WO2023246288A1 - 吸声片材及车辆 - Google Patents
吸声片材及车辆 Download PDFInfo
- Publication number
- WO2023246288A1 WO2023246288A1 PCT/CN2023/090643 CN2023090643W WO2023246288A1 WO 2023246288 A1 WO2023246288 A1 WO 2023246288A1 CN 2023090643 W CN2023090643 W CN 2023090643W WO 2023246288 A1 WO2023246288 A1 WO 2023246288A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sound
- neck
- absorbing sheet
- absorbing
- unit base
- Prior art date
Links
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 15
- 238000002347 injection Methods 0.000 claims description 16
- 239000007924 injection Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 13
- 238000009413 insulation Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/172—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
Definitions
- the present application belongs to the technical field of sound-absorbing materials, and particularly relates to a sound-absorbing sheet and a vehicle.
- the frequency components of the noise generated during vehicle operation are complex and concentrated at low frequencies, which easily resonate with the human body and structures, causing great harm.
- Traditional sound insulation materials use homogeneous plates as the sound insulation matrix. Their low-frequency sound insulation follows the mass density law, that is, the surface density determines the sound insulation amount of the sound insulation material.
- the insulation can be appropriately improved by applying viscoelastic damping materials, reinforcements, etc. on the surface. However, this method increases the quality and thickness of the sound insulation material and cannot significantly improve the sound insulation performance in the low frequency band.
- Acoustic metamaterials are periodic or non-periodic composite structural materials that are artificially designed and manufactured.
- the structural size of their basic units is usually much smaller than the wavelength of sound waves, which can break through the mass sound insulation theorem of traditional materials.
- the single resonance sound-absorbing cavity type acoustic metamaterial relies on the local resonance of the air in the sound-absorbing cavity to achieve the purpose of sound absorption, and can achieve sound insulation far higher than the mass theorem.
- the neck of existing resonant sound-absorbing cavity type acoustic metamaterials is connected to the outside of the sound-absorbing cavity.
- a longer neck and a larger sound-absorbing cavity are often required, resulting in resonant sound-absorbing cavity type acoustic metamaterials.
- the material takes up a lot of space and is difficult to implement in places with limited space.
- the technical problem to be solved by this application is: the existing resonant sound-absorbing cavity type acoustic metamaterial often requires a longer neck and a larger sound-absorbing cavity when dealing with low-frequency noise, resulting in the resonant sound-absorbing cavity type acoustic metamaterial occupying To solve the problem of large space, a sound-absorbing sheet and vehicle are provided.
- the sound-absorbing sheet includes a plurality of resonance units connected into one piece.
- the resonance units include a unit base and a neck.
- the interior of the unit base A sound-absorbing cavity is formed, the unit base is provided with a through hole, the neck is arranged in the sound-absorbing cavity, the neck is a tubular structure, the first end of the neck is provided with a first opening, and the neck is arranged in the sound-absorbing cavity.
- the second end of the neck is provided with a second opening.
- the first opening is connected to the through hole and communicates with the outside world.
- the second end of the neck is located inside the sound-absorbing cavity.
- the second opening is connected to the sound-absorbing cavity.
- the sound-absorbing cavities are connected.
- the neck is a straight tube, and the length of the portion of the neck accommodated in the sound-absorbing cavity is smaller than the size of the sound-absorbing cavity along the thickness direction of the sound-absorbing sheet.
- the neck is a curved tube.
- the elbow is U-shaped or spiral-shaped.
- the first end of the neck is inserted into the through hole or the end surface of the first end of the neck is bonded to the inner wall surface of the unit base.
- the cross-sectional shape of the inner hole of the neck is circular, and the diameter of the circular cross-section of the inner hole of the neck is 1-2mm; or,
- the cross-sectional shape of the inner hole of the neck is elliptical, the major axis of the elliptical cross-section of the inner hole of the neck is 1-2mm, and the minor axis of the elliptical cross-section of the inner hole of the neck is 1-2mm; or,
- the cross-sectional shape of the inner hole of the neck is a polygon, and the side length of the polygonal cross-section of the inner hole of the neck is 1-2 mm.
- a plurality of the resonance units are arranged in an array.
- the outer edge shape of the cross section of the unit base perpendicular to the thickness direction of the sound-absorbing sheet is a polygon.
- the size of the sound-absorbing cavity along the thickness direction of the sound-absorbing sheet is 7-40 mm, and the wall thickness of the unit base is 1-2 mm.
- the inner wall surface of the unit base has an opposite first wall surface and a second wall surface, and the first wall surface and the second wall surface are provided with curved surfaces.
- the curved surface is a wavy curved surface, a cylindrical surface or a zigzag curved surface.
- the sound-absorbing sheet includes an injection molded body and a cover plate, the injection molded body is provided with a plurality of pits spaced apart from each other, and the cover plate covers the plurality of pits to form a plurality of the pits.
- the injection molded body includes a plurality of injection molded body units connected into one piece, and the cover plate includes a plurality of cover plate units connected into one piece. Each of the cover plate units is provided with the through hole.
- the cover plate The unit is fixedly connected to the recessed opening of the injection molded body unit to form the unit base.
- the neck is arranged in the sound-absorbing cavity, which can effectively reduce the size of the resonance unit and reduce the space occupied by the sound-absorbing sheet. It is also very suitable for places with limited space. , has a wide range of applications.
- the sound-absorbing sheet also has a good sound-absorbing effect for ultra-low frequency (200-300Hz) noise.
