WO2023246432A1 - 十字馈电接头、正交模耦合器和天线 - Google Patents

十字馈电接头、正交模耦合器和天线 Download PDF

Info

Publication number
WO2023246432A1
WO2023246432A1 PCT/CN2023/096815 CN2023096815W WO2023246432A1 WO 2023246432 A1 WO2023246432 A1 WO 2023246432A1 CN 2023096815 W CN2023096815 W CN 2023096815W WO 2023246432 A1 WO2023246432 A1 WO 2023246432A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
waveguide
cross
cross feed
boss
Prior art date
Application number
PCT/CN2023/096815
Other languages
English (en)
French (fr)
Inventor
罗伟
付海博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023246432A1 publication Critical patent/WO2023246432A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a cross feed connector, an orthogonal mode coupler and an antenna.
  • the orthogonal mode coupler (ortho-mode transducer, OMT) can realize the combining and branching of orthogonal polarized signals and is the core component of the antenna to achieve dual-polarization transmission.
  • OMT orthogonal mode transducer
  • the processor also needs to achieve broadband.
  • the present disclosure provides a cross feed joint, which includes a common waveguide, four branch waveguides, a boss structure and four metal ridges.
  • the four branch waveguides are arranged in a cross shape, and the common waveguide is connected to the junction area of the four branch waveguides and is connected to all four branch waveguides.
  • the boss structure is located inside the interface area of the four branch waveguides and is opposite to the common waveguide.
  • the four metal ridges are respectively located on the inner walls of the four branch waveguides and extend along the respective branch waveguides. The four metal ridges are all connected to the boss structure.
  • the boss structure is a protrusion protruding toward the common waveguide
  • the metal ridge is a protrusion or convex strip on the inner wall of the branch waveguide.
  • the boss structure plays a role in guiding electromagnetic waves.
  • the cross feed joint provided by the present disclosure broadens the basic mode bandwidth of the cross feed joint through the cooperation of the boss structure and four metal ridges, and reduces the return loss S11 (dB) of the cross feed joint, thereby , realizing the broadband of the cross feed joint.
  • the boss structure includes a first boss and a second boss, the second boss is located on a side of the first boss facing the common waveguide, and the third boss is The outer diameter of the second boss is smaller than the outer diameter of the first boss.
  • the boss structure includes a boss.
  • the boss structure by setting the cross-section of the boss structure to be circular, the boss structure is more closely matched with the public waveguide in the form of a circular waveguide, and the guiding effect of the boss structure on electromagnetic waves is improved.
  • the metal ridge is a metal strip.
  • each metal ridge away from the boss structure is flush with the branch waveguide where it is located.
  • each metal ridge is located on the center line of the branch waveguide.
  • the metal ridge has a rectangular cross-section.
  • the cross section of the metal ridge is polygonal.
  • the boss structure and the four metal ridges are located on the bottom wall of the branch waveguide, where the bottom wall is the wall of the branch waveguide opposite to the common waveguide.
  • the common waveguide is a circular waveguide.
  • the branch waveguide is a rectangular waveguide.
  • the present disclosure provides a quadrature mode coupler including a cross feed joint, a first power combiner and a second power combiner.
  • the first power combiner has a first polarized signal main port and two first polarized signal branch ports.
  • the two first polarized signal branch ports are respectively connected to the two branch waveguides of the cross feed joint. connected, the two branch waveguides are located on the first straight line.
  • the second power combiner has a second polarized signal main port and two second polarized signal branch ports.
  • the two second polarized signal branch ports are respectively connected to the other two branches of the cross feed joint.
  • the waveguides are connected, and the other two branch waveguides are located on a second straight line, and the second straight line is perpendicular to the first straight line.
  • the cross feed joint is the cross feed joint according to any one of the first aspects.
  • the technical solution provided by the present disclosure broadens the absolute bandwidth and relative bandwidth of the orthogonal mode coupler by applying the above-mentioned cross feed connector in the orthogonal mode coupler, and realizes the broadband of the orthogonal mode coupler.
  • the first feed source sends the first polarized signal to the first polarized signal general port of the first power combiner, and the first polarized signal is divided into two first polarized channels inside the first power combiner.
  • the sub-signals, the two first polarization sub-signals are respectively transmitted to the two branch waveguides of the cross feed joint through the two first polarization signal branch ports of the first power combiner.
  • the second feed source sends a second polarization signal to the second polarization signal main port of the second power combiner, and the second polarization signal is divided into two second polarization sub-signals inside the second power combiner,
  • the two second polariton signals are respectively transmitted to the other two branch waveguides of the cross feed joint through the two second polarization signal branch ports of the second power combiner.
  • the cross feed joint combines the two first polariton signals and the two second polariton signals received through the four branch waveguides, and transmits them to the antenna body through the common port of the common waveguide.
  • the antenna body radiates orthogonal first polarization signals and second polarization signals.
  • the antenna body When the antenna receives a signal, the antenna body receives the orthogonal first polarization signal and the second polarization signal, and transmits the first polarization signal and the second polarization signal to the common port of the cross feed connector.
  • the common waveguide branches the first polarization signal into two first polariton signals, and branches the second polarization signal into two second polariton signals.
  • the two first polaron signals and the two second polaron signals are respectively output through four branch waveguides.
  • the two branch waveguides transmit the two first polarization signals to the two first polarization signal branch ports of the first power combiner.
  • the two first polar sub-signals are combined into a first polarized signal inside the first power combiner, and are transmitted to the first feed source through the first polarized signal main port.
  • the other two branch waveguides transmit the two second polariton signals to the two second polarization signal branch ports of the second power combiner.
  • the two second polariton signals are combined into a second polarization signal inside the second power combiner, and are transmitted to the second feed source through the second polarization signal main port.
  • the first power combiner has a first metal ridge
  • the second power combiner has a second metal ridge.
  • the first metal ridge and the second metal ridge may be used to connect with the metal ridge of the cross feed connector.
  • two branch waveguides located on the first straight line among the four branch waveguides are used to transmit the first polaron signal, and the two first polaron signals are equal in magnitude and phase. A difference of 180°.
  • Two second branch waveguides located on the second straight line among the four branch waveguides are used to transmit the second polaron signal, and the two second polaron signals are equal in magnitude and have a phase difference of 180°.
  • the technical solution provided by this disclosure can effectively suppress the generation of higher-order modes by adopting a balanced differential feed method, thereby reducing the return loss S11 (dB) of the orthogonal mode coupler and broadening the scope of the orthogonal mode coupler.
  • the bandwidth of the quadrature mode coupler is widened.
  • the quadrature mode coupler provided by the present disclosure effectively suppresses useless high-order modes by adopting a balanced differential feeding method.
  • the present disclosure provides an antenna having the orthogonal mode coupler as described in the second aspect.
  • the antenna is a dual-polarized antenna.
  • the antenna includes an antenna body, an orthogonal mode coupler, a first feed source and a second feed source.
  • the first feed source is connected to the first polarization signal general port of the quadrature mode coupler
  • the second feed source is connected to the second polarization signal general port of the quadrature mode coupler.
  • the common port of the quadrature mode coupler is connected to the antenna body.
