WO2023246721A1 - 一种弹性检测装置、方法及系统 - Google Patents

一种弹性检测装置、方法及系统 Download PDF

Info

Publication number
WO2023246721A1
WO2023246721A1 PCT/CN2023/101182 CN2023101182W WO2023246721A1 WO 2023246721 A1 WO2023246721 A1 WO 2023246721A1 CN 2023101182 W CN2023101182 W CN 2023101182W WO 2023246721 A1 WO2023246721 A1 WO 2023246721A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
component
ultrasonic transducer
ultrasonic
end surface
Prior art date
Application number
PCT/CN2023/101182
Other languages
English (en)
French (fr)
Inventor
和晓念
Original Assignee
深圳市影越医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市影越医疗科技有限公司 filed Critical 深圳市影越医疗科技有限公司
Publication of WO2023246721A1 publication Critical patent/WO2023246721A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data

Definitions

  • the object of the present invention is to provide an elasticity detection device and a detection method thereof to solve the problem of inability to achieve both image guidance and elasticity detection in existing instantaneous elasticity imaging.
  • At least a portion of the sound-transparent structure disposed within the imaging surface of the ultrasonic transducer has sound-transparent properties
  • a pressure sensor is included, and the pressure sensor is used to detect the pressure between the upper end surface of the protrusion and the target to be detected.
  • the driving device includes a first driver and a second driver, the first driver drives the vibrating component or/and the second driver drives the imaging component to form the protruding portion.
  • the vibrating component vibrates alone or vibrates synchronously with the ultrasonic transducer.
  • the upper end surface of the vibration component and the upper end surface of the imaging component constitute the imaging surface.
  • the connecting piece contains a sound-transparent medium.
  • the acoustically transparent medium is an acoustically transparent liquid.
  • the imaging component is integrally formed.
  • the angle between the two epitaxial cross-sections in the width direction of the upper end surface of the protrusion and the central axis of the protrusion is 0-60 degrees.
  • the imaging surface is a convex surface, a plane or an approximately plane.
  • the height of the raised portion is at least 0.5mm.
  • the height of the raised portion is 1mm-20mm.
  • the vibration component is made of multiple sets nested together.
  • the upper end of the vibration component is a cylinder, and the sleeve is annular.
  • the present invention also provides an elasticity detection method, applied to the elasticity detection device as described in any one of the above, including:
  • Step 1 The upper end surface of the vibration component and the upper end surface of the imaging component form an imaging surface, place the imaging surface on the target surface to be detected, and use the first array of the ultrasonic transducer to perform B-mode based on the imaging surface For ultrasonic imaging, enter the ultrasonic gray-scale imaging mode to realize the image guidance function; according to the image guidance function, determine the instantaneous elastography detection position of the target to be detected.
  • Step 2 Form a convex part by driving the imaging component or vibration component to move.
  • the third step the convex part vibrates on the surface of the target to be detected, and excites shear waves inside the target to be detected;
  • Step 4 Use the second array of the ultrasonic transducer to track and detect the shear wave to obtain an ultrasonic echo signal
  • Step 5 Analyze the ultrasonic echo signal to extract structural information and characteristic information of the target to be detected.
  • the characteristic information includes at least one of shear wave velocity, liver fat content, and viscoelasticity of the target to be detected.
  • the second step further includes adjusting the size of the upper end surface of the protrusion according to the target to be detected.
  • start time of tracking and detecting the shear wave by using the second array of the ultrasonic transducer is before, during or after the vibrating component vibrates on the target surface to be detected.
  • the operating frequency of the second array of ultrasonic transducers corresponds to the different sizes of the protruding portions respectively.
  • the pressure value between the upper end surface of the protrusion and the target to be detected is determined. If the set value condition is met, the protrusion vibrates on the surface of the target to be detected; if the set value is not met, then After adjusting the pressing force between the protruding portion and the target to be detected so that the pressure value meets the set value condition, the protruding portion vibrates on the surface of the target to be detected.
  • the method further includes a seventh step of using the first array of the ultrasonic transducer to re-enter the ultrasonic grayscale imaging mode.
  • the invention also provides an elasticity detection system, which includes the aforementioned elasticity detection device, a signal processing device, a control device, and a display device;
  • the signal processing device is connected to the control device and is used to process the received ultrasonic signal and obtain structural information and characteristic information of the tissue to be detected;
  • the control device is used to control the ultrasonic transducer of the elastic detection device to send and receive signals, and to control the movement of the vibration component and the imaging component to form the protrusion or imaging surface; and to form the protrusion. Vibration of the posterior bulge was detected by instantaneous elastography;
  • Figure 4A is a schematic cross-sectional structural diagram of the elasticity detection device in the first state in the second embodiment of the present invention.
  • Figure 4B is a schematic three-dimensional structural diagram of the elasticity detection device in Figure 4A;
  • Figure 6C is a schematic cross-sectional structural diagram of the elasticity detection device in the first state in the seventh embodiment of the present invention.
  • Figure 7C is a schematic cross-sectional structural diagram of the elasticity detection device in the first state in the tenth embodiment of the present invention.
  • Figure 7D is a schematic cross-sectional structural diagram of the elasticity detection device in the first state in the eleventh embodiment of the present invention.
  • Figure 11 is a schematic three-dimensional structural diagram of the elasticity detection device in the second state in the fourteenth embodiment of the present invention.
  • Sound-transparent structure 10 mounting plate twenty one Drive unit 80 vibrating parts 11 elastic medium 30 first drive 81 imaging unit 12 Elastic detection handle shell 40 Second drive 82 second elastic membrane 13 Connector 50 first drive lever 83 first elastic membrane 14 First sealing ring 60 second drive lever 84 Ultrasonic transducer 20 Fixed part 70 bulge 15 Movable imaging board 121 Imaging component upper end surface 122 Imaging component surrounding structure 123 Second sealing ring 90 rounded structure 100 third elastic membrane 16
  • a first embodiment of the present invention provides an elasticity detection device, which includes a sound-transparent structure 10 and an ultrasonic transducer 20;
  • the ultrasonic transducer 20 is used to transmit and receive ultrasonic signals
  • the sound-transmitting structure 10 is partially disposed at the front end of the ultrasonic transducer 20; in other embodiments, the entire sound-transmitting structure 10 is disposed at the front end of the ultrasonic transducer 20;
  • the sound-transparent structure 10 includes a vibrating component 11 and an imaging component 12. At least one of the vibrating component 11 and the imaging component 12 is movable.
  • the sound-transmitting structure forms a protrusion for use in instant elastic imaging detection.
  • the upper end surface of the movable sound-transmitting structure 10 forms an area that is helpful for ultrasonic gray-scale imaging (it can be two-dimensional ultrasonic gray-scale imaging or three-dimensional ultrasonic gray-scale imaging). ) plane (i.e., imaging surface). In other embodiments, the imaging surface can also be an approximate plane or a convex surface. Preferably, the curvature of the convex surface is consistent with the detection surface of the ultrasonic transducer 20 (i.e., the ultrasonic transducer 20 ).
  • the movable acoustically transparent structure 10 is driven to deform to form an obvious convex portion 15, the height of the convex portion 15 is h, using this convex portion
  • Vibrating the non-imaging surface 15 on the target surface to be detected can generate a shear wave field that is more conducive to instantaneous elasticity detection, thereby performing effective instantaneous elasticity imaging detection (because the vibration of the protrusion 15 is compared to The entire imaging surface vibrates, reducing the area of vibration, which can effectively avoid or reduce the shear wave field diffraction phenomenon.
  • the non-vibrating component 11 is formed after the convex portion is formed.
  • Direct vibration at the position before the starting part can avoid or reduce the direct contact of the imaging components 12 on both sides with the target to be detected and generate a shear wave field that is not conducive to instantaneous elastic detection). That is to say, the above-mentioned elasticity detection device can not only perform good ultrasonic gray-scale imaging (ie, ultrasonic gray-scale imaging) through the imaging surface, but also ensure the detection quality of instant elastic imaging by forming the protruding portion 15 .
  • An embodiment of the present invention provides an elasticity detection device.
  • the imaging component 12 and the vibration component 11 can be connected by sliding fit; they are provided on the ultrasonic transducer.
  • the sound-transmitting structure 10 in the imaging plane 20 has sound-transmitting characteristics, which allows the ultrasonic signal emitted by the ultrasonic transducer 20 to pass through the sound-transmitting structure 10, thereby realizing ultrasonic gray-scale imaging (which can be two-dimensional ultrasonic gray-scale imaging, or three-dimensional ultrasound gray-scale imaging), transient elastography.
  • the imaging component 12 When the upper end surface of the vibrating component 11 and the upper end surfaces of the imaging components 12 on both sides are connected without any gap, they jointly form an imaging surface, that is, the imaging component 12 constitutes at least a part of the imaging surface.
  • the upper end surface of the vibration component 11 is a flat surface, which is beneficial to the detection of instantaneous elastic imaging; when the upper end surface of the imaging component 12 is a flat surface, the imaging surface is composed of the upper end surface of the vibration component 11 and the upper end surface of the imaging component 12 plane; when the upper end surface 122 of the imaging component 12 is a curved surface, the imaging surface is a convex surface formed by the upper end surface of the vibration component 11 and the upper end surface 122 of the imaging component 12 (usually it can be a shape similar to the convex array detection surface, as shown in Figure shown in 5C).
  • the ultrasonic transducer 20 is a multi-element ultrasonic transducer.
  • the multi-element ultrasonic transducer can realize ultrasonic gray-scale imaging with image guidance function.
  • the ultrasonic gray-scale imaging It can be two-dimensional ultrasonic gray-scale imaging or three-dimensional ultrasonic gray-scale imaging.
  • the array direction of the array elements of the ultrasonic transducer 20 is arranged corresponding to the length direction of the imaging surface. Such an arrangement helps to expand the ultrasonic gray scale.
  • the ultrasonic gray-scale imaging area can better realize the image guidance function; the ultrasonic signal emitted by the ultrasonic transducer 20 can realize ultrasonic gray-scale imaging through the imaging surface formed by the sound-transmitting structure 10, thereby realizing the image guidance function.
  • the vibration component 11 is attached to the detection surface of the ultrasonic transducer 20 , that is, the vibration component 11 and the ultrasonic transducer 20 are relatively fixed together.
  • the elasticity detection device further includes a driving device 80.
  • the driving device 80 drives at least one of the vibration component 11 and the imaging component 12 to form the protruding portion 15.
  • the raised portion 15 is the part of the vibration component 11 that protrudes from the imaging component 12; through the above structural design, the driving force can be provided by the driving device 80, and the driving device 80 of different powers can also be set according to the usage requirements to provide different powers. the driving force.
  • the driving device 80 may include a first driver 81 and a second driver 82. The first driver 81 drives the vibration component 11 or/and the second driver drives the imaging component 12 to form Raised portion 15.
  • the vibration component 11 and the imaging component 12 are driven respectively.
  • the driving device 80 is connected to the vibration component 11 or/and the imaging component 12.
  • the vibration component 11 is connected to the driving device 80 (more specifically, it may be the third Under the driving action of a driver 81), the surface of the target to be detected vibrates and shear waves are generated in the target to be detected.
  • the imaging member 12 may remain stationary or vibrate synchronously with the protrusion 15 .
  • the vibrating component 11 is attached to the detection surface of the ultrasonic transducer 20, that is, when the vibrating component 11 and the ultrasonic transducer 20 are relatively fixed together, the first A driver 81 can be fixedly connected to the ultrasonic transducer 20 through a first driving rod 83. Under the action of the first driver 81, the ultrasonic transducer 20 and the vibration component 11 move or vibrate synchronously. The transducer 20 moves synchronously with the vibrating component 11 to form the protruding portion 15 , and the ultrasonic transducer 20 vibrates synchronously with the vibrating component 11 to generate shear waves.
  • the second driver 82 can also be connected to the imaging component 12 through the second driving rod 84 .
  • the imaging component 12 can slide along the side of the vibration component 11 .
  • the second driver 82 drives the imaging component 12 so that the imaging component 12 moves downward along both sides of the vibration component 11, the upper end surface of the vibration component 11 will be higher than the upper end surface of the imaging component 12, and the two upper end surfaces
  • the height difference (that is, the height h of the raised portion 15) reaches at least 0.5mm (as shown in Figure 3).
  • the height of the raised portion is 1mm-20mm. More preferably, the height of the raised portion is 5 mm to 10 mm. Within this height range, a relatively obvious raised portion is formed, which is helpful for instant elastic imaging.
  • the portion of the vibrating member 11 that protrudes relative to the imaging members 12 on both sides forms a protruding portion 15 .
  • the first driver 81 drives the ultrasonic transducer 20 and the vibrating component 11 to vibrate instantaneously through the first driving rod 83, so that the vibrating component 11 vibrates on the target surface to be detected. , and generates shear waves inside it. Finally, the shear waves are used to achieve elastic detection.
  • the imaging component 12 may vibrate synchronously with the protrusion 15 or vibrate asynchronously.
  • the formation process of the convex part can also be formed by the first driver 81 driving the ultrasonic transducer 20 and the vibration component 11 to move upward; it can also be that the vibration component 11 and the imaging component 12 can be formed at the same time.
  • the movement forms the bulge (that is, achieved through relative movement: for example, the vibrating component 11 moves upward, and at the same time, the imaging component 12 moves downward).
  • the imaging component 12 is connected to the elastic detection handle housing 40 through an elastic medium 30.
  • the elastic medium 30 can keep the imaging component 12 connected to the elastic detection handle when the second driver 82 moves. Sealed connection between handle housing 40.
  • the vibrating component 11 is disposed at the front end of the ultrasonic transducer 20.
  • the vibrating component 11 is not directly connected to the detection surface of the ultrasonic transducer 20, and a connecting piece 50 is disposed between them.
  • the connector 50 is a cavity with a built-in sound-transparent medium.
  • the sound-transparent medium can be a sound-transparent liquid, such as water, glycerin, and other media through which ultrasonic signals can propagate.
  • the outer upper end surface of the cavity at least encloses the imaging area.
  • the peripheral structure of the component 12 and the detection surface of the ultrasonic transducer 20 are composed of a second elastic film 13.
  • the second elastic film 13 is at least located on the ultrasonic propagation channel of the ultrasonic transducer 20 (i.e., the ultrasonic gray area of the ultrasonic transducer 20).
