WO2023246818A1 - 3d打印控制方法、装置、电子设备及介质 - Google Patents

3d打印控制方法、装置、电子设备及介质 Download PDF

Info

Publication number
WO2023246818A1
WO2023246818A1 PCT/CN2023/101525 CN2023101525W WO2023246818A1 WO 2023246818 A1 WO2023246818 A1 WO 2023246818A1 CN 2023101525 W CN2023101525 W CN 2023101525W WO 2023246818 A1 WO2023246818 A1 WO 2023246818A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
flow rate
cross
waiting time
rate threshold
Prior art date
Application number
PCT/CN2023/101525
Other languages
English (en)
French (fr)
Inventor
张园豪
唐庭阁
张亚东
Original Assignee
先临三维科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210726280.9A external-priority patent/CN115214146B/zh
Application filed by 先临三维科技股份有限公司 filed Critical 先临三维科技股份有限公司
Publication of WO2023246818A1 publication Critical patent/WO2023246818A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present disclosure relates to the technical field of 3D (three-dimensional) printing, and in particular to a 3D printing control method, device, electronic equipment and media.
  • light-curing molding mainly uses photosensitive resin as raw material and utilizes the characteristics of liquid photosensitive resin to quickly solidify under ultraviolet beam irradiation.
  • the technical problem to be solved by the present disclosure is to solve the problem in the existing light-curing printing that the liquid discharge waiting time is too short and the printing quality is affected, and the liquid draining waiting time is too long and the printing efficiency is affected.
  • the present disclosure provides a 3D printing control method, device, electronic equipment and media.
  • embodiments of the present disclosure provide a 3D printing control method, which method includes:
  • the bottom surface of the material box of the printing device is subjected to light processing, and the liquid photosensitive resin is cured to obtain the Nth layer of printed model slice layer; where N is a positive integer;
  • the bottom surface of the material box is illuminated again.
  • the liquid photosensitive resin is cured to obtain the N+1th printed model slice layer; wherein the liquid discharge waiting time is proportional to the cross-sectional parameters of the N+1th printed model slice layer.
  • embodiments of the present disclosure also provide a 3D printing control device, which includes:
  • the first processing module is used to perform light processing on the bottom surface of the cartridge of the printing device, and the liquid photosensitive resin is cured to obtain the Nth layer of printed model slice layers; where N is a positive integer;
  • the second processing module is used to perform light processing on the bottom surface of the material box again after the preset waiting time for liquid discharge, and the liquid photosensitive resin is cured to obtain the N+1th printed model slice layer; wherein, the liquid discharge
  • the waiting time is proportional to the cross-sectional parameters of the N+1th printed model slice layer.
  • embodiments of the present disclosure further provide an electronic device.
  • the electronic device includes: a processor; a memory for storing instructions executable by the processor; and the processor is configured to retrieve instructions from the memory.
  • the executable instructions are read and executed to implement the 3D printing control method provided by the embodiment of the first aspect of the present disclosure.
  • embodiments of the disclosure also provide a computer-readable storage medium, the storage medium stores a computer program, and the computer program is used to execute the 3D printing control method provided by the embodiment of the first aspect of the disclosure.
  • the 3D printing control scheme provided by the embodiment of the present disclosure performs light processing on the bottom surface of the cartridge of the printing device, and the liquid photosensitive resin is cured to obtain the Nth layer of printed model slice layer; where N is a positive integer, and in the preset liquid discharge After the waiting time, the bottom surface of the box is illuminated again, and the liquid photosensitive resin is cured to obtain the N+1 printed model slice layer; among which, the liquid discharge waiting time is proportional to the cross-sectional parameters of the N+1 printed model slice layer. .
  • the liquid photosensitive resin can be cured at different times for the sliced layers of the printed model with different cross-sectional parameters, ensuring the printing quality while improving the printing efficiency.
  • Figure 1 is a schematic structural diagram of a 3D printing device before deformation according to an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of a deformed 3D printing device provided by an embodiment of the present disclosure
  • Figure 3 is a schematic flow chart of a 3D printing control method provided by an embodiment of the present disclosure
  • Figure 4 is a schematic flow chart of another 3D printing control method provided by an embodiment of the present disclosure.
  • Figure 5 is an example diagram of a cross-section of a model provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic structural diagram of a 3D printing control device provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • 3D modeling is first performed to design a three-dimensional solid model of the product, and then the three-dimensional solid model is sliced with equal thickness through software, and the projection data of each exposure is obtained by slicing.
  • the structure of the printer is as shown in Figure 1.
  • Liquid photosensitive resin 4 is placed in the material tray 5 (the liquid photosensitive resin 4 solidifies quickly under light irradiation, thereby forming a solid product), and the molding platform 3 is placed in the material tray 5.
  • the model 6 of the molding platform 3 is in contact with the liquid photosensitive resin 4; then the optical machine emits a projection of the corresponding shape to the bottom of the material box 5 based on the slice processing data, and the corresponding layer of liquid photosensitive resin in the material box 5 will be solidified; the layer is cured.
  • the connecting structure 2 is connected to the lifting mechanism 1 and moves upward for a certain distance driven by the lifting mechanism 1 (for a sinking printer, the forming platform 3 moves downward), and then prints on the basis of the previous layer of solidified liquid photosensitive resin. The shape of the next layer is finally added layer by layer to get the desired 3D printed product.
  • the movement of the forming platform 3 is divided into two stages: driven by the lifting mechanism 1, the forming platform 3 first moves upward a fixed distance h, so that the solidified model and material The bottom surface of the disk 5 is separated; then the lifting mechanism 1 drives the forming platform 3 to move downward h-h layer thickness (the thickness of the printed model slice layer).
  • the forming platform 3 is subjected to an upward liquid discharge force, and the material box 5 is subjected to a force equal to and opposite to that of the forming platform 3.
  • the forming platform 3 and the material box 5 will undergo slight deformation (both are not rigid bodies, so will deform).
  • the liquid photosensitive resin 4 will flow between the molding platform 3 and the bottom surface of the material box 5. If the light curing is started before the flow of the liquid photosensitive resin 4 stops, the flowing liquid photosensitive resin 4 will form broken pieces when solidified. Debris adheres to the edge of the model 6, affecting the printing quality on the surface of the model 6.
  • the waiting time before lighting is mostly experience value, and the waiting time is the same for each layer. It can be understood that since the liquid drainage force is approximately proportional to the projected area, when printing a variable cross-section model, the deformation amount of the forming platform 3 and the magazine 5 changes with the size of the projected area, and the corresponding time when the liquid flow stops is inconsistent, that is, The drainage time for each layer is different. If the same and conservative lighting waiting time is set for each layer based on the empirical model, the printing speed will be slowed down.
  • the present disclosure proposes a 3D printing control method.
  • the liquid photosensitive resin is cured to obtain the Nth layer of printed model slice layers; where N is a positive integer, and in the preset After the liquid draining waiting time, the bottom surface of the material box is illuminated again, and the liquid photosensitive resin is cured to obtain the N+1th printed model slice layer; among which, the liquid draining waiting time is related to the cross section of the N+1th printed model sliced layer. parameters are proportional.
  • the liquid photosensitive resin can be cured at different times for the slice layers of the printed model with different cross-sectional parameters, thereby ensuring the printing quality while improving the printing efficiency.
  • FIG. 3 is a schematic flowchart of a 3D printing control method provided by an embodiment of the present disclosure.
  • the method can be executed by a 3D printing control device, where the device can be implemented using software and/or hardware, and can generally be integrated in electronic equipment. middle.
  • the method includes:
  • Step 101 The bottom surface of the cartridge of the printing device is illuminated, and the liquid photosensitive resin is cured to obtain the Nth printing model slice layer; where N is a positive integer.
  • Step 102 After the preset waiting time for liquid discharge, the bottom surface of the material box is illuminated again, and the liquid photosensitive resin is cured to obtain the N+1th layer of printed model slice layer; where the waiting time for liquid discharge is equal to the N+1th layer
  • the printed model slice layer is proportional to the cross-section parameters.