  • the first feed source sends the first polarized signal to the first polarized signal main port
  • the second feed source sends the second polarized signal to the second polarized signal main port
  • the first polarization signal and the second polarization signal are combined inside the quadrature mode coupler, they are transmitted from the common port to the antenna body.
  • the antenna body radiates orthogonal first polarization signals and second polarization signals to the outside at the same time.
  • the antenna body When the antenna receives a signal, the antenna body receives the first polarization signal and the second polarization signal, and transmits the first polarization signal and the second polarization signal to the common port of the quadrature mode coupler. After the first polarization signal and the second polarization signal are internally split in the quadrature mode coupler, the first polarization signal is transmitted to the first feed source through the first polarization signal main port, and the second polarization signal is transmitted through the first polarization signal main port. The general port of the polarized signal is transmitted to the second feed source.
  • the network device is a base station.
  • Figure 1 is a schematic diagram of the architecture of an antenna provided by an embodiment of the present disclosure
  • Figure 3 is an exploded view of a quadrature mode coupler provided by an embodiment of the present disclosure
  • Figure 4 is a schematic diagram of a cross feed connector provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of a metal ridge and boss structure provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic diagram of a cross-section of a branch waveguide and a metal ridge provided by an embodiment of the present disclosure
  • Boss structure 131. First boss, 132. Second boss;
  • the second power combiner 31.
  • the second polarized signal main port 32.
  • the second polarized signal branch port 33.
  • the second metal ridge 34.
  • Dual polarization antenna refers to an antenna that can transmit and receive a first polarization signal and a second polarization signal at the same time.
  • the first polarization signal and the second polarization signal are orthogonal. Therefore, the first polarization signal and the second polarization signal are orthogonal.
  • Polarized signals do not interfere with each other.
  • the dual-polarized antennas and single-polarized antennas in the same operating frequency band because the dual-polarized antenna can transmit and receive signals in two polarization directions at the same time, the single-polarized antenna can only transmit and receive signals in one polarization direction. Therefore, dual-polarized antennas can only transmit and receive signals in one polarization direction.
  • the transmission capacity of the antenna is twice that of a single polarized antenna.
  • one of the first polarization signal and the second polarization signal may be a vertical polarization signal, and the other may be a horizontal polarization signal.
  • one of the first polarization signal and the second polarization signal may be a +45° polarization signal, and the other may be a -45° polarization signal.
  • Horizontally polarized signal refers to a signal whose electric field direction is parallel to the ground.
  • +45° polarization signal refers to the signal whose electric field direction is +45° with the ground.
  • -45° polarized signal refers to the signal whose electric field direction is -45° with the ground.
  • Orthogonal mode coupler (ortho-mode transducer, OMT): The core device for dual-polarized antennas to achieve dual-polarized transmission. It is used to achieve the combination of orthogonal polarized signals (first polarized signal and second polarized signal). Roads and branches.
  • the first feed source 300 sends a first polarized signal to the first polarized signal main port 21, and the second feed source 400 sends a second polarized signal to the second polarized signal main port 31.
  • the polarization signal and the second polarization signal are combined in the quadrature mode coupler 200, they are transmitted from the common port 111 to the antenna body 100.
  • the antenna body 100 radiates orthogonal first polarization signals and second polarization signals to the outside at the same time.
  • the antenna body 100 When the antenna receives a signal, the antenna body 100 receives the first polarization signal and the second polarization signal, and transmits the first polarization signal and the second polarization signal to the common port 111 of the quadrature mode coupler 200 . After the first polarization signal and the second polarization signal are split in the quadrature mode coupler 200, the first polarization signal is transmitted to the first feed source 300 through the first polarization signal main port 21, and the second polarization signal It is transmitted to the second feed source 400 via the second polarized signal main port 31 .
  • Absolute bandwidth occupied by the operating frequency band that makes the return loss S11 (dB) of the orthogonal mode coupler 200 less than the target value (when the orthogonal mode coupler operates in this operating frequency band, the return loss S11 (dB) is less than the target value)
  • the frequency band width that is, the difference between the highest frequency and the lowest frequency of the operating frequency band.
  • base station data backhaul means that the data from the base station is transmitted to the server in the computer room through the antenna.
  • the transmission capacity needs to be expanded to achieve large-capacity transmission.
  • dual-polarized antennas can double the transmission capacity while occupying the same spectrum resources.
  • Dual-polarized antennas require the use of orthogonal mode couplers to combine and branch orthogonally polarized signals. It can be understood that, in order to realize the broadband of the dual-polarized antenna, the orthogonal mode coupler 200 also needs to realize the broadband.
  • the cross feed joint 1 includes a common waveguide 11 and four branch waveguides 12 .
  • the four branch waveguides 12 are arranged in a cross shape, and the common waveguide 11 is connected to the junction area of the four branch waveguides 12 and is connected to all four branch waveguides 12 .
  • the first power combiner 2 has a first polarized signal main port 21 and two first polarized signal branch ports 22 .
  • the two first polarized signal branch ports 22 are connected to the two branch waveguides 12 of the cross feed joint 1 respectively. connected, the two branch waveguides 12 are located on the first straight line.
  • the second power combiner 3 has a second polarization signal main port 31 and two second polarization signal branch ports 32 .
  • the two second polarization signal branch ports 32 are connected to the other two branch waveguides of the cross feed joint 1 respectively. 12 are connected, the other two branch waveguides 12 are located on the second straight line, and the second straight line is perpendicular to the first straight line.
  • the embodiment of the present disclosure does not limit the working frequency band of the orthogonal mode coupler 200.
  • the orthogonal mode coupler 200 provided by the embodiment of the present disclosure can work in each frequency band shown in the above Table 1, and can also work in other more advanced frequency bands. High frequency band etc.
  • Antenna receives signal:
  • the two branch waveguides 12 transmit the two first polariton signals to the two first polarization signal branch ports 22 of the first power combiner 2 .
  • the two first polar sub-signals are combined into a first polarized signal inside the first power combiner 2 and transmitted to the first feed source 300 through the first polarized signal main port 21 .
  • the other two branch waveguides 12 transmit the two second polariton signals to the two second polarization signal branch ports 32 of the second power combiner 3 .
  • the two second polarization signals are combined into a second polarization signal inside the second power combiner 3 and transmitted to the second feed source 400 through the second polarization signal main port 31 .
  • the cross feed joint 1 includes a common waveguide 11 , four branch waveguides 12 , a boss structure 13 and four metal ridges 14 .
  • the four branch waveguides 12 are arranged in a cross shape, and the common waveguide 11 is connected to the junction area of the four branch waveguides 12 and is connected to all four branch waveguides 12 .
  • the boss structure 13 is located inside the junction area of the four branch waveguides 12 and is opposite to the common waveguide 11 .
  • the four metal ridges 14 are respectively located on the inner walls of the four branch waveguides 12 and along the respective The branch waveguide 12 extends, and the four metal ridges 14 are connected to the boss structure 13 .
  • the embodiments of the present disclosure do not limit the types of the common waveguide 11 and the branch waveguides 12.
  • the common waveguide 11 is a circular waveguide and the branch waveguides 12 are rectangular waveguides.