- embodiments of the present application also provide a vehicle, including a vehicle structural member and the above-mentioned sound-absorbing sheet.
- the sound-absorbing sheet is attached to the above-mentioned vehicle structural member.
- the neck of the resonance unit of the sound-absorbing sheet is The first opening faces the source of sound to be absorbed.
- Figure 1 is a schematic diagram of the sound-absorbing sheet provided by the first embodiment of the present application.
- Figure 2 is a schematic diagram of the resonance unit of the sound-absorbing sheet provided by the first embodiment of the present application.
- Figure 3 is a schematic diagram of the resonance unit of the sound-absorbing sheet provided by the second embodiment of the present application.
- Figure 4 is a schematic diagram of the resonance unit of the sound-absorbing sheet provided by the third embodiment of the present application.
- Figure 5 is a schematic diagram of the resonance unit of the sound-absorbing sheet provided by the third embodiment of the present application.
- Figure 6 is a schematic diagram of the sound-absorbing sheet provided by the fourth embodiment of the present application.
- Figure 7 is a schematic diagram of the resonance unit of the sound-absorbing sheet provided by the fourth embodiment of the present application.
- Figure 8 is a simulation diagram of the sound-absorbing sheet provided by the fourth embodiment of the present application.
- Figure 9 is a schematic diagram of the resonance unit of the sound-absorbing sheet provided by the fifth embodiment of the present application.
- Figure 10 is a schematic diagram of the resonance unit of the sound-absorbing sheet provided by the sixth embodiment of the present application.
- Figure 11 is a schematic diagram of the resonance unit of the sound-absorbing sheet provided by the seventh embodiment of the present application.
- Figure 12 is a schematic diagram of the sound-absorbing sheet provided by the eighth embodiment of the present application.
- Figure 13 is a schematic diagram of the resonance unit of the sound-absorbing sheet provided in the ninth embodiment of the present application.
- Resonance unit 11. Unit base; 111. Through hole; 112. First wall; 113. Second wall; 12. Neck; 121. First end of the neck; 122. Second end of the neck; 13. Suction vocal tone.
- the sound-absorbing sheet provided by the first embodiment of the present application includes a plurality of resonance units 1 connected into one piece.
- the resonance unit 1 includes a unit base 11 and a neck 12.
- the unit base A sound-absorbing cavity 13 is formed inside 11.
- the unit base 11 is provided with a through hole 111.
- the neck 12 is arranged in the sound-absorbing cavity 13.
- the neck 12 is a tubular structure.
- the first part of the neck 12 is The end 121 is provided with a first opening, and the second end 122 of the neck 12 is provided with a second opening.
- the first end 121 of the neck 12 is fixed on the unit base 11, and the first opening is connected to the through passage.
- the holes 111 are connected and communicate with the outside world.
- the second end 122 of the neck is located inside the sound-absorbing cavity 13 .
- the second opening is connected with the sound-absorbing cavity 13 .
- the outside world can be connected to the sound-absorbing cavity 13 through the neck 12 .
- the sound waves from the sound source enter the sound-absorbing cavity 13 after passing through the neck 12.
- the sound waves are attenuated by multiple reflections in the sound-absorbing cavity 13, thereby achieving sound absorption.
- the neck 12 is a straight tube, and the neck 12 is vertically connected to the unit base 11 .
- the length of the portion of the neck 12 accommodated in the sound-absorbing cavity is smaller than the size of the sound-absorbing cavity 13 along the thickness direction of the sound-absorbing sheet. In this way, the neck 12 will not block the second opening of the unit base 11 due to contact with it.
- the neck 12 and the wall surface of the unit base 11 may also be non-perpendicular, but may form a certain angle.
- the neck 12 is a hard tube, such as a hard plastic tube or a metal tube.
- the neck 12 can also be a hose.
- the hose needs to be able to stand upright.
- the cross-sectional shape of the inner hole of the neck 12 is circular, that is, the neck 12 is a cylindrical tube, and the diameter of the circular cross-section of the inner hole of the neck 12 is 1-2 mm.
- the cross-sectional shape of the inner hole of the neck 12 may be elliptical, and the major axis of the elliptical cross-section of the inner hole of the neck 12 is 1-2 mm. The minor axis of the elliptical cross-section is 1-2mm.
- the cross-sectional shape of the inner hole of the neck 12 is a polygon, and the side length of the polygonal cross-section of the inner hole of the neck 12 is 1-2 mm.
- a plurality of the resonant units 1 are arranged in an array, such as the rectangular array in Figure 1 .
- an array such as the rectangular array in Figure 1 .
- a circular array arrangement is also possible.
- the shape of the outer edge of the cross section perpendicular to the thickness direction of the sound absorbing sheet of the unit base 11 is a polygon.
- the outer edge shape of the cross section perpendicular to the thickness direction of the sound absorbing sheet of the unit base 11 is a square (rectangular). In this way, the unit base 11 has a square shape.
- the unit base 11 When the size of the unit base 11 along the thickness direction of the sound-absorbing sheet is not equal to the side length of the outer edge of the section of the unit base 11 perpendicular to the thickness direction of the sound-absorbing sheet, the unit base 11 is a rectangular parallelepiped; when the unit When the size of the base body 11 along the thickness direction of the sound absorbing sheet is equal to the side length of the outer edge of the cross section of the unit base body 11 perpendicular to the thickness direction of the sound absorbing sheet, the unit base body 11 is a cube.