  • the Nth printing model slicing layer refers to any three-dimensional solid model of the object to be printed by slicing it with equal thickness.
  • the embodiment of the present disclosure does not impose specific restrictions on the object to be printed, and can be selected and set according to the needs of the application scenario.
  • the cross-section parameters refer to the maximum inscribed circle diameter, maximum inscribed circle radius, maximum inscribed circle area of the printed model slice layer, or the actual area of the printed model slice layer shape, etc. The settings are selected according to the needs of the application scenario.
  • the projection shape of the N+1th printing model slice layer is obtained, and the projected shape is processed. , get the cross-section parameters.
  • the contour corresponding to the N+1th printed model slice layer is directly processed through a preset calculation algorithm to obtain the cross-sectional parameters.
  • the above two methods are only examples of obtaining the cross-sectional parameters of the N+1th printing model slice layer.
  • the embodiments of the present disclosure do not limit the specific methods of obtaining the cross-sectional parameters of the N+1th printing model slice layer.
  • the three-dimensional solid model is sliced with equal thickness to obtain a multi-layer printed model slice layer, and then the cross-sectional parameters of the printed model slice layer are obtained.
  • the drainage waiting time refers to the waiting time before the liquid photosensitive resin is cured.
  • the drainage waiting time is preset.
  • the drainage waiting time can be set according to the cross-sectional parameters of the printed model slice layer, where , the drain waiting time is proportional to the cross-sectional parameters of the slice layer of the printed model. That is to say, the larger the cross-sectional parameter of the slice layer of the printed model, the longer the drain wait time.
  • the cross-sectional parameter is the maximum inscribed circle diameter, and the printed model The larger the diameter of the maximum inscribed circle of the slice layer, the longer the waiting time for liquid drainage.
  • the cross-sectional parameters of the printed model slice layer are processed based on a preset processing algorithm to obtain the printed model slice layer.
  • the liquid discharge waiting time more specifically, the cross-sectional parameter is the maximum inscribed circle diameter. It is calculated based on the maximum inscribed circle diameter and the stiffness parameter of the printing device to obtain the liquid discharge volume. The corresponding value is determined based on the liquid discharge volume and the preset resin flow rate. drain waiting time.
  • the stiffness parameter of the printing device is used to represent the ability of the printing device (material or structure) to resist elastic deformation when stressed.
  • N is 1.
  • the bottom surface of the material box of the printing device is illuminated.
  • the liquid photosensitive resin is cured to obtain the first layer of printed model slice layer.
  • the bottom surface of the material box is processed.
  • the liquid photosensitive resin solidifies to obtain the second layer of printed model slice layer; the liquid discharge waiting time is proportional to the cross-sectional parameters of the second layer of printed model slice layer.
  • N is 3.
  • the bottom surface of the material box of the printing device is illuminated.
  • the liquid photosensitive resin is cured to obtain the first layer of printed model slices.
  • the bottom surface of the material box is illuminated.
  • the liquid photosensitive resin is then cured to obtain the fourth layer of printed model slices.
  • the waiting time for liquid discharge is proportional to the cross-sectional parameters of the fourth layer of printed model slices.
  • the bottom surface of the material box of the printing device is subjected to light processing, and the liquid photosensitive resin is cured to obtain the Nth layer of printed model slice layer; where N is a positive integer, and waits for the preset liquid discharge After a period of time, the bottom surface of the box is illuminated again, and the liquid photosensitive resin is cured to obtain the N+1 printed model slice layer; where the liquid discharge waiting time is proportional to the cross-sectional parameters of the N+1 printed model slice layer.
  • the liquid photosensitive resin can be cured at different times for the sliced layers of the printed model with different cross-sectional parameters, ensuring the printing quality while improving the printing efficiency.
  • the drain waiting time is proportional to a resin flow rate threshold of the liquid photosensitive resin in the bottom surface of the cartridge.
  • the cross-sectional parameters and the resin flow rate threshold are processed based on a preset processing algorithm to obtain the drain waiting time of the printed model slice layer.
  • liquid photosensitive resin refers to the liquid resin that can be cured by light when printing.
  • the settings can be selected according to the needs of the application scenario. It is understandable that Different liquid resins correspond to different resin flow rate thresholds. After determining the liquid photosensitive resin, further obtain the numerical flow rate of the liquid photosensitive resin.
  • the resin flow rate threshold of the liquid photosensitive resin there are many ways to obtain the resin flow rate threshold of the liquid photosensitive resin.
  • the resin identification corresponding to the liquid photosensitive resin is obtained, and the resin identification is obtained from the preset resin flow rate threshold relationship table. Matching resin flow rate threshold.
  • multiple drain test times corresponding to the target liquid photosensitive resin are set for printing testing, the target drain time is determined from the multiple drain test times based on the test results, and the cross-sectional parameters of the slice layer of the printed model are printed according to the test , the stiffness parameters of the printing device and the target discharge time determine the resin flow rate threshold of the liquid photosensitive resin.
  • the above two methods are only examples of obtaining the resin flow rate threshold of the liquid photosensitive resin, and the embodiments of the present disclosure do not limit the specific methods of obtaining the resin flow rate threshold of the liquid photosensitive resin.
  • the resin flow rate threshold of the target liquid photosensitive resin can be obtained, and the cross-sectional parameters and the resin flow rate threshold are processed based on the preset processing algorithm to obtain the arrangement of the printed model slice layers. Liquid waiting time.
  • the drain waiting time refers to the waiting time before the liquid photosensitive resin is cured.
  • the cross-sectional parameters and the resin flow rate threshold are processed based on the preset processing algorithm, and there are many ways to obtain the drainage waiting time of the printed model slice layer.
  • the cross-sectional parameters include the maximum inner
  • the tangent circle diameter is calculated based on the maximum inscribed circle diameter and the stiffness parameters of the printing device to obtain the liquid discharge volume.
  • the liquid discharge volume is calculated based on the liquid discharge volume and the resin flow rate threshold to obtain the liquid discharge waiting time.
  • the cross-sectional parameters include the maximum inscribed circle area, which is calculated based on the maximum inscribed circle area and the stiffness parameter of the printing device to obtain the liquid discharge volume, and the liquid discharge volume is obtained based on the calculated liquid discharge volume and the resin flow rate threshold. waiting time.
  • the above two methods are only examples of processing cross-section parameters and resin flow rate thresholds based on preset processing algorithms to obtain the drainage waiting time of the printed model slice layer.
  • the embodiments of the present disclosure do not use preset processing algorithms to process cross-section parameters and resin flow rate thresholds.
  • the resin flow rate threshold is processed and the specific way to obtain the drain waiting time of the printed model slice layer is defined.
  • the cross-sectional parameters and resin flow rate can be calculated based on a preset processing algorithm.
  • the threshold is processed to obtain the liquid drainage waiting time of the printed model slice layer.
  • the liquid drainage force is approximately proportional to the area size and the resin flow rate threshold (i.e., resin viscosity).
  • the resin flow rate threshold i.e., resin viscosity
  • the setting of the waiting time before light emission is mostly an empirical value, and there is no approximate mathematical model, which is not conducive for craftsmen to adapt to the printing parameters of different materials, thus slowing down the process.
  • the parameter development time of the material package By establishing a mathematical model related to the drainage waiting time and the model cross-sectional size, shape, and resin viscosity, the resin flow rate thresholds of different resin materials can be found under the premise of ensuring printing quality, thereby dynamically adjusting each layer
  • the waiting time before light emission can be improved to increase the printing speed, which will be described in detail below in conjunction with Figure 4.
  • FIG. 4 is a schematic flowchart of another 3D printing control method provided by an embodiment of the present disclosure. Based on the above embodiment, this embodiment further optimizes the above 3D printing control method. As shown in Figure 4, the method includes:
  • Step 201 Obtain the projected shape of the slice layer of the printed model, process the projected shape, and obtain the cross-sectional parameters of the slice layer of the printed model.
