WO2023246658A1 - 光伏系统的配置方法、集中管理单元及存储介质 - Google Patents

光伏系统的配置方法、集中管理单元及存储介质 Download PDF

Info

Publication number
WO2023246658A1
WO2023246658A1 PCT/CN2023/100794 CN2023100794W WO2023246658A1 WO 2023246658 A1 WO2023246658 A1 WO 2023246658A1 CN 2023100794 W CN2023100794 W CN 2023100794W WO 2023246658 A1 WO2023246658 A1 WO 2023246658A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
configuration table
network configuration
serial number
photovoltaic system
Prior art date
Application number
PCT/CN2023/100794
Other languages
English (en)
French (fr)
Inventor
熊勇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023246658A1 publication Critical patent/WO2023246658A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to the field of photovoltaic technology, and in particular to a photovoltaic system configuration method, centralized management unit and storage medium.
  • 5G network construction has emerged around the world.
  • 5G network deployment due to increased site power consumption, difficulties in introducing electricity, increased demand for power equipment and battery storage, and an increase in the number of sites, network operation sites have increased power consumption, maintenance costs, and electricity bills. Therefore, Changes in 5G network architecture have brought new challenges to the communication power supply network.
  • site power supply stacking that is, superimposing photovoltaic systems on traditional communication power supplies to achieve common power supply, thereby solving problems such as increased site power consumption and difficulties in introducing electricity, and at the same time reducing market costs. Electricity consumption and carbon emissions are reduced.
  • Embodiments of the present application provide a photovoltaic system configuration method, a centralized management unit, and a storage medium.
  • inventions of the present application provide a configuration method of a photovoltaic system.
  • the photovoltaic system includes a photovoltaic unit (Smart Photovoltaic Unit, SPU) that is networked as a node, a photovoltaic combiner box (Photovoltaic Convergence Box, PCB) and a Protocol conversion unit (Smart Protocol Convert Unit, SPCU), the configuration method includes: obtaining the serial number of the photovoltaic unit; selecting one serial number of the photovoltaic unit as the target serial number each time, and sending the serial number to the photovoltaic system.
  • SPU Smart Photovoltaic Unit
  • PCB Photovoltaic Convergence Box
  • SPCU Smart Protocol Convert Unit
  • the node broadcasts a sequence instruction with the target serial number, and receives the current value output by each node in the photovoltaic system according to the sequence instruction until the sequence numbers of all the photovoltaic units are traversed, wherein the sequence instruction Used to indicate that only the photovoltaic units with the target serial number in the photovoltaic system turn on power output; divide the photovoltaic units, the photovoltaic combiner box and the protocol conversion unit that output the same current value in each broadcast As a group, the grouping information of all nodes in the photovoltaic system is obtained.
  • a centralized management unit (Center Supervise Unit, CSU) includes at least one processor and a memory used for communicative connection with the at least one processor; the memory stores information that can be used by the at least one processor. instructions to be executed by the at least one processor to enable the at least one processor to execute The configuration method of the photovoltaic system as described in the first aspect.
  • CSU Center Supervise Unit
  • embodiments of the present application provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to cause a computer to execute the method described in the first aspect. Configuration methods of photovoltaic systems.
  • Figure 1 is a schematic diagram of the system architecture of a photovoltaic system provided by an embodiment of the present application
  • Figure 2 is a flow chart of a photovoltaic system configuration method provided by an embodiment of the present application
  • FIG. 3 is a specific method flow chart of step S100 in Figure 2;
  • Figure 4 is a specific method flow chart of step S300 in Figure 2;
  • Figure 5 is a flow chart of a photovoltaic system configuration method provided by another embodiment of the present application.
  • Figure 6 is a specific method flow chart of step S400 in Figure 5;
  • Figure 7 is a flow chart of a photovoltaic system configuration method provided by another embodiment of the present application.
  • Figure 8 is a specific method flow chart of step S800 in Figure 7;
  • FIG. 9 is a specific method flow chart of step S820 in Figure 8.
  • Figure 10 is a specific method flow chart of step S824 in Figure 9;
  • Figure 11 is a specific method flow chart of step S700 in Figure 9;
  • Figure 12 is a specific method flow chart of step S720 in Figure 11;
  • Figure 13 is a flow chart of a photovoltaic system configuration method provided by another embodiment of the present application.
  • Figure 14 is a specific method flow chart of step S4000 in Figure 13;
  • Figure 15 is a schematic diagram of a node configuration table provided in a specific example of this application.
  • Figure 16 is a schematic diagram of a node configuration table provided by another specific example of this application.
  • Figure 17 is a schematic diagram of a node configuration table provided by another specific example of this application.
  • Figure 18 is a schematic structural diagram of a centralized management unit provided by an embodiment of the present application.
  • the embodiment of the present application provides a photovoltaic system configuration method, a centralized management unit and a computer-readable storage medium, obtains the serial number of the photovoltaic unit, and selects the serial number of one photovoltaic unit as the target serial number each time, and sends the serial number to the photovoltaic system.
  • Each node broadcasts a sequence command carrying the target serial number, so that each photovoltaic unit compares its own serial number with the target serial number, turns on the photovoltaic unit corresponding to the target serial number, and turns off other photovoltaic units, and then receives the Each node outputs the current value according to the sequence instruction until the serial numbers of all photovoltaic units are traversed to avoid the problem of missing photovoltaic units.
  • the photovoltaic units, photovoltaic combiner boxes and protocol conversion units that output the same current value in each broadcast are divided into As a group, the grouping information of all nodes in the photovoltaic system is obtained, thereby achieving accurate grouping of the photovoltaic system.
  • Figure 1 is a schematic diagram of the system architecture of a photovoltaic system provided by an embodiment of the present application.
  • the photovoltaic system 100 includes a photovoltaic unit 200 that is networked as a node, a photovoltaic combiner box 300 , a protocol conversion unit 400 and a centralized management unit 500 .
  • multiple photovoltaic units 200 are electrically connected and converged to the photovoltaic combiner box 300 and then connected to the protocol conversion unit 400 to form a grouping subsystem.
  • Figure 1 includes two grouping subsystems.
  • the first grouping subsystem includes photovoltaic unit 1, photovoltaic unit 2, photovoltaic combiner box 1 and protocol conversion unit 1.
  • the second grouping subsystem includes The photovoltaic unit 3 to photovoltaic unit N, the photovoltaic combiner box 2 and the protocol conversion unit 2, the first grouping subsystem and the second grouping subsystem plus the centralized management unit 500 constitute the photovoltaic system 100.
  • the photovoltaic unit 200, the photovoltaic combiner box 300 and the protocol conversion unit 400 are connected through power line carrier communication (Power Line Communication, PLC), and the protocol conversion unit 400 and the centralized management unit 500 are connected.
  • PLC Power Line Communication
  • the protocol conversion unit 400 and the centralized management unit 500 are connected.
  • field buses such as Controller Area Network (CAN) or RS485, in addition, all photovoltaic units 200, photovoltaic combiner boxes 300 and protocol conversion unit 400 devices are interacted and managed through power line carrier communication , thereby reducing communication costs.
  • CAN Controller Area Network
  • RS485 Controller Area Network
  • the photovoltaic unit 200 can implement a maximum power point tracking algorithm (Maximum Power Point Tracking, MPPT) to detect the power generation voltage of the solar panel in real time and track the highest voltage and current value, so that the photovoltaic system 100 can output at maximum power.
  • MPPT Maximum Power Point Tracking
  • the photovoltaic combiner box 300 only has simple converging and lightning protection functions, it is usually a non-intelligent version and does not need to be connected to the PLC network; when the photovoltaic combiner box 300 has functions such as data collection and failure alarm, it is mostly intelligent version, it needs to be connected to the PLC network to increase the output current collection.
  • the photovoltaic system 100 and application scenarios described in the embodiments of the present application are for the purpose of explaining the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • Those skilled in the art will know that with the network With the evolution of topology and the emergence of new application scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.
  • photovoltaic system shown in Figure 1 does not limit the embodiments of the present application, and may include more or less components than shown, or combine certain components, or different components. layout.
  • FIG 2 is a flow chart of a photovoltaic system configuration method provided by an embodiment of the present application.
  • the photovoltaic system configuration method includes but is not limited to steps S100-S300.
  • Step S100 Obtain the serial number of the photovoltaic unit.
  • the serial number of the photovoltaic unit, the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit are the device serial numbers (Device Serial Number, DSN) of each node, because the DSN is the unique identifier of the device. code, so choosing DSN as the sequence number of each node can improve the accuracy of group identification.
  • DSN Device Serial Number
  • each SPU and PCB proactively notify the CSU of its own serial number through the PLC network, and each SPCU proactively broadcasts its own serial number through the CAN bus to facilitate subsequent generation of a network configuration table.
  • Step S200 Select the serial number of a photovoltaic unit as the target serial number each time, broadcast the sequence instruction with the target serial number to the nodes in the photovoltaic system, and receive the current value output by each node in the photovoltaic system according to the sequence instruction until Traverse the serial numbers of all photovoltaic units.
  • sequence command is used to instruct only the photovoltaic units with the target serial number in the photovoltaic system to turn on power output.
  • the serial number of a photovoltaic unit is selected as the target serial number each time, the protocol conversion unit is informed of the target serial number, and the sequence command with the target serial number is broadcast to the nodes in the photovoltaic system through the protocol conversion unit, indicating In the photovoltaic system, only the photovoltaic unit with the target serial number turns on the power output, and the other photovoltaic units turn off the power output, so that the CSU receives the current value output by each node in the photovoltaic system according to the sequence instruction until the serial numbers of all photovoltaic units are traversed.
  • the target serial number can be selected according to the size of the DSN. Arrange the DSNs of all photovoltaic units according to size to obtain a sequence list, and then select the first DSN from the sequence list as the target serial number. Traverse until all DSNs in the sequence list have been traversed; or arrange according to the string prefix of the DSN and then select, arrange the DSNs of all photovoltaic units according to the type of string prefix to obtain the sequence list, and then select from the sequence list Select the first DSN as the target serial number to traverse until all DSNs in the sequence list are traversed.
  • Step S300 Divide the photovoltaic units, photovoltaic combiner boxes and protocol conversion units that output the same current value in each broadcast into a group to obtain grouping information of all nodes in the photovoltaic system.
  • the SPCU, PCB and SPU that output the same current value in each broadcast are divided into a group, thereby obtaining the grouping information of all nodes in the photovoltaic system and realizing preliminary grouping of all nodes.
  • SPCU, PCB and SPU with the same current value are connected in series in the same group.
  • Step S100 includes but is not limited to step S110 to step S120.
  • Step S110 Receive feedback information sent by the protocol conversion unit.
  • the feedback information is obtained by the protocol conversion unit summarizing the serial number of the photovoltaic unit, the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit.
  • the protocol conversion unit broadcasts and issues network scan commands on the PLC network
  • the photovoltaic unit, photovoltaic combiner box and protocol conversion unit respond with their own serial numbers
  • the SPCU receives, summarizes and sends all feedback information.
  • Step S120 Deduplicate the feedback information according to the serial number of the photovoltaic unit.
  • the CSU uses the serial number of the photovoltaic unit as an index to deduplicate the feedback information to avoid the situation where the same node configuration information may be received by multiple SPCUs due to PLC signal coupling, resulting in duplication of configuration information.
  • Step S300 includes but is not limited to step S310 to step S320.
  • Step S310 Divide the photovoltaic units, photovoltaic combiner boxes and protocol conversion units that output the same current value in each broadcast into one group to obtain multiple groups of information in the same group.
  • the photovoltaic unit, photovoltaic combiner box and protocol conversion unit that output the same current value in each broadcast are Divide them into one group to obtain multiple groups of information in the same group, thereby achieving a preliminary grouping of nodes in the photovoltaic system.
  • the same group of information includes the serial number of the photovoltaic unit, the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit, as well as the output current value of the photovoltaic unit, the output current value of the photovoltaic combiner box and the protocol conversion unit. Output current value.
  • Step S320 Combine multiple sets of same group information according to the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit to obtain group information.
