WO2023246460A1 - 冲击工具 - Google Patents

冲击工具 Download PDF

Info

Publication number
WO2023246460A1
WO2023246460A1 PCT/CN2023/097767 CN2023097767W WO2023246460A1 WO 2023246460 A1 WO2023246460 A1 WO 2023246460A1 CN 2023097767 W CN2023097767 W CN 2023097767W WO 2023246460 A1 WO2023246460 A1 WO 2023246460A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
operating member
operating
impact tool
impact
Prior art date
Application number
PCT/CN2023/097767
Other languages
English (en)
French (fr)
Inventor
刘龙翔
吴勇慷
Original Assignee
南京泉峰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京泉峰科技有限公司 filed Critical 南京泉峰科技有限公司
Publication of WO2023246460A1 publication Critical patent/WO2023246460A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • the present application relates to power tools, for example to an impact tool.
  • the impact tool has an impact structure.
  • the impact hammer and anvil engage with each other, and the impact tool rotates normally. If it is a heavy load situation, the impact hammer will rotate along the main axis and move back and forth, hitting the hammer anvil intermittently to output impact force. Due to the aging of the machine or other reasons, the impact tool may not start when the trigger is pressed, resulting in the impact tool being unable to output work.
  • This application provides an impact tool that provides a good user experience when using it.
  • an impact tool including: a motor, including a drive shaft that rotates around a first axis; an output shaft, used to output torque to the outside to operate a fastener; the output shaft rotates with the output axis as a rotating axis; and an impact mechanism, used for Apply impact force to the output shaft;
  • the controller is used to control the motor;
  • the operating part is used to receive the user's operating instructions;
  • the motor starts or stops according to the operating instructions;
  • the controller is configured to: when the impact tool is shut down, according to the operating part
  • the status information determines that the operating part is activated, determines that the motor has not been started according to the running status of the motor, and sends a start signal to the motor; after sending the start signal to the motor, it determines that the motor is started based on the running status of the motor, and stops sending signals to the motor. Start signal.
  • the controller is configured to obtain the operating status of the motor after sending the start signal to the motor. According to the running status of the motor, it is determined that the motor is not started, and the status information of the operating part is obtained again.
  • the controller is configured to: after determining that the motor is started according to the operating state of the motor and stopping sending a start signal to the motor, continue to obtain the operating state of the motor. Optionally, when the motor stops again, return to execution to obtain the status information of the operating part.
  • the impact tool is shut down, including: the motor is in an initial shutdown state, and the motor is not started when the operating member is activated, so that the impact tool is shut down.
  • the controller is configured to: obtain status information of the operating member when the motor is in an initial shutdown state and the operating member is activated and the motor is not started.
  • a start signal is sent to the motor.
  • the controller After sending the start signal to the motor, obtain the operating status of the motor, and after determining that the motor is started according to the operating status of the motor, stop sending the start signal to the motor.
  • the impact tool is stopped, including: after the operating member is activated and the motor is started, the motor is stopped again to cause the impact tool to be stopped.
  • the controller is configured to obtain status information of the operating member when the operating member is activated and the motor is started and then the motor is stopped again.
  • a start signal is sent to the motor.
  • the controller After sending the start signal to the motor, obtain the operating status of the motor, and after determining that the motor is started according to the operating status of the motor, stop sending the start signal to the motor.
  • the impact tool is shut down, including: the motor is in an initial shutdown state, the motor is not started when the operating member is activated to cause the impact tool to stop, and after the operating member is activated and the motor is started, the motor is stopped again to cause the impact tool to stop. The tool is down.
  • the operating member is connected to the switch, the operating member is communicated by the activation switch, and the motor is energized based on the switch communication.
  • the impact tool further includes a detection mechanism for detecting the status of the operating member and the working status of the motor.
  • the working state of the motor is characterized by one or more of the motor's rotational speed, working current, working voltage, and commutation time.
  • the operating member is connected to the sliding rheostat, and if the state of the operating member is different, the output signal of the sliding rheostat is different.
  • the impact mechanism includes: a main shaft driven by a motor, an impact block sleeved on the main shaft, and an anvil disposed at the front end of the impact block and receiving strikes from the impact block.
  • the impact tool also includes a DC power supply that powers the motor.
  • the operating member is in an activated state when it is operated and is in an inactivated state when it is released.
  • An impact tool includes: a motor, including a drive shaft that rotates around a first axis; an output shaft, used to output torque to the outside to operate a fastener; the output shaft rotates with the output axis as a rotating axis; and an impact mechanism, used to impact the output shaft Apply impact force; the controller is used to control the motor; the operating part is used to receive the user's operating instructions; the motor starts or stops according to the operating instructions; wherein, the controller is configured to: when the operating part receives the starting operating instructions and the motor does not When in the start state, the controller continues to send a start signal to the motor until the motor starts.
  • An impact tool includes: a motor, including a drive shaft that rotates around a first axis; an output shaft, used to output torque to the outside to operate a fastener; the output shaft rotates with the output axis as a rotating axis; and an impact mechanism, used to impact the output shaft Apply impact force; the controller is used to control the motor; the operating part is used to receive the user's operating instructions; the motor starts or stops according to the operating instructions; the controller is configured such that when the motor is in the initial shutdown state, the operating part receives the start operation When the command is issued and the motor is not in the starting state, the start signal is sent to the motor; when it is determined that the motor is started based on the motor's operating status, the start signal is stopped to the motor.
  • a motor including a drive shaft that rotates around a first axis; an output shaft, used to output torque to the outside to operate a fastener; the output shaft rotates with the output axis as a rotating axis; and an impact mechanism, used to
  • the operating status of the motor is obtained, it is determined that the motor is not started based on the operating status of the motor, and the status information of the operating member is obtained.
  • the operating member is connected to the switch, the switch is connected when the operating member receives the start operation instruction, and the motor is energized based on the switch connection.
  • Figure 1 is a schematic structural diagram of an impact tool provided by an embodiment of the present application.
  • Figure 2 is a schematic cross-sectional view of the structure of an impact tool provided by an embodiment of the present application
  • FIG. 3 is a circuit block diagram of an impact tool provided by an embodiment of the present application.
  • Figure 4 is a flow chart of a control method for an impact tool provided by an embodiment of the present application.
  • Figure 5 is a flow chart of another control method of an impact tool provided by an embodiment of the present application.
  • Figure 6 is a flow chart of a third method for controlling an impact tool provided by an embodiment of the present application.
  • Figure 7 is a flow chart of a fourth impact tool control method provided by an embodiment of the present application.
  • Figure 8 is a flow chart of a fifth impact tool control method provided by an embodiment of the present application.
  • the impact tool is an impact wrench 100 . It can be understood that in other alternative embodiments, the impact tool can be equipped with different working accessories. Through these different working accessories, the impact tool can be, for example, an impact drill, an impact screwdriver, etc.
  • Impact wrench 100 includes a power supply device.
  • the power supply device is a DC power supply 30 .
  • the DC power supply 30 is used to provide electric energy to the impact wrench 100 .
  • the DC power supply 30 is a battery pack, and the battery pack cooperates with the corresponding power circuit to power the impact wrench 100 .
  • the power supply device can use DC power supply, or can also supply power to corresponding components in the machine through mains power, AC power supply, and corresponding rectification, filtering, and voltage regulation circuits.
  • the impact wrench 100 includes a housing 11 , a motor 12 , an output mechanism 13 , a transmission mechanism 14 and an impact mechanism 15 .
  • the motor 12 includes a drive shaft 121 that rotates around the first axis 101 .
  • the motor 12 is specifically configured as a motor. In the following, the motor 12 will be used instead of the motor, and the motor shaft 121 will be used instead of the drive shaft.
  • the output mechanism 13 includes an output shaft 131 for connecting the working accessory and driving the working accessory to rotate.
  • the front end of the output shaft 131 is provided with a clamping component 132, which can clamp corresponding working accessories when realizing different functions, such as Such as screwdrivers, drill bits, sockets, etc.
  • the output shaft 131 is used to output torque to the outside to operate fasteners.
  • the output shaft 131 rotates around the output axis.
  • the output axis is the second axis 102 .
  • the first axis 101 and the second axis 102 coincide.
  • the second axis 102 and the first axis 101 are arranged at a certain angle.
  • the first axis 101 and the second axis 102 are arranged parallel to but not coincident with each other.
  • the impact mechanism 15 is used to apply impact force to the output shaft 131 .
  • the impact mechanism 15 includes a main shaft 151, an impact block 152 sleeved on the outer periphery of the main shaft 151, an anvil 153 and an elastic element 154 provided at the front end of the impact block 152.