  • the projected shape of the N+1th printed model slice layer refers to the cross-sectional shape of the printed model slice layer, which can be an irregular shape, a square, a rectangle, etc. Usually irregular in shape.
  • the liquid drainage force during the movement of the molding platform 3 is approximately proportional to the cross-sectional area of the model 6 and the resin viscosity.
  • the cross-sectional shape 7 of each layer of the model 6 is irregular, and the radius r of the maximum inscribed circle 8 fitting the cross-sectional shape 7 is a variable (the drain waiting time is approximately equal to the waiting time of the maximum inscribed circle time). Therefore, the projected shape is processed to obtain the cross-sectional parameters of the slice layer of the printed model, such as the maximum inscribed circle diameter.
  • Step 202 Set multiple drain test times for each liquid photosensitive resin sample, print and test the test print model slice layer based on the multiple drain test times, and obtain test results. Based on the test results, from the multiple drain test times Determine the target drain time.
  • Step 203 Obtain the cross-sectional parameters of the test printing model slices and the stiffness parameters of the printing device, determine the resin flow rate threshold of each liquid photosensitive resin sample based on the cross-sectional parameters, stiffness parameters and target discharge time, and store it in the resin flow rate threshold relationship table.
  • the liquid discharging force Positively related to resin viscosity i.e., resin flow rate threshold.
  • resin flow rate thresholds of different resin materials resin flow rate less than the resin flow rate threshold can be considered not to affect the model surface quality, and the resin flow rate thresholds of different materials are constant.
  • the liquid photosensitive resin samples refer to liquid photosensitive resins of different materials. Multiple drainage test times for each liquid photosensitive resin sample are used to perform the test printing model slices based on the multiple drainage test times. After printing the test and getting the test results, you can determine which liquid drainage test time is just right to ensure printing quality and efficiency, and then use this liquid drainage test time as the target liquid drainage time, based on the cross-sectional parameters, stiffness parameters and target liquid drainage time. Determine the resin flow rate threshold for each liquid photosensitive resin sample. For example, multiply the deformation amount in the stiffness parameter by the cross-sectional area divided by the target drainage time to obtain the resin flow rate threshold. Finally, according to the resin flow rate threshold corresponding to the liquid photosensitive resin of different materials After association, it is stored in the resin flow rate threshold relationship table.
  • Step 204 Obtain the resin identification corresponding to the liquid photosensitive resin, and obtain the resin flow rate threshold matching the resin identification from the preset resin flow rate threshold relationship table.
  • steps 205 and/or 206 and/or 207 may be executed after step 204.
  • Step 205 The cross-sectional parameters include the maximum inscribed circle diameter, which is calculated based on the maximum inscribed circle diameter and the stiffness parameter of the printing device to obtain the liquid discharge volume, and the liquid discharge waiting time is obtained based on the calculation based on the liquid discharge volume and the resin flow rate threshold.
  • the resin flow rate threshold and cross-sectional parameters are substituted into the mathematical model to obtain the optimal drainage waiting time before light projection for the current layer. It can shorten the waiting time for the small cross-section area of the variable-section model and increase the printing speed while ensuring the printing quality.
  • variable cross-section model is expected to take 6 seconds for the liquid drainage of a solid cylinder with a diameter of 80 mm, and 1.8 seconds for a solid cylinder with a diameter of 20 mm.
  • dynamic drainage time the liquid drainage of the variable cross-section cylindrical model The time can be shortened by approximately 35%.
  • Step 206 Determine the flow rate coefficient based on the cross-sectional parameters of the printed model slice layer, adjust the resin flow rate threshold based on the flow rate coefficient, and obtain the target resin flow rate threshold.
  • the cross-sectional parameters and the target resin flow rate threshold are processed based on the preset processing algorithm to obtain the ranking. Liquid waiting time.
  • the flow rate coefficient can also be determined based on the cross-sectional parameters of the printed model slice layer. For example, the length-to-width ratio in the cross-sectional parameters determines the flow rate coefficient, so that the flow rate coefficient is multiplied by the resin flow rate threshold to obtain the target resin flow rate threshold to calculate the liquid drainage.
  • the waiting time can be further adjusted based on the shape of the printed model slice layer to further improve the printing quality and efficiency.
  • Step 207 Determine the driving speed based on the cross-sectional parameters and the resin flow rate threshold to control the lifting mechanism of the printing device based on the driving speed.
  • the operating speed of the lifting mechanism 1 is dynamically slowed down according to the resin flow rate threshold, the shape and area of the projection pattern of each layer, etc., thereby approximately achieving the purpose of dynamic drainage time before light projection.
  • the driving speed is determined to be A based on the cross-sectional parameters and the resin flow rate threshold, so that the lifting mechanism of the printing device is controlled based on the driving speed A; the driving speed is determined to be B based on the cross-sectional parameters and the resin flow rate threshold, and the printing device is controlled based on the driving speed B. Therefore, different driving speeds make the lifting mechanism of the printing equipment have different waiting times before emitting light, thereby ensuring printing quality and efficiency.
  • the 3D printing control scheme obtaineds the projected shape of the sliced layer of the printed model, processes the projected shape, obtains the cross-sectional parameters of the sliced layer of the printed model, and sets multiple drain test times for each liquid photosensitive resin sample. Print and test the slice layers of the test printing model based on multiple drainage test times, and obtain the test results. Based on the test results, determine the target drainage time from the multiple drainage test times, and obtain the cross-sectional parameters and printing equipment of the test printing model slices.
  • Stiffness parameters determine the resin flow rate threshold of each liquid photosensitive resin sample based on the cross-section parameters, stiffness parameters and target drainage time and store it in the resin flow rate threshold relationship table, obtain the resin identification corresponding to the target liquid photosensitive resin, from the preset resin Obtain the resin flow rate threshold matching the resin identification from the flow rate threshold relationship table, and the cross-section parameter
  • the number includes the maximum inscribed circle diameter. Calculation is based on the maximum inscribed circle diameter and the stiffness parameters of the printing device to obtain the liquid discharge volume. Calculation is based on the liquid discharge volume and the resin flow rate threshold to obtain the liquid discharge waiting time.
  • the cross-section parameters determine the flow rate coefficient, and the resin flow rate threshold is adjusted based on the flow rate coefficient to obtain the target resin flow rate threshold.
  • the cross-section parameters and the target resin flow rate threshold are processed based on the preset processing algorithm to obtain the drainage waiting time.
  • Based on the cross-section parameters and The resin flow rate threshold determines the driving speed to control the lifting mechanism of the printing device based on the driving speed.
  • the drain waiting time of the printed model slice layer is adjusted based on the shape ratio of the printed model slice layer, and further Improve printing quality and efficiency, and control the lifting mechanism of the printing equipment through different driving speeds to achieve different waiting times before light projection, thereby ensuring printing quality and efficiency.
  • Figure 6 is a schematic structural diagram of a 3D printing control device provided by an embodiment of the present disclosure.
  • the device can be implemented by software and/or hardware, and can generally be integrated in electronic equipment. As shown in Figure 6, the device includes:
  • the first processing module 301 is used to perform light processing on the bottom surface of the cartridge of the printing device, and the liquid photosensitive resin is cured to obtain the Nth printing model slice layer; where N is a positive integer;
  • the second processing module 302 is used to re-project light on the bottom surface of the material box after the preset liquid discharge waiting time, and the liquid photosensitive resin is cured to obtain the N+1th printing model slice layer; wherein, the discharge The liquid waiting time is proportional to the cross-sectional parameters of the N+1th printed model slice layer.
  • the liquid discharge waiting time is proportional to the resin flow rate threshold of the liquid photosensitive resin in the bottom surface of the cartridge.
  • the device also includes:
  • the third processing module is used to process the cross-sectional parameters and the resin flow rate threshold based on a preset processing algorithm to obtain the drainage waiting time of the printed model slice layer.
  • the device also includes:
  • a setting module for setting multiple drain test times for each liquid photosensitive resin sample
  • test module used to print test the test printing model slices based on the plurality of liquid discharge test times, and obtain test results
  • a first determination module configured to determine a target drain time from the plurality of drain test times based on the test results
  • a parameter acquisition module is used to obtain the cross-sectional parameters of the slice layer of the test printing model and the stiffness parameters of the printing device;
  • a determination storage module configured to determine the resin flow rate threshold of each liquid photosensitive resin sample based on the cross-sectional parameter, the stiffness parameter and the target drainage time and store it in a resin flow rate threshold relationship table.
  • the cross-sectional parameters include the maximum inscribed circle diameter
  • the third processing module is specifically used to:
  • Calculation is performed based on the liquid discharge volume and the resin flow rate threshold to obtain the liquid discharge waiting time.
  • the device also includes:
  • a second determination module configured to determine the flow rate coefficient based on the cross-sectional parameters of the printed model slice layer
  • an adjustment module configured to adjust the resin flow rate threshold based on the flow rate coefficient to obtain a target resin flow rate threshold
  • the third processing module is also used for:
  • the cross-sectional parameters and the target resin flow rate threshold are processed based on a preset processing algorithm to obtain the drainage waiting time.
  • the device also includes a determination control module for:
  • a driving speed is determined based on the cross-sectional parameter and the resin flow rate threshold to control a lifting mechanism of the printing device based on the driving speed.
  • the 3D printing control device provided by the embodiments of the present disclosure can execute the 3D printing control method provided by any embodiment of the present disclosure, and has functional modules and beneficial effects corresponding to the execution method.
  • Embodiments of the present disclosure also provide a computer program product, which includes a computer program/instruction. When executed by a processor, the computer program/instruction implements the 3D printing control method provided by any embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • the electronic device 400 in the embodiment of the present disclosure may include, but is not limited to, mobile phones, laptops, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablets), PMPs (portable multimedia players), vehicle-mounted terminals ( Mobile terminals such as car navigation terminals) and fixed terminals such as digital TVs, desktop computers, etc.
  • the electronic device shown in FIG. 7 is only an example and should not impose any limitations on the functions and scope of use of the embodiments of the present disclosure.
  • the electronic device 400 may include a processing device (eg, central processing unit, graphics processor, etc.) 401 , which may be loaded into a random access device according to a program stored in a read-only memory (ROM) 402 or from a storage device 408 .
  • the program in the memory (RAM) 403 executes various appropriate actions and processes.
  • various programs and data required for the operation of the electronic device 400 are also stored.
  • the processing device 401, ROM 402 and RAM 403 are connected to each other via a bus 404.
  • An input/output (I/O) interface 405 is also connected to bus 404.
  • the following devices may be connected to the I/O interface 405: input devices 406 including, for example, a touch screen, touch pad, keyboard, mouse, camera, microphone, accelerometer, gyroscope, etc.; including, for example, a liquid crystal display (LCD), speakers, vibration An output device 407 such as a computer; a storage device 408 including a magnetic tape, a hard disk, etc.; and a communication device 409.
  • the communication device 409 may allow the electronic device 400 to communicate wirelessly or wiredly with other devices to exchange data.
  • FIG. 7 illustrates electronic device 400 with various means, it should be understood that implementation or availability of all illustrated means is not required. More or fewer means may alternatively be implemented or provided.
  • embodiments of the present disclosure include a computer program product including a computer program carried on a non-transitory computer-readable medium, the computer program containing program code for performing the method illustrated in the flowchart.
  • the computer program may be downloaded and installed from the network via communication device 409, or from storage device 408, or from ROM 402.
  • the processing device 401 the 3D printing control method of the embodiment of the present disclosure is executed. specified above functions.
  • the computer-readable medium mentioned above in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • the computer-readable storage medium may be, for example, but is not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or any combination thereof. More specific examples of computer readable storage media may include, but are not limited to: an electrical connection having one or more wires, a portable computer disk, a hard drive, random access memory (RAM), read only memory (ROM), removable Programmd read-only memory (EPROM or flash memory), fiber optics, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to: wire, optical cable, RF (radio frequency), etc., or any suitable combination of the above.
  • the client and server can communicate using any currently known or future developed network protocol such as HTTP (Hyper Text Transfer Protocol), and can communicate with digital data in any form or medium.
  • Data communications e.g., communications network
  • communications networks include local area networks (“LAN”), wide area networks (“WAN”), the Internet (e.g., the Internet), and end-to-end networks (e.g., ad hoc end-to-end networks), as well as any currently known or developed in the future network of.
  • the above-mentioned computer-readable medium may be included in the above-mentioned electronic device; it may also exist independently without being assembled into the electronic device.
  • the computer-readable medium carries one or more programs.
  • the electronic device When the one or more programs are executed by the electronic device, the electronic device: The bottom surface is subjected to light processing, and the liquid photosensitive resin is solidified to obtain the Nth layer of printed model slices; where N is a positive integer; after the preset waiting time for liquid discharge, the bottom surface of the box is subjected to light processing again, and the liquid photosensitive resin The resin is cured to obtain the N+1th printed model slice layer; wherein the liquid drainage waiting time is proportional to the cross-sectional parameters of the N+1th printed model slice layer.
  • Computer program code for performing the operations of the present disclosure may be written in one or more programming languages, including but not limited to object-oriented programming languages—such as Java, Smalltalk, C++, and Includes conventional procedural programming languages—such as "C” or similar programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as an Internet service provider through Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider such as an Internet service provider through Internet connection
  • each block in the flowchart or block diagram may represent a module, segment, or portion of code that contains one or more logic functions that implement the specified executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown one after another may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.
  • each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be implemented by special purpose hardware-based systems that perform the specified functions or operations. , or can be implemented using a combination of specialized hardware and computer instructions.
  • the units involved in the embodiments of the present disclosure can be implemented in software or hardware. Among them, the name of a unit does not constitute a limitation on the unit itself under certain circumstances.
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSPs Application Specific Standard Products
  • SOCs Systems on Chips
  • CPLD Complex Programmable Logical device
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include one or more wire-based electrical connections, laptop disks, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM portable compact disk read-only memory
  • magnetic storage device or any suitable combination of the above.
  • the present disclosure provides an electronic device, including:
  • memory for storing instructions executable by the processor
  • the processor is configured to read the executable instructions from the memory and execute the instructions to implement any of the 3D printing control methods provided by this disclosure.
  • the present disclosure provides a computer-readable storage medium, the storage medium stores a computer program, the computer program is used to execute any one of the 3D methods provided by the present disclosure. Print control methods.
  • the 3D printing control method provided by the present disclosure can select different timings to solidify the liquid photosensitive resin for the sliced layers of the printed model with different cross-sectional parameters, thereby ensuring the printing quality while improving the printing efficiency, and has strong industrial practicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

