WO2023246741A1 - 原水局部导流膜元件及滤芯 - Google Patents

原水局部导流膜元件及滤芯 Download PDF

Info

Publication number
WO2023246741A1
WO2023246741A1 PCT/CN2023/101267 CN2023101267W WO2023246741A1 WO 2023246741 A1 WO2023246741 A1 WO 2023246741A1 CN 2023101267 W CN2023101267 W CN 2023101267W WO 2023246741 A1 WO2023246741 A1 WO 2023246741A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw water
membrane
water
diversion
membrane element
Prior art date
Application number
PCT/CN2023/101267
Other languages
English (en)
French (fr)
Inventor
王小侠
Original Assignee
杭州苏博瑞驰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州苏博瑞驰科技有限公司 filed Critical 杭州苏博瑞驰科技有限公司
Publication of WO2023246741A1 publication Critical patent/WO2023246741A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the concentration polarization phenomenon at the concentrated water end of the reverse osmosis membrane element is intensified, which will accelerate the pollution of the reverse osmosis membrane surface in this end area, resulting in a reduction in the desalination rate and water production, and shortening the life of the reverse osmosis membrane element.
  • This patent actually increases the water inlet flow rate by increasing the thickness of the water inlet side, and then creates a thickness difference to increase the water flow velocity at the end of the raw water, which will lead to an increase in the overall volume. Under the same volume, the flow rate of the inlet water can be reduced.
  • Patent CN208542034U discloses a rolled membrane element.
  • the thickness of the raw water diversion net and the produced water diversion net in the rolled membrane element is set to be distributed in a gradient along the direction from the raw water inlet end to the concentrated water discharge end. Increasing the linear speed of drainage at the concentrated water drainage end makes the membrane elements less likely to be blocked and increases the desalination rate and pollution resistance rate of the membrane.
  • This solution has certain significance in theory, but in the actual production process, because it is a soft rubber material and the thickness is within 1mm, it is difficult to form a gradient distribution in the thickness of the raw water diversion net and the produced water diversion net. It is difficult to achieve technically.
  • the purpose of the present invention is to reduce the possibility of clogging on the raw water side of the membrane element, improve the anti-pollution ability and lifespan of the membrane element, and provide an adaptive flow channel membrane element and filter element.
  • the water flow speed at the concentrated water end of the raw water side is automatically increased, thereby avoiding clogging, having strong anti-pollution ability and longer life.
  • a raw water local diversion membrane element of the present invention, used for cross-flow filtration including
  • the film bag has a first long side and a second long side, and a short side and a second short side. After rolling the film, the first short side is located in the outermost layer; raw water diversion net , arranged on the inner side of the diaphragm;
  • Each membrane bag has two opposing diaphragms, and the inner side of the diaphragm forms a raw water channel, which connects the raw water inlet and the concentrated water outlet of the membrane bag, and the concentrated water outlet is located at the first short side position; the membrane The outer surface of the piece forms a pure water channel;
  • the second short side is the raw water inlet, and a seal is formed at the first long side and the second long side.
  • a seal is formed on the inner side of the diaphragm at the second short side, and a raw water inlet is provided on the first long side or the second long side, and the raw water inlet is close to one end of the second short side.
  • a raw water inlet is provided on the inner side of the diaphragm near the middle of the first long side or the second long side, and a raw water diversion net is provided in the area between the raw water inlet and the second short side; first The positions of the short side and the second short side are both concentrated water outlets.
  • a pure water outlet is provided at a partial position of the first long side or the second long side, or a pure water outlet is provided at the second short side.
  • one side of the folded cornea is integrated with the diaphragm, and the other side is connected to the diaphragm through glue connection or film welding;
  • both sides of the folded cornea are connected to the diaphragm through glue connection or film welding.
  • the thickness of the folded cornea is 0.01-0.08mm, and the softness is 2.0-20.0g, so that it can eliminate the wrinkles formed at the first long side when rolling the film.
  • a seal is formed on the pure water side of the membrane bag at least near the first short side, the second short side and the second long side, so that the filtered pure water flows out from the end of the first long side.
  • it also includes a central tube and a pure water guide cloth.
  • the pure water guide cloth is arranged on one side of the membrane bag.
  • the pure water guide cloth and the membrane bag are wound around the central tube from the second short side. superior.
  • the raw water diversion net surrounds at least 3/4 of the circumference of the central pipe in the circumferential direction.
  • a raw water local diversion membrane element of the present invention includes a membrane element and a central tube.
  • the membrane element is wound on the central tube.
  • the membrane element includes:
  • the film bag has a first long side and a second long side that are opposite to each other, and a short side and a second short side that are opposite to each other. After the film is rolled, the second short side is located in the innermost layer, and the first short side is located in the innermost layer. Located in the outermost layer;
  • Each membrane bag has two opposing diaphragms.
  • the inner side of the diaphragm forms a raw water channel, which connects the raw water inlet and concentrated water outlet of the membrane bag; the outer side of the diaphragm forms a pure water channel;
  • the raw water inlet is located on one side close to the central pipe, and the concentrated water outlet is located on the first short side.
  • the diaphragm has a certain deformation ability and can deform into a flow channel under the pressure of water flow, and the surface of the membrane element is a flat curved surface.
  • it also includes a membrane shell, the membrane element is installed in the membrane shell, and there is a gap between the inner wall of the membrane shell and the membrane element for discharge of concentrated water.
  • the raw water diversion net provided in the membrane bag is only arranged in a local area and covers the main raw water inlet, thereby forming a raw water diversion effect and being able to operate when the raw water is not diverted.
  • the pressure difference is used to automatically form a water flow channel, and the water flow speed at the raw water side and the concentrated water end is automatically increased, thereby avoiding clogging, having strong anti-pollution ability and longer life.
  • more diaphragms can be installed under the same radial size, with a larger membrane area, and the water purification capacity is greatly improved.
  • Figure 1 is a schematic diagram of the installation method of the diversion network in the prior art
  • Figure 3 is a schematic diagram of a short side water inlet method of the film bag of the present application.
  • Figure 4 is a schematic diagram of a side water inlet method for a membrane bag
  • Figure 5 is a schematic diagram of a way for water to enter the middle of the membrane bag
  • Figure 6 is a schematic diagram of a long-side folding method of a film bag
  • Figure 7 is a schematic diagram of the water inlet and outlet structure after winding of the membrane element
  • Figure 8 is a schematic structural diagram of a non-contact membrane element
  • Figure 9b is a schematic diagram of the spliced folded cornea connection structure
