WO2023246016A1 - 无线充电电路、方法、系统、终端设备及存储介质 - Google Patents

无线充电电路、方法、系统、终端设备及存储介质 Download PDF

Info

Publication number
WO2023246016A1
WO2023246016A1 PCT/CN2022/139375 CN2022139375W WO2023246016A1 WO 2023246016 A1 WO2023246016 A1 WO 2023246016A1 CN 2022139375 W CN2022139375 W CN 2022139375W WO 2023246016 A1 WO2023246016 A1 WO 2023246016A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
wireless charging
signal
module
radio frequency
Prior art date
Application number
PCT/CN2022/139375
Other languages
English (en)
French (fr)
Inventor
彭博
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023246016A1 publication Critical patent/WO2023246016A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment

Definitions

  • This application relates to the field of wireless charging technology, and specifically relates to a wireless charging circuit, method, system, terminal equipment and storage medium.
  • Wireless Charging Technology wirelessly converts electrical energy into other forms of relay energy through the transmitter, and transmits it to the receiver to achieve wireless charging.
  • wireless charging usually uses the principle of electromagnetic induction, which requires the transmitter and receiver to be connected. The end is placed close enough so that the energy of the electromagnetic field at the transmitter can be fully transmitted to the receiver, resulting in a limited distance for wireless charging.
  • Radio frequency wireless charging requires the transmitter to obtain the position of the receiver in real time to gather the radio frequency signal to the position of the receiver, improve the transmission efficiency of the radio frequency signal, and thereby improve the charging efficiency.
  • the receiving end reuses an antenna when positioning and charging. Therefore, when the transmitting end obtains the position of the receiving end, the receiving end cannot receive the radio frequency signal for charging. As a result, the higher the frequency of obtaining the position of the receiving end, the longer the positioning takes. The shorter the charging time of the terminal, the lower the charging efficiency. Therefore, how to improve the charging efficiency while ensuring the positioning accuracy of radio frequency wireless charging is an urgent problem that needs to be solved.
  • the purpose of the embodiments of the present application is to provide a wireless charging circuit, method, system, terminal device and storage medium, including but not limited to solving the problem of improving charging efficiency while ensuring the positioning accuracy of radio frequency wireless charging.
  • a wireless charging circuit including a control module, a wireless charging module, an environment detection module and multiple antennas;
  • the control module is respectively connected to the wireless charging module, the environment detection module and the multiple antennas, and the wireless charging module and the environment detection module are connected to the multiple antennas;
  • the environment detection module is used to detect environmental parameters of the antenna in working state and send them to the control module;
  • the control module is configured to generate a switching signal according to the environmental parameters and output it to the antenna in the working state and at least one antenna in the idle state, so as to control the antenna in the working state to enter the idle state and the At least one antenna in idle state enters working state;
  • the wireless charging module is used to generate a positioning signal and output the positioning signal to a corresponding radio frequency transmitting end through the working antenna; wherein the radio frequency transmitting end is used to obtain the corresponding positioning signal according to the positioning signal.
  • the antenna in working state is also used to receive the radio frequency signal output by the corresponding radio frequency transmitting end;
  • the wireless charging module is also used to convert the radio frequency signal into an electrical signal.
  • the first aspect of the embodiment of the present application provides a wireless charging circuit, which detects the environmental parameters of the antenna in a working state through the environment detection module and sends them to the control module.
  • the control module can detect in real time whether the external environment changes, so as to determine whether the external environment changes according to whether the external environment changes. Determine whether the position of the working antenna has changed. When changing, a switching signal is generated to switch the working antenna, and the positioning signal is transmitted through the wireless charging module for repositioning.
  • positioning based on whether the external environment changes can improve the flexibility of the receiving end in positioning and ensure the positioning accuracy of radio frequency wireless charging, and significantly reduce the positioning time of the receiving end when the external environment does not change or the frequency of changes is low. Improve the charging time, thereby improving the charging efficiency of radio frequency wireless charging.
  • a second aspect provides a terminal device, including the wireless charging circuit provided in the first aspect of the embodiment of the present application.
  • a wireless charging system including a radio frequency transmitter and the terminal device provided in the first aspect of the embodiment of the present application;
  • the radio frequency transmitting end is configured to, after receiving the positioning signal, obtain the position information of the corresponding antenna in the working state according to the positioning signal, and output a radio frequency signal according to the position information;
  • the terminal equipment is used for:
  • the control module generates a switching signal according to the environmental parameters and outputs it to the antenna in the working state and at least one antenna in the idle state, so as to control the antenna in the working state to enter the idle state and the at least one antenna in the idle state.
  • the idle antenna enters the working state;
  • the radio frequency signal is converted into an electrical signal through the wireless charging module.
  • the fourth aspect provides a wireless charging method, including:
  • the control environment detection module detects the environmental parameters of the antenna in working state
  • a switching signal is generated according to the environmental parameters and output to the antenna in the working state and at least one antenna in the idle state to control the antenna in the working state to enter the idle state and the at least one antenna in the idle state to enter working status;
  • the wireless charging module is controlled to convert the radio frequency signal into an electrical signal.
  • a computer-readable storage medium stores a computer program.
  • the steps of the wireless charging method provided in the fourth aspect are implemented.
  • Figure 1 is a first structural schematic diagram of a wireless charging circuit provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a scene when the wireless charging circuit provided by the embodiment of the present application transmits a positioning signal in a closed space;
  • Figure 3 is a schematic diagram of a scene when the radio frequency transmitter outputs radio frequency signals to the wireless charging circuit according to the positioning signal according to the embodiment of the present application;
  • Figure 4 is a schematic diagram of a scene when the radio frequency transmitter outputs a radio frequency signal to the first antenna according to the positioning signal according to the embodiment of the present application and is blocked by an external object;
  • Figure 5 is a schematic diagram of the scene when the radio frequency transmitter outputs the radio frequency signal to the second antenna according to the positioning signal according to the embodiment of the present application;
  • Figure 6 is a second structural schematic diagram of a wireless charging circuit provided by an embodiment of the present application.
  • Figure 7 is a third structural schematic diagram of a wireless charging circuit provided by an embodiment of the present application.
  • Figure 8 is a fourth structural schematic diagram of a wireless charging circuit provided by an embodiment of the present application.
  • Figure 9 is a fifth structural schematic diagram of a wireless charging circuit provided by an embodiment of the present application.
  • Figure 10 is a sixth structural schematic diagram of a wireless charging circuit provided by an embodiment of the present application.
  • Figure 11 is a seventh structural schematic diagram of a wireless charging circuit provided by an embodiment of the present application.
  • Figure 12 is a first structural schematic diagram of a terminal device provided by an embodiment of the present application.
  • Figure 13 is a first structural schematic diagram of a wireless charging system provided by an embodiment of the present application.
  • Figure 14 is a schematic flowchart of the first wireless charging method provided by an embodiment of the present application.
  • radio frequency wireless charging can achieve long-distance wireless charging compared to electromagnetic induction wireless charging.
  • Radio frequency wireless charging can focus the radio frequency signal to the position of the receiving end by locating the position of the receiving end, improving charging efficiency; currently, radio frequency wireless charging
  • the positioning method is to obtain the position of the receiving end through the transmitting end according to the preset frequency, and the receiving end reuses an antenna during positioning and charging. Therefore, when the transmitting end obtains the position of the receiving end, the receiving end cannot receive the radio frequency signal for charging, resulting in the acquisition of the receiving end. The higher the frequency of the position of the receiving end, the longer the positioning takes, and the shorter the charging time of the receiving end, resulting in lower charging efficiency.
  • embodiments of the present application provide a wireless charging circuit, which detects the environmental parameters of the antenna in working state through the environment detection module and sends them to the control module.
  • the control module can detect whether the external environment changes in real time, thereby according to the external environment. Determine whether the position of the working antenna has changed or not. When the change occurs, a switching signal is generated to switch the working antenna, and the positioning signal is transmitted through the wireless charging module to reposition.
  • Positioning based on whether the external environment has changed can improve the receiver's positioning flexibility and ensure the positioning accuracy of radio frequency wireless charging. It can also significantly reduce the receiver's positioning time when the external environment does not change or the frequency of changes is low. , improve the charging time, thereby improving the charging efficiency of radio frequency wireless charging.
  • the wireless charging circuit provided by the embodiment of the present application can be applied to batteries, or terminal equipment or electric equipment equipped with batteries.
  • Terminal devices can be mobile phones, tablets, wearable devices, vehicle-mounted devices, augmented reality (AR)/virtual reality (VR) devices, laptops, ultra-mobile personal computers (Ultra-Mobile Personal Computer, UMPC) ), netbooks, personal digital assistants (Personal Digital Assistant, PDA), etc.
  • the electric equipment can be electric vehicles (Battery Electric Vehicle), electric bicycles (Electric Bicycle), motors (Electric Machinery), etc.
  • the embodiments of this application apply to terminal equipment and There are no restrictions on the specific type of electrical equipment.
  • the wireless charging circuit 100 provided by the embodiment of the present application includes a control module 110, a wireless charging module 120, an environment detection module 130 and multiple antennas;
  • the control module 110 is connected to the wireless charging module 120, the environment detection module 130 and multiple antennas respectively, and the wireless charging module 120 and the environment detection module 130 are connected to multiple antennas;
  • the environment detection module 130 is used to detect environmental parameters of the antenna in a working state and send them to the control module 110;
  • the control module 110 is configured to generate a switching signal according to environmental parameters and output it to the antenna in the working state and at least one antenna in the idle state, so as to control the antenna in the working state to enter the idle state and the at least one antenna in the idle state to enter the work. state;
  • the wireless charging module 120 is used to generate a positioning signal and output the positioning signal to the corresponding radio frequency transmitting end 300 through the antenna in the working state; wherein the radio frequency transmitting end 300 is used to obtain the position information of the corresponding antenna according to the positioning signal;
  • the antenna in working state is also used to receive the radio frequency signal output by the corresponding radio frequency transmitting end 300;
  • the wireless charging module 120 is also used to convert radio frequency signals into electrical signals.