- the shape of the sound-absorbing cavity 13 is enclosed by the inner wall surface of the unit base 11 , and the shape of the sound-absorbing cavity 13 is substantially the same as the shape of the unit base 11 .
- the shape of the outer edge of the cross section perpendicular to the thickness direction of the sound absorbing sheet of the unit base 11 is a polygon.
- the cross-sectional dimensions of the unit base 11 perpendicular to the thickness direction of the sound-absorbing sheet can remain consistent in the thickness direction of the sound-absorbing sheet. Therefore, multiple resonance units 1 can form an array structure that is closely connected at the edges.
- the cross-sectional size of the unit base 11 perpendicular to the thickness direction of the sound-absorbing sheet may also be inconsistent in the thickness direction of the sound-absorbing sheet.
- multiple resonance units 1 still need to form an array structure that is closely connected at the edges.
- the size of the sound-absorbing cavity 13 along the thickness direction of the sound-absorbing sheet is 7-40 mm, and the wall thickness of the unit base 11 is 1-2 mm.
- the size of the sound-absorbing cavity 13 along the thickness direction of the sound-absorbing sheet cannot be too large, so as not to make the thickness of the sound-absorbing sheet too large, occupy space, and affect the arrangement of the sound-absorbing sheet.
- the shape of the outer edge of the cross section of the sound-absorbing cavity 13 perpendicular to the thickness direction of the sound-absorbing sheet is a polygon. Best choice Specifically, the side length of the polygon is greater than or equal to the size of the sound-absorbing cavity 13 along the thickness direction of the sound-absorbing sheet. In this way, the sound-absorbing cavity 13 is flat, and the entire sound-absorbing sheet can be made thinner.
- the shape of the outer edge of the cross section of the sound-absorbing cavity 13 perpendicular to the thickness direction of the sound-absorbing sheet is a square (regular quadrilateral).
- the sound absorbing cavity 13 is in the shape of a rectangular parallelepiped or a cube.
- the sound absorbing cavity 13 may be a rectangular parallelepiped with length, width and height of 30 mm, 30 mm and 20 mm respectively.
- the height direction of the sound-absorbing cavity 13 is the thickness direction of the sound-absorbing sheet.
- the side length of the polygonal cross-section of the sound-absorbing cavity 13 may also be smaller than the size of the sound-absorbing cavity 13 along the thickness direction of the sound-absorbing sheet.
- the polygonal cross-section of the sound-absorbing cavity 13 is The side length is greater than or equal to 7mm.
- the side length of the polygonal cross-section of the sound-absorbing cavity 13 may be, for example, within three times the height of the sound-absorbing cavity 13 .
- the side length of the polygonal cross-section of the sound-absorbing cavity 13 is adjusted according to process requirements and the installation space of the sound-absorbing sheet.
- the sound-absorbing cavity 13 may also be cylindrical, that is, the cross-section of the sound-absorbing cavity along the thickness direction of the sound-absorbing sheet is circular. At this time, the diameter of the circular cross-section of the sound-absorbing cavity 13 is adjusted according to process requirements and the installation space of the sound-absorbing sheet.
- the six directions of the inner wall surface of the unit base 11 are all flat surfaces.
- the sound-absorbing sheet includes an injection molded body 10 and a cover plate 20.
- the injection molded body 10 is provided with a plurality of pits spaced apart from each other.
- the cover plate 20 covers the A plurality of sound-absorbing cavities 13 are formed on the plurality of recesses.
- the sound-absorbing cavity 13 cannot be directly formed by one injection molding, so the sound-absorbing sheet needs to be divided into two parts: the injection molded body 10 and the cover plate 20, and then bonded together.
- the injection molded body 10 includes a plurality of injection molded body units 101 connected into one piece.
- the cover plate includes a plurality of cover plate units 201 connected into one piece. Each of the cover plate units 201 is provided with the through hole 111 , the cover unit 201 is fixedly connected to the recessed opening of the injection molded body unit 101 to form the unit base 11 .
- the first end 121 of the neck 12 is inserted into the through hole 111 .
- Directly using interference fit to press-fit the neck 12 into the through hole 111 can reduce the use of glue.
- the neck 12 is arranged in the sound-absorbing cavity 13, which can effectively reduce the size of the resonance unit 1 and reduce the space occupied by the sound-absorbing sheet.
- the sound-absorbing cavity 13 can effectively reduce the size of the resonance unit 1 and reduce the space occupied by the sound-absorbing sheet.
- FIG. 3 there is a sound-absorbing sheet according to the second embodiment of the present application.
- the difference from the first embodiment is that the end surface of the first end 121 of the neck 12 is bonded to the inside of the unit base 11. on the wall.
- the through hole 111 can be set smaller.
- FIG. 4 and 5 there is a sound-absorbing sheet according to the third embodiment of the present application.
- the difference from the first embodiment is that:
- the outer edge shape of the cross section of the unit base 11 perpendicular to the thickness direction of the sound-absorbing sheet is triangular (triangular).
- the shape of the outer edge of the cross section of the sound-absorbing cavity 13 perpendicular to the thickness direction of the sound-absorbing sheet is triangular (triangular).
- a sound-absorbing sheet according to a fourth embodiment of the present application is shown.
- the neck 12 is an elbow, and the elbow is U-shaped.
- the neck 12 is a hose, such as a rubber tube. Since the neck 12 is a U-shaped bent pipe, it is necessary to ensure that the second opening of the second end 122 of the neck is connected to the sound-absorbing cavity.
- the length of the part of the neck 12 accommodated in the sound-absorbing cavity 13 is greater than the size of the sound-absorbing cavity 13 along the thickness direction of the sound-absorbing sheet.