  • the anvil 153 is connected to the output shaft 131 .
  • the hammer anvil 153 includes an anvil base, and the output shaft 131 is formed at the front end of the anvil base. It can be understood that the anvil and the output shaft 131 may be integrally formed or formed as separate independent parts.
  • the impact block 152 includes an impact block body and a pair of first end teeth radially symmetrically protruding from the front end surface of the impact block body. A pair of second end teeth are provided on radially symmetrical protrusions on the rear end surface of the anvil that is opposite to the impact block.
  • the impact block 152 is driven by the main shaft 151, and the hammer anvil 153 cooperates with the impact block 152 and is struck by it.
  • the impact block 152 is supported on the main shaft 151 and rotates integrally with the main shaft 151, and can slide back and forth relative to the main shaft 151 in the axial direction of the main shaft.
  • the axis of the spindle coincides with the first axis 101 . Therefore, the impact block 152 reciprocally slides and rotates relative to the main shaft 151 along the first axis 101 direction.
  • the axis of the spindle may be parallel to but not coincident with the first axis 101 .
  • the elastic element 154 provides a force for the impact block 152 to approach the anvil 153 .
  • the elastic element 154 is a coil spring.
  • the housing 11 includes a motor housing 111 for accommodating the motor 12 and an output housing 112 for accommodating at least part of the output assembly 13.
  • the output housing 112 is connected to the front end of the motor housing 111.
  • the housing 11 is also formed with or connected to a holding portion 113 for user operation.
  • the holding part 113 and the motor housing 112 form a T-shaped or L-shaped structure, which is convenient for the user to hold and operate.
  • the power supply device 30 is connected to one end of the holding portion 113 .
  • the motor 12, the transmission component 14, the impact component 15, and the output component 13 are arranged sequentially in the motor housing 111 and the output housing 112 along the front and rear directions.
  • the transmission mechanism 14 is provided between the motor 12 and the impact mechanism 15 for transmitting power between the motor shaft 121 and the main shaft 151 .
  • the transmission mechanism 14 adopts planetary gear reduction. Because the working principle of planetary gear reduction and the reduction produced by this transmission mechanism have been fully disclosed to those skilled in the art, a detailed description is omitted here for the purpose of conciseness.
  • the motor 12 includes a stator winding and a rotor.
  • the motor 12 is a three-phase brushless motor, including a rotor with permanent magnets and electronically commutated three-phase stator windings U, V.W.
  • the three-phase stator windings U, V, and W are connected in a star shape, and in other embodiments, the three-phase stator windings U, V, and W are connected in an angular shape.
  • Brushless motors may include fewer or more than three phases.
  • Impact wrench 100 includes control circuitry.
  • the control circuit includes a drive circuit 171 and a controller 17 .
  • the driving circuit 171 is electrically connected to the stator windings U, V, and W of the motor 12 and is used to transfer the current from the power supply device 30 to the stator windings U, V, and W to drive the motor 12 to rotate.
  • the driving circuit 171 includes a plurality of switching elements Q1, Q2, Q3, Q4, Q5, Q6.
  • the gate terminal of each switching element is electrically connected to the controller 17 for receiving control signals from the controller 17 .
  • the drain or source of each switching element is connected to the stator windings U, V, W of the motor 12 .
  • the switching elements Q1 - Q6 receive control signals from the controller 17 to change their respective conduction states, thereby changing the current loaded by the power supply device 30 on the stator windings U, V, and W of the motor 12 .
  • the driving circuit 171 may include six controllable semiconductor power devices (such as Field Effect Transistor (FET), Bipolar Junction Transistor (BJT), Insulated Gate Bipolar Three-phase bridge driver circuit for transistors (Insulated Gate Bipolar Transistor, IGBT, etc.). It is understood that the above-mentioned switching element can also be any other type of solid-state switch, such as IGBT, BJT, etc.
  • the controller 17 is used to control the motor 12 .
  • the controller 17 is set on a control circuit board, which includes: a printed circuit board (Printed Circuit Board, PCB) and a flexible circuit board (Flexible Printed Circuit, FPC).
  • the controller 17 adopts a dedicated control chip, such as a single-chip microcomputer or a microcontroller unit (Microcontroller Unit, MCU).
  • the controller 17 specifically controls the on or off state of the switching elements in the driving circuit 171 through the control chip.
  • the controller 17 controls the ratio between the on time and the off time of the drive switch based on a pulse width modulation (Pulse Width Modulation, PWM) signal.
  • PWM pulse width modulation
  • the control chip can be integrated into the controller 17, or can be set up independently of the controller 17. The structural relationship between the driver chip and the controller 17 can be set according to the actual situation.
  • the impact wrench 100 also includes a main switch 16 and a switching part 163 .
  • the main switch 16 is provided on the holding portion 113 for user operation.
  • the switching part 163 is provided on the upper side of the main switch 16 and is configured to be operated to set the rotation direction of the motor 12 to the forward rotation direction of tightening the fastener or the reverse rotation direction of loosening the fastener.
  • the main switch 16 is used to control the power-on state of the motor 12 .
  • the main switch 16 includes an operating member 161 and a switching device 162 connected to the operating member.
  • the operating member 161 is used to receive user's operating instructions.
  • the motor 12 starts or stops according to the operating instructions.
  • the operating part 161 is movably coupled to the holding part 113 so that the operating part 161 moves relative to the holding part 113 .
  • the user inputs the operation instruction by pressing and releasing the operating member 161 .
  • the user inputs operating instructions to the operating member 161 through operating actions such as rotation, flipping, or touching.
  • the operating member 161 when the operating member 161 is pressed, the operating member is in an activated state.
  • the operating member is in an activated state, and the switching device 162 is also turned on.
  • the operating member 161 is released, the operating member is in an inactive state and the switching device 162 is deactivated.
  • the operating member 161 is biased (eg, has a biasing member such as a spring) such that when the user releases the operating member 161 , the operating member 161 moves away from the grip 113 . Unless the user presses the operating member 161 and activates the switching device 162, the default state of the switching device 162 is to be deactivated.
  • the switching device 162 includes a sliding varistor. Therefore, the main switch 16 can also adjust the rotation speed of the motor 12 .
  • the rotation speed of the motor 12 is adjusted according to the triggering stroke of the operating member 161 .
  • the triggering stroke of the operating member 161 is different, and the signal output by the sliding rheostat is different.
  • the triggering stroke of the operating member 161 has a positive correlation with the duty cycle of the PWM signal of the motor 12
  • the duty cycle of the PWM signal has a positive correlation with the rotational speed of the motor 12 .
  • the triggering stroke of the trigger switch is small, the duty cycle of the PWM signal is also small. At this time, the rotation speed of the motor 12 is also small.
  • the impact wrench 100 stores a mapping relationship between the trigger stroke of the operating member 161 and the PWM signal, and the mapping relationship may be linear or nonlinear.
  • the impact mechanism 15 plays a transmission role to transmit the rotation of the motor 12 to the output shaft 131.
  • the rotation of the output shaft 131 is blocked.
  • the output shaft 131 may rotate at a reduced speed or may stop rotating completely.
  • the anvil 153 also stops rotating.
  • the impact block 152 Due to the limiting effect of the hammer anvil 153 on the impact block 152 in the circumferential direction, the impact block 152 also stops rotating, but the spindle 151 continues to rotate, which causes the rolling ball 155 to be squeezed and move along the ball track, thereby driving the impact block 152 to produce an edge along the ball path. The rearward displacement of the spindle axis.
  • the elastic element 154 is squeezed until the anvil 153 and the impact block 152 are completely separated.
  • the main shaft 151 drives the impact block 152 to rotate at a certain speed, and the elastic element 154 rebounds in the axial direction.
  • an impact force is exerted on the anvil 153.
  • the controller 17 is configured such that when the operating member 161 receives the starting operation instruction and the motor 12 is not in a starting state, the controller 17 continues to send a starting signal to the motor 12 to start the motor 12 .
  • the controller 17 sends a start signal to the motor 12 .
  • the controller 17 stops sending the start signal to the motor 12. It can automatically restart when the impact wrench 100 is shut down, improving the user experience when using it.
  • the status information of the operating member 161 when the impact tool is stopped and the motor 12 is not in the starting state, the status information of the operating member 161 is first obtained.
  • the status information of the operating member 161 includes receiving a start operation command and not receiving a start operation. instruction.
  • the status information of the operating member 161 includes an activated state in which a start operation instruction is received and an inactivated state in which a start operation instruction is not received.
  • the status information of the operating member 161 includes a pressed activated state and an unpressed inactivated state.
  • the status information of the operating member 161 is used to determine whether the shutdown phenomenon of the impact tool is under human control. In this embodiment, if it is determined that when the motor 12 is not in the starting state, that is, when the motor 12 is stopped, the operating member 161 is still in the pressed state, that is, the operating member 161 receives the start operation command and the motor 12 is not in the starting state. When, a start signal is sent to the motor 12. After the start signal is sent, the operating status of the motor 12 is obtained to determine whether the motor 12 is successfully started or restarted based on the feedback operating status. If it is determined that the motor 12 is successfully started or restarted after receiving the start signal, then the sending of the start signal to the motor 12 is stopped.