  • the control module 110 can be a central processing unit (Central Processing Unit, CPU), and the processor can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the wireless charging module 120 may include at least one signal processing chip.
  • the selection of the signal processing chip is consistent with the selection of the above-mentioned control module 110 and will not be described again here.
  • the environment detection module 130 may be connected to multiple antennas.
  • the environment detection module 130 may include any multiple detection devices such as distance detection equipment, temperature detection equipment, humidity detection equipment, magnetic field detection equipment, or object detection equipment.
  • the distance detection equipment can be specifically a laser distance measuring instrument (Laser Distance Measuring), an ultrasonic ranging instrument (Ultrasonic Ranging), an infrared range finder (Infrared Detector), etc.
  • the temperature detection equipment can specifically be a gas thermometer, a resistance thermometer, an infrared ray detector, etc.
  • Thermometer, galvanic thermometer or pressure thermometer, etc.; humidity detection equipment can be capacitive humidity sensor, resistive humidity sensor or thermal humidity sensor, etc.; object detection equipment can be through temperature detection equipment, camera and video recognition algorithm, microphone and audio Different types of hardware devices or software and hardware combinations such as recognition algorithms are implemented.
  • the data type of the environmental parameter may include distance, temperature, relative humidity, magnetic field strength or object type, etc.
  • the specific data type of the environmental parameter is determined according to the hardware selection of the environment detection module 130 . The embodiment of the present application does not place any restrictions on the specific type of the environment detection module 130 and the specific data type of the environmental parameters.
  • the wireless charging circuit 100 may also include an antenna module 140.
  • the antenna module 140 may include multiple antennas, and may also include a power amplifier unit.
  • the power amplifier unit is connected to multiple antennas and the wireless charging module respectively.
  • the power amplifier unit is used to analyze positioning signals and /or adjust the performance parameters of the radio frequency signal.
  • the power amplifier unit can specifically include a power amplifier (Power Amplifier, PA), a low noise amplifier (Low Noise Amplifier, LNA) and/or a multimode power amplifier (Multimode Power Amplifier, MMPA); also It may include a duplexer unit, the duplexer unit is respectively connected to the plurality of antennas and the wireless charging module, and the duplexer unit is used to isolate the received positioning signal and the radio frequency signal; it may also be It includes a filtering unit, which is connected to multiple antennas and wireless charging modules respectively.
  • the filtering unit can be a surface acoustic wave filter (Surface Acoustic Wave, SAW) and other components to filter positioning signals and/or radio frequency signals. This The application embodiment does not place any restrictions on the specific structure of the antenna module 140 and the number of antennas.
  • the environment detection module 130 can detect environmental parameters of the antenna in a working state in real time and send them to the control module 110.
  • the control module 110 can generate a switching signal according to the environmental parameters.
  • the control module 110 pre-stores the preset environmental parameter and the preset comparison rule.
  • the preset environmental parameter can be 10 centimeters
  • the preset comparison rule can be to generate a switching signal when the distance is less than 10 centimeters to determine whether the external object is too close to the antenna;
  • the preset environmental parameter can be 40 degrees Celsius, and the preset comparison rule can be that the temperature is greater than 40
  • a switching signal is generated at degrees Celsius to determine whether the ambient temperature is too high;
  • the preset environmental parameter can be 80% relative humidity, and the preset comparison rule can be when the relative humidity is greater than 80% relative humidity.
  • the preset environmental parameter can be 500 A/m
  • the preset comparison rule can be to generate a switch when the magnetic field strength is greater than 500 A/m.
  • the preset environmental parameter can be a human
  • the preset comparison rule can be to generate a switching signal when a human is recognized, or, in the environmental parameter
  • the preset environmental parameters can be humans and 5 centimeters
  • the preset comparison rule can be to generate a switching signal when the distance to a human being is recognized to be less than 5 centimeters to determine whether the human is approaching, or to determine whether the antenna is close. being held.
  • the specific sizes of the preset environmental parameters and the specific rules of the preset comparison rules can be set according to the actual impact of the environmental parameters on radio frequency signal transmission.
  • the control module 110 can output the switching signal to all antennas to control all the antennas in the working state to enter the idle state, and control all the antennas in the idle state to enter the working state; it can also output the switching signal to all the antennas in the working state and
  • a preset number of antennas in an idle state is used to control all antennas in a working state to enter an idle state, and to control a preset number of antennas in an idle state to enter a working state.
  • the preset number needs to meet the condition of being greater than or equal to 1 to ensure that at least one idle antenna can enter the working state and realize the position switching of the working antenna; the specific size of the preset number can be set according to actual needs. .
  • the wireless charging module 120 can be used to generate a positioning signal, and output the positioning signal to the corresponding radio frequency transmitter 300 (refer to Figure 2) through each working antenna.
  • the radio frequency transmitter 300 can obtain the positioning signal based on the positioning signal.
  • the position information of the corresponding antenna is used to output radio frequency signals according to the position information and gather them to the antenna in the working state (refer to Figure 3).
  • the antenna in the working state can send the received radio frequency signal to the wireless charging module 120 through wireless charging.
  • Module 120 converts radio frequency signals into electrical signals.
  • the wireless charging module 120 can also output electrical signals to the load to implement wireless charging of the load.
  • each antenna in the working state may have a unique corresponding radio frequency transmitting end 300, so as to transmit the positioning signal to the corresponding radio frequency transmitting end 300 through each operating antenna, and receive the radio frequency output by the corresponding radio frequency transmitting end 300.
  • signal, or multiple antennas in working state can correspond to the same radio frequency transmitting end 300 to transmit positioning signals to the same radio frequency transmitting end 300 through multiple operating antennas and receive the same radio frequency transmission.
  • the radio frequency signal output by terminal 300 The embodiment of the present application does not place any restrictions on the corresponding relationship between the antenna and the radio frequency transmitting end 300.
  • Figure 2 exemplarily shows a schematic diagram of a scene when the wireless charging circuit 100 transmits a positioning signal in a closed space 200;
  • FIG. 3 exemplarily shows a schematic diagram of a scene when the radio frequency transmitting end 300 outputs a radio frequency signal to the wireless charging circuit 100 according to the positioning signal.
  • the wireless charging circuit 100 can transmit multiple positioning signals to the surroundings through the antenna in working state.
  • the transmission range of the positioning signals can be determined according to the actual performance of the antenna (example is 360 in Figure 2
  • the positioning signal can be transmitted directly or reflected to the radio frequency transmitting end 300.
  • the radio frequency transmitter 300 can reversely calculate the position information of the antenna based on at least two positioning signals. Specifically, the propagation path of each positioning signal can be obtained by obtaining the incident position and incident angle of each positioning signal, and the propagation of each positioning signal can be obtained. The intersection position of the path is used as the position information of the antenna.
  • the radio frequency transmitting end 300 after the radio frequency transmitting end 300 obtains the position information of the corresponding antenna, it can output the radio frequency signal according to the position information, so that the radio frequency signal can be gathered to the corresponding antenna.
  • the propagation path of the radio frequency signal can be The propagation path is the same as the positioning signal received by the radio frequency transmitting end 300, and the propagation direction is opposite to the propagation direction of the positioning signal received by the radio frequency transmitting end 300, that is, the propagation path of the radio frequency signal is determined through time reversal (Time Reversal); The propagation path of the radio frequency signal can also be determined based on the actual performance of the radio frequency transmitting end 300.
  • the environment detection module 130 is also configured to detect environmental parameters of all antennas and send them to the control module 110;
  • the control module 110 is also used to screen a preset number of antennas in an idle state according to the environmental parameters of all antennas, to control the antennas in the working state to enter the idle state and to control at least one filtered antenna in the idle state to enter the working state.
  • the environment detection module 130 can detect environmental parameters of all antennas at the same time and send them to the control module 110 .
  • the control module 110 can first determine whether the environmental parameters of the antennas in the working state trigger the preset comparison rule based on the environmental parameters of all antennas. If so, then screen a preset number of idle antennas. Specifically, the control module 110 can determine according to Environmental parameters of all antennas, sort the reception efficiency of all antennas for receiving RF signals, screen a preset number of idle antennas in order of reception efficiency from high to low, generate and output switching signals to the antennas in working state and at least one filtered antenna in an idle state to control the antenna in the working state to enter the idle state and the at least one filtered antenna in the idle state to enter the working state.
  • Figure 4 exemplarily shows a schematic diagram of the scene when the radio frequency transmitting end 300 outputs a radio frequency signal to the first antenna 141 according to the positioning signal and is blocked by the external object 400;
  • FIG. 5 exemplarily shows a schematic diagram of a scene when the radio frequency transmitting end 300 outputs a radio frequency signal to the second antenna 142 according to the positioning signal.
  • the control module 110 At the end of the first time period, the control module 110 generates The signal is switched so that the second antenna 142 is in the working state and the first antenna 141 is idle during the second time period.
  • the control module 110 Since at the end of the first time period, the control module 110 generates a switching signal according to the environmental parameters of the first antenna 141 in the working state, it means that the first antenna 141 is currently affected by the external environment and the radio frequency signal reception efficiency decreases (as shown in Figure 4 As shown in the figure, assuming that the environmental parameter is a distance, the control module 110 detects that the distance between the external object 400 and the first antenna 141 is less than the preset environmental parameter).