  • Figure 10 is a schematic diagram of an embodiment of the filter element structure.
  • a raw water local diversion membrane element in this embodiment includes at least one membrane bag.
  • the membrane bag has an opposite first long side 101 and a second long side 102, and an opposite first short side.
  • the side 103 and the second short side 104 are rolled along the extending direction of the first long side 101. After rolling, the first short side 103 is located on the outermost layer and the second short side 104 is located on the innermost layer.
  • this embodiment will be described in combination with the unfolded state or the rolled state of the membrane element, so as to clearly demonstrate the structure of the membrane element.
  • Figure 3 shows a specific implementation of water inlet.
  • the second short side 104 is the raw water inlet.
  • the length of the raw water diversion network 3 in the width direction is approximately equal to that of the second short side 104. In the length direction, it may have A certain length so that it can be wrapped around the central tube. Since the raw water enters from a direction perpendicular to the second short side 104, the raw water diversion net 3 is at least adapted to the second short side 104 so that the raw water can be introduced into the membrane bag.
  • the term "substantially equal” in this application includes being equal and having a certain size difference.
  • the width of the raw water diversion net 3 can be roughly equal to the width of the diaphragm 1; if the inside of the film bag is sealed by a rubber strip, the rubber strip will occupy a certain width. There is a certain width difference. At this time, it can still be considered that the width of the raw water diversion net 3 is roughly equal to the width of the diaphragm 1.
  • the outer side of the diaphragm is the pure water side, and the existing sealing method can be used to form an outlet water channel. For example, it can be opened on one of the two long sides, close to the second short side 104 or the first short side 103, as a pure water outlet; the remaining part is sealed by a rubber strip to form a pure water channel. .
  • the smaller the flow channel the greater the flow speed, so that the concentrated water has a larger flow speed, avoiding the concentration polarization phenomenon at the concentrated water end, reducing the pollution to the diaphragm surface, and making the diaphragm more stable. Increased lifespan.
  • the membrane bags in the prior art will occupy a certain space because they have raw water diversion nets. In this application plan, only a part of the raw water diversion net is installed. In the same radial space, longer membrane bags can be wound, thereby increasing the membrane area available for filtration and greatly improving the water purification capacity.
  • Figure 4 shows another improvement of the water inlet.
  • a seal is formed on the inner side of the diaphragm 1 at the second short side 104, and a raw water inlet is provided on the second long side 102.
  • the raw water inlet is close to the second short side 104.
  • One end can form an annular water inlet at the center of the rolled membrane element.
  • the first short side 103 serves as the concentrated water outlet.
  • existing sealing methods can be used to form a pure water outlet, for example, a pure water outlet is formed at the second short side 104 .
  • raw water is fed into the end of the membrane element, and the raw water is gradually filtered to form concentrated water flowing out from the first short side 103.
  • the pure water passing through the membrane 1 flows along the flow channel on the pure water side, and flows from the pure water at the second short side 104.
  • the water outlet flows out, for example, it can be combined with the central tube to allow pure water to flow out from the central tube.
  • Figure 5 shows another improvement to the water inlet.
  • a raw water inlet is provided near the middle of the second long side 102, and raw water is provided in the area between the raw water inlet and the second short side 104.
  • Diversion net 3; the first short side 103 and the second short side 104 are both used as concentrated water outlets.
  • the two diaphragms 1 are independent diaphragms, or one diaphragm is folded at the second short side 104 to form two diaphragms 1, and the first long side 101 and the second long side 102 pass through The seal forms a closure to the raw water side.
  • Figure 6 shows an embodiment of the film bag being folded along its long sides.
  • the two diaphragms 1 of the membrane bag are connected at the first long side 101 by a folded cornea 105, and the folded cornea 105 and the diaphragm 1 form an integrated structure.
  • the large diaphragm is folded at the first long side 101 to form two diaphragms 1.
  • the first long side 101 does not need to be sealed, and only the second long side 102 needs to be sealed as needed.
  • the entire first long side 101 forms a pure water outlet, and the pure water channel becomes shorter, which is more conducive to the pure water outlet.
  • the thickness of the folded cornea 105 is 0.01 ⁇ 0.08mm, and the softness is 2.0 ⁇ 20.0g, so that it can be formed at the first long side 101 when rolling the film. of folds.
  • the radial size of the rolled membrane element at one end of the first long side will be larger, and the other end will be larger due to There are no folds, the radial size is small, and the overall tapered structure is present.
  • the conventional film After the conventional film is folded along the long side according to the method of this application, it must be wound along the long side through the central tube. During winding, the radial circumferences of the inner and outer sides of the film bag are different, and there is also a displacement difference, which will cause the film bag to be wound. Later, more obvious wrinkles were formed. Due to its own thickness, there will be more sharp corners. These folds and sharp corners will trap dirt and evil during filtration. The service life of the filter element will be short, and it may even fail to meet the standards.
  • the thickness of the diaphragm 1 used is 0.01 to 0.08 mm.
  • the softness is limited to 2.0 to 20g, so that the reverse osmosis membrane has better tensile deformation and compression deformation capabilities, so that the wrinkles formed at the first long side when rolling the membrane can be eliminated normally. Filtration works.
  • the thickness can be further limited to 0.01-0.04mm, and the softness can be limited to 2.2-15.0g.
  • the membrane can be a reverse osmosis membrane with corresponding thickness, or a microfiltration, ultrafiltration, or nanofiltration water treatment membrane, which can realize cross-flow filtration in this embodiment.
  • the softness test in the present invention adopts the Handle-O-Meter of Thwing-Albert Instrument Company. Its standard measurement range is 0-100g, and the weighted measurement range is 0-1000g.
  • the unit g used is the measurement range of the instrument. units in.
  • Softness in this application is the measured softness value. When measuring, it can be divided into transverse softness test and longitudinal softness, and the value is within the range of 2.0 to 20g limited by this application.
  • the softness of existing reverse osmosis membranes measured using this instrument is about 220 to 280g. Of course, other similar softness testers can also be used to test and convert between different units.
  • the stiffness of the membrane 1 is 2.0-4.2 cm
  • the surface of the rolled membrane bag is a flat curved surface.
  • the stiffness here can be determined by referring to the detection method of bending length in the national standard GB/T 18318-2001.
  • the length of the film bag along the first long side 101 direction can be greater than 1.0m, such as 2.0m, 3.2m, 4.5m, etc.
  • the current diaphragm length is basically within 1m, because if the diaphragm is too long, it will cause insufficient pressure in the pure water channel.