  • this application can automatically send a start signal to the motor 12 to start the motor 12 when the controller 17 recognizes that the operating member 161 is activated and the motor 12 is not started. This effectively reduces the user's feeling that the motor 12 does not start, and reduces the probability that the motor 12 does not start that the user can feel during use. It is possible to restart the motor 12 without resetting and reactivating the operating member 161, which effectively improves the user experience.
  • the operating status of the motor 12 is obtained after sending the electric start signal. If it is determined that the motor 12 has not started after receiving the start signal, and it is determined again that the operating member 161 is in an activated state, the start signal will continue to be sent to the motor 12 and the operating status of the motor 12 will be detected until it is determined that the motor 12 has successfully restarted. After starting, stop sending the start signal to the motor 12.
  • the impact tool 100 further includes a detection mechanism 18 for detecting the status of the operating member 161 and the working status of the motor 12 .
  • the detection mechanism 18 detects the signal, it is confirmed that the operating member 161 is activated, that is, the operating member 161 is pressed.
  • the working state of the motor 12 is characterized by one or more of the rotation speed, working current, working voltage and commutation time of the motor 12 .
  • the detection mechanism 18 detects one or more of the rotation speed, working current, working voltage and commutation time of the motor 12 .
  • the rotation speed of the motor 12 is not lower than the starting If at least one of the rotating speed value, the working current is within the preset current range, the working voltage is within the preset voltage range, and the commutation time of the motor 12 is not less than the preset time, it can be determined that the motor 12 has not been started.
  • the starting speed value, the preset current range, the preset voltage range and the commutation time of the motor 12 can be set according to the design requirements.
  • the detection mechanism 18 feeds back the detection data to the controller 17 in the form of a signal. Then the controller 17 adjusts the control of the motor 12 .
  • the shutdown of the impact tool includes: the motor 12 is in the initial shutdown state, the motor 12 is not started when the operating member 161 is activated, and the impact tool enters the normal working process after the operating member 161 is activated and the motor 12 is started.
  • the motor 12 again experiences at least one of the shutdown conditions.
  • the controller is configured to send a start signal to the motor 12 when the motor 12 is in an initial shutdown state, the operating member 161 receives a start operation instruction and the motor 12 is not in a start state. After it is determined that the motor 12 is started according to the operating status of the motor 12 , the start signal to the motor 12 is stopped.
  • the controller 17 is also configured to: after sending the start signal to the motor 12, determine that the motor 12 is not started based on the operating status of the motor 12, and obtain the status information of the operating member 161 again.
  • the operating member 161 receives the start operation command and sends the start signal to the motor 12 again. Until the motor 12 is successfully started.
  • the initial shutdown state of the motor 12 is that the motor 12 is not working.
  • the operating member 161 is in an inactive state.
  • the motor 12 is started from the initial shutdown state, and the operating member 161 is switched from the inactivated state to the activated state.
  • the detection mechanism obtains the operating status of the motor 12. It is determined according to the operating status of the motor 12 whether the motor 12 rotates normally in response to the start signal. If it is determined that the motor 12 has rotated normally, it stops sending the start signal to the motor 12, and continues to obtain the operating status of the motor 12, and monitors the shutdown situation of the motor 12 during its normal operation.
  • the controller 17 continues to send a start signal to the motor 12, and this process is repeated until the motor 12 is successfully started.
  • the rotational speed of the impact tool is basically close to 0 or a very low value when it is started from the initial shutdown state, the torque transmitted to the main shaft in the impact mechanism needs to be able to drive the impact block to overcome the pressure of the elastic element when starting the impact.
  • the rotation speed of the motor 12 is low and the output torque cannot reach this condition, the impact process cannot be started. At this time, the motor 12 may be blocked, and the impact tool may not be started successfully.
  • the detection mechanism detects that the operating member 161 is activated but the motor 12 is still in the starting state in the initial shutdown state of the motor 12 , the controller 17 sends a start signal to the motor 12 . The detection mechanism continues to detect the operating status of the motor 12.
  • the controller 17 continues to send the start signal to the motor 12 until it is determined that the motor 12 has rotated normally, and then stops sending the start signal to the motor 12 .
  • the controller only sends a start signal to the motor once. If the initial shutdown state of the motor is not successfully started, the operating member 161 needs to be released to make the operating member 161 in an inactive state, and the operating member 161 needs to be in an activated state again.
  • embodiments of the present application automatically re-send a start signal to the motor while the operating member is still activated after the motor is not successfully started in the initial shutdown state until the motor is successfully started. It can effectively reduce the user's feeling that the motor 12 is not started, and the motor 12 can be restarted directly without releasing the operating member 161 and pressing it again, which effectively improves the user's experience.
  • this embodiment also discloses a control method for an impact tool, including:
  • the reason for the shutdown of the impact tool is first determined based on the status information of the operating member 161 .
  • the operating member 161 receives a start operation instruction, and the motor 12 can receive a power supply signal and a driving signal to rotate. Therefore, when the operating member 161 is acquired to be in an activated state, it is determined according to the operating state of the motor 12 that the motor 12 has not been started, and it can be determined that the shutdown of the impact tool is not a shutdown actively controlled by the user.
  • the detection mechanism After sending the start signal to the motor 12, the detection mechanism obtains the operating status of the motor 12 to determine whether the motor 12 responds to the start signal based on the operating status of the motor 12.
  • the operating status of the motor 12 is characterized by one or more of the rotation speed, working current, working voltage, and commutation time of the motor 12 .
  • the detection mechanism after sending the start signal to the motor 12, the detection mechanism obtains the operating status of the motor 12 after a preset time interval, so that there is sufficient time for the rotation speed of the motor 12 to increase.
  • the detection mechanism After the detection mechanism obtains the operating status of the motor 12, it determines the restarting status of the motor 12 based on the operating status of the motor 12. If it is determined that the motor 12 has been restarted, the controller 17 stops sending the start signal to the motor 12 at this time. In this embodiment, whether the motor 12 has been successfully started is determined based on the rotation speed of the motor 12. For example, if the rotation speed of the motor 12 meets the starting rotation speed value, it can be determined that the motor 12 has been restarted. move.
  • the status information of the operating part 161 is first obtained to determine whether the shutdown of the impact tool is under human control based on the status information of the operating part 161. If it is determined, When the motor 12 is stopped, the operating member 161 is still activated and sends a start signal to the motor 12 . After sending the electric start signal, the operating status of the motor 12 is obtained to determine whether the motor 12 is restarted based on the feedback operating status. If it is determined that the motor 12 starts successfully after receiving the start signal, then the sending of the start signal to the motor 12 is stopped. Effectively improve the user experience.
  • FIG 3 is a flow chart of another impact tool control method provided by an embodiment of the present application. As shown in Figure 3, the method includes:
  • S220 Determine whether the operating member 161 is in an activated state according to the status information of the operating member 161; if so, perform S240; if not, perform S230.
  • the user controls the motor 12 to start or stop through the operating member 161 .
  • the operating member 161 receives a start operation instruction, and the motor 12 can receive a power supply signal and a driving signal to rotate. Therefore, when the acquisition operating member 161 is in an activated state, it can be determined that the shutdown of the impact tool is not a shutdown actively controlled by the user.
  • the controller 17 sends a start signal to the motor 12 .
  • the detection mechanism After sending the start signal to the motor 12, the detection mechanism obtains the operating status of the motor 12 to determine whether the motor 12 responds to the start signal based on the operating status of the motor 12.
  • the operating status of the motor 12 is characterized by one or more of the rotation speed, working current, working voltage, and commutation time of the motor 12 .
  • the detection mechanism after sending the start signal to the motor 12, the detection mechanism obtains the operating status of the motor 12 after a preset time interval, so that there is sufficient time for the rotation speed of the motor 12 to increase.
  • S260 Determine whether the motor 12 is started according to the operating status of the motor 12; if yes, execute S270; if not, execute S210.
