WO2023246272A1 - 缓冲结构及其制备方法、显示装置 - Google Patents

缓冲结构及其制备方法、显示装置 Download PDF

Info

Publication number
WO2023246272A1
WO2023246272A1 PCT/CN2023/089686 CN2023089686W WO2023246272A1 WO 2023246272 A1 WO2023246272 A1 WO 2023246272A1 CN 2023089686 W CN2023089686 W CN 2023089686W WO 2023246272 A1 WO2023246272 A1 WO 2023246272A1
Authority
WO
WIPO (PCT)
Prior art keywords
buffer structure
thermally conductive
base material
material layer
layer
Prior art date
Application number
PCT/CN2023/089686
Other languages
English (en)
French (fr)
Inventor
左凯龙
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2023246272A1 publication Critical patent/WO2023246272A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/20Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3403Foaming under special conditions, e.g. in sub-atmospheric pressure, in or on a liquid
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a buffer structure, a preparation method thereof, and a display device.
  • the disclosure discloses a buffer structure, a preparation method thereof, and a display device.
  • the buffer structure has good buffering performance, heat dissipation performance and electromagnetic shielding performance. It integrates multiple functions into one, is conducive to reducing the overall thickness of the screen, and is prepared The process is simple, the production efficiency is high, and the production cost of the display device is reduced.
  • a buffer structure consisting of:
  • the above-mentioned buffer structure has good buffering performance, heat dissipation performance and electromagnetic shielding performance, and integrates multiple functions into one.
  • the single-layer buffer structure can be set on the back side of the display panel.
  • the buffer structure can efficiently export the heat generated by the screen and improve the screen performance. It has good heat dissipation and can also buffer and absorb electromagnetic waves.
  • This single-layer buffer structure can replace the existing multi-layer functional structure layer on the back of the screen, which is beneficial to reducing the overall thickness of the screen.
  • the SCF layer with a multi-layer structure in the related art also needs to deal with the adhesion of the cross-section between adjacent layers, and the preparation process is complicated.
  • the buffer structure in this embodiment has a single-layer structure and can be prepared during preparation.
  • the electrically conductive and thermally conductive material is doped into the material of the base material layer and then mixed and then prepared. The preparation process is simple, the production efficiency is high, and it is convenient for industrial production and reduces the production cost of the
  • the weight ratio of the polymer material to the electrically and thermally conductive material is (90-95): (5-10).
  • the diameter of the microporous structure is greater than or equal to 1 ⁇ m and less than or equal to 10 ⁇ m.
  • the surface of the base material layer is provided with copper foil.
  • reticulated glue is provided on the outermost sides of both sides of the buffer structure.
  • the present disclosure also provides a display device, including a display panel and any buffer structure provided by the above technical solutions.
  • the buffer structure is located on the display panel. the dorsal side of.
  • the present disclosure also provides a method for preparing a buffer structure, including:
  • the foam is extruded and molded by the extruder to form a buffer structure.
  • the present disclosure also provides a method for preparing a buffer structure, including:
  • the intermittent foaming method is used to form a microporous structure inside the composite material to obtain a buffer structure.
  • Figure 1 is a schematic three-dimensional structural diagram of a buffer structure provided by an embodiment of the present disclosure
  • Figure 2 is a schematic cross-sectional structural diagram of a buffer structure provided by an embodiment of the present disclosure
  • Figure 3 is a schematic cross-sectional structural diagram of a buffer structure provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic cross-sectional structural diagram of a buffer structure provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of the conduction of electromagnetic waves by a buffer structure provided by an embodiment of the present disclosure
  • Figure 7 is a schematic partial cross-sectional structural diagram of a display device provided by an embodiment of the present disclosure.
  • the buffer structure includes: a base material layer 1 with a plurality of microporous structures 11 distributed in the base material layer 1 . Doped with electrically conductive and thermally conductive material 21 , the electrically conductive and thermally conductive material 21 is distributed in the entire layer structure of the base material layer 1 , and the electrically conductive and thermally conductive material 21 forms a thermal conduction network structure 2 in the base material layer 1 .
  • the above-mentioned buffer structure has good buffering performance, heat dissipation performance and electromagnetic shielding performance, and integrates multiple functions.
  • the single-layer buffer structure can be set on the back side of the display panel.
  • the buffer structure can efficiently export the heat generated by the screen. It improves the heat dissipation of the screen and can also buffer and absorb electromagnetic waves.
  • This single-layer buffer structure can replace the existing multi-layer functional structure layer on the back of the screen, which is beneficial to reducing the overall thickness of the screen.
  • the multi-layer SCF layer in the related art also needs to deal with the adhesion of the cross-section between adjacent layers, and the preparation process is complicated.
  • the buffer structure in this embodiment is a single-layer structure, which can be prepared during preparation. The electrically conductive and thermally conductive material is doped into the material of the base material layer and then mixed and then prepared. The preparation process is simple and the production cost of the display device is reduced.
  • the diameter of the microporous structure 11 is greater than or equal to 1 ⁇ m and less than or equal to 10 ⁇ m.
  • the microporous structure 11 is provided with an appropriate pore size to improve the impact resistance of the base material layer 1 and minimize the impact on the heat dissipation performance.
  • the multiple microporous structures in the base material layer may have the same pore size or may have different pore sizes, which is not limited in this embodiment.
  • the layer thickness of the base material layer 1 is greater than or equal to 0.1mm and less than or equal to 0.5mm.
  • the thickness of the base material layer 1 can be set to 0.2mm, 0.25mm, 0.3mm, 0.32mm, 0.35mm, or 0.37mm, 0.4mm or other thicknesses. This embodiment is not limited.
  • the appropriate thickness of the base material layer 1 can not only ensure its resistance performance but also ensure good heat dissipation.
  • polyethylene terephthalate can be selected as the material of the base material layer 1 of the buffer structure.
  • Carbon fiber is used as the electrically and thermally conductive material 21 , that is, a composite material formed by mixing polyethylene terephthalate and carbon fiber to form a buffer structure, and a microporous structure 11 is formed in the base material layer 1 .