本公开实施例涉及一种3D打印控制方法、装置、电子设备及介质,其中该方法包括:对打印设备的料盒底面进行投光处理,液态光敏树脂固化得到第N层打印模型切片层;其中,N为正整数,在预设的排液等待时间后,对料盒底面进行再次投光处理,液态光敏树脂固化得到第N+1层打印模型切片层;其中,排液等待时间与第N+1层打印模型切片层的截面参数成正比。采用上述技术方案,可以对于不同截面参数的打印模型切片层选择不同时机对液态光敏树脂进行固化处理,保证打印质量的同时提高打印效率。

Description

3D打印控制方法、装置、电子设备及介质
本公开要求于2022年6月23日提交中国专利局、申请号为202210726280.9、发明名称为“3D打印控制方法、装置、电子设备及介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及3D(三维)打印技术领域,尤其涉及一种3D打印控制方法、装置、电子设备及介质。
背景技术
目前,随着3D打印技术的不断发展,3D打印技术的应用越来越广泛。光固化成型作为一种3D打印技术,主要是使用光敏树脂作为原材料,利用液态光敏树脂在紫外光束照射下会快速固化的特性成型。
然而,目前光固化打印过程中,如果排液等待时间过短容易产生碎屑,从而影响打印质量,如果排液等待时间过长,影响打印效率。
发明内容
(一)要解决的技术问题
本公开要解决的技术问题是解决现有的光固化打印中排液等待时间过短影响打印质量以及排液等待时间过长影响打印效率的问题。
(二)技术方案
为了解决上述技术问题,本公开提供了一种3D打印控制方法、装置、电子设备及介质。
第一方面,本公开实施例提供了一种3D打印控制方法,所述方法包括:
对打印设备的料盒底面进行投光处理,液态光敏树脂固化得到第N层打印模型切片层;其中,N为正整数;
在预设的排液等待时间后,对所述料盒底面进行再次投光处理, 液态光敏树脂固化得到第N+1层打印模型切片层;其中,所述排液等待时间与所述第N+1层打印模型切片层的截面参数成正比。
第二方面,本公开实施例还提供了一种3D打印控制装置,所述装置包括:
第一处理模块,用于对打印设备的料盒底面进行投光处理,液态光敏树脂固化得到第N层打印模型切片层;其中,N为正整数;
第二处理模块,用于在预设的排液等待时间后,对所述料盒底面进行再次投光处理,液态光敏树脂固化得到第N+1层打印模型切片层;其中,所述排液等待时间与所述第N+1层打印模型切片层的截面参数成正比。
第三方面,本公开实施例还提供了一种电子设备,所述电子设备包括:处理器;用于存储所述处理器可执行指令的存储器;所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现如本公开第一方面实施例提供的3D打印控制方法。
第四方面,本公开实施例还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行如本公开第一方面实施例提供的3D打印控制方法。
(三)有益效果
本公开实施例提供的上述技术方案与现有技术相比具有如下优点:
本公开实施例提供的该3D打印控制方案,对打印设备的料盒底面进行投光处理,液态光敏树脂固化得到第N层打印模型切片层;其中,N为正整数,在预设的排液等待时间后,对料盒底面进行再次投光处理,液态光敏树脂固化得到第N+1层打印模型切片层;其中,排液等待时间与第N+1层打印模型切片层的截面参数成正比。采用上述技术方案,可以对于不同截面参数的打印模型切片层选择不同时机对液态光敏树脂进行固化处理,保证打印质量的同时提高打印效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种3D打印设备变形前的结构示意图;
图2为本公开实施例提供的一种3D打印设备变形后的结构示意图;
图3为本公开实施例提供的一种3D打印控制方法的流程示意图;
图4为本公开实施例提供的另一种3D打印控制方法的流程示意图;
图5为本公开实施例提供的一种模型横截面的示例图;
图6为本公开实施例提供的一种3D打印控制装置的结构示意图;
图7为本公开实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
在实际应用中,以投影式光固化打印机为例,首先进行3D建模,设计出产品的三维实体模型,然后通过软件对三维实体模型进行等厚度切片处理,切片得到每次曝光的投影数据。
具体地,打印机结构如图1所示,在料盘5中放入液态光敏树脂4(该液态光敏树脂4在光照射下快速固化,从而成型固体产品),成型平台3置于料盘5,成型平台3的模型6与液态光敏树脂4接触;接着光机根据切片处理的数据,发出相应形状的投影到料盒5底面,料盒5里相应层液态光敏树脂会被固化;该层固化完毕后,成型平台3通过 连接结构2与升降机构1连接,在升降机构1的驱动下向上移动一段距离(对于下沉式打印机,成型平台3是向下移动),接着在上一层固化液态光敏树脂的基础上,打印下一层的形状,最终层层叠加,得到所需的3D打印产品。
具体地,如图2所示,实际打印过程中,成型平台3的运动分为两个阶段:成型平台3在升降机构1的驱动下,先向上移动固定距离h,使已固化的模型和料盘5底面分离;然后升降机构1驱动成型平台3向下移动h-h层厚(打印模型切片层厚度)。向下运动过程中,成型平台3受到向上的排液力,料盒5受到与成型平台3大小相等方向相反的作用力,成型平台3和料盒5会产生微小变形(两者非刚体,因此会发生形变)。在形变恢复过程中液态光敏树脂4会在成型平台3和料盒5底面之间流动,若未等到液态光敏树脂4流动停止便开始投光固化,流动中的液态光敏树脂4固化时会形成碎屑,附着在模型6边缘,影响模型6表面的打印质量。
通常,投光前等待时间多为经验值,且每一层等待时间一致。可以理解的是,由于排液力近似与投影面积成正比,因此打印变截面模型时成型平台3和料盒5的形变量随投影面积大小变化,与之相应的液体流动停止的时间不一致,即每一层的排液时间不同。若根据经验模型每层设置相同且保守的投光等待时间,则会拖慢打印速度。
也就是说,切片模型的每一层设置相同的排液时间:若投光前等待时间过短,表面会出现碎屑,影响打印质量;若投光前等待时间设置过长,变截面模型虽然可以保证打印质量,但打印小截面区域时会浪费打印时间,拖慢打印速度。
针对上述问题,本公开提出一种3D打印控制方法,通过对打印设备的料盒底面进行投光处理,液态光敏树脂固化得到第N层打印模型切片层;其中,N为正整数,在预设的排液等待时间后,对料盒底面进行再次投光处理,液态光敏树脂固化得到第N+1层打印模型切片层;其中,排液等待时间与第N+1层打印模型切片层的截面参数成正比。由此,可以对于不同截面参数的打印模型切片层选择不同时机对液态光敏树脂进行固化处理,保证打印质量的同时提高打印效率。
具体地,图3为本公开实施例提供的一种3D打印控制方法的流程示意图,该方法可以由3D打印控制装置执行,其中该装置可以采用软件和/或硬件实现,一般可集成在电子设备中。如图3所示,该方法包括:
步骤101,对打印设备的料盒底面进行投光处理,液态光敏树脂固化得到第N层打印模型切片层;其中,N为正整数。
步骤102,在预设的排液等待时间后,对料盒底面进行再次投光处理,液态光敏树脂固化得到第N+1层打印模型切片层;其中,排液等待时间与第N+1层打印模型切片层的截面参数成正比。
其中,第N层打印模型切片层指的是任意一个待打印物品的三维实体模型进行等厚度切片得到的,本公开实施例对待打印物品不作具体限制,可以根据应用场景需要选择设置。截面参数指的是打印模型切片层的最大内切圆直径、最大内切圆半径、最大内切圆面积或者是打印模型切片层形状的实际面积等,具体根据应用场景需要选择设置。
本公开实施例中,获取第N+1层打印模型切片层的截面参数的方式有很多种,在一些实施方式中,获取第N+1层打印模型切片层的投影形状,对投影形状进行处理,得到截面参数。
在另一些实施方式中,通过预设的计算算法直接对第N+1层打印模型切片层对应的轮廓进行处理,得到截面参数。以上两种方式仅为获取第N+1层打印模型切片层的截面参数的示例,本公开实施例不对获取第N+1层打印模型切片层的截面参数的具体方式进行限定。
具体的,在获取待打印物品的三维实体模型后,对三维实体模型进行等厚度切片,得到多层打印模型切片层,接着获取打印模型切片层的截面参数。