  • the reception efficiency of the radio frequency signals can be improved, and by controlling the first antenna 141 to be idle, the radio frequency signal can be received. Antennas with low radio frequency signal reception efficiency are left idle, thereby improving the energy consumption ratio of the wireless charging circuit 100 .
  • FIG. 6 exemplarily shows a structural diagram in which the environment detection module 130 includes multiple environment detection units, and each environment detection unit is connected to a corresponding antenna.
  • the environment detection module 130 may include multiple environment detection units.
  • the multiple environment detection units are connected to multiple antennas in a one-to-one correspondence.
  • Each environment detection unit is used to detect the environmental parameters of the corresponding antenna and send them to the control module 110 .
  • the environmental parameters of the antenna in the working state are detected through the environment detection module 130 and sent to the control module 110.
  • the control module 110 can detect whether the external environment changes in real time, thereby judging whether the antenna in the working state changes according to whether the external environment changes. Whether the position changes, when the change occurs, a switching signal is generated to switch the antenna in working state, and the positioning signal is transmitted through the wireless charging module 120 for repositioning.
  • a switching signal is generated to switch the antenna in working state
  • the positioning signal is transmitted through the wireless charging module 120 for repositioning.
  • Compared with positioning the receiving end according to the preset frequency, whether the external environment occurs Changing the positioning can improve the positioning flexibility of the receiving end and ensure the positioning accuracy of radio frequency wireless charging.
  • the external environment does not change or the frequency of changes is low, it can greatly reduce the positioning time of the receiving end and increase the charging time, thus improving the radio frequency Charging efficiency of wireless charging.
  • the environment detection module 130 includes a variable capacitance unit 133 and a capacitance detection unit 134;
  • variable capacitance unit 133 is connected to multiple antennas, and the capacitance detection unit 134 is connected to the variable capacitance unit 133 and the control module 110 respectively;
  • variable capacitance unit 133 is used to change the capacitance value according to the environmental parameters of the antenna in the working state
  • the capacitance detection unit 134 is used to obtain the capacitance value of the variable capacitance unit 133 and send it to the control module 110;
  • the control module 110 is used to determine the distance between the external object and the antenna in the working state according to the capacitance value, and when the distance is less than a preset distance, generate a switching signal and output it to the antenna in the working state and at least one antenna in the idle state.
  • variable capacitance unit 133 is connected to the antenna, and the capacitance detection unit 134 is connected to the control module 110 and the variable capacitance unit 133 respectively.
  • the environment detection module 130 may specifically include a variable capacitance unit 133 and a capacitance detection unit 134, in which case the environmental parameter is a capacitance value.
  • the variable capacitance unit 133 can change the capacitance value according to the object type of the external object and the distance between the external object and the antenna when an external object approaches the antenna in working state, and the capacitance detection unit 134 can obtain the capacitance value of the variable capacitance unit 133 .
  • the dielectric constant (Permittivity) of air is different from the dielectric constant of the external object, when the external object approaches the variable capacitance unit 133, the capacitance value will be based on the dielectric constant of the external object and the difference between the external object and the variable capacitance unit.
  • the distance of 133 changes.
  • the environment detection module 130 may be a grip sensor (Grip Sensor), which may be used to determine whether the antenna is held by a human.
  • the control module 110 can pre-store the static capacitance value corresponding to the dielectric constant of the variable capacitance unit 133 and air; it can also pre-store the variable capacitance unit 133 to obtain the variable capacitance when different external objects approach.
  • the corresponding relationship between the capacitance value of the unit 133 and the distance between the external object and the antenna is generated, and a corresponding relationship table between the capacitance value and the distance is generated, so that the control module 110 can determine the capacitance value by looking up the table after obtaining the capacitance value of the variable capacitance unit 133
  • the distance between external objects and the operating antenna The specific size of the preset distance can be set according to actual needs.
  • the capacitance value obtained by the control module 110 is less than or equal to 100 millifards, it means that the distance between humans and the antenna is not too close, and there is no need to output a switching signal; the capacitance value obtained by the control module 110 When it is greater than 100 millifards, it means that the distance between humans and the antenna is less than 5 cm, or the distance between other external objects and the antenna is too close, the position of the wireless charging circuit 100 may change or has changed, and the switching signal is output and repositioned.
  • the environment detection module 130 may also include an object detection device
  • the object detection device is connected to the control module 110;
  • the object detection device is used to detect the object type of the external object and send it to the control module 110;
  • the control module 110 is used to determine the corresponding relationship between the capacitance value and the distance according to the object type of the external object.
  • the control module 110 can pre-store a table of correspondences between capacitance values and distances under different object types, so that after determining the object type of the external object through the object detection device, the external object can be accurately obtained according to the object type and capacitance value of the external object. distance from the antenna to improve the accuracy of distance detection.
  • the environment detection module 130 is formed by the variable capacitance unit 133 and the capacitance detection unit 134, and the distance between the external object and the antenna can be determined through the capacitance value of the variable capacitance unit 133. It has the characteristics of simple structure, fast response and low cost. , which can improve the stability of distance detection and reduce the production cost of the wireless charging circuit 100.
  • FIG. 8 exemplarily shows a structural diagram in which the environment detection module 130 includes multiple environment detection units, and each environment detection unit is connected to a corresponding antenna.
  • FIGS. 6 to 11 only illustrate that the antenna module 140 includes the first antenna 141 and the second antenna 142 , and the environment detection module 130 includes the first environment detection unit 131 (including the first capacitance detection unit 1312 and the first variable capacitance unit 1311) and the second environment detection unit 132 (including the second capacitance detection unit 1322 and the second variable capacitance unit 1321).
  • the embodiment of the present application does not place any restrictions on the number of antennas and the number of environment detection units. ;
  • the specific types of detection equipment used by each environment detection unit may be the same or different. There is no restriction on the type of detection equipment used by each environment detection unit in the embodiment of this application.
  • the wireless charging module 120 includes a positioning signal generation unit 121 and a radio frequency signal conversion unit 122;
  • the positioning signal generation unit 121 is respectively connected to the control module 110 and multiple antennas, and the radio frequency signal conversion unit 122 is connected to the control module 110 and multiple antennas respectively;
  • the control module 110 is also used to:
  • the switching signal is output to the positioning signal generating unit 121;
  • the positioning signal generation unit 121 is configured to generate a positioning signal according to the switching signal
  • the radio frequency signal conversion unit 122 is used to convert the radio frequency signal into an electrical signal according to the charging signal.
  • the positioning signal generating unit 121 may be a Bluetooth device, specifically a Bluetooth chip or a Bluetooth circuit, for generating Bluetooth signals; it may also be a wireless communication (Wireless Fidelity, Wi-Fi) device for generating Wi-Fi signal; it can also be a satellite positioning device.
  • the positioning device can be a Global Positioning System (Global Positioning System, GPS) device for generating GPS signals, or it can be a BeiDou Navigation Satellite System (BDS). ) equipment for generating Beidou positioning signals.
  • the positioning signal may be a Bluetooth signal, a Wi-Fi signal, a GPS signal or a BDS signal, etc.
  • the positioning signal generating unit 121 may specifically be a Bluetooth Low Energy device for generating a Bluetooth beacon signal (Beacon). The embodiment of the present application does not place any restrictions on the specific type of the positioning signal generating unit 121 and the specific type of the positioning signal.
  • the working modes of the positioning signal generation unit 121 may include broadcast mode and sleep mode.
  • the positioning signal generation unit 121 receives the switching signal, it enters the broadcast mode, continues to generate positioning signals and transmits positioning signals through the antenna in the working state.
  • the control module 110 receives the positioning completion signal sent by the radio frequency transmitter 300, it can also output the charging signal to the positioning signal generation unit 121.
  • the positioning signal generation unit 121 receives the positioning completion signal, it enters the sleep mode and stops generating the positioning signal. signal to reduce power consumption.
  • the radio frequency signal conversion unit 122 may include a first conversion device, specifically a surface acoustic wave filter, for converting the radio frequency signal into an electrical signal; it may also include a low noise amplifier to perform the conversion on the converted electrical signal. Amplify and reduce the noise of the electrical signal to improve the signal-to-noise ratio of the electrical signal; it may also include a second conversion device, specifically an analog-to-digital converter, for analog-to-digital conversion of the electrical signal to obtain a digital signal in the form of a digital signal. Electrical signals; may also include a rectifier circuit for converting electrical signals in AC form into DC form.
  • the load By converting the radio frequency signal into an electrical signal and processing the electrical signal through the radio frequency signal conversion unit 122, the load can be charged through the radio frequency signal and the adaptability of the converted electrical signal and the load can be improved.
  • the specific structure of the radio frequency signal conversion unit 122 can be set according to the actual needs of the load. The embodiment of the present application does not place any restrictions on the specific structure of the radio frequency signal conversion unit 122.
  • the wireless charging module 120 further includes a first electronic switch 150;
  • the control module 110 is used for:
  • the first electronic switch 150 is used for:
  • the radio frequency signal conversion unit 122 and the antenna module 140 are connected.
  • the first electronic switch 150 may include a device or circuit with an electronic switching function, such as a triode, a thin film field effect transistor (TFT), a composite logic gate circuit or a metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor, MOSFET). Specifically, it can be a single pole double throw switch.
  • an electronic switching function such as a triode, a thin film field effect transistor (TFT), a composite logic gate circuit or a metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor, MOSFET).