  • carbon fiber has good electrical and thermal conductivity.
  • the carbon fiber is dispersed in the base material layer 1 and can form a good carbon fiber network.
  • the carbon fiber itself has low material cost and is high temperature resistant.
  • polyethylene terephthalate can be used The mixed material of alcohol ester and carbon fiber is directly prepared by putting it into the extruder. The preparation process is simple and reliable, which greatly reduces the preparation cost of the buffer structure.
  • the buffer structure also Polyvinylidene fluoride can be selected as the material of the base material layer 1, carbon fiber can be selected as the electrical and thermal conductive material 21, copper powder 3 can be mixed into the base material layer 1, and a mixed material of polyvinylidene fluoride, carbon fiber and copper powder 3 can form a composite material , the buffer structure is formed.
  • a microporous structure 11 is formed on the base material layer 1.
  • the addition of copper powder 3 can further enhance the shielding effect.
  • the material costs of carbon fiber and copper powder 3 are both low, and both They are all high-temperature resistant materials.
  • the mixed material of polyvinylidene fluoride, carbon fiber and copper powder 3 can be directly prepared using an extruder. The preparation process is simple and reliable, which greatly reduces the preparation cost of the buffer structure.
  • the buffer structure can also choose thermoplastic polyurethane as the material of the base material layer 1, carbon fiber as the electrically conductive and thermally conductive material 21, and a mixture formed by mixing the two.
  • thermoplastic polyurethane As a composite material, an extruder is used to prepare a base material layer 1 doped with carbon fibers, and during the preparation process, a microporous structure 11 is formed in the base material layer 1 , and the two sides of the base material layer 1 opposite to the display panel 6 A layer of copper foil 4 is attached to each surface to form the final buffer structure.
  • the copper foil 4 can further improve the heat dissipation and shielding performance of the buffer structure, and the material cost is also low, which is beneficial to reducing the preparation cost of the buffer structure.
  • this embodiment also provides a display device.
  • the display device includes a display panel 6 and any buffer structure as provided in the above embodiment.
  • the buffer structure is located on the display panel 6
  • the display panel 6 On the back side, the display panel 6 has a substrate, an organic light-emitting functional layer and a polarizer arranged on the substrate.
  • the buffer structure is located on the side of the substrate facing away from the organic light-emitting functional layer, and the polarizer is located on the side of the organic light-emitting functional layer facing away from the substrate.
  • the above-mentioned buffer structure can effectively improve the heat dissipation performance and shielding performance of the display device, and the buffer structure is a single-layer structure, which is beneficial to reducing the thickness of the display device and making the display device lighter and thinner.
  • the above-mentioned display device also includes a cover plate 7, which is located on the light-emitting side of the display panel 6.
  • the display panel includes a display area 61, a binding area 62 located on the light-emitting side of the display area away from the display area, and
  • the bending area 63 connects the display area 61 and the binding area 62, and the buffer structure is located between the display area 61 and the binding area 62.
  • the buffer structure can play a very good buffering role on the back side of the display panel, and the buffer structure can be directly attached to the back side of the display area of the display panel.
  • the buffer structure can better conduct heat and conduct the heat from the display panel 6. To dissipate heat and improve the heat dissipation performance of the display device.
  • this embodiment also provides a method for preparing a buffer structure.
  • the preparation method is suitable for preparing the buffer structure provided in the above embodiment, and the preparation method specifically includes:
  • the composite material is put into an extruder for melting and blending, and a supercritical fluid is introduced so that the composite material forms a composite foaming material;
  • the extruder can be a twin-screw extruder, a supercritical fluid
  • the critical fluid can be high-pressure carbon dioxide or high-pressure nitrogen;
  • step S103 extrusion foaming is performed by an extruder to form a buffer structure.
  • the extruder needs to be heated at a preset temperature when melting and blending the mixture. This process requires a higher temperature.
  • the above preparation The method is suitable for preparing buffer structures from high-temperature resistant electrically conductive and thermally conductive materials. Therefore, the preparation method is suitable for the preparation of buffer materials using one or more of carbon fiber, carbon nanotubes and graphene as electrically conductive and thermally conductive materials.
  • the material of the base material layer is in a molten state, and the conductive and thermally conductive material will not melt. It is stirred and mixed evenly in the extruder, and then extruded and foamed.
  • the preparation process is simple and reliable, the production efficiency is high, and it is convenient for industrial production. It is beneficial to save preparation costs and reduce production costs.
  • this embodiment also provides another method for preparing a buffer structure.
  • the preparation method is suitable for preparing the buffer structure provided in the above embodiment, and the preparation method specifically includes :
  • the polymer material is dissolved using a dissolving liquid.
  • the dissolving liquid can be dimethylformamide
  • step S202 the electrically conductive and thermally conductive material is added to the dissolved polymer material solution, and the electrically conductive and thermally conductive material can be dispersed evenly in the polymer material solution by stirring; in addition, copper can also be added to the polymer material solution. powder to further enhance the shielding ability of the prepared buffer structure. force;
  • step S203 the polymer material solution doped with electrically conductive and thermally conductive material is dried to obtain a composite material
  • step S204 an intermittent foaming method is used to form a microporous structure inside the composite material to obtain a buffer structure.
  • This preparation method uses a solution to dissolve polymer materials so that the electrically conductive and thermally conductive materials are mixed with the polymeric materials.
  • the preparation process will not involve excessively high temperatures and is suitable for some electrically conductive and thermally conductive materials that are not resistant to high temperatures.
  • this preparation method It is suitable for electrically and thermally conductive materials including titanium carbide.
  • the preparation process is relatively simple and reliable, and can form a good buffer structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