  • the boss structure 13 is a protrusion protruding toward the common waveguide 11
  • the metal ridge 14 is a protrusion or ridge on the inner wall of the branch waveguide 12 .
  • the technical solution provided by the embodiment of the present disclosure changes the cavity at the connection between the common waveguide 11 and the four branch waveguides 12 by arranging the boss structure 13 facing the common waveguide 11 inside the junction area of the four branch waveguides 12
  • the shape of the body makes the cavity in the junction area of the common waveguide 11 and the branch waveguide 12 smoother, thereby facilitating the transmission of electromagnetic waves from the common waveguide 11 to the branch waveguide 12, and facilitating the transmission of electromagnetic waves from the branch waveguide 12 to the common waveguide 11, and thus , reducing the return loss S11 (dB) of the cross feed connector 1.
  • the boss structure 13 is not provided, as shown in Figure 5, the cavity of the common waveguide 11 and the cavity of the branch waveguide 12 are at 90°, and the electromagnetic waves transmitted from the common waveguide 11 to the branch waveguide 12 are easily
  • the bottom wall of the junction area of the branch waveguides 12 reflects back, and the electromagnetic waves transmitted from the branch waveguide 12 to the common waveguide 11 are easily directly transmitted to another branch waveguide 12 but are difficult to be transmitted to the common waveguide 11 .
  • the boss structure 13 actually plays a guiding role in electromagnetic waves.
  • the branch waveguides 12 are widened. fundamental mode bandwidth. Since the branch waveguide 12 mainly transmits signals in the fundamental mode, widening the bandwidth of the fundamental mode also provides a basis for broadening the bandwidth of the cross feed joint 1 . In addition, since the total operating frequency band of the branch waveguide 12 is fixed, the increase in the fundamental mode bandwidth will inevitably lead to the reduction of useless high-order modes, thereby reducing the return loss S11 (dB) of the cross feed joint 1.
  • the cross feed joint 1 provided by the embodiment of the present disclosure broadens the basic mode bandwidth of the cross feed joint 1 and reduces the echo of the cross feed joint 1 through the cooperation of the boss structure 13 and the four metal ridges 14
  • the loss S11 (dB) enables the cross feed joint 1 to have a wider bandwidth, and further, the orthogonal mode coupler 200 to have a wider bandwidth.
  • the embodiment of the present disclosure does not limit the length and other dimensions of the common waveguide 11 and branch waveguides 12 of the cross feed joint 1, as shown in Figures 3 and 4.
  • the specific sizes of the common waveguide 11 and the branch waveguides 12 can be set arbitrarily according to actual needs, for example, according to the frequency band required to work.
  • the embodiment of the present disclosure does not limit the number of bosses included in the boss structure 13. In some examples, as shown in FIG. In the direction, the outer diameters of the multiple bosses gradually decrease.
  • the boss structure 13 includes a first boss 131 and a second boss 132 .
  • the second boss 132 is located on the side of the first boss 131 facing the common waveguide 11
  • the second boss 132 is located on the side of the first boss 131 facing the common waveguide 11 .
  • the outer diameter of 132 is smaller than the outer diameter of first boss 131 .
  • boss structure 13 may also include only one boss, which is not limited in this embodiment of the disclosure.
  • the embodiment of the present disclosure does not limit the shape of the boss included in the boss structure 13.
  • the cross section of the boss structure 13 is circular.
  • the technical solution provided by the embodiment of the present disclosure is to set the boss structure 13 to have a circular cross-section, so that the boss structure 13 can better match the public waveguide 11 in the form of a circular waveguide, and is more conducive to the guidance of electromagnetic waves by the boss structure 13 Effect.
  • cross-section of the boss structure 13 can also be polygonal, etc., which is not specifically limited in the embodiment of the present disclosure.
  • the bosses included in the boss structure 13 are cylindrical bosses.
  • bosses included in the boss structure 13 may also be tapered bosses or the like.
  • the metal ridge 14 is a metal strip and is fixed on the inner wall of the branch waveguide 12.
  • the metal strip is fixed on the inner wall of the branch waveguide 12 through bonding or welding.
  • the metal ridge 14 may also be formed by bending the shell wall of the branch waveguide 12 inward.
  • the embodiment of the present disclosure does not limit the shape of the metal ridge 14.
  • the cross-section of the metal ridge 14 is rectangular.
  • each metal ridge 14 away from the boss structure 13 is flush with the branch waveguide 12 where it is located.
  • each metal ridge 14 is located on the centerline of the branch waveguide 12 in which it resides.
  • the boss structure 13 and the metal ridge 14 are both located on the bottom wall of the branch waveguide 12 , where the bottom wall is the wall of the branch waveguide 12 opposite to the common waveguide 11 .
  • first power combiner 2 and the second power combiner 3 are provided:
  • the first power combiner 2 has a first metal ridge 23 and the second power combiner 3 has a second metal ridge 33 .
  • the first metal ridge 23 and the second metal ridge 33 are used to butt with the metal ridge 14 of the cross feed connector 1, thereby making the cross feed connector 1 more compatible with the first power combiner 2 and the second power combiner 3.
  • the working frequency band of the orthogonal mode coupler 200 provided by the embodiment of the present disclosure can simultaneously cover the 6G-11G frequency bands divided by the ITU, and can also be easily expanded to frequency bands such as Ka and Eband.
  • An embodiment of the present disclosure also provides an antenna. As shown in FIG. 1 , the antenna has the above-mentioned orthogonal mode coupler 200 .
  • the antenna is a dual-polarized antenna.
  • the technical solution provided by the embodiment of the present disclosure by applying the above-mentioned orthogonal mode coupler 200 in the antenna, can not only realize dual-polarization transmission of the antenna, but also realize the broadband of the antenna.
  • the antenna includes an antenna body 100 , a quadrature mode coupler 200 , a first feed source 300 and a second feed source 400 .
  • the first feed source 300 is connected to the first polarization signal general port 21 of the quadrature mode coupler 200
  • the second feed source 400 is connected to the second polarization signal general port 31 of the quadrature mode coupler 200 .
  • the common port 111 of the quadrature mode coupler 200 is connected to the antenna body 100 .
  • the first feed source 300 sends a first polarized signal to the first polarized signal main port 21, and the second feed source 400 sends a second polarized signal to the second polarized signal main port 31.
  • the polarization signal and the second polarization signal are combined in the quadrature mode coupler 200, they are transmitted from the common port 111 to the antenna body 100.
  • the antenna body 100 radiates orthogonal first polarization signals and second polarization signals to the outside at the same time.
  • the antenna body 100 receives the first polarized signal and the second polarized signal, and converts the first polarized signal into and the second polarization signal is transmitted to the common port 111 of the quadrature mode coupler 200 .
  • the first polarization signal and the second polarization signal are split in the quadrature mode coupler 200, the first polarization signal is transmitted to the first feed source 300 through the first polarization signal main port 21, and the second polarization signal It is transmitted to the second feed source 400 via the second polarized signal main port 31 .
  • the network device is a base station.
  • 5G base station For example, 5G base station.