- Part of the outer peripheral surface of the neck 12 is made of glue. fixed on the inner side of the unit base 11.
- the inner wall surface of the unit base 11 has opposite first wall surfaces 112 and second wall surfaces 113.
- the first wall surface 112 and the second wall surface 113 There is a curved surface on it.
- the curved surface is a wavy curved surface.
- first wall surfaces 112 and the second wall surface 113 are provided in three groups, and so on.
- the surface can also be a zigzag surface or a cylindrical surface.
- the sound-absorbing sheet has a better sound-absorbing effect for ultra-low frequency (200-300Hz) noise.
- the abscissa is frequency (expressed as freq in the figure), and the ordinate is the sound absorption coefficient (expressed as Absorption coefficient in the figure). The closer the sound absorption coefficient is to 1, the better the sound absorption effect is.
- the end surface of the first end 121 of the neck 12 is bonded to the inner wall surface of the unit base 111 .
- the neck 12 can also be a hard tube.
- a sound-absorbing sheet according to the fifth embodiment of the present application is different from the fourth embodiment in that the first end 121 of the neck 12 is inserted into the through hole 111 of the unit base 11 Inside.
- a sound-absorbing sheet according to the sixth embodiment of the present application is shown.
- the difference from the fifth embodiment is that the elbow (neck 12) is bent into a spiral shape. In this way, the neck 12 can be set longer and can better absorb low-frequency noise.
- a sound-absorbing sheet according to the seventh embodiment of the present application is different from the sixth embodiment in that the outer edge of the section of the unit base 11 perpendicular to the thickness direction of the sound-absorbing sheet
- the shape is triangular (three-sided).
- the shape of the outer edge of the cross section of the sound-absorbing cavity 13 perpendicular to the thickness direction of the sound-absorbing sheet is triangular (triangular).
- FIG. 12 and 13 it is a sound-absorbing sheet according to the eighth embodiment of the present application.
- the difference from the sixth embodiment is that the unit base 11 is perpendicular to the thickness direction of the sound-absorbing sheet.
- the outer edge shape of the cross-section is hexagonal.
- the shape of the outer edge of the cross section of the sound-absorbing cavity 13 perpendicular to the thickness direction of the sound-absorbing sheet is hexagonal.
- Multiple hexagonal resonance units 1 form a honeycomb structure.
- the ninth embodiment of the present application provides a vehicle, including a vehicle structural member and the sound-absorbing sheet of the above embodiment.
- the sound-absorbing sheet is attached to the vehicle structural member.