本公开涉及显示技术领域,公开了一种缓冲结构及其制备方法、显示装置,该缓冲结构包括:基材层,基材层内分布有多个微孔结构,基材层中掺杂有导电导热材料,导电导热材料分布于基材层的整层结构中,且导电导热材料在基材层中形成有热传导网络结构。上述缓冲结构兼具良好的缓冲性能、散热性能和电磁屏蔽性能,集多种功能于一体,有利于减小屏幕整体厚度,且制备工艺简单,生产效率较高,降低显示装置的生产成本。

Description

缓冲结构及其制备方法、显示装置
相关申请的交叉引用
本公开要求在2022年06月24日提交中国专利局、申请号为202210730292.9、申请名称为“一种缓冲结构及其制备方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,特别涉及一种缓冲结构及其制备方法、显示装置。
背景技术
有机发光二极管简称OLED,具有自发光、轻薄、低能耗、高反应速率、色彩鲜艳、柔韧性好、低操作电压及制程简单等优点,已成为当今一种非常重要的显示技术。目前OLED显示装置中用于背板下的SCF(Super Clean Foam)层采用多层结构,如附图1所示,通常由泡棉、石墨和铜箔三层结构组成,其中泡棉在起到抗冲击性能,但是,其导热性能较差,对SCF层的导热能力产生不良影响,所以,如何提高SCF层的导热能力是目前亟需研究的项目。
发明内容
本公开公开了一种缓冲结构及其制备方法、显示装置,上述缓冲结构兼具良好的缓冲性能、散热性能和电磁屏蔽性能,集多种功能于一体,有利于减小屏幕整体厚度,且制备工艺简单,生产效率较高,降低显示装置的生产成本。
为达到上述目的,本公开提供以下技术方案:
一种缓冲结构,包括:
基材层,所述基材层内分布有多个微孔结构,所述基材层中掺杂有导电 导热材料,所述导电导热材料分布于所述基材层的整层结构中,且所述导电导热材料在所述基材层中形成有热传导网络结构。
上述缓冲结构兼具良好的缓冲性能、散热性能和电磁屏蔽性能,集多种功能于一体,可以使该单层缓冲结构设置在显示面板背侧,缓冲结构可以高效导出屏幕产生的热量,提高屏幕散热性,且也可以起到缓冲、吸收电磁波的功能,以该单层缓冲结构可以代替现有的屏幕背面的多层功能结构层,有利于减小屏幕整体厚度。除此之外,相关技术中的多层结构的SCF层,还需要处理相邻层之间截面的粘结性,制备工艺复杂,而本实施例中的缓冲结构为单层结构,制备时可以将导电导热材料掺杂到基材层的材料中与其混合之后进行制备即可,制备工艺简单,生产效率较高,且便于工业化生产,降低显示装置的生产成本。
可选地,所述导电导热材料包括碳纤维、碳纳米管、石墨烯、和碳化钛中的至少一种。
可选地,所述基材层包括高分子材料。
可选地,所述高分子材料包括聚丙烯、聚对苯二甲酸乙二醇酯、热塑性聚氨酯、聚偏氟乙烯、以及聚乳酸中的至少一种。
可选地,所述高分子材料与所述导电导热材料的重量比例为(90~95):(5~10)。
可选地,所述基材层中还掺杂有铜粉。
可选地,所述高分子材料、所述铜粉和所述导电导热材料的重量比例为(85~90):(5~3):(10~7)。
可选地,所述微孔结构的直径为大于等于1μm且小于等于10μm。
可选地,所述基材层的层厚度为大于等于0.1㎜且小于等于0.5㎜。
可选地,所述基材层的表面设置有铜箔。
可选地,所述缓冲结构的两侧的最外侧分别设置有网纹胶。
基于相同的发明构思,本公开还提供了一种显示装置,包括显示面板和如上述技术方案提供的任意一种缓冲结构,所述缓冲结构位于所述显示面板 的背侧。
基于相同的发明构思,本公开还提供了一种缓冲结构的制备方法,包括:
将高分子材料与导电导热材料混合均匀,以形成复合材料;
将所述复合材料放入挤出机中熔融共混,且通入超临界流体;
通过所述挤出机挤出发泡成型,形成缓冲结构。
基于相同的发明构思,本公开还提供了一种缓冲结构的制备方法,包括:
使用溶解液将高分子材料溶解;
在溶解后的所述高分子材料溶液中加入导电导热材料,且使得所述导电导热材料在所述高分子材料溶液中分散均匀;
对掺杂有所述导电导热材料的高分子材料溶液烘干处理,以得到复合材料;
采用间歇发泡法使得所述复合材料内部形成微孔结构,以得到缓冲结构。
附图说明
图1为本公开实施例提供的一种缓冲结构的立体结构示意图;
图2为本公开实施例提供的一种缓冲结构的截面结构示意图;