  • the technical solution provided by the embodiments of the present disclosure can meet the large-capacity transmission requirements of the base station by applying the above-mentioned antenna in the base station.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

本公开提供了十字馈电接头、正交模耦合器和天线,属于通信技术领域。十字馈电接头包括公共波导、四个分支波导、凸台结构和四个金属脊。四个分支波导呈十字形排布,公共波导与四个分支波导的交界区域连接,且与四个分支波导均连通。凸台结构位于四个分支波导的交界区域的内部,且与公共波导相对。四个金属脊分别位于四个分支波导的内壁,且分别沿着所在的分支波导延伸,四个金属脊均与凸台结构连接。本公开提供的十字馈电接头能够应用在正交模耦合器中,且凸台结构和四个金属脊的配合使用,能够实现十字馈电接头以及正交模耦合器的宽频化。

Description

十字馈电接头、正交模耦合器和天线
本公开要求于2022年06月22日提交的申请号为202210716063.1、发明名称为“十字馈电接头、正交模耦合器和天线”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术领域,特别涉及一种十字馈电接头、正交模耦合器和天线。
背景技术
随着基站的数据流量暴增,基站数据回传所要求的传输容量也越来越大。
为了实现大容量传输,一般从两个方面考虑,一是实现天线的宽频化,二是实现天线的双极化传输。
正交模耦合器(ortho-mode transducer,OMT)能够实现正交极化信号的合路和分路,是天线实现双极化传输的核心器件,而为了实现天线的宽频化,正交模耦合器也需要实现宽频化。
发明内容
本公开提供了十字馈电接头、正交模耦合器和天线,本公开提供的十字馈电接头的四个分支波导的交界区域的内部具有凸台结构,每个分支波导的内壁具有金属脊,凸台结构和四个金属脊的配合使用,能够实现十字馈电接头的宽频化。所述馈电接头、所述正交模耦合器和所述天线的技术方案如下所述:
第一方面,本公开提供了一种十字馈电接头,所述十字馈电接头包括公共波导、四个分支波导、凸台结构和四个金属脊。所述四个分支波导呈十字形排布,所述公共波导与所述四个分支波导的交界区域连接,且与所述四个分支波导均连通。所述凸台结构位于所述四个分支波导的交界区域的内部,且与所述公共波导相对。所述四个金属脊分别位于所述四个分支波导的内壁,且分别沿着所在的分支波导延伸,所述四个金属脊均与所述凸台结构连接。
其中,凸台结构为凸向公共波导的凸起,金属脊为分支波导的内壁上的凸起或凸条。
本公开提供的技术方案,一方面,通过在四个分支波导的交界区域的内部设置朝向公共波导的凸台结构,改变了公共波导和四个分支波导相连处的腔体的形状,使得公共波导和分支波导的交界区域的腔体更加平滑,从而,便于电磁波从公共波导向分支波导传输,以及,便于电磁波从分支波导向公共波导传输,进而,降低了十字馈电接头的回波损耗S11(dB)。
可以理解的是,如果不设置凸台结构,则公共波导的腔体和分支波导的腔体呈90°,公共波导向分支波导传输的电磁波很容易被四个分支波导的交界区域的底壁反射回去,而分支波导向公共波导传输的电磁波很容易直接传输至相对的另一个分支波导,不易传输至公共波导。凸台结构起到了对电磁波的引导作用。
另一方面,通过在四个分支波导的内壁设置四个金属脊,相当于对标准的分支波导进行 了加脊(或称为分支波导变为了脊波导),而加脊能够拓宽分支波导的基模带宽。由于分支波导主要是在基模传递信号,因此,拓宽基模带宽,也就为拓宽十字馈电接头的带宽提供了基础。另外,由于分支波导传输的电磁波信号的总频段是一定的,因此,基模带宽的增大必然会导致无用的高阶模的减小,从而,降低了十字馈电接头的回波损耗S11(dB)。
也即,本公开提供的十字馈电接头通过凸台结构和四个金属脊的配合,拓宽了十字馈电接头的基模带宽,降低了十字馈电接头的回波损耗S11(dB),从而,实现了十字馈电接头的宽频化。
在一种可能的实现方式中,所述凸台结构包括多个堆叠排布的凸台,且沿着朝向所述公共波导的方向,多个所述凸台的外径逐渐减小。
在一种可能的实现方式中,所述凸台结构包括第一凸台和第二凸台,所述第二凸台位于所述第一凸台朝向所述公共波导的一面,且所述第二凸台的外径小于与所述第一凸台的外径。
在一种可能的实现方式中,所述凸台结构包括一个凸台。
在一种可能的实现方式中,所述公共波导的中轴线与所述凸台结构的中轴线重合。
在一种可能的实现方式中,所述凸台结构的横截面呈圆形。
其中,公共波导为圆波导。
本公开提供的技术方案,通过设置凸台结构的横截面呈圆形,使得凸台结构与圆波导形态的公共波导更加匹配,提高了凸台结构对电磁波的引导效果。
在一种可能的实现方式中,所述金属脊为金属条。
本公开提供的技术方案,通过设置金属脊为金属条,便于十字馈电接头的加工。
在一种可能的实现方式中,所述金属脊由分支波导的壳壁向内弯折形成。
在一种可能的实现方式中,每个所述金属脊远离所述凸台结构的一端与所在的分支波导平齐。
在一种可能的实现方式中,每个所述金属脊位于所在分支波导的中心线上。
在一种可能的实现方式中,所述金属脊的横截面呈矩形。
在一种可能的实现方式中,所述金属脊的横截面呈多边形。
在一种可能的实现方式中,所述凸台结构和所述四个金属脊位于所述分支波导的底壁,其中,所述底壁为所述分支波导与所述公共波导相对的壁。
在一种可能的实现方式中,所述公共波导为圆波导。
在一种可能的实现方式中,所述分支波导为矩形波导。
第二方面,本公开提供了一种正交模耦合器,所述正交模耦合器包括十字馈电接头、第一功率合成器和第二功率合成器。所述第一功率合成器具有第一极化信号总端口和两个第一极化信号分支端口,所述两个第一极化信号分支端口分别与所述十字馈电接头的两个分支波导连通,所述两个分支波导位于第一直线。所述第二功率合成器具有第二极化信号总端口和两个第二极化信号分支端口,所述两个第二极化信号分支端口分别与所述十字馈电接头的另两个分支波导连通,所述另两个分支波导位于第二直线,所述第二直线垂直于所述第一直线。
其中,所述十字馈电接头为如第一方面任一项所述的十字馈电接头。
本公开提供的技术方案,通过在正交模耦合器中应用上述十字馈电接头,拓宽了正交模耦合器的绝对带宽和相对带宽,实现了正交模耦合器的宽频化。
本公提供的正交模耦合器的工作过程可以如下所述:
天线发送信号时,第一馈电源向第一功率合成器的第一极化信号总端口发送第一极化信号,第一极化信号在第一功率合成器的内部分成两路第一极化子信号,两路第一极化子信号分别通过第一功率合成器的两个第一极化信号分支端口传输至十字馈电接头的两个分支波导。同时,第二馈电源向第二功率合成器的第二极化信号总端口发送第二极化信号,第二极化信号在第二功率合成器的内部分成两路第二极化子信号,两路第二极化子信号分别通过第二功率合成器的两个第二极化信号分支端口传输至十字馈电接头的另两个分支波导。
十字馈电接头对通过四个分支波导接收到的两路第一极化子信号和两路第二极化子信号进行合路,并通过公共波导的公共端口传输至天线本体。天线本体辐射正交的第一极化信号和第二极化信号。
