WO2023246021A1 - 基于熔盐传热的储热系统及运行方法 - Google Patents

基于熔盐传热的储热系统及运行方法 Download PDF

Info

Publication number
WO2023246021A1
WO2023246021A1 PCT/CN2022/139727 CN2022139727W WO2023246021A1 WO 2023246021 A1 WO2023246021 A1 WO 2023246021A1 CN 2022139727 W CN2022139727 W CN 2022139727W WO 2023246021 A1 WO2023246021 A1 WO 2023246021A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten salt
valve
heat storage
heat
valve group
Prior art date
Application number
PCT/CN2022/139727
Other languages
English (en)
French (fr)
Inventor
张建元
马汀山
居文平
王伟
常东锋
王东晔
耿如意
雒青
祁文玉
Original Assignee
西安热工研究院有限公司
西安西热节能技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司, 西安西热节能技术有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023246021A1 publication Critical patent/WO2023246021A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • C09K5/12Molten materials, i.e. materials solid at room temperature, e.g. metals or salts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D2020/0047Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present disclosure belongs to the field of heat storage technology, and specifically relates to a heat storage system and operating method based on molten salt heat transfer.
  • Molten salt heat storage systems are currently widely used in solar thermal power stations, clean heating and other scenarios. They have the advantages of high heat storage temperature and long service life. However, this technical solution requires a large demand for molten salt heat storage media. When the heat storage temperature difference is 200°C and the heat storage heat is 80MWh, the demand for conventional molten salt is approximately 1,300 tons. The prices of single molten salts such as potassium nitrate, sodium nitrate, and calcium nitrate are greatly affected by the international market and raw materials.
  • the solid heat storage system is a simple and easy heat storage technology. Its basic principle is to transfer heat to solid heat storage materials such as concrete or refractory bricks for storage. When heat needs to be released, the heat is transferred through the heat transfer medium and the solid heat storage material. For heat exchange, the heat storage materials of solid heat storage systems are easy to obtain and have stable prices. The raw materials do not rely on imports and are not sensitive to market price fluctuations.
  • the heat transfer medium of a general solid heat storage system is isolated from the solid material by a fixed metal wall, and heat can only be exchanged through thermal conduction. This results in a low charging and discharging rate of the system and poor heat transfer during the charging and discharging process.
  • the medium outlet temperature changes significantly, which also prevents the solid heat storage system from being widely promoted and applied.
  • embodiments of the present disclosure propose a heat storage system and operation method based on molten salt heat transfer. , on the premise of achieving the same heat storage, it can significantly reduce the usage of molten salt and thereby reduce construction costs. It can effectively solve the problem of obvious changes in the outlet temperature of the heat transfer medium during the charging and releasing process of the solid heat storage system. It can also use short-term The shaft molten salt submersible pump replaces the long shaft submersible pump. Therefore, the embodiments of the present disclosure are suitable for large-capacity high-temperature heat storage scenarios and can effectively reduce the investment cost of the heat storage system without affecting the heat transfer rate.
  • an embodiment of the present disclosure is a heat storage system based on molten salt heat transfer, including: a solid heat storage module (1), an outlet pipe (2), and a molten salt containing a certain liquid level of molten salt (15).
  • the solid heat storage module (1) is arranged in the housing (13) and includes a plurality of sub-units arranged side by side.
  • the upper and lower parts of the sub-units are respectively provided with valves; the valves on the upper parts of all the sub-units constitute The second valve group (12), all the valves in the lower part of the sub-unit constitute the first valve group (11); the upper part of the solid heat storage module (1) passes through the second valve group (12) It is connected to the outlet of the heat releasing device (10) and the third valve (8); the lower part of the solid heat storage module (1) is connected to the heat charging device (11) through the first valve group (11) The outlet of 9) is connected to the fourth valve (14);
  • One end of the lead-out pipe (2) is connected to the bottom of the housing (13), and the other end is connected to the upper part of the molten salt tank (4); the molten salt pump (5) is provided in the molten salt tank (4) Above; the molten salt pump (5) passes through the first valve (6), the second valve (7), the third valve (8) and the heat charging device (9) respectively The inlet of the heat dissipation device (10) and the second valve group (12) are connected;