图3为本公开实施例提供的一种缓冲结构的截面结构示意图;
图4为本公开实施例提供的一种缓冲结构的截面结构示意图;
图5为本公开实施例提供的一种缓冲结构内的热传导示意图;
图6为本公开实施例提供的一种缓冲结构对电磁波的传导的示意图;
图7为本公开实施例提供的一种显示装置的局部截面结构示意图;
图8为本公开实施例提供的一种缓冲结构的制备方法流程示意图;
图9为本公开实施例提供的一种缓冲结构的制备方法流程示意图;
图标:1-基材层;2-热传导网络结构;3-铜粉;4-铜箔;5-网纹胶;6-显示面板;7-盖板;11-微孔结构;21-导电导热材料;61-显示区;62-绑定区;63-弯折区。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1和图2所示,本公开实施例提供了一种缓冲结构,该缓冲结构包括:基材层1,基材层1内分布有多个微孔结构11,且基材层1中掺杂有导电导热材料21,导电导热材料21分布于基材层1的整层结构中,且导电导热材料21在基材层1中形成有热传导网络结构2。
上述缓冲结构中,如图2所示,基材层1中设置有多个微孔结构11,且微孔结构11分布在基材层1的整层结构中,使得基材层1具有高孔隙率,提高基材层1的抗冲能力,使得基材层1具备良好的抗冲击性能,且可以将缓冲结构的重量,满足显示装置的轻薄化的设计需求,具体地,微孔结构11可以在基材层1均匀分布,使得基材层1整体抗冲性能更好,可以起到良好的缓冲作用,同时,结合图1参考图5所示,其中,图5中基材层中的箭头表示热量传导,且只是局部示意。在基材层1内还掺杂有导电导热材料21,导电导热材料21分布在基材层1的整层结构中,具体可以均匀的分在整层结构中,会有相邻的导电导热材料21彼此连接,相互连接的导热导电材料的连接关系一直向周围延伸下去,则在基材层1在基材层1中的导电导热材料21彼此连接延伸,在基材层1中会形成有网络结构,且在基材层1的表面也会有导电导热材料21,也是构成网络结构的一部分,使得网络结构贯穿基材层1内外,相当于网络结构有部分裸露在基材层1的表面,其中,由于在基材层1的整层结构中分散着导电导热材料21,优选地,所有的导电导热材料21可以形成一个完整的网络结构,或者,也能形成彼此没有连接关系的至少两个网络结构,该网络结构可以进行热传导,以形成热传导网络结构2,热传导网络结构2可以很好的进行热传导,热量可以沿着网络结构传导,将热量传导至缓冲结构的表面耗散掉,并且网络结构在基材层1的整层结构中延伸,还可 以及时将微孔结构11中存储的热量及时导出散掉,极大的增强缓冲结构的散热能力,使得缓冲结构具备良好的散热性能,另外,参考图6所示,图6中的微孔结构中的虚线箭头表示电磁波的消耗,且每个微孔结构均具有消耗电磁波的作用,图中只是示出了局部微孔结构中的电磁消耗。由于微孔结构11的存在,电磁波进入缓冲结构中后,部分电磁波会在微孔结构11内发生多次反射,使电磁波耗散在微孔结构11中,且基材层1层中的导电导热材料21具有优异的导电性能,整个热传导网络结构2也可以吸收、消耗电磁波,可以进一步提高整个缓冲结构的吸收电磁波能力,进而提高缓冲结构的屏蔽能力,使缓冲结构具备良好的屏蔽性能,减小信号之间的干扰,有利于提高显示面板6的显示性能和使用寿命。
因此,上述缓冲结构兼具良好的缓冲性能、散热性能和电磁屏蔽性能,集多种功能于一体,可以使该单层缓冲结构设置在显示面板背侧,缓冲结构可以高效导出屏幕产生的热量,提高屏幕散热性,且也可以起到缓冲、吸收电磁波的功能,以该单层缓冲结构可以代替现有的屏幕背面的多层功能结构层,有利于减小屏幕整体厚度。除此之外,相关技术中的多层结构的SCF层,还需要处理相邻层之间截面的粘结性,制备工艺复杂,而本实施例中的缓冲结构为单层结构,制备时可以将导电导热材料掺杂到基材层的材料中与其混合之后进行制备即可,制备工艺简单,降低显示装置的生产成本。
在具体实施时,导电导热材料可以选择导电导热性能较好的高导电导热材料,优选地,该导电导热材料可以选择碳纤维、碳纳米管、石墨烯、以及碳化钛中的至少一种,可以选择碳纤维、碳纳米管、石墨烯、以及碳化钛中的一种或其中的几种混合搭配。其中,碳纤维、碳纳米管、石墨烯、以及碳化钛的导电导热性能均非常优异,选择碳纤维、碳纳米管、石墨烯、以及碳化钛中的一种或几种,可以进一步提高缓冲结构的导热能力和导电性能,提高散热性和屏蔽能力,另外,碳纤维、碳纳米管、石墨烯、以及碳化钛中的一种或几种掺杂基材层中,使得缓冲结构呈黑色,使缓冲结构具备遮光功能,使缓冲结构在屏幕背面起到良好的遮光效果。