天线接收信号时,天线本体接收正交的第一极化信号和第二极化信号,并将第一极化信号和第二极化信号传输至十字馈电接头的公共端口。公共波导将第一极化信号分路为两路第一极化子信号,将第二极化信号分路为两路第二极化子信号。两路第一极化子信号和两路第二极化子信号分别通过四个分支波导输出。
两个分支波导将两路第一极化子信号传输至第一功率合成器的两个第一极化信号分支端口。两路第一极化子信号在第一功率合成器的内部合路成第一极化信号,并通过第一极化信号总端口传输至第一馈电源。
另两个分支波导将两路第二极化子信号传输至第二功率合成器的两个第二极化信号分支端口。两路第二极化子信号在第二功率合成器的内部合路成第二极化信号,并通过第二极化信号总端口传输至第二馈电源。
在一种可能的实现方式中,第一功率合成器具有第一金属脊,第二功率合成器具有第二金属脊。第一金属脊和第二金属脊可以用于与十字馈电接头的金属脊相连。
其中,第一功率合成器和第二功率合成器可以理解为波导,第一金属脊和第二金属脊可以理解为波导的内壁上的凸起或凸条。
本公开提供的技术方案,通过在第一功率合成器和第二功率合成器设置第一金属脊和第二金属脊,使得第一功率合成器和第二功率合成器与十字馈电接头更加匹配。
在一种可能的实现方式中,所述四个分支波导中位于第一直线的两个分支波导用于传输第一极化子信号,且两路第一极化子信号的大小相等,相位相差180°。所述四个分支波导中位于第二直线的两个第二分支波导用于传输第二极化子信号,且两路第二极化子信号的大小相等,相位相差180°。
本公开提供的技术方案,通过采用平衡差分馈电的方式,能够有效抑制高次模的产生,从而,降低了正交模耦合器的回波损耗S11(dB),拓宽了正交模耦合器的带宽,实现了正交模耦合器的宽频化。
需要说明的是,在正交模耦合器中会同时产生基模电磁波和高次模电磁波,而传输信号的主要是基模电磁波。本公开提供的正交模耦合器通过采用平衡差分馈电的方式,有效抑制了无用的高次模。
第三方面,本公开提供了一种天线,所述天线具有如第二方面所述的正交模耦合器。
其中,该天线为双极化天线。
本公开提供的技术方案,通过在天线中应用上述正交模耦合器,既能够实现天线的双极化传输,也能够实现天线的宽频化。
在一种可能的实现方式中,所述天线包括天线本体、正交模耦合器、第一馈电源和第二馈电源。所述第一馈电源与所述正交模耦合器的第一极化信号总端口连接,所述第二馈电源与所述正交模耦合器的第二极化信号总端口连接。所述正交模耦合器的公共端口与所述天线本体连接。
本公开提供的技术方案,天线发送信号时,第一馈电源向第一极化信号总端口发送第一极化信号,第二馈电源向第二极化信号总端口发送第二极化信号,第一极化信号和第二极化信号在正交模耦合器的内部合路后,从公共端口传输至天线本体。天线本体同时对外辐射正交的第一极化信号和第二极化信号。
天线接收信号时,天线本体接收第一极化信号和第二极化信号,并将第一极化信号和第二极化信号传输至正交模耦合器的公共端口。第一极化信号和第二极化信号在正交模耦合器的内部分路后,第一极化信号经由第一极化信号总端口传输至第一馈电源,第二极化信号经由第二极化信号总端口传输至第二馈电源。
第四方面,本公开提供了一种网络设备,所述网络设备具有如第三方面所述的天线。
在一种可能的实现方式中,所述网络设备为基站。
本公开提供的技术方案,通过在基站中应用上述天线,能够满足基站的大容量传输的需求。
附图说明
图1是本公开实施例提供的一种天线的架构的示意图;
图2是本公开实施例提供的一种正交模耦合器的示意图;
图3是本公开实施例提供的一种正交模耦合器的爆炸视图;
图4是本公开实施例提供的一种十字馈电接头的示意图;
图5是本公开实施例提供的一种十字馈电接头的示意图;
图6是本公开实施例提供的一种金属脊和凸台结构的示意图;
图7是本公开实施例提供的一种金属脊和凸台结构的示意图;
图8是本公开实施例提供的一种分支波导和金属脊的横截面的示意图;
图9是本公开实施例提供的一种十字馈电接头的俯视图;
图10是本公开实施例提供的一种正交模耦合器的回波损耗的示意图。
图例说明
100、天线本体,200、正交模耦合器,300、第一馈电源,400、第二馈电源;
1、十字馈电接头;
11、公共波导,111、公共端口;
12、分支波导;
13、凸台结构,131、第一凸台,132、第二凸台;
14、金属脊;
2、第一功率合成器,21、第一极化信号总端口,22、第一极化信号分支端口,23、第一金属脊;
3、第二功率合成器,31、第二极化信号总端口,32、第二极化信号分支端口,33、第二金属脊。
具体实施方式
为了更好的理解本公开实施例提供的技术方案,下面,先对本公开实施例提供的技术方案涉及到的一些术语进行解释。
双极化天线:是指能够同时收发第一极化信号和第二极化信号的天线,其中,第一极化信号和第二极化信号正交,因此,第一极化信号和第二极化信号不会互相干扰。对于相同工作频段的双极化天线和单极化天线,由于双极化天线可以同时收发两个极化方向的信号,单极化天线仅能够收发一个极化方向的信号,所以,双极化天线的传输容量是单极化天线的传输容量的两倍。
其中,第一极化信号和第二极化信号中的一个可以为垂直极化信号,另一个可以为水平极化信号。或者,第一极化信号和第二极化信号中的一个可以为+45°极化信号,另一个可以为-45°极化信号。
垂直极化信号:是指电场方向垂直于地面的信号。
水平极化信号:是指电场方向平行于地面的信号。
+45°极化信号:是指电场方向与地面呈+45°的信号。
-45°极化信号:是指电场方向与地面呈-45°的信号。
正交模耦合器(ortho-mode transducer,OMT):双极化天线实现双极化传输的核心器件,用于实现正交极化信号(第一极化信号和第二极化信号)的合路和分路。
以图1为例,正交模耦合器200为一个3端口器件,分别为公共端口111、第一极化信号总端口21和第二极化信号总端口31。第一极化信号总端口21用于与第一馈电源300连接,第二极化信号总端口31用于与第二馈电源400连接,公共端口111用于与天线本体100连接。
天线发送信号时,第一馈电源300向第一极化信号总端口21发送第一极化信号,第二馈电源400向第二极化信号总端口31发送第二极化信号,第一极化信号和第二极化信号在正交模耦合器200中合路后,从公共端口111传输至天线本体100。天线本体100同时对外辐射正交的第一极化信号和第二极化信号。
天线接收信号时,天线本体100接收第一极化信号和第二极化信号,并将第一极化信号和第二极化信号传输至正交模耦合器200的公共端口111。第一极化信号和第二极化信号在正交模耦合器200中分路后,第一极化信号经由第一极化信号总端口21传输至第一馈电源300,第二极化信号经由第二极化信号总端口31传输至第二馈电源400。
回波损耗S11(dB):指的是射频输入信号反射回来的功率与输入信号功率的比值,常用dB表示,是一个负数。在理想情况下,正交模耦合器200与射频电路的阻抗完全匹配,完全没有反射功率,这时的回波损耗为无限小。但是,在工程上阻抗不可能完全匹配,因此反射功率是一定存在的。最差的情况是输入功率完全被反射,此时回波损耗为0dB。因此,对于回波损耗这个技术参数,数值越低表示正交模耦合器200的性能越好。
绝对带宽:使得正交模耦合器200的回波损耗S11(dB)小于目标值的工作频段(正交模耦合器在该工作频段工作时,回波损耗S11(dB)小于目标值)所占据的频段宽度,也即,工作频段的最高频率和最低频率的差值。其中,在本公开实施例提供的技术方案中,目标值以-20dB为例。