  • the part (step imaging surface) has acoustic transparency properties.
  • the upper end surface of the vibration component 11 and the upper end surface of the imaging component 12 may be connected through a first elastic film 14 , and the first elastic film 14 is located around the upper end surface of the vibration component.
  • the upper end surface of the vibrating member 11 , the upper end surface of the imaging member 12 and the first elastic film 14 disposed between the vibrating member 11 and the imaging member 12 together form an imaging surface (as shown in FIG. 5A ).
  • the function of the connector 50 When forming the imaging surface (the upper end surface of the vibration component 11 and the upper end surface of the imaging component 12 are flat or convex, as shown in Figure 5C), the ultrasonic signal emitted by the ultrasonic transducer 20 can be smoothly transmitted through the connector. Propagates into the interior of the target to be detected to achieve ultrasonic gray-scale imaging; after forming the protruding portion 15, the driving device (which may be the first driver 81) drives the vibrating component 11 before, during or after the surface of the target to be detected is vibrated.
  • the driving device which may be the first driver 81
  • the vibrating component 11 (which can also be said to be the protruding portion 15 ) vibrates alone, with the help of the connecting member 50 at least the portion located on the ultrasonic propagation channel of the ultrasonic transducer 20
  • the sound-transparent and deformable elastic properties realize the connection between the vibrating component 11 and the ultrasonic transducer 20 , ensuring that the ultrasonic signal emitted by the ultrasonic transducer 20 is smoothly propagated through the connecting piece 50 .
  • the fixed connection at this position will not affect the protruding portion 15 formed by the vibrating component 11 and prevent the first driving rod 83 from entering the inside of the connecting piece (reducing the structural complexity).
  • the first driving rod 83 extends downward from the fixed position along both sides in the width direction of the ultrasonic transducer 20 to be fixedly connected to the first driver 81 .
  • holes are respectively opened in the inner wall of the peripheral structure of the imaging component 12 corresponding to the positions of the two driving rods (the fourth driving rod, the fifth driving rod), and the holes are used to accommodate the driving rods.
  • the hole must have enough reserved space to ensure that the driving rod can move freely up and down.
  • the protruding portion 15 may be formed by the first driver 81 driving the vibrating component 11 to move upward, or the second driver 82 driving the imaging component 12 to move downward alone, or the first driver 81 driving While the vibrating component 11 moves upward, the second driver 82 drives the imaging component 12 to move downward.
  • the height difference between the upper end surface of the vibration component 11 and the upper end surface of the imaging component 12 is at least 0.5 mm.
  • the height of the raised portion is 1mm-20mm. More preferably, the height of the raised portion is 5 mm to 10 mm. Within this height range, a relatively obvious raised portion is formed, which is helpful for instant elastic imaging.
  • the first driver 81 can drive the vibrating component 11 to vibrate on the target surface to be detected to generate shear waves, ultimately achieving instantaneous elastic imaging.
  • the ultrasonic transducer 20 can be selectively fixed on the elastic detection handle housing 40 through the mounting plate 21 . It can be understood that when the ultrasonic transducer is fixed together with the elastic detection handle housing 40, the accuracy of instantaneous elastic imaging detection is improved, and instantaneous elasticity detection including shallow depth positions (within 2cm) can also be achieved.
  • the portions of the imaging component 12 and the vibration component 11 located at the front end of the detection face of the ultrasonic transducer 20 have acoustic transparency properties (ie, ultrasonic signals can propagate through them). Because only the sound-transparent material in the imaging surface (ultrasonic signal propagation area) of the ultrasonic transducer 20 can perform ultrasonic gray-scale imaging or instantaneous elastic imaging.
  • the vibrating component 11 is entirely disposed inside the connecting member 50 .
  • the first driving rod 83 connected to the vibrating component 11 needs to be at least partially disposed inside the connecting member 50 to achieve alignment.
  • the first driving rod 83 can be connected to the vibrating component 11 by passing through the second elastic film 13 , and the intersection between the first driving rod 83 and the second elastic film 13 is a sealed connection.
  • the second driver 82 can also be omitted in the elasticity detection device, that is, during the formation process of the protruding portion 15 and the imaging surface, the ultrasonic gray-scale imaging process and the vibration of the vibrating component to generate shear waves.
  • the imaging components 12 all remain stationary.
  • the formation process of the protrusion, the imaging surface, the ultrasonic gray-scale imaging process and the process of generating shear waves through vibration are all formed by the first driver 81 driving the vibrating component 11 to move or vibrate.
  • the connection between the imaging component 12 and the elastic detection handle housing 40 may be a fixed and sealed connection, or the imaging component 12 and the elastic detection handle housing 40 may be integrally designed.
  • the imaging component 12 does not directly form a part of the periphery of the connecting member 50 , but is attached to the peripheral structure of the connecting member 50 .
  • the peripheral structure of the connecting member 50 is the second elastic film 13 , and the upper end surface and peripheral structure of the imaging component 12 are attached to the outside of the second elastic film 13 .
  • the lower end surface of the vibration component 11 is directly attached to the detection surface of the ultrasonic transducer 20, and the vibration component 11 is fixedly connected to the ultrasonic transducer 20, forming a The same whole.
  • the first elastic membrane 14 is at least partially located on the upper end of the vibrating component 11 .
  • the vibration component 11 and the imaging component 12 are connected through a first elastic film 14 .
  • the first elastic film 14 covers the upper end surface of the vibrating component 11 so that the entire vibrating component 11 is located inside the connecting member 50 .
  • the upper end surface of the vibration component 11 and the first elastic film 14 are adhered and adhesively connected.
  • the edge portion of the first elastic film 14 is sealingly connected with the imaging component 12 .
  • the above-mentioned fit-adhesive connection and sealing connection both have sound-transparent properties to ensure that the ultrasonic signal emitted by the ultrasonic transducer can be transmitted smoothly.
  • the upper end surface of the imaging component 12 and the first elastic film 14 together form an imaging surface.
  • the first elastic membrane 14 has acoustically transparent, stretchable and deformable properties.
  • the first elastic film 14 can allow the vibrating component 11 to move upward, allowing the upper end surface of the vibrating component 11 to be higher than the upper end surface of the imaging component 12 to form a bulge, while maintaining the sealed connection between the vibrating component 11 and the imaging component 12 , on the other hand, the first elastic membrane 14 constitutes a peripheral part of the connecting member 50 .
  • the upper end surface of the imaging component 12 is at least 0.5 mm.
  • the height of the raised portion is 1mm-20mm. More preferably, the height of the raised portion is 5 mm to 10 mm. Within this height range, a relatively obvious raised portion is formed, which is helpful for instant elastic imaging.
  • the ultrasonic transducer 20 and the vibrating component 11 remain stationary, and the imaging component 12 is relatively moved downward under the action of the second driver 82 so that the upper end surface of the imaging component 12 is in contact with the upper end surface of the vibrating component 11 The distance difference is at least 0.5mm.
  • the vibrating component 11 moves upward and the imaging component 12 moves downward simultaneously to form a convex portion.
  • the vibration component vibrates on the surface of the target to be detected to generate shear waves.
  • the process of using the vibration of the protrusion to generate shear waves has two forms: first, the first driver 81 drives the protrusion formed by the vibrating component 11 to vibrate instantaneously on the surface of the target to be detected to generate shear waves. While the starting part vibrates, the imaging component 12 remains stationary; secondly, in other embodiments, the imaging component 12 may also maintain synchronous vibration.
  • the elastic medium 30 has telescopic and deformable characteristics, and one end of the elastic medium 30 is connected to the elastic detection handle housing 40.
  • the elastic detection handle shell 40 is connected, and the other end is connected to the peripheral structure of the imaging component 12 .
  • the end connected to the peripheral structure of the imaging component 12 will move with the movement of the peripheral structure of the imaging component 12; secondly, in other embodiments, the peripheral structure of the imaging component 12 is slidingly and sealingly connected to the elastic detection handle housing 40,
  • the sliding sealing connection can be realized by using the extrusion sealing principle by setting the second sealing rubber ring 90 between them (see Figure 6C); the third method, it can be understood that when the imaging component 12 and surrounding structures When the formation process of the bulge and the vibration of the bulge to generate shear waves are not involved in the whole process, the imaging component 12 and the surrounding structure can remain relatively stationary.
  • the shell 40 is connected in a fixed and sealed manner, or they are designed as an integrated structure.
  • the imaging component 12 is fixedly connected to the elastic detection handle housing 40, the second driver 82 can also be omitted from the elastic detection device.
  • Figure 6B Please refer to Figure 6B.
  • the difference from Figure 6A is that the upper end surface of the vibrating component 11 is not adhesively bonded to the first elastic film 14 (marked in the figure), or in other words, the two are not in contact with each other, that is, there is a certain distance between them. .
  • This design avoids the aging of the first elastic film 14 caused by adhesive bonding, and improves the service life of the first elastic film 14 .
  • the vibration component 11 and the imaging component 12 are movable and sealed.
  • a connecting piece 50 is provided between the vibrating component 11 and the ultrasonic transducer 20 .
  • the ultrasonic transducer 20 is a multi-array ultrasonic transducer.
  • the ultrasonic transducer 20 is a convex array ultrasonic transducer. In FIG.
  • the imaging component 12 is fixedly and sealingly connected to the elastic detection handle shell 40 through its peripheral structure, and the vibration component 11 is provided on the imaging component. In the middle of 12, the vibration component 11 and the imaging component 12 are fitted and slidably connected. The upper end surface of the vibration member 11 and the upper end surface of the imaging member 12 together form an imaging surface.
  • a connecting piece 50 is provided between the lower end of the vibrating component 11 and the detection surface of the ultrasonic transducer 20.
  • the connecting piece 50 has sound-transparent, deformable, elastic and elastic properties.
  • the connecting piece 50 can be a synthetic polymer of polyacrylamide gel. or the connecting piece 50 is a cavity with a built-in sound-transparent medium.
  • the sound-transparent medium can be a sound-transparent liquid, such as water, glycerin and other media through which ultrasonic signals can propagate.
  • the upper end surface of the cavity is made of an elastic membrane.
  • the elastic membrane located on the ultrasonic propagation channel of the ultrasonic transducer 20 has sound transmission properties.
  • the function of the connector 50 When forming the imaging surface (the upper end surface of the vibration component 11 and the upper end surface of the imaging component 12 are flat or convex), the ultrasonic signal emitted by the ultrasonic transducer 20 can be transmitted through the connector 50 (more specifically, The part of the connecting piece 50) located on the ultrasonic propagation channel of the ultrasonic transducer 20 smoothly propagates into the target to be detected to achieve ultrasonic gray-scale imaging; after forming the protruding portion 15, the first driver 81 drives the vibrating component 11 to Before, during or after the vibration of the target surface to be detected, the ultrasonic signal emitted by the ultrasonic transducer 20 can be connected by means of the connector 50 (more specifically, the part located on the ultrasonic propagation channel of the ultrasonic transducer 20 50) smoothly propagates to the target to be detected, so as to track and detect the shear waves generated by the vibration of the vibrating component 11 (which can also be said to be the convex portion 15).
  • the vibrating component 11 does not form the protruding portion 15
  • at least part of the structure of the connecting member 50 is located outside the imaging plane of the ultrasonic transducer 20 .
  • the protruding portion 15 is formed.
  • the structure of the connector 50 outside the imaging plane of the ultrasonic transducer 20 can be used to fill this increase. A large space is provided to achieve the effect of maintaining the connection between the vibrating component 11 and the ultrasonic transducer 20 .
  • the connector 50 outside the imaging surface of the ultrasonic transducer 20 can be provided on both front and rear sides of the ultrasonic transducer 20 (not shown), or can also be provided on the imaging side of the ultrasonic transducer 20 (as shown in Figure 7C) , or it can be the left and right sides of the imaging surface (as shown in Figure 7D).
  • the first driver 81 drives the vibrating component 11 through the first driving rod 83 to form the protruding portion 15, and after forming the protruding portion 15, the first driver 81 drives the vibrating component 11 through the first driving rod 83 to vibrate on the surface of the target to be detected, Shear waves are generated within the target to be detected.
  • the ultrasonic transducer 20 is fixed on a mounting plate 21 , and the mounting plate 21 is fixed on the inner wall of the elastic detection handle housing 40 .
  • FIGS. 7C and 7D The difference between Figures 7C and 7D and Figures 7A and 7B is that an elastic sound-transparent seal is added between the vibrating component 11 and the imaging component 12 to achieve a sliding sealing connection between the vibrating component 11 and the imaging component 12.
  • the first seal can be used
  • the rubber ring 60 realizes the sliding sealing connection between the vibration component 11 and the imaging component 12 .
  • the imaging component 12 is provided with grooves at corresponding positions, and rubber rings or other types of seals are disposed in the grooves.
  • the grooves shown in Figure 7C and Figure 7D are provided on the imaging component 12. It is understandable that in other embodiments, the grooves can also be provided on the vibration component 11 adjacent to the imaging component 12, with rubber rings or other types.
  • the sealing member is disposed in the groove, thereby achieving sliding sealing between the vibration component 11 and the imaging component 12 .
  • FIG. 7D and FIG. 7B and FIG. 7C The difference between FIG. 7D and FIG. 7B and FIG. 7C is that there are connectors 50 underneath the imaging component 12 in FIG. 7D , and the lower ends of the connectors 50 are attached to the detection surface of the ultrasonic transducer 20 . Therefore, with the help of the deformable telescopic properties of the connecting member 50 , the imaging component 12 in the embodiment can move downward under the action of the second driver 82 , and thereby participate in the formation process of the protruding portion 15 .
  • the imaging component 12 is composed of a third elastic film 16 and a periphery supporting the third elastic film.
  • the structure is such that the upper end surface of the third elastic membrane constitutes the imaging surface, and the imaging surface is used for ultrasonic grayscale imaging.
  • the third elastic membrane 16 has scalable deformation and sound-transparent properties, and has three functions. First, the third elastic film 16 is flat in the initial state, which is the imaging surface. Its sound-transparent properties can be used to perform ultrasound.
  • Gray scale imaging secondly, with the help of the stretchable deformation characteristics of the third elastic film 16, it is possible to allow the vibrating component 11 to form the protruding portion 15 and to allow the vibrating component 11 to vibrate on the target surface to be detected after forming the protruding portion 15.
  • shear waves are generated inside the target to be detected.