  • TFT thin film field effect transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the wireless charging module 120 may also include a first electronic switch 150. After the control module 110 generates a switching signal, it may output the switching signal to the first electronic switch 150 to control the first electronic switch 150 to position the positioning signal generating unit. 121 is connected to the antenna module 140. At this time, the positioning signal generation unit 121 enters the broadcast mode according to the switching signal and continues to generate positioning signals. The positioning signal generation unit 121 can transmit the positioning signal through the antenna in the working state in the antenna module 140; and controls the first electronic The switch 150 disconnects the radio frequency signal conversion unit 122 and the antenna module 140, which can prevent the positioning signal from being output to the radio frequency signal conversion unit 122 in reverse, and improve the working stability of the wireless charging module 120.
  • the control module 110 can receive the positioning completion signal sent by the radio frequency transmitter 300 through the antenna in the working state.
  • receiving the positioning completion signal it means that the radio frequency transmitter 300 has obtained the positioning signal of the antenna in the working state according to the positioning signal. location information and is ready to transmit and gather radio frequency signals to the operating antenna.
  • the control module 110 can output the charging signal to the first electronic switch 150 according to the positioning completion signal to control the first electronic switch 150 to connect the radio frequency signal conversion unit 122 and the antenna module 140, and can receive the radio frequency signal through the radio frequency signal conversion unit 122, and
  • the radio frequency signal is converted into an electrical signal and output to the load to perform radio frequency wireless charging of the load.
  • the first electronic switch 150 is controlled to disconnect the positioning signal generation unit 121 and the antenna module 140 to prevent redundant positioning signals from being transmitted to the radio frequency signal terminal through the antenna, further improving the working stability of the wireless charging module 120.
  • the antenna module 140 further includes a second electronic switch 160;
  • the second electronic switch 160 is connected to the control module 110, the wireless charging module 120 and multiple antennas respectively;
  • the control module 110 is also used to:
  • the second electronic switch 160 is used for:
  • the antenna in the working state is disconnected from the wireless charging module 120, so that the antenna in the working state enters the idle state; at least one antenna in the idle state is connected to the wireless charging module 120, so that at least one antenna in the idle state is connected to the wireless charging module 120.
  • the idle antenna enters the working state.
  • the selection of the second electronic switch 160 can refer to the selection of the first electronic switch 150 mentioned above.
  • the second electronic switch 160 can be a single-pole multi-pole switch.
  • the number of conductive contacts is equal to the number of antennas; or, when the antenna module 140 includes multiple second electronic switches 160, each second electronic switch 160 can be connected to at least one antenna according to actual needs.
  • the antenna module 140 may also include at least one second electronic switch 160. After the control module 110 generates the switching signal, it may output the switching signal to the second electronic switch 160, and the second electronic switch 160 will be in the working state. The antenna and the wireless charging module 120 are disconnected, so that the antenna in the working state enters the restricted state, and at least one antenna in the idle state is connected to the wireless charging module 120 through the second electronic switch 160, so that at least one antenna in the idle state is connected. Enter working status.
  • the second electronic switch 160 can be used to switch the working state and the idle state of the antenna, and when the wireless charging circuit 100 reuses one antenna for positioning and charging, a second electronic switch 160 can be used to fit the wireless charging circuit 100
  • the single-antenna working mode avoids redundant antennas from transmitting positioning signals or receiving radio frequency signals, and improves the working stability of the wireless charging circuit 100; when the wireless charging circuit 100 is positioned and charged through multiple antennas at the same time, multiple second electronic switches 160 are used to Multiple antennas are connected to the wireless charging module 120, which can improve the working flexibility of the wireless charging circuit 100.
  • a terminal device 500 provided by an embodiment of the present application includes the wireless charging circuit 100 provided by any of the above embodiments.
  • the wireless charging system 600 provided by the embodiment of the present application includes a radio frequency transmitter 300 and the terminal device 500 provided by the above embodiment;
  • the radio frequency transmitting end 300 is used to, after receiving the positioning signal, obtain the position information of the corresponding antenna in the working state according to the positioning signal, and output the radio frequency signal according to the position information;