  • One end of the fourth valve (14) is connected to the housing (13), and the other end is connected to the outlet of the first valve group (11) and the heat charging device (9) respectively.
  • the system is used to realize the opposite flow direction of the molten salt (15) in the solid heat storage module (1) during the heat charging and discharging process, thereby improving the heat exchange effect.
  • the solid heat storage module (1) is composed of granular solid heat storage materials, which include at least one of pebbles, metal, modular concrete, heat storage capsules and other materials. .
  • the solid heat storage module (1) is used to directly contact the molten salt (15) to increase the heat exchange rate.
  • the heat storage system further includes: a load-bearing platform (3) located directly below the housing (13).
  • the load-bearing platform (3) is used to support the weight of the solid heat storage module (1) and the shell (13).
  • the number of the molten salt tanks (4) is one, and provide a buffer for the low-temperature molten salt (15) during the heating process and a buffer for the high-temperature molten salt (15) during the heat release process.
  • Salt (15) provides buffering.
  • embodiments of the present disclosure propose an operation method of a heat storage system based on molten salt heat transfer, which is applied to the heat storage system described in any of the above embodiments, including a heat charging mode and a heat release mode:
  • Heating mode close the second valve (7), the third valve (8), the second valve group (12) and the fourth valve (14); and open the first valve (6) and the first valve group (11) At least some valves in the valve; the low-temperature molten salt (15) passes through the molten salt pump (5) to the heating device (9) to increase the temperature to obtain high-temperature molten salt (15); the high-temperature molten salt (15) passes through the
  • the first valve group (11) enters the lower part of the solid heat storage module (1) and as the molten salt liquid level in the solid heat storage module (1) rises, it transfers heat to the heat storage material and then overflows the solid heat storage
  • the module (1) flows into the bottom of the shell (13); the molten salt (15) at the bottom of the shell (13) flows to the molten salt tank (4) through the outlet pipe (2), and the molten salt (15) passes through the molten salt tank (4) again.
  • the salt pump (5) is sent to the heat charging equipment (9);
  • Heat release mode close the first valve (6) and the second valve (7) and open the third valve (8), the second valve group (12), the first valve group ( 11) and the fourth valve (14); low-temperature molten salt (15) flows through the molten salt pump (5) through the third valve (8), the second valve group (12), The solid heat storage module (1), the first valve group (11) and the fourth valve (14) then flow to the bottom of the shell (13).
  • the medium-low temperature molten salt (15) absorbs heat and flows to the molten salt tank (4) through the outlet pipe (2) until the temperature of the molten salt (15) in the molten salt tank (4) reaches the exothermic level. Require;
  • the third valve (8) is closed and the second valve (7) is opened, and the high-temperature molten salt (15) flows through the second valve (7),
  • the heat release equipment (10), the second valve group (12), the solid heat storage module (1), the first valve group (11) and the fourth valve (14) then flow to The bottom of the shell (13);
  • the high-temperature molten salt (15) at the bottom of the shell (13) flows to the molten salt tank (4) through the outlet pipe (2), and then passes through the molten salt pump ( 5) Send it to the heat charging equipment (9).
  • the molten salt (15) flows through the solid heat storage module (1) from bottom to top during the heating process, and the solid heat storage module is implemented by controlling the first valve group (11) At least one of the sub-units in (1) is charged with heat at the same time; at least one sub-unit in the solid heat storage module (1) is controlled to release heat at the same time by controlling the second valve group (12).
  • the usage of molten salt can be significantly reduced, thereby reducing the construction cost, and can effectively solve the problem of charging and discharging of the solid heat storage system.
  • the problem of obvious changes in the outlet temperature of the heat transfer medium during the thermal process can reduce the number of molten salt pumps and molten salt storage tanks from two to one in the conventional molten salt heat storage system.
  • the molten salt storage tank only provides buffering volume. Smaller, a short-axis molten salt submersible pump can be used instead of a long-axis submersible pump.
  • Figure 1 is a schematic structural diagram of a heat storage system based on molten salt heat transfer provided by an embodiment of the present disclosure.
  • the heat storage system based on molten salt heat transfer includes a solid heat storage module 1, an outlet pipe 2, a load-bearing platform 3, a molten salt tank 4, a molten salt pump 5, a first valve 6, and a second valve 7 , the third valve 8, the heat charging device 9, the heat release device 10, the first valve group 11, the second valve group 12, the shell 13, the fourth valve 14 and the molten salt 15.