其中,排液等待时间指的是对液态光敏树脂进行固化处理前的等待时间时间,排液等待时间为预先设置的,可以根据打印模型切片层的截面参数的设置对应的排液等待时间,其中,排液等待时间与打印模型切片层的截面参数成正比,也就是说,打印模型切片层的截面参数越大对应的排液等待时间越长,比如截面参数为最大内切圆直径,打印模型切片层的最大内切圆直径越大对应的排液等待时间越长。
在本公开实施例中,确定预设的排液等待时间的方式有很多种,在一个实施方式中,基于预设的处理算法对打印模型切片层的截面参数进行处理,得到打印模型切片层的排液等待时间,更具体地,截面参数为最大内切圆直径,基于最大内切圆直径和打印设备的刚度参数进行计算,得到排液体积,基于排液体积和预设的树脂流速确定对应的排液等待时间。其中,打印设备的刚度参数用于表示打印设备(材料或结构)在受力时抵抗弹性变形的能力。
作为一种场景示例,N为1,对打印设备的料盒底面进行投光处理,液态光敏树脂固化得到第一层打印模型切片层,在预设的排液等待时间后,对料盒底面进行再次投光处理,液态光敏树脂固化得到第2层打印模型切片层;其中,排液等待时间与第2层打印模型切片层的截面参数成正比。
作为另一种场景示例,N为3,对打印设备的料盒底面进行投光处理,液态光敏树脂固化得到第一层打印模型切片层,在预设的排液等待时间后,对料盒底面进行再次投光处理,液态光敏树脂固化得到第4层打印模型切片层;其中,排液等待时间与第4层打印模型切片层的截面参数成正比。
本公开实施例提供的3D打印控制方案,对打印设备的料盒底面进行投光处理,液态光敏树脂固化得到第N层打印模型切片层;其中,N为正整数,在预设的排液等待时间后,对料盒底面进行再次投光处理,液态光敏树脂固化得到第N+1层打印模型切片层;其中,排液等待时间与第N+1层打印模型切片层的截面参数成正比。采用上述技术方案,可以对于不同截面参数的打印模型切片层选择不同时机对液态光敏树脂进行固化处理,保证打印质量的同时提高打印效率。
在一些实施例中,排液等待时间与料盒底面中的液态光敏树脂的树脂流速阈值成正比。
在一些实施例中,基于预设的处理算法对截面参数和树脂流速阈值进行处理,得到打印模型切片层的排液等待时间。
其中,液态光敏树脂指的是选择进行打印处理时可以通过光进行固化的液态树脂,可以根据应用场景需要选择设置,可以理解的是不 同的液态树脂对应不同的树脂流速阈值,在确定液态光敏树脂后,进一步获取液态光敏树脂的数值流速。
在本公开实施例中,获取液态光敏树脂的树脂流速阈值的方式有很多种,在一些实施方式中,获取液态光敏树脂对应的树脂标识,从预设的树脂流速阈值关系表中获取与树脂标识匹配的树脂流速阈值。
在另一些实施方式中,设置目标液态光敏树脂对应的多个排液测试时间进行打印测试,基于测试结果从多个排液测试时间中确定目标排液时间,根据测试打印模型切片层的截面参数、打印设备的刚度参数和目标排液时间确定液态光敏树脂的树脂流速阈值。以上两种方式仅为获取液态光敏树脂的树脂流速阈值的示例,本公开实施例不对获取液态光敏树脂的树脂流速阈值的具体方式进行限定。
本公开实施例中,当获取打印模型切片的截面参数之后,可以获取目标液态光敏树脂的树脂流速阈值,基于预设的处理算法对截面参数和树脂流速阈值进行处理,得到打印模型切片层的排液等待时间。
其中,排液等待时间指的是对液态光敏树脂进行固化处理前的等待时间时间。
在本公开实施例中,基于预设的处理算法对截面参数和树脂流速阈值进行处理,得到打印模型切片层的排液等待时间的方式有很多种,在一些实施方式中,截面参数包括最大内切圆直径,基于最大内切圆直径和打印设备的刚度参数进行计算,得到排液体积,基于排液体积和树脂流速阈值进行计算,得到排液等待时间。
在另一些实施方式中,截面参数包括最大内切圆面积,基于最大内切圆面积和打印设备的刚度参数进行计算,得到排液体积,基于排液体积和树脂流速阈值进行计算,得到排液等待时间。以上两种方式仅为基于预设的处理算法对截面参数和树脂流速阈值进行处理,得到打印模型切片层的排液等待时间的示例,本公开实施例不对基于预设的处理算法对截面参数和树脂流速阈值进行处理,得到打印模型切片层的排液等待时间的具体方式进行限定。
具体的,获取打印模型切片层的截面参数和目标液态光敏树脂的树脂流速阈值之后,可以基于预设的处理算法对截面参数和树脂流速 阈值进行处理,得到打印模型切片层的排液等待时间。
可以理解的是,实际打印过程中,不同截面大小的模型,排液力与面积大小、树脂流速阈值(即树脂粘度)近似成正比,对于变截面模型,为保证打印质量,若根据经验设置相当保守的投光前等待时间,则会严重影响打印速度;投光前等待时间的设置多为经验值,并无近似的数学模型,不利于工艺人员去适配不同材料的打印参数,从而拖慢材料包的参数开发时间/,可以通过建立排液等待时间和模型横截面尺寸、形状、树脂粘度相关的数学模型,可以找到保证打印质量前提下不同树脂材料的树脂流速阈值,从而动态调整每层的投光前等待时间,提高打印速度,下面结合图4进行详细描述。
具体地,图4为本公开实施例提供的另一种3D打印控制方法的流程示意图,本实施例在上述实施例的基础上,进一步优化了上述3D打印控制方法。如图4所示,该方法包括:
步骤201,获取打印模型切片层的投影形状,对投影形状进行处理,得到打印模型切片层的截面参数。
在本公开实施例中,第N+1层打印模型切片层的投影形状指的是打印模型切片层的横截面形状,可以为不规则形状、正方形、长方形等。通常为不规则形状。
具体地,成型平台3运动过程中的排液力近似与模型6的横截面积、树脂粘度成正比。如图5所示,模型6每一层的横截面形状7并不规则,拟合横截面形状7的最大内切圆8的半径r为变量(排液等待时间近似等于最大内切圆的等待时间)。因此,对投影形状进行处理,得到打印模型切片层的截面参数,比如最大内切圆直径。
步骤202,设置每个液态光敏树脂样本的多个排液测试时间,基于多个排液测试时间对测试打印模型切片层进行打印测试,得到测试结果,基于测试结果,从多个排液测试时间中确定目标排液时间。
步骤203,获取测试打印模型切片的截面参数和打印设备的刚度参数,基于截面参数、刚度参数和目标排液时间确定每个液态光敏树脂样本的树脂流速阈值并存储在树脂流速阈值关系表。
具体地,由于每一种液态光敏树脂材料的粘度为常量,则排液力 与树脂粘度正相关(即,树脂流速阈值)。实验可以得到不同树脂材料的树脂流速阈值(树脂流速小于树脂流速阈值可认为不影响模型表面质量,不同材料的树脂流速阈值为常量)。通过建立形变(成型平台3和料盒5因排液力变形)、树脂流速阈值之间的关系可以得到变截面模型的排液等待时间的数学模型。
在本公开实施例中,液态光敏树脂样本指的是不同材料的液态光敏树脂,针对每个液态光敏树脂样本的多个排液测试时间,从而基于多个排液测试时间对测试打印模型切片进行打印测试,得到测试结果,即可以确定哪个排液测试时间正好保证打印质量的同时且保证效率,从而将该排液测试时间作为目标排液时间,从而基于截面参数、刚度参数和目标排液时间确定每个液态光敏树脂样本的树脂流速阈值,比如将刚度参数中的形变量乘以截面面积除以目标排液时间,得到树脂流速阈值,最后按照不同的材料的液态光敏树脂对应的树脂流速阈值关联后存储在树脂流速阈值关系表。
步骤204,获取液态光敏树脂对应的树脂标识,从预设的树脂流速阈值关系表中获取与树脂标识匹配的树脂流速阈值。
需要说明的是,步骤204后可以执行步骤205和/或206和/或207。
步骤205,截面参数包括最大内切圆直径,基于最大内切圆直径和打印设备的刚度参数进行计算,得到排液体积,基于排液体积和树脂流速阈值进行计算,得到排液等待时间。
在本公开实施例中,对模型进行切片处理时,只需将树脂流速阈值和截面参数(比如最大内切直径)代入数学模型即可得到当前层最佳的投光前的排液等待时间。可在保证打印质量的前提下,缩短变截面模型小截面区域的等待时间,提高打印速度。
作为一种场景举例,打印变截面模型为80mm直径的实心圆柱排液时间预计需要6s,20mm直径的实心圆柱排液时间预计需要1.8s,使用动态排液时间,该变截面圆柱模型的排液时间可缩短约35%。
由此,对于变截面的模型,每层设置相同且保守的排液等待时间(保证大截面区域不出问题,排液等待时间相对较长),小截面区域的打印将会浪费时间,从而拉长整个模型打印完成的时间。采用本申请 的技术方案可以根据模型截面形状和树脂粘度动态调整投光前排液等待时间,保证打印质量的同时提高打印效率。
步骤206,基于打印模型切片层的截面参数确定流速系数,基于流速系数对树脂流速阈值进行调整,得到目标树脂流速阈值,基于预设的处理算法对截面参数和目标树脂流速阈值进行处理,得到排液等待时间。