  • Terminal device 500 is used for:
  • the control module 110 generates a switching signal according to the environmental parameters and outputs it to the antenna in the working state and at least one antenna in the idle state, so as to control the antenna in the working state to enter the idle state and the at least one antenna in the idle state to enter the working state;
  • the radio frequency signal is converted into an electrical signal through the wireless charging module 120 .
  • the functions of the wireless charging circuit 100 in the terminal device 500 and the wireless charging system 600 can refer to the relevant descriptions in the above embodiments, and will not be described again here.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the wireless charging circuit 100, the terminal device 500 and the wireless charging system 600.
  • the wireless charging circuit 100, the terminal device 500 and the wireless charging system 600 may include more or less components than shown in the figures, or some components may be combined or different components, for example, may also include Input and output devices, etc.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • the wireless charging method provided by the embodiment of the present application can be applied to the control module of the wireless charging circuit or the control module of the terminal device provided in the above embodiment, and can also be applied to the control module of the battery, the battery-installed The control module of a terminal device or the control module of an electric device equipped with a battery.
  • the above-mentioned wireless charging method includes:
  • S1402. Generate a switching signal according to environmental parameters and output it to the antenna in the working state and at least one antenna in the idle state, so as to control the antenna in the working state to enter the idle state and at least one antenna in the idle state to enter the working state;
  • S1405. Control the wireless charging module to convert radio frequency signals into electrical signals.
  • wireless charging method provided in steps S1401 to S1405 can be described with reference to the related functions of the above control module, wireless charging module, environment detection module and multiple antennas, which will not be described again here.
  • sequence number of each step in the above embodiment does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • each functional module in the embodiment can be integrated into one processing module, or each module can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware.
  • the specific names of each functional module are only for the convenience of distinguishing each other and are not used to limit the scope of protection of the present application.
  • An embodiment of the present application also provides a computer-readable storage medium that stores a computer program.
  • the computer program is executed by a processor, the steps in the above wireless charging method embodiment can be implemented.
  • the disclosed terminal device and method can be implemented in other ways.
  • the terminal device embodiments described above are only illustrative.
  • the division of modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined. Either it can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.

Abstract

本申请公开一种无线充电电路、方法、系统、终端设备及存储介质,该无线充电电路100通过环境检测模块130检测处于工作状态的天线的环境参量并发送至控制模块110,控制模块110可以实时检测外界环境是否发生改变,从而根据外界环境是否改变判断处于工作状态的天线的位置是否发生改变,在改变时生成切换信号以切换处于工作状态的天线,并通过无线充电模块120发射定位信号重新进行定位,相较于根据预设频率对接收端进行定位,根据外界环境是否发生改变进行定位,可以提高接收端进行定位的灵活性并保证射频无线充电的定位准确性,并在外界环境未变化或变化频率低时,大幅降低接收端的定位耗时,提高充电时间,从而提高射频无线充电的充电效率。

Description

无线充电电路、方法、系统、终端设备及存储介质
本申请要求于2022年06月20日在中国专利局提交的、申请号为202210699293.1、发明名称为“无线充电电路、方法、系统、终端设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线充电技术领域,具体涉及一种无线充电电路、方法、系统、终端设备及存储介质。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。无线充电技术(Wireless Charging Technology)是通过发射端以无线方式将电能转换为其他形式的中继能量,并发射至接收端实现无线充电,目前无线充电通常采用电磁感应原理,需要将发射端和接收端放置的足够近,使发射端的电磁场的能量可以充分发射至接收端,导致无线充电的距离受限。
发射端通过将电能转换为射频信号并发射至接收端,可以借助射频信号传输距离远且传输损耗小的优点,实现远距离的射频无线充电。射频无线充电需要发射端实时获取接收端的位置,以将射频信号聚集至接收端的位置,提高射频信号的传输效率,从而提高充电效率。而接收端在定位和充电时复用一个天线,从而发射端在获取接收端的位置时,接收端无法接收射频信号进行充电,导致获取接收端的位置的频率越高,定位的耗时越长,接收端的充电时间越短,导致充电效率降低。因此,如何在保证射频无线充电的定位准确性的同时提高充电效率称为当前亟需解决的问题。
申请内容
本申请实施例的目的在于:提供一种无线充电电路、方法、系统、终端设备及存储介质,包括但不限于解决在保证射频无线充电的定位准确性的同时提高充电效率的问题。
本申请实施例采用的技术方案是:
第一方面,提供了一种无线充电电路,包括控制模块、无线充电模块、环境检测模块及多个天线;
所述控制模块分别与所述无线充电模块、所述环境检测模块及所述多个天线连接,所述无线充电模块和所述环境检测模块与所述多个天线连接;
所述环境检测模块,用于检测处于工作状态的天线的环境参量并发送至所述控制模块;
所述控制模块,用于根据所述环境参量生成切换信号,并输出至所述处于工作状态的天线和至少一个处于闲置状态的天线,以控制所述处于工作状态的天线进入闲置状态和所述至少一个处于闲置状态的天线进入工作状态;
所述无线充电模块,用于生成定位信号,并通过所述处于工作状态的天线将所述定位信号输出至对应的射频发射端;其中,所述射频发射端用于根据所述定位信号获取对应的天线的位置信息;
所述处于工作状态的天线,还用于接收对应的射频发射端输出的射频信号;
所述无线充电模块,还用于将所述射频信号转换为电信号。
本申请实施例的第一方面提供一种无线充电电路,通过环境检测模块检测处于工作状态的天线的环境参量并发送至控制模块,控制模块可以实时检测外界环境是否发生改变,从而根据外界环境是否改变判断处于工作状态的天线的位置是否发生改变,在改变时生成切换信号以切换处于工作状态的天线,并通过无线充电模块发射定位信号重新进行定位,相较于根据预设频率对接收端进行定位,根据外界环境是否发生改变进行定位,可以提高 接收端进行定位的灵活性并保证射频无线充电的定位准确性,并在外界环境未变化或变化频率低时,大幅降低接收端的定位耗时,提高充电时间,从而提高射频无线充电的充电效率。
第二方面,提供了一种终端设备,包括本申请实施例的第一方面提供的无线充电电路。
第三方面,提供一种无线充电系统,包括射频发射端和本申请实施例的第一方面提供的终端设备;
所述射频发射端用于,在接收到定位信号后,根据所述定位信号获取对应的处于工作状态的天线的位置信息,并根据所述位置信息输出射频信号;
所述终端设备用于:
通过环境检测模块检测处于工作状态的天线的环境参量并发送至所述控制模块;
通过所述控制模块根据所述环境参量生成切换信号并输出至所述处于工作状态的天线和至少一个处于闲置状态的天线,以控制所述处于工作状态的天线进入闲置状态和所述至少一个处于闲置状态的天线进入工作状态;
通过无线充电模块生成定位信号;
通过所述处于工作状态的天线将所述定位信号输出至对应的射频发射端,并接收对应的射频发射端输出的射频信号;
通过所述无线充电模块将所述射频信号转换为电信号。
第四方面,提供了一种无线充电方法,包括:
控制环境检测模块检测处于工作状态的天线的环境参量;
根据所述环境参量生成切换信号并输出至所述处于工作状态的天线和至少一个处于闲置状态的天线,以控制所述处于工作状态的天线进入闲置状态和所述至少一个处于闲置状态的天线进入工作状态;
控制无线充电模块生成定位信号;
控制所述处于工作状态的天线将所述定位信号输出至对应的射频发射端,并接收对应的射频发射端输出的射频信号;
控制所述无线充电模块将所述射频信号转换为电信号。
第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述第四方面提供的无线充电方法的步骤。
可以理解的是,上述第二方面至第五方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的无线充电电路的第一种结构示意图;
图2是本申请实施例提供的无线充电电路在封闭空间发射定位信号时的场景示意图;
图3是本申请实施例提供的射频发射端根据定位信号输出射频信号至无线充电电路时的场景示意图;
图4是本申请实施例提供的射频发射端根据定位信号输出射频信号至第1天线被外部对象遮挡时的场景示意图;
图5是本申请实施例提供的射频发射端根据定位信号输出射频信号至第2天线时的场景示意图;
图6是本申请实施例提供的无线充电电路的第二种结构示意图;
图7是本申请实施例提供的无线充电电路的第三种结构示意图;
图8是本申请实施例提供的无线充电电路的第四种结构示意图;
图9是本申请实施例提供的无线充电电路的第五种结构示意图;
图10是本申请实施例提供的无线充电电路的第六种结构示意图;
图11是本申请实施例提供的无线充电电路的第七种结构示意图;
图12是本申请实施例提供的终端设备的第一种结构示意图;
图13是本申请实施例提供的无线充电系统的第一种结构示意图;
图14是本申请实施例提供的无线充电方法的第一种流程示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为了说明本申请所提供的技术方案,以下结合具体附图及实施例进行详细说明。
在应用中,射频无线充电相较于电磁感应无线充电可以实现远距离的无线充电,射频无线充电可以通过定位接收端的位置,使射频信号聚集至接收端的位置,提高充电效率;目前射频无线充电的定位方法是通过发射端根据预设频率获取接收端的位置,而接收端在定位和充电时复用一个天线,从而发射端在获取接收端的位置时,接收端无法接收射频信号进行充电,导致获取接收端的位置的频率越高,定位的耗时越长,接收端的充电时间越短,导致充电效率降低。
针对上述技术问题,本申请实施例提供一种无线充电电路,通过环境检测模块检测处于工作状态的天线的环境参量并发送至控制模块,控制模块可以实时检测外界环境是否发生改变,从而根据外界环境是否改变判断处于工作状态的天线的位置是否发生改变,在改变时生成切换信号以切换处于工作状态的天线,并通过无线充电模块发射定位信号重新进行定位,相较于根据预设频率对接收端进行定位,根据外界环境是否发生改变进行定位,可以提高接收端进行定位的灵活性并保证射频无线充电的定位准确性,并在外界环境未变化或变化频率低时,大幅降低接收端的定位耗时,提高充电时间,从而提高射频无线充电的充电效率。
本申请实施例提供的无线充电电路可以应用于电池,或者,安装有电池的终端设备或电动设备。终端设备可以是手机、平板电脑、可穿戴设备、车载设备、增强现实(Augmented Reality,AR)/虚拟现实(Virtual Reality,VR)设备、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本、个人数字助理(Personal Digital Assistant,PDA)等;电动设备可以是电动汽车(Battery Electric Vehicle)、电动自行车(Electric Bicycle)、电机(Electric Machinery)等,本申请实施例对终端设备和电动设备的具体类型不作任何限制。
如图1所示,本申请实施例提供的无线充电电路100,包括控制模块110、无线充电模块120、环境检测模块130及多个天线;
控制模块110分别与无线充电模块120、环境检测模块130及多个天线连接,无线充电模块120和环境检测模块130与多个天线连接;
环境检测模块130,用于检测处于工作状态的天线的环境参量并发送至控制模块110;
控制模块110,用于根据环境参量生成切换信号,并输出至处于工作状态的天线和至少一个处于闲置状态的天线,以控制处于工作状态的天线进入闲置状态和至少一个处于闲置状态的天线进入工作状态;
无线充电模块120,用于生成定位信号,并通过处于工作状态的天线将定位信号输出至对应的射频发射端300;其中,射频发射端300用于根据定位信号获取对应的天线的位置信息;
处于工作状态的天线,还用于接收对应的射频发射端300输出的射频信号;
无线充电模块120,还用于将射频信号转换为电信号。
在应用中,下面对无线充电电路100的硬件选型进行说明。其中,控制模块110可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在应用中,无线充电模块120可以包括至少一个信号处理芯片,信号处理芯片的选型和上述控制模块110的选型一致,在此不再赘述。
在应用中,环境检测模块130可以与多个天线连接。环境检测模块130可以包括距离检测设备、温度检测设备、湿度检测设备、磁场检测设备或物体检测设备等任意多个检测设备。其中,距离检测设备具体可以是激光测距(Laser Distance Measuring)仪、超声波测距(Ultrasonic Ranging)仪、红外线测距仪(Infrared Detector)等;温度检测设备具体可以是气体温度计、电阻温度计、红外线温度计、电偶温度计或压力式温度计等;湿度检测设备具体可以是电容式湿度传感器、电阻式湿度传感器或热能湿度传感器等;物体检测设备可以通过温度检测设备、摄像头和视频识别算法、麦克风和音频识别算法等不同类型的硬件设备或软硬件组合实现。环境参量的数据类型可以包括距离、温度、相对湿度、磁场强度或物体类型等,环境参量的具体数据类型根据环境检测模块130的硬件选型确定。本申请实施例对环境检测模块130的具体类型和环境参量的具体数据类型不作任何限制。
在应用中,无线充电电路100还可以包括天线模块140,天线模块140包括多个天线,还可以包括功放单元,功放单元分别与多个天线和无线充电模块连接,功放单元用于对定位信号和/或射频信号的性能参数进行调整,功放单元具体可以包括功率放大器(Power Amplifier,PA)、低噪声放大器(Low Noise Amplifier,LNA)和/或多模功率放大器(Multimode Power Amplifier,MMPA);还可以包括双工器单元,所述双工器单元分别与所述多个天线和所述无线充电模块连接,所述双工器单元用于将接收到的定位信号和射频信号进行隔离;还可以包括滤波单元,滤波单元分别与多个天线和无线充电模块连接,滤波单元具体可以是声表面波滤波器(Surface Acoustic Wave,SAW)等元件,以对定位信号和/或射频信号进行滤波,本申请实施例对天线模块140的具体结构及天线数量不作任何限制。
在应用中,下面对无线充电电路100的工作原理进行说明。环境检测模块130可以实时检测处于工作状态的天线的环境参量并发送至控制模块110,控制模块110可以根据环境参量生成切换信号。
具体的,根据环境参量的数据类型,控制模块110预先存储有预设环境参量和预设对比规则,例如,在环境参量的数据类型为距离时,预设环境参量可以是10厘米,预设对比规则可以是距离小于10厘米时生成切换信号,以判断外部对象是否距离天线过近;在环境参量的数据类型为温度时,预设环境参量可以是40摄氏度,预设对比规则可以是温度大于40摄氏度时生成切换信号,以判断环境温度是否过高;在环境参量的数据类型为相对湿度时,预设环境参量可以是80%相对湿度,预设对比规则可以是相对湿度大于80%相对湿度时生成切换信号,以判断环境湿度是否过高;在环境参量的数据类型为磁场强度时,预设 环境参量可以是500安培/米,预设对比规则可以是磁场强度大于500安培/米时生成切换信号,以判断环境磁场干扰是否过强;在环境参量的数据类型为物体类型时,预设环境参量可以是人类,预设对比规则可以是识别到人类时生成切换信号,或者,在环境参量的数据类型为物体类型和距离时,预设环境参量可以是人类和5厘米,预设对比规则可以是识别到人类的距离小于5厘米时生成切换信号,以判断人类是否接近,或者,判断天线是否被握住。预设环境参量的具体大小和预设对比规则的具体规则,可以根据环境参量对射频信号传输的实际影响进行设置。
在应用中,控制模块110在生成切换信号后,说明当前处于工作状态的天线受到外界影响,对射频信号的接收效率下降。控制模块110可以将切换信号输出至所有天线,以控制所有处于工作状态的天线进入闲置状态,并控制所有处于闲置状态的天线进入工作状态;也可以将切换信号输出至所有处于工作状态的天线和预设数量的处于闲置状态的天线,以控制所有处于工作状态的天线进入闲置状态,并控制预设数量的闲置状态的天线进入工作状态。其中,预设数量需要满足大于或等于1的条件,以保证至少一个处于闲置状态的天线可以进入工作状态,实现处于工作状态的天线的位置切换;预设数量的具体大小可以根据实际需要进行设置。
在应用中,无线充电模块120可以用于生成定位信号,并通过每个处于工作状态的天线将定位信号输出至对应的射频发射端300(参考图2),射频发射端300可以根据定位信号获取对应的天线的位置信息,以根据位置信息输出射频信号并聚集至处于工作状态的天线(参考图3),处于工作状态的天线可以将接收到的射频信号发送至无线充电模块120,通过无线充电模块120将射频信号转换为电信号。无线充电模块120还可以将电信号输出至负载,实现对负载的无线充电。
其中,每个处于工作状态的天线可以具有唯一对应的射频发射端300,以通过每个处于工作状态的天线发射定位信号至对应的射频发射端300,并接收对应的射频发射端300输出的射频信号,或者,多个处于工作状态的天线可以对应相同的一个射频发射端300,以通过多个处于工作状态的天线发射定位信号至相同的一个射频发射端300,并接收上述相同的一个射频发射端300输出的射频信号。本申请实施例对天线和射频发射端300的对应关系不作任何限制。
以下结合图2和图3对无线充电电路100和射频发射端300之间的定位原理进行说明。
图2示例性的示出了无线充电电路100在封闭空间200发射定位信号时的场景示意图;
图3示例性的示出了射频发射端300根据定位信号输出射频信号至无线充电电路100时的场景示意图。
在应用中,如图2所示,无线充电电路100可以通过处于工作状态的天线向四周发射多个定位信号,定位信号的发射范围可以根据天线的实际性能确定(图2中示例性的以360度的发射范围发射定位信号),定位信号可以直射或反射传播至射频发射端300。射频发射端300可以根据至少两个定位信号反向推算天线的位置信息,具体可以通过获取每个定位信号的入射位置和入射角度获取每个定位信号的传播路径,并获取每个定位信号的传播路径的交点位置,将该交点位置作为天线的位置信息。
在应用中,如图3所示,在射频发射端300获取对应的天线的位置信息后,可以根据位置信息输出射频信号,使射频信号聚集至对应的天线,具体的,射频信号的传播路径可以和射频发射端300接收到的定位信号的传播路径相同,传播方向和射频发射端300接收到的定位信号的传播方向相反,即通过时间反演(Time Reversal)的方式确定射频信号的传播路径;射频信号的传播路径也可以根据射频发射端300的实际性能确定。
在一个实施例中,环境检测模块130还用于,检测所有天线的环境参量,并发送至控制模块110;
控制模块110还用于,根据所有天线的环境参量,筛选预设数量的处于闲置状态的天线,以控制处于工作状态的天线进入闲置状态和筛选得到的至少一个处于闲置状态的天线 进入工作状态。
在应用中,环境检测模块130可以同时检测所有天线的环境参量,并发送至控制模块110。控制模块110可以根据所有天线的环境参量,首先判断处于工作状态的天线的环境参量是否触发预设对比规则,若是,则筛选预设数量的处于闲置状态的天线,具体的,控制模块110可以根据所有天线的环境参量,对所有天线接收射频信号的接收效率进行排序,并按照接收效率从高到低的顺序筛选预设数量的处于闲置状态的天线,生成并输出切换信号至处于工作状态的天线和筛选得到的至少一个处于闲置状态的天线,以控制处于工作状态的天线进入闲置状态和筛选得到的至少一个处于闲置状态的天线进入工作状态。
以下结合图4和图5对无线充电电路100灵活切换天线的技术效果进行说明。
图4示例性的示出了射频发射端300根据定位信号输出射频信号至第1天线141被外部对象400遮挡时的场景示意图;
图5示例性的示出了射频发射端300根据定位信号输出射频信号至第2天线142时的场景示意图。