  • the same group information of the serial number of the same photovoltaic combiner box and the serial number of the protocol conversion unit is merged to obtain grouping information, complete the grouping of each node in the photovoltaic system, and achieve accurate grouping of each node. .
  • the grouping information includes a serial number of a photovoltaic combiner box, a serial number of a protocol conversion unit, and a serial number of at least one photovoltaic unit.
  • FIG 5 is a flow chart of a photovoltaic system configuration method provided by another embodiment of the present application.
  • the photovoltaic system configuration method includes but is not limited to step S400.
  • Step S400 Generate a network configuration table based on the grouping information, and distribute configuration information corresponding to the photovoltaic unit, photovoltaic combiner box and protocol conversion unit to the protocol conversion unit according to the network configuration table.
  • the grouping information is recorded and saved, a network configuration table is generated based on the grouping information, and the CSU distributes the configuration information corresponding to the photovoltaic unit, photovoltaic combiner box and protocol conversion unit to the protocol conversion unit through the CAN bus, thereby realizing the photovoltaic system Synchronization of configurations of each node.
  • the CSU first delivers the network configuration table to the protocol conversion unit through the CAN bus, and then the protocol conversion unit broadcasts the configuration information corresponding to all nodes through the PLC network to achieve top-down configuration synchronization.
  • Step S400 includes but is not limited to step S410 to step S430.
  • Step S410 Allocate network identifiers and network addresses to all nodes in the group information.
  • the network identifier is used to indicate that the photovoltaic unit, photovoltaic combiner box and protocol conversion unit are in the same group, and the network address is used to indicate the identification of different nodes in the same group.
  • a network identifier and a network address are assigned to all nodes in the group information, where the network identifier is a Personal Area Network Identifier (PanId), and the network address is a PAN network (Personal Area Network, Personal Area Network). ), all nodes in the same group have the same network ID but different network addresses, which facilitates group management.
  • PanId Personal Area Network Identifier
  • PAN network Personal Area Network, Personal Area Network
  • Step S420 Generate a node configuration table for each node according to the network identifier and network address.
  • a node configuration table of all nodes is generated according to the order of the network identifiers and network addresses, wherein the node configuration table includes the node's serial number, network identifier, network address, etc. information.
  • Step S430 Generate a network configuration table based on the grouping information and node configuration table.
  • a network configuration table is generated based on the grouping information and the node configuration table to implement grouping management of nodes.
  • FIG 7 is a flow chart of a photovoltaic system configuration method provided by another embodiment of the present application.
  • the photovoltaic system configuration method includes but is not limited to steps S500-S800.
  • Step S500 Send a scan command to the protocol conversion unit, so that the protocol conversion unit summarizes the configuration information of each node and generates configuration table information.
  • a scan command is sent to the protocol conversion unit, so that the protocol conversion unit broadcasts A scan command is issued, and each PLC node device responds to the command and broadcasts its own node configuration information.
  • the protocol conversion unit summarizes the configuration information of each node and generates configuration table information.
  • Step S600 Receive configuration table information and summarize the configuration table information to generate a live network configuration table.
  • the configuration table information sent by the protocol conversion unit is received, the configuration table information is summarized, and an existing network configuration table is generated to facilitate subsequent identification and update of nodes in the photovoltaic system.
  • Step S700 Compare the existing network configuration table with the network configuration table to obtain the node changes of the photovoltaic system.
  • the existing network configuration table is compared with the network configuration table to obtain the node changes of the photovoltaic system, thereby determining whether the nodes in the photovoltaic system have been deleted, updated, or replaced, so as to realize the node changes in the photovoltaic system. real-time monitoring.
  • the difference information between the existing network configuration table and the network configuration table is obtained, so as to determine whether the nodes in the photovoltaic system have changed based on the difference information.
  • Step S800 Update the network configuration table according to the node changes of the photovoltaic system.
  • the network configuration table is updated according to node changes in the photovoltaic system, thereby achieving synchronous updates of each node in the photovoltaic system.
  • Step S800 includes but is not limited to step S810 to step S830.
  • Step S810 When the number of nodes in the photovoltaic system decreases, delete the node configuration information from the network configuration table or replace the network configuration table according to the existing network configuration table.
  • the configuration information of the node needs to be deleted from the network configuration table or based on The existing network configuration table replaces the network configuration table, thereby deleting the configuration information of the reduced nodes.
  • the reduction of nodes in the photovoltaic system can cause the user to remove the node equipment, retire the service, or the node equipment is stolen.
  • Step S820 When the number of nodes in the photovoltaic system is increased, add the node configuration information to the network configuration table.
  • the number of nodes in the photovoltaic system when the number of nodes in the photovoltaic system is increased, it means that the DSN of the node exists in the existing network configuration table, but the DSN of the node does not exist in the network configuration table, so the configuration information of the node is added to the network configuration table.
  • the addition of nodes in the photovoltaic system can enable users to add or expand node equipment.
  • the rotating output verification method or the equipment active notification method can be used.
  • Step S830 When the nodes in the photovoltaic system are replaced, import the existing network configuration table into the network configuration table to update the network configuration table.
  • the existing network configuration table needs to be imported into the network configuration table to update the network configuration table.
  • the DSN in the existing network configuration table and the network configuration table are different, it may be because a new CSU device has been replaced, or a used CSU device has been replaced.
  • Step S820 includes but is not limited to steps S821 to step S824.
  • steps S821 to S824 adopt the alternate output verification method to judge the newly added nodes.
  • Step S821 Obtain the serial number of the newly added node.
  • Step S822 Broadcast the sequence command with the serial number of the new node to each node in the photovoltaic system, and receive light The current value output by each node in the volt system according to the sequence command.
  • Step S823 Divide the nodes that output the same current value in the broadcast into a group, and obtain the new grouping information including the serial number of the new node in the photovoltaic system.
  • Step S824 Merge the newly added grouping information with the network configuration table.
  • Step S825 Determine the configuration information of the new node according to the network configuration table and the new grouping information, and add the configuration information to the merged network configuration table.
  • a sequence command with the serial number of the newly added node is broadcast to each node in the photovoltaic system, instructing only the node with the serial number of the newly added node in the photovoltaic system to turn on power output, and the other photovoltaic units to turn off power output,
  • receiving the current value output by each node in the photovoltaic system according to the sequence command and dividing the nodes outputting the same current value in the broadcast into a group, obtaining the new grouping information including the serial number of the new node in the photovoltaic system, which facilitates subsequent Perform group merging, merge the new group information with the network configuration table, and finally determine the configuration information of the new node based on the network configuration table and the new group information, add the configuration information to the merged network configuration table, and complete the new Synchronization of node configuration information to update the network configuration table.
  • Step S824 includes but is not limited to steps S8240 to step S8241.
  • Step S8240 When the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit in the newly added group information match the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit in one of the groups in the network configuration table, add the new The added node belongs to the matching group in the network configuration table, and the network ID in the group is assigned to the newly added node.
  • the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit in the newly added group information match the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit in one of the groups in the network configuration table, , indicating that the new node belongs to a group in the network configuration table, you can directly merge the new grouping information with the network configuration table, and assign the network identification of the nodes in the same group to the new node, thereby completing the pairing Add the group identification and node information configuration of the new node.
  • Step S8241 When the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit in the newly added group information do not match the serial numbers of the photovoltaic combiner box and the serial number of the protocol conversion unit in all groups in the network configuration table, according to the new Add group information to create a new configuration table, and merge the new configuration table with the network configuration table.
  • the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit in the newly added group information do not match the serial numbers of the photovoltaic combiner box and the serial number of the protocol conversion unit in all groups in the network configuration table, , indicating that the new node is not in the same group as the nodes in the network configuration table, you need to create a new new configuration table based on the new grouping information, and merge the new configuration table with the network configuration table to complete the new node Group identification and node information configuration.
  • Step S700 includes but is not limited to step S710 to step S720.
  • Step S710 Traverse the serial numbers in the existing network configuration table and the serial numbers in the network configuration table to obtain the traversal results.
  • Step S720 Determine the node changes of the photovoltaic system based on the traversal results.
  • the serial numbers in the existing network configuration table and the serial numbers in the network configuration table are traversed to determine whether the network configuration table has changed, and the traversal results are obtained, and the node changes of the photovoltaic system are determined based on the traversal results. , accurately determine the changes of nodes.
  • Step S720 includes but is not limited to steps S721 to step S723.
  • Step S721 When the traversal result is that the number of serial numbers in the existing network configuration table is greater than the number of serial numbers in the network configuration table, it is determined that the number of nodes in the photovoltaic system is increased.
  • Step S722 When the traversal result is that the number of serial numbers in the existing network configuration table is less than the number of serial numbers in the network configuration table, it is determined that the number of nodes in the photovoltaic system is reduced.
  • the traversal result is that the number of serial numbers in the live network configuration table is less than the number of serial numbers in the network configuration table, it means that the user has performed operations such as deleting nodes and logging out of service.
  • Step S723 When the traversal result is that the serial number information in the existing network configuration table is completely inconsistent with the serial number information in the network configuration table, it is determined that the node in the photovoltaic system has been replaced.
  • the traversal result is that the number and information of the serial numbers in the current network configuration table are the same as the information and number of the serial numbers in the network configuration table, it means that the network configuration table has not changed and no update operation is required.
  • FIG 13 is a flow chart of a photovoltaic system configuration method provided by another embodiment of the present application.
  • the photovoltaic system configuration method includes but is not limited to steps S1000-S5000.
  • steps S1000 to S5000 adopt the device active notification method to determine new nodes.
  • Step S1000 When a new photovoltaic unit or photovoltaic combiner box is added as a node in the photovoltaic system, receive a joining request sent by the newly added device.
  • join request carries the serial number of the newly added device.
  • Step S2000 Broadcast a sequence command with the serial number of the newly added device to the photovoltaic system, and receive the current value output by each node in the photovoltaic system according to the sequence command.
  • Step S3000 Divide the nodes that output the same current value in the broadcast into a group to obtain device grouping information including the serial number of the newly added device in the photovoltaic system.
  • Step S4000 Merge the device grouping information with the network configuration table.
  • Step S5000 Determine the configuration information of the new device according to the network configuration table and device grouping information, and add the configuration information to the merged network configuration table.