  • the solid heat storage module 1 specifically includes a plurality of identical sub-units arranged side by side, each sub-unit is filled with granular solid heat storage materials, and the upper and lower parts of each sub-unit are respectively connected to a valve; it is understandable that granular solid heat storage
  • the materials include at least one of cobblestones, metals, modular concrete, heat storage capsules and other materials, which are used to directly contact the molten salt (15) to increase the heat transfer rate and effectively reduce the cost of heat storage materials.
  • the upper and lower parts of each sub-unit are respectively connected with a valve to ensure that each sub-unit can independently carry out the heat charging and discharging process, thereby effectively controlling the outlet temperature of the molten salt during the heat charging process.
  • valves in the upper part of all sub-units constitute the second valve group 12, and the valves in the lower part of all sub-units constitute the first valve group 11;
  • the upper part of the solid heat storage module 1 is connected to the outlet of the heat release device 10 and the third valve 8 through the second valve group 12
  • the lower part of the solid heat storage module 1 is connected to the outlet of the heat charging device 9 and the fourth valve 14 through the first valve group 11;
  • one end of the outlet pipe 2 is connected to the bottom of the shell 13 and the other end is connected to the upper part of the molten salt tank 4 ;
  • a load-bearing platform 3 is provided directly below the shell 13 to support the weight of the solid heat storage module 1 and the shell 13.
  • the molten salt pump 5 is installed above the molten salt tank 4; the molten salt pump 5 is connected to the inlet of the heating equipment 9 through the first valve 6, and through the second valve 6.
  • the valve 7 is connected to the inlet of the heat releasing device 10 and is connected to the second valve group 12 through the third valve 8 .
  • One end of the fourth valve 14 is connected to the shell 13, and the other end is connected to the first valve group 11 and the outlet of the heat charging device 9; the heat storage system in this embodiment can realize the molten salt 15 in the solid heat storage module 1 during the heat charging and discharging process.
  • the opposite flow direction can improve the heat transfer effect.
  • a thermal storage system based on molten salt heat transfer operates as follows:
  • Heat charging mode the second valve 7, the third valve 8, the second valve group 12 and the fourth valve 14 are closed, the first valve 6 is opened, and the first valve group 11 can open a valve first.
  • the low-temperature molten salt 15 is sent to the heat charging device 9 through the molten salt pump 5 to increase the temperature.
  • the high-temperature molten salt 15 enters the lower part of the solid heat storage module 1 through the first valve group 11.
  • the high-temperature molten salt 15 transfers heat to the heat storage material in the solid heat storage module 1 and then the temperature decreases.
  • the low-temperature molten salt 15 overflows the solid heat storage module 1 and flows into the bottom of the shell 13, and the shell 13
  • the molten salt 15 at the bottom flows to the molten salt tank 4 through the outlet pipe 2, and the molten salt 15 is sent to the heating device 9 through the molten salt pump 5 again.
  • the second valve in the first valve group 11 can be opened again, or multiple valves can be opened at the same time to control the melting process.
  • the temperature of the molten salt 15 in the salt tank 4 is relatively stable. Molten salt 15 flows through the solid heat storage module 1 from bottom to top during the heat charging process, which improves the uniformity of the temperature field of the solid heat storage module 1 and increases the heat transfer amount and heat transfer rate.
  • Heat release mode the first valve 6 and the second valve 7 are closed, the third valve 8, the second valve group 12, the first valve group 11 and the fourth valve 14 are opened; the low-temperature molten salt 15 is boosted by the molten salt pump 5 Then, it flows to the bottom of the shell 13 through the third valve 8, the second valve group 12, the solid heat storage module 1, the first valve group 11 and the fourth valve 14.
  • the low-temperature molten salt in the solid heat storage module 1 15 absorbs heat to raise the temperature, and then flows to the molten salt tank 4 through the outlet pipe 2.
  • the molten salt tank 4 provides a buffer for low-temperature molten salt during the heat charging process and a buffer for high-temperature molten salt during the heat release process, so that the number of molten salt pumps and molten salt storage tanks are respectively increased by conventional molten salt heat storage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Central Heating Systems (AREA)