  • the detection mechanism After the detection mechanism obtains the operating status of the motor 12, it determines the restarting status of the motor 12 based on the operating status of the motor 12. If it is determined that the motor 12 has been restarted, the controller 17 stops sending the start signal to the motor 12 at this time. In this embodiment, whether the motor 12 has been successfully started is determined based on the rotational speed of the motor 12. For example, if the rotational speed of the motor 12 meets the starting rotational speed value, it can be determined that the motor 12 has been restarted. If the rotational speed of the motor 12 does not meet the starting rotational speed value, that is, the rotational speed of the motor 12 is lower than the preset value, it can be determined that the motor 12 is still in the stopped state and the motor 12 has not been restarted. At this time, the step S110 is returned to the detection mechanism. The step of obtaining status information of the operating member 161. When the operating member 161 is in the activated state, the start signal is sent to the motor 12 again.
  • steps S210 to S260 will continue until it is determined that the motor 12 is successfully started again, and the controller 17 stops sending the start control signal to the motor 12 .
  • the operating status of the motor 12 can also be continuously monitored to determine the reason for the shutdown of the motor 12 when the motor 12 stops again, so as to determine whether it is necessary to restart the motor 12 based on the reason for the shutdown of the motor 12 . Perform a reboot.
  • the controller 12 may The rotation speed, working current, working voltage, commutation time, etc. are used to determine again whether the motor 12 meets the starting conditions. It can be understood that the embodiment of the present application only illustrates that the starting conditions of the motor 12 include the rotation speed, operating current, operating voltage and commutation time of the motor 12 .
  • the motor 12 When the impact tool is stopped, the motor 12 is in an initial shutdown state, and the motor 12 is not started when the operating member 161 is activated. Optionally, when the state of the operating member 161 switches from the inactive state to the initial stage of the activated state, the motor 12 may not start normally.
  • Figure 5 is a flow chart of a control method for an impact tool provided by an embodiment of the present application. The method includes:
  • the initial shutdown state of the motor 12 is that the motor 12 is not working.
  • the operating member 161 is in an inactive state. After the operating member 161 is switched from the inactive state to the activated state, if the motor 12 still cannot start normally, then the motor 12 has not started successfully.
  • the operating member 161 always sends a start signal to the motor 12 after receiving the operating command.
  • a start signal is sent to the motor 12 so that the motor 12 can start running according to the start signal.
  • Figure 5 is a flow chart of another impact tool control method provided by an embodiment of the present application. The method includes:
  • the impact tool operates normally” that needs to be explained means that the motor 12 can rotate normally and output driving force when the operating member 161 is in an activated state. And during normal operation of the impact tool, the motor 12 can drive the impact mechanism to output the impact force to the output shaft through a series of mechanical structures (such as the transmission mechanism 14).
  • a series of mechanical structures such as the transmission mechanism 14.
  • the shutdown of the impact tool is manually controlled, that is, the operating member 161 is switched from an activated state to an inactivated state.
  • the controller 17 sends a shutdown signal to the motor 12 because the rotation speed is too low or the electrical performance is transiently unstable. At this time, the operating member 161 is still activated, and then the impact tool is stopped without human control.
  • the status information of the operating member 161 can first be obtained to determine whether the shutdown of the impact tool is under human control based on the status information of the operating member 161 .
  • the state of the operating member 161 is first determined based on the state information of the operating member 161, and whether the shutdown of the impact tool is caused by human control factors is determined based on the state of the operating member 161. If it is determined based on the feedback from the detection mechanism that the operating member 161 is still activated after the impact tool is stopped, the controller 17 sends a start signal to the motor 12 .
  • the detection mechanism After sending the start signal to the motor 12, the detection mechanism obtains the operating status of the motor 12 to determine whether the motor 12 responds to the start signal based on the operating status of the motor 12.
  • the operating status of the motor 12 is characterized by one or more of the rotation speed, working current, working voltage, and commutation time of the motor 12 .
  • the detection mechanism after sending the start signal to the motor 12, the detection mechanism obtains the operating status of the motor 12 after a preset time interval, so that there is sufficient time for the rotation speed of the motor 12 to increase.
  • S460 Determine whether the motor 12 is started according to the operating status of the motor 12; if yes, execute S470; if not, execute S410.
  • the detection mechanism After the detection mechanism obtains the operating status of the motor 12, it determines the restarting status of the motor 12 based on the operating status of the motor 12. If it is determined that the motor 12 has been restarted, the controller 17 stops sending the start signal to the motor 12 at this time. In this embodiment, whether the motor 12 has been successfully started is determined based on the rotational speed of the motor 12. For example, if the rotational speed of the motor 12 meets the starting rotational speed value, it can be determined that the motor 12 has been restarted. If the rotational speed of the motor 12 does not meet the starting rotational speed value, that is, the rotational speed of the motor 12 is lower than the preset value, it can be determined that the motor 12 is still in the stopped state and the motor 12 has not been restarted.
  • step S410 is returned to the detection mechanism.
  • the start signal is sent to the motor 12 again. If the operating member 161 is always activated but the motor 12 is in a stopped state, steps S410 to S450 will continue until it is determined that the motor 12 is successfully started again, and the controller 17 stops sending the start control signal to the motor 12 .
  • S490 Determine whether the motor 12 stops again according to the operating status of the motor 12. If so, execute S410.
  • the reasons for the shutdown of the impact tool during normal operation also include excessive working current and working voltage of the motor 12 system due to protection mechanisms such as over-current protection, under-voltage protection, and over-temperature protection of the motor 12 system. Too low temperature or temperature protection may also cause the motor 12 to shut down.
  • the detection mechanism detects that the operating member 161 is in an activated state, and the controller 17 controls Motor 12 is in a stopped state.
  • Figure 6 is a flow chart of another impact tool control method provided by an embodiment of the present application. The method includes:
  • the motor 12 is in the initial stop state because the motor 12 is not started because the operating member 161 is not activated.
  • the detection mechanism detects status information of the operating member 161 .
  • the state information of the operating component 161 before the motor is successfully started is the initial state information.
  • the motor 12 is in a non-started state because the operating member 161 is not activated.
  • the detection mechanism detects status information of the operating member 161 .
  • the detection mechanism detects when the initial state information of the operating member 161 determines that the operating member 161 is in an activated state.
  • S515 Stop sending the start signal to the motor 12, and continue to obtain the operating status of the motor 12.
  • the status information of the operating member 161 can be obtained first.
  • the status information of the operating member 161 at this time is the first status information, so as to determine whether the shutdown of the impact tool is manually controlled based on the first status information of the operating member 161 .
  • S517 Determine whether the operating member 161 is in an activated state according to the first status information of the operating member 161; if yes, perform S519; if not, perform S518.
  • the controller 17 When the impact tool shuts down during operation, first determine the state of the operating member 161 based on the first state information of the operating member 161, and determine whether the shutdown of the impact tool is caused by human control factors based on the state of the operating member 161. If it is determined based on the feedback from the detection mechanism that the operating member 161 is still activated after the impact tool is stopped, the controller 17 sends a start signal to the motor 12 .
  • the detection mechanism After sending the start signal to the motor 12, the detection mechanism obtains the operating status of the motor 12 to determine whether the motor 12 responds to the start signal based on the operating status of the motor 12.
  • the operating status of the motor 12 is characterized by one or more of the rotation speed, working current, working voltage, and commutation time of the motor 12 .
  • the detection mechanism after sending the start signal to the motor 12, the detection mechanism obtains the operating status of the motor 12 after a preset time interval, so that there is sufficient time for the rotation speed of the motor 12 to increase.
  • the detection mechanism After the detection mechanism obtains the operating status of the motor 12, it determines the restarting status of the motor 12 based on the operating status of the motor 12. If it is determined that the motor 12 has been restarted, the controller 17 stops sending the start signal to the motor 12 at this time. In this embodiment, whether the motor 12 has been successfully started is determined based on the rotational speed of the motor 12. For example, if the rotational speed of the motor 12 meets the starting rotational speed value, it can be determined that the motor 12 has been restarted. If the rotational speed of the motor 12 does not meet the starting rotational speed value, that is, the rotational speed of the motor 12 is lower than the preset value, it can be determined that the motor 12 is still in a stopped state and the motor 12 has not been restarted.
  • step S515 is returned to the detection mechanism.
  • the start signal is sent to the motor 12 again. If the operating member 161 is always activated but the motor 12 is in a stopped state, steps S515 to S520 will continue to be executed until it is determined that the motor 12 is successfully started again, and the controller 17 stops sending the start control signal to the motor 12 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本申请公开了一种冲击工具,包括:冲击机构,用于对输出轴施加冲击力;控制器,用于控制马达;操作件,用于接收用户的操作指令;马达根据操作指令启动或停机;控制器被配置为:在冲击工具出现停机时,获取操作件的状态信息;确定操作件处于被激活状态时且马达未处于启动状态时,向马达发送启动信号;在向马达发送启动信号后,根据马达的运行状态确定马达被启动后,停止向马达发动启动信号。