  • the vibrating component 11 is located inside the connector 50, and its initial position is set at the lower end (not in contact) of the third elastic membrane 16.
  • the process of forming the protruding portion 15 by the vibrating component 11 and the process of instantaneously vibrating the vibrating component 11 to generate shear waves can be continuous, that is, instantaneous vibration can be performed immediately after the protruding portion 15 is formed; or it can be It is segmented control, that is, the process in which the vibrating component 11 forms the protruding portion 15 and the process in which the vibrating component 11 vibrates instantaneously are independent of each other (not related).
  • the process of forming the protruding part 15 may be that the first driver 81 drives the vibrating component 11 to move upward through the first driving rod 83 to form the protruding part.
  • the vibrating component 11 is located inside the connector 50, and the initial position of the vibrating component 11 is set at the lower end (not in contact) of the first elastic film 14.
  • the vibrating component 11 can move upward under the force of the first driver. Due to the first elasticity
  • the membrane 14 has telescopic deformation characteristics and can continue to move upward after the upper end surface of the vibrating member 11 abuts the first elastic membrane 14 .
  • the portion of the vibrating member 11 that protrudes relative to the imaging components 12 on both sides forms a raised portion 15 .
  • the raised portion 15 The height should be at least 0.5mm. Preferably, the height of the raised portion is 1mm-20mm. More preferably, the height of the raised portion is 5 mm to 10 mm. Within this height range, a relatively obvious raised portion is formed, which is helpful for instant elastic imaging. It can be understood that the formation process of the protruding portion 15 can also be formed by the second driver 82 acting on the imaging component 12 to move downward. It is also possible that the vibration component 11 and the imaging component 12 move simultaneously to form the protruding portion (that is, through relative movement: for example, the vibration component 11 moves upward, and at the same time, the imaging component 12 moves downward).
  • the ultrasonic transducer 20 is placed on the fixing part 70 , and the ultrasonic transducer 20 is fixed on the elastic detection handle shell 40 through the fixing part 70 .
  • the protruding portion 15 is formed by folding down the upper end surface structure of the imaging component 12; specifically, the difference between Figure 9A and Figure 6A is that in Figure 9A
  • the imaging component 12 is composed only of the upper end surface (in the shape of a plate), and there is no longer a peripheral structure of the imaging component 12 in FIG. 6A .
  • the imaging component 12 and the elastic detection handle housing 40 are connected through an elastic medium 30 .
  • the elastic medium 30 has elastic deformability.
  • One end of the elastic medium 30 is fixedly connected to the elastic detection handle housing 40, and the other end is connected to the imaging component 12.
  • the end of the elastic medium 30 connected to the imaging component 12 will move along with the movement of the imaging component.
  • the imaging component 12 is connected to the second driver 82 through the second driving rod 84, and the imaging component 12 can move downward under the action of the second driver to form a convex portion in a downward folding manner (as shown in FIG. 9B).
  • another embodiment of the present invention provides an elasticity detection device.
  • the imaging components 12 on both sides move toward the middle to form a convex portion.
  • FIG. 10A and FIG. 8B The difference between FIG. 10A and FIG. 8B is that the third elastic film 16 in FIG. 8B forms an imaging surface solely by means of the peripheral structural support of the imaging component 12 , while the third elastic film 16 in FIG. 10A is no longer formed by the peripheral structure of the imaging component 12 .
  • the structural support is formed by the vibrating member 11 and the movable imaging plate 121 provided on the vibrating member 11 after they move outward, so that the upper end surface of the supported portion of the third elastic film 16 forms an imaging surface.
  • two grooves are symmetrically formed on both sides of the vibrating component 11 near the upper end, and the two grooves are respectively used to accommodate the movable imaging plate 121 .
  • the first driver 81 can drive the two movable imaging plates 121 to move inward or outward simultaneously along the groove. Due to its own elastic stretch characteristics, the third elastic film 16 forms a protruding portion 15 when the two movable imaging plates 121 move inward to the inside of the groove (as shown in FIG. 10B ); when the two movable imaging plates 121 When 121 moves outward from the groove, it can support the upper end surface of the third elastic film 16 located thereon and above the vibrating component 11 to form an imaging surface.
  • the third elastic film 16 covers the entire upper end surface of the imaging plate 121 and the vibration component 11 . The edge of the third elastic film 16 extends downward and is connected to the elastic detection handle housing 40 .
  • the shape of the protruding part 15 is a trapezoid shape.
  • the shape of the protruding part 15 is columnar, and the upper end surface of the protruding part 15 is circular.
  • the upper end surface of the protruding part 15 is formed, that is, the upper end surface of the vibrating component 11.
  • the vibrating component 11 is provided with multiple Kits are nested. Specifically, the vibrating component 11 is no longer composed of a single-sized cylinder, but is composed of a cylinder and an outer ring.
  • the upper end surface of the vibration component 11 is composed of the annular upper end surface and the cylindrical upper end surface.
  • the ring and the cylinder are connected by a sliding fit, and the ring is connected to a third driver through a third drive rod (not shown).
  • the third driver can be connected through a third drive rod.
  • the rod drives the ring up and down along the cylinder.
  • the upper end surface of the vibrating component 11 is composed of the annular upper end surface and the cylindrical upper end surface. At this time, the size of the upper end surface of the vibrating component increases to d1.
  • the size of the upper end surface of the vibrating component 11 is adjusted, and thereby the size of the end surface of the protruding part 15 is adjusted.
  • the size of the bulge can be adjusted to optimize the test results. Typically, small sized bosses are used for small children and large sized bosses are used for obese patients.
  • the ultrasonic transducer 20 may be a multi-array element (at least two array elements) ultrasonic transducer. Specifically, each array element can work independently, that is, to realize the sending and receiving of ultrasonic signals.
  • the ultrasonic transducer 20 may be a phased array ultrasonic transducer, a convex array ultrasonic transducer, a linear array ultrasonic transducer, a 3D ultrasonic transducer or other types of transducers.
  • the bandwidth range of the ultrasonic transducer 20 is 1MHz ⁇ 40MHz. According to actual clinical needs, the working frequency of the array elements of the ultrasonic transducer 20 (ie, the ultrasonic transmission frequency) can be changed/switched.
  • the ultrasonic transducer 20 has a first array and a second array; the first array is used for ultrasonic gray-scale imaging, and through the ultrasonic gray-scale imaging, the object to be observed can be observed. Detect the target’s anatomy.
  • the first array is all array elements of the ultrasonic transducer 20 .
  • the second array is a part of the first array, and the second array is one array element or multiple array elements.
  • the first array and the second array are arranged coaxially.
  • the second array is directly facing the lower end surface of the vibrating component 11 . Before, during, or after the vibrating component 11 vibrates, the second array of the ultrasonic transducer 20 is turned on to detect and track the entire process before, during, or after the vibration process of the vibrating component 11 generates shear waves. .
  • the shape of the protruding portion 15 can be cylindrical, square, or other shapes such as a truncated cone; the shape of the corresponding upper end surface of the protruding portion is circular or square. , or other shapes such as ellipse, etc.
  • the second driver 82 in the process of using the second driver 82 to drive the imaging component 12 to move downward to form the bulge, can be automatically (electronically) driven, such as a voice coil motor; it can also be manually driven. , at this time, the raised portion 15 is formed under the action of external force.
  • the protrusion When performing instantaneous elasticity testing, the protrusion needs to be placed in the rib gap.
  • the ultrasonic transducer 20 is a multi-element ultrasonic transducer
  • the section corresponding to the imaging surface of the ultrasonic transducer 20 needs to be placed parallel to the rib gap (avoiding Ribs (because they hinder ultrasound gray-scale imaging) to achieve better ultrasound gray-scale imaging.
  • Ribs because they hinder ultrasound gray-scale imaging
  • the elasticity detection device is also provided with a pressure detection device (not shown).
  • the pressure detection device may be a pressure sensor, and the pressure sensor may be a contact pressure sensor, or a pressure detection device. Can be a screw-on pressure sensor.
  • the pressure detection device is used to detect the pressing force between the vibrating component 11 and the tissue or target to be detected.
  • a pressure sensor (not shown in the figure) may be disposed between the vibration component 11 and the first driving part, and the pressure sensor may sense the pressure between the upper end surface of the protrusion and the tissue or target to be detected. The operator can further determine whether to turn on the shear wave excitation of instantaneous elastography based on the pressure, thereby improving the repeatability and quality of elasticity testing.
  • the detection system based on the composite probe of this elastic detection device detects patients, it has two imaging modes, one is the conventional B-mode ultrasound imaging mode (ultrasound grayscale imaging mode), and the other is the instantaneous elastography detection mode.
  • the conventional B-mode ultrasound imaging mode ultrasound grayscale imaging mode
  • the instantaneous elastography detection mode first, place the vibrating component 11 of the composite probe in the gap between the two ribs close to the liver. The initial position of the composite probe is roughly perpendicular to the upper end surface of the skin. Ultrasound is added to the place where the vibrating component 11 contacts the ribs and the surrounding location.
  • Coupling agent is used to make the upper end surface of the vibrating component 11 fully contact the skin of the upper end surface of the ribs, and the first array of the ultrasonic transducer 20 is used to perform ultrasonic grayscale imaging, specifically B-mode ultrasonic imaging.
  • B-mode ultrasound imaging it can be observed whether the imaging area contains large blood vessels, biliary tracts or local lesions. Through observation, these imaging areas can be avoided, and then the image guidance function can be realized.
  • the driver After determining the position where the instantaneous elastography detection is to be performed, the driver drives the imaging component 12 or the vibration component 11 to move to further form a vibration protrusion, and then switches to the instantaneous elastography detection mode.
  • the size of the vibrating protrusion is switched or adjusted according to different targets to be detected. Considering the differences in rib gaps and fat content of different types of patients to be detected, larger sizes are usually set when detecting obese patients. Protrusions to ensure that the generated shear waves can propagate to the area to be detected; when testing children, a relatively small size of the protrusions is usually used to generate a shear wave field suitable for instantaneous elastic detection.
  • a pressing force is applied to the vibration protrusion to increase the pressing force between the vibration protrusion and the target to be detected, because only when a certain pressing force is applied, the vibration can be Only the vibration of the protrusion can excite shear waves suitable for instantaneous elastography detection.
  • the pressing force can be detected by a pressure sensor provided in the elastic detection handle housing 40 or fed back to the operator. Determine the pressure value between the vibration protrusion and the target to be detected. If the set value condition is met, the vibration protrusion will vibrate on the surface of the target to be detected; if the set value is not met, the vibration protrusion will be adjusted.
  • the vibration protruding part vibrates on the surface of the target to be detected.
  • Ultrasonic Gray Scale Ultrasonic Gray Scale Before, during, or after the vibrating component vibrates, the second array of the ultrasonic transducer is turned on to detect and track the excited shear waves.
  • the ultrasonic echo signal is analyzed to extract structural information and characteristic information of the target to be detected.
  • the characteristic information includes at least one of shear wave velocity, liver fat content, and viscoelasticity of the target to be detected. And the analyzed structural information and related feature information are displayed.
  • the operating frequency of the second array in the ultrasonic transducer 20 can be switched to different operating frequencies according to different detection objects.
  • test objects can be divided into children, adults, and obese patients.
  • shear waves have different attenuation in different fat content targets
  • low-frequency ultrasonic signals are used for detection to improve the shear wave signal-to-noise ratio.
  • relatively high-frequency ultrasonic signals can be used to detect shear waves.
  • Step 1 The upper end surface of the vibration component and the upper end surface of the imaging component form an imaging surface, place the imaging surface on the target surface to be detected, and use the first array of the ultrasonic transducer to perform B-mode based on the imaging surface For ultrasonic imaging, enter the ultrasonic gray-scale imaging mode to realize the image guidance function; according to the image guidance function, determine the instantaneous elastography detection position of the target to be detected.
  • Step 2 Form a convex part by driving the imaging component or vibration component to move.
  • Step 4 Use the second array of the ultrasonic transducer to track and detect the shear wave to obtain an ultrasonic echo signal
  • Step 6 Display the structural information and feature information so that the user can intuitively obtain the detection results.
  • the movable sound-transmitting structure 10 forms a convex surface, a plane or an approximate plane that is helpful for ultrasonic gray-scale imaging; when instantaneous elasticity imaging is required, the movable sound-transmitting structure 10 is driven.
  • the transparent structure 10 deforms to form an obvious convex portion, which is conducive to instantaneous elastic imaging detection, can not only perform good ultrasonic grayscale imaging, but also ensure the detection quality of instantaneous elastic imaging.
  • the above-mentioned elasticity detection method after forming the protrusion, determines the pressure value between the upper end surface of the protrusion and the target to be detected. If the set value condition is met, the protrusion is on the surface of the target to be detected. Vibration; if the set value is not met, adjust the pressing force between the protruding part and the target to be detected so that the pressure value meets the set value condition, and then the protruding part vibrates on the surface of the target to be detected.
  • the invention also provides an elasticity detection system, which includes an elasticity detection device as mentioned above, a signal processing device, a control device, and a display device;
  • the signal processing device is connected to the control device and is used to process the received Ultrasonic signals are used to obtain structural information and characteristic information of the tissue to be detected;
  • the control device is used to control the ultrasonic transducer of the elastic detection device to send and receive signals, and to control the movement of the vibration component and the imaging component to form the The convex part or the imaging surface; and the vibration of the convex part after forming the convex part is used for instantaneous elastic imaging detection;
  • the display device is used to display the structural information and characteristic information.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Vascular Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种弹性检测装置、方法及系统,弹性检测装置包括声透结构(10)和超声换能器(20);超声换能器(20)用于发射和接收超声信号,声透结构(10)至少部分设置在超声换能器(20)前端,声透结构(10)至少设置在超声换能器(20)成像面内的部分具有声透特性;声透结构(10)包括振动部件(11)和成像部件(12),振动部件(11)和成像部件(12)至少之一可活动,声透结构(10)形成凸起部后用于进行瞬时弹性成像检测;成像部件(12)上端面构成成像面的至少一部分,成像面用于超声灰阶成像。