Abstract

提出了一种利用熔盐传热的储热系统及运行方法,储热系统包括固体储热模块(1)、导出管(2)、内有一定液位的熔盐(15)的熔盐罐(4)、熔盐泵(5)、第一阀门(6)、第二阀门(7)、第三阀门(8)、充热设备(9)、放热设备(10)、第一阀门组(11)、第二阀门组(12)、外壳(13)、第四阀门(14);固体储热模块(1)设置在外壳(13)内,其包括多个并列布置的子单元,子单元的上部和下部均分别设置阀门,实现每个子单元能单独进行充放热过程;该系统用于实现充放热过程中固体储热模块(1)内熔盐(15)的流动方向相反,提高换热效果。

Description

基于熔盐传热的储热系统及运行方法
相关申请的交叉引用
本申请要求在2022年6月22日在中国提交的中国专利申请号202210713674.0的优先权,其全部内容通过引用并入本文。
技术领域
本公开属于储热技术领域,具体涉及基于熔盐传热的储热系统及运行方法。
背景技术
目前风能、太阳能等可再生能源逐年迅猛发展,加之全社会用电量逐年攀升,电网用电峰谷差日益增大,电网对低成本、长寿命储能技术的需求越来越强。按照储能品质高低,目前储能技术可以简单划分为电储存、势能储存和热量储存,其中电储存可分为锂电池、液流电池、超级电容等,势能储存可分为抽水蓄能、压缩空气、飞轮等,热量储存可分为固体储热、熔融盐储热、热化学储存等。
熔融盐储热系统目前广泛应用于太阳能光热电站、清洁供暖等场景,具有储热温度高、使用寿命长的优点,但是该技术方案对熔盐储热介质的需求量很大。储热温差为200℃、储热量为80MWh时,对于常规的熔盐其需求量约为1300吨。硝酸钾、硝酸钠、硝酸钙等熔盐单盐的价格受国际市场和原材料的影响很大,当氯化钾、硝酸等原材料成本大幅上涨时会导致熔盐价格明显升高,这会直接影响工程项目的投资成本和实施进度,另外高温熔盐长轴液下泵的加工制造也是需要解决的一项难题。固体储热系统是一种简单易行的储热技术,其基本原理是将热量传递给混凝土或者耐火砖等固体储热材料进行存储,需要放热时再通过传热介质与固体储热材料进行换热,固体储热系统的储热材料易获取、价格稳定,原材料不依赖进口,对市场价格波动不敏感。但是,一般固体储热系统的传热介质与固体材料之间通过固定金属壁面隔绝,只能通过热传导的方式进行热量的交换,这造成系统充放热速率较低且充放热过程中传热介质出口温度明显变化,这也导致固体储热系统无法大范围推广应用。
发明内容
为解决熔盐储热系统成本高、价格波动大,而固体储热系统换热速率低、工况不稳定的问题,本公开的实施例提出了基于熔盐传热的储热系统及运行方法,在达到同样储热量的前提下,能显著降低熔盐的使用量进而降低建设成本,能有效解决固体储热系统充放热 过程中传热介质出口温度明显变化的问题,还能通过使用短轴熔盐液下泵替代长轴液下泵,因此本公开实施例适用于大容量高温储热场景,能够在不影响传热速率的前提下有效降低储热系统投资成本
一方面,本公开的实施例一种基于熔盐传热的储热系统,包括:固体储热模块(1)、导出管(2)、内有一定液位的熔盐(15)的熔盐罐(4)、熔盐泵(5)、第一阀门(6)、第二阀门(7)、第三阀门(8)、充热设备(9)、放热设备(10)、第一阀门组(11)、第二阀门组(12)、外壳(13)和第四阀门(14),其中
所述固体储热模块(1)设置在所述外壳(13)内,包括多个并列布置的子单元,所述子单元的上部和下部均分别设置阀门;所有所述子单元上部的阀门构成所述第二阀门组(12),所有所述子单元下部的阀门构成所述第一阀门组(11);所述固体储热模块(1)的上部通过所述第二阀门组(12)与所述放热设备(10)的出口和所述第三阀门(8)连接;所述固体储热模块(1)的下部通过所述第一阀门组(11)与所述充热设备(9)的出口和所述第四阀门(14)连接;
所述导出管(2)的一端与所述外壳(13)底部连接,且另一端与所述熔盐罐(4)的上部连接;所述熔盐泵(5)设置在所述熔盐罐(4)上;所述熔盐泵(5)分别通过所述第一阀门(6)、所述第二阀门(7)、所述第三阀门(8)与所述充热设备(9)的入口、所述放热设备(10)的入口、所述第二阀门组(12)连接;