相对带宽:绝对带宽与工作频段的中心频率的比值,也即,f=(fH-fL)/((fH+fL)/2),其中,f为相对带宽,fH为工作频段的最高频率,fL为工作频段的最低频率。
第五代移动通信技术(5th generation mobile communication technology,5G)时代的来临使得基站的数据流量暴增。点对点通信方式作为基站数据回传的常用手段之一,面临巨大挑战。其中,基站数据回传是指基站的数据通过天线传输至机房的服务器中。
为了满足5G基站数据回传的要求,需要扩展传输容量,实现大容量传输。
一方面,根据国际电信联盟(international telecommunication union,ITU)的划分,将用于基站回传的频率划分为如表1的多个频段。仅仅使用单一频段的传输容量有限,不能满足5G回传的大容量要求,因此需要相邻几个频段同时使用。对于传统的窄频天线来说,为了实现多个频带同时使用,需要在基站同时部署多面天线,这使得物料成本、安装成本和铁塔租赁成本等都非常昂贵。而天线如果能实现宽频化,则一面天线能覆盖多个频段,一面天线可替代多面天线,将显著降低多频同时工作的成本。
表1
另一方面,双极化天线与单极化天线相比,在占用相同的频谱资源的前提下,能够使得传输容量翻倍。
综上所述,为了实现大容量传输,需要宽频化的双极化天线。而双极化天线需要使用正交模耦合器来实现正交极化信号的合路和分路。可以理解的是,要想实现双极化天线的宽频化,则正交模耦合器200也需要实现宽频化。
鉴于上述技术问题,本公开实施例提供了一种正交模耦合器200,如图2和图3所示,正交模耦合器200包括十字馈电接头1、第一功率合成器2和第二功率合成器3。
十字馈电接头1包括公共波导11和四个分支波导12。四个分支波导12呈十字形排布,公共波导11与四个分支波导12的交界区域连接,且与四个分支波导12均连通。
第一功率合成器2具有第一极化信号总端口21和两个第一极化信号分支端口22,两个第一极化信号分支端口22分别与十字馈电接头1的两个分支波导12连通,该两个分支波导12位于第一直线。
第二功率合成器3具有第二极化信号总端口31和两个第二极化信号分支端口32,两个第二极化信号分支端口32分别与十字馈电接头1的另两个分支波导12连通,该另两个分支波导12位于第二直线,第二直线垂直于第一直线。
其中,本公开实施例对正交模耦合器200的工作频段不作限定,本公开实施例提供的正交模耦合器200可以工作于上述表1中示出的各个频段,也可以工作于其它更高的频段等。
下面,对正交模耦合器200的工作过程进行示例性说明:
天线发送信号:
第一馈电源300向第一功率合成器2的第一极化信号总端口21发送第一极化信号,第一极化信号在第一功率合成器2的内部分成两路第一极化子信号,两路第一极化子信号分别通过第一功率合成器2的两个第一极化信号分支端口22传输至十字馈电接头1的两个分支波导12。
同时,第二馈电源400向第二功率合成器3的第二极化信号总端口31发送第二极化信号,第二极化信号在第二功率合成器3的内部分成两路第二极化子信号,两路第二极化子信号分别通过第二功率合成器3的两个第二极化信号分支端口32传输至十字馈电接头1的另两个分支波导12。
十字馈电接头1对通过四个分支波导12接收到的两路第一极化子信号和两路第二极化子信号进行合路,并通过公共波导11的公共端口111传输至天线本体100。天线本体100辐射正交的第一极化信号和第二极化信号。
天线接收信号:
天线本体100接收正交的第一极化信号和第二极化信号,并将第一极化信号和第二极化信号传输至十字馈电接头1的公共端口111。公共波导11将第一极化信号分路为两路第一极化子信号,将第二极化信号分路为两路第二极化子信号。两路第一极化子信号和两路第二极化子信号分别通过四个分支波导12输出。
两个分支波导12将两路第一极化子信号传输至第一功率合成器2的两个第一极化信号分支端口22。两路第一极化子信号在第一功率合成器2的内部合路成第一极化信号,并通过第一极化信号总端口21传输至第一馈电源300。
另两个分支波导12将两路第二极化子信号传输至第二功率合成器3的两个第二极化信号分支端口32。两路第二极化子信号在第二功率合成器3的内部合路成第二极化信号,并通过第二极化信号总端口31传输至第二馈电源400。
在一些示例中,上述两路第一极化子信号的相位相差180°,且大小相等。上述两路第二极化子信号的相位相差180°,且大小相等。
也即,本公开实施例提供的正交模耦合器200采用了平衡差分馈电的方式,而平衡差分馈电的方式能够有效抑制高次模的产生,从而,能够拓宽正交模耦合器200的绝对带宽和相对带宽,有利于实现正交模耦合器200的宽频化。
需要说明的是,在正交模耦合器200中会同时产生基模电磁波和高次模电磁波,而传输信号的主要是基模电磁波。本公开实施例提供的正交模耦合器200通过采用平衡差分馈电的方式,有效抑制了无用的高次模。
对于正交模耦合器200来说,主要是十字馈电接头1限制了正交模耦合器200的带宽,因此,本公开实施例提供了一种新型的十字馈电接头1,该十字馈电接头1的绝对带宽和相对带宽均较宽。
下面,对本公开实施例提供的十字馈电接头1进行更加详细的示例性说明:
如图3-图5所示,十字馈电接头1包括公共波导11、四个分支波导12、凸台结构13和四个金属脊14。四个分支波导12呈十字形排布,公共波导11与四个分支波导12的交界区域连接,且与四个分支波导12均连通。凸台结构13位于四个分支波导12的交界区域的内部,且与公共波导11相对。四个金属脊14分别位于四个分支波导12的内壁,且分别沿着所 在的分支波导12延伸,四个金属脊14均与凸台结构13连接。
其中,本公开实施例对公共波导11和分支波导12的类型不作限定,在一些示例中,如图3-图5所示,公共波导11为圆波导,分支波导12为矩形波导。
凸台结构13为凸向公共波导11的凸起,金属脊14为分支波导12的内壁上的凸起或凸条。
本公开实施例提供的技术方案,一方面,通过在四个分支波导12的交界区域的内部设置朝向公共波导11的凸台结构13,改变了公共波导11和四个分支波导12相连处的腔体的形状,使得公共波导11和分支波导12的交界区域的腔体更加平滑,从而,便于电磁波从公共波导11向分支波导12传输,以及,便于电磁波从分支波导12向公共波导11传输,进而,降低了十字馈电接头1的回波损耗S11(dB)。
可以理解的是,如果不设置凸台结构13,如图5所示,则公共波导11的腔体和分支波导12的腔体呈90°,公共波导11向分支波导12传输的电磁波很容易被分支波导12的交界区域的底壁反射回去,分支波导12向公共波导11传输的电磁波很容易直接传输至另一个分支波导12,不易传输至公共波导11。凸台结构13起到的实际是对电磁波的引导作用。
另一方面,通过在四个分支波导12的内壁设置四个金属脊14,相当于对标准的分支波导12进行了加脊(或称为分支波导12变为了脊波导),拓宽了分支波导12的基模带宽。而由于分支波导12主要是在基模传递信号,因此,拓宽基模带宽,也就为拓宽十字馈电接头1的带宽提供了基础。另外,由于分支波导12的总的工作频段是一定的,因此,基模带宽的增大必然会导致无用的高阶模的减少,从而,降低了十字馈电接头1的回波损耗S11(dB)。