  • This application adopts a short flow channel structure, which can increase the length of the diaphragm and form a longer raw water channel, thereby increasing the flow rate and improving the anti-pollution ability.
  • Softer membrane materials can reduce the impact of wrinkles, but because the material itself is soft and has insufficient support strength, it is easy to deform. Within a limited stiffness range, the surface of the rolled membrane element can be roughly flat and curved. Reduces wrinkles.
  • the thickness of the diaphragm 1 is 0.01 to 0.04mm, such as 0.020mm, 0.025mm, or 0.032mm.
  • the membrane may be a membrane formed of a polyolefin microporous membrane, or the like.
  • a polyolefin microporous membrane or the like.
  • reverse osmosis polyolefin microporous membrane It can be formed by coating a thin base membrane with filter material.
  • the thickness of the raw water diversion net 110 may be 0.05-0.8 mm, such as 0.08 mm, 0.25 mm, or 0.50 mm; it may be further limited to 0.015-0.500 mm.
  • a relatively thin raw water diversion net 110 can be used, which has a better cooperation effect with the diaphragm 1 and can avoid large deformation of the diaphragm 1 .
  • the membrane element includes a central tube 2 and a pure water guide cloth 4.
  • the pure water guide cloth 4 is provided on the pure water side of the membrane bag to form a pure water flow channel.
  • the pure water diversion cloth 4 and the membrane bag are wound around the central tube 2 from the second short side 104 .
  • the pure water diversion cloth 4 can be connected to the central tube 2, and there is a certain distance between the membrane bag and the central tube, forming Contactless construction.
  • the pure water diversion cloth 4 can be connected to the central tube 2, the membrane bag is connected to the central tube, and rolled to form a membrane element.
  • the raw water diversion net 3 surrounds the central tube 2 for at least 3 meters in the circumferential direction. /4 circle. Providing a certain length of raw water diversion net 3 can, on the one hand, have a better diversion effect on the raw water, and on the other hand, it can form a certain length of support in the axial direction to avoid a relatively obvious height difference due to the loss of the raw water diversion net 3. and affect membrane performance.
  • Figure 8 also shows a sealing method on the pure water side.
  • adhesive strips 120 are posted on the first short side 103, the second short side 104 and the second long side 102, forming a U shape. Sealed structure.
  • the seal is made by pasting the rubber strip 120 on the pure water side of the membrane bag. After winding, the rubber strip 120 and the pure water side surface of the membrane bag form a closed area, which can be isolated from raw water and concentrated water.
  • the rubber strip may include a main rubber strip 121 and a side rubber strip 122.
  • the main rubber strip 121 is used for short side sealing, and the side rubber strip 122 seals the area between the main rubber strip 121 and the central tube 2.
  • raw water can flow circumferentially after entering.
  • the specific water inlet and outlet methods can refer to the water inlet and outlet methods of existing membrane elements.
  • the side rubber strips 122 can also be made to exceed the main rubber strip 121 in the length direction.
  • the length of the film bag along the first long side 101 is further limited, and can be 1.0 to 4.6 m.
  • the pure water flow is not affected by the length of the membrane bag.
  • Longer membrane elements can be used to lengthen the raw water channel, which can increase the flow rate of the raw water side and avoid the formation of sedimentation.
  • both sides of the folded cornea 105 are connected to the diaphragm 1 through glue connection.
  • the dug side of the folded cornea 105 and the outer side of the diaphragm 1 are connected through adhesive. It can also be connected by membrane welding. It can also be connected by flipping edges as shown in Figure 9b.
  • the folded cornea 105 can be combined with existing relatively thick membrane materials and connected through adhesive connection or film welding. , can also form membrane elements with better performance.
  • the adhesive connection method can be adhesive strips, and the film welding can use known welding methods such as existing laser film welding or heating welding.
  • the membrane element As another embodiment of the membrane element, it includes a membrane element and a central tube 2.
  • the membrane element is wound around the central tube 2.
  • the membrane element includes at least one membrane bag, and the membrane bag has opposite first long sides 101, The second long side 102, as well as the opposite first short side 103 and second short side 104, after rolling the film, the second short side 104 is located in the innermost layer, and the first short side 103 is located in the outermost layer.
  • the raw water diversion net 3 is arranged on the inner side of the diaphragm 1; each membrane bag has two opposite diaphragms 1, and the inner side of the diaphragm 1 forms a raw water channel, which communicates with the raw water inlet of the membrane bag and the concentrate. Water outlet; the outer side of the diaphragm 1 forms a pure water channel.
  • the raw water diversion net 3 is approximately equal to the second short side 104 in the width direction, and the raw water diversion net 3 is partially set in the length direction, and the raw water diversion net 3 covers the raw water inlet area; during operation, the raw water inlet and the concentrated water
  • the pressure difference between the water outlets causes part of the area between the two diaphragms 1 to be flushed away by the water flow, forming an adaptive flow channel area.
  • the second short side 104 can be set as a concentrated water outlet. This implementation requires the use of a softer diaphragm and a controlled pressure range to avoid internal membranes extruding each other and causing water flow. Membrane damage may occur if not smooth.
  • the present invention also provides a filter element.
  • the membrane element used is the membrane element in each of the above embodiments, or a membrane element that combines various parts in different embodiments.
  • Pure water collection chamber 501; the second end cap 52 is installed at one end of the second long side 102.
  • Glue is at least partially provided on the inner end surface of the second end cap 52 to form a seal with the end surface of the membrane element.
  • a Y-shaped sealing ring can also be provided at one end, and the Y-shaped sealing ring can be used to define the water channel structure.
  • a raw water inlet is provided on the side of the second long side 102 close to the central pipe 2, and the first short side 103 is a concentrated water outlet, so that one end of the filter element is the raw water inlet end and the other end It is the outlet end of pure water.
  • the water inlet end and the water outlet end referred to in the above embodiments are more relative to the membrane element, and are ultimately formed on the complete filter housing structure. Whether they are located at the same end or both ends, they can be passed through the central tube or the inside of the housing. Other waterways will be improved.
  • the central pipe 2 when the central pipe 2 is not used for water inlet or outlet, the central pipe 2 can only play a supporting role and does not have a waterway structure.
  • the central tube 2 may have a hollow structure to form a water flow cavity and be used as a water channel for raw water, pure water, or concentrated water.
  • the length of the raw water diversion filter screen of each membrane bag in this solution is reduced.
  • longer membrane bags can be installed, and the net The area of the water diaphragm is increased, which improves the water purification capacity.
  • the thickness of the water flow between the two diaphragms is reduced, thereby increasing the flow rate, avoiding the problem of increasing water concentration affecting the flow rate, and extending the service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