Description

冲击工具
本申请要求在2022年06月21日提交中国专利局、申请号为202210705460.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动工具,例如涉及一种冲击工具。
背景技术
冲击工具有冲击结构,正常情况下按下扳机,如果是轻载情况,冲击锤与锤砧相互咬合,冲击工具就正常输出旋转。如果是重载情况,冲击锤会沿主轴旋转并前后运动,间歇性撞击锤砧,以输出冲击力。由于机器老化或其他原因,冲击工具会出现按下扳机而电机不启动的情况,导致冲击工具不能输出工作。
发明内容
本申请提供一种用户使用时的体验感好的冲击工具。
本申请提供一种冲击工具,包括:马达,包括绕第一轴线转动的驱动轴;输出轴,用于对外输出扭矩以操作紧固件;输出轴以输出轴线为转轴旋转;冲击机构,用于对输出轴施加冲击力;控制器,用于控制马达;操作件,用于接收用户的操作指令;马达根据操作指令启动或停机;控制器被配置为:在冲击工具出现停机时,根据操作件的状态信息确定操作件处于被激活状态,根据马达的运行状态确定马达未被启动,向马达发送启动信号;向马达发送启动信号后,根据马达的运行状态确定马达被启动后,停止向马达发送启动信号。
在一些实施例中,控制器被配置为:在向马达发送启动信号后,获取马达的运行状态。根据马达的运行状态确定马达电机未启动,再次获取操作件的状态信息。
在一些实施例中,控制器被配置为:在根据马达的运行状态确定电机启动,并停止向马达发动启动信号后,持续获取马达的运行状态。可选的,在马达再次停机时,返回执行获取操作件的状态信息。
在一些实施例中,冲击工具出现停机,包括:马达为初始停机状态,操作件被激活时马达未启动以使冲击工具出现停机。
在一些实施例中,控制器被配置为:当马达为初始停机状态,操作件被激活马达未启动时,获取操作件的状态信息。根据操作件的状态信息确定操作件处于被激活状态时,向马达发送启动信号。可选的,在向马达发送启动信号后,获取马达的运行状态,根据马达的运行状态确定马达被启动后,停止向马达发动启动信号。
在一些实施例中,冲击工具出现停机,包括:操作件被激活且马达启动后,马达再次停机以使冲击工具出现停机。
在一些实施例中,控制器被配置为:当操作件被激活且马达启动后,马达再次停机时,获取操作件的状态信息。根据操作件的状态信息确定操作件处于被激活状态时,向马达发送启动信号。可选的,在向马达发送启动信号后,获取马达的运行状态,根据马达的运行状态确定马达被启动后,停止向马达发动启动信号。
在一些实施例中,冲击工具出现停机,包括:马达为初始停机状态,操作件被激活时马达未启动以使冲击工具出现停机,和操作件被激活且马达启动后,马达再次停机以使冲击工具出现停机。
在一些实施例中,操作件与开关连接,操作件被激活开关连通,马达基于开关连通被通电。
在一些实施例中,冲击工具还包括检测机构,用于检测操作件的状态和电机的工作状态。
在一些实施例中,电机的工作状态由电机的转速、工作电流、工作电压以及换相时间中的一项或几项来表征。
在一些实施例中,操作件与滑动变阻器连接,操作件的状态不同,滑动变阻器的输出信号不同。
在一些实施例中,冲击机构包括:由马达驱动的主轴、套设在主轴上的冲击块和设置在冲击块前端并接受冲击块打击的锤砧。
在一些实施例中,冲击工具还包括直流电源,直流电源为马达供电。
在一些实施例中,当操作件被操作时处于被激活状态,当操作件被释放时处于未被激活状态。
一种冲击工具,包括:马达,包括绕第一轴线转动的驱动轴;输出轴,用于对外输出扭矩以操作紧固件;输出轴以输出轴线为转轴旋转;冲击机构,用于对输出轴施加冲击力;控制器,用于控制马达;操作件,用于接收用户的操作指令;马达根据操作指令启动或停机;其中,控制器被配置为:当操作件接收到启动操作指令且马达未处于启动状态时,控制器持续向马达启动信号至马达启动。
一种冲击工具,包括:马达,包括绕第一轴线转动的驱动轴;输出轴,用于对外输出扭矩以操作紧固件;输出轴以输出轴线为转轴旋转;冲击机构,用于对输出轴施加冲击力;控制器,用于控制马达;操作件,用于接收用户的操作指令;马达根据操作指令启动或停机;控制器被配置为:当马达为初始停机状态,操作件接收到启动操作指令且马达未处于启动状态时,向马达发送启动信号;当根据马达的运行状态确定马达被启动后,停止向马达发动启动信号。
在一些实施例中,在向马达发送启动信号后,获取马达的运行状态,根据马达的运行状态确定马达电机未启动,获取操作件的状态信息。
在一些实施例中,根据操作件的状态信息确定操作件接收到启动操作指令,向马达发送启动信号。
在一些实施例中,操作件与开关连接,操作件接收到启动操作指令时开关连通,马达基于开关连通被通电。
附图说明
下面将对实施例描述中所需要使用的附图作简单地介绍,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种冲击工具的结构示意图;
图2是本申请实施例提供的一种冲击工具的结构的剖面图的示意图;
图3是本申请实施例提供的一种冲击工具的电路框图;
图4是本申请实施例提供的一种冲击工具的控制方法的流程图;
图5是本申请实施例提供的另一种冲击工具的控制方法的流程图;
图6是本申请实施例提供的第三种冲击工具的控制方法的流程图;
图7是本申请实施例提供的第四种冲击工具的控制方法的流程图;
图8是本申请实施例提供的第五种冲击工具的控制方法的流程图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了清楚的说明本申请的技术方案,还定义了如图1和图2所示的上侧、下侧、前侧和后侧。
如图1和图2示出了本申请的一个实施例的冲击工具。该冲击工具为一种冲击扳手100。可以理解的,在其他可替换实施例中,该冲击工具可安装不同的工作附件,通过这些不同的工作附件使得冲击工具可以为例如,冲击钻、冲击螺丝批等。
冲击扳手100包括电源装置。其中,本实施例中,电源装置为直流电源30。直流电源30用于为冲击扳手100提供电能。直流电源30为电池包,电池包配合相应的电源电路,为冲击扳手100供电。本领域技术人员应当理解,电源装置可使用直流电源的场景,还可通过市电、交流电源,配合相应的整流、滤波和调压电路,实现对机内的相应部件供电。
如图1至图2所示,冲击扳手100包括外壳11、马达12、输出机构13、传动机构14和冲击机构15。其中,马达12包括以第一轴线101为轴转动的驱动轴121。在本实施例中,马达12具体设置为电机,下文将用电机12代替马达,使用电机轴121代替驱动轴。
输出机构13包括用于连接工作附件并驱动工作附件旋转的输出轴131。输出轴131前端设有夹持组件132,可在实现不同功能时夹持相应的工作附件,例 如螺丝批、钻头、套筒等。
输出轴131用于对外输出扭矩以操作紧固件,输出轴131以输出轴线为轴转动,在本实施例中,输出轴线为第二轴线102。在本实施例中,第一轴线101与第二轴线102重合。在其他可替换实施例中,第二轴线102与第一轴线101之间呈一定角度的夹角设置。在其他可替换实施例中,第一轴线101与第二轴线102相互平行但不重合设置。
冲击机构15用于向输出轴131施加冲击力。冲击机构15包括主轴151、套设在主轴151外周的冲击块152、设置在冲击块152前端的锤砧153和弹性元件154。其中,锤砧153连接输出轴131。在本实施例中,锤砧153包括砧座,输出轴131形成在砧座的前端。可以理解的是,砧座与输出轴131可以是一体成形或是分开形成的独立零件。
冲击块152包括冲击块主体和冲击块主体的前端面径向对称凸设有一对第一端齿。砧座与冲击块相对的后端面上径向对称的凸出设置有一对第二端齿。冲击块152被主轴151驱动,锤砧153与冲击块152相配合并受其打击。
冲击块152支撑在主轴151上与主轴151一体旋转,并且可在主轴的轴线方向上相对于主轴151往复滑动。在本实施例中,主轴的轴线与第一轴线101重合。因此,冲击块152沿第一轴线101方向相对于主轴151往复滑动和旋转。在其他可替换实施例中,主轴的轴线可以与第一轴线101平行但不重合。
弹性元件154为冲击块152提供使其靠近锤砧153的力。在本实施例中,弹性元件154为螺旋弹簧。
外壳11包括用于容纳电机12的电机壳体111和容纳至少部分输出组件13的输出壳体112,输出壳体112连接于电机壳体111的前端。外壳11还形成或连接有一供用户操作的握持部113。握持部113与电机壳体112形成T型或L型结构,方便用户握持及操作。握持部113的一端连接有电源装置30。电机12、传动组件14、冲击组件15、输出组件13沿前后方向依次排布设置在电机壳体111和输出壳体112内。
传动机构14设置在电机12和冲击机构15之间,用于在电机轴121和主轴151之间实现动力的传递。在本实施例中,传动机构14采用行星齿轮减速。因为行星齿轮减速的工作原理以及由这种传动机构产生减速,对于本领域专业技术人员而言已经被充分公开,所以这里为了说明书简洁的目的而省去详细的说明。
如图1-3所示,电机12包括定子绕组和转子。在一些实施例中,电机12为三相无刷电机,包括具有永磁体的转子和以电子方式换向的三相定子绕组U、 V、W。在一些实施例中,三相定子绕组U、V、W之间采用星型连接,在另一些实施例中,三相定子绕组U、V、W之间采用角型连接。然而,必须理解的是其他类型的无刷电动机也在本公开的范围。无刷电动机可包括少于或多于三相。
冲击扳手100包括控制电路。控制电路包括驱动电路171和控制器17。驱动电路171与电机12的定子绕组U、V、W电性连接,用于将来自电源装置30的电流传递至定子绕组U、V、W以驱动电机12旋转。在一个实施例中,驱动电路171包括多个开关元件Q1、Q2、Q3、Q4、Q5、Q6。每个开关元件的栅极端与控制器17电性连接,用于接收来自控制器17的控制信号。每个开关元件的漏极或源极与电机12的定子绕组U、V、W连接。开关元件Q1-Q6接收来自控制器17的控制信号改变各自的导通状态,从而改变电源装置30加载在电机12的定子绕组U、V、W上的电流。在一个实施例中,驱动电路171可以是包括六个可控半导体功率器件(例如场效应晶体管(Field Effect Transistor,FET),双极结型晶体管(Bipolar Junction Transistor,BJT),绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)等)的三相桥驱动器电路。可以理解的是,上述开关元件也可以是任何其他类型的固态开关,例如IGBT,BJT等。
在本实施例中,控制器17用于控制电机12。控制器17设置在控制电路板上,控制电路板包括:印制电路板(Printed Circuit Board,PCB)和柔性电路板(Flexible Printed Circuit,FPC)。控制器17采用专用的控制芯片,例如,单片机、微控制模块(Microcontroller Unit,MCU)。控制器17具体通过控制芯片控制驱动电路171中的开关元件的导通或关断状态。在一些实施例中,控制器17基于脉冲宽度调制(Pulse Width Modulation,PWM)信号来控制驱动开关的导通时间与关断时间之间的比例。需要注意的是,控制芯片可以集成于控制器17内,或者还可以独立于控制器17设置,至于驱动芯片与控制器17的结构关系可以根据实际情况设置。