- the resonance unit of the sound-absorbing sheet The first opening of the neck is oriented toward the source of sound that needs to be absorbed to absorb noise.
- the vehicle may be a rail vehicle and the sound-absorbing sheets are arranged under the floor, in the side panels or in the doors.
- the vehicle can also be a car, and the sound-absorbing sheets are arranged under the floor, in the side panels, in the doors, in the front cabin or in the tail cabin.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
Abstract
一种车辆包括吸声片材,该吸声片材包括连成一片的多个共振单元(1),共振单元(1)包括单元基体(11)及颈(12),单元基体(11)的内部形成吸声腔(13),单元基体(11)上设置通孔(111),颈(12)设置在吸声腔(13)内,颈(12)为管状结构,颈的第一端(121)设置有第一开口,颈的第二端(122)设置有第二开口,第一开口与通孔(111)相接并与外界相通,颈的第二端(122)位于吸声腔(13)的内部,第二开口与吸声腔(13)连通。
Description
本申请要求于2022年06月21日提交中国专利局、申请号为202221554310.4、申请名称为“吸声片材及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请属于吸声材料技术领域,尤其涉及一种吸声片材及车辆。
车辆运行中产生的噪声频率成分复杂且集中在低频,易和人体、结构等发生共振,危害极大。传统的隔声材料以均质板为隔声基体,其低频隔声遵循质量密度定律,即面密度决定隔声材料的隔声量,通过表面敷贴粘弹性阻尼材料、加筋等能够适当提高隔声性能,然而这种方式增加了隔声材料的质量和厚度,且不能显著提高低频段的隔声性能。
声学超材料是人工设计制造的周期性或非周期性的复合结构材料,其基本单元的结构尺寸通常远小于声波的波长,可以突破传统材料的质量隔声定理。单一共振吸声腔型声学超材料依靠吸声腔内空气的局部共振来达到吸声的目的,可以实现远高于质量定理的隔声量。
但是,现有的共振吸声腔型声学超材料,颈连接在吸声腔的外部,针对低频噪声时,往往需要较长的颈以及较大的吸声腔,导致共振吸声腔型声学超材料占用空间较大,对于空间有限的场所很难实现。
发明内容
本申请所要解决的技术问题是:现有的共振吸声腔型声学超材料,针对低频噪声时,往往需要较长的颈以及较大的吸声腔,导致共振吸声腔型声学超材料占用空间较大的问题,提供一种吸声片材及车辆。
为解决上述技术问题,本申请实施例提供一种吸声片材,所述吸声片材包括连成一片的多个共振单元,所述共振单元包括单元基体及颈,所述单元基体的内部形成吸声腔,所述单元基体上设置有通孔,所述颈设置在所述吸声腔内,所述颈为管状结构,所述颈的第一端设置有第一开口,所述颈的第二端设置有第二开口,所述第一开口与所述通孔相接并与外界相通,所述颈的第二端位于所述吸声腔的内部,所述第二开口与所述吸声腔连通。
可选地,所述颈为直管,所述颈容纳于所述吸声腔中的部分其长度小于所述吸声腔的沿所述吸声片材的厚度方向的尺寸。
可选地,所述颈为弯管。
可选地,所述弯管呈U形或螺旋形。
可选地,所述颈的第一端插接在所述通孔中或者所述颈的第一端的端面粘接在所述单元基体的内壁面上。
可选地,所述颈的内孔的横截面形状为圆形,所述颈的内孔的圆形截面的直径为1-2mm;或者,
所述颈的内孔的横截面形状为椭圆形,所述颈的内孔的椭圆形截面的长轴为1-2mm,所述颈的内孔的椭圆形截面的短轴为1-2mm;或者,
所述颈的内孔的横截面形状为多边形,所述颈的内孔的多边形截面的边长为1-2mm。
可选地,多个所述共振单元阵列排布。
可选地,所述单元基体垂直于所述吸声片材的厚度方向的截面的外边缘形状为多边形。
可选地,所述吸声腔的沿所述吸声片材的厚度方向的尺寸为7-40mm,所述单元基体的壁厚为1-2mm。
可选地,所述单元基体的内壁面具有相对的第一壁面及第二壁面,所述第一壁面及第二壁面上设置有曲面。
可选地,所述曲面为波浪形曲面、圆柱面或锯齿形曲面。
可选地,所述吸声片材包括注塑体及盖板,所述注塑体上设置有相互间隔的多个凹坑,所述盖板覆盖在多个所述凹坑上以形成多个所述吸声腔;
所述注塑体包括连成一片的多个注塑体单元,所述盖板包括连成一片的多个盖板单元,每一所述盖板单元上均设置有所述通孔,所述盖板单元固定连接在所述注塑体单元的凹坑开口处,以组成所述单元基体。
根据本申请实施例的吸声片材,颈设置在吸声腔内,能够有效的减小共振单元的尺寸,可以减小吸声片材的空间占用,对于空间有限的场所也有很好的应用,应用范围较广。
此外,通过仿真发现,该吸声片材对于超低频(200-300Hz)的噪声,也有较好的吸声效果。
另一方面,本申请实施例还提供一种车辆,包括车辆结构件以及上述的吸声片材,吸声片材附接在上述车辆结构件,所述吸声片材的共振单元的颈的第一开口朝向需要吸声的声源。
图1是本申请第一实施例提供的吸声片材的示意图;
图2是本申请第一实施例提供的吸声片材的共振单元的示意图;
图3是本申请第二实施例提供的吸声片材的共振单元的示意图;
图4是本申请第三实施例提供的吸声片材的共振单元的示意图;
图5是本申请第三实施例提供的吸声片材的共振单元的示意图;
图6是本申请第四实施例提供的吸声片材的示意图;
图7是本申请第四实施例提供的吸声片材的共振单元的示意图;
图8是本申请第四实施例提供的吸声片材的仿真图;
图9是本申请第五实施例提供的吸声片材的共振单元的示意图;
图10是本申请第六实施例提供的吸声片材的共振单元的示意图;
图11是本申请第七实施例提供的吸声片材的共振单元的示意图;
图12是本申请第八实施例提供的吸声片材的示意图;
图13是本申请第九实施例提供的吸声片材的共振单元的示意图。
说明书中的附图标记如下:
10、注塑体;101、注塑体单元;20、盖板;201、盖板单元;
1、共振单元;11、单元基体;111、通孔;112、第一壁面;113、第二壁面;12、颈;121、颈的第一端;122、颈的第二端;13、吸声腔。