具体地,在上述缓冲结构的基础上,对于基材层的材料选择,可以设置基材层包括高分子材料,高分子材料和上述导电导热材料混合之后形成复合发泡材料,然后制备形成缓冲结构,该复合发泡材料密度小,质量轻,可以有效降低屏幕的重量,屏幕轻薄化设计。
作为优选,高分子材料可以包括聚丙烯、聚对苯二甲酸乙二醇酯、热塑性聚氨酯、聚偏氟乙烯、以及聚乳酸中的至少一种,高分子材料可以选择聚丙烯、聚对苯二甲酸乙二醇酯、热塑性聚氨酯、聚偏氟乙烯、以及聚乳酸中的一种或几种,能够使得基材层的柔韧性和抗冲击性更好,提高缓冲结构的柔韧性以及抗冲击性,提高对屏幕的保护性能,并且,聚丙烯、聚对苯二甲酸乙二醇酯、热塑性聚氨酯、聚偏氟乙烯、以及聚乳酸中的一种,或其中几种的混合物,在与上述导电导热材料混合形成复合材料,可以通过简单的工艺制备形成缓冲结构,有利于简化制备工艺。
具体地,设置高分子材料与导电导热材料的重量比例为(90~95):(5~10)。对高分子材料和导电导热材料进行合适的重量配比混合,有利于基材层形成合适量的微孔结构,具有高孔隙率,具有较好的抗冲击能力,同时,使得导电导热材料可以在基材层中具有合理的分布,形成热传导网络结构,提高导热能力以及屏蔽能力。具体地,对于重量比例,可以设置高分子材料:导电导热材料=90:10,或者,高分子材料:导电导热材料=94:7,或者其它配比,本实施例不做局限。
在一种可能的实施方式中,如图3所示,在基材层1中还可以掺杂有铜粉3。铜粉3可以分布在基材层1的整层结构中,铜粉3可以进一步提高缓冲结构的热传导效率和屏蔽性能,使得缓冲结构的具有更好的散热性能和屏蔽性能。
具体地,高分子材料、铜粉和导电导热材料的重量比例为(85~90):(5~3):(10~7)。对高分子材料、铜粉和导电导热材料进行合适的重量配比混合,有利于基材层形成合适量的微孔结构,具有高孔隙率,具有较好的抗冲击能力,同时,使得铜粉和导电导热材料可以在基材层中具有合理的分布,提高 缓冲结构的散热能力和屏蔽能力。
在一种可能的实施方式中,参考图2所示,微孔结构11的直径为大于等于1μm且小于等于10μm。设置微孔结构11具有合适的孔径,提高基材层1的抗冲击能力,且尽量减少对散热性能的影响。并且,基材层中的多个微孔结构可以孔径大小一致,也可以孔径大小不一样,本实施例不做局限。
在一种可能的实施方式中,参考图2所示,基材层1的层厚度为大于等于0.1㎜且小于等于0.5㎜。具体,可以设置基材层1的厚度为0.2㎜、0.25㎜、0.3㎜、0.32㎜、0.35㎜、或者0.37㎜、0.4㎜或者其它厚度,本实施例不做局限。基材层1设置合适的厚度,既可以保证其抗击性能,又可以保证良好的散热性。
在上述缓冲结构中,如图4所示,基材层1的表面设置有铜箔4。铜箔4附在基材层1的表面,可以大幅度提高整体的散热性能和屏蔽性能,具体地,可以在基材层1中用于与屏幕相对的上下两个表面设置铜箔4,或者,也可以基材层1的全部表面均设置有铜箔4,铜箔4将基材层1的武安不外表面包覆,使得缓冲结构的整体散热性能和屏蔽性能更好。
进一步地,参考图7所示,缓冲结构的两侧的最外侧还分别设置有网纹胶5。通过网纹胶将缓冲结构粘接于显示面板,连接简单且牢固,提高缓冲结构在显示面板背面的稳定性。
其中,在上述缓冲结构的设置基础上,如图2所示,作为缓冲结构的一种具体的实现方式示例,缓冲结构可以选择聚对苯二甲酸乙二醇酯作为基材层1的材料,以碳纤维作为导电导热材料21,也就是聚对苯二甲酸乙二醇酯和碳纤维混合后形成的复合材料形成缓冲结构,且在基材层1中形成微孔结构11。其中,碳纤维具有良好的导电导热性能,碳纤维分散在基材层1中,可以形成良好的碳纤维网络,并且碳纤本身材料成本低,且耐高温,在制备时,可以将聚对苯二甲酸乙二醇酯和碳纤维的混合材料放入挤出机中直接制备,制备工艺简单,可靠,极大的降低了缓冲结构的制备成本。