冲击扳手100还包括主开关16和切换部163。主开关16设置在握持部113上用以供用户操作。切换部163设置在主开关16的上侧,切换部163被配置为被操作以将电机12的旋转方向设定为紧固紧固件的正转方向或拧松紧固件的反转方向。
主开关16用于控制电机12的通电状态。主开关16包括操作件161和与操作件连接的开关器件162。操作件161用于接收用户的操作指令。电机12根据操作指令启动或停机。一般来说,当操作件161被激活时,开关器件162导通,电机12被通电。并且当操作件161未被激活时,电机12被断电。在本实施例中,操作件161可移动地联接到握持部113,以使得操作件161相对于握持部113移动。在本实施例中,用户通过按压和释放操作件161以输入操作指令。在 一些可替换实施例中,用户通过旋转、或拨动、或触碰等操作动作来向操作件161输入操作指令。在本实施例中,当按压操作件161时,操作件处于被激活状态。操作件处于被激活状态,开关器件162也被导通。并且当操作件161被释放时,操作件处于被未激活状态,开关器件162被停用。操作件161被偏置(例如,具有一个偏置构件,例如弹簧),以使得当用户释放操作件161时,操作件161移动远离握持部113。除非用户按压操作件161并激活开关器件162,否则开关器件162的默认状态为被停用。
在本实施例中,开关器件162包括滑动变阻器。因此主开关16也可以调节电机12的转速。电机12的旋转速度根据操作件161的触发行程进行调节。操作件161的触发行程不同,滑动变阻器输出的信号不同。操作件161的触发行程与电机12的PWM信号的占空比呈正相关关系,PWM信号的占空比与电机12的转速呈正相关关系。在扳机开关的触发行程较小时,PWM信号的占空比也较小,此时,电机12的转速也较小。
在一些实施例中,冲击扳手100中存储有操作件161的触发行程与PWM信号之间的映射关系,该映射关系可以是线性的,或者,也可以是非线性的。
在冲击扳手100的工作过程中,当冲击扳手100空载时,冲击机构15不发生冲击,冲击机构15起到传动作用,将电机12的转动传递至输出轴131。当冲击工具100被施加负载时,输出轴131的转动受阻,由于负载的大小不同,输出轴131可能转速降低也可能完全停止转动。当输出轴131完全停止转动时,锤砧153也停止转动。由于锤砧153对冲击块152在周向上的限位作用,冲击块152也停止转动,但是主轴151继续转动,这使得滚球155受挤压沿着球道轨迹移动,从而带动冲击块152产生沿主轴轴线向后的位移。同时挤压弹性元件154直至锤砧153与冲击块152完全脱开,此时主轴151驱动冲击块152以一定转速转动,弹性元件154沿轴向回弹。当冲击块152转动至与锤砧153接触时,便会对锤砧153施加一个冲击力。在此冲击力的作用下,输出轴131克服负载继续转动一定角度,之后输出轴131再次停转,重复以上过程,由于冲击频率足够大,便会对输出轴产生一个相对连续的冲击力,从而使得工作附件持续工作。一般情况下冲击工具不会出现一般旋转类动力输出工具的电机堵转停机的现象。如果出现冲击扳手按下主开关而机器不能工作的情况,用户的体验感就会比较差。
控制器17被配置为操作件161接收到启动操作指令且电机12未处于启动状态时,控制器17持续向电机12发送启动信号至电机12启动。在本实施例中,在冲击工具即冲击扳手100出现停机时,根据电机12的运行状态确定电机12未被启动,根据操作件161的状态信息确定操作件161处于被激活状态,此时 控制器17向电机12发送启动信号。在控制器17向电机12发送启动信号后,根据电机12的运行状态确定电机12被启动后,控制器17停止向电机12发送启动信号。能够在冲击扳手100停机时实现自动重启,提高用户使用时的体验感。
本申请实施例中,当冲击工具出现停机情况时,电机12未处于启动状态,首先获取操作件161的状态信息,其中,操作件161的状态信息包括接收到启动操作指令和未接收到启动操作指令。在一些实施例中,操作件161的状态信息包括接收到启动操作指令的激活状态和未接收到启动操作指令的未被激活状态。在一些实施例中,操作件161的状态信息包括被按压的激活状态和未被按压的未被激活状态。
操作件161的状态信息用于确定冲击工具的停机现象是否为人为控制。在本实施例中,若确定在电机12未处于启动状态即电机12停机时,操作件161依然处于被按下状态,也是就是操作件161接收到启动操作指令且所述电机12未处于启动状态时,则向电机12发送启动信号。在发送启动信号后,获取电机12的运行状态,以根据反馈的运行状态确定电机12是否成功启动或重新启动。确定电机12在接收到启动信号后成功启动或重新启动,则停止向电机12发送启动信号。相较于相关技术中,冲击工具在工作中,出现非用户主动操作(用户主动操作例如释放主开关)导致停机情况后,用户需要松开操作件161后再按下操作件161才能重新启动电机12的方式,本申请能够在识别到操作件161在被激活状态且电机12未处于启动状态时,控制器17自动向电机12发出启动信号至电机12启动。有效降低用户对电机12不启动的感受,降低了用户使用时能够感受到的电机12不启动的概率。可以做到无需对操作件161进行复位和再激活的操作也可以使电机12重新启动,有效提升了用户的使用体验。
在本实施例中,在发送电启动信号后获取电机12的运行状态。若确定电机12在接收到启动信号后电机12仍未启动,再次确定在操作件161处于被激活状态,则持续向电机12发送启动信号并检测电机12的运行状态,直至确定电机12成功地重新启动后,停止向电机12发送启动信号。
如图3至图6所示,冲击工具100还包括检测机构18,用于检测操作件161的状态和电机12的工作状态。其中,当操作件161处于被激活状态,在本实施例中,操作件161被按压,则滑动变阻器输出信号。当检测机构18检测到信号,在确认操作件161为被激活,即操作件161被按压。
电机12的工作状态由电机12的转速、工作电流、工作电压以及换相时间中一项或几项来表征。检测机构18检测电机12的转速、工作电流、工作电压以及换相时间中的一项或几项。在本实施例中,若满足电机12的转速不低于启 动转速值、工作电流在预设电流范围内,工作电压在预设电压范围内以及电机12的换相时间不低于预设时间中的至少一种,则可以确定电机12未被启动。其中,启动转速值、预设电流范围、预设电压范围以及电机12的换相时间可根据设计需求自行设置。
检测机构18将检测数据以信号的方式反馈给控制器17。进而使控制器17调整对于电机12的控制。
在本实施例中,冲击工具的出现停机包括:电机12为初始停机状态,操作件161被激活时电机12未启动和操作件161被激活且电机12启动后,冲击工具进入正常工作过程时,电机12再次出现停机中的至少一种情况。
作为本申请的冲击工具的一种实施例,控制器被配置为当电机12为初始停机状态,操作件161接收到启动操作指令且电机12未处于启动状态时,向电机12发送启动信号。当根据电机12的运行状态确定电机12被启动后,停止向电机12发动启动信号。
控制器17还被配置为:在向电机12发送启动信号后,根据电机12的运行状态确定所述电机12未启动,再次获取操作件161的状态信息。操作件161接收到启动操作指令,再次向电机12发送启动信号。直至电机12被成功启动。
电机12的初始停机状态为电机12为未工作状态。操作件161为未被激活状态。电机12由初始停机状态启动,操作件161由未被激活状态切换为激活状态后。为了避免操作件161由未被激活状态切换为激活状态后电机12无法正常启动,在向电机12发送启动信号后,检测机构获取电机12的运行状态。根据电机12的运行状态判断电机12是否响应于启动信号进行正常转动。若确定电机12已正常运行转动,则停止向电机12发送启动信号,并持续获取电机12的运行状态,对电机12正常运行过程中的停机情况进行监测。若确定电机12未响应于启动信号,即电机12未处于启动状态,则返回获取操作件161的状态信息的步骤。在操作件161保持为被激活状态时,即操作件161接收到启动操作指令,则控制器17继续向电机12发送启动信号,这个过程反复直至电机12成功启动。
由于冲击工具在由初始停机状态启动时,转速基本接近于0或很低数值,冲击机构中在启动冲击时,传递到主轴上的扭矩需要能够驱动冲击块克服弹性元件的压力。而当电机12转速较低,导致输出扭矩不能达到此条件时,冲击过程无法启动。此时,电机12会发生堵转,会发生冲击工具启动不成功。在本实施例中,当在电机12的初始停机状态下,检测机构检测到操作件161被激活但电机12仍处于为启动状态时,控制器17向电机12发送启动信号。检测机构继续检测电机12的运行状态,若电机12的运行状态为未启动而操作件161仍处 于被激活状态,控制器17继续向电机12发送启动信号,直至确定电机12已正常运行转动,则停止向电机12发送启动信号。相关技术中,冲击工具的操作件被触发一次,控制器就只向电机发送一次启动信号。若电机的初始停机状态未被启动成功,则需要释放操作件161使操作件161处于未激活状态,并重新使操作件161处于被激活状态。相较于相关技术,本申请的实施例在电机的初始停机状态未被启动成功后,在操作件仍被激活时自动重新向电机发送启动信号,直至电机被成功启动。能够有效降低用户对电机12未启动的感受,可以在不松开操作件161再重新按下的情况下直接重新启动电机12,有效提升了用户的使用体验。
如图4所示,本实施例还公开一种冲击工具的控制方法,包括:
S110、在冲击工具出现停机时,根据操作件16的状态信息确定操作件161处于被激活状态,根据电机12的运行状态确定电机12未被启动。
由于冲击工具在使用过程中,若一个工作周期结束或出现意外,使用者主动释放操作件161,以使冲击工具停机。因此在冲击工具出现停机时,首先根据操作件161的状态信息确定冲击工具停机的原因。通常当操作件161处于被激活状态时,操作件161则接收到启动操作指令,电机12能够接收到供电信号和驱动信号从而进行转动。因此,当获取操作件161为被激活状态时,根据电机12的运行状态确定电机12未被启动,可以判断冲击工具的停机非使用者主动控制的停机。
S120、向电机12发送启动信号。
S130、向电机12发送启动信号后,根据电机12的运行状态确定电机12被启动后。
在向电机12发送启动信号后,检测机构获取电机12的运行状态,以根据电机12的运行状态判断电机12是否对启动信号进行了响应。其中,电机12的运行状态通过电机12的转速、工作电流、工作电压以及换相时间中的一项或几项来表征。
在本实施例中,在向电机12发送启动信号后,经过预设时间的间隔,检测机构获取电机12的运行状态,以使得电机12的转速的上升有足够的时间。
S140、停止向所述马达发送启动信号。
在检测机构获取了电机12的运行状态后,根据电机12的运行状态判断电机12的重新启动状态。若确定电机12已重新启动,此时控制器17停止向电机12发送启动信号。在本实施例中,根据电机12的转速判断电机12是否已成功启动,例如,若电机12的转速满足启动转速值,则可以确定电机12已重新启 动。
本申请实施例提供的冲击工具的控制方法,当冲击工具出现停机情况时,首先获取操作件161的状态信息,以根据操作件161的状态信息确定冲击工具的停机情况是否为人为控制,若确定在电机12停机时操作件161依然处于被激活状态,则向电机12发送启动信号。在发送电启动信号后获取电机12的运行状态,以根据反馈的运行状态确定电机12是否重新启动。若确定电机12在接收到启动信号后成功启动,则停止向电机12发送启动信号。有效提升了用户的使用体验。
