量B的4倍,相应的降低了空压机的功率,并减少了噪音,节能降耗,从而使得用户在氧舱内处于适宜的环境中。

Description

一种调节氧舱内氧气浓度的节能控制方法 技术领域
本发明属于调节氧舱内氧气浓度的技术领域,特别是涉及一种调节氧舱内氧气浓度的节能控制方法。
背景技术
氧舱在保压阶段,当氧气注入氧舱内,人体只消耗一小部分,因而氧舱内氧气浓度将不断升高;现有技术通过输入含氧气浓度21%的空气来稀释氧舱内浓度,需要的空气体积较大,空压机能耗高,造成能源浪费,且空压机吸入大体积空气也产生高的噪音,用户使用体验性低。
高的氧浓度着火概率也高,为保证安全性,使用时用户若想降低氧舱内氧气浓度值到21%,通过输入空气稀释氧舱内氧气浓度的方法是无法实现的;为将氧气浓度控制在标准设定内,亟需一种调节氧舱内氧气浓度的节能方法。
发明内容
为了解决现有技术中所存在的技术问题,本发明提供了一种调节氧舱内氧气浓度的节能控制方法,控制方法基于制氧装置、回收装置、空压机、氧舱、控制系统而实现的,回收装置包括富氮气体回收罐,制氧装置和回收装置相连,制氧装置通过储氧气罐和氧舱相连,回收装置和空压机相连,空压机通过储富氮气体罐和氧舱相连,制氧装置和富氮气体回收罐之间设有流量计和阀门,阀门和流量计根据控制系统控制输送管道的通断和流量大小,氧舱内设有氧浓度传感器,用于实时检测氧舱内的氧气浓度,流量计、阀门和控制系统电性连接。
控制方法包括如下步骤:
含氧气21%的空气经制氧装置分离氧气;
分离出的氧气经储氧气罐进入氧舱中;
制氧装置分离氧气后的剩余的富氮气体由回收装置收集,用于稀释氧舱内的氧浓度;
控制系统传输信号给空压机;
空压机吸入富氮气体到到储富氮气体罐中,然后再输入氧舱内,稀释氧浓度,氧舱内富氮气体和氧气按照比例同时输入来控制氧舱内浓度;
依次循环步骤(1)~(5)。
进一步的,所述步骤(1)中制氧装置分离出氧气的体积与分离前空气体积的比例为1:12~1:16,即12L~16L空气分离1L高浓度氧气,分离出的氧气中氧气浓度为93%±3%。
进一步的,所述步骤(3)中收集的富氮气体按4:1的比例通过流量计、阀门分流,80%的富氮气体用于氧舱,稀释氧舱内的氧浓度,使得氧舱内的氧气浓度控制在23%左右,20%的富氮气体排到空气中。
进一步的,所述回收装置通过单向阀和空气相通,由于用于吸入富氮气体的空压机吸入量需大于富氮气体的需求量,便于将富氮气体吸干净,多出气体量由空气补充。
制氧装置通用14L空气提取1L氧气,提取的氧气浓度为93%左右,输出富氮气体氧浓度最小 的浓度。
用氧气浓度21%的空气稀释氧舱内氧浓度到23%每分钟所需的氧气浓度21%的空气用量A(单位:L/min)为:
A×(23−21)%=(2.5−0.18)×n
A=116n
进入氧舱的富氮气体与氧舱内气体充分混合的前提下,用氧气浓度为15%的富氮气体稀释氧舱内氧浓度到23%每分钟所需的氧气浓度15%的富氮气体用量B为:
B×(23−15)%=(2.5−0.18)×n
B=29n
其中,氧舱内人数为n;氧舱内氧气输入按每人2.5L/min;成人静息状态每人氧气消耗量0.18L/min。
所述步骤(5)中氧舱内同时输入富氮气体用量B与氧气用量O的比例为:
B/O=29n/2.5n=11.6。
用氧气浓度21%的空气稀释氧舱内氧浓度到23%每分钟所需的氧气浓度21%的空气用量A与用氧气浓度15%的富氮气体稀释氧舱内氧浓度氧浓度到23%每分钟所需的氧气浓度15%的富氮气体用量B的比例为:
A:B=4:1
用氧气浓度21%的空气稀释氧舱内每分钟用量A (单位:L/min)为用氧气浓度15%的富氮气体稀释氧舱内氧浓度每分钟用量B的4倍,相应的降低了空压机的功率,并减少了噪音,节能降耗。