在应用中,假设在第一时间段第1天线141处于工作状态,第2天线142闲置,第一时间段和第二时间段连续,在第一时间段结束时,控制模块110根据环境参量生成切换信号,使得在第二时间段第2天线142处于工作状态,第1天线141闲置。由于在第一时间段结束时,控制模块110根据处于工作状态的第1天线141的环境参量生成切换信号,说明当前第1天线141收到外界环境影响对射频信号的接收效率下降(如图4所示,假设环境参量为距离,控制模块110检测到外部对象400和第1天线141的距离小于预设环境参量)。通过控制第1天线141进入闲置状态,并控制第2天线142进入工作状态,通过第2天线142接收射频信号,可以提高对射频信号的接收效率,且通过控制第1天线141闲置,可以将对射频信号的接收效率低的天线闲置,提高无线充电电路100的能耗比。
图6示例性的示出了环境检测模块130包括多个环境检测单元,每个环境检测单元和对应的天线连接的结构图。
在应用中,环境检测模块130可以包括多个环境检测单元,多个环境检测单元与多个天线一一对应连接,每个环境检测单元用于检测对应的天线的环境参量并发送至控制模块110。
在应用中,通过环境检测模块130检测处于工作状态的天线的环境参量并发送至控制模块110,控制模块110可以实时检测外界环境是否发生改变,从而根据外界环境是否改变判断处于工作状态的天线的位置是否发生改变,在改变时生成切换信号以切换处于工作状态的天线,并通过无线充电模块120发射定位信号重新进行定位,相较于根据预设频率对接收端进行定位,根据外界环境是否发生改变进行定位,可以提高接收端进行定位的灵活性并保证射频无线充电的定位准确性,并在外界环境未变化或变化频率低时,大幅降低接收端的定位耗时,提高充电时间,从而提高射频无线充电的充电效率。
如图7所示,在一个实施例中,基于图1所对应的实施例,环境检测模块130包括可变电容单元133和电容检测单元134;
可变电容单元133和多个天线连接,电容检测单元134分别与可变电容单元133和控制模块110连接;
可变电容单元133用于根据处于工作状态的天线的环境参量,改变电容值;
电容检测单元134用于获取可变电容单元133的电容值,并发送至控制模块110;
控制模块110用于根据电容值确定外部对象和处于工作状态的天线的距离,在距离小于预设距离时,生成切换信号并输出至处于工作状态的天线和至少一个处于闲置状态的天线。
在应用中,可变电容单元133和天线连接,电容检测单元134分别与控制模块110和可变电容单元133连接。
在应用中,环境检测模块130具体可以包括可变电容单元133和电容检测单元134, 此时环境参量为电容值。可变电容单元133可以在外部对象接近处于工作状态的天线时,根据外部对象的物体类型以及外部对象和天线的距离改变电容值,电容检测单元134可以获取可变电容单元133的电容值。具体的,由于空气的介电常数(Permittivity)和外部对象的介电常数不同,在外部对象接近可变电容单元133时,电容值会根据外部对象的介电常数以及外部对象和可变电容单元133的距离发生改变。其中,环境检测模块130具体可以是手握感测器(Grip Sensor),可以用于判断天线是否被人类握持。
在应用中,控制模块110可以预先存储有可变电容单元133与空气的介电常数对应的静态电容值;还可以预先存储有可变电容单元133在不同的外部对象接近时,获取可变电容单元133的电容值与外部对象和天线的距离的对应关系,并生成电容值和距离的对应关系表,从而控制模块110可以在得到可变电容单元133的电容值后,通过查表的方式确定外部对象和处于工作状态的天线的距离。预设距离的具体大小可以根据实际需要进行设置,例如,在外部对象为人类时,假设预设距离设置为5厘米,人类和天线距离为5厘米时电容值为100毫法,人类和天线的距离越近,电容值越大,则控制模块110获取到的电容值小于或等于100毫法时,说明人类和天线的距离未过近,不需要输出切换信号;控制模块110获取到的电容值大于100毫法时,说明人类和天线的距离小于5厘米,或者其他外部对象和天线的距离过近,无线充电电路100的位置可能发生改变或已发生改变,输出切换信号并重新进行定位。
在一个实施例中,环境检测模块130还可以包括物体检测设备;
物体检测设备和控制模块110连接;
物体检测设备用于检测外部对象的物体类型并发送至控制模块110;
控制模块110用于根据外部对象的物体类型,确定电容值和距离的对应关系。
在应用中,物体检测设备的选型可以参照上述实施例的相关描述,在此不再赘述。控制模块110可以预先存储有在不同物体类型下,电容值和距离的对应关系表,从而在通过物体检测设备确定外部对象的物体类型后,可以根据外部对象的物体类型和电容值准确获取外部对象和天线的距离,提高距离检测的准确性。
在应用中,通过可变电容单元133和电容检测单元134构成环境检测模块130,可以通过可变电容单元133的电容值判断外部对象和天线的距离,具有结构简单、响应快速及成本低廉的特点,可以提高距离检测的稳定性并降低无线充电电路100的生产成本。
图8示例性的示出了环境检测模块130包括多个环境检测单元,每个环境检测单元和对应的天线连接的结构图。需要说明的是,图6至图11仅示例性的示出了天线模块140包括第1天线141和第2天线142,环境检测模块130包括第1环境检测单元131(包括第1电容检测单元1312和第1可变电容单元1311)和第2环境检测单元132(包括第2电容检测单元1322和第2可变电容单元1321),本申请实施例对天线数量和环境检测单元的数量不作任何限制;每个环境检测单元所采用的检测设备的具体类型可以相同也可以不同,本申请实施例每个环境检测单元采用的检测设备的类型不作任何限制。
如图9所示,在一个实施例中,基于图7所对应的实施例,无线充电模块120包括定位信号生成单元121和射频信号转换单元122;
定位信号生成单元121分别与控制模块110和多个天线,射频信号转换单元122分别与控制模块110和多个天线连接;
控制模块110还用于:
在生成切换信号后,将切换信号输出至定位信号生成单元121;
在接收到射频发射端300发送的定位完成信号时,输出充电信号至射频信号转换单元122;
定位信号生成单元121用于,根据切换信号生成定位信号;
射频信号转换单元122用于,根据充电信号将射频信号转换为电信号。
在应用中,定位信号生成单元121可以是蓝牙设备,具体可以是蓝牙芯片或蓝牙电路 等,以用于生成蓝牙信号;也可以是无线通信(Wireless Fidelity,Wi-Fi)设备,以用于生成Wi-Fi信号;还可以是卫星定位设备,定位设备具体可以是全球定位系统(Global Positioning System,GPS)设备,以用于生成GPS信号,还可以是北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)设备,以用于生成北斗定位信号。根据定位信号生成单元121的选型不同,定位信号具体可以是蓝牙信号、Wi-Fi信号、GPS信号或BDS信号等。定位信号生成单元121具体可以是低功耗蓝牙(Bluetooth Low Energy)设备,以用于生成蓝牙信标信号(Beacon)。本申请实施例对定位信号生成单元121的具体类型和定位信号的具体类型不作任何限制。
在应用中,定位信号生成单元121的工作模式可以包括广播模式和休眠模式,在定位信号生成单元121接收到切换信号时,进入广播模式,持续生成定位信号并通过处于工作状态的天线发射定位信号;在控制模块110接收到射频发射端300发送的定位完成信号时,还可以输出充电信号至定位信号生成单元121,定位信号生成单元121在接收到定位完成信号时,进入休眠模式,中止生成定位信号,以降低功耗。
在应用中,射频信号转换单元122可以包括第一转换设备,具体可以是声表面波滤波器,用于将射频信号转换为电信号;还可以包括低噪声放大器,以对转换后的电信号进行放大,并减小电信号的噪音,以提高电信号的信噪比;还可以包括第二转换设备,具体可以是模数转换器,用于对电信号进行模数转换,得到数字信号形式的电信号;还可以包括整流电路,用于将交流形式的电信号转换为直流形式。通过射频信号转换单元122将射频信号转换为电信号并对电信号进行处理,可以实现通过射频信号对负载进行充电,并提高转换后的电信号和负载的适配性。射频信号转换单元122的具体结构可以根据负载的实际需要进行设置,本申请实施例对射频信号转换单元122的具体结构不作任何限制。
如图10所示,在一个实施例中,基于图9所对应的实施例,无线充电模块120还包括第一电子开关150;
控制模块110用于:
在生成切换信号后,将切换信号输出至第一电子开关150;
在接收到射频发射端300发送的定位完成信号时,输出充电信号至第一电子开关150;
第一电子开关150用于:
在接收到切换信号时,将定位信号生成单元121和天线模块140连通;
在接收到充电信号时,将射频信号转换单元122和天线模块140连通。
在应用中,第一电子开关150可以包括具有电子开关功能的器件或电路,例如,三极管、薄膜场效应晶体管(Thin Film Transistor,TFT)、复合逻辑门电路或金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)。具体的,可以是单刀双掷开关。
在应用中,无线充电模块120还可以包括第一电子开关150,控制模块110在生成切换信号后,可以将切换信号输出至第一电子开关150,以控制第一电子开关150将定位信号生成单元121和天线模块140连通,此时定位信号生成单元121根据切换信号进入广播模式持续生成定位信号,定位信号生成单元121可以通过天线模块140中处于工作状态的天线发射定位信号;并控制第一电子开关150将射频信号转换单元122和天线模块140断开,可以避免定位信号反向输出至射频信号转换单元122,提高无线充电模块120的工作稳定性。
在应用中,控制模块110可以通过处于工作状态的天线接收射频发射端300发送的定位完成信号,在接收到定位完成信号时,说明射频发射端300已根据定位信号获取得到处于工作状态的天线的位置信息,并准备就绪将射频信号发射并聚集至处于工作状态的天线。控制模块110可以根据定位完成信号输出充电信号至第一电子开关150,以控制第一电子开关150将射频信号转换单元122和天线模块140连通,可以通过射频信号转换单元122接收射频信号,并将射频信号转换为电信号输出至负载,以对负载进行射频无线充电。并 控制第一电子开关150将定位信号生成单元121和天线模块140断开,避免多余的定位信号通过天线发射至射频信号端,进一步提高无线充电模块120的工作稳定性。
如图11所示,在一个实施例中,基于图10所对应的实施例,天线模块140还包括第二电子开关160;
第二电子开关160分别与控制模块110、无线充电模块120及多个天线连接;
控制模块110还用于:
在生成切换信号后,将切换信号输出至第二电子开关160;
第二电子开关160用于:
在接收到切换信号时,将处于工作状态的天线和无线充电模块120断开,使处于工作状态的天线进入闲置状态;将至少一个处于闲置状态的天线和无线充电模块120连通,使至少一个处于闲置状态的天线进入工作状态。
在应用中,第二电子开关160的选型可以参照上述第一电子开关150的选型,区别在于,在天线模块140包括一个第二电子开关160时,第二电子开关160具体可以是单刀多掷开关,导通触点的数量等于天线数量;或者,在天线模块140包括多个第二电子开关160时,每个第二电子开关160可以根据实际需要连接至少一个天线。
在应用中,天线模块140还可以包括至少一个第二电子开关160,控制模块110在生成切换信号后,可以将切换信号输出至第二电子开关160,并通过第二电子开关160将处于工作状态的天线和无线充电模块120断开,使处于工作状态的天线进入限制状态,并通过第二电子开关160将至少一个处于闲置状态的天线和无线充电模块120连通,使至少一个处于闲置状态的天线进入工作状态。
在应用中,通过第二电子开关160可以实现天线的工作状态和闲置状态的切换,且无线充电电路100在定位和充电复用一个天线时,通过一个第二电子开关160可以契合无线充电电路100单天线的工作模式,避免多余天线发射定位信号或接收射频信号,提高无线充电电路100的工作稳定性;无线充电电路100通过多个天线同时定位和充电时,通过多个第二电子开关160将多个天线和无线充电模块120连通,可以提高无线充电电路100的工作灵活性。
如图12所示,本申请实施例提供的终端设备500,包括上述任一实施例提供的无线充电电路100。
如图13所示,本申请实施例提供的无线充电系统600,包括射频发射端300和上述实施例提供的终端设备500;
射频发射端300用于,在接收到定位信号后,根据定位信号获取对应的处于工作状态的天线的位置信息,并根据位置信息输出射频信号;
终端设备500用于:
通过环境检测模块130检测处于工作状态的天线的环境参量并发送至控制模块110;
通过控制模块110根据环境参量生成切换信号并输出至处于工作状态的天线和至少一个处于闲置状态的天线,以控制处于工作状态的天线进入闲置状态和至少一个处于闲置状态的天线进入工作状态;
通过无线充电模块120生成定位信号;
通过处于工作状态的天线将定位信号输出至对应的射频发射端300,并接收对应的射频发射端300输出的射频信号;