Description

一种弹性检测装置、方法及系统 技术领域
发明涉及医疗器械技术领域,特别涉及一种弹性检测装置及其检测方法。
背景技术
瞬时弹性成像技术原理主要通过测量低频剪切波在肝组织纤维中的传播速度来判断肝脏的硬度,从而评估出肝脏纤维化的程度。瞬时弹性成像中的剪切波是利用探头本身机械振动,作用于检测目标表面,在检测目标内部激励出剪切波,对探头正下方沿中心轴区域剪切波的传播进行跟踪和检测。有研究表明,当用于激励剪切波的探头尺寸变大时,激励出的剪切波会存在一定程度的衍射现象,利用该剪切波进行弹性检测,得出的剪切波速度会偏离真实值,导致检测结果存在偏差或是错误。因此,常规的瞬时弹性成像中,为了确保弹性检测结果准确性,选定的通常都是单阵元超声换能器,继而导致缺少超声灰阶成像功能。因此,常规的瞬时弹性成像存在图像引导和弹性检测无法兼得的问题。
发明内容
本发明的目的是提供一种弹性检测装置及其检测方法,以解决现有的瞬时弹性成像存在图像引导和弹性检测无法兼得的问题。
本发明提供了一种弹性检测装置,包括声透结构和超声换能器;
所述超声换能器用于发射和接收超声信号;
所述声透结构至少部分设置在所述超声换能器前端;
所述声透结构至少设置在所述超声换能器成像面内的部分具有声透特性;
所述声透结构包括振动部件和成像部件,所述振动部件和所述成像部件至少之一可活动,所述声透结构形成凸起部后用于进行瞬时弹性成像检测;
所述成像部件上端面构成成像面的至少一部分,所述成像面用于超声灰阶成像。
上述弹性检测装置,在其中一个实施例中,当进行超声灰阶成像时,可活动的声透结构上端面形成一个有助于超声灰阶成像的凸面、平面或近似平面;当需要进行瞬时弹性成像时,驱动可活动的声透结构进行变形,形成一个明显的凸起部,该凸起部有利于进行瞬时弹性成像检测,即既可以进行很好的超声灰阶成像,又可以确保瞬时弹性成像的检测质量。
进一步地,所述凸起部的驱动方式为自动驱动或手动驱动。
进一步地,还包括驱动装置,所述驱动装置与所述振动部件或/及所述成像部件连接,在形成所述凸起部后,所述振动部件在所述驱动装置的作用下振动用于产生剪切波。
进一步地,还包括压力传感器,所述压力传感器用于检测所述凸起部上端面与所述待检测目标之间的压力。
进一步地,所述驱动装置驱动所述振动部件、所述成像部件中的至少一个形成所述凸起部。
进一步地,所述驱动装置包括第一驱动器和第二驱动器,所述第一驱动器驱动所述振动部件或/及所述第二驱动器驱动所述成像部件形成凸起部。
进一步地,所述第一驱动器通过驱动杆驱动所述振动部件,或/及所述第二驱动器通过驱动杆驱动所述成像部件形成凸起部。
进一步地,所述振动部件附着于所述超声换能器检测面上。
进一步地,所述振动部件和所述成像部件滑动贴合连接。
进一步地,所述振动部件和所述成像部件之间设有弹性声透密封件。
进一步地,还包括第一弹性膜,所述第一弹性膜构成成像面的一部分。
进一步地,所述振动部件上端被所述第一弹性膜覆盖,或者,所述第一弹性膜位于所述振动部件上端面四周。
进一步地,所述第一弹性膜远离所述振动部件上端面的一端与所述成像部件上端面相连。
进一步地,所述成像部件由第三弹性膜及支撑所述第三弹性膜的周边结构构成,所述第三弹性膜的上端面构成所述成像面。
进一步地,还包括连接件,所述连接件至少位于所述超声换能器的超声传播通道上部分为可变形的声透材质;所述连接件至少部分位于所述振动部件与所述超声换能器之间,或者所述振动部件位于所述连接件内部。
进一步地,所述瞬时弹性成像过程中,所述振动部件单独振动,或者与所述超声换能器同步振动。
进一步地,所述振动部件的上端面和所述成像部件的上端面构成所述成像面。
进一步地,所述连接件内含有声透介质。
进一步地,所述声透介质为声透液体。
进一步地,所述超声换能器包括第一阵列及第二阵列,所述第一阵列是所述超声换能器的全部阵元。所述第二阵列为第一阵列的一部分,所述第二阵列正对于所述振动部件的下端面。
进一步地,所述成像部件一体成型。
进一步地,还包括弹性检测手柄外壳,所述弹性检测手柄外壳与所述成像部件之间设有弹性介质,或者,所述弹性检测手柄外壳与所述成像部件直接固定。
进一步地,所述凸起部的上端面宽度方向上的两外延切面分别与所述凸起部中心轴之间的夹角为0-60度。
进一步地,所述凸起部的上端面的宽度为5-15mm。
进一步地,所述凸起部为柱状或台状。
进一步地,所述凸起部的上端面的长度小于两倍所述凸起部的上端面的宽度。
进一步地,所述成像面为凸面、平面或近似平面。
进一步地,所述凸起部的高度至少为0.5mm。
进一步地,所述凸起部的高度为1mm-20mm。
进一步地,所述超声换能器的阵元的阵列方向与所述成像面的长度方向相对应设置。
进一步地,所述振动部件为多个套件嵌套而成。
进一步地,所述振动部件上端为圆柱,所述套件为圆环状。
本发明还提供了一种弹性检测方法,应用于如上述中任一项所述弹性检测装置,包括:
第一步:所述振动部件的上端面和所述成像部件的上端面形成成像面,将成像面置于待检测目标表面,基于成像面利用所述超声换能器的第一阵列进行B型超声成像,进入超声灰阶成像模式,实现图像引导功能;依据图像引导功能,确定待检测目标瞬时弹性成像检测位置。
第二步:通过驱动成像部件或是振动部件活动,形成凸起部。
第三步:所述凸起部在待检测目标表面振动,在待检测目标内部激励出剪切波;
第四步:利用所述超声换能器的第二阵列对所述剪切波进行跟踪和检测,获得超声回波信号;
第五步:对所述超声回波信号进行分析,提取出待检测目标的结构信息、特征信息,所述特征信息包括剪切波速度、肝脏脂肪含量、待检测目标粘弹性中的至少一种;
第六步:对所述结构信息、特征信息进行显示。
进一步地,所述第二步还包括,根据待检测目标调节凸起部上端面的尺寸。
进一步地,所述利用所述超声换能器的第二阵列对所述剪切波进行跟踪和检测的开启时刻,在振动部件在待检测目标表面振动之前、之中、或是之后。
进一步地,所述超声换能器的第二阵列的工作频率与所述凸起部的不同尺寸分别一一对应。
进一步地,所述形成凸起部后,判断凸起部上端面与待检测目标之间压力值,如满足设定值条件凸起部在待检测目标表面振动;如不满足设定值,则调整所述凸起部与待检测目标之间按压力度使所述压力值满足设定值条件后,所述凸起部在待检测目标表面振动。
进一步地,所述确定待检测目标瞬时弹性成像检测位置后,关闭超声灰阶成像功能。
进一步地,还包括第七步,使用超声换能器的第一阵列重新进入超声灰阶成像模式。
进一步地,使用超声换能器的第一阵列重新进入超声灰阶成像模式前,还包括,振动部件的上端面和所述成像部件的上端面重新形成成像面。
进一步地,振动部件的上端面和所述成像部件的上端面重新形成成像面,通过驱动成像部件或是振动部件活动实现。
本发明还提供了一种弹性检测系统,包括前述弹性检测装置,还包括信号处理装置、控制装置、显示装置;
所述信号处理装置与所述控制装置连接,用于处理接收到的超声波信号,获取待检测组织的结构信息和特征信息;
控制装置用于控制所述弹性检测装置的所述超声换能器收发信号,以及控制所述振动部件、所述成像部件的运动形成所述凸起部或成像面;以及形成所述凸起部后凸起部的振动,进行瞬时弹性成像检测;
所述显示装置,用于显示所述结构信息和特征信息。
附图说明
图1为本发明第一实施例中的弹性检测装置第一状态下的立体结构示意图;
图2为图1中的弹性检测装置的剖面结构示意图;
图3为图1中的弹性检测装置第二状态下的立体结构示意图;
图4A为本发明第二实施例中的弹性检测装置第一状态下的剖面结构示意图;
图4B为图4A中的弹性检测装置的立体结构示意图;
图5A为本发明第三实施例中的弹性检测装置第二状态下的剖面结构示意图;
图5B为图5A中的弹性检测装置的立体结构示意图;
图5C为本发明第四实施例中的弹性检测装置第二状态下的立体结构示意图;
图5D为图5C中添加第一驱动杆后的弹性检测装置的局部放大图。
图6A为本发明第五实施例中的弹性检测装置第一状态下的剖面结构示意图;
图6B为本发明第六实施例中的弹性检测装置第一状态下的剖面结构示意图;
图6C为本发明第七实施例中的弹性检测装置第一状态下的剖面结构示意图;
图7A为本发明第八实施例中的弹性检测装置第一状态下的剖面结构示意图;
图7B为本发明第九实施例中的弹性检测装置第一状态下的剖面结构示意图;
图7C为本发明第十实施例中的弹性检测装置第一状态下的剖面结构示意图;
图7D为本发明第十一实施例中的弹性检测装置第一状态下的剖面结构示意图;
图8A为本发明第十二实施例中的弹性检测装置第一状态下的立体结构示意图;
图8B为图8A中的弹性检测装置第一状态下的剖面结构示意图;
图9A为本发明第十三实施例中的弹性检测装置第一状态下的剖面结构示意图;
图9B为本发明图9A中的弹性检测装置第二状态下的剖面结构示意图;
图10A为本发明第十三实施例中的弹性检测装置第一状态下的剖面结构示意图;
图10B为本发明图10A中的弹性检测装置第二状态下的剖面结构示意图;
图11为为本发明第十四实施例中的弹性检测装置第二状态下的立体结构示意图;
图12为本发明提供的弹性检测方法的流程图。
主要元件符号说明:
声透结构 10 安装板 21 驱动装置 80
振动部件 11 弹性介质 30 第一驱动器 81
成像部件 12 弹性检测手柄外壳 40 第二驱动器 82
第二弹性膜 13 连接件 50 第一驱动杆 83
第一弹性膜 14 第一密封胶圈 60 第二驱动杆 84
超声换能器 20 固定部 70 凸起部 15
可活动成像板 121 成像部件上端面 122 成像部件周边结构 123
第二密封胶圈 90 倒圆角结构 100 第三弹性膜 16
如下具体实施方式将结合上述附图进一步说明发明。
实施方式
为了便于理解发明,下面将参照相关附图对发明进行更全面的描述。附图中给出了发明的若干个实施例。但是,发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对发明的公开内容更加透彻全面。
需要说明的是,当元件被称为“固设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于发明的技术领域的技术人员通常理解的含义相同。本文中在发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1至图3,本发明提供第一实施例提供了一种弹性检测装置,包括声透结构10和超声换能器20;
所述超声换能器20用于发射和接收超声信号;
所述声透结构10部分设置在所述超声换能器20前端;在其他实施例中,声透结构10的全部设置在所述超声换能器20前端;
所述声透结构10包括振动部件11和成像部件12,所述振动部件11和所述成像部件12至少之一可活动,所述声透结构形成凸起部后用于进行瞬时弹性成像检测。
上述弹性检测装置,当进行超声灰阶成像时,可活动的声透结构10的上端面形成一个有助于超声灰阶成像(可以是二维超声灰阶成像、也可以是三维超声灰阶成像)的平面(即成像面),在其他实施例中,该成像面也可以为近似平面,或是凸面,优选地,该凸面的曲率与超声换能器20的检测面(即超声换能器20的上端面)曲率一致;当需要进行瞬时弹性成像时,驱动可活动的声透结构10进行变形,形成一个明显的凸起部15,凸起部15的高度为h,利用该凸起部15而非成像面在待检测目标表面进行振动,可以产生更有利于进行瞬时弹性检测所需要的剪切波场,从而进行有效瞬时弹性成像检测(因为利用该凸起部15振动,相较于成像面整体振动,减小了振动的面积,从而可以有效地避免或减小剪切波场衍射现象,并且,由于先形成明显的凸起部15后进行振动,而非振动部件11在形成凸起部之前的位置处进行直接振动,可避免或减少两侧成像部件12直接接触待检测目标产生不利于瞬时弹性检测的剪切波场)。即上述弹性检测装置,既可以通过成像面进行很好的超声灰阶成像(即超声灰阶成像),又可以通过形成凸起部15确保瞬时弹性成像的检测质量。
请再参阅图1至图3,本发明一个实施例提供的一种弹性检测装置,在本实施例中,成像部件12和振动部件11之间可以是滑动贴合连接;设置在超声换能器20成像面内的声透结构10具有声透特性,这种特性可以让超声换能器20发出的超声信号能够穿过声透结构10,从而实现超声灰阶成像(可以是二维超声灰阶成像,或者三维超声灰阶成像)、瞬时弹性成像。所述振动部件11的上端面与两侧的成像部件12上端面无落差连接时,共同形成成像面,即所述成像部件12构成了成像面的至少一部分。具体的,振动部件11上端面为平面,这样设置有利于瞬时弹性成像的检测;当成像部件12的上端面为平面时,所述成像面为振动部件11上端面和成像部件12上端面共同构成的平面;当成像部件12的上端面122为曲面时,所述成像面为振动部件11上端面和成像部件12的上端面122共同构成的凸面(通常可以是类似凸阵检测面形状,如图5C所示)。
在本发明的一个实施例中,所述超声换能器20为多阵元超声换能器,多阵元超声换能器可以实现具有图像引导功能的超声灰阶成像,所述超声灰阶成像可以是二维超声灰阶成像,也可以是三维超声灰阶成像。当所述超声换能器20用于超声灰阶成像时,所述超声换能器20的阵元的阵列方向与所述成像面的长度方向相对应设置,这样的设置有助于扩大超声灰阶成像区域,更好的实现图像引导功能;所述超声换能器20发出的超声信号可以通过声透结构10构成的成像面实现超声灰阶成像,进而可以实现图像引导功能。所述振动部件11附着于所述超声换能器20检测面上,即所述振动部件11与所述超声换能器20相对固定在一起。