有益效果
本发明成本低,效率高,使用比较方便,便于通过控制自动调节氧舱内的氧气浓度,使用较少体积的富氮气体稀释氧浓度,从而降低了空压机的功率,并减少了噪音,节能降耗,从而使得用户在氧舱内处于适宜的环境中。
附图说明
图1为本发明控制装置的连接关系示意图。
如图所示:氧舱1、回收装置2、制氧装置3、空压机4。
实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例
一种调节氧舱内氧气浓度的节能控制方法,控制方法基于制氧装置、回收装置、空压机、氧舱、控制系统而实现的,回收装置包括富氮气体回收罐,制氧装置和回收装置相连,制氧装置通过储氧气罐和氧舱相连,回收装置和空压机相连,空压机通过储富氮气体罐和氧舱相连,制氧装置和富氮气体回收罐之间设有流量计和阀门,阀门和流量计根据控制系统控制输送管道的通断和流量大小,氧舱内设有氧浓度传感器,用于实时检测氧舱内的氧气浓度,流量计、阀门和控制系统电性连接。
控制方法包括如下步骤:
(1)含氧气21%的空气经制氧装置分离氧气,制氧装置分离出氧气的体积与分离前空气体积的比例为1:14,即14L空气分离1L高浓度氧气,分离出的氧气中氧气浓度为93%;
(2)分离出的氧气经储氧气罐进入氧舱中;
(3)制氧装置分离氧气后的剩余的富氮气体由回收装置收集,用于稀释氧舱内的氧浓度,收集的富氮气体按4:1的比例通过流量计、阀门分流,80%的富氮气体用于氧舱,稀释氧舱内的氧浓度,使得氧舱内的氧气浓度控制在23%左右,20%的富氮气体排到空气中;
(4)控制系统传输信号给空压机;
(5)空压机吸入富氮气体到到储富氮气体罐中,然后再输入氧舱内,稀释氧浓度,氧舱内富氮气体和氧气按照比例11.6同时输入来控制氧舱内浓度;
(6)依次循环步骤(1)~(5)。
制氧装置通用14L空气提取约1L氧气,提取的氧气浓度为93%左右,输出富氮气体氧浓度最小 的浓度。
以四人氧舱使用2小时为例,氧舱内氧气输入10L/min,每人氧气消耗量0.18L/min,用氧气浓度21%的空气稀释氧舱内氧浓度到23%每分钟所需的氧气浓度21%的空气用量A为:
A×(23−21)%=10−0.18×4
A=464L/min
进入氧舱的富氮气体与氧舱内气体充分混合的前提下,用氧气浓度15%的富氮气体稀释氧舱内氧浓度氧浓度到23%每分钟所需的氧气浓度15%的富氮气体用量B为:
B×(23−15)%=10−0.18×4
B=116L/min
若氧舱使用2小时,
使用氧气浓度21%的空气用量=464×120=55680L
使用氧气浓度15%的富氮气体用量=116×120=13920L
使用富氮气体节约空压机吸入的气体=55680−13920=41760L
四人氧舱输入氧气10L/min的情况下,得出所需富氮气体B值为116L/min,若制氧机输出氧气10L/min,氧浓度约93%,所需输入空气为140L/min,输出的富氮气体为130L/min,用于氧舱的富氮气体为130*0.8+部分空气≈116L/min,用于吸入富氮气体的空压机吸入量需大于130*0.8,便于将富氮气体吸干净,多出气体量由空气补充。
以四人氧舱使用2小时为例,使用富氮气体体积约13920L,使用空气稀释氧舱器氧气浓度体积55680L,使用富氮气体节约空压机吸入的气体为41760L,因使用较少体积的富氮气体稀释氧浓度,从而降低了空压机的能耗,减少了气体流动产生较少的噪音,提高了用户体验。
当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上,当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