为了使本申请所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
为了更为直观的阐述本申请实施例提供的吸声片材,说明书附图中的各幅图均采用透视画法。
第一实施例
如图1及图2所示,本申请第一实施例提供的吸声片材,包括连成一片的多个共振单元1,所述共振单元1包括单元基体11及颈12,所述单元基体11的内部形成吸声腔13,所述单元基体11上设置有通孔111,所述颈12设置在所述吸声腔13内,所述颈12为管状结构,所述颈12的第一端121设置有第一开口,所述颈12的第二端122设置有第二开口,所述颈12的第一端121固定在所述单元基体11上,所述第一开口与所述通孔111相接并与外界相通,所述颈的第二端122位于所述吸声腔13的内部,所述第二开口与所述吸声腔13连通。这样,通过所述颈12能够将外界与所述吸声腔13连通。声源的声波通过所述颈12后进入所述吸声腔13中,声波通过在吸声腔13中多次反射而衰减,从而实现吸声作用。
本实施例中,所述颈12为直管,所述颈12竖直连接在所述单元基体11上。所述颈12容纳于所述吸声腔中的部分其长度小于所述吸声腔13的沿所述吸声片材的厚度方向的尺寸。这样,颈12不会因与单元基体11抵接,而阻塞其第二开口。
当然,作为替代的,所述颈12与所述单元基体11的壁面也可以是非垂直,而是呈一定的角度。
本实施例中,优选地,所述颈12为硬管,例如硬质塑料管或金属管。当然,在一些替代方案中,所述颈12也可以是软管。当然此时,软管需要能直立。
本实施例中,所述颈12的内孔的横截面形状为圆形,即所述颈12为圆柱管,所述颈12的内孔的圆形截面的直径为1-2mm。
然而,作为一种替代方案,所述颈12的内孔的横截面形状可为椭圆形,所述颈12的内孔的椭圆形截面的长轴为1-2mm,所述颈12的内孔的椭圆形截面的短轴为1-2mm。作为另一种替代方案,所述颈12的内孔的横截面形状为多边形,所述颈12的内孔的多边形截面的边长为1-2mm。
本实施例中,多个所述共振单元1阵列排布,例如图1中的矩形阵列排布。然而,替代地,也可以是环形阵列排布。
所述单元基体11垂直于所述吸声片材的厚度方向的截面的外边缘形状为多边形。例如图2中,所述单元基体11垂直于所述吸声片材的厚度方向的截面的外边缘形状为正方形(正四边形),这样,单元基体11呈方块状。当单元基体11沿吸声片材的厚度方向的尺寸不等于所述单元基体11垂直于所述吸声片材的厚度方向的截面的外边缘的边长时,单元基体11为长方体;当单元基体11沿吸声片材的厚度方向的尺寸等于所述单元基体11垂直于所述吸声片材的厚度方向的截面的外边缘的边长时,单元基体11为正方体。吸声腔13的形状由单元基体11的内壁面围合而成,吸声腔13的形状与单元基体11的形状大致相同。
所述单元基体11垂直于所述吸声片材的厚度方向的截面的外边缘形状为多边形。所述单元基体11垂直于所述吸声片材的厚度方向的截面尺寸在吸声片材的厚度方向上可以保持一致。以使得,多个共振单元1能够形成在边缘紧密相接的阵列结构。
然而,在一些替代方案中,所述单元基体11垂直于所述吸声片材的厚度方向的截面尺寸在吸声片材的厚度方向上也可以不一致。但是,多个共振单元1仍然需要形成在边缘紧密相接的阵列结构。
所述吸声腔13的沿所述吸声片材的厚度方向的尺寸为7-40mm,所述单元基体11的壁厚为1-2mm。吸声腔13的沿所述吸声片材的厚度方向的尺寸不能太大,以免使得吸声片材的厚度太大,占用空间,影响吸声片材的布置。
所述吸声腔13垂直于所述吸声片材的厚度方向的截面的外边缘形状为多边形。优选择
地,所述多边形的边长大于或等于所述吸声腔13的沿所述吸声片材的厚度方向的尺寸。这样,吸声腔13呈扁平状,整个吸声片材可以做的更薄。例如图2中,所述吸声腔13垂直于所述吸声片材的厚度方向的截面的外边缘形状为正方形(正四边形)。这样,吸声腔13呈长方体或立方体。例如,吸声腔13可为长宽高分别为30mm、30mm及20mm的长方体。吸声腔13的高度方向即为吸声片材的厚度方向。
然而,吸声腔13的多边形截面的边长也可以小于所述吸声腔13的沿所述吸声片材的厚度方向的尺寸,但是,通常为了加工方便,吸声腔13的多边形截面的边长大于或等于7mm。此外,为了使得吸声片材上尽可能的多设置共振单元1,吸声腔13的多边形截面的边长,例如可以是吸声腔13的高度的3倍以内。
吸声腔13的多边形截面的边长根据工艺需要、吸声片材的安装空间进行调整。
然而,在一些替代方案中,吸声腔13也可以是圆柱状,即,吸声腔的沿所述吸声片材的厚度方向的截面为圆形。此时,吸声腔13的圆形截面的直径根据工艺需要、吸声片材的安装空间进行调整。
本实施例中,所述单元基体11的内壁面的6个方向均为平整表面。
本实施例中,参见图1及图2,所述吸声片材包括注塑体10及盖板20,所述注塑体10上设置有相互间隔的多个凹坑,所述盖板20覆盖在多个所述凹坑上以形成多个所述吸声腔13。一次注塑不能直接形成吸声腔13,因而需要将吸声片材分成注塑体10及盖板20两部分,然后粘接在一起。
所述注塑体10包括连成一片的多个注塑体单元101,所述盖板包括连成一片的多个盖板单元201,每一所述盖板单元201上均设置有所述通孔111,所述盖板单元201固定连接在所述注塑体单元101的凹坑开口处,以组成所述单元基体11。
本实施例中,参见图2,所述颈12的第一端121插接在所述通孔111中。直接采用过盈配合,将所述颈12压装在所述通孔111中,能够减少胶的使用。
根据本申请第一实施例的吸声片材,颈12设置在吸声腔13内,能够有效的减小共振单元1的尺寸,可以减小吸声片材的空间占用,对于空间有限的场所也能很好的应用,应用范围较广。
第二实施例
参见图3,为本申请第二实施例的吸声片材,其与第一实施例的不同之处在于,所述颈12的第一端121的端面粘接在所述单元基体11的内壁面上。
这样,所述颈12整体位于所述吸声腔13中。通孔111可设置的更小。
第三实施例
参见图4及图5,为本申请第三实施例的吸声片材,其与第一实施例的不同之处在于,
所述单元基体11垂直于所述吸声片材的厚度方向的截面的外边缘形状为三角形(三边形)。所述吸声腔13垂直于所述吸声片材的厚度方向的截面的外边缘形状为三角形(三边形)。
第四实施例
参见图6及图7,为本申请第四实施例的吸声片材,其与第一实施例的一个不同之处在于,所述颈12为弯管,所述弯管呈U形。
本实施例中,优选地,所述颈12为软管,例如为橡胶管。由于所述颈12为U形弯管,需保证颈的第二端122的第二开口与所述吸声腔连通。所述颈12容纳于所述吸声腔13中的部分其长度大于所述吸声腔13沿所述吸声片材的厚度方向的尺寸,所述颈12的外周的部分表面通过胶粘的方式固定在所述单元基体11的内侧。