在本发明的一个实施例中,所述弹性检测装置还包括驱动装置80,所述驱动装置80驱动所述振动部件11、所述成像部件12中的至少一个形成所述凸起部15,凸起部15为振动部件11凸出于所述成像部件12的那部分;通过上述结构设计,可通过驱动装置80提供驱动力,还可以根据使用要求设置不同功率的驱动装置80,实现提供不同功率的驱动力。在具体实施过程中,所述驱动装置80可以包括第一驱动器81和第二驱动器82,所述第一驱动器81驱动所述振动部件11或/及所述第二驱动器驱动所述成像部件12形成凸起部15。当第一驱动器81和第二驱动器82分别驱动振动部件11和成像部件12时,即实现了振动部件11和成像部件12的分别被驱动。所述驱动装置80与所述振动部件11或/及所述成像部件12连接,在形成所述凸起部15后,所述振动部件11在所述驱动装置80(更具体地,可为第一驱动器81)的驱动作用下,在待检测目标表面振动并在在待检测目标内产生剪切波。在凸起部15振动过程中,成像部件12可以静止不动或者与凸起部15同步振动。
在本发明的一个实施例中,所述振动部件11附着于所述超声换能器20检测面上,即所述振动部件11与所述超声换能器20相对固定在一起的情况下,第一驱动器81可以通过第一驱动杆83与超声换能器20固定连接,在第一驱动器81的作用下,所述超声换能器20与所述振动部件11同步运动或是振动,所述超声换能器20与所述振动部件11同步运动形成凸起部15,所述超声换能器20与所述振动部件11同步振动产生剪切波。第二驱动器82也可以通过第二驱动杆84与所述成像部件12连接,在第二驱动器82作用下,所述成像部件12可以沿着所述振动部件11的侧面贴合滑动。当第二驱动器82驱动成像部件12,使得成像部件12沿着振动部件11的两侧向下运动时,所述振动部件11的上端面将会高于成像部件12的上端面,且两上端面的高度差(即凸起部15的高度h)至少达到0.5mm(如图3所示)。优选地,凸起部的高度为1mm-20mm。更优选地,凸起部的高度为5mm-10mm,在这样的高度范围内,既形成了比较明显的凸起部,有助于瞬时弹性成像。此时,振动部件11相对于两侧成像部件12突出的部分形成凸起部15。在形成凸起部15之后,所述第一驱动器81通过第一驱动杆83驱动所述超声换能器20和振动部件11进行瞬时振动,实现让所述振动部件11在待检测目标表面进行振动,并在其内部产生剪切波,最终,利用该剪切波实现弹性检测。在振动部件11振动产生剪切波时,所述成像部件12可以跟随凸起部15同步振动,也可以不同步振动。
需要理解的是,所述凸起部的形成过程也可以是通过第一驱动器81驱动超声换能器20和振动部件11向上运动形成;也可以是所述振动部件11和所述成像部件12同时运动形成凸起部(即通过相对运动实现:比如,振动部件11向上运动,同时,成像部件12向下运动)。
具体的,在本实施例中,成像部件12通过弹性介质30与弹性检测手柄外壳40之间连接,该弹性介质30可以保持成像部件12在第二驱动器82运动时,依然可以保持其与弹性检测手柄外壳40之间的密封连接。
另外,在本发明一个实施例中,振动部件11的形状为上端收窄,通常要小于超声换能器20上端面的长度尺寸,收窄尺寸是为了使得凸起部15的上端面尺寸较小,使用该凸起部15的振动产生的剪切波场,更有利于进行瞬时弹性成像检测。所述振动部件11的上端面为圆角四边形,在其他实施例中,也可以是圆形,椭圆形;可以理解地,为了增加在检测过程中带检测目标的舒适度,振动部件11的上端面边沿可以做倒圆角处理,例如图5D所示的倒圆角结构100。
在图1-图3等实施例中,振动部件11和成像部件12均为不可形变结构。
请参阅图4A、图4B、图5A和图5B,本发明第二实施例提供的弹性检测装置,所述第二实施例与所述第一实施例的区别在于,所述振动部件11并没有直接附着于所述超声换能器20检测面上;所述超声换能器20不再需要和所述振动部件11一起同步振动产生剪切波,而是可选择性的固定在弹性检测手柄外壳40上。在图4B所示的实施例中,第一弹性膜14远离所述振动部件11上端面的一端与所述成像部件12上端面相连。
图5C实施例中的弹性检测装置,与图5B实施例中的弹性检测装置的区别在于:在形成成像面时,图5C中振动部件11上端面与成像部件12上端面整体呈凸面,而图5B中则呈平面。
具体地,振动部件11设置于超声换能器20前端,所述振动部件11并没有直接与超声换能器20的检测面连接,它们之间设置了连接件50。所述连接件50为腔体,该腔体内置声透介质,该声透介质可以是声透液体,例如水,甘油等超声信号可以传播的介质,该腔体的外上端面至少围合成像部件12周边结构与超声换能器20的检测面的部分由第二弹性膜13构成,第二弹性膜13至少位于超声换能器20的超声传播通道上(即超声换能器20的超声灰阶成像面)的部分具有声透特性。所述振动部件11的上端面与所述成像部件12的上端面之间的连接可以通过第一弹性膜14连接,所述第一弹性膜14位于所述振动部件上端面四周。振动部件11的上端面、成像部件12的上端面以及设置在振动部件11与成像部件12之间的第一弹性膜14共同构成成像面(如图5A所示)。第一弹性膜14具有声透、可伸缩特性,该特性可以让振动部件11向上运动或是振动的同时保持其与成像部件12之间的连接。本实施例中,所述第二弹性膜13、成像部件12的上端面及其周边结构、及第二弹性膜13共同构成了连接件50的外围。即成像部件12直接构成连接件50外围的一部分。通过连接件50,将成像部件12、振动部件11与超声换能器20检测面连接起来。连接件50的作用:在形成成像面时(振动部件11上端面与成像部件12上端面呈平面或是凸面,如图5C所示),超声换能器20发出的超声信号能够借助连接件顺利传播至待检测目标内部,实现超声灰阶成像;在形成凸起部15之后,驱动装置(可以是第一驱动器81)驱动振动部件11在待检测目标表面振动之前、之中或是之后,超声换能器20发出的超声信号能够借助于连接件顺利传播至待检测目标,以实现对振动部件11(也可以说是凸起部15)振动所产生的剪切波进行跟踪和检测。
可以理解的,在形成凸起部15之后,振动部件11(也可以说是凸起部15)单独振动,借助于连接件50至少位于所述超声换能器20的超声传播通道上的那部分的声透可变形弹性特性,实现振动部件11与超声换能器20之间的连接,确保超声换能器20发出的超声信号通过连接件50顺利传播。
在本发明的一个实施例中,所述成像部件12可以是上端面结构及周边结构(侧面)一体式结构设计,即成像部件12一体成型。所述成像部件12周边结构下端与所述弹性检测手柄外壳40保持密封连接。在本发明的一个实施例中,成像部件12周边结构(外侧)与所述弹性检测手柄外壳40连接方式可以是通过弹性介质30连接,该弹性介质30的一端与弹性检测手柄外壳40固定连接,另一端与所述成像部件12的周边结构连接,弹性介质30与成像部件12连接的一端会随着成像部件12的运动而运动。通过设置弹性介质30,可以确保所述成像部件12运动时,依然保持其与弹性检测手柄外壳40之间的密封连接。可以理解的,在其他实施例中,所述成像部件12与弹性检测手柄外壳40之间的连接也可以通过胶圈(图未示出)滑动密封连接。在另一些实施例中,当所述成像部件12不需要活动时,所述成像部件12与弹性检测手柄外壳40之间可以进行固定密封连接。
在本发明的一个实施例中,第一驱动器81通过第一驱动杆83与振动部件11连接,第一驱动器81通过第一驱动杆83驱动振动部件11向上运动形成凸起部15,或者驱动振动部件11向下运动,从而使得振动部件11的上端面构成成像面的一部分;及,形成凸起部15之后,振动部件11与待检测目标表面接触并在待检测目标表面进行振动产生剪切波。所述振动部件11至少部分设置于连接件50外部上端面,所述第一驱动杆83包括第四驱动杆、第五驱动杆,第四驱动杆、第五驱动杆分别设置在所述振动部件11上端的前后两侧(对应于超声换能器20的宽度方向的两侧),第四驱动杆、第五驱动杆的上端与振动部件11连接,下端与第一驱动器81连接,第四驱动杆、第五驱动杆对称设置在振动部件11宽度方向两侧面的上端(如图5D示其中一侧的驱动杆,另一侧的驱动杆未示出)。该连接处即处于振动部件11上端面以下,又不在第一弹性膜14所包围形成的连接件50内部。因此该处位置进行固定连接,既不会对振动部件11形成的凸起部15造成影响,又可以让第一驱动杆83不进入连接件内部(减少了结构复杂程度)。进一步,所述第一驱动杆83从固定位置沿着超声换能器20宽度方向两侧向下顺延与第一驱动器81进行固定连接。具体地,在成像部件12的周边结构与所述两个驱动杆(第四驱动杆、第五驱动杆)位置对应处内壁分别开设有孔洞,所述孔洞用于容置驱动杆。所述孔洞要有足够的预留空间,以确保驱动杆上下活动自由。这样的设置可以避免第一驱动杆83进入连接件50内部,进而降低工程实现难度。所述第一驱动杆83的上端与振动部件11上端的前后两侧固定连接,所述第一驱动杆83的下端与第一驱动器81连接。所述第一驱动器81通过第一驱动杆83实现对振动部件11的驱动控制。第二驱动器82通过第二驱动杆84实现对成像部件12的驱动控制。凸起部15的形成过程可以是由第一驱动器81单独驱动振动部件11向上运动形成,也可以是第二驱动器82单独驱动成像部件12向下运动形成,亦或是所述第一驱动器81驱动振动部件11向上运动的同时,第二驱动器82驱动成像部件12向下运动共同形成。当所述凸起部15形成时,所述振动部件11上端面与成像部件12上端面的高度差(即凸起部)至少0.5mm。优选地,凸起部的高度为1mm-20mm。更优选地,凸起部的高度为5mm-10mm,在这样的高度范围内,既形成了比较明显的凸起部,有助于瞬时弹性成像。在形成凸起部15之后,第一驱动器81可以驱动振动部件11在待检测目标表面进行振动而产生剪切波,最终实现瞬时弹性成像。
需要说明的是,本实施例中,由于连接件50的存在,在所述振动部件11形成凸起部后、在待检测目标表面振动之前、之中或是之后,所述超声换能器20可以在相对静止(相对于弹性检测手柄外壳40静止)的情况下实现对剪切波的检测和跟踪。具体地,所述振动部件11在待检测目标表面振动时,其与所述超声换能器20的检测面之间的距离会发生改变,借助于连接件50的声透可变形弹性特性,实现即使振动部件与超声换能器20之间距离改变,可依然保持它们之间的连接,确保超声换能器20发出的超声信号通过连接件50顺利传播至待检测目标内部,以实现对剪切波传播进行跟踪和检测。所述超声换能器20可以选择性的通过安装板21固定于弹性检测手柄外壳40上。可以理解的,当超声换能器与弹性检测手柄外壳40固定一起时,提高了瞬时弹性成像检测准确性,也可以实现包含浅层深度位置(2cm以内)的瞬时弹性检测,这是因为,如果所述超声换能器20不是固定的,而是可以参与振动产生剪切波,那么所述超声换能器20要么振动的同时进行检测,要么振动停止后进行检测;当超声换能器20一边振动一边检测时,需要对后续采集的超声信号做运动补偿处理,所述运动补偿处理是通过算法去除掉超声换能器本身振动对采集的超声信号的影响;当超声换能器20振动完再进行检测时,振动产生的剪切波已经传播至组织内部一定的深度,因此无法实现对浅层组织的瞬时弹性成像检测。可以理解地,所述成像部件12及振动部件11至少位于所述超声换能器20检测面前端的部分具有声透特性(即超声信号可以通过其进行传播)。因为只有处于超声换能器20成像面(超声信号传播区域)内为声透材质,才可以进行超声灰阶成像或是瞬时弹性成像。
在本发明的其他实施例中,所述振动部件11全部设置于连接件50内部,此时,与振动部件11相连接的第一驱动杆83至少部分需要设置在连接件50内部,以实现对振动部件11的连接。具体的,所述第一驱动杆83可以通过穿过第二弹性膜13以实现对振动部件11的连接,第一驱动杆83与第二弹性膜13的交接连接部分为密封连接。
可以理解的,该弹性检测装置中也可以省去第二驱动器82,即在凸起部15、成像面的形成过程、超声灰阶成像过程及振动部件振动产生剪切波的过程中,所述成像部件12均保持静止。具体地,凸起部、成像面的形成过程、超声灰阶成像过程及振动产生剪切波的过程均是第一驱动器81驱动振动部件11进行运动或是振动形成。在这种情况下,所述成像部件12与所述弹性检测手柄外壳40之间的连接可以是固定密封连接,或是将所述成像部件12与弹性检测手柄外壳40一体式设计。
可以理解的,在其他实施例中,所述成像部件12不是直接构成连接件50外围的一部分,而是附着在连接件50外围结构上。具体地,连接件50的外围结构是第二弹性膜13,成像部件12的上端面及周边结构附着在第二弹性膜13的外侧。