公开了一种原水局部导流膜元件及滤芯,属于净水领域。膜元件用于错流过滤;包括至少一个膜袋和设置在膜片的内侧面的原水导流网;每个膜袋具有两个相对的膜片,膜片的内侧面形成原水流道,其连通膜袋的原水进水口和浓水出水口,且浓水出水口位于第一短边位置处;膜片的外侧面形成纯水流道;所述原水导流网在宽度方向上与第二短边大致相等,在长度方向局部设置原水导流网,且原水导流网覆盖原水进水口区域。原水侧浓水端的水流速度的自动增加,从而避免堵塞,抗污染能力强。在相同空间内能够设置更长的膜袋,净水能力也得到显著提高。

Description

原水局部导流膜元件及滤芯 技术领域
本发明涉及净水技术领域,更具体地说,涉及一种原水局部导流膜元件及滤芯。
背景技术
现有的卷式反渗透膜元件是采用厚度和编织密度完全一致的进水导流网。由于进水的一部分渗透到反渗透膜片的背面形成纯水,进水的流量会越来越小,由于原水进水在沿流道方向上流量逐渐降低,从而也导致流速降低,由于流速的降低使得反渗透膜元件进水端和浓水端的水流速度出现差异,直接导致浓差极化现象。反渗透膜元件浓水端浓差极化现象加剧,会加速这端区域反渗透膜片表面的污染,使得脱盐率和产水量降低,反渗透膜膜元件寿命缩短。
为了解决该问题,在图1所示的方案中,其为专利CN201120187959.2所公开的一种方案,其反渗透膜片折叠后在位于中心管侧形成三个折边,中间折边深入进水流道中使得进水流道分成位于中心管侧的上下层前进水流道和位于浓水出口侧的后进水流道,进水导流网分为大进水导流网和小进水导流网,大进水导流网放置在其中的一个前进水流道和后进水流道中,小进水导流网仅放置在另一前进水流道中。该专利实际是通过增加进水侧的厚度增大进水流量,然后形成厚度差来提高原水末端的水流速度,其会导致整体体积增加,在相同的体积下,能够进水的流量降低。
在专利CN208542034U中公开了一种卷式膜元件,该方案将卷式膜元件中原水导流网和产水导流网的厚度设置为沿原水进水端至浓水排水端方向呈梯度分布,增加浓水排水端排水的线速度,使膜元件不易堵塞,增加膜的脱盐率和耐污染率。该方案在理论上具有一定存在的意义,但是实际生产过程中,由于其为软胶材料,厚度也都是在1mm以内,原水导流网和产水导流网的厚度很难形成梯度分布,工艺上难以实现。
因此,如何降低膜元件原水侧的堵塞可能性,提升膜元件的抗污染能力和寿命,是目前仍然未解决的问题。
发明内容
1.发明要解决的技术问题
本发明的目的在于膜元件原水侧的堵塞可能性,提升膜元件的抗污染能力和寿命,提供了一种自适应流道膜元件及滤芯。该方案中原水侧浓水端的水流速度的自动增加,从而避免堵塞,抗污染能力强,寿命更长。
2.技术方案
为达到上述目的,本发明提供的技术方案为:
本发明的一种原水局部导流膜元件,用于错流过滤;包括
至少一个膜袋,膜袋具有相对的第一长边、第二长边,以及相对的第一短边、第二短边,卷膜后,第一短边位于最外层;原水导流网,设置在膜片的所述内侧面;
每个膜袋具有两个相对的膜片,膜片的内侧面形成原水流道,其连通膜袋的原水进水口和浓水出水口,且浓水出水口位于第一短边位置处;膜片的外侧面形成纯水流道;
所述原水导流网在宽度方向上与第二短边大致相等,在长度方向局部设置原水导流网,且原水导流网覆盖原水进水口区域。
作为进一步地改进,在膜片内侧面,第二短边位置处为原水进水口,在第一长边和第二长边处形成密封。
作为进一步地改进,在膜片内侧面,第二短边处形成密封,在第一长边或第二长边上设置原水进水口,该原水进水口靠近第二短边一端。
作为进一步地改进,在膜片内侧面,在靠近第一长边或第二长边中部位置处设置原水进水口,在原水进水口与第二短边之间区域设置原水导流网;第一短边和第二短边位置处均作为浓水出水口。
作为进一步地改进,在膜片外侧面,在第一长边或第二长边局部位置处设置纯水出水口,或在第二短边处设置纯水出水口。
作为进一步地改进,所述膜袋的两个膜片在第一长边处通过折叠角膜连接,所述折叠角膜与膜片为一体结构;
或:所述折叠角膜一侧边与膜片为一体结构,另一侧边通过胶连或薄膜焊接方式与膜片连接;
或:所述折叠角膜两侧边均通过胶连或薄膜焊接方式与膜片连接。
作为进一步地改进,所述折叠角膜的厚度为0.01~0.08mm,柔软度为2.0~20.0g,使得其能够消容卷膜时在第一长边处形成的褶皱。
作为进一步地改进,在膜袋的纯水侧,至少在靠近第一短边、第二短边和第二长边处形成密封,使得过滤后纯水从第一长边所在端部流出。
作为进一步地改进,还包括中心管和纯水导流布,所述纯水导流布设置在膜袋的一侧,纯水导流布和膜袋从第二短边处卷绕在中心管上。
作为进一步地改进,所述原水导流网在周向上至少环绕中心管有3/4圆周。
本发明的一种原水局部导流膜元件,包括膜元件和中心管,所述膜元件卷绕在中心管上,该膜元件包括:
至少一个膜袋,膜袋具有相对的第一长边、第二长边,以及相对的第一短边、第二短边,卷膜后,第二短边位于最内层,第一短边位于最外层;
原水导流网,设置在膜片的所述内侧面;
每个膜袋具有两个相对的膜片,膜片的内侧面形成原水流道,其连通膜袋的原水进水口和浓水出水口;膜片的外侧面形成纯水流道;
所述原水导流网在宽度方向上与第二短边大致相等,在长度方向局部设置原水导流网,且原水导流网覆盖原水进水口区域;工作时,原水进水口与浓水出水口之间的压力差使得两个膜片之间的部分区域被水流冲开,形成自适应流道区域。
作为进一步地改进,所述原水进水口位于靠近中心管的一侧,浓水出水口位于第一短边位置处。
作为进一步地改进,所述膜片具有一定形变能力,在水流压力下,能够形变形成流道,且膜元件表面为平整的曲面。
本发明的一种滤芯,包括前述的膜元件,所述膜元件至少一端具有端盖,另一端具有端盖或Y形密封圈。
作为进一步地改进,还包括膜壳,所述膜元件安装在膜壳内,所述膜壳内壁与膜元件之间具有间隙,用于浓水排出。
3.有益效果
采用本发明提供的技术方案,与现有技术相比,具有如下有益效果:
本发明的原水局部导流膜元件,其膜袋中所设置的原水导流网仅设置在局部区域,且覆盖主原水进水口,从而能够形成原水导流作用,且能够在未被原水导流网覆盖区域,利用压力差自动形成水流流道,原水侧浓水端的水流速度的自动增加,从而避免堵塞,抗污染能力强,寿命更长。此外,由于省去部分原水导流网所占用空间,在相同径向尺寸下可设置更多的膜片,具有更大的膜面积,净水量得到大幅提高。
附图说明
图1为现有技术中的导流网设置方式示意图;
图2为本申请中原水导流网的一种实施方式示意图;
图3为本申请膜袋的一种短边进水方式示意图;
图4为膜袋一种侧边进水方式示意图;
图5为膜袋一种中部进水方式示意图;
图6为膜袋的一种长边折叠方式示意图;
图7为膜元件的卷绕后进出水结构示意图;
图8为非接触式的一种膜元件结构示意图;
图9a为双侧粘接的折边角膜连接结构示意图;
图9b为拼接式折边角膜连接结构示意图;
图10为滤芯结构的一种实施方式示意图。
示意图中的标号说明:
1、膜片;101、第一长边;102、第二长边;103、第一短边;104、第二短边;105、折
叠角膜;120、胶条;121、主胶条;122、侧胶条;
2、中心管;201、导流孔;
3、原水导流网;
4、纯水导流布;
51、第一端盖;501、集水腔;52、第二端盖。
具体实施方式