其与第一实施例的另一个不同之处在于,参见图7,所述单元基体11的内壁面具有相对的第一壁面112及第二壁面113,所述第一壁面112及第二壁面113上设置有曲面。优选地,所述曲面为波浪形曲面。
当然,除了设置通孔111的壁面,其它壁面都可以设置曲面。优选地,在所述吸声腔13垂直于所述吸声片材的厚度方向的截面的外边缘形状为四边形时,第一壁面112及第二壁面113设置有两组。优选地,在所述吸声腔13垂直于所述吸声片材的厚度方向的截面的外边缘形状为六边形时,第一壁面112及第二壁面113设置有三组,以此类推。
当然,曲面也可以是锯齿形曲面或圆柱面。
参见图8,此外,通过仿真发现,该吸声片材对于超低频(200-300Hz)的噪声,有较好的吸声效果。图8中,横坐标为频率(图中用freq表示),纵坐标为吸声系数(图中用Absorption coefficient表示)。吸声系数越接近于1表示吸声效果越好。
本实施例中,颈12的第一端121端面粘接在单元基体111的内壁面上。
当然,颈12也可以是硬管。
第五实施例
参见图9,为本申请第五实施例的吸声片材,其与第四实施例的不同之处在于,所述颈12的第一端121插接在所述单元基体11的通孔111内。
第六实施例
参见图10,为本申请第六实施例的吸声片材,其与第五实施例的不同之处在于,所述弯管(颈12)弯曲成螺旋形。这样,颈12可以设置的更长,可以更好地吸收低频噪声。
第七实施例
参见图11,为本申请第七实施例的吸声片材,其与第六实施例的不同之处在于,所述单元基体11垂直于所述吸声片材的厚度方向的截面的外边缘形状为三角形(三边形)。所述吸声腔13垂直于所述吸声片材的厚度方向的截面的外边缘形状为三角形(三边形)。
第八实施例
参见图12及图13所示,为本申请第八实施例的吸声片材,其与第六实施例的不同之处在于,所述单元基体11垂直于所述吸声片材的厚度方向的截面的外边缘形状为六边形。所述吸声腔13垂直于所述吸声片材的厚度方向的截面的外边缘形状为六边形。多个六边形的共振单元1组成蜂窝状结构。
第九实施例
本申请第九实施例提供一种车辆,包括车辆结构件以及上述实施例的吸声片材,所述吸声片材附接在所述车辆结构件,所述吸声片材的共振单元的颈的第一开口朝向需要吸声的声源,以吸收噪声。
车辆可以是轨道车辆,吸声片材布置在地板下方、侧围中或车门中。
车辆也可以是汽车,吸声片材布置在地板下方、侧围中、车门中、前舱或尾舱中。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。
Claims (13)
- 一种吸声片材,其特征在于,所述吸声片材包括连成一片的多个共振单元(1),所述共振单元(1)包括:单元基体(11),所述单元基体(11)的内部形成吸声腔(13),所述单元基体(11)上设置有通孔(111);以及颈(12),所述颈(12)设置在所述吸声腔(13)内,所述颈(12)为管状结构,所述颈(12)的第一端(121)设置有第一开口,所述颈(12)的第二端(122)设置有第二开口,所述第一开口与所述通孔(111)相接并与外界相通,所述颈(12)的第二端(122)位于所述吸声腔(13)的内部,所述第二开口与所述吸声腔(13)连通。
- 根据权利要求1所述的吸声片材,其特征在于,所述颈(12)为直管,所述颈(12)容纳于所述吸声腔(13)中的部分其长度小于所述吸声腔(13)的沿所述吸声片材的厚度方向的尺寸。
- 根据权利要求1所述的吸声片材,其特征在于,所述颈(12)为弯管。
- 根据权利要求3所述的吸声片材,其特征在于,所述弯管呈U形或螺旋形。
- 根据权利要求1-4中任一项所述的吸声片材,其特征在于,所述颈(12)的第一端(121)插接在所述通孔(111)中或者所述颈(12)的第一端(121)的端面粘接在所述单元基体(11)的内壁面上。
- 根据权利要求1-5中任一项所述的吸声片材,其特征在于,所述颈(12)的内孔的横截面形状为圆形,所述颈(12)的内孔的圆形截面的直径为1-2mm;或者,所述颈(12)的内孔的横截面形状为椭圆形,所述颈(12)的内孔的椭圆形截面的长轴为1-2mm,所述颈(12)的内孔的椭圆形截面的短轴为1-2mm;或者,所述颈(12)的内孔的横截面形状为多边形,所述颈(12)的内孔的多边形截面的边长为1-2mm。
- 根据权利要求1-6中任一项所述的吸声片材,其特征在于,多个所述共振单元(1)阵列排布。
- 根据权利要求1-7中任一项所述的吸声片材,其特征在于,所述单元基体(11)垂直于所述吸声片材的厚度方向的截面的外边缘形状为多边形。
- 根据权利要求1-8中任一项所述的吸声片材,其特征在于,所述吸声腔(13)的沿所述吸声片材的厚度方向的尺寸为7-40mm,所述单元基体(11)的壁厚为1-2mm。
- 根据权利要求1-9中任一项所述的吸声片材,其特征在于,所述单元基体(11)的内壁面具有相对的第一壁面(112)及第二壁面(113),所述第一壁面(112)及第二壁面(113) 上设置有曲面。
- 根据权利要求10所述的吸声片材,其特征在于,所述曲面为波浪形曲面、圆柱面或锯齿形曲面。
- 根据权利要求1-11中任一项所述的吸声片材,其特征在于,所述吸声片材包括注塑体(10)及盖板(20),所述注塑体(10)上设置有相互间隔的多个凹坑,所述盖板(20)覆盖在多个所述凹坑上以形成多个所述吸声腔(13);所述注塑体(10)包括连成一片的多个注塑体单元(101),所述盖板(20)包括连成一片的多个盖板单元(201),每一所述盖板单元(201)上均设置有所述通孔(111),所述盖板单元(201)固定连接在所述注塑体单元(101)的凹坑开口处,以组成所述单元基体(11)。
- 一种车辆,其特征在于,包括车辆结构件以及根据权利要求1-12任意一项所述的吸声片材,所述吸声片材附接在所述车辆结构件,所述吸声片材的共振单元(1)的颈(12)的第一开口朝向需要吸声的声源。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202221554310.4 | 2022-06-21 | ||
CN202221554310.4U CN217788023U (zh) | 2022-06-21 | 2022-06-21 | 吸声片材及车辆 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023246288A1 true WO2023246288A1 (zh) | 2023-12-28 |
Family