请参阅图6A,在本发明的一个实施例中,振动部件11下端面直接附着在所述超声换能器20检测面上,所述振动部件11与所述超声换能器20固定连接,形成同一个整体。所述第一弹性膜14至少部分位于所述振动部件11上端。振动部件11与成像部件12之间通过第一弹性膜14连接。第一弹性膜14覆盖在振动部件11的上端面上,让所述振动部件11全部位于所述连接件50的内部。振动部件11的上端面与第一弹性膜14之间贴合黏粘连接。第一弹性膜14的边缘部分与成像部件12密封连接。所述的贴合黏粘连接及密封连接均具有声透特性,以确保超声换能器发出的超声信号可以顺利传播出去。成像部件12上端面与第一弹性膜14共同构成成像面。所述第一弹性膜14具有声透伸缩可变形特性。第一弹性膜14一方面可以允许所述振动部件11向上运动,让振动部件11上端面高于成像部件12上端面形成凸起部的同时,保持振动部件11与成像部件12之间的密封连接,另一方面,第一弹性膜14构成连接件50的外围一部分。
在具体实施过程中,第一驱动器81通过第一驱动杆83作用于所述超声换能器20和振动部件11一起运动或是振动。当振动部件11的上端面与所述成像部件12的上端面处于同一平面或是近似平面时,二者上端面共同构成成像面,基于成像面,利用多阵元超声换能器可以较好实现具有图像引导功能的超声超声灰阶成像。形成凸起部的过程可以有三种形式,第一种,第一驱动器81通过第一驱动杆83作用于超声换能器20和振动部件11向上运动,让所述振动部件11的上端面高出成像部件12的上端面至少0.5mm。优选地,凸起部的高度为1mm-20mm。更优选地,凸起部的高度为5mm-10mm,在这样的高度范围内,既形成了比较明显的凸起部,有助于瞬时弹性成像。第二种,所述超声换能器20和振动部件11保持静止,相对的让成像部件12在第二驱动器82的作用下向下运动,让成像部件12的上端面与振动部件11的上端面距离落差达到至少0.5mm。第三种,所述振动部件11向上运动和成像部件12同时向下运动以形成凸起部。在形成凸起部之后,在第一驱动器81的作用下,所述振动部件在待检测目标表面振动产生剪切波。利用凸起部振动产生剪切波的过程有两种形式:第一种,所述第一驱动器81驱动振动部件11形成的凸起部在待检测目标表面瞬时振动产生剪切波,所述凸起部振动的同时,所述成像部件12保持静止;第二种,在其他实施例中,所述成像部件12也可以保持同步振动。所述成像部件12的周边结构与弹性检测手柄外壳40的连接方式有三种:第一种,如本实施例中,通过弹性介质30连接,所述弹性介质30具有伸缩可变形特性,其一端与弹性检测手柄外壳40连接,另一端与成像部件12周边结构连接。与成像部件12周边结构连接的一端会随着成像部件12周边结构的运动而运动;第二种,在其他实施例中,所述成像部件12的周边结构与弹性检测手柄外壳40滑动密封连接,具体地,可以通过在它们之间设定第二密封胶圈90(见图6C),利用挤压密封原理实现滑动密封连接;第三种,可以理解的,当所述成像部件12及周边结构全程不参与凸起部的形成过程及凸起部振动产生剪切波的过程时,所述成像部件12及周边结构可以保持相对静止,因此,可以将所述成像部件12周边结构与弹性检测手柄外壳40进行固定密封连接,亦或是将它们一体式结构设计。当将成像部件12与弹性检测手柄外壳40固定连接时,弹性检测装置中也可以省去第二驱动器82。
请参阅图6B,与图6A的区别在于,振动部件11的上端面并没有和第一弹性膜14(图中标出)黏粘贴合,或者说,两者不接触设计,即两者具有一定间距。这样设计避免了黏粘贴合对第一弹性膜14造成的老化,提高了第一弹性膜14的使用寿命。
请参阅图7A,图7B、图7C、图7D,在本发明的一个实施例中,振动部件11与成像部件12之间是可活动密封连接。在振动部件11与超声换能器20之间设置有连接件50。具体地,请参阅图7B,超声换能器20为多阵元超声换能器,优选的,超声换能器20为凸阵超声换能器。在图7B中,成像部件12下端面的一部分直接附着在超声换能器20的检测面上,连接件50的下端面附着在超声换能器20的检测面上,连接件50的上端面贴合粘粘于振动部件11的下端面;而图7A中,成像部件12下端面的全部附着在超声换能器20的检测面上,连接件50位于振动部件11与成像部件20之间;结合图7A、7B可知,成像部件12下端面至少一部分直接附着在超声换能器20的检测面上,成像部件12通过其周边结构与弹性检测手柄外壳40固定密封连接,振动部件11设置在成像部件12中间,振动部件11与成像部件12之间贴合滑动连接。振动部件11的上端面和成像部件12的上端面共同构成成像面。在振动部件11的下端与超声换能器20的检测面之间设置连接件50,连接件50具有声透可变形弹性伸缩特性,具体地,连接件50可以是聚丙烯酰胺凝胶的合成聚合物;或者连接件50为腔体,该腔体内置声透介质,该声透介质,可以是声透液体,例如水,甘油等超声信号可以传播的介质,该腔体的上端面由弹性膜构成,位于超声换能器20的超声传播通道上的弹性膜具有声透特性。连接件50的作用:在形成成像面时(振动部件11上端面与成像部件12上端面呈平面或是凸面),超声换能器20发出的超声信号能够借助连接件50(更具体地,为位于所述超声换能器20超声传播通道上的那部分连接件50)顺利传播至待检测目标内部,实现超声灰阶成像;在形成凸起部15之后,第一驱动器81驱动振动部件11在待检测目标表面振动之前、之中或是之后,超声换能器20发出的超声信号能够借助于连接件50(更具体地,为位于所述超声换能器20超声传播通道上的那部分连接件50)顺利传播至待检测目标,以实现对振动部件11(也可以说是凸起部15)振动所产生的剪切波进行跟踪和检测。可以理解的,在振动部件11未形成凸起部15时,所述连接件50至少部分结构位于超声换能器20成像面之外,当振动部件11远离超声换能器20形成凸起部15的过程中及形成凸起部15后,振动部件11和超声换能器20之间的空间会增大,处于超声换能器20成像面之外的连接件50的结构可以用于填充该增大的空间,以实现保持振动部件11与超声换能器20之间连接的效果。超声换能器20成像面之外的连接件50可以设置在超声换能器20的前后两侧(未示出),也可以设置在超声换能器20成像单侧(如图7C所示),也可以是成像面的左右两侧(如图7D所示)。第一驱动器81通过第一驱动杆83驱动振动部件11形成凸起部15,及,形成凸起部15之后,第一驱动器81通过第一驱动杆83驱动振动部件11在待检测目标表面振动,在待检测目标内产生剪切波。第一驱动杆83至少为一个,优选设定为两个。所述超声换能器20固定在安装板21上,所述安装板21固定于弹性检测手柄外壳40内壁上。
图7C、图7D与图7A、7B的区别在于,振动部件11与成像部件12之间增设弹性声透密封件实现振动部件11与成像部件12之间的滑动密封连接,例如可以通过第一密封胶圈60实现振动部件11与成像部件12之间的滑动密封连接。如图7C、图7D所示,成像部件12相应位置设有凹槽,胶圈或其他类型的密封件设置于所述凹槽内,在振动部件11向上运动的过程中,当连接件50中设有声透液体时,可以避免声透液体泄漏,从而实现成像部件12与振动部件11之间的滑动密封连接。图7C、图7D示出的凹槽设置在成像部件12上,可理解地,在其他实施例中,凹槽也可设置在与成像部件12相邻的振动部件11上,胶圈或其他类型的密封件设置于所述凹槽内,从而实现振动部件11与成像部件12之间的滑动密封。
图7D与图7B、图7C的区别在于,图7D中的成像部件12下方均设有连接件50,连接件50的下端附着在超声换能器20检测面上。因此,借助于连接件50的可变形伸缩特性,实施例中的成像部件12可以在第二驱动器82作用下进行向下运动,进而可以参与实现凸起部15的形成过程。
请参阅图8A和图8B,本发明另一实施例提供的弹性检测装置,具体的,在本实施例中,所述成像部件12由第三弹性膜16及支撑所述第三弹性膜的周边结构构成,所述第三弹性膜的上端面构成所述成像面,所述成像面用于超声超声灰阶成像。所述第三弹性膜16具有可伸缩变形、可声透特性,作用有三个,第一,第三弹性膜16在初始状态下呈平面,即为成像面,利用其可声透特性可进行超声灰阶成像;第二,借助于第三弹性膜16的可伸缩变形特性,可实现让振动部件11形成凸起部15以及允许振动部件11形成凸起部15之后在待检测目标表面进行振动,从而在待检测目标内部产生剪切波。具体地,振动部件11位于连接件50内部,且初始位置设置在第三弹性膜16下端(未接触),振动部件11在第一驱动器作用力下可向上运动,由于第一弹性膜具有可伸缩变形特性,在振动部件11上端面抵接第三弹性膜16之后可继续向上运动以形成凸起部15,以及形成凸起部15之后,振动部件在第一驱动器的作用下可在待检测目标表面振动以在待检测目标内部产生剪切波。第三,第三弹性膜16本身构成连接件50的外围结构的一部分。
在本发明的一个实施例中,所述振动部件11全部设置于连接件50内部,此时,与振动部件11相连接的第一驱动杆83至少部分需要设置在连接件50内部,以实现对振动部件11的连接。具体的,所述第一驱动杆83可以通过穿过第二弹性膜13以实现对振动部件11的连接,第一驱动杆83与第二弹性膜13的交接连接部分为密封连接。
在形成凸起部15之后,所述第一驱动器81通过第一驱动杆83驱动振动部件11进行瞬时振动,实现让所述振动部件11在待检测目标表面进行振动,并在其内部产生剪切波,最终,利用该剪切波实现弹性检测。在振动部件11振动产生剪切波时,所述成像部件12可以跟随凸起部15同步振动,也可以不同步振动。需要特别说明的是,振动部件11形成凸起部15的过程和振动部件11瞬时振动用于产生剪切波的过程可以是连续的,即形成凸起部15之后即刻又进行瞬时振动;也可以是分段控制的,即振动部件11形成凸起部15的过程和振动部件11进行瞬时振动的过程是相互独立(没有关联的)。
本实施例中,形成凸起部15的过程,可以是第一驱动器81通过第一驱动杆83驱动振动部件11向上运动形成凸起部。具体地,振动部件11位于连接件50内部,且振动部件11的初始位置设置在第一弹性膜14下端(未接触),振动部件11在第一驱动器作用力下可向上运动,由于第一弹性膜14具有可伸缩变形特性,在振动部件11上端面抵接第一弹性膜14之后可继续向上运动,振动部件11相对于两侧成像部件12突出的部分形成凸起部15,凸起部15的高度至少达到0.5mm。优选地,凸起部的高度为1mm-20mm。更优选地,凸起部的高度为5mm-10mm,在这样的高度范围内,既形成了比较明显的凸起部,有助于瞬时弹性成像。可以理解的,凸起部15的形成过程,也可以通过第二驱动器82作用于成像部件12向下运动形成。也可以是振动部件11和成像部件12同时运动形成凸起部(即通过相对运动实现:比如,振动部件11向上运动,同时,成像部件12向下运动)。
超声换能器20置于固定部70上,通过所述固定部70将所述超声换能器20固定于弹性检测手柄外壳40上。
请参阅图9A和图9B,在本发明的一个实施例中,通过成像部件12上端面结构向下折叠实现凸起部15的形成;具体地,图9A与图6A的区别在于,图9A中的成像部件12只有上端面(呈板面状)构成,而不再设有图6A中的成像部件12的周边结构。成像部件12与弹性检测手柄外壳40之间通过弹性介质30连接。弹性介质30具有伸缩可变形特性。弹性介质30一端与弹性检测手柄外壳40固定连接,另一端与成像部件12连接,弹性介质30与成像部件12连接的一端会随着成像部件的运动而运动。成像部件12通过第二驱动杆84与第二驱动器82相连,成像部件12在第二驱动器作用下可以向下运动,以向下折叠的方式形成凸起部(如图9B所示)。
请参阅图10A和图10B,本发明另一实施例提供的弹性检测装置,在本实施例中,两侧的成像部件12向中间运动形成凸起部。
图10A与图8B的区别在于,图8B的第三弹性膜16借助于成像部件12的周边结构支撑形成作用单独构成成像面,而图10A中第三弹性膜16不再由成像部件12的周边结构支撑,而是由振动部件11及设置在振动部件11上的可活动成像板121向外运动后形成支撑,从而第三弹性膜16被支撑处的上端面形成成像面。具体的,在振动部件11靠近上端位置的两侧对称开设两个凹槽,两个凹槽分别用于容置可活动成像板121。第一驱动器81可以驱动两个可活动成像板121沿着凹槽同时向内或向外活动。第三弹性膜16由于其本身的弹性伸缩特性,当两个可活动成像板121向内移动至凹槽内部时,形成凸起部15(如图10B所示);当两个可活动成像板121从凹槽内向外移出时,可支撑位于其上及振动部件11之上的第三弹性膜16的上端面形成成像面。第三弹性膜16覆盖在成像板121及振动部件11的整个上端面,所述第三弹性膜16边缘向下顺延与弹性检测手柄外壳40连接。
图1至图3的实施例中,凸起部15的形状是台状,图4A至10B的实施例中,凸起部15的形状是柱状,凸起部15的上端面为圆形。基于该振动部件11形成凸起部15的上端面也即振动部件11的上端面,在其他实施例中,为了能够实现让凸起部15上端面尺寸可调整,将振动部件11设置成多个套件嵌套而成。具体的,振动部件11不再是单一尺寸的一个圆柱体构成,而是由一个圆柱,及外套一个圆环共同构成。振动部件11的上端面由所述圆环上端面和圆柱上端面共同构成。在实施例中,所述圆环与圆柱之间为滑动贴合连接,所述圆环通过第三驱动杆与第三驱动器连接(图未示出),所述第三驱动器可以通过第三驱动杆驱动圆环沿着圆柱上下活动。当第三驱动器驱动圆环向下活动时,振动部件的上端面单独由圆柱的上端面(尺寸为d0)构成;当第三驱动器驱动圆环柱向上活动使得圆环的上端面与圆柱的上端面形成平面时,振动部件11的上端面由所述圆环上端面和圆柱上端面共同构成,此时,振动部件的上端面尺寸增大为d1。通过第三驱动器对圆环的驱动控制,实现对振动部件11上端面尺寸的调节,进而实现对凸起部15端面尺寸的调节。当对不同的病人进行检测时候,可以调整凸起部的尺寸,优化检测结果。通常,对小孩采用小尺寸的凸起部,对肥胖病人采用大尺寸的凸起部。