所述第四阀门(14)的一端与外壳(13)连接,且另一端分别与所述第一阀门组(11)和所述充热设备(9)出口连接。该系统用于实现充放热过程中固体储热模块(1)内熔盐(15)的流动方向相反,提高换热效果。
在一些实施例中,所述固体储热模块(1)由颗粒状固体储热材料组成,所述颗粒状固体储热材料包括鹅卵石、金属、模块混凝土、储热胶囊等材料中的至少一种。所述固体储热模块(1)用于与熔盐(15)直接接触提高换热速率。
在一些实施例中,储热系统还包括:承重平台(3),所述承重平台(3)位于所述外壳(13)正下方。所述承重平台(3)用于支撑所述固体储热模块(1)和所述外壳(13)的重量。
在一些实施例中,所述熔盐罐(4)的数量为一台,并在充热过程中为低温的所述熔盐(15)提供缓冲且在放热过程中为高温的所述熔盐(15)提供缓冲。
另一方面,本公开的实施例提出了基于熔盐传热的储热系统的运行方法,应用于上述任一实施例中所述的储热系统,包括充热模式和放热模式:
充热模式:关闭第二阀门(7)、第三阀门(8)、第二阀门组(12)和第四阀门(14);并打开第一阀门(6)和第一阀门组(11)中的至少部分阀门;低温的熔盐(15)通过熔盐 泵(5)至充热设备(9)中提高温度,得到高温的熔盐(15);高温的熔盐(15)经过所述第一阀门组(11)进入固体储热模块(1)的下部并随着所述固体储热模块(1)中熔盐液位的升高,将热量传递给储热材料后溢出固体储热模块(1)流入外壳(13)的底部;所述外壳(13)底部的熔盐(15)通过导出管(2)流至熔盐罐(4),熔盐(15)重新通过所述熔盐泵(5)送至所述充热设备(9)中;
放热模式:关闭所述第一阀门(6)和所述第二阀门(7)并打开所述第三阀门(8)、所述第二阀门组(12)、所述第一阀门组(11)和所述第四阀门(14);低温的熔盐(15)通过所述熔盐泵(5)依次流经所述第三阀门(8)、所述第二阀门组(12)、所述固体储热模块(1)、所述第一阀门组(11)和所述第四阀门(14)后流至所述外壳(13)的底部,在所述固体储热模块(1)中低温的熔盐(15)吸收热量后通过所述导出管(2)流至所述熔盐罐(4),直至所述熔盐罐(4)内熔盐(15)的温度达到放热要求;
随后,关闭所述第三阀门(8)并打开所述第二阀门(7),高温的熔盐(15)通过所述熔盐泵(5)依次流经所述第二阀门(7)、所述放热设备(10)、所述第二阀门组(12)、所述固体储热模块(1)、所述第一阀门组(11)和所述第四阀门(14)后流至所述外壳(13)的底部;所述外壳(13)底部高温的熔盐(15)通过所述导出管(2)流至所述熔盐罐(4),重新通过所述熔盐泵(5)送至所述充热设备(9)中。
在一些实施例中,所述熔盐(15)在充热过程中自下向上流过所述固体储热模块(1),且通过控制所述第一阀门组(11)实现固体储热模块(1)内至少一个所述子单元同时充热;通过控制所述第二阀门组(12)实现所述固体储热模块(1)内至少一个子单元同时放热。
和相关技术相比较,本公开的技术方案具备如下优点:
根据本公开实施例的基于熔盐传热的储热系统及运行方法,在达到同样储热量的前提下,能显著降低熔盐的使用量进而降低建设成本,能有效解决固体储热系统充放热过程中传热介质出口温度明显变化的问题,能使熔盐泵、熔盐储罐的数量分别由常规熔盐储热系统的两台减为一台,熔盐储罐只提供缓冲作用容积较小,能够利用短轴熔盐液下泵替代长轴液下泵。
附图说明
图1是本公开一个实施例提供的基于熔盐传热的储热系统的结构示意图。
图中:1、固体储热模块;2、导出管;3、承重平台;4、熔盐罐;5、熔盐泵;6、第一阀门;7、第二阀门;8、第三阀门;9、充热设备;10、放热设备;11、第一阀门组;12、第二阀门组;13、外壳;14、第四阀门。
具体实施方式
下面结合附图和具体实施方式对本公开专利作进一步详细说明,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