  • the new device when a new photovoltaic unit or photovoltaic combiner box is added as a node in the photovoltaic system, the new device actively broadcasts a join request to the CSU or SPCU.
  • the CSU receives the join request sent by the new device and sends a request to the photovoltaic system.
  • the sequence command with the serial number of the new device, receive the current value output by each node in the photovoltaic system according to the sequence command, and then divide the nodes that output the same current value in the broadcast into a group to obtain the photovoltaic system including the new Add the device grouping information of the device's serial number, and finally merge the device grouping information with the network configuration table, determine the configuration information of the new device based on the network configuration table and device grouping information, and add the configuration information to the merged network configuration table. This enables the updating of new devices and network configuration tables.
  • Step S4000 includes but is not limited to step S4100 to step S4200.
  • Step S4100 When the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit in the device grouping information match the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit in one of the groups in the network configuration table, a new The device belongs to the matching group in the network configuration table, and the network ID in the group is assigned to the new device.
  • the new device when the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit in the device grouping information match the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit in one of the groups in the network configuration table, Note that the new device is in the same group as the node in the network configuration table. Therefore, the new device is assigned to the matching group in the network configuration table, and the network ID in the group information is assigned to the new device to implement the new device. Equipment updates.
  • Step S4200 When the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit in the device grouping information do not match the serial numbers of the photovoltaic combiner box and the serial number of the protocol conversion unit in all groups in the network configuration table, the device grouping is Create a new device table based on the information, and merge the new device table with the network configuration table.
  • the new device is not in the same group as the nodes in the network configuration table. Create a new device table based on the device grouping information, and merge the new device table with the network configuration table to update the new device.
  • serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit in the equipment grouping information do not match the serial number of the photovoltaic combiner box and the serial number of the protocol conversion unit in the network configuration table. It can be that the photovoltaic combiner box The serial number of the protocol conversion unit is inconsistent with the serial number of the protocol conversion unit. This embodiment does not impose any specific restrictions.
  • Example 1 shows the specific process of system management of the photovoltaic system after generating the node configuration table and network configuration table of each node.
  • Configuration generation follows certain rules.
  • PanId is defined as an 8-bit group number, the valid range is 1-254, and can correspond to the physical slot location of the SPCU.
  • PanAddr is defined as a 16-bit address, where the upper 8-bit address is the PanId of the group, and the lower 8-bit address is the node number in the group: the lower 8-bit value 1-254 represents 1-254 SPU, the value 0 represents PCB, and the value 255 represents SPCU .
  • All nodes will save their own node configuration table locally; at the same time, as the master node, it will also save the configuration information of all slave nodes it belongs to.
  • SPCU as the master node in the group, also saves the configuration of all slave nodes (SPU and PCB) in the group; for CSU, although it does not have its own PLC configuration information, as the centralized manager of the system, it needs to save all PLCs in the system.
  • Configuration information of nodes SPU, PCB and SPCU).
  • Configuration synchronization The configuration information of all nodes at each level must be consistent, for example, using DSN as the index. And the photovoltaic system supports two synchronization mechanisms, top-down and bottom-up:
  • Top-down First complete the group configuration on the network management software or CSU to obtain the system network configuration table; then, the CSU distributes the group configuration table information to each SPCU through field buses such as CAN/RS485; the SPCU then Through the PLC network, broadcast, for example, using DSN as an index, deliver each node configuration information to SPU, PCB and other nodes;
  • the node configuration table only has DSN information when leaving the factory, and the initial content of other information is blank. After the new device is connected to the communication network, it actively broadcasts its own DSN and applies to the system for configuration. After the superior master node receives the application, it notifies the CSU to generate the configuration information of the node, and adds and completes the application. into the network configuration table;
  • Periodic scanning CSU periodically issues scanning commands through each SPCU and broadcast; after receiving the command, each node broadcasts a response to its own DSN, PanId, PanAddr and other configuration information; each SPCU receives a summary of the response information To the CSU, the CSU generates the live network configuration table; the CSU compares the differences between the live network table and the locally saved network configuration table, can identify the addition or decrease of new nodes, and then updates the network configuration.
  • Example 2 is the specific process of automatic identification and update of photovoltaic systems.
  • Step 3 Read the configuration table information of each SPCU and merge it to obtain the live network configuration table
  • Step 5 Identification of configuration changes: If the network configuration table is empty, it means a new CSU has been replaced, or the DSNs in the two tables are different, it means a used CSU has been replaced;
  • Step 6 Automatic configuration update: For the two situations in the previous step, directly import the live network configuration table information into the network configuration table, and the automatic configuration update is completed.
  • Step 1 The node device is powered on and running
  • Step 2 The node device reads the locally saved node configuration table
  • Step 4 If the SPCU or CSU receives an active broadcast notification message, it means that a new PLC node device has been added to the network, set the "Network configuration must be updated” flag, and jump to step 7;
  • Step 5 If the CSU finds that the DSN has changed when polling the SPCU, for example, it is inconsistent with the local configuration master table, it means that an SPCU in the network has been used and replaced, and the "Network configuration must be updated" flag is also set; then jump Go to step 7;
  • Step 6 If the SPCU polls the PCB and finds that the PCB does not respond, or there is a response but the DSN has changed, it means that a PCB in the network has been used, replaced or stolen, and the "Network configuration must be updated" flag is also set;
  • Step 7 If the scheduled scan cycle set on the CSU reaches or the "Network configuration must be updated" flag is set, execute the query current network configuration process and obtain the current network configuration table; otherwise, end the operation;
  • Step 8 Compare the live network configuration table and the local configuration summary table. If the DSN information in the two tables is exactly the same, it means that there is no change in the network equipment and the operation is terminated;
  • Step 9 Run the "turn output verification method" to identify the same group
  • Network configuration table update Each SPCU uploads the identification information of the same group to the CSU for summary and reference.
  • the CSU updates the locally saved network configuration table.
  • the update principle is also based on the device DSN as the index:
  • New DSN equipment When an original equipment is in the same group (which means the new equipment is replaced or in the same group) New expansion), copy the PanId and other group information of the original device to the new device; when it is not in the same group as the original device (which means: the user has expanded the system to a new set of subsystems); it is necessary to add a new A group configuration table generates new device configuration information according to the configuration generation rules and adds it to the general configuration table;
  • CSU proactively alerts and notifies users, and then decides whether to delete the DSN node equipment from the local configuration table based on whether the user intervenes in the process; if the user does not intervene for a period of time, the system automatically deletes the DSN Configuration information of node devices;
  • Step 11 Synchronization: After the CSU completes the update of the network configuration table, it will synchronously update the configuration information of the SPCU, PCB, and SPU layer devices in sequence according to the top-down principle.
  • the existing network configuration table can be queried, and by comparing the differences between the existing network configuration table and the network configuration table, automatic identification of network changes can be realized, and a rotating output verification method is used, that is, using the DSN as Index, specify each SPU device to output current individually in turn, and check it on the PCB and SPCU, which can realize automatic group identification very simply and cleverly.
  • a rotating output verification method is used, that is, using the DSN as Index, specify each SPU device to output current individually in turn, and check it on the PCB and SPCU, which can realize automatic group identification very simply and cleverly.
  • For new devices in the network it can be generated through the group relationship and configuration Rules automatically add the device's configuration information to the network configuration table to achieve automatic network updates.
  • SPU, PCB and SPCU all carry different node configuration tables.
  • the specific node configuration table information is as follows.
  • Figure 15 is a schematic diagram of a node configuration table provided by a specific example of this application.
  • the SPU node configuration table includes the node's DSN, PanId, PanAddr, and layout information such as PVSN (Photovoltaic array Serial Number, photovoltaic array serial number) and PVM (Photovoltaic array Matrix, photovoltaic array coordinates).
  • PVSN Photovoltaic array Serial Number, photovoltaic array serial number
  • PVM Photovoltaic array Matrix, photovoltaic array coordinates
  • PVSN is the identification code of the photovoltaic array area
  • PVM is used to characterize the coordinate position identification of the photovoltaic components in the array.
  • FIG 16 is a schematic diagram of a node configuration table provided by a specific example of this application.
  • the PCB node configuration table includes the DSN, PanId, PanAddr, and optional installation location information of the node.
  • FIG 17 is a schematic diagram of a node configuration table provided by a specific example of this application.
  • the SPCU node configuration table includes the DSN, PanId, PanAddr, and optional installation location information of the node.
  • the centralized management unit 500 includes a memory 210, a processor 220, and a program stored on the memory 210 and capable of running on the processor 220. Computer program.
  • the processor 220 and the memory 210 may be connected through a bus or other means.
  • the memory 210 can be used to store non-transitory software programs and non-transitory computer executable programs.
  • the memory 210 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory 210 optionally includes memory located remotely relative to the processor 220, and these remote memories may be connected to the processor 220 through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the photovoltaic system configuration method provided by the embodiment of the present application has at least the following beneficial effects: first, obtain the serial number of the photovoltaic unit, and select the serial number of one photovoltaic unit as the target serial number each time, and broadcast it to each node in the photovoltaic system.
  • the sequence command carrying the target serial number, so that each photovoltaic unit compares its own serial number with the target serial number, turns on the photovoltaic unit corresponding to the target serial number, and turns off other photovoltaic units, and then receives each node in the photovoltaic system According to the current value output by the sequence command, until the serial numbers of all photovoltaic units are traversed to avoid the problem of missing photovoltaic units, finally the photovoltaic units, photovoltaic combiner boxes and protocol conversion units that output the same current value in each broadcast are divided into a group , obtain the grouping information of all nodes in the photovoltaic system, thereby achieving accurate grouping of the photovoltaic system.
  • an embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by a centralized management unit or controller, for example, by Execution of a centralized management unit in the above device embodiment can cause the above centralized management unit to execute the photovoltaic system configuration method in the above embodiment.
  • one embodiment of the present application also provides a computer program product, including a computer program or computer instructions.
  • the computer program or computer instructions are stored in a computer-readable storage medium.
  • the centralized management unit of the computer device obtains the computer program from the computer-readable storage medium.
  • the computer program or computer instructions are read, and the centralized management unit executes the computer program or computer instructions, so that the computer device performs the configuration method of the photovoltaic system as in any of the previous embodiments.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • a centralized management unit such as a central centralized management unit, a digital signal centralized management unit or a micro centralized management unit, or as hardware, or as an integrated circuit, Such as application specific integrated circuits.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Power Engineering (AREA)
  • Power Sources (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了光伏系统的配置方法、集中管理单元及存储介质,配置方法包括:获取光伏单元的序列号(S100);每次选择一个光伏单元的序列号作为目标序列号,向光伏系统中的节点广播带有目标序列号的序列指令,并接收各个节点根据序列指令输出的电流值,直到遍历全部光伏单元的序列号(S200);将每次广播中输出相同电流值的光伏单元、光伏汇流箱和协议转换单元划分为一组,得到光伏系统中所有节点的分组信息(S300)。