在本公开实施例中,还可以根据打印模型切片层的截面参数确定流速系数,比如截面参数中长宽比例确定流速系数,从而将流速系数乘以树脂流速阈值得到目标树脂流速阈值去计算排液等待时间,从而进一步基于打印模型切片层的形状调整打印模型切片层的排液等待时间,进一步提高打印质量和效率。
步骤207,基于截面参数和树脂流速阈值确定驱动速度,以基于驱动速度控制打印设备的升降机构。
在本公开实施例中,根据树脂流速阈值、每层投影图案的形状、面积等动态放缓升降机构1的运行速度,从而近似实现投光前动态排液时间的目的。
举例而言,基于截面参数和树脂流速阈值确定驱动速度为A,从而基于驱动速度A控制打印设备的升降机构;基于截面参数和树脂流速阈值确定驱动速度为B,从而基于驱动速度B控制打印设备的升降机构,由此,不同的驱动速度使得打印设备的升降机构的时间不同,从而投光前等待时间不同,从而保证打印质量和效率。
本公开实施例提供的3D打印控制方案,获取打印模型切片层的投影形状,对投影形状进行处理,得到打印模型切片层的截面参数,设置每个液态光敏树脂样本的多个排液测试时间,基于多个排液测试时间对测试打印模型切片层进行打印测试,得到测试结果,基于测试结果,从多个排液测试时间中确定目标排液时间,获取测试打印模型切片的截面参数和打印设备的刚度参数,基于截面参数、刚度参数和目标排液时间确定每个液态光敏树脂样本的树脂流速阈值并存储在树脂流速阈值关系表,获取目标液态光敏树脂对应的树脂标识,从预设的树脂流速阈值关系表中获取与树脂标识匹配的树脂流速阈值,截面参 数包括最大内切圆直径,基于最大内切圆直径和打印设备的刚度参数进行计算,得到排液体积,基于排液体积和树脂流速阈值进行计算,得到排液等待时间,基于打印模型切片层的截面参数确定流速系数,基于流速系数对树脂流速阈值进行调整,得到目标树脂流速阈值,基于预设的处理算法对截面参数和目标树脂流速阈值进行处理,得到排液等待时间,基于截面参数和树脂流速阈值确定驱动速度,以基于驱动速度控制打印设备的升降机构。由此,根据模型截面形状和树脂粘度动态调整投光前排液等待时间,保证打印质量的同时提高打印效率,基于打印模型切片层的形状比例等调整打印模型切片层的排液等待时间,进一步提高打印质量和效率,以及通过不同的驱动速度控制打印设备的升降机构以实现投光前等待时间不同,从而保证打印质量和效率。
图6为本公开实施例提供的一种3D打印控制装置的结构示意图,该装置可由软件和/或硬件实现,一般可集成在电子设备中。如图6所示,该装置包括:
第一处理模块301,用于对打印设备的料盒底面进行投光处理,液态光敏树脂固化得到第N层打印模型切片层;其中,N为正整数;
第二处理模块302,用于在预设的排液等待时间后,对所述料盒底面进行再次投光处理,液态光敏树脂固化得到第N+1层打印模型切片层;其中,所述排液等待时间与所述第N+1层打印模型切片层的截面参数成正比。
可选的,所述排液等待时间与所述料盒底面中的液态光敏树脂的树脂流速阈值成正比。
可选,所述装置,还包括:
第三处理模块,用于基于预设的处理算法对所述截面参数和所述树脂流速阈值进行处理,得到打印模型切片层的排液等待时间。
可选的,所述装置,还包括:
设置模块,用于设置每个液态光敏树脂样本的多个排液测试时间;
测试模块,用于基于所述多个排液测试时间对测试打印模型切片进行打印测试,得到测试结果;
第一确定模块,用于基于测试结果,从所述多个排液测试时间中确定目标排液时间;
获取参数模块,用于获取所述测试打印模型切片层的截面参数和打印设备的刚度参数;
确定存储模块,用于基于所述截面参数、所述刚度参数和所述目标排液时间确定所述每个液态光敏树脂样本的树脂流速阈值并存储在树脂流速阈值关系表。
可选的,所述截面参数包括最大内切圆直径,所述第三处理模块具体用于:
基于所述最大内切圆直径和打印设备的刚度参数进行计算,得到排液体积;
基于所述排液体积和所述树脂流速阈值进行计算,得到所述排液等待时间。
可选的,所述装置还包括:
第二确定模块,用于基于所述打印模型切片层的截面参数确定流速系数;
调整模块,用于基于所述流速系数对所述树脂流速阈值进行调整,得到目标树脂流速阈值;
所述第三处理模块,还用于:
基于预设的处理算法对所述截面参数和所述目标树脂流速阈值进行处理,得到所述排液等待时间。
可选的,所述装置还包括确定控制模块,用于:
基于所述截面参数和所述树脂流速阈值确定驱动速度,以基于所述驱动速度控制打印设备的升降机构。
本公开实施例所提供的3D打印控制装置可执行本公开任意实施例所提供的3D打印控制方法,具备执行方法相应的功能模块和有益效果。
本公开实施例还提供了一种计算机程序产品,包括计算机程序/指令,该计算机程序/指令被处理器执行时实现本公开任意实施例所提供的3D打印控制方法。
图7为本公开实施例提供的一种电子设备的结构示意图。下面具体参考图7,其示出了适于用来实现本公开实施例中的电子设备400的结构示意图。本公开实施例中的电子设备400可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图7示出的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图7所示,电子设备400可以包括处理装置(例如中央处理器、图形处理器等)401,其可以根据存储在只读存储器(ROM)402中的程序或者从存储装置408加载到随机访问存储器(RAM)403中的程序而执行各种适当的动作和处理。在RAM 403中,还存储有电子设备400操作所需的各种程序和数据。处理装置401、ROM 402以及RAM403通过总线404彼此相连。输入/输出(I/O)接口405也连接至总线404。
通常,以下装置可以连接至I/O接口405:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置406;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置407;包括例如磁带、硬盘等的存储装置408;以及通信装置409。通信装置409可以允许电子设备400与其他设备进行无线或有线通信以交换数据。虽然图7示出了具有各种装置的电子设备400,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在非暂态计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置409从网络上被下载和安装,或者从存储装置408被安装,或者从ROM 402被安装。在该计算机程序被处理装置401执行时,执行本公开实施例的3D打印控制方法中限 定的上述功能。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
在一些实施方式中,客户端、服务器可以利用诸如HTTP(Hyper Text Transfer Protocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:对打印设备的料盒 底面进行投光处理,液态光敏树脂固化得到第N层打印模型切片层;其中,N为正整数;在预设的排液等待时间后,对所述料盒底面进行再次投光处理,液态光敏树脂固化得到第N+1层打印模型切片层;其中,所述排液等待时间与所述第N+1层打印模型切片层的截面参数成正比。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部 件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
根据本公开的一个或多个实施例,本公开提供了一种电子设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现如本公开提供的任一所述的3D打印控制方法。
根据本公开的一个或多个实施例,本公开提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行如本公开提供的任一所述的3D打印控制方法。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的 情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
工业实用性
本公开提供的3D打印控制方法,可以对于不同截面参数的打印模型切片层选择不同时机对液态光敏树脂进行固化处理,保证打印质量的同时提高打印效率,具有很强的工业实用性。