如图1所示,基于熔盐传热的储热系统,包括固体储热模块1、导出管2、承重平台3、熔盐罐4、熔盐泵5、第一阀门6、第二阀门7、第三阀门8、充热设备9、放热设备10、第一阀门组11、第二阀门组12、外壳13、第四阀门14和熔盐15。
固体储热模块1具体包括多个相同的并列布置的子单元,每个子单元内部由颗粒状固体储热材料填充且每个子单元上部和下部分别连接有一个阀门;可理解的颗粒状固体储热材料包括鹅卵石、金属、模块混凝土、储热胶囊等材料中的至少一种,其用于与熔盐(15)直接接触提高换热速率并能有效降低储热材料成本。每个子单元的上部和下部均分别连接有一个阀门,保证了每个子单元能单独进行充放热过程,看实现有效控制充热过程中熔盐的出口温度。
所有子单元上部的阀门构成第二阀门组12,所有子单元下部的阀门构成第一阀门组11;固体储热模块1上部通过第二阀门组12与放热设备10出口和第三阀门8连接,固体储热模块1的下部通过第一阀门组11与充热设备9出口和第四阀门14连接;导出管2的一端与外壳13的底部连接且其另一端与熔盐罐4的上部连接;优选的外壳13正下方设置承重平台3,用于支撑固体储热模块1和外壳13的重量。
可知的,熔盐罐4内有一定液位的熔盐15,熔盐泵5安装在熔盐罐4的上方;熔盐泵5通过第一阀门6与充热设备9入口连接、通过第二阀门7与放热设备10入口连接、通过第三阀门8与第二阀门组12连接。第四阀门14一端与外壳13连接,另一端与第一阀门组11和充热设备9出口连接;该实施例中的储热系统能实现充放热过程中固体储热模块1内熔盐15的流动方向相反能提高换热效果。
在一些实施例中,基于熔盐传热的储热系统按照以下方法运行:
充热模式:第二阀门7、第三阀门8、第二阀门组12和第四阀门14关闭,第一阀门6打开,第一阀门组11可先打开一个阀门。低温的熔盐15通过熔盐泵5送至充热设备9中提高温度,然后高温的熔盐15经过第一阀门组11进入固体储热模块1下部,随着固体储热模块1中熔盐液位的升高,高温的熔盐15将热量传递给固体储热模块1中的储热材料后温度降低,最终低温的熔盐15溢出固体储热模块1流入外壳13的底部,而外壳13底部的熔盐15通过导出管2流至熔盐罐4,熔盐15重新通过熔盐泵5送至充热设备9中。需要说明的是当固体储热模块1的一个子单元充热过程进行至60%时,可再打开第一阀门组11中的第二个阀门,也可以多个阀门同时打开,以此控制熔盐罐4中熔盐15的温度相对稳定。熔盐15在充热过程中自下向上流过固体储热模块1,提高了固体储热模块1温度场的均匀 性,提高了换热量和换热速率。
放热模式:第一阀门6和第二阀门7关闭,第三阀门8、第二阀门组12、第一阀门组11和第四阀门14打开;低温的熔盐15通过熔盐泵5升压后,依次通过第三阀门8、第二阀门组12、固体储热模块1、第一阀门组11和第四阀门14后流至外壳13的底部,在固体储热模块1中低温的熔盐15吸收热量升高温度,然后通过导出管2流至熔盐罐4,该过程一直持续到熔盐罐4内熔盐15的温度达到放热要求;随后,关闭第三阀门8、打开第二阀门7,高温的熔盐15通过熔盐泵5升压后,依次通过第二阀门7、放热设备10、第二阀门组12、固体储热模块1、第一阀门组11和第四阀门14后流至外壳13的底部,在放热设备10中熔盐15释放热量温度降低,在固体储热模块1中熔盐15吸收热量温度重新升高,外壳13底部高温的熔盐15通过导出管2流至熔盐罐4,重新通过熔盐泵5送至充热设备9中;第二阀门组12可先打开一个阀门,当固体储热模块1的一个子单元放热过程进行至50%时,可再打开第二阀门组12中的第二个阀门,也可以多个阀门同时打开,以此控制熔盐罐4中熔盐15的温度相对稳定。因此通过控制第二阀门组12中的阀门可以实现固体储热模块1内一个子单元放热或者多个子单元同时放热。
本实施例中熔盐罐4在充热过程中为低温熔盐提供缓冲,在放热过程中为高温熔盐提供缓冲,使熔盐泵、熔盐储罐的数量分别由常规熔盐储热系统的两
需要说明的是,在本公开的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (6)