Description

光伏系统的配置方法、集中管理单元及存储介质
相关申请的交叉引用
本申请基于申请号为202210703649.4、申请日为2022年6月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及光伏技术领域,尤其涉及一种光伏系统的配置方法、集中管理单元及存储介质。
背景技术
随着5G技术的普及,5G网络建设已在全球兴起。在5G网络部署方面,由于出现站点功耗增加、电力引入困难、电源设备和电池存储需求增加、站点数量增加等情况,导致网络运站点功耗增加、维护费用剧增以及电费剧增,因此,5G网络架构的变化给通信供电网络带来了全新挑战。为了应对上述挑战,运营商普遍选择了站点电源叠光的解决方案,即在传统通信电源中,叠加光伏系统,实现共同供电,从而解决站点功耗增加、电力引入困难等难题,同时减少了市电消耗、降低了碳排放。
然而,在光伏系统容量较大时,需要对光伏系统中的节点设备进行网络配置,从而实现对光伏系统的分组管理,常见的分组方法有拨码分组、对码分组、分组上电以及接受信息强度指示识别法等,其中,拨码分组和对码分组都需要人工操作,分组数目有限、拨码易出错;分组上电需要多次带电操作存在安全隐患,接受信息强度指示识别法需要大量的成本,因此找到一种安全、低成本、不易出错的分组方法变得至关重要。
发明内容
本申请实施例提供了一种光伏系统的配置方法、集中管理单元及存储介质。
第一方面,本申请实施例提供了一种光伏系统的配置方法,所述光伏系统包括作为节点进行组网的光伏单元(Smart Photovoltaic Unit,SPU)、光伏汇流箱(Photovoltaic Convergence Box,PCB)和协议转换单元(Smart Protocol Convert Unit,SPCU),所述配置方法包括:获取所述光伏单元的序列号;每次选择一个所述光伏单元的序列号作为目标序列号,向所述光伏系统中的节点广播带有所述目标序列号的序列指令,并接收所述光伏系统中的各个节点根据所述序列指令输出的电流值,直到遍历全部所述光伏单元的序列号,其中,所述序列指令用于指示所述光伏系统中仅所述目标序列号的所述光伏单元开启功率输出;将每次广播中输出相同电流值的所述光伏单元、所述光伏汇流箱和所述协议转换单元划分为一组,得到所述光伏系统中所有节点的分组信息。
第二方面,一种集中管理单元(Center Supervise Unit,CSU),包括至少一个处理器和用于与所述至少一个处理器通信连接的存储器;所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行 如第一方面所述的光伏系统的配置方法。
第三方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如第一方面所述的光伏系统的配置方法。
附图说明
图1是本申请一个实施例提供的光伏系统的系统架构的示意图;
图2是本申请一个实施例提供的光伏系统的配置方法的流程图;
图3是图2中的步骤S100的具体方法流程图;
图4是图2中的步骤S300的具体方法流程图;
图5是本申请另一实施例提供的光伏系统的配置方法的流程图;
图6是图5中的步骤S400的具体方法流程图;
图7是本申请另一实施例提供的光伏系统的配置方法的流程图;
图8是图7中的步骤S800的具体方法流程图;
图9是图8中的步骤S820的具体方法流程图;
图10是图9中的步骤S824的具体方法流程图;
图11是图9中的步骤S700的具体方法流程图;
图12是图11中的步骤S720的具体方法流程图;
图13是本申请另一实施例提供的光伏系统的配置方法的流程图;
图14是图13中的步骤S4000的具体方法流程图;
图15为本申请一个具体示例提供的节点配置表的示意图;
图16为本申请另一具体示例提供的节点配置表的示意图;
图17为本申请另一具体示例提供的节点配置表的示意图;
图18是本申请一个实施例提供的集中管理单元的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要注意的是,在本申请实施例的描述中,说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。
此外,下面所描述的本申请各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本申请实施例提供了一种光伏系统的配置方法、集中管理单元及计算机可读存储介质,获取光伏单元的序列号,并每次选择一个光伏单元的序列号作为目标序列号,向光伏系统中的各节点广播携带目标序列号的序列指令,从而使得各光伏单元根据自身的序列号与目标序列号进行对比,开启与目标序列号对应的光伏单元,并关闭其他光伏单元,之后接收光伏系统中的各个节点根据序列指令输出的电流值,直到遍历全部光伏单元的序列号,避免出现光伏单元遗漏的问题,最后将每次广播中输出相同电流值的光伏单元、光伏汇流箱和协议转换单元分为一组,得到光伏系统中的所有节点的分组信息,从而实现对光伏系统的精准分组。
下面结合附图,对本申请实施例作进一步阐述。
参照图1,图1是本申请一个实施例提供的光伏系统的系统架构的示意图。
在图1的实施例中,该光伏系统100包括作为节点进行组网的光伏单元200、光伏汇流箱300、协议转换单元400和集中管理单元500。
在一实施例中,多个光伏单元200通过电气连接并汇聚到光伏汇流箱300后再接入至协议转换单元400,构成一个分组子系统,多组这样的子系统再加上一个集中管理单元500,构成一个完整的光伏系统100,因此一个分组子系统由一个光伏汇流箱300、一个协议转换单元400和至少一个光伏单元200构成。
可以理解的是,如图1所示,图1包括两个分组子系统,第一分组子系统包括光伏单元1、光伏单元2、光伏汇流箱1和协议转换单元1,第二分组子系统包括光伏单元3至光伏单元N、光伏汇流箱2和协议转换单元2,第一分组子系统和第二分组子系统加上集中管理单元500构成了光伏系统100。
需要说明的是,在光伏系统100中,光伏单元200、光伏汇流箱300、协议转换单元400之间通过电力线载波通信(Power Line Communication,PLC)连接,协议转换单元400和集中管理单元500之间以控制器局域网络(Controller Area Network,CAN)或者RS485等现场总线连接,除此之外,所有的光伏单元200、光伏汇流箱300和协议转换单元400设备,都通过电力线载波通信实现交互和管理,从而降低通信成本。
在一实施例中,光伏单元200可以实现最大功率点跟踪算法(Maximum Power Point Tracking,MPPT),通过实时侦测太阳能板的发电电压,并追踪最高电压电流值,使光伏系统100以最大功率输出对蓄电池充电;当光伏汇流箱300只有简单的汇流和防雷功能,通常为非智能化版本、无需接入PLC网络;当光伏汇流箱300兼备数据采集、失效报警等功能时,多为智能化版本,需要接入到PLC网络中,才需要增加输出电流的采集。
本申请实施例描述的光伏系统100以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域技术人员可知,随着网络拓扑的演变和新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本领域技术人员可以理解的是,图1中示出的光伏系统并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述系统架构的结构,下面提出本申请的光伏系统的配置方法的各个实施例。
参照图2,图2是本申请一个实施例提供的光伏系统的配置方法的流程图,该光伏系统的配置方法包括但不限于步骤S100-S300。
步骤S100:获取光伏单元的序列号。
需要说明的是,本实施例中光伏单元的序列号、光伏汇流箱的序列号和协议转换单元的序列号为各节点的设备序列号(Device Serial Number,DSN),由于DSN为设备的唯一标识码,因此选择DSN作为各节点的序列号能够提高分组识别的准确性。
在一实施例中,各SPU和PCB主动通过PLC网络、各SPCU主动通过CAN总线广播告知CSU自身的序列号,便于后续生成网络配置表。
步骤S200:每次选择一个光伏单元的序列号作为目标序列号,向光伏系统中的节点广播带有目标序列号的序列指令,并接收光伏系统中的各个节点根据序列指令输出的电流值,直到遍历全部光伏单元的序列号。
需要说明的是,序列指令用于指示光伏系统中仅目标序列号的光伏单元开启功率输出。
在一实施例中,每次选择一个光伏单元的序列号作为目标序列号,告知协议转换单元目标序列号,并通过协议转换单元向光伏系统中的节点广播带有目标序列号的序列指令,指示光伏系统中仅目标序列号的光伏单元开启功率输出,其余光伏单元关闭功率输出,从而使得CSU接收光伏系统中的各个节点根据序列指令输出的电流值,直到遍历全部光伏单元的序列号。
可以理解的是,目标序列号的选择可以根据DSN的大小进行排列之后再选择,将所有光伏单元的DSN按照大小进行排列,得到序列表,之后从序列表中选择第一个DSN作为目标序列号进行遍历,直至遍历完全部序列表中的DSN;或者根据DSN的字符串前缀进行排列之后再选择,将所有光伏单元的DSN按照字符串前缀的种类进行排列,得到序列表,之后从序列表中选择第一个DSN作为目标系列号进行遍历,直至遍历完全部序列表中的DSN。
步骤S300:将每次广播中输出相同电流值的光伏单元、光伏汇流箱和协议转换单元划分为一组,得到光伏系统中所有节点的分组信息。
在一实施例中,将每次广播中输出相同电流值的SPCU、PCB和SPU划分为一组,从而得到光伏系统中所有节点的分组信息,实现对所有节点的初步分组。
可以理解的是,相同电流值的SPCU、PCB和SPU同组串联。
参照图3,图3是对图2中步骤S100的进一步说明,步骤S100包括但不限于步骤S110至步骤S120。
步骤S110:接收协议转换单元发送的反馈信息。
需要说明的是,反馈信息由协议转换单元对光伏单元的序列号、光伏汇流箱的序列号和协议转换单元的序列号进行汇总得到。
在一实施例中,协议转换单元在PLC网络上广播下发网络扫描命令,光伏单元、光伏汇流箱和协议转换单元回应自身的序列号,SPCU接收、汇总并上送所有反馈信息。
步骤S120:根据光伏单元的序列号对反馈信息进行去重。
在一实施例中,CSU以光伏单元的序列号为索引,对反馈信息进行去重,避免由于PLC信号耦合,同一个节点配置信息可能被多个SPCU接收,出现配置信息重复的情况。
参照图4,图4是对图2中步骤S300的进一步说明,步骤S300包括但不限于步骤S310至步骤S320。
步骤S310:将每次广播中输出相同电流值的光伏单元、光伏汇流箱和协议转换单元划分为一组,得到多组同组信息。
在一实施例中,将每次广播中输出相同电流值的光伏单元、光伏汇流箱和协议转换单元 划分为一组,得到多组同组信息,从而实现对光伏系统中节点的初步分组。