也即,本公开实施例提供的十字馈电接头1通过凸台结构13和四个金属脊14的配合,拓宽了十字馈电接头1的基模带宽,降低了十字馈电接头1的回波损耗S11(dB),从而,实现了十字馈电接头1的宽频化,进而,能够实现正交模耦合器200的宽频化。
本公开实施例对十字馈电接头1的公共波导11和分支波导12的长度等尺寸不作限定,如图3和图4所示。公共波导11和分支波导12的具体尺寸可以根据实际需要任意设置,例如,根据需要工作的频段来设置。
下面,对凸台结构13和金属脊14进行更加详细的示例性说明:
本公开实施例对凸台结构13包括的凸台的数量不作限定,在一些示例中,如图6所示,凸台结构13包括多个堆叠排布的凸台,且沿着朝向公共波导11的方向,多个凸台的外径逐渐减小。
示例性的,如图6所示,凸台结构13包括第一凸台131和第二凸台132,第二凸台132位于第一凸台131朝向公共波导11的一面,且第二凸台132的外径小于第一凸台131的外径。
当然,如图7所示,凸台结构13也可以仅包括一个凸台,本公开实施例对此不作限定。
本公开实施例对凸台结构13包括的凸台的形态不作限定,在一些示例中,如图6和图7所示,凸台结构13的横截面呈圆形。
本公开实施例提供的技术方案,通过设置凸台结构13的横截面呈圆形,使得凸台结构13与圆波导形态的公共波导11更加匹配,更加有利于发挥凸台结构13对电磁波的引导效果。
当然,凸台结构13的横截面还可以为多边形等,本公开实施例对此不作具体限定。
在一些示例中,如图6和图7所示,凸台结构13包括的凸台为柱形凸台。
在另一些示例中,凸台结构13包括的凸台也可以为锥形凸台等。
本公开实施例对金属脊14的形成方式不作限定,在一些示例中,如图6和图7所示,金属脊14为金属条,且固定在分支波导12的内壁上。例如,金属条通过粘接或焊接等连接方式,固定在分支波导12的内壁上。
在另一些示例中,如图8所示,金属脊14也可以是由分支波导12的壳壁向内弯折形成。
本公开实施例对金属脊14的形态不作限定,在一些示例中,如图6和图7所示,金属脊14的横截面呈矩形。
当然,金属脊14的横截面还可以呈正方形、三角形、锥形和半圆形等,本公开实施例对此不作具体限定。
在一些示例中,如图9所示,每个金属脊14远离凸台结构13的一端与所在的分支波导12平齐。
在一些示例中,如图9所示,每个金属脊14位于所在分支波导12的中心线上。
在一些示例中,如图5所示,凸台结构13和金属脊14均位于分支波导12的底壁,其中,底壁为分支波导12与公共波导11相对的壁。
下面,对第一功率合成器2和第二功率合成器3进行更加详细的示例性说明:
在一些示例中,如图3所示,第一功率合成器2具有第一金属脊23,第二功率合成器3具有第二金属脊33。第一金属脊23和第二金属脊33用于与十字馈电接头1的金属脊14对接,从而,使得十字馈电接头1与第一功率合成器2、第二功率合成器3更加匹配。
其中,第一功率合成器2和第二功率合成器3可以理解为波导,第一金属脊23和第二金属脊33可以理解为波导的内壁上的凸起或凸条。
本公开实施例提供的正交模耦合器200通过应用上述十字馈电接头1,实现了宽频化。
如图10所示,本公开实施例提供的正交模耦合器200的回波损耗S11(dB)小于-20db的频段是5.82GHz-11.83GHz,绝对带宽是11.83-5.82=6.01GHz,相对带宽达到6.01GHz((5.82+11.83)/2)=68.1%。本公开实施例提供的正交模耦合器200的工作频段,能够同时覆盖ITU划分的6G-11G的频段,并且,还可以方便的向Ka和Eband等频段扩展。
本公开实施例还提供了一种天线,如图1所示,天线具有上述的正交模耦合器200。
其中,该天线为双极化天线。
本公开实施例提供的技术方案,通过在天线中应用上述正交模耦合器200,既能够实现天线的双极化传输,也能够实现天线的宽频化。
在一些示例中,如图1所示,天线包括天线本体100、正交模耦合器200、第一馈电源300和第二馈电源400。第一馈电源300与正交模耦合器200的第一极化信号总端口21连接,第二馈电源400与正交模耦合器200的第二极化信号总端口31连接。正交模耦合器200的公共端口111与天线本体100连接。
天线发送信号时,第一馈电源300向第一极化信号总端口21发送第一极化信号,第二馈电源400向第二极化信号总端口31发送第二极化信号,第一极化信号和第二极化信号在正交模耦合器200中合路后,从公共端口111传输至天线本体100。天线本体100同时对外辐射正交的第一极化信号和第二极化信号。
天线接收信号时,天线本体100接收第一极化信号和第二极化信号,并将第一极化信号 和第二极化信号传输至正交模耦合器200的公共端口111。第一极化信号和第二极化信号在正交模耦合器200中分路后,第一极化信号经由第一极化信号总端口21传输至第一馈电源300,第二极化信号经由第二极化信号总端口31传输至第二馈电源400。
本公开实施例还提供了一种网络设备,该网络设备包括上述天线。
在一些示例中,该网络设备为基站。例如,5G基站。
本公开实施例提供的技术方案,通过在基站中应用上述天线,能够满足基站的大容量传输的需求。
本公开的实施方式部分使用的术语仅用于对本公开的实施例进行解释,而非旨在限定本公开。除非另作定义,本公开的实施方式使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。“多个”指两个或两个以上,除非另有明确的限定。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种十字馈电接头,其特征在于,所述十字馈电接头包括公共波导(11)、四个分支波导(12)、凸台结构(13)和四个金属脊(14);
    所述四个分支波导(12)呈十字形排布,所述公共波导(11)与所述四个分支波导(12)的交界区域连接,且与所述四个分支波导(12)均连通;
    所述凸台结构(13)位于所述四个分支波导(12)的交界区域的内部,且与所述公共波导(11)相对;
    所述四个金属脊(14)分别位于所述四个分支波导(12)的内壁,且分别沿着所在的分支波导(12)延伸,所述四个金属脊(14)均与所述凸台结构(13)连接。
  2. 根据权利要求1所述的十字馈电接头,其特征在于,所述凸台结构(13)包括多个堆叠排布的凸台,且沿着朝向所述公共波导(11)的方向,多个所述凸台的外径逐渐减小。
  3. 根据权利要求1或2所述的十字馈电接头,其特征在于,所述凸台结构(13)包括第一凸台(131)和第二凸台(132);
    所述第二凸台(132)位于所述第一凸台(131)朝向所述公共波导(11)的一面,且所述第二凸台(132)的外径小于所述第一凸台(131)的外径。
  4. 根据权利要求1-3任一项所述的十字馈电接头,其特征在于,所述凸台结构(13)的横截面呈圆形。
  5. 根据权利要求1-4任一项所述的十字馈电接头,其特征在于,每个所述金属脊(14)远离所述凸台结构(13)的一端与所在的分支波导(12)平齐。
  6. 根据权利要求1-5任一项所述的十字馈电接头,其特征在于,每个所述金属脊(14)位于所在分支波导(12)的中心线上。
  7. 根据权利要求1-6任一项所述的十字馈电接头,其特征在于,所述金属脊(14)的横截面呈矩形。
  8. 根据权利要求1-7任一项所述的十字馈电接头,其特征在于,所述公共波导(11)为圆波导,所述分支波导(12)为矩形波导。