  1. 一种基于熔盐传热的储热系统,其特征在于,包括:固体储热模块(1)、导出管(2)、内有一定液位的熔盐(15)的熔盐罐(4)、熔盐泵(5)、第一阀门(6)、第二阀门(7)、第三阀门(8)、充热设备(9)、放热设备(10)、第一阀门组(11)、第二阀门组(12)、外壳(13)和第四阀门(14),其中
    所述固体储热模块(1)设置在所述外壳(13)内,包括多个并列布置的子单元,所述子单元的上部和下部均分别设置阀门;所有所述子单元上部的阀门构成所述第二阀门组(12),所有所述子单元下部的阀门构成所述第一阀门组(11);所述固体储热模块(1)的上部通过所述第二阀门组(12)与所述放热设备(10)的出口和所述第三阀门(8)连接;所述固体储热模块(1)的下部通过所述第一阀门组(11)与所述充热设备(9)的出口和所述第四阀门(14)连接;
    所述导出管(2)的一端与所述外壳(13)底部连接,且另一端与所述熔盐罐(4)的上部连接;所述熔盐泵(5)设置在所述熔盐罐(4)上;所述熔盐泵(5)分别通过所述第一阀门(6)、所述第二阀门(7)、所述第三阀门(8)与所述充热设备(9)的入口、所述放热设备(10)的入口、所述第二阀门组(12)连接;并且
    所述第四阀门(14)的一端与外壳(13)连接,且另一端分别与所述第一阀门组(11)和所述充热设备(9)出口连接。
  2. 根据权利要求1所述的储热系统,其特征在于,所述固体储热模块(1)由颗粒状固体储热材料组成,所述颗粒状固体储热材料包括鹅卵石、金属、模块混凝土和储热胶囊材料中的至少一种,所述固体储热模块(1)与熔盐(15)直接接触。
  3. 根据权利要求1或2所述的储热系统,其特征在于,还包括:承重平台(3),所述承重平台(3)位于所述外壳(13)正下方。
  4. 根据权利要求1-3中任一项所述的储热系统,其特征在于,所述熔盐罐(4)的数量为一台,并在充热过程中为低温的所述熔盐(15)提供缓冲且在放热过程中为高温的所述熔盐(15)提供缓冲。
  5. 一种基于熔盐传热的储热系统的运行方法,其特征在于,应用于权利要求1-4中任一项所述的储热系统,包括充热模式和放热模式:
    充热模式:关闭第二阀门(7)、第三阀门(8)、第二阀门组(12)和第四阀门(14);并打开第一阀门(6)和第一阀门组(11)中的至少部分阀门;低温的熔盐(15)通过熔盐泵(5)至充热设备(9)中提高温度,得到高温的熔盐(15);高温的熔盐(15)经过所述第一阀门组(11)进入固体储热模块(1)的下部并随着所述固体储热模块(1)中熔盐液 位的升高,将热量传递给储热材料后溢出固体储热模块(1)流入外壳(13)的底部;所述外壳(13)底部的熔盐(15)通过导出管(2)流至熔盐罐(4),熔盐(15)重新通过所述熔盐泵(5)送至所述充热设备(9)中;
    放热模式:关闭所述第一阀门(6)和所述第二阀门(7)并打开所述第三阀门(8)、所述第二阀门组(12)、所述第一阀门组(11)和所述第四阀门(14);低温的熔盐(15)通过所述熔盐泵(5)依次流经所述第三阀门(8)、所述第二阀门组(12)、所述固体储热模块(1)、所述第一阀门组(11)和所述第四阀门(14)后流至所述外壳(13)的底部,在所述固体储热模块(1)中低温的熔盐(15)吸收热量后通过所述导出管(2)流至所述熔盐罐(4),直至所述熔盐罐(4)内熔盐(15)的温度达到放热要求;
    随后,关闭所述第三阀门(8)并打开所述第二阀门(7),高温的熔盐(15)通过所述熔盐泵(5)依次流经所述第二阀门(7)、所述放热设备(10)、所述第二阀门组(12)、所述固体储热模块(1)、所述第一阀门组(11)和所述第四阀门(14)后流至所述外壳(13)的底部;所述外壳(13)底部高温的熔盐(15)通过所述导出管(2)流至所述熔盐罐(4),重新通过所述熔盐泵(5)送至所述充热设备(9)中。
  6. 根据权利要求5所述的方法,其特征在于,所述熔盐(15)在充热过程中自下向上流过所述固体储热模块(1),且通过控制所述第一阀门组(11)实现固体储热模块(1)内至少一个所述子单元同时充热;通过控制所述第二阀门组(12)实现所述固体储热模块(1)内至少一个子单元同时放热。
PCT/CN2022/139727 2022-06-22 2022-12-16 基于熔盐传热的储热系统及运行方法 WO2023246021A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210713674.0 2022-06-22
CN202210713674.0A CN114963830B (zh) 2022-06-22 2022-06-22 一种利用熔盐传热的储热系统及运行方法