需要说明的是,同组信息中包括光伏单元的序列号、光伏汇流箱的序列号和协议转换单元的序列号,以及光伏单元的输出电流值、光伏汇流箱的输出电流值和协议转换单元的输出电流值。
步骤S320:根据光伏汇流箱的序列号和协议转换单元的序列号对多组同组信息进行合并,得到分组信息。
在一实施例中,将相同光伏汇流箱的序列号和协议转换单元的序列号的同组信息进行合并,从而得到分组信息,完成对光伏系统中各节点的分组,实现对各节点的精准分组。
需要说明的是,分组信息中包括一个光伏汇流箱的序列号、一个协议转换单元的序列号以及至少一个光伏单元的序列号。
参照图5,图5是本申请另一实施例提供的光伏系统的配置方法的流程图,该光伏系统的配置方法包括但不限于步骤S400。
步骤S400:根据分组信息生成网络配置表,并根据网络配置表向协议转换单元分发光伏单元、光伏汇流箱和协议转换单元对应的配置信息。
在一实施例中,对分组信息进行记录并保存,根据分组信息生成网络配置表,CSU通过CAN总线向协议转换单元分发光伏单元、光伏汇流箱和协议转换单元对应的配置信息,从而实现光伏系统中各节点配置的同步。
需要说明的是,CSU先通过CAN总线向协议转换单元下发网络配置表,之后再由协议转换单元通过PLC网络广播下发所有节点对应的配置信息,实现自顶向下的配置同步。
参照图6,图6是对图5中步骤S400的进一步说明,步骤S400包括但不限于步骤S410至步骤S430。
步骤S410:向分组信息中的所有节点分配网络标识和网络地址。
需要说明的是,网络标识用于表征光伏单元、光伏汇流箱和协议转换单元位于同一组,网络地址用于表征同一组内的不同节点的标识。
在一实施例中,向分组信息中的所有节点分配网络标识和网络地址,其中,网络标识为个人局域网标识符(Personal Area Network Identifier,PanId),网络地址为PAN网络(Personal Area Network,个人局域网)中的节点地址,同一组内的所有节点网络标识相同,网络地址不同,便于进行分组管理。
步骤S420:根据网络标识和网络地址生成各个节点的节点配置表。
在一实施例中,在向节点分配网络标识和网络地址之后,根据网络标识和网络地址顺序生成所有节点的节点配置表,其中,节点配置表中包括节点的序列号、网络标识和网络地址等信息。
步骤S430:根据分组信息和节点配置表生成网络配置表。
在一实施例中,根据分组信息和节点配置表生成网络配置表,实现对节点的分组管理。
参照图7,图7是本申请另一实施例提供的光伏系统的配置方法的流程图,该光伏系统的配置方法包括但不限于步骤S500-S800。
步骤S500:向协议转换单元发送扫描命令,以使协议转换单元对各节点的配置信息进行汇总,生成配置表信息。
在一实施例中,向协议转换单元发送扫描命令,以使协议转换单元通过PLC网络、广播 下发扫描命令,各PLC节点设备响应该命令,广播回应其自身节点配置信息,协议转换单元对各节点的配置信息进行汇总,生成配置表信息。
步骤S600:接收配置表信息并对配置表信息进行汇总,生成现网配置表。
在一实施例中,接收协议转换单元发送的配置表信息,并对配置表信息进行汇总,生成现网配置表,便于后续对光伏系统中的节点进行识别和更新。
步骤S700:将现网配置表与网络配置表进行对比,得到光伏系统的节点变动情况。
在一实施例中,将现网配置表与网络配置表进行对比,得到光伏系统的节点变动情况,从而判断光伏系统中的节点是否出现删除、更新或者替换等情况,从而实现对光伏系统中节点的实时监测。
可以理解的是,将现网配置表与网络配置表进行对比,得到现网配置表与网络配置表的差异信息,从而根据差异信息判断出光伏系统中的节点是否改变。
步骤S800:根据光伏系统的节点变动情况更新网络配置表。
在一实施例中,根据光伏系统的节点变动情况更新网络配置表,从而实现光伏系统中各个节点的同步更新。
参照图8,图8是对图7中步骤S800的进一步说明,步骤S800包括但不限于步骤S810至步骤S830。
步骤S810:当光伏系统中的节点减少,从网络配置表中删除节点的配置信息或者根据现网配置表替换网络配置表。
在一实施例中,当光伏系统中的节点减少,说明现网配置表中没有节点的DSN,而网络配置表中还存在节点的DSN,因此需要从网络配置表中删除节点的配置信息或者根据现网配置表替换网络配置表,从而将已经减少节点的配置信息进行删除。
需要说明的是,光伏系统中的节点减少可以为用户进行了节点设备的移除、退服或者出现了节点设备被盗的情况。
步骤S820:当光伏系统中的节点增加,增加节点的配置信息至网络配置表。
在一实施例中,当光伏系统中的节点增加,说明现网配置表中存在节点的DSN,而网络配置表中不存在节点的DSN,因此增加节点的配置信息至网络配置表。
需要说明的是,光伏系统中的节点增加可以为用户进行了节点设备的新增或者扩容等操作,判断光伏系统中是否有节点增加可以采用轮流输出核对法或者设备主动告知法。
步骤S830:当光伏系统中的节点被更换,将现网配置表导入网络配置表以实现对网络配置表的更新。
在一实施例中,当光伏系统中的节点被更换,说明现网配置表与网络配置表中的DSN均不相同,因此需要将现网配置表导入网络配置表以实现对网络配置表的更新。
可以理解的是,现网配置表与网络配置表中的DSN均不相同可能为更换了一个全新的CSU设备,或者更换了一个利旧的CSU设备。
参照图9,图9是对图8中步骤S820的进一步说明,步骤S820包括但不限于步骤S821至步骤S824。
需要说明的是步骤S821至步骤S824采用轮流输出核对法对新增节点进行判断。
步骤S821:获取新增节点的序列号。
步骤S822:向光伏系统中的各个节点广播带有新增节点的序列号的序列指令,并接收光 伏系统中的各个节点根据序列指令输出的电流值。
步骤S823:将广播中输出相同电流值的节点划分为一组,得到光伏系统中包括新增节点的序列号的新增分组信息。
步骤S824:将新增分组信息与网络配置表进行合并。
步骤S825:根据网络配置表和新增分组信息确定新增节点的配置信息,将配置信息添加至合并后的网络配置表。
在一实施例中,向光伏系统中的各个节点广播带有新增节点的序列号的序列指令,指示光伏系统中仅新增节点的序列号的节点开启功率输出,其余光伏单元关闭功率输出,从而接收光伏系统中的各个节点根据序列指令输出的电流值,并将广播中输出相同电流值的节点划分为一组,得到光伏系统中包括新增节点的序列号的新增分组信息,便于后续进行分组合并,将新增分组信息与网络配置表进行合并,最后根据网络配置表和新增分组信息确定新增节点的配置信息,将配置信息添加至合并后的网络配置表,完成对新增节点的配置信息的同步,实现对网络配置表的更新。
参照图10,图10是对图9中步骤S824的进一步说明,步骤S824包括但不限于步骤S8240至步骤S8241。
步骤S8240:当新增分组信息中的光伏汇流箱的序列号和协议转换单元的序列号与网络配置表中其中一组的光伏汇流箱的序列号和协议转换单元的序列号相匹配,将新增节点归属到网络配置表中匹配到的组别,并将组别中的网络标识分配至新增节点。
在一实施例中,当新增分组信息中的光伏汇流箱的序列号和协议转换单元的序列号与网络配置表中其中一组的光伏汇流箱的序列号和协议转换单元的序列号相匹配,说明新增节点属于网络配置表中的一个组别,则可以直接将新增分组信息与网络配置表进行合并,并将同一组中节点的网络标识分配给新增节点即可,从而完成对新增节点的同组识别与节点信息配置。
步骤S8241:当新增分组信息中的光伏汇流箱的序列号和协议转换单元的序列号与网络配置表中所有组别的光伏汇流箱的序列号和协议转换单元的序列号不匹配,根据新增分组信息建立新增配置表,并将新增配置表与网络配置表进行合并。
在一实施例中,当新增分组信息中的光伏汇流箱的序列号和协议转换单元的序列号与网络配置表中所有组别的光伏汇流箱的序列号和协议转换单元的序列号不匹配,说明新增节点不与网络配置表的节点同组,则需要根据新增分组信息建立一个新的新增配置表,并将新增配置表与网络配置表进行合并,完成对新增节点的同组识别与节点信息配置。
可以理解的是,当新增分组信息中的光伏汇流箱的序列号和协议转换单元的序列号与网络配置表中的光伏汇流箱的序列号和协议转换单元的序列号不匹配,可以为新增分组信息中的光伏汇流箱的序列号与网络配置表中的光伏汇流箱的序列号不匹配,或者为新增分组信息中的协议转换单元的序列号与网络配置表中的协议转换单元的序列号不匹配,本实施例不做具体限制。
参照图11,图11是对图9中步骤S700的进一步说明,步骤S700包括但不限于步骤S710至步骤S720。
步骤S710:遍历现网配置表中的序列号与网络配置表中的序列号,得到遍历结果。
步骤S720:根据遍历结果确定光伏系统的节点变动情况。
在一实施例中,对现网配置表中的序列号与网络配置表中的序列号进行遍历,从而判断网络配置表是否发生变化,得到遍历结果,从而根据遍历结果确定光伏系统的节点变动情况,准确判断节点的变动情况。
参照图12,图12是对图11中步骤S720的进一步说明,步骤S720包括但不限于步骤S721至步骤S723。
步骤S721:当遍历结果为现网配置表中的序列号的数量大于网络配置表中的序列号的数量,确定光伏系统中的节点增加。
需要说明的是,当遍历结果为现网配置表中的序列号的数量大于网络配置表中的序列号的数量,则说明用户进行了节点的新增或者扩容等操作。
步骤S722:当遍历结果为现网配置表中的序列号的数量小于网络配置表中的序列号的数量,确定光伏系统中的节点减少。
需要说明的是,当遍历结果为现网配置表中的序列号的数量小于网络配置表中的序列号的数量,则说明用户进行了节点的删除、退服等操作。
步骤S723:当遍历结果为现网配置表中的序列号的信息与网络配置表中的序列号的信息完全不一致,确定光伏系统中的节点被更换。
需要说明的是,当遍历结果为现网配置表中的序列号的信息与网络配置表中的序列号的信息完全不一致,则确定光伏系统中的节点被更换成全新的节点或者更换成利旧的节点。
在一实施例中,当遍历结果为现网配置表中的序列号的数量和信息与网络配置表中的序列号的信息和数量相同,则说明网络配置表无变化,无需进行更新操作。
参照图13,图13是本申请另一实施例提供的光伏系统的配置方法的流程图,该光伏系统的配置方法包括但不限于步骤S1000-S5000。
需要说明的是,步骤S1000至步骤S5000采用设备主动告知法进行新增节点的判断。
步骤S1000:在光伏系统新增光伏单元或者光伏汇流箱作为节点的情况下,接收新增设备发送的加入请求。
需要说明的是,加入请求携带新增设备的序列号。
步骤S2000:向光伏系统中广播带有新增设备的序列号的序列指令,并接收光伏系统中的各个节点根据序列指令输出的电流值。
步骤S3000:将广播中输出相同电流值的节点划分为一组,得到光伏系统中包括新增设备的序列号的设备分组信息。
步骤S4000:将设备分组信息与网络配置表进行合并。
步骤S5000:根据网络配置表和设备分组信息确定新增设备的配置信息,将配置信息添加至合并后的网络配置表。