作为缓冲结构的另一种具体的实现方式示例,如图3所示,缓冲结构还 可以选择聚偏氟乙烯作为基材层1的材料,选择碳纤维作为导电导热材料21,在基材层1中掺入铜粉3,聚偏氟乙烯、碳纤维和铜粉3的混合材料形成复合材料,制备形成缓冲结构,在制备过程中在基材层1形成微孔结构11,其中,铜粉3的加入可以进一步增强屏蔽作用,其碳纤维和铜粉3的材料成本均较低,且两者均为耐高温材料,制备时可以将聚偏氟乙烯、碳纤维和铜粉3的混合材料采用挤出机直接制备,制备工艺简单,可靠,极大的降低了缓冲结构的制备成本。
如图4所示,作为缓冲结构的另一种具体的实现方式示例,缓冲结构还可以选择热塑性聚氨酯作为基材层1的材料,选择碳纤维为导电导热材料21,以两者的混合形成的混合物作为复合材料,应用挤出机制备形成掺杂有碳纤维的基材层1,并且在制备过程中在基材层1内形成有微孔结构11,基材层1中与显示面板6相对的两个表面上各自贴附一层铜箔4,形成最终的缓冲结构。铜箔4可以进一步提高缓冲结构的散热性和屏蔽性能,且材料成本也较低,有利于降低缓冲结构的制备成本。
基于相同的发明构思,本实施例还提供了一种显示装置,参考图7所示,该显示装置包括显示面板6和如上述实施例提供的任意一种缓冲结构,缓冲结构位于显示面板6的背侧,显示面板6具有基板以及设置在基板上有机发光功能层和偏光片,缓冲结构具体位于基板设置背离有机发光功能层的一侧,偏光片位于有机发光功能层背离基板的一侧。上述缓冲结构可以有效提高显示装置的散热性能和屏蔽性能,且缓冲结构为单层结构,有利于降低显示装置的厚度,使显示装置轻薄化。
具体地,如图7所示,上述显示装置还包括盖板7,盖板7位于显示面板6的出光侧,显示面板包括显示区61、位于显示区背离其出光侧的绑定区62、以及连接显示区61与绑定区62的弯折区63,缓冲结构位于显示区61和绑定区62之间。缓冲结构在显示面板背侧可以起到很好的缓冲作用,且缓冲结构可以直接与显示面板的显示区背面贴附,缓冲结构可以更好的起到热传导作用,将显示面板6的热量传导过来进行散热,提高显示装置的散热性。
基于相同的发明构思,参考图1,如图8所示,本实施例还提供了一种缓冲结构的制备方法,该制备方法适用于制备上述实施例提供的缓冲结构,且制备方法具体包括:
首先,根据步骤S101,将高分子材料与导电导热材料混合均匀形成混合物,该混合物形成复合材料;具体的,可以将高分子材料与导电导热材料按照一定的配比混合;另外,复合材料的组成,还可以包括铜粉,以高分子材料、导电导热材料和铜粉混合均匀来形成复合材料;
接着,根据步骤S102,将复合材料放入挤出机中熔融共混,且通入超临界流体,使得复合材料形成复合发泡材料;具体地,挤出机可以为双螺杆挤出机,超临界流体可以为高压二氧化碳或者高压氮气;
然后,根据步骤S103,通过挤出机挤出发泡成型,形成缓冲结构。
基于上述制备方法,需要说明的是,由于在制备过程中,挤出机将混合物熔融共混时,需要预设温度加热,此过程需要温度较高,为保证导电导热材料自身性能,所以上述制备方法适用于耐高温的导电导热材料进行制备缓冲结构,所以,该制备方法适用于以碳纤维、碳纳米管以及石墨烯中的一种或几种作为导电导热材料的缓冲材料的制备,在挤出机中,基材层的材料成熔融状态,导电导热材料不会融化,在挤出机中搅拌混合均匀,然后挤出发泡成型,制备工艺简单可靠,生产效率较高,便于工业化生产,且有利于节约制备成本,降低生产成本。
基于相同的发明构思,参考图1,如图9所示,本实施例还提供了另一种缓冲结构的制备方法,该制备方法适用于制备上述实施例提供的缓冲结构,且制备方法具体包括:
首先,根据步骤S201,使用溶解液将高分子材料溶解,具体地,溶解液可以为二甲基甲酰胺;
然后,根据步骤S202,在溶解后的高分子材料溶液中加入导电导热材料,可以通过搅拌的方式使得导电导热材料在高分子材料溶液中分散均匀;另外,还可以在高分子材料溶液中添加铜粉,进一步增强制备的缓冲结构的屏蔽能 力;
接着,根据步骤S203,对掺杂有导电导热材料的高分子材料溶液烘干处理,以得到复合材料;
最后,根据步骤S204,采用间歇发泡法使得复合材料内部形成微孔结构,以得到缓冲结构。
该制备方法采用溶解液溶解高分子材料的方式使得导电导热材料与高分子材料混合,制备过程不会有过高温度的情况,适用于一些不耐高温的导电导热材料,具体的,该制备方法适用于导电导热材料包括有碳化钛的情况,制备过程也比较简单,可靠,可以形成良好的缓冲结构。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (14)