为进一步了解本发明的内容,结合附图和实施例对本发明作详细描述。
本说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”等用语,亦仅为便于叙述的明了,而非用以限定可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
针对净水滤芯中纯水流道较长的问题,行业内提出过较多的解决方案,但其实施方案较为复杂,或者是仅仅在理论层面存在实施的可能性。在此情况下,提出本申请的原水局部导流膜元件。
结合图2、图3,本实施方式的一种原水局部导流膜元件,包括至少一个膜袋,该膜袋具有相对的第一长边101和第二长边102,以及相对的第一短边103和第二短边104,该膜袋沿第一长边101延伸方向卷绕,卷膜后,第一短边103位于最外层,第二短边104位于最内层。 为了清楚的说明膜元件的结构,本实施方式中会结合膜元件的展开状态或卷绕状态进行说明,以便清楚的展示出膜元件的结构。
每个膜袋具有两个相对的膜片1,膜片1的内侧面形成原水流道,其连通膜袋的原水进水口和浓水出水口,且浓水出水口位于第一短边103位置处,使得原水能够绕着膜元件周向从内层向外层流动。膜片1的外侧面形成纯水流道,过滤后的纯水从纯水出水口流出。
在两个膜片1之间的内侧面设置有原水导流网3,该原水导流网3在宽度方向上与第二短边104大致相等,在长度方向局部设置原水导流网3,且原水导流网3覆盖原水进水口区域。
图3展示了一种具体的进水实施方式,第二短边104位置处为原水进水口,原水导流网3在宽度方向上与第二短边104长度大致相等,在长度方向上可以具有一定长度,使其能够包绕在中心管上。由于原水从垂直与第二短边104的方向进入,因此,该原水导流网3至少与第二短边104相适应,以使原水能够被引入到膜袋内。
值得说明的是,本申请中所指的大致相等,包含了相等以及具有一定尺寸差的情况。例如,如果膜袋内侧均作为原水流道,则原水导流网3的宽度可以与膜片1宽度大致相等;如果膜袋内侧经过胶条进行密封,该胶条会占据一定的位置宽度,虽然有一定的宽度差,此时仍可认为原水导流网3的宽度与膜片1宽度大致相等。
膜片的外侧面为纯水侧,其可以采用现有的密封方式形成出水流道。例如其可以在两个长边中的一条长边上,在靠近第二短边104或第一短边103位置处开口,作为纯水出水口;其余部分通过胶条密封,形成纯水流道。
本实施例把浓水出水口设置在第一短边103位置处,即两个膜片1在第一短边103处不密封,形成浓水出水口,用于浓水排出。卷绕后的膜元件,其内层具有原水进水口,压力较高,在压力条件下,能够自动撑开两片膜片,在两个膜片之间形成一定厚度的流动水膜,使得水流自动向浓水出水口流动。越是接近浓水出水口,原水侧的压力越小,两个膜片之间厚度越薄,即流道越来越小。在流量不变的情况下,流道越小,流速越大,从而使得浓水具有较大流速,避免了浓水端浓差极化现象,降低了对膜片表面的污染,使得膜片的寿命增加。
此外,现有技术中的膜袋由于具有原水导流网,会占据一定的空间。本申请方案中仅局部设置原水导流网,在相同的径向空间中,能够缠绕更长的膜袋,从而使得可用于过滤的膜面积增加,净水能力得到大幅提升。
对上述实施方式的进一步改进,对于原水侧的密封,由于膜片1的内侧面具有分离层,该分离层能够隔离水中的盐或颗粒物等,如果在内侧粘胶,将会导致分离层与膜的基础层脱离,导致浓水能够透过膜片,影响膜元件使用寿命。因此,作为优选的方案,本实施例中的 膜元件可以在膜元件两端密封,例如在端部涂胶;或者配合设置端盖,在端盖与膜片端面之间打胶,从而实现对端面的密封。对于端面预留的纯水出水口或原水进水口,可以在端面形成环形的未封闭区域,作为水流通道。
图4展示了进水口的另一种改进,在膜片1内侧面,第二短边104处形成密封,在第二长边102上设置原水进水口,该原水进水口靠近第二短边104一端,其能够在卷绕的膜元件中心处形成一个环形进水口。同样的,第一短边103作为浓水出水口。在纯水侧,其可以采用现有的密封方式形成纯水出水口,例如在第二短边104处形成纯水出水口。该方案在膜元件端部进原水,原水逐步过滤形成浓水从第一短边103处流出,透过膜片1的纯水沿纯水侧的流道,从第二短边104处的纯水出水口流出,例如可以结合中心管,使得纯水从中心管流出。
图5展示了对进水口的另一种改进,在膜片1内侧面,在靠近第二长边102中部位置处设置原水进水口,在原水进水口与第二短边104之间区域设置原水导流网3;第一短边103和第二短边104位置处均作为浓水出水口。
本实施方式中,由于是从中部进水,为了实现压降,需要在原水进水口与第二短边104之间的区域均设置原水导流网3,形成向内层流动的流道,并在第二短边104处设置为浓水出水口。同时,原水进水口与第一短边103的流道上,可以采用自适应流道,无需在设置原水导流网3,由于压力作用,过滤后浓水能够从第一短边103排出。对于形成原水侧的密封结构,可以采用现有的端部打胶密封方式,只要能够实现相应的进水方式,没有特别限定。
在以上实施方式中,两个膜片1为独立的膜片,或者是一张膜片在第二短边104处折叠形成两个膜片1,第一长边101和第二长边102通过密封形成对原水侧的封闭。当然,可以仅具有一个膜袋,也可以具有多个膜袋,例如具有3个或4个或5个膜袋。
图6展示了膜袋沿长边折叠的一种实施方案。
该方案中,膜袋的两个膜片1在第一长边101处通过折叠角膜105连接,折叠角膜105与膜片1为一体结构。如图6、图7所示,大的膜片在第一长边101处折叠形成两个膜片1。在原水侧,第一长边101不需要密封,仅需要对第二长边102根据需要密封。在纯水侧,整个第一长边101形成纯水出水口,纯水流道变短,更有利于纯水出水。
作为具体的实施结构,可以是第二短边104处作为原水进水,第一短边103处作为浓水出水口。该膜元件可以具有中心管2,并在中心管2上开设导流孔201,用于原水进水。工作时,原水从中心管2端部进入内腔,然后从导流孔201进入到原水进水口,再从第一短边103的浓水出水口排出。
当然,采用该方案,还可以采用上述的其他进水方式,例如在第二长边102上形成进水 口等,不再赘述。
为了保证膜元件具有较好的效果,作为进一步的改进,折叠角膜105的厚度为0.01~0.08mm,柔软度为2.0~20.0g,使得其能够消容卷膜时在第一长边101处形成的褶皱。
现有的膜片厚度大多是大于0.1mm的,其厚度较大,如果采用本申请的长边折叠方式,卷绕后的膜元件在第一长边一端的径向尺寸较大,另一端由于没有折叠,径向尺寸较小,整体呈现出锥形结构。采用常规膜按照本申请的方式在长边折叠后,还要通过中心管沿长边进行卷绕,卷绕时膜袋内外侧的径向周长不同,同样具有位移差,则会在卷绕后形成较为明显的褶皱。由于本身的厚度影响,会存在较多的尖角,这些褶皱和尖角在过滤时会藏污纳垢,滤芯使用寿命较短,甚至会不符合标准。
在本申请中,为了消除或降低这种厚度和硬度造成的褶皱,所采用的膜片1的厚度为0.01~0.08mm。在该厚度范围内,柔软度限定在2.0~20g,使得反渗透膜具有较好的拉伸形变和压缩形变能力,从而消容卷膜时在第一长边处形成的褶皱,能够正常的进行过滤工作。当然,作为其他一些实施方案,厚度可以进一步限定在0.01~0.04mm之间,柔软度可限定在2.2~15.0g。该膜片可以是具有相应厚度的反渗透膜片,或者是微滤、超滤、纳滤水处理膜,能够实现本实施方式的错流过滤。