在一实施例中,当在光伏系统新增光伏单元或者光伏汇流箱作为节点的情况下,新增设备主动广播告知CSU或SPCU加入请求,CSU接收新增设备发送的加入请求,并向光伏系统中广播带有新增设备的序列号的序列指令,接收光伏系统中的各个节点根据序列指令输出的电流值,再将广播中输出相同电流值的节点划分为一组,得到光伏系统中包括新增设备的序列号的设备分组信息,最后将设备分组信息与网络配置表进行合并,根据网络配置表和设备分组信息确定新增设备的配置信息,将配置信息添加至合并后的网络配置表,从而实现对新增设备以及网络配置表的更新。
参照图14,图14是对图13中步骤S4000的进一步说明,步骤S4000包括但不限于步骤S4100至步骤S4200。
步骤S4100:当设备分组信息中的光伏汇流箱的序列号和协议转换单元的序列号与网络配置表中其中一组的光伏汇流箱的序列号和协议转换单元的序列号相匹配,将新增设备归属到网络配置表中匹配到的组别,并将组别中的网络标识分配至新增设备。
在一实施例中,当设备分组信息中的光伏汇流箱的序列号和协议转换单元的序列号与网络配置表中其中一组的光伏汇流箱的序列号和协议转换单元的序列号相匹配,说明新增设备与网络配置表中的节点处于同组,因此将新增设备归属到网络配置表中匹配到的组别,并将分组信息中的网络标识分配至新增设备,实现对新增设备的更新。
步骤S4200:当设备分组信息中的光伏汇流箱的序列号和协议转换单元的序列号与网络配置表中所有组别的光伏汇流箱的序列号和协议转换单元的序列号不匹配,根据设备分组信息建立新增设备表,并将新增设备表与网络配置表进行合并。
在一实施例中,当设备分组信息中的光伏汇流箱的序列号和协议转换单元的序列号与网络配置表中所有组别的光伏汇流箱的序列号和协议转换单元的序列号不匹配,说明新增设备不与网络配置表的节点同组,根据设备分组信息建立新增设备表,并将新增设备表与网络配置表进行合并,实现对新增设备的更新。
可以理解的是,设备分组信息中的光伏汇流箱的序列号和协议转换单元的序列号与网络配置表中的光伏汇流箱的序列号和协议转换单元的序列号不匹配,可以为光伏汇流箱的序列号和协议转换单元的序列号任意一个序列号不一致,本实施例不做具体限制。
为了更加清楚的说明光伏系统的配置方法的流程,下面以具体的示例进行说明。
示例一:
示例一展示了生成各节点的节点配置表以及网络配置表后,光伏系统进行系统管理的具体过程。
配置生成:配置的生成遵循一定规则。PanId定义为8位分组编号,有效范围为1-254,可对应到SPCU的物理槽位位置。PanAddr定义为16位地址,其中高8位地址为所在组PanId,低8位地址为组内节点编号:低8位数值1-254表示1-254个SPU,数值0表示PCB,数值255表示SPCU。
配置保存:所有节点都会本地保存自身节点配置表;同时,作为主节点,还会保存所属全部从节点的配置信息。比如,SPCU作为组内主节点,同时保存了组内所有从节点(SPU和PCB)的配置;对于CSU而言,虽无自身PLC配置信息,但作为系统集中管理者,需要保存系统中所有PLC节点(SPU、PCB和SPCU)的配置信息。
配置同步:各层级所有节点配置信息必须保持一致,例如,以DSN为索引。并且光伏系统支持自顶向下和自下而上的两种同步机制:
-(1)自顶向下:先在网管软件或CSU上完成分组配置,得到系统网络配置表;然后,CSU通过CAN/RS485等现场总线、把各分组配置表信息分发给各SPCU;SPCU再通过PLC网络、以广播方式,例如,以DSN为索引,给SPU、PCB等节点下发各节点配置信息;
-(2)自下而上:即网络自动发现技术。所有全新设备,出厂时节点配置表中只有DSN信息,其他信息初始内容空白。新设备接入到通讯网络后,主动以广播方式,告知自身DSN,向系统申请配置。上级主节点收到该申请后,告知CSU生成该节点的配置信息,并添加和完 善到网络配置表中;
-(3)周期扫描:CSU周期性的通过各SPCU、广播下发扫描命令;各节点收到该命令后,广播回应其自身的DSN、PanId和PanAddr等配置信息;各SPCU收到回应信息汇总给CSU,由CSU生成现网配置表;CSU对比现网表和本地保存的网络配置表的差异,可以识别出新节点的增加或减少等情况,然后再进行网络配置的更新。
示例二:
示例二为光伏系统自动识别和更新的具体过程。
当对CSU设备或者节点进行更换,需执行如下步骤:
-步骤1:CSU上电运行;
-步骤2:读取本地保存的网络配置表;
-步骤3:读取各SPCU的配置表信息,并进行合并,得到现网配置表;
-步骤4:对网络配置表和现网配置表进行对比;
-步骤5:配置变更的识别:如果网络配置表内容为空、表示更换了一个全新CSU,或者两个表中的DSN都不同、表示更换了一个利旧CSU;
-步骤6:配置自动更新:针对上步骤的两种情况,直接把现网配置表信息导入到网络配置表中,就完成了配置自动更新。
当对SPCU、PCB节点或者设备进行更换,则需执行如下步骤:
-步骤1:节点设备上电运行;
-步骤2:节点设备读取本地保存的节点配置表;
-步骤3:CSU和所有SPCU正常运行轮询和管理业务;
-步骤4:如SPCU或CSU接收到主动广播告知消息,表示网络中有全新PLC节点设备加入,置位“网络配置须更新”标识,并跳转到步骤7;
需要说明的是,全新节点设备出厂时配置信息不全只有DSN,接入网络后,会主动广播告知自身DSN,向系统申请配置,故此可以判断出是否有全新设备的加入。
-步骤5:如CSU轮询SPCU时发现DSN发生了改变,例如,和本地配置总表内容不一致,表示网络中有SPCU被利旧更换,同样置位“网络配置须更新”标识;然后跳转到步骤7;
-步骤6:如SPCU轮询PCB时,发现PCB无回应、或者有回应但DSN发生改变,表示网络中有PCB被利旧更换或者盗失,同样置位“网络配置须更新”标识;
-步骤7:如CSU上设定的定时扫描周期到达、或者“网络配置须更新”标识被置位,则执行查询现网配置流程,得到现网配置表;否则结束运行;
-步骤8:对比现网配置表和本地配置总表,如果两个表中DSN信息完全相同,则表示网络设备无变化,结束运行;
-步骤9:运行“轮流输出核对法”,进行同组识别;
-步骤10:网络配置表更新:各SPCU把同组识别信息,上传给CSU汇总和参考,由CSU对本地保存的网络配置表进行更新,更新原则同样以设备DSN为索引:
-(1)选择第一个设备DSN,开始遍历比较现网配置表和网络配置表中所有配置项;
-(2)原有DSN设备:即DSN在现网配置表和网络配置表都存在。此时,维持网络配置表中配置信息不变;
-(3)新增DSN设备:当某原有设备处于同组(其含义表示新设备是更换、或在同组内 新增扩容),则把原有设备的PanId等组信息复制给新设备;当没有和原有设备同组的(其含义表示:用户对系统扩容了新的一组子系统);需要新增一个分组配置表,按照配置生成规则、生成新的设备配置信息,并增加到配置总表中;
-(4)减少DSN设备:CSU主动告警和通知用户,再根据用户是否介入处理,来决定是否从本地配置表中删除该DSN节点设备;如果用户一段时间内未介入处理,系统自动删除该DSN节点设备的配置信息;
-步骤11:同步:CSU完成网络配置表的更新后,按照自顶向下的原则,依次对SPCU、PCB、SPU各层设备进行配置信息的同步更新。
在一实施例中,通过网络扫描,可以查询得到现网配置表,比较现网配置表和网络配置表的差异,就可以实现网络变化的自动识别,并且采用轮流输出核对法,就是以DSN为索引、轮流指定每个SPU设备单独输出电流,并在PCB、SPCU上进行核对,可以非常简单而巧妙地实现自动的同组识别,对于网络中新增的设备,可以通过同组关系和配置生成规则,在网络配置表中自动增加该设备的配置信息,实现网络的自动更新。
示例三:
光伏系统中SPU、PCB以及SPCU都携带有不同的节点配置表,具体的节点配置表信息如下。
参考图15,图15为本申请一个具体示例提供的节点配置表的示意图。
在一实施例中,SPU节点配置表包括本节点的DSN、PanId、PanAddr,及PVSN(Photovoltaic array Serial Number,光伏阵列序列号)和PVM(Photovoltaic array Matrix,光伏阵列坐标)等布局信息。
需要说明的是,PVSN为光伏阵列区域的标识码,PVM用于表征光伏组件在阵列中的坐标位置标识。
参考图16,图16为本申请一个具体示例提供的节点配置表的示意图。
在一实施例中,PCB节点配置表包括本节点的DSN、PanId、PanAddr,可选安装位置信息。
参考图17,图17为本申请一个具体示例提供的节点配置表的示意图。
在一实施例中,SPCU节点配置表包括本节点的DSN、PanId、PanAddr,可选安装位置信息。
另外,参照图18所示,本申请的一个实施例还提供了一种集中管理单元,该集中管理单元500包括存储器210、处理器220及存储在存储器210上并可在处理器220上运行的计算机程序。
处理器220和存储器210可以通过总线或者其他方式连接。
存储器210作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器210可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器210可选包括相对于处理器220远程设置的存储器,这些远程存储器可以通过网络连接至该处理器220。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例提供的光伏系统的配置方法,至少具有如下有益效果:首先,获取光伏单元的序列号,并每次选择一个光伏单元的序列号作为目标序列号,向光伏系统中的各节点广 播携带目标序列号的序列指令,从而使得各光伏单元根据自身的序列号与目标序列号进行对比,开启与目标序列号对应的光伏单元,并关闭其他光伏单元,之后接收光伏系统中的各个节点根据序列指令输出的电流值,直到遍历全部光伏单元的序列号,避免出现光伏单元遗漏的问题,最后将每次广播中输出相同电流值的光伏单元、光伏汇流箱和协议转换单元分为一组,得到光伏系统中的所有节点的分组信息,从而实现对光伏系统的精准分组。
以上所描述的实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个集中管理单元或控制器执行,例如,被上述设备实施例中的一个集中管理单元执行,可使得上述集中管理单元执行上述实施例中的光伏系统的配置方法。
此外,本申请的一个实施例还提供了一种计算机程序产品,包括计算机程序或计算机指令,计算机程序或计算机指令存储在计算机可读存储介质中,计算机设备的集中管理单元从计算机可读存储介质读取计算机程序或计算机指令,集中管理单元执行计算机程序或计算机指令,使得计算机设备执行如前面任意实施例的光伏系统的配置方法。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由集中管理单元,如中央集中管理单元、数字信号集中管理单元或微集中管理单元执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (15)