图3是本申请实施例提供的另一种冲击工具的控制方法的流程图,如图3所示,该方法包括:
S210、在冲击工具出现停机时,电机12处于停机状态,获取操作件161的状态信息。
S220、根据操作件161的状态信息判断操作件161是否处于被激活状态;若是,则执行S240;若否,则执行S230。
使用者通过操作件161控制电机12启动或停机。通常当操作件161处于被激活状态时,操作件161则接收到启动操作指令,电机12能够接收到供电信号和驱动信号从而进行转动。因此,当获取操作件161为被激活状态时,可以判断冲击工具的停机非使用者主动控制的停机。
当获取操作件161为未被激活状态时,确定此时冲击工具的停机原因是人为控制所造成,是正常停机现象。
S230、不向电机12发送启动信号。
S240、向电机12发送启动信号。
若根据检测机构的反馈判断在冲击工具停机后操作件161仍处于被激活状态,操作件161接收到启动操作指令且电机12未处于启动状态时,则控制器17向电机12发送启动信号。
S250、在向电机12发送启动信号后,获取电机12的运行状态。
在向电机12发送启动信号后,检测机构获取电机12的运行状态,以根据电机12的运行状态判断电机12是否对启动信号进行了响应。其中,电机12的运行状态通过电机12的转速、工作电流、工作电压以及换相时间中的一项或几项来表征。
在本实施例中,在向电机12发送启动信号后,经过预设时间的间隔,检测机构获取电机12的运行状态,以使得电机12的转速的上升有足够的时间。
S260、根据电机12的运行状态判断电机12是否启动;若是,则执行S270;若否,则执行S210。
S270、停止向电机12发动启动信号。
在检测机构获取了电机12的运行状态后,根据电机12的运行状态判断电机12的重新启动状态。若确定电机12已重新启动,此时控制器17停止向电机12发送启动信号。在本实施例中,根据电机12的转速判断电机12是否已成功启动,例如,若电机12的转速满足启动转速值,则可以确定电机12已重新启动。而若电机12的转速未满足启动转速值,即电机12的转速低于预设值,则可以确定电机12依然处于停机状态,电机12没有被重新启动,此时则返回步骤S110,检测机构执行获取操作件161的状态信息的步骤。在操作件161处于被激活状态时再次向电机12发送启动信号。
若操作件161一直处于被激活状态而电机12却处于停机状态,则持续执行步骤S210~至步骤S260,直至确定电机12再次成功启动时,控制器17停止向电机12发送启动控制信号。
在本申请的其他实施例中,还可以包括其他表征电机12运行状态的特征参数。
S280、持续获取电机12的运行状态。
S290、根据电机12的运行状态判断电机12是否再次停机,若是,则执行S210。
在对电机12进行重新启动之后,还可以持续对电机12的运行状态进行监测,以在电机12再次停机时再次确定电机12的停机原因,以根据电机12的停机原因判断是否需要再次对电机12进行重新启动。
在一些实施例中,在根据操作件161的状态信息确定操作件161处于被激活状态后,以及控制器17向电机12发送启动信号之前(即步骤S220之后、步骤S240之前),可以根据电机12的转速、工作电流、工作电压以及换相时间等再次判断电机12是否满足启动条件。可以理解的是,本申请实施例仅示例性的示出了电机12的启动条件包括电机12的转速、工作电流、工作电压以及换相时间。
在冲击工具的出现停机为电机12为初始停机状态,操作件161被激活时电机12未启动。可选的,当操作件161的状态由未被激活状态切换为被激活状态的初始阶段,出现电机12无法正常启动的情况。
图5是本申请实施例提供的一种冲击工具的控制方法的流程图,该方法包括:
S310、在电机12处于初始停机状态时,操作件161接收到启动操作指令且电机12未处于启动状态。
电机12的初始停机状态为电机12为未工作状态。操作件161为未被激活状态。操作件161由未被激活状态切换为激活状态后,电机12仍无法正常启动,则电机12未成功启动。
S320、向电机12发送启动信号。
操作件161收到操作指令则一直向电机12发送启动信号。向电机12发送启动信号,以使得电机12能够根据启动信号启动运行。
S330、向电机12发送启动信号后,获取电机12的运行状态。
S340、当根据电机12的运行状态确定电机12被启动后,停止向电机12发动启动信号。
图5是本申请实施例提供的另一种冲击工具的控制方法的流程图,该方法包括:
S410、在冲击工具正常工作过程中出现停机时,电机12处于停机状态,获取操作件161的状态信息。
需要解释的“冲击工具正常工作”是指:在操作件161处于被激活状态时电机12能够正常转动输出驱动力。并且在冲击工具正常工作的过程中,电机12能够通过一系列的机械结构(例如传动机构14)带动冲击机构向输出轴来输出冲击力。在冲击工具正常工作时出现停机的原因有多种,例如人为控制冲击工具停机,即操作件161从被激活状态切换为未被激活状态。或者由于转速过低、或电性能的瞬时不稳定导致控制器17向电机12发送了停机信号,此时操作件161仍处于被激活状态,那么此时冲击工具发生了非人为控制的停机。
因此,在冲击工具在正常工作中出现停机时,可首先获取操作件161的状态信息,以根据操作件161的状态信息判断冲击工具的停机是否是人为控制。
S420、根据操作件161的状态信息判断操作件161是否处于被激活状态;若是,则执行S440;若否,则执行S430。
在冲击工具工作过程中出现停机时,首先根据操作件161的状态信息确定操作件161的状态,以根据操作件161的状态判断冲击工具的停机是否为人为控制因素所造成。若根据检测机构的反馈判断在冲击工具停机后操作件161仍处于被激活状态,则控制器17向电机12发送启动信号。
S430、不向电机12发送启动信号。
S440、向电机12发送启动信号。
S450、在向电机12发送启动信号后,获取电机12的运行状态。
在向电机12发送启动信号后,检测机构获取电机12的运行状态,以根据电机12的运行状态判断电机12是否对启动信号进行了响应。其中,电机12的运行状态通过电机12的转速、工作电流、工作电压以及换相时间中的一项或几项来表征。
在本实施例中,在向电机12发送启动信号后,经过预设时间的间隔,检测机构获取电机12的运行状态,以使得电机12的转速的上升有足够的时间。
S460、根据电机12的运行状态判断电机12是否启动;若是,则执行S470;若否,则执行S410。
S470、停止向电机12发动启动信号。
在检测机构获取了电机12的运行状态后,根据电机12的运行状态判断电机12的重新启动状态。若确定电机12已重新启动,此时控制器17停止向电机12发送启动信号。在本实施例中,根据电机12的转速判断电机12是否已成功启动,例如,若电机12的转速满足启动转速值,则可以确定电机12已重新启动。而若电机12的转速未满足启动转速值,即电机12的转速低于预设值,则可以确定电机12依然处于停机状态,电机12没有被重新启动,此时则返回步骤S410,检测机构执行获取操作件161的状态信息的步骤。在操作件161处于被激活状态时再次向电机12发送启动信号。若操作件161一直处于被激活状态而电机12却处于停机状态,则持续执行步骤S410~至步骤S450,直至确定电机12再次成功启动时,控制器17停止向电机12发送启动控制信号。
S480、持续获取电机12的运行状态。
S490、根据电机12的运行状态判断电机12是否再次停机,若是,则执行S410。
在一些实施例中,在冲击工具正常工作时出现停机的原因还包括由于对电机12系统的过流保护、欠压保护和过温保护等保护机制在电机12系统的工作电流过大、工作电压过低或温度保护等情况也会造成电机12停机。在本申请中,当在冲击工具正常工作中出现对电机12系统的过流保护、欠压保护和过温保护等保护机制时,检测机构检测到操作件161处于被激活状态,控制器17控制电机12处于停机状态。
图6是本申请实施例提供的另一种冲击工具的控制方法的流程图,该方法包括:
S510、在电机12处于初始停机状态时,获取操作件初始状态信息。
在本实施例中,电机12处于初始停机状态为电机12由于操作件161未被激活而处于未被启动状态。检测机构检测操作件161的状态信息。为方便区分,电机未成功启动前的操作件161的状态信息为初始状态信息。
S512、在根据操作件161的初始状态信息确定操作件161处于被激活状态时且电机12未处于启动状态,向电机12发送启动信号。
在本实施例中,电机12由于操作件161未被激活而处于未被启动状态。检测机构检测操作件161的状态信息。检测机构检测到操作件161的初始状态信息确定操作件161处于被激活状态时。
S513、向电机12发送启动信号后,获取电机12的运行状态。
S514、根据电机12的运行状态判断电机12是否启动;若是,则执行S515;若否,则执行S512。
S515、停止向电机12发动启动信号,持续获取电机12的运行状态。
S516、在冲击工具正常工作过程中出现停机时,获取操作件161的第一状态信息。
在冲击工具在正常工作中出现停机时,可首先获取操作件161的状态信息。为方便区分,此时操作件161的状态信息为第一状态信息,以根据操作件161的第一状态信息判断冲击工具的停机是否是人为控制。
S517、根据操作件161的第一状态信息判断操作件161是否处于被激活状态;若是,则执行S519;若否,则执行S518。
在冲击工具工作过程中出现停机时,首先根据操作件161的第一状态信息确定操作件161的状态,以根据操作件161的状态判断冲击工具的停机是否为人为控制因素所造成。若根据检测机构的反馈判断在冲击工具停机后操作件161仍处于被激活状态,,则控制器17向电机12发送启动信号。
S518、不向电机12发送启动信号。
S519、向电机12发送启动信号。
S520、在向电机12发送启动信号后,获取电机12的运行状态。
在向电机12发送启动信号后,检测机构获取电机12的运行状态,以根据电机12的运行状态判断电机12是否对启动信号进行了响应。其中,电机12的运行状态通过电机12的转速、工作电流、工作电压以及换相时间中的一项或几项来表征。
在本实施例中,在向电机12发送启动信号后,经过预设时间的间隔,检测机构获取电机12的运行状态,以使得电机12的转速的上升有足够的时间。
S521、根据电机12的运行状态判断电机12是否启动;若是,则执行S522;若否,则执行S516。
S522、停止向电机12发动启动信号。
在检测机构获取了电机12的运行状态后,根据电机12的运行状态判断电机12的重新启动状态。若确定电机12已重新启动,此时控制器17停止向电机12发送启动信号。在本实施例中,根据电机12的转速判断电机12是否已成功启动,例如,若电机12的转速满足启动转速值,则可以确定电机12已重新启动。而若电机12的转速未满足启动转速值,即电机12的转速低于预设值,则可以确定电机12依然处于停机状态,电机12没有被重新启动,此时则返回步骤S515,检测机构执行获取操作件161的状态信息的步骤。在操作件161处于被激活状态时再次向电机12发送启动信号。若操作件161一直处于被激活状态而电机12却处于停机状态,则持续执行步骤S515~至步骤S520,直至确定电机12再次成功启动时,控制器17停止向电机12发送启动控制信号。
S523、持续获取电机12的运行状态。
S524、根据电机12的运行状态判断电机12是否再次停机,若是,则执行S516。