  1. 一种缓冲结构,其中,包括:
    基材层,所述基材层内分布有多个微孔结构,所述基材层中掺杂有导电导热材料,所述导电导热材料分布于所述基材层的整层结构中,且所述导电导热材料在所述基材层中形成有热传导网络结构。
  2. 根据权利要求1所述的缓冲结构,其中,所述导电导热材料包括碳纤维、碳纳米管、石墨烯、以及碳化钛中的至少一种。
  3. 根据权利要求1所述的缓冲结构,其中,所述基材层包括高分子材料。
  4. 根据权利要求3所述的缓冲结构,其中,所述高分子材料包括聚丙烯、聚对苯二甲酸乙二醇酯、热塑性聚氨酯、聚偏氟乙烯、以及聚乳酸中的至少一种。
  5. 根据权利要求4所述的缓冲结构,其中,所述高分子材料与所述导电导热材料的重量比例为(90~95):(5~10)。
  6. 根据权利要求2所述的缓冲结构,其中,所述基材层中还掺杂有铜粉。
  7. 根据权利要求6所述的缓冲结构,其中,所述高分子材料、所述铜粉和所述导电导热材料的重量比例为(85~90):(5~3):(10~7)。
  8. 根据权利要求1-7任一项所述的缓冲结构,其中,所述微孔结构的直径为大于等于1μm且小于等于10μm。
  9. 根据权利要求1-7任一项所述的缓冲结构,其中,所述基材层的层厚度为大于等于0.1㎜且小于等于0.5㎜。
  10. 根据权利要求1-7任一项所述的缓冲结构,其中,所述基材层的表面设置有铜箔。
  11. 根据权利要求1-7任一项所述的缓冲结构,其中,所述缓冲结构的两侧的最外侧分别设置有网纹胶。
  12. 一种显示装置,其中,包括显示面板和如权利要求1-11任一项所述的缓冲结构,所述缓冲结构位于所述显示面板的背侧。
  13. 一种缓冲结构的制备方法,其中,包括:
    将高分子材料与导电导热材料混合均匀,以形成复合材料;
    将所述复合材料放入挤出机中熔融共混,且通入超临界流体;
    通过所述挤出机挤出发泡成型,形成缓冲结构。
  14. 一种缓冲结构的制备方法,其中,包括:
    使用溶解液将高分子材料溶解;
    在溶解后的所述高分子材料溶液中加入导电导热材料,且使得所述导电导热材料在所述高分子材料溶液中分散均匀;
    对掺杂有所述导电导热材料的高分子材料溶液烘干处理,以得到复合材料;
    采用间歇发泡法使得所述复合材料内部形成微孔结构,以得到缓冲结构。
PCT/CN2023/089686 2022-06-24 2023-04-21 缓冲结构及其制备方法、显示装置 WO2023246272A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210730292.9 2022-06-24
CN202210730292.9A CN115101695A (zh) 2022-06-24 2022-06-24 一种缓冲结构及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2023246272A1 true WO2023246272A1 (zh) 2023-12-28