在本发明的其他实施例中,所述超声换能器20可以为多阵元(至少为两个阵元)超声换能器。具体的,每一个阵元均可以独立工作,即实现超声信号的收发。所述超声换能器20可以是相控阵超声换能器、凸阵超声换能器、线阵超声换能器、3D超声换能器或是其他类型的换能器。所述超声换能器20带宽范围是1MHz~40MHz。根据实际临床需要,可变更/切换超声换能器20的阵元的工作频率(即超声发射频率)。在本发明的一个实施例中,所述超声换能器20具有第一阵列和第二阵列;所述第一阵列用于超声超声灰阶成像,通过所述超声超声灰阶成像可以观察到待检测目标的解剖结构。所述第一阵列是所述超声换能器20的全部阵元。所述第二阵列为第一阵列的一部分,第二阵列为一个阵元或是多个阵元。优选地,第一阵列和第二阵列同中心轴设置。所述第二阵列正对于所述振动部件11的下端面。在振动部件11振动之前、之中、或之后,开启所述超声换能器20的第二阵列工作,对振动部件11振动过程剪切波产生之前、之中、或之后整个过程进行检测和跟踪。
在本发明的实施例中,所述凸起部15的形状可以为圆柱状、方形台状,也可以是其他形状如圆台状;对应的凸起部上端面的形状为圆形,或是方形,或是其他形状的如椭圆形等。在一些实施例中,利用第二驱动器82驱动所述成像部件12向下运动形成凸起部的过程中,第二驱动器82可以是自动(电子)驱动,例如音圈电机驱动;也可以手动驱动,此时,所述凸起部15在外力作用下形成。
在进行瞬时弹性检测时,需要将凸起部放置于肋骨间隙。当所述超声换能器20为多阵元超声换能器时,在使用该弹性检测装置时,需要将与所述超声换能器20成像面对应的切面平行放置于肋骨间隙(避开肋骨是因为其会阻碍超声灰阶成像),以实现更好的超声灰阶成像。我们设定凸起部15上端面与超声换能器20宽度方向对应的尺寸为凸起部上端面宽度尺寸,与超声换能器阵列方向对应的尺寸为凸起部上端面长度尺寸。考虑到肋骨间隙的大小,以及振动产生的剪切波场与振动尺寸的关系,在本发明中的实施例中,所述凸起部上端面宽度尺寸为5~15mm。进一步设定,所述凸起部的上端面的长度小于两倍所述凸起部的上端面的宽度。为了让所述凸起部能够无阻碍地顺利的放置于肋骨间隙,所述凸起部的上端面宽度方向上的两外延切面分别与所述凸起部中心轴之间的夹角α为0-60度。如图11所示。
需要说明的是,在瞬时弹性检测时,需要对待检测组织或目标施加一定的压力有助于产生所需的剪切波。但是该压力大小很难通过操作人员的感知进行控制,因此降低了瞬时弹性成像的检测重复性,继而也降低了弹性检测质量。
具体的,本发明的一个实施例中,弹性检测装置中还设置有压力检测装置(图未示出),所述压力检测装置可以是压力传感器,所述压力传感器可以是接触式压力传感器,也可以是螺接式压力传感器。所述压力检测装置用于检测振动部件11与待检测组织或目标之间的按压力度。在其中一个实施例中,压力传感器(图中未示出)可设置于振动部件11与第一驱动部之间,压力传感器可以感知凸起部上端面与待检测组织或目标之间的压力。操作者可以根据压力大小,进一步判定是否开启瞬时弹性成像的剪切波激励,从而提高了弹性检测的可重复性及其质量。
基于该弹性检测装置的复合探头的检测系统对病人检测时,有两个成像模式,一个是常规的B型超声成像模式(超声灰阶成像模式),一个是瞬时弹性成像检测模式。检测时,首先,将复合探头的振动部件11放置于与靠近肝脏位置的两个肋骨间隙,复合探头的初始位置大致垂直于皮肤上端面,在振动部件11与肋骨接触的地方及周边位置添加超声耦合剂,使得振动部件11上端面与肋骨上端面的皮肤充分接触,利用所述超声换能器20的第一阵列进行超声灰阶成像,具体的为B型超声成像。通过B型超声成像可以观察到成像区域是否含有大血管、胆道或是局部的病灶,通过观察可以避开这些成像区域,继而实现图像引导功能。
确定将要进行瞬时弹性成像检测的位置之后,通过驱动器驱动所述成像部件12或是振动部件11活动进一步形成振动凸起部,切换进入瞬时弹性成像检测模式。所述振动凸起部的尺寸根据不同的待检测目标进行切换或是调整,考虑到不同类型待检测患者肋骨间隙及脂肪含量的不同,通常对肥胖病人进行检测时,会设定较大尺寸的凸起部,以确保产生的剪切波能够传播至待检测区域;对小孩进行检测时,通常采用具有相对较小尺寸的凸起部尺寸,以产生适合瞬时弹性检测的剪切波场。
形成振动凸起部之后,对所述振动凸起部施加按压力度,增加所述振动凸起部与待检测目标之间的按压力度,因为只有施加一定按压力度的情况下,通过对所述振动凸起部振动才可以激励出适合瞬时弹性成像检测的剪切波。所述按压力度情况可以通过设置在弹性检测手柄外壳40当中的压力传感器所检测或是反馈给操作者。判断所述振动凸起部与待检测目标之间压力值,如满足设定值条件,所述振动凸起部在待检测目标表面振动;如不满足设定值,则调整所述振动凸起部与待检测目标之间按压力度使之满足设定值条件后,所述振动凸起部在待检测目标表面振动。超声灰阶超声灰阶在所述振动部件振动之前、之中、或是之后,开启所述超声换能器的第二阵列工作,对激励出的剪切波进行检测和跟踪。
对所述超声回波信号进行分析,提取出待检测目标的结构信息、特征信息,所述特征信息包括剪切波速度、肝脏脂肪含量、待检测目标粘弹性中的至少一种。并将分析出来的结构信息及相关特征信息进行显示。
最后,退出瞬时弹性成像检测模式,在驱动器作用下让振动凸起部复位形成成像面,再次进入B型超声成像模式,即重新开启图形引导功能。
需要补充说明的是,所述超声换能器20中第二阵列的工作频率可以依据不同的检测对象进行切换不同的工作频率。通常,检测对象可以分为小孩,成年人,及肥胖病人。考虑到剪切波在不同的脂肪含量目标内的衰减不同,因此,在检测肥胖病人时,为了提高对剪切波的检测深度,会采用低频超声波信号进行检测,以提高剪切波信噪比。对小孩子进行检测时,可以采用相对高频超声波信号对剪切波进行检测。
请参阅图12,本发明还提供了一种弹性检测方法,应用于如上述中任一项所述弹性检测装置,包括第一步至第六步:
第一步:所述振动部件的上端面和所述成像部件的上端面形成成像面,将成像面置于待检测目标表面,基于成像面利用所述超声换能器的第一阵列进行B型超声成像,进入超声灰阶成像模式,实现图像引导功能;依据图像引导功能,确定待检测目标瞬时弹性成像检测位置。
第二步:通过驱动成像部件或是振动部件活动,形成凸起部。
第三步:所述凸起部在待检测目标表面振动,在待检测目标内部激励出剪切波;
第四步:利用所述超声换能器的第二阵列对所述剪切波进行跟踪和检测,获得超声回波信号;
第五步:对所述超声回波信号进行分析,提取出待检测目标的结构信息、特征信息,所述特征信息包括剪切波速度、肝脏脂肪含量、待检测目标粘弹性中的至少一种;
第六步:对所述结构信息、特征信息进行显示;以使得使用者直观的获取检测结果。
上述弹性检测方法,当进行超声灰阶成像时,可活动的声透结构10形成一个有助于超声灰阶成像的凸面、平面或近似平面;当需要进行瞬时弹性成像时,驱动可活动的声透结构10进行变形,形成一个明显的凸起部,该凸起部有利于进行瞬时弹性成像检测,既可以进行很好的超声灰阶成像,又可以确保瞬时弹性成像的检测质量。
在本发明的一个实施例中,上述弹性检测方法第二步还包括根据待检测目标调节凸起部上端面的尺寸。在本发明的其他实施例中,利用超声换能器20的第二阵列对剪切波进行跟踪和检测的开启时刻,在振动部件11在待检测目标表面振动之前、之中、或是之后。超声换能器20的第二阵列的工作频率与所述凸起部的不同尺寸分别一一对应。
在本发明的一个实施例中,上述弹性检测方法,在形成凸起部后,判断凸起部上端面与待检测目标之间压力值,如满足设定值条件凸起部在待检测目标表面振动;如不满足设定值,则调整所述凸起部与待检测目标之间按压力度使所述压力值满足设定值条件后,所述凸起部在待检测目标表面振动。
在本发明的一个实施例中,上述弹性检测方法,还包括,确定待检测目标瞬时弹性成像检测位置后,关闭超声灰阶成像功能。
在本发明的一个实施例中,上述弹性检测方法,还包括第七步,即使用超声换能器的第一阵列重新进入超声灰阶成像模式。
在本发明的一个实施例中,上述弹性检测方法,使用超声换能器20的第一阵列重新进入超声灰阶成像模式前,还包括,振动部件11的上端面和所述成像部件12的上端面重新形成成像面,该重新形成成像面的过程,可以通过驱动成像部件12或是振动部件11活动来实现。
本发明还提供了一种弹性检测系统,包括如前所述弹性检测装置,还包括信号处理装置、控制装置、显示装置;所述信号处理装置与所述控制装置连接,用于处理接收到的超声波信号,获取待检测组织的结构信息和特征信息;控制装置用于控制所述弹性检测装置的所述超声换能器收发信号,以及控制所述振动部件、所述成像部件的运动形成所述凸起部或成像面;以及形成所述凸起部后凸起部的振动,进行瞬时弹性成像检测;所述显示装置,用于显示所述结构信息和特征信息。
以上所述实施例仅表达了发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干变形和改进,这些都属于发明的保护范围。因此,发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种弹性检测装置,包括声透结构和超声换能器;所述超声换能器用于发射和接收超声信号;所述声透结构至少部分设置在所述超声换能器前端;其特征在于,还包括驱动装置,
    所述声透结构至少设置在所述超声换能器成像面内的部分具有声透特性;
    所述声透结构包括振动部件和成像部件,所述振动部件和所述成像部件至少之一可活动,所述声透结构形成凸起部后用于进行瞬时弹性成像检测;
    所述成像部件上端面构成成像面的至少一部分,所述成像面用于超声灰阶成像;
    所述驱动装置与所述振动部件或/及所述成像部件连接,在形成所述凸起部后,所述振动部件在所述驱动装置的作用下振动用于产生剪切波。
  2. 根据权利要求1所述的弹性检测装置,其特征在于,所述凸起部的驱动方式为自动驱动或手动驱动。
  3. 根据权利要求2所述的弹性检测装置,其特征在于,所述驱动装置驱动所述振动部件、所述成像部件中的至少一个形成所述凸起部。
  4. 根据权利要求2所述的弹性检测装置,其特征在于,所述驱动装置包括第一驱动器和第二驱动器,所述第一驱动器驱动所述振动部件或/及所述第二驱动器驱动所述成像部件形成凸起部。
  5. 根据权利要求1-4任一项所述的弹性检测装置,其特征在于,所述振动部件附着于所述超声换能器检测面上。
  6. 根据权利要求5所述的弹性检测装置,其特征在于,所述瞬时弹性成像过程中,所述振动部件单独振动,或者与所述超声换能器同步振动。
  7. 根据权利要求1所述的弹性检测装置,其特征在于,所述超声换能器包括第一阵列及第二阵列,所述第一阵列是所述超声换能器的全部阵元;所述第二阵列为第一阵列的一部分,所述第二阵列正对于所述振动部件的上端面。
  8. 根据权利要求1所述的弹性检测装置,其特征在于,所述凸起部为柱状或台状。
  9. 一种弹性检测方法,其特征在于,使用权利要求7所述的弹性检测装置进行弹性检测,该方法包括,
    第一步:所述振动部件的上端面和所述成像部件的上端面形成成像面,将成像面置于待检测目标表面,基于成像面利用所述超声换能器的第一阵列进行B型超声成像,进入超声灰阶成像模式,实现图像引导功能;依据图像引导功能,确定待检测目标瞬时弹性成像检测位置;
    第二步:通过驱动成像部件或是振动部件活动,形成凸起部;
    第三步:所述凸起部在待检测目标表面振动,在待检测目标内部激励出剪切波;
    第四步:利用所述超声换能器的第二阵列对所述剪切波进行跟踪和检测,获得超声回波信号;
    第五步:对所述超声回波信号进行分析,提取出待检测目标的结构信息、特征信息,所述特征信息包括剪切波速度、肝脏脂肪含量、待检测目标粘弹性中的至少一种;
    第六步:对所述结构信息、特征信息进行显示。
  10.  一种弹性检测系统,其特征在于,包括权利要求1-8任一项所述的弹性检测装置,还包括信号处理装置、控制装置、显示装置;
    所述信号处理装置与所述控制装置连接,用于处理接收到的超声波信号,获取待检测组织的结构信息和特征信息;
    控制装置用于控制所述弹性检测装置的所述超声换能器收发信号,以及控制所述振动部件、所述成像部件的运动形成所述凸起部或成像面;以及形成所述凸起部后凸起部的振动,进行瞬时弹性成像检测;
    所述显示装置,用于显示所述结构信息和特征信息。
PCT/CN2023/101182 2022-06-20 2023-06-20 一种弹性检测装置、方法及系统 WO2023246721A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210697417.2 2022-06-20
CN202210697417.2A CN114767161B (zh) 2022-06-20 2022-06-20 一种弹性检测装置、方法及系统