Publications (1)

Publication Number Publication Date
WO2023246021A1 true WO2023246021A1 (zh) 2023-12-28

Family

ID=82965147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139727 WO2023246021A1 (zh) 2022-06-22 2022-12-16 基于熔盐传热的储热系统及运行方法

Country Status (2)

Country Link
CN (1) CN114963830B (zh)
WO (1) WO2023246021A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114963830B (zh) * 2022-06-22 2023-07-25 西安热工研究院有限公司 一种利用熔盐传热的储热系统及运行方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080066736A1 (en) * 2006-07-25 2008-03-20 Yanong Zhu Method and apparatus for solar energy storage system using gas and rock
CN111765790A (zh) * 2020-07-02 2020-10-13 东方电气集团东方锅炉股份有限公司 一种熔盐槽高位布置的熔盐单罐储热系统
US20210088228A1 (en) * 2019-09-19 2021-03-25 Korea Institute Of Energy Research Heat transmitting system for providing a heat medium with a set temperature and heat transmitting method
CN213631720U (zh) * 2020-09-08 2021-07-06 东方电气集团东方锅炉股份有限公司 一种单泵单罐熔盐储热系统
CN113531925A (zh) * 2020-04-15 2021-10-22 浙江大学 热化学储热系统及储热方法
CN114963830A (zh) * 2022-06-22 2022-08-30 西安热工研究院有限公司 一种利用熔盐传热的储热系统及运行方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2363288B1 (es) * 2010-01-15 2012-02-27 Abengoa Solar New Technologies S.A. Receptor solar de sales fundidas y procedimiento para reducir el gradiente térmico en dicho receptor.
CN203479118U (zh) * 2013-08-28 2014-03-12 内蒙古电力勘测设计院 一种自流式疏盐的熔盐储能系统
CN106500537A (zh) * 2016-12-08 2017-03-15 北京通联弗莱科技有限公司 一种固液蓄热介质组合式熔盐储罐
CN208487675U (zh) * 2018-07-13 2019-02-12 百吉瑞(天津)新能源有限公司 一种新型熔盐和固体联合储能供暖系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080066736A1 (en) * 2006-07-25 2008-03-20 Yanong Zhu Method and apparatus for solar energy storage system using gas and rock
US20210088228A1 (en) * 2019-09-19 2021-03-25 Korea Institute Of Energy Research Heat transmitting system for providing a heat medium with a set temperature and heat transmitting method
CN113531925A (zh) * 2020-04-15 2021-10-22 浙江大学 热化学储热系统及储热方法
CN111765790A (zh) * 2020-07-02 2020-10-13 东方电气集团东方锅炉股份有限公司 一种熔盐槽高位布置的熔盐单罐储热系统
CN213631720U (zh) * 2020-09-08 2021-07-06 东方电气集团东方锅炉股份有限公司 一种单泵单罐熔盐储热系统
CN114963830A (zh) * 2022-06-22 2022-08-30 西安热工研究院有限公司 一种利用熔盐传热的储热系统及运行方法

Also Published As

Publication number Publication date
CN114963830A (zh) 2022-08-30
CN114963830B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN204187875U (zh) 一种采用导热油传热的储能式太阳能热水锅炉
CN103353181B (zh) 一种相变蓄热式光伏光热集热器及其制备方法
WO2023246021A1 (zh) 基于熔盐传热的储热系统及运行方法
CN207570148U (zh) 一种太阳能集热储热系统
CN107502299B (zh) 一种多相介质相变储热材料及其制备方法
CN102306815A (zh) 液流电池系统
WO2019080808A1 (zh) 储能换热一体化系统
CN108413795A (zh) 一种高低温熔融盐单罐储热装置
CN107131547A (zh) 一种熔盐储热式供暖系统
CN105066083A (zh) U型列管式熔盐蒸汽发生装置及方法
CN110359972B (zh) 超临界co2为工质的熔盐电蓄热发电装置
CN208487675U (zh) 一种新型熔盐和固体联合储能供暖系统
CN208385583U (zh) 一种新能源汽车电池的热管理系统
CN206522933U (zh) 一种用于太阳能热发电厂的疏盐系统
CN209043086U (zh) 一种带热管的相变蓄热装置
CN110726319A (zh) 一种分散灌装熔盐的固液相变储能装置
CN207688296U (zh) 冷却系统
CN202352354U (zh) 非能动自然循环铅铋换热装置
CN201615571U (zh) 一种相变蓄热式冷凝热回收系统
CN210014421U (zh) 一种新型热池放热系统
CN114059079A (zh) 一种基于严苛条件下热自持式聚光光伏电解制氢反应系统
CN207751926U (zh) 一种高温参比电极系统
CN112128992A (zh) 光热发电用化盐装置及化盐方法
CN112143464A (zh) 硝酸盐系熔融盐传热蓄热介质及其制备方法
CN205406680U (zh) 动力锂电池模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947756

Country of ref document: EP

Kind code of ref document: A1