Family

ID=83293683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089686 WO2023246272A1 (zh) 2022-06-24 2023-04-21 缓冲结构及其制备方法、显示装置

Country Status (2)

Country Link
CN (1) CN115101695A (zh)
WO (1) WO2023246272A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115101695A (zh) * 2022-06-24 2022-09-23 京东方科技集团股份有限公司 一种缓冲结构及其制备方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107522942A (zh) * 2017-08-04 2017-12-29 浙江新恒泰新材料有限公司 一种导电聚丙烯微孔发泡材料及其生产方法
US20180208762A1 (en) * 2015-07-29 2018-07-26 Graphene 3D Lab Inc. Thermoplastic polymer composites and methods for preparing, collecting, and tempering 3d printable materials and articles from same
CN111961305A (zh) * 2020-08-19 2020-11-20 南通伟越电器有限公司 一种微孔发泡hips电磁屏蔽材料及其制备方法与应用
CN113736130A (zh) * 2021-09-01 2021-12-03 大同共聚(西安)科技有限公司 一种多层孔状聚酰亚胺复合薄膜及其制备方法
CN114573858A (zh) * 2022-03-15 2022-06-03 浙江工业大学 一种可用于电磁屏蔽的多层发泡材料的制备方法
CN115101695A (zh) * 2022-06-24 2022-09-23 京东方科技集团股份有限公司 一种缓冲结构及其制备方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180208762A1 (en) * 2015-07-29 2018-07-26 Graphene 3D Lab Inc. Thermoplastic polymer composites and methods for preparing, collecting, and tempering 3d printable materials and articles from same
CN107522942A (zh) * 2017-08-04 2017-12-29 浙江新恒泰新材料有限公司 一种导电聚丙烯微孔发泡材料及其生产方法
CN111961305A (zh) * 2020-08-19 2020-11-20 南通伟越电器有限公司 一种微孔发泡hips电磁屏蔽材料及其制备方法与应用
CN113736130A (zh) * 2021-09-01 2021-12-03 大同共聚(西安)科技有限公司 一种多层孔状聚酰亚胺复合薄膜及其制备方法
CN114573858A (zh) * 2022-03-15 2022-06-03 浙江工业大学 一种可用于电磁屏蔽的多层发泡材料的制备方法
CN115101695A (zh) * 2022-06-24 2022-09-23 京东方科技集团股份有限公司 一种缓冲结构及其制备方法、显示装置

Also Published As

Publication number Publication date
CN115101695A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2023246272A1 (zh) 缓冲结构及其制备方法、显示装置
US10004152B2 (en) Heat insulation sheet and method of manufacturing same
US10088092B2 (en) Thermal insulation sheet, hybrid thermal insulation sheet, and thermal insulation panel
CN100423326C (zh) 一种二次锂离子电池用的具有综合性能的正极片
Cheng et al. Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion
KR200427596Y1 (ko) 상변화 물질을 이용한 열전도 및 흡수 시트
KR101243647B1 (ko) 그라파이트 페이퍼를 이용하여 방열 효율을 극대화시킨 쿠션부재 및 그 제조방법
CN206349356U (zh) 高性能的石墨烯导热散热膜
Hu et al. Engineering robust multifunctional composites with enhanced electromagnetic interference shielding and all-weather thermal management capability via simple layer-by-layer assembly
Gu et al. Poly (L-lactic acid)/graphene composite films with asymmetric sandwich structure for thermal management and electromagnetic interference shielding
CN207531248U (zh) 一种移动终端
KR101026867B1 (ko) 열확산 혼합카본시트 및 그 제조방법
CN206367230U (zh) 具有高抗震缓冲性能的石墨烯复合膜
KR102020640B1 (ko) 단열시트 및 그의 제조방법과, 이를 구비한 휴대 단말기
Guo et al. Epoxy composites with satisfactory thermal conductivity and electromagnetic shielding yet electrical insulation enabled by Al2O3 platelet-isolated MXene porous microsphere networks
CN102097591A (zh) 柔性薄膜太阳能电池
WO2023125351A1 (zh) 碳材及其应用
CN210011437U (zh) 导热硅胶散热复合薄膜
CN206568644U (zh) 一种快速散热铝塑膜
CN116622301A (zh) 显示面板、显示装置、复合胶带及其制作方法
CN103869392A (zh) 一种液晶显示背光模组用反射膜
CN108365224B (zh) 极板及极板的制备方法
KR20210003051A (ko) 탄성 열-방출 구조 및 전자 장치
CN101524902A (zh) 低热阻且高导热系数高分子介电复合材料
CN106590003A (zh) 一种用于显示装置的遮光材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825925

Country of ref document: EP

Kind code of ref document: A1