Publications (1)

Publication Number Publication Date
WO2023246721A1 true WO2023246721A1 (zh) 2023-12-28

Family

ID=82421001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101182 WO2023246721A1 (zh) 2022-06-20 2023-06-20 一种弹性检测装置、方法及系统

Country Status (2)

Country Link
CN (1) CN114767161B (zh)
WO (1) WO2023246721A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114767161B (zh) * 2022-06-20 2022-09-23 深圳市影越医疗科技有限公司 一种弹性检测装置、方法及系统
WO2024078602A1 (zh) * 2022-10-15 2024-04-18 深圳市影越医疗科技有限公司 一种弹性成像组件、超声检测仪及超声检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070032726A1 (en) * 2003-05-30 2007-02-08 Takashi Osaka Ultrasonic probe and ultrasonic elasticity imaging device
CN101242782A (zh) * 2005-08-12 2008-08-13 回波检测公司 用于测量器官弹性的人或动物器官的成像系统
WO2010143555A1 (ja) * 2009-06-11 2010-12-16 株式会社 日立メディコ 加振ユニット、超音波探触子、及び超音波診断装置
CN102283679A (zh) * 2011-08-04 2011-12-21 中国科学院深圳先进技术研究院 弹性测量的超声成像系统及测量生物组织弹性的方法
CN206080573U (zh) * 2016-07-26 2017-04-12 王捷 生物组织检测仪
CN108095763A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统
CN113633313A (zh) * 2021-08-23 2021-11-12 深圳欢影医疗科技有限公司 一种基于多频超声探头的声辐射力弹性成像方法及系统
CN114305493A (zh) * 2021-12-31 2022-04-12 深圳市影越医疗科技有限公司 一种弹性检测探头、弹性检测装置及方法
CN114767161A (zh) * 2022-06-20 2022-07-22 深圳市影越医疗科技有限公司 一种弹性检测装置、方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114098821A (zh) * 2021-12-24 2022-03-01 深圳市影越医疗科技有限公司 一种超声探头
CN114271855A (zh) * 2021-12-24 2022-04-05 深圳市影越医疗科技有限公司 一种超声检测探头
CN114451916A (zh) * 2021-12-24 2022-05-10 深圳市影越医疗科技有限公司 声透结构、弹性检测装置、探头、系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070032726A1 (en) * 2003-05-30 2007-02-08 Takashi Osaka Ultrasonic probe and ultrasonic elasticity imaging device
CN101242782A (zh) * 2005-08-12 2008-08-13 回波检测公司 用于测量器官弹性的人或动物器官的成像系统
WO2010143555A1 (ja) * 2009-06-11 2010-12-16 株式会社 日立メディコ 加振ユニット、超音波探触子、及び超音波診断装置
CN102283679A (zh) * 2011-08-04 2011-12-21 中国科学院深圳先进技术研究院 弹性测量的超声成像系统及测量生物组织弹性的方法
CN206080573U (zh) * 2016-07-26 2017-04-12 王捷 生物组织检测仪
CN108095763A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统
CN113633313A (zh) * 2021-08-23 2021-11-12 深圳欢影医疗科技有限公司 一种基于多频超声探头的声辐射力弹性成像方法及系统
CN114305493A (zh) * 2021-12-31 2022-04-12 深圳市影越医疗科技有限公司 一种弹性检测探头、弹性检测装置及方法
CN114767161A (zh) * 2022-06-20 2022-07-22 深圳市影越医疗科技有限公司 一种弹性检测装置、方法及系统

Also Published As

Publication number Publication date
CN114767161B (zh) 2022-09-23
CN114767161A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2023246721A1 (zh) 一种弹性检测装置、方法及系统
US11944500B2 (en) Determining material stiffness using multiple aperture ultrasound
US20180368809A1 (en) Ultrasonic probe and ultrasonic detecting device provided with same
JP4798719B2 (ja) 圧迫部材、超音波探触子及び超音波診断装置
US7588540B2 (en) Ultrasonic probe for scanning a volume
CN114451916A (zh) 声透结构、弹性检测装置、探头、系统及方法
US6261232B1 (en) Continuous wave transmission/reception type ultrasonic imaging device and ultrasonic probe
CN114305493A (zh) 一种弹性检测探头、弹性检测装置及方法
CN114271855A (zh) 一种超声检测探头
CN114767162B (zh) 瞬时弹性成像检测振动装置、探头、方法及系统
JP2006247007A (ja) 超音波診断用カプラ
CN114098821A (zh) 一种超声探头
CN217548067U (zh) 弹性检测装置、探头及系统
CN115067996A (zh) 一种弹性检测振动装置、探头、方法及系统
CN217040173U (zh) 一种弹性检测装置
CN115486872A (zh) 一种弹性成像组件、超声检测仪、超声检测系统及方法
CN217390744U (zh) 一种复合探头
WO2024078602A1 (zh) 一种弹性成像组件、超声检测仪及超声检测方法
KR20110003056A (ko) 초음파 프로브 및 초음파 진단장치
CN219895781U (zh) 一种弹性成像组件、超声检测仪、超声检测系统
WO2024051710A1 (zh) 一种剪切波激励装置、弹性成像装置、方法及系统
JP2021023395A (ja) 超音波プローブ及び超音波診断装置
WO2023116927A1 (zh) 声透结构、弹性检测装置、探头、系统及方法
US20130109972A1 (en) Ultrasonic diagnostic apparatus
CN116269477A (zh) 一种弹性检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826369

Country of ref document: EP

Kind code of ref document: A1