本发明中柔软度测试采用Thwing-Albert Instrument Company公司的柔软度仪Handle-O-Meter测试,其标准测量范围为0-100g,加重测量范围为0-1000g,所用单位g即为该仪器测量范围中的单位。本申请中的柔软度即为其测量显示柔软度数值。测量时,可分为横向柔软度测试和纵向柔软度,其值在本申请限定的2.0~20g范围内。采用该仪器测定的现有反渗透膜柔软度为220~280g左右。当然,也可以采用其他类似柔软度测试仪检测,进行不同单位间的换算。
作为进一步的限定,在其他实施方式中,膜片1的硬挺度为2.0~4.2cm,卷绕的膜袋表面为平整的曲面。这里的硬挺度可以参考国家标准GB/T 18318-2001中对弯曲长度的检测方式检测。对于膜袋沿第一长边101方向的长度可以大于1.0m,例如2.0m、3.2m、4.5m等。目前的膜片长度基本都1m以内,因为膜片太长会导致纯水流道压力不足。而本申请采用短流道结构,从而能够增加膜片长度,会形成更长的原水流道,从而能够提升流速,提升抗污染能力。
较软的膜材料可以降低褶皱的影响,但由于材料本身较软,支撑强度不够,很容易形变,而在限定的硬挺度范围内能够使的卷绕的膜元件表面大致为较为平整的曲面,消减了褶皱。
作为进一步的实施例方式,膜片1的厚度为0.01~0.04mm,例如0.020mm、0.025mm、0.032mm。该膜片可以是聚烯烃微多孔膜形成的膜片等。例如采用反渗透的聚烯烃微多孔膜, 其可以是在较薄的基膜上涂覆过滤材料形成,具体可以参考现有的膜材料加工工艺。
在一些实施方式中,原水导流网110的厚度可以为0.05~0.8mm,例如0.08mm、0.25mm、0.50mm;可以进一步限定在0.015~0.500mm。在本实施方案中,可以选用相对较薄的原水导流网110,其与膜片1的配合效果更好,能够避免膜片1较大的形变。
作为膜元件的另一中实施方式,该膜元件包括中心管2和纯水导流布4,该纯水导流布4设置在膜袋的纯水侧,用于形成纯水水流通道。纯水导流布4和膜袋从第二短边104处卷绕在中心管2上。
在一些实施方式中,例如采用带有折叠角膜105的方案中,如图7所示方案,纯水导流布4可以连接在中心管2上,膜袋与中心管之间具有一定距离,形成非接触式结构。
在一种实施方式中,纯水导流布4可以连接在中心管2上,膜袋与中心管相接,卷绕形成膜元件,原水导流网3在周向上至少环绕中心管2有3/4圆周。设置一定长度的原水导流网3,一方面能够对原水具有较好的引流作用,另一方面能够在轴向形成一定长度的支撑,避免由于失去原水导流网3而存在较为明显的高度差而影响膜性能。
图8还展示了纯水侧的一种密封方式,在膜袋的纯水侧,在第一短边103、第二短边104和第二长边102处张贴有胶条120,形成U形密封结构。该密封是采用胶条120粘贴在膜袋的纯水侧,卷绕后,胶条120与膜袋纯水侧表面形成一个封闭区域,可以与原水及浓水形成隔离。进一步地,可以在胶条可包括主胶条121和侧胶条122,主胶条121用于短边密封,侧胶条122密封在主胶条121与中心管2之间的区域。在膜袋原水侧,原水进入后能够周向流动,具体的进出水方式可以参考现有膜元件的进出水方式。净水时,原水进入后,透过膜片1的纯水向第一长边101方向流动,纯水从膜元件的第一长边101所在的端面流出。为了方便密封后设置纯水流通水路,还可以使得侧胶条122在长度方向上超出主胶条121。
本实施例中对膜袋沿第一长边101方向的长度进一步限定,可以为1.0~4.6m。本实施的方案中,由于采用短流道结构,纯水水流不受膜袋长度的影响。可以采用较长的膜元件,通过加长原水流道,能够使得原水侧的水流流速增加,避免形成沉淀。
基于上述的可折叠的膜性能,在其他实施方式中,如图9a所示方案中,折叠角膜105两侧边均通过胶连方式与膜片1连接。连接时,折叠角膜105的挖侧面与膜片1外侧面通过粘胶方式连接。也可以通过膜焊接方式连接。还可以如图9b中的翻折边式连接。
由于折叠角膜105的结构和性能使得其能够折叠后仍然保证膜元件的性能,采用该折叠角膜105可以与现有的相对较厚的膜材料相结合,通过粘胶连接或薄膜焊接的方式进行连接,同样能够形成较好性能的膜元件。胶连方式可以是粘贴胶条,薄膜焊接可以采用现有的激光薄膜焊接或加热焊接等已知的焊接方式。
作为膜元件的另一种实施方式,包括膜元件和中心管2,所述膜元件卷绕在中心管2上,该膜元件包括至少一个膜袋,膜袋具有相对的第一长边101、第二长边102,以及相对的第一短边103、第二短边104,卷膜后,第二短边104位于最内层,第一短边103位于最外层。
原水导流网3设置在膜片1的所述内侧面;每个膜袋具有两个相对的膜片1,膜片1的内侧面形成原水流道,其连通膜袋的原水进水口和浓水出水口;膜片1的外侧面形成纯水流道。原水导流网3在宽度方向上与第二短边104大致相等,在长度方向局部设置原水导流网3,且原水导流网3覆盖原水进水口区域;工作时,原水进水口与浓水出水口之间的压力差使得两个膜片1之间的部分区域被水流冲开,形成自适应流道区域。在一定的缠绕支撑情况下,可以将第二短边104设置为浓水出水口,该种实施方式需要采用柔软度较大的膜片,并控制压力范围,避免内部膜相互挤压而导致水流不畅发生膜损伤的情况。
本发明还提供了一种滤芯,作为其具体的实施方式,采用的膜元件为上述各实施方式中的膜元件,或者不同实施方式中各部分相结合的膜元件。
作为一种具体的实施方式,结合图10,该膜元件中的中心管2与膜袋的第二短边104平行,膜元件从第二短边104侧卷绕在中心管2上,第一长边101所在的端部为纯水出水端;原水沿原水导流网110进入膜袋,过滤后的纯水沿纯水导流布4从纯水出水端流出。滤芯还包括第一端盖51和第二端盖52,所述第一端盖51安装在第一长边101一端,第一端盖51内端面与第一长边101之间具有一定间隙形成纯水集水腔501;第二端盖52安装在第二长边102一端,在第二端盖52内端面至少局部设置胶液,与膜元件端面形成密封。还可以在一端设置Y形密封圈,利用该Y形密封圈限定水路结构。
进一步地,在一种实施例中,在第二长边102靠近中心管2的一侧设置原水进水口,第一短边103为浓水出水口,使得滤芯一端为原水进水端,另一端为纯水出水端。以上实施方式中所指的进水端和出水端更多的是相对膜元件而言,最终形成在完整的滤芯壳体结构上,是否位于同一端或两端,可以通过中心管或壳体内侧的其他水路进行改良。
在以上一些实施方式中,当不采用中心管2进水或出水时,中心管2可以只是起到支撑作用,不具有水路结构。作为其他实施方式,中心管2可为中空结构,形成流水腔,用于作为原水或纯水或浓水的水路流道。
相比现有的滤芯,在采用相同大小的膜壳情况下,本方案中每个膜袋的原水导流滤网长度减少,在相同径向尺寸范围内,能够设置更长的膜袋,净水用膜片面积增加,提高了净水能力。在自适应流道中,两个膜片间间水流厚度减小,从而提升流速,避免水浓度增加而影响流速的问题,延长了使用寿命。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (15)