本实施例中的左右上下等方位用语,仅是互为相对概念或是以产品的正常使用状态为参考的,而不应该认为是具有限制性的。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种调节氧舱内氧气浓度的节能控制方法,其特征在于:控制方法基于制氧装置、回收装置、空压机、氧舱、控制系统而实现的,所述回收装置包括富氮气体回收罐,所述制氧装置和回收装置相连,所述制氧装置通过储氧气罐和氧舱相连,所述回收装置和空压机相连,所述空压机通过储富氮气体罐和氧舱相连,所述制氧装置和富氮气体回收罐之间设有流量计和阀门,所述阀门和流量计根据控制系统控制输送管道的通断和流量大小;
    控制方法包括如下步骤:
    含氧气21%的空气经制氧装置分离氧气;
    分离出的氧气经储氧气罐进入氧舱中;
    制氧装置分离氧气后的剩余的富氮气体由回收装置收集,用于稀释氧舱内的氧浓度;
    控制系统传输信号给空压机;
    空压机吸入富氮气体到到储富氮气体罐中,然后再输入氧舱内,稀释氧浓度,氧舱内富氮气体和氧气按照比例同时输入来控制氧舱内浓度;
    依次循环步骤(1)~(5)。
  2. 根据权利要求1所述的一种调节氧舱内氧气浓度的节能控制方法,其特征在于:所述流量计、阀门和控制系统电性连接。
  3. 根据权利要求1所述的一种调节氧舱内氧气浓度的节能控制方法,其特征在于:所述氧舱内设有氧浓度传感器,用于实时检测氧舱内的氧气浓度。
  4. 根据权利要求1所述的一种调节氧舱内氧气浓度的节能控制方法, 其特征在于:所述步骤(1)中制氧装置分离出氧气的体积与分离前空气体积的比例为1:12~1:16,分离出的氧气中氧气浓度为93%±3%。
  5. 根据权利要求1所述的一种调节氧舱内氧气浓度的节能控制方法, 其特征在于:所述步骤(3)中收集的富氮气体按4:1的比例通过流量计、阀门分流,80%的富氮气体用于氧舱,稀释氧舱内的氧浓度,使得氧舱内的氧气浓度控制在23%,20%的富氮气体排到空气中。
  6. 根据权利要求1所述的一种调节氧舱内氧气浓度的节能控制方法, 其特征在于:所述制氧装置14L空气提取1L氧气,提取的氧气浓度为93%,输出富氮气体氧浓度 的浓度;
    进入氧舱的富氮气体与氧舱内气体充分混合的前提下,用氧气浓度为15%的富氮气体稀释氧舱内氧浓度到23%每分钟所需的氧气浓度15%的富氮气体用量B为:
    B×(23−15)%=(2.5−0.18)×n
    B=29n
    其中,氧舱内人数为n;氧舱内氧气输入按每人2.5L/min;成人静息状态每人氧气消耗量0.18L/min;
    所述步骤(5)中氧舱内同时输入富氮气体用量B与氧气用量O的比例为:
    B/O=29n/2.5n=11.6。
  7. 根据权利要求1所述的一种调节氧舱内氧气浓度的节能控制方法, 其特征在于:所述回收装置通过单向阀和空气相通,用于吸入富氮气体的空压机吸入量需大于富氮气体的需求量,便于将富氮气体吸干净,多出气体量由空气补充。
PCT/CN2023/101873 2022-06-22 2023-06-21 一种调节氧舱内氧气浓度的节能控制方法 WO2023246910A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210713191.0 2022-06-22
CN202210713191.0A CN115016555A (zh) 2022-06-22 2022-06-22 一种调节氧舱内氧气浓度的节能控制方法