ID=83934770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/090643 WO2023246288A1 (zh) | 2022-06-21 | 2023-04-25 | 吸声片材及车辆 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN217788023U (zh) |
WO (1) | WO2023246288A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN217788023U (zh) * | 2022-06-21 | 2022-11-11 | 比亚迪股份有限公司 | 吸声片材及车辆 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2866672Y (zh) * | 2005-10-14 | 2007-02-07 | 陈吉轩 | 共振吸声板 |
JP2019152837A (ja) * | 2018-03-06 | 2019-09-12 | イビデン株式会社 | 吸音材及び車両用部品 |
US20210074255A1 (en) * | 2019-09-11 | 2021-03-11 | The Hong Kong University Of Science And Technology | Broadband sound absorber based on inhomogeneous-distributed helmholtz resonators with extended necks |
CN114550685A (zh) * | 2022-01-25 | 2022-05-27 | 哈尔滨理工大学 | 基于折叠式粗糙颈管亥姆霍兹共振腔的通风管道消声器 |
CN217788023U (zh) * | 2022-06-21 | 2022-11-11 | 比亚迪股份有限公司 | 吸声片材及车辆 |
-
2022
- 2022-06-21 CN CN202221554310.4U patent/CN217788023U/zh active Active
-
2023
- 2023-04-25 WO PCT/CN2023/090643 patent/WO2023246288A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2866672Y (zh) * | 2005-10-14 | 2007-02-07 | 陈吉轩 | 共振吸声板 |
JP2019152837A (ja) * | 2018-03-06 | 2019-09-12 | イビデン株式会社 | 吸音材及び車両用部品 |
US20210074255A1 (en) * | 2019-09-11 | 2021-03-11 | The Hong Kong University Of Science And Technology | Broadband sound absorber based on inhomogeneous-distributed helmholtz resonators with extended necks |
CN114550685A (zh) * | 2022-01-25 | 2022-05-27 | 哈尔滨理工大学 | 基于折叠式粗糙颈管亥姆霍兹共振腔的通风管道消声器 |
CN217788023U (zh) * | 2022-06-21 | 2022-11-11 | 比亚迪股份有限公司 | 吸声片材及车辆 |
Also Published As
Publication number | Publication date |
---|---|
CN217788023U (zh) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104732967B (zh) | 一种利用共面空心管吸收声音的吸声屏 | |
US8123468B2 (en) | Centrifugal fan | |
WO2023246288A1 (zh) | 吸声片材及车辆 | |
JPS6324296A (ja) | 音響特性を有する構造部材 | |
CN203773937U (zh) | 隔声吸声蜂窝板 | |
US11097828B2 (en) | Shroud | |
WO2011082510A1 (zh) | 一种内置共振腔体的复合吸声装置 | |
US20180357994A1 (en) | Absorbent acoustic metamaterial | |
US20160210955A1 (en) | Acoustic panel | |
CN113793586A (zh) | 低频超宽带声学黑洞声学材料结构 | |
CN109036362A (zh) | 一种宽带低频声学吸声器 | |
US3837426A (en) | Sound absorbing structural block | |
JP2022078005A (ja) | 少なくとも1つの音響散乱体を有する遮音壁アセンブリ | |
CN112435646A (zh) | 声学超材料大面积短通道宽频通风隔音器和屏障 | |
JPH06158751A (ja) | 音響吸音体 | |
CN113123261A (zh) | 一种基于海螺腔体构造的仿生吸声结构及其吸声单元板 | |
CN105575379B (zh) | 消声室以及用于其的消声器 | |
CN211087916U (zh) | 声学超材料大面积短通道宽频通风隔音器和屏障 | |
CN207989401U (zh) | 一种内外置阻抗复合式消声器 | |
CN201262829Y (zh) | 特种吸声型隔声设备 | |
RU2455432C2 (ru) | Звукопоглощающая конструкция цеха | |
CN206338099U (zh) | 一种宽频降噪消声器 | |
CN212336914U (zh) | 一种建筑工程围挡 | |
CN209944712U (zh) | 消声件、消声器以及通风系统 | |
CN114255722A (zh) | 一种带有变截面背腔结构的微穿孔板吸声结构及设计方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23825941 Country of ref document: EP Kind code of ref document: A1 |