  1. 一种光伏系统的配置方法,其中,所述光伏系统包括作为节点进行组网的光伏单元、光伏汇流箱和协议转换单元,所述配置方法包括:
    获取所述光伏单元的序列号;
    每次选择一个所述光伏单元的序列号作为目标序列号,向所述光伏系统中的节点广播带有所述目标序列号的序列指令,并接收所述光伏系统中的各个节点根据所述序列指令输出的电流值,直到遍历全部所述光伏单元的序列号,其中,所述序列指令用于指示所述光伏系统中仅所述目标序列号的所述光伏单元开启功率输出;
    将每次广播中输出相同电流值的所述光伏单元、所述光伏汇流箱和所述协议转换单元划分为一组,得到所述光伏系统中所有节点的分组信息。
  2. 根据权利要求1所述的光伏系统的配置方法,其中,所述获取所述光伏单元的序列号,包括:
    接收所述协议转换单元发送的反馈信息,其中,所述反馈信息由所述协议转换单元对所述光伏单元的序列号、所述光伏汇流箱的序列号和所述协议转换单元的序列号进行汇总得到;
    根据所述光伏单元的序列号对所述反馈信息进行去重。
  3. 根据权利要求1所述的光伏系统的配置方法,其中,所述将每次广播中输出相同电流值的所述光伏单元、所述光伏汇流箱和所述协议转换单元划分为一组,得到所述光伏系统中所有节点的分组信息,包括:
    将每次广播中输出相同电流值的所述光伏单元、所述光伏汇流箱和所述协议转换单元划分为一组,得到多组同组信息;
    根据所述光伏汇流箱的序列号和所述协议转换单元的序列号对多组所述同组信息进行合并,得到所述分组信息。
  4. 根据权利要求1所述的光伏系统的配置方法,还包括:
    根据所述分组信息生成网络配置表,并根据所述网络配置表向所述协议转换单元分发所述光伏单元、所述光伏汇流箱和所述协议转换单元对应的配置信息。
  5. 根据权利要求4所述的光伏系统的配置方法,其中,所述根据所述分组信息生成网络配置表,包括:
    向所述分组信息中的所有节点分配网络标识和网络地址,其中,所述网络标识用于表征所述光伏单元、所述光伏汇流箱和所述协议转换单元位于同一组,所述网络地址用于表征同一组内的不同节点的标识;
    根据所述网络标识和所述网络地址生成各个节点的节点配置表;
    根据所述分组信息和所述节点配置表生成所述网络配置表。
  6. 根据权利要求4所述的光伏系统的配置方法,其中,所述根据所述分组信息生成网络配置表,并根据所述网络配置表向所述协议转换单元分发所述光伏单元、所述光伏汇流箱和所述协议转换单元对应的配置信息之后,还包括:
    向所述协议转换单元发送扫描命令,以使所述协议转换单元对各节点的配置信息进行汇总,生成配置表信息;
    接收所述配置表信息并对所述配置表信息进行汇总,生成现网配置表;
    将所述现网配置表与所述网络配置表进行对比,得到所述光伏系统的节点变动情况;
    根据所述光伏系统的节点变动情况更新所述网络配置表。
  7. 根据权利要求6所述的光伏系统的配置方法,其中,所述根据所述光伏系统的节点变动情况更新所述网络配置表,包括:
    当所述光伏系统中的节点减少,从所述网络配置表中删除所述节点的配置信息或者根据所述现网配置表替换所述网络配置表;
    当所述光伏系统中的节点增加,增加所述节点的配置信息至所述网络配置表;
    当所述光伏系统中的节点被更换,将所述现网配置表导入所述网络配置表以实现对所述网络配置表的更新。
  8. 根据权利要求7所述的光伏系统的配置方法,其中,所述增加所述节点的所述配置信息至所述网络配置表,包括:
    获取新增节点的序列号;
    向所述光伏系统中的各个节点广播带有所述新增节点的序列号的所述序列指令,并接收所述光伏系统中的各个节点根据所述序列指令输出的电流值;
    将广播中输出相同电流值的节点划分为一组,得到所述光伏系统中包括所述新增节点的序列号的新增分组信息;
    将所述新增分组信息与所述网络配置表进行合并;
    根据所述网络配置表和所述新增分组信息确定所述新增节点的配置信息,将所述配置信息添加至合并后的所述网络配置表。
  9. 根据权利要求8所述的光伏系统的配置方法,其中,所述将所述新增分组信息与所述网络配置表进行合并,包括:
    当所述新增分组信息中的所述光伏汇流箱的序列号和所述协议转换单元的序列号与所述网络配置表中其中一组的所述光伏汇流箱的序列号和所述协议转换单元的序列号相匹配,将所述新增节点归属到所述网络配置表中匹配到的组别,并将所述组别中的网络标识分配至所述新增节点;
    当所述新增分组信息中的所述光伏汇流箱的序列号和所述协议转换单元的序列号与所述网络配置表中所有组别的所述光伏汇流箱的序列号和所述协议转换单元的序列号不匹配,根据所述新增分组信息建立新增配置表,并将所述新增配置表与所述网络配置表进行合并。
  10. 根据权利要求6所述的光伏系统的配置方法,其中,所述将所述现网配置表与所述网络配置表进行对比,包括:
    遍历所述现网配置表中的序列号与所述网络配置表中的序列号,得到遍历结果;
    根据所述遍历结果确定所述光伏系统的节点变动情况。
  11. 根据权利要求10所述的光伏系统的配置方法,其中,所述根据所述遍历结果确定所述光伏系统的节点变动情况,包括:
    当所述遍历结果为所述现网配置表中的序列号的数量大于所述网络配置表中的序列号的数量,确定所述光伏系统中的节点增加;
    当所述遍历结果为所述现网配置表中的序列号的数量小于所述网络配置表中的序列号的数量,确定所述光伏系统中的节点减少;
    当所述遍历结果为所述现网配置表中的序列号的信息与所述网络配置表中的序列号的信 息完全不一致,确定所述光伏系统中的节点被更换。
  12. 根据权利要求1所述的光伏系统的配置方法,还包括:
    在所述光伏系统新增所述光伏单元或者所述光伏汇流箱作为节点的情况下,接收新增设备发送的加入请求,其中,所述加入请求携带所述新增设备的序列号;
    向所述光伏系统中广播带有所述新增设备的序列号的所述序列指令,并接收所述光伏系统中的各个节点根据所述序列指令输出的电流值;
    将广播中输出相同电流值的节点划分为一组,得到所述光伏系统中包括所述新增设备的序列号的设备分组信息;
    将所述设备分组信息与所述网络配置表进行合并;
    根据所述网络配置表和所述设备分组信息确定所述新增设备的配置信息,将所述配置信息添加至合并后的所述网络配置表。
  13. 根据权利要求12所述的光伏系统的配置方法,其中,所述将所述设备分组信息与所述网络配置表进行合并,包括:
    当所述设备分组信息中的所述光伏汇流箱的序列号和所述协议转换单元的序列号与所述网络配置表中其中一组的所述光伏汇流箱的序列号和所述协议转换单元的序列号相匹配,将所述新增设备归属到所述网络配置表中匹配到的组别,并将所述组别中的网络标识分配至所述新增设备;
    当所述设备分组信息中的所述光伏汇流箱的序列号和所述协议转换单元的序列号与所述网络配置表中所有组别的所述光伏汇流箱的序列号和所述协议转换单元的序列号不匹配,根据所述设备分组信息建立新增设备表,并将所述新增设备表与所述网络配置表进行合并。
  14. 一种集中管理单元,包括至少一个处理器和用于与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至13中任意一项所述的光伏系统的配置方法。
  15. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于使计算机执行如权利要求1至13任意一项所述的光伏系统的配置方法。
PCT/CN2023/100794 2022-06-21 2023-06-16 光伏系统的配置方法、集中管理单元及存储介质 WO2023246658A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210703649.4 2022-06-21
CN202210703649.4A CN116264545B (zh) 2022-06-21 2022-06-21 光伏系统的配置方法、集中管理单元及存储介质