Publications (1)

Publication Number Publication Date
WO2023246910A1 true WO2023246910A1 (zh) 2023-12-28

Family

ID=83077194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101873 WO2023246910A1 (zh) 2022-06-22 2023-06-21 一种调节氧舱内氧气浓度的节能控制方法

Country Status (2)

Country Link
CN (1) CN115016555A (zh)
WO (1) WO2023246910A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115016555A (zh) * 2022-06-22 2022-09-06 青岛威奥轨道股份有限公司 一种调节氧舱内氧气浓度的节能控制方法
CN117284060B (zh) * 2023-11-24 2024-03-26 深圳三爱健康科技有限公司 车内空间富氧空气状态调控方法、系统、富氧舱及房车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122378A (ja) * 2004-10-29 2006-05-18 Takenaka Komuten Co Ltd 低酸素濃度防火システム
US20100258127A1 (en) * 2009-04-08 2010-10-14 Hk Anurag Sharma Adaptable demand dilution oxygen regulator for use in aircrafts
CN102198321A (zh) * 2011-03-17 2011-09-28 中国人民解放军空军航空医学研究所 间歇性低氧训练用常压低氧舱及其调节低氧舱内氧气浓度的方法
JP2014020634A (ja) * 2012-07-17 2014-02-03 Panasonic Corp ブース内の酸素濃度の制御方法および酸素濃度の制御装置
CN109498324A (zh) * 2018-12-26 2019-03-22 洛阳恒佳机车电器有限公司 一种智能化氧健康舱及停机方法
CN115016555A (zh) * 2022-06-22 2022-09-06 青岛威奥轨道股份有限公司 一种调节氧舱内氧气浓度的节能控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122378A (ja) * 2004-10-29 2006-05-18 Takenaka Komuten Co Ltd 低酸素濃度防火システム
US20100258127A1 (en) * 2009-04-08 2010-10-14 Hk Anurag Sharma Adaptable demand dilution oxygen regulator for use in aircrafts
CN102198321A (zh) * 2011-03-17 2011-09-28 中国人民解放军空军航空医学研究所 间歇性低氧训练用常压低氧舱及其调节低氧舱内氧气浓度的方法
JP2014020634A (ja) * 2012-07-17 2014-02-03 Panasonic Corp ブース内の酸素濃度の制御方法および酸素濃度の制御装置
CN109498324A (zh) * 2018-12-26 2019-03-22 洛阳恒佳机车电器有限公司 一种智能化氧健康舱及停机方法
CN115016555A (zh) * 2022-06-22 2022-09-06 青岛威奥轨道股份有限公司 一种调节氧舱内氧气浓度的节能控制方法

Also Published As

Publication number Publication date
CN115016555A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2023246910A1 (zh) 一种调节氧舱内氧气浓度的节能控制方法
CN203861719U (zh) 同步触发与节氧技术装置
CN208710724U (zh) 一种呼吸装置
CN101721767A (zh) 涡轮式电动呼吸机
CN201329110Y (zh) 高原辅助呼吸器
US20200078537A1 (en) Atomizer drug delivery nozzle, and intelligently self-adjustable atomizer drug delivery apparatus and method for using same
CN205145318U (zh) 一种呼吸频率同步医用雾化器
CN208388983U (zh) 一种臭氧雾hpv治疗仪
CN107174712B (zh) 一种由呼吸控制的呼吸装置
CN108635644A (zh) 一种能监测血氧饱和度和脉搏的吸氧仪
CN109453447A (zh) 一种新型小儿肺炎护理仪
CN207799482U (zh) 基于单片机的供氧装置
CN109621120A (zh) 一种具有脉冲吸氧和正压通气功能的管路及呼吸支持设备
CN203458657U (zh) 一种气道排气装置和具有该排气装置的呼吸机
CN115957410A (zh) 脉冲供氧系统及脉冲供氧控制方法
CN104274291A (zh) 高压氧舱急救头罩多孔式吸排氧装置
US20060150977A1 (en) Respiratory assist device and method of providing respiratory assistance
CN107185092A (zh) 一种内科医疗便携式氧气发生装置
CN203724569U (zh) 氧气雾化吸氧装置
CN202105280U (zh) 一种基于流量触发的双水平呼吸机
CN209286403U (zh) 一种通过差压传感器检测呼吸控制雾化的雾化器
CN203354819U (zh) 一种用于医用空气加压氧舱的多功能吸氧装置
CN106178210A (zh) 气体中毒急救呼吸机
CN112675391A (zh) 一种自适应吸氧装置
CN2319062Y (zh) 循环式氦-氧混合气辅助呼吸装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826555

Country of ref document: EP

Kind code of ref document: A1