Claims (20)

  1. 一种冲击工具,包括:
    马达,包括绕第一轴线转动的驱动轴;
    输出轴,用于对外输出扭矩以操作紧固件;所述输出轴以输出轴线为转轴旋转;
    冲击机构,用于对所述输出轴施加冲击力;
    控制器,用于控制所述马达;
    操作件,用于接收用户的操作指令;所述马达根据所述操作指令启动或停机;
    其中,所述控制器被配置为:
    在所述冲击工具出现停机时,根据所述操作件的状态信息确定所述操作件处于被激活状态,且根据所述马达的运行状态确定所述马达未被启动,向所述马达发送启动信号;向所述马达发送启动信号后,根据所述马达的运行状态确定所述马达被启动后,停止向所述马达发送启动信号。
  2. 根据权利要求1所述的冲击工具,其中,所述控制器被配置为:在向所述马达发送启动信号后,根据所述马达的运行状态确定所述马达电机未启动,再次获取所述操作件的状态信息,根据所述操作件的状态信息确定所述操作件处于被激活状态,再次向所述马达发送启动信号。
  3. 根据权利要求1所述的冲击工具,其中,所述控制器被配置为:在根据所述马达的运行状态确定所述电机启动,并停止向所述马达发动启动信号后,持续获取所述马达的运行状态,并在所述马达再次停机时,返回执行获取所述操作件的状态信息。
  4. 根据权利要求1所述的冲击工具,其中,所述冲击工具出现停机,包括:所述马达为初始停机状态,所述操作件被激活时所述马达未启动以使所述冲击工具出现停机。
  5. 根据权利要求4所述的冲击工具,其中,所述控制器被配置为:当所述马达为初始停机状态,所述操作件被激活时所述马达未启动时,获取所述操作件的状态信息;根据所述操作件的状态信息确定所述操作件处于被激活状态时,向所述马达发送启动信号;
    在向所述马达发送启动信号后,获取所述马达的运行状态;根据所述马达的运行状态确定所述马达被启动后,停止向所述马达发动启动信号。
  6. 根据权利要求1所述的冲击工具,其中,所述冲击工具出现停机,包括:所述操作件被激活且所述马达启动后,所述马达再次停机以使所述冲击工具出 现停机。
  7. 根据权利要求6所述的冲击工具,其中,所述控制器被配置为:当所述操作件被激活且所述马达启动后,所述马达再次停机时,获取所述操作件的状态信息;根据所述操作件的状态信息确定所述操作件处于被激活状态时,向所述马达发送启动信号;
    在向所述马达发送启动信号后,获取所述马达的运行状态;根据所述马达的运行状态确定所述马达被启动后,停止向所述马达发动启动信号。
  8. 根据权利要求1所述的冲击工具,其中,所述冲击工具出现停机,包括:所述马达为初始停机状态,所述操作件被激活时所述马达未启动以使所述冲击工具出现停机;和所述操作件被激活且所述马达启动后,所述马达再次停机以使所述冲击工具出现停机。
  9. 根据权利要求1所述的冲击工具,其中,所述操作件与开关连接,所述操作件被激活所述开关连通,所述马达基于所述开关连通被通电。
  10. 根据权利要求1所述的冲击工具,其中,所述冲击工具还包括检测机构,用于检测操作件的状态和电机的工作状态。
  11. 根据权利要求1所述的冲击工具,其中,所述电机的工作状态由电机的转速、工作电流、工作电压以及换相时间中的一项或几项来表征。
  12. 根据权利要求1所述的冲击工具,其中,所述操作件与滑动变阻器连接,所述操作件的状态不同,所述滑动变阻器的输出信号不同。
  13. 根据权利要求1所述的冲击工具,其中,所述冲击机构包括:由所述马达驱动的主轴、套设在所述主轴上的冲击块和设置在所述冲击块前端并接受所述冲击块打击的锤砧。
  14. 根据权利要求1所述的冲击工具,其中,冲击工具还包括直流电源,所述直流电源为所述马达供电。
  15. 根据权利要求1所述的冲击工具,其中,当所述操作件被操作时处于被激活状态,当所述操作件被释放时处于未被激活状态。
  16. 一种冲击工具,包括:
    马达,包括绕第一轴线转动的驱动轴;
    输出轴,用于对外输出扭矩以操作紧固件;所述输出轴以输出轴线为转轴旋转;
    冲击机构,用于对所述输出轴施加冲击力;
    控制器,用于控制所述马达;
    操作件,用于接收用户的操作指令;所述马达根据所述操作指令启动或停机;
    其中,所述控制器被配置为:当所述操作件接收到启动操作指令且所述马达未处于启动状态时,所述控制器持续向所述马达发送启动信号至所述马达启动。
  17. 一种冲击工具,包括:
    马达,包括绕第一轴线转动的驱动轴;
    输出轴,用于对外输出扭矩以操作紧固件;所述输出轴以输出轴线为转轴旋转;
    冲击机构,用于对所述输出轴施加冲击力;
    控制器,用于控制所述马达;
    操作件,用于接收用户的操作指令;所述马达根据所述操作指令启动或停机;
    其中,所述控制器被配置为:
    当所述马达为初始停机状态,所述操作件接收到启动操作指令且所述马达未处于启动状态时,向所述马达发送启动信号;当根据所述马达的运行状态确定所述马达被启动后,停止向所述马达发动启动信号。
  18. 根据权利要求17所述的冲击工具,其中,在向所述马达发送启动信号后,根据所述马达的运行状态确定所述马达电机未启动,再次获取所述操作件的状态信息。
  19. 根据权利要求18所述的冲击工具,其中,根据所述操作件的状态信息确定所述操作件接收到启动操作指令,向所述马达发送启动信号。
  20. 根据权利要求17所述的冲击工具,其中,所述操作件与开关连接,所述操作件接收到启动操作指令时所述开关连通,所述马达基于所述开关连通被通电。
PCT/CN2023/097767 2022-06-21 2023-06-01 冲击工具 WO2023246460A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210705460.9 2022-06-21
CN202210705460 2022-06-21

Publications (1)

Publication Number Publication Date
WO2023246460A1 true WO2023246460A1 (zh) 2023-12-28

Family

ID=89379123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097767 WO2023246460A1 (zh) 2022-06-21 2023-06-01 冲击工具

Country Status (1)

Country Link
WO (1) WO2023246460A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200988190Y (zh) * 2005-06-30 2007-12-12 松下电工株式会社 旋转冲击动力工具
US20140165946A1 (en) * 2012-12-14 2014-06-19 Makita Corporation Power tool
CN204770806U (zh) * 2015-06-04 2015-11-18 张家港欧博金属工具有限公司 一种具有过载后快速重启功能的磁力钻
CN112894724A (zh) * 2019-12-04 2021-06-04 苏州宝时得电动工具有限公司 电动工具及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200988190Y (zh) * 2005-06-30 2007-12-12 松下电工株式会社 旋转冲击动力工具
US20140165946A1 (en) * 2012-12-14 2014-06-19 Makita Corporation Power tool
CN204770806U (zh) * 2015-06-04 2015-11-18 张家港欧博金属工具有限公司 一种具有过载后快速重启功能的磁力钻
CN112894724A (zh) * 2019-12-04 2021-06-04 苏州宝时得电动工具有限公司 电动工具及其控制方法

Similar Documents

Publication Publication Date Title
US11047528B2 (en) Electronic braking for a power tool having a brushless motor
EP2039479B1 (en) Power tool
EP2830832B1 (en) Electric tool and fastening method using the same
US20150303842A1 (en) Impact tool
US20210187635A1 (en) Power tool and method for starting the same
EP3398724B1 (en) Electric tool
CN110460269B (zh) 电动工具
JP2019072812A5 (zh)
WO2013136673A1 (ja) 電動工具
CN111185874A (zh) 冲击螺丝批、旋转冲击工具及其控制方法
CN113726229B (zh) 电动工具
WO2023246460A1 (zh) 冲击工具
CN110900502B (zh) 冲击扳手以及电动工具
JP4203268B2 (ja) モータの制御装置
JP6953113B2 (ja) 工具
CN115383664A (zh) 电动工具及其控制方法
EP4340208A1 (en) Electric tool and control method therefor
US20240051095A1 (en) Impact tool and control method
US20230163706A1 (en) Power tool, impact wrench, and tool control method
JP2023055529A (ja) 電動工具
WO2023166923A1 (ja) 作業機
CN113497573A (zh) 电动工具转速控制方法及电动工具
CN116683404A (zh) 电动工具及其控制方法
JP2002154064A (ja) 半自動ねじ締結機に内装される電動モータの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826109

Country of ref document: EP

Kind code of ref document: A1