Publications (1)

Publication Number Publication Date
WO2023246658A1 true WO2023246658A1 (zh) 2023-12-28

Family

ID=86722804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100794 WO2023246658A1 (zh) 2022-06-21 2023-06-16 光伏系统的配置方法、集中管理单元及存储介质

Country Status (2)

Country Link
CN (1) CN116264545B (zh)
WO (1) WO2023246658A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825548A (zh) * 2014-03-05 2014-05-28 中国华能集团清洁能源技术研究院有限公司 高效的光伏组件和光伏发电系统
CN203660988U (zh) * 2013-12-20 2014-06-18 北京科诺伟业科技股份有限公司 便携式光伏组件匹配测试仪
CN106712096A (zh) * 2017-02-08 2017-05-24 浙江佳明天和缘光伏科技有限公司 一种基于组串线缆通讯以及单点电流检测的光伏发电监控系统
CN108494365A (zh) * 2018-05-30 2018-09-04 福州大学 一种光伏组件及组件串在线失配监测系统
US20190131793A1 (en) * 2017-10-26 2019-05-02 Sungrow Power Supply Co., Ltd. Communication Host And Photovoltaic Power Generation System

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101432017B1 (ko) * 2013-05-07 2014-08-22 (주) 주암전기통신 태양 광 모듈 접속제어 장치
CN107769250B (zh) * 2017-11-07 2019-12-17 华为数字技术(苏州)有限公司 物理地址确定方法、装置、设备及存储介质
CN110780115B (zh) * 2019-11-14 2022-04-08 阳光新能源开发股份有限公司 一种光伏组件发电量计算方法及装置
CN115085253B (zh) * 2020-01-08 2024-06-11 华为数字能源技术有限公司 控制器的位置信息获取方法及装置
CN111404480B (zh) * 2020-03-17 2021-09-14 华为技术有限公司 光伏系统、光伏单元的分组方法、计算设备及存储介质
CN112332669B (zh) * 2020-11-11 2022-05-24 阳光电源股份有限公司 一种mlpe光伏系统及其光伏组串控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203660988U (zh) * 2013-12-20 2014-06-18 北京科诺伟业科技股份有限公司 便携式光伏组件匹配测试仪
CN103825548A (zh) * 2014-03-05 2014-05-28 中国华能集团清洁能源技术研究院有限公司 高效的光伏组件和光伏发电系统
CN106712096A (zh) * 2017-02-08 2017-05-24 浙江佳明天和缘光伏科技有限公司 一种基于组串线缆通讯以及单点电流检测的光伏发电监控系统
US20190131793A1 (en) * 2017-10-26 2019-05-02 Sungrow Power Supply Co., Ltd. Communication Host And Photovoltaic Power Generation System
CN108494365A (zh) * 2018-05-30 2018-09-04 福州大学 一种光伏组件及组件串在线失配监测系统

Also Published As

Publication number Publication date
CN116264545A (zh) 2023-06-16
CN116264545B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
US9804626B2 (en) Application topology recognition method for distribution networks
WO2022037322A1 (zh) 一种家庭组网网络拓扑管理的系统和方法
US8195764B2 (en) Information delivery system, delivery request program, transfer program, delivery program, and the like
CN102970328B (zh) 电力行业典型生产系统数据在线迁移方法
CN103248725A (zh) 一种安全可靠的域名解析修复方法和系统
CN101951369A (zh) 基于自动发现的终端批量升级方法及其系统
EP3817290A1 (en) Member change method for distributed system, and distributed system
EP3174318A1 (en) Method for realizing resource attribute notification, and common service entity
CN110213359B (zh) 一种基于d2d的车联网组网数据推送系统和方法
CN114978922B (zh) 一种动态拓扑数据采集方法
WO2023246658A1 (zh) 光伏系统的配置方法、集中管理单元及存储介质
CN110022222B (zh) 一种dht网络的管理方法、网络节点、管理节点及系统
CN113612632A (zh) 应用于网关设备的拓扑识别方法、装置、网关设备和介质
CN110855627B (zh) 应用部署方法、装置、设备及介质
CN115835370A (zh) 智能设备的配网方法、装置、设备以及介质
CN112072795B (zh) 配电物联网中压设备在scada主站即插即用实现方法
CN102984296B (zh) 一种网络地址配置及网络合并的方法
CN105740180A (zh) Usb设备的虚拟机接入方法和装置
CN113132988A (zh) 一种基于令牌验证的路灯控制器无线组网链路入网方法
CN110830312A (zh) 一种用于泛在物联网端设备的拓扑识别方法及装置
CN106789288B (zh) 一种为交换机智能配置不冲突静态网络管理地址的方法
CN112306720B (zh) 业务系统集群管理方法
CN111917826A (zh) 一种基于区块链知识产权保护的pbft共识算法
CN117082106B (zh) 面向政务云环境的多级数据组网方法、系统、装置和设备
CN111107005B (zh) 路由过滤方法、装置、电子设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826307

Country of ref document: EP

Kind code of ref document: A1