Claims (10)

  1. 一种3D打印控制方法,其特征在于,包括:
    对打印设备的料盒底面进行投光处理,液态光敏树脂固化得到第N层打印模型切片层;其中,N为正整数;
    在预设的排液等待时间后,对所述料盒底面进行再次投光处理,液态光敏树脂固化得到第N+1层打印模型切片层;其中,所述排液等待时间与所述第N+1层打印模型切片层的截面参数成正比。
  2. 根据权利要求1所述的3D打印控制方法,其特征在于,
    所述排液等待时间与所述料盒底面中的液态光敏树脂的树脂流速阈值成正比。
  3. 根据权利要求2所述的3D打印控制方法,其特征在于,还包括:
    基于预设的处理算法对所述截面参数和所述树脂流速阈值进行处理,得到打印模型切片层的排液等待时间。
  4. 根据权利要求3所述的3D打印控制方法,其特征在于,在所述基于预设的处理算法对所述截面参数和所述树脂流速阈值进行处理,得到打印模型切片层的排液等待时间之前,包括:
    设置每个液态光敏树脂样本的多个排液测试时间;
    基于所述多个排液测试时间对测试打印模型切片层进行打印测试,得到测试结果;
    基于测试结果,从所述多个排液测试时间中确定目标排液时间;
    获取所述测试打印模型切片层的截面参数和所述打印设备的刚度参数;
    基于所述截面参数、所述刚度参数和所述目标排液时间确定所述每个液态光敏树脂样本的树脂流速阈值并存储在树脂流速阈值关系表。
  5. 根据权利要求3或4所述的3D打印控制方法,其特征在于,所述截面参数包括最大内切圆直径,所述基于预设的处理算法对所述截面参数和所述树脂流速阈值进行处理,得到排液等待时间,包括:
    基于所述最大内切圆直径和所述打印设备的刚度参数进行计算,得到排液体积;
    基于所述排液体积和所述树脂流速阈值进行计算,得到所述排液等待时间。
  6. 根据权利要求3所述的3D打印控制方法,其特征在于,还包括:
    基于打印模型切片层的截面参数确定流速系数;
    基于所述流速系数对所述树脂流速阈值进行调整,得到目标树脂流速阈值;
    所述基于预设的处理算法对所述截面参数和所述树脂流速阈值进行处理,得到排液等待时间,包括:
    基于预设的处理算法对所述截面参数和所述目标树脂流速阈值进行处理,得到所述排液等待时间。
  7. 根据权利要求2-6任一项所述的3D打印控制方法,其特征在于,还包括:
    基于所述截面参数和所述树脂流速阈值确定驱动速度,以基于所述驱动速度控制打印设备的升降机构。
  8. 一种3D打印控制装置,其特征在于,包括:
    第一处理模块,用于对打印设备的料盒底面进行投光处理,液态光敏树脂固化得到第N层打印模型切片层;其中,N为正整数;
    第二处理模块,用于在预设的排液等待时间后,对所述料盒底面进行再次投光处理,液态光敏树脂固化得到第N+1层打印模型切片层;其中,所述排液等待时间与所述第N+1层打印模型切片层的截面参数成正比。
  9. 一种电子设备,其特征在于,所述电子设备包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现上述权利要求1-7中任一所述的3D打印控制方法。
  10. 一种计算机可读存储介质,其特征在于,所述存储介质存储 有计算机程序,所述计算机程序用于执行上述权利要求1-7中任一所述的3D打印控制方法。
PCT/CN2023/101525 2022-06-23 2023-06-20 3d打印控制方法、装置、电子设备及介质 WO2023246818A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210726280.9A CN115214146B (zh) 2022-06-23 3d打印控制方法、装置、电子设备及介质
CN202210726280.9 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023246818A1 true WO2023246818A1 (zh) 2023-12-28

Family

ID=83610552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101525 WO2023246818A1 (zh) 2022-06-23 2023-06-20 3d打印控制方法、装置、电子设备及介质

Country Status (1)

Country Link
WO (1) WO2023246818A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051179A (en) * 1997-03-19 2000-04-18 Replicator Systems, Inc. Apparatus and method for production of three-dimensional models by spatial light modulator
CN105014974A (zh) * 2015-08-10 2015-11-04 浙江大学 一种高速光固化3d打印装置和打印方法
CN110103465A (zh) * 2019-05-17 2019-08-09 江西迈亚科技有限公司 一种光固化三维成型过程中的图像识别方法及应用
KR102264538B1 (ko) * 2020-01-13 2021-06-14 주식회사 덴티스 3d 프린터의 출력물 정밀도 향상을 위한 출력 방법
CN114643714A (zh) * 2020-12-19 2022-06-21 深圳市创想三维科技有限公司 光固化3d打印方法、电子装置及存储介质
CN115214146A (zh) * 2022-06-23 2022-10-21 先临三维科技股份有限公司 3d打印控制方法、装置、电子设备及介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051179A (en) * 1997-03-19 2000-04-18 Replicator Systems, Inc. Apparatus and method for production of three-dimensional models by spatial light modulator
CN105014974A (zh) * 2015-08-10 2015-11-04 浙江大学 一种高速光固化3d打印装置和打印方法
CN110103465A (zh) * 2019-05-17 2019-08-09 江西迈亚科技有限公司 一种光固化三维成型过程中的图像识别方法及应用
KR102264538B1 (ko) * 2020-01-13 2021-06-14 주식회사 덴티스 3d 프린터의 출력물 정밀도 향상을 위한 출력 방법
CN114643714A (zh) * 2020-12-19 2022-06-21 深圳市创想三维科技有限公司 光固化3d打印方法、电子装置及存储介质
CN115214146A (zh) * 2022-06-23 2022-10-21 先临三维科技股份有限公司 3d打印控制方法、装置、电子设备及介质

Also Published As

Publication number Publication date
CN115214146A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
KR102141324B1 (ko) 콘볼루션 뉴럴 네트워크의 고속 계산
US11783173B2 (en) Multi-domain joint semantic frame parsing
JP2019518638A (ja) 三次元付加製造生産時間を削減するためのシステムおよび方法
WO2017027171A1 (en) System and method for balancing computation with communication in parallel learning
US9707720B2 (en) Method for controlling three-dimensional printing apparatus and three-dimensional printing system
US11232009B2 (en) Model-based key performance indicator service for data analytics processing platforms
CN110956255A (zh) 难样本挖掘方法、装置、电子设备及计算机可读存储介质
US11831410B2 (en) Intelligent serverless function scaling
US11093279B2 (en) Resources provisioning based on a set of discrete configurations
CN112153145A (zh) 5g边缘环境下面向车联网的计算任务卸载方法及装置
EP4036804A1 (en) Method and apparatus for training neural network model
CN112395090A (zh) 一种移动边缘计算中服务放置的智能混合优化方法
US20210089913A1 (en) Information processing method and apparatus, and storage medium
CN111845768A (zh) 车辆行驶参数的预测方法、装置
TWI843108B (zh) 神經網路中的動態啟動稀疏性
Cartas et al. A reality check on inference at mobile networks edge
WO2023246818A1 (zh) 3d打印控制方法、装置、电子设备及介质
US9537784B2 (en) Network-specific data downloading to a mobile device
CN116762080A (zh) 神经网络生成装置、神经网络运算装置、边缘设备、神经网络控制方法以及软件生成程序
CN117236805A (zh) 电力设备控制方法、装置、电子设备和计算机可读介质
US10963618B1 (en) Multi-dimension clock gate design in clock tree synthesis
CN113159318A (zh) 一种神经网络的量化方法、装置、电子设备及存储介质
CN115214146B (zh) 3d打印控制方法、装置、电子设备及介质
US10798777B2 (en) Multi-dimensional segmentation method and apparatus for 5G-oriented protocol stack, and terminal
US20230325179A1 (en) Just-in-time packager build system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826464

Country of ref document: EP

Kind code of ref document: A1