  1. 一种原水局部导流膜元件,用于错流过滤;包括
    至少一个膜袋,膜袋具有相对的第一长边(101)、第二长边(102),以及相对的第一短边(103)、第二短边(104),卷膜后,第一短边(103)位于最外层;
    原水导流网(3),设置在膜片(1)的所述内侧面;
    其特征在于:
    每个膜袋具有两个相对的膜片(1),膜片(1)的内侧面形成原水流道,其连通膜袋的原水进水口和浓水出水口,且浓水出水口位于第一短边(103)位置处;膜片(1)的外侧面形成纯水流道;
    所述原水导流网(3)在宽度方向上与第二短边(104)大致相等,在长度方向局部设置原水导流网(3),且原水导流网(3)覆盖原水进水口区域。
  2. 根据权利要求1所述的一种原水局部导流膜元件,其特征在于:在膜片(1)内侧面,第二短边(104)位置处为原水进水口,在第一长边(101)和第二长边(102)处形成密封,使得水流从第二短边(104)处进入膜袋,从第一短边(103)处排出。
  3. 根据权利要求1所述的一种原水局部导流膜元件,其特征在于:在膜片(1)内侧面,第二短边(104)处封闭,在第一长边(101)或第二长边(102)上设置原水进水口,该原水进水口靠近第二短边(104)一端。
  4. 根据权利要求1所述的一种原水局部导流膜元件,其特征在于:在膜片(1)内侧面,在靠近第一长边(101)或第二长边(102)中部位置处设置原水进水口,在原水进水口与第二短边(104)之间区域设置原水导流网(3);第一短边(103)和第二短边(104)位置处均作为浓水出水口。
  5. 根据权利要求2~4任一项所述的一种原水局部导流膜元件,其特征在于:在膜片(1)外侧面,在第一长边(101)或第二长边(102)局部位置处设置纯水出水口,或在第二短边(104)处设置纯水出水口。
  6. 根据权利要求2~4任一项所述的一种原水局部导流膜元件,其特征在于:所述膜袋的两个膜片(1)在第一长边(101)处通过折叠角膜(105)连接,所述折叠角膜(105)与膜片(1)为一体结构;
    或:所述折叠角膜(105)一侧边与膜片(1)为一体结构,另一侧边通过胶连或薄膜焊接方式与膜片(1)连接;
    或:所述折叠角膜(105)两侧边均通过胶连或薄膜焊接方式与膜片(1)连接。
  7. 根据权利要求6所述的一种原水局部导流膜元件,其特征在于:所述折叠角膜(105)的厚度为0.01~0.08mm,柔软度为2.0~20.0g,使得其能够消容卷膜时在第一长边(101)处形 成的褶皱。
  8. 根据权利要求7所述的一种原水局部导流膜元件,其特征在于:在膜袋的纯水侧,至少在靠近第一短边(103)、第二短边(104)和第二长边(102)处形成密封,使得过滤后纯水从第一长边(101)所在端部流出。
  9. 根据权利要求1所述的一种原水局部导流膜元件,其特征在于:还包括中心管(2)和纯水导流布(4),所述纯水导流布(4)设置在膜袋的一侧,纯水导流布(4)和膜袋从第二短边(104)处卷绕在中心管(2)上。
  10. 根据权利要求9所述的一种原水局部导流膜元件,其特征在于:所述原水导流网(3)在周向上至少环绕中心管(2)有3/4圆周。
  11. 一种原水局部导流膜元件,包括膜元件和中心管(2),所述膜元件卷绕在中心管(2)上,该膜元件包括:
    至少一个膜袋,膜袋具有相对的第一长边(101)、第二长边(102),以及相对的第一短边(103)、第二短边(104),卷膜后,第二短边(104)位于最内层,第一短边(103)位于最外层;
    原水导流网(3),设置在膜片(1)的所述内侧面;
    其特征在于:
    每个膜袋具有两个相对的膜片(1),膜片(1)的内侧面形成原水流道,其连通膜袋的原水进水口和浓水出水口;膜片(1)的外侧面形成纯水流道;
    所述原水导流网(3)在宽度方向上与第二短边(104)大致相等,在长度方向局部设置原水导流网(3),且原水导流网(3)覆盖原水进水口区域;工作时,原水进水口与浓水出水口之间的压力差使得两个膜片(1)之间的部分区域被水流冲开,形成自适应流道区域。
  12. 根据权利要求11所述的一种原水局部导流膜元件,其特征在于:所述原水进水口位于靠近中心管(2)的一侧,浓水出水口位于第一短边(103)位置处。
  13. 根据权利要求11所述的一种原水局部导流膜元件,其特征在于:所述膜片(1)具有一定形变能力,在水流压力下,能够形变形成流道,且膜元件表面为平整的曲面。
  14. 一种滤芯,其特征在于:包括权利要求1-13任一项所述的膜元件,所述膜元件至少一端具有端盖,另一端具有端盖或Y形密封圈。
  15. 根据权利要求14所述的一种滤芯,其特征在于:还包括膜壳,所述膜元件安装在膜壳内,所述膜壳内壁与膜元件之间具有间隙,用于浓水排出。
PCT/CN2023/101267 2022-06-21 2023-06-20 原水局部导流膜元件及滤芯 WO2023246741A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210702040.5 2022-06-21
CN202210702040.5A CN114849480A (zh) 2022-06-21 2022-06-21 高效率膜元件及生产工艺
CN202310528579.8A CN116474568A (zh) 2022-06-21 2023-05-10 原水局部导流膜元件及滤芯
CN202310528579.8 2023-05-10