  9. 一种正交模耦合器,其特征在于,所述正交模耦合器包括十字馈电接头(1)、第一功率合成器(2)和第二功率合成器(3);
    所述十字馈电接头(1)为如权利要求1-8任一项所述的十字馈电接头;
    所述第一功率合成器(2)具有第一极化信号总端口(21)和两个第一极化信号分支端口 (22),所述两个第一极化信号分支端口(22)分别与所述十字馈电接头(1)的两个分支波导(12)连通,所述两个分支波导(12)位于第一直线;
    所述第二功率合成器(3)具有第二极化信号总端口(31)和两个第二极化信号分支端口(32),所述两个第二极化信号分支端口(32)分别与所述十字馈电接头(1)的另两个分支波导(12)连通,所述另两个分支波导(12)位于第二直线,所述第二直线垂直于所述第一直线。
  10. 一种天线,其特征在于,所述天线具有如权利要求9所述的正交模耦合器。
PCT/CN2023/096815 2022-06-22 2023-05-29 十字馈电接头、正交模耦合器和天线 WO2023246432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210716063.1A CN117317588A (zh) 2022-06-22 2022-06-22 十字馈电接头、正交模耦合器和天线
CN202210716063.1 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023246432A1 true WO2023246432A1 (zh) 2023-12-28

Family

ID=89260886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096815 WO2023246432A1 (zh) 2022-06-22 2023-05-29 十字馈电接头、正交模耦合器和天线

Country Status (2)

Country Link
CN (1) CN117317588A (zh)
WO (1) WO2023246432A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040246069A1 (en) * 2002-03-20 2004-12-09 Naofumi Yoneda Waveguide type ortho mode transducer
EP2214251A1 (en) * 2009-02-02 2010-08-04 Centre National D'etudes Spatiales A waveguide orthomode transducer
CN104347922A (zh) * 2014-10-30 2015-02-11 哈尔滨工业大学 一种同轴波导宽带正交模耦合装置
CN107978832A (zh) * 2017-12-18 2018-05-01 中国电子科技集团公司第五十四研究所 一种宽带同轴波导耦合器
CN207852871U (zh) * 2017-12-28 2018-09-11 航天恒星空间技术应用有限公司 一种宽频带十字型正交模转换器
CN113097678A (zh) * 2019-12-23 2021-07-09 罗森伯格技术有限公司 一种双频双极化分路器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040246069A1 (en) * 2002-03-20 2004-12-09 Naofumi Yoneda Waveguide type ortho mode transducer
EP2214251A1 (en) * 2009-02-02 2010-08-04 Centre National D'etudes Spatiales A waveguide orthomode transducer
CN104347922A (zh) * 2014-10-30 2015-02-11 哈尔滨工业大学 一种同轴波导宽带正交模耦合装置
CN107978832A (zh) * 2017-12-18 2018-05-01 中国电子科技集团公司第五十四研究所 一种宽带同轴波导耦合器
CN207852871U (zh) * 2017-12-28 2018-09-11 航天恒星空间技术应用有限公司 一种宽频带十字型正交模转换器
CN113097678A (zh) * 2019-12-23 2021-07-09 罗森伯格技术有限公司 一种双频双极化分路器

Also Published As

Publication number Publication date
CN117317588A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
US6661309B2 (en) Multiple-channel feed network
US10297917B2 (en) Dual KA band compact high efficiency CP antenna cluster with dual band compact diplexer-polarizers for aeronautical satellite communications
CN107910650A (zh) 一种双频天线馈电系统及双频天线
CN104934672A (zh) 基于十字转门结构的新型宽带同轴波导正交模耦合器
CN114335957B (zh) 功率合成/分配器
CN113193343B (zh) 一种Ka频段紧凑型高效宽带双圆极化天线
CN110289483A (zh) 双频双圆极化导航测控天线馈源
CN112886173B (zh) 一种双波段正交模耦合器
CN105826643A (zh) 基于半模基片集成波导的紧凑型六端口电路
CN109830802A (zh) 一种毫米波双极化贴片天线
CN112492891A (zh) 多频段天线馈源
CN114188688B (zh) 一种小型化同轴波导正交模耦合器
CN209217203U (zh) 一种毫米波双极化贴片天线
CN102509838B (zh) 宽带工作波导行波功率合成放大器
WO2023246432A1 (zh) 十字馈电接头、正交模耦合器和天线
CN210866445U (zh) 一种双频双极化分路器
CN110943294B (zh) 宽带低剖面双圆极化平板天线
CN108011160B (zh) 一种k波段小型化正交模转换器
CN113097678A (zh) 一种双频双极化分路器
CN207426162U (zh) 一种双频天线馈电系统及双频天线
CN114204268B (zh) 一种C/Ku双频共用圆极化同轴馈源网络
CN107086344B (zh) 耦合缝正交模耦合器
CN109378592A (zh) 一种具有稳定波束宽度和低副瓣的宽带天线阵列馈电网络
CN105206910A (zh) Ka宽频带正交模耦合器
WO2021127864A1 (zh) 一种双频双极化分路器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826081

Country of ref document: EP

Kind code of ref document: A1