Publications (1)

Publication Number Publication Date
WO2023246741A1 true WO2023246741A1 (zh) 2023-12-28

Family

ID=82626202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101267 WO2023246741A1 (zh) 2022-06-21 2023-06-20 原水局部导流膜元件及滤芯

Country Status (2)

Country Link
CN (6) CN114849480A (zh)
WO (1) WO2023246741A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246740A1 (zh) * 2022-06-21 2023-12-28 杭州苏博瑞驰科技有限公司 短流道膜元件及滤芯

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150068971A1 (en) * 2011-12-02 2015-03-12 Toray Industries, Inc. Separation membrane element and production method for same
CN205095658U (zh) * 2015-11-16 2016-03-23 艾欧史密斯(南京)水处理产品有限公司 膜元件
KR20160109967A (ko) * 2015-03-13 2016-09-21 주식회사 피코그램 역삼투막 시트의 어셈블리 및 이를 수용하는 역삼투막 필터
CN106076123A (zh) * 2016-08-22 2016-11-09 厦门建霖工业有限公司 一种大流量长寿命卷式反渗透膜元件
CN207126384U (zh) * 2017-07-25 2018-03-23 艾欧史密斯(南京)水处理产品有限公司 滤芯及其膜元件
CN108421415A (zh) * 2018-05-16 2018-08-21 南京帝膜净水材料开发有限公司 一种卷式膜元件
CN109999671A (zh) * 2019-04-01 2019-07-12 厦门百霖净水科技有限公司 一种提高反渗透膜元件通量的卷膜结构及其制备方法
CN113083020A (zh) * 2019-12-23 2021-07-09 广东美的白色家电技术创新中心有限公司 反渗透滤芯及其端盖
CN213824201U (zh) * 2020-05-19 2021-07-30 厦门百霖净水科技有限公司 一种反渗透膜滤芯

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345300A (zh) * 2016-08-26 2017-01-25 佛山市顺德区美的饮水机制造有限公司 螺旋卷式反渗透膜元件、其卷膜方法和反渗透净水器
CN109499376A (zh) * 2018-11-30 2019-03-22 佛山市云米电器科技有限公司 一种卷膜滤芯以及过滤系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150068971A1 (en) * 2011-12-02 2015-03-12 Toray Industries, Inc. Separation membrane element and production method for same
KR20160109967A (ko) * 2015-03-13 2016-09-21 주식회사 피코그램 역삼투막 시트의 어셈블리 및 이를 수용하는 역삼투막 필터
CN205095658U (zh) * 2015-11-16 2016-03-23 艾欧史密斯(南京)水处理产品有限公司 膜元件
CN106076123A (zh) * 2016-08-22 2016-11-09 厦门建霖工业有限公司 一种大流量长寿命卷式反渗透膜元件
CN207126384U (zh) * 2017-07-25 2018-03-23 艾欧史密斯(南京)水处理产品有限公司 滤芯及其膜元件
CN108421415A (zh) * 2018-05-16 2018-08-21 南京帝膜净水材料开发有限公司 一种卷式膜元件
CN109999671A (zh) * 2019-04-01 2019-07-12 厦门百霖净水科技有限公司 一种提高反渗透膜元件通量的卷膜结构及其制备方法
CN113083020A (zh) * 2019-12-23 2021-07-09 广东美的白色家电技术创新中心有限公司 反渗透滤芯及其端盖
CN213824201U (zh) * 2020-05-19 2021-07-30 厦门百霖净水科技有限公司 一种反渗透膜滤芯

Also Published As

Publication number Publication date
CN220257700U (zh) 2023-12-29
CN116474568A (zh) 2023-07-25
CN219272688U (zh) 2023-06-30
CN117883979A (zh) 2024-04-16
CN114849480A (zh) 2022-08-05
CN219580269U (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
CN101708433B (zh) 一种卷式反渗透膜元件
CN206381852U (zh) 以一体型形成流路的侧流式反渗透膜过滤器
WO2023246741A1 (zh) 原水局部导流膜元件及滤芯
JPH03504820A (ja) スパイラル状に巻かれた逆浸透膜セル
CN106927540A (zh) 延长流体移动通道的侧流式反渗透膜过滤器
CN106345300A (zh) 螺旋卷式反渗透膜元件、其卷膜方法和反渗透净水器
CN109999671A (zh) 一种提高反渗透膜元件通量的卷膜结构及其制备方法
CN108421415A (zh) 一种卷式膜元件
CN208694727U (zh) 一种侧进对流反渗透膜元件及反渗透膜过滤器
CN109019777A (zh) 一种反渗透膜滤芯及净水器
WO2023246738A1 (zh) 端面汇流式滤芯组件及滤芯
CN110508147A (zh) 卷式反渗透膜元件和净水系统
CN214159179U (zh) 一种反渗透膜组件及具有其的滤芯、净水机
CN106110893A (zh) 节水膜元件及其过滤结构
CN104226113B (zh) 反渗透膜滤芯及具有其的水处理设备
CN210171240U (zh) 一种ro膜滤芯的膜片结构
CN104474901B (zh) 一种具有双通道中心管结构的水过滤卷式膜组件
CN107930403A (zh) 一种卷式膜元件
CN218795111U (zh) 一种卷式反渗透膜元件及具有其的净水机
WO2023246740A1 (zh) 短流道膜元件及滤芯
CN208493826U (zh) 一种反渗透膜
CN206103724U (zh) 螺旋卷式反渗透膜元件和反渗透净水器
CN206027457U (zh) 节水膜元件及其过滤结构
CN220223730U (zh) 自适应流道膜元件及滤芯
CN210206465U (zh) 一种多触水面节水环保滤芯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826388

Country of ref document: EP

Kind code of ref document: A1