通过无线充电模块120将射频信号转换为电信号。
在应用中,无线充电电路100在终端设备500和无线充电系统600中的功能可以参照上述实施例中的相关描述,在此不再赘述。
可以理解的是,本申请实施例示意的结构并不构成对无线充电电路100、终端设备500及无线充电系统600的具体限定。在本申请另一些实施例中,无线充电电路100、终端设备500及无线充电系统600可以包括比图示更多或更少的部件,或者组合某些部件,或者 不同的部件,例如还可以包括输入输出设备等。图示的部件可以以硬件,软件或软件和硬件的组合实现。
如图14所示,本申请实施例提供的无线充电方法,可以应用于上述实施例提供的无线充电电路的控制模块或终端设备的控制模块,也可以应用于电池的控制模块、安装有电池的终端设备的控制模块或者安装有电池的电动设备的控制模块,上述无线充电方法包括:
S1401、控制环境检测模块检测处于工作状态的天线的环境参量;
S1402、根据环境参量生成切换信号并输出至处于工作状态的天线和至少一个处于闲置状态的天线,以控制处于工作状态的天线进入闲置状态和至少一个处于闲置状态的天线进入工作状态;
S1403、控制无线充电模块生成定位信号;
S1404、控制处于工作状态的天线将定位信号输出至对应的射频发射端,并接收对应的射频发射端输出的射频信号;
S1405、控制无线充电模块将射频信号转换为电信号。
在应用中,步骤S1401至步骤S1405提供的无线充电方法可以参照上述控制模块、无线充电模块、环境检测模块及多个天线的相关功能描述,在此不再赘述。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中,上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。另外,各功能模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现可实现上述无线充电方法实施例中的步骤。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的终端设备和方法,可以通过其它的方式实现。例如,以上所描述的终端设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或模块的间接耦合或通讯连接,可以是电性,机械或其它的形式。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种无线充电电路,其特征在于,包括控制模块、无线充电模块、环境检测模块及多个天线;
    所述控制模块分别与所述无线充电模块、所述环境检测模块及所述多个天线连接,所述无线充电模块和所述环境检测模块与所述多个天线连接;
    所述环境检测模块,用于检测处于工作状态的天线的环境参量并发送至所述控制模块;
    所述控制模块,用于根据所述环境参量生成切换信号,并输出至所述处于工作状态的天线和至少一个处于闲置状态的天线,以控制所述处于工作状态的天线进入闲置状态和所述至少一个处于闲置状态的天线进入工作状态;
    所述无线充电模块,用于生成定位信号,并通过处于工作状态的天线将所述定位信号输出至对应的射频发射端;其中,所述射频发射端用于根据所述定位信号获取对应的天线的位置信息;
    处于工作状态的天线用于接收对应的射频发射端输出的射频信号;
    所述无线充电模块,还用于将所述射频信号转换为电信号。
  2. 如权利要求1所述的无线充电电路,其特征在于,所述环境检测模块包括可变电容单元和电容检测单元;
    所述可变电容单元和所述多个天线连接,所述电容检测单元分别与所述可变电容单元和所述控制模块连接;
    所述可变电容单元用于根据处于工作状态的天线的环境参量,改变电容值;
    所述电容检测单元用于获取所述可变电容单元的电容值,并发送至所述控制模块;
    所述控制模块用于根据所述电容值确定外部对象和所述处于工作状态的天线的距离,在所述距离小于预设距离时,生成切换信号并输出至所述处于工作状态的天线和至少一个处于闲置状态的天线。
  3. 如权利要求1所述的无线充电电路,其特征在于,所述无线充电模块包括定位信号生成单元和射频信号转换单元;
    所述定位信号生成单元分别与所述控制模块和所述多个天线,所述射频信号转换单元分别与所述控制模块和所述多个天线连接;
    所述控制模块还用于:
    在生成所述切换信号后,将所述切换信号输出至所述定位信号生成单元;
    在接收到所述射频发射端发送的定位完成信号时,输出充电信号至所述射频信号转换单元;
    所述定位信号生成单元用于,根据所述切换信号生成定位信号;
    所述射频信号转换单元用于,根据所述充电信号将所述射频信号转换为电信号。
  4. 如权利要求3所述的无线充电电路,其特征在于,还包括天线模块,所述天线模块包括所述多个天线,所述无线充电模块还包括第一电子开关;
    所述控制模块用于:
    在生成所述切换信号后,将所述切换信号输出至所述第一电子开关;
    在接收到所述射频发射端发送的定位完成信号时,输出充电信号至所述第一电子开关;
    所述第一电子开关用于:
    在接收到所述切换信号时,将所述定位信号生成单元和所述天线模块连通;
    在接收到所述充电信号时,将所述射频信号转换单元和所述天线模块连通。
  5. 如权利要求3所述的无线充电电路,其特征在于,所述定位信号生成单元还用于在接收到所述切换信号时,根据所述切换信号持续生成定位信号并通过处于工作状态的天线发射定位信号;
    在经由控制模块接收到射频发射端发送的定位完成信号时,中止生成定位信号。
  6. 如权利要求3所述的无线充电电路,其特征在于,所述定位信号生成单元为蓝牙设备、无线通信设备或卫星定位设备。
  7. 如权利要求3所述的无线充电电路,其特征在于,所述射频信号转换单元包括第一转换设备和第二转换设备;所述第一转换设备分别与所述控制模块、所述多个天线及所述第二转换设备连接;
    所述第一转换设备用于,根据所述充电信号将所述射频信号转换为模拟信号形式的电信号;
    所述第二转换设备用于,在接收到所述模拟信号形式的电信号时,将所述模拟信号形式的电信号转化为数字信号形式的电信号。
  8. 如权利要求7所述的无线充电电路,其特征在于,所述射频信号转换单元还包括整流电路,所述整流电流和所述第二转换设备连接;
    所述整流电路用于,在接收到所述数字信号形式的电信号时,将所述数字信号形式的电信号由交流形式转换为直流形式。
  9. 如权利要求1所述的无线充电电路,其特征在于,还包括天线模块,所述天线模块包括所述多个天线和第二电子开关;
    所述第二电子开关分别与所述控制模块、所述无线充电模块及所述多个天线连接;
    所述控制模块还用于:
    在生成所述切换信号后,将所述切换信号输出至所述第二电子开关;
    所述第二电子开关用于:
    在接收到所述切换信号时,将所述处于工作状态的天线和所述无线充电模块断开,使所述处于工作状态的天线进入闲置状态;将所述至少一个处于闲置状态的天线和所述无线充电模块连通,使所述至少一个处于闲置状态的天线进入工作状态。
  10. 如权利要求9所述的无线充电电路,其特征在于,所述第二电子开关为三极管、薄膜场效应晶体管、复合逻辑门电路、金属氧化物半导体场效应晶体管或单刀多掷开关。
  11. 如权利要求1所述的无线充电电路,其特征在于,所述环境检测模块还用于,检测所有天线的环境参量,并发送至所述控制模块;
    所述控制模块还用于,根据所述所有天线的环境参量,筛选预设数量的处于闲置状态的天线,并生成切换信号输出至处于工作状态的天线和筛选得到的至少一个处于闲置状态的天线,以控制处于工作状态的天线进入闲置状态和筛选得到的至少一个处于闲置状态的天线进入工作状态。
  12. 如权利要求1所述的无线充电电路,其特征在于,所述环境检测模块包括距离检测设备、温度检测设备、湿度检测设备、磁场检测设备及物体检测设备中任意多个检测设备,所述检测设备分别与所述控制模块和所述多个天线连接;
    所述环境检测模块用于通过所述距离检测设备、温度检测设备、湿度检测设备、磁场检测设备及物体检测设备中任意多个检测设备检测处于工作状态的天线的环境参量,并发送至所述控制模块。
  13. 如权利要求1所述的无线充电电路,其特征在于,还包括天线模块,所述天线模块包括所述多个天线和功放单元,所述功放单元分别与所述多个天线和所述无线充电模块连接。
  14. 如权利要求1所述的无线充电电路,其特征在于,还包括天线模块,所述天线模块包括所述多个天线和滤波单元,所述滤波单元分别与所述多个天线和所述无线充电模块连接。
  15. 如权利要求1所述的无线充电电路,其特征在于,还包括天线模块,所述天线模块包括所述多个天线和双工器单元,所述双工器单元分别与所述多个天线和所述无线充电模块连接;
    所述双工器单元用于对接收到的定位信号和射频信号进行隔离。
  16. 如权利要求1所述的无线充电电路,其特征在于,在配置有第1天线和第2天线时,所述环境检测模块包括第1环境检测单元和第2环境检测单元;
    所述第1天线分别与所述控制模块、所述无线充电模块及所述第1环境检测单元连接,所述第2天线分别与所述控制模块、所述无线充电模块及所述第2环境检测单元连接。
  17. 一种终端设备,其特征在于,包括如权利要求1所述的无线充电电路。
  18. 一种无线充电系统,其特征在于,包括射频发射端和如权利要求17所述的终端设备;
    所述射频发射端用于,在接收到定位信号后,根据所述定位信号获取对应的处于工作状态的天线的位置信息,并根据所述位置信息输出射频信号;
    所述终端设备用于:
    通过环境检测模块检测处于工作状态的天线的环境参量并发送至所述控制模块;
    通过所述控制模块根据所述环境参量生成切换信号并输出至所述处于工作状态的天线和至少一个处于闲置状态的天线,以控制所述处于工作状态的天线进入闲置状态和所述至少一个处于闲置状态的天线进入工作状态;
    通过无线充电模块生成定位信号;
    通过处于工作状态的天线将所述定位信号输出至对应的射频发射端,并接收对应的射频发射端输出的射频信号;
    通过所述无线充电模块将所述射频信号转换为电信号。
  19. 一种无线充电方法,其特征在于,包括:
    控制环境检测模块检测处于工作状态的天线的环境参量;
    根据所述环境参量生成切换信号并输出至所述处于工作状态的天线和至少一个处于闲置状态的天线,以控制所述处于工作状态的天线进入闲置状态和所述至少一个处于闲置状态的天线进入工作状态;
    控制无线充电模块生成定位信号;
    控制处于工作状态的天线将所述定位信号输出至对应的射频发射端,并接收对应的射频发射端输出的射频信号;
    控制所述无线充电模块将所述射频信号转换为电信号。
  20. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求19所述无线充电方法的步骤。
PCT/CN2022/139375 2022-06-20 2022-12-15 无线充电电路、方法、系统、终端设备及存储介质 WO2023246016A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210699293.1 2022-06-20
CN202210699293.1A CN115241990A (zh) 2022-06-20 2022-06-20 无线充电电路、方法、系统、终端设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023246016A1 true WO2023246016A1 (zh) 2023-12-28

Family

ID=83668948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139375 WO2023246016A1 (zh) 2022-06-20 2022-12-15 无线充电电路、方法、系统、终端设备及存储介质

Country Status (2)

Country Link
CN (1) CN115241990A (zh)
WO (1) WO2023246016A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241990A (zh) * 2022-06-20 2022-10-25 Oppo广东移动通信有限公司 无线充电电路、方法、系统、终端设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187850A (ja) * 1991-05-22 1993-07-27 Wolff Controls Corp 近距離場効果を利用して目標物の近接を感知する方法および装置
CN104539014A (zh) * 2014-12-29 2015-04-22 深圳市航盛电子股份有限公司 一种新型无线充电器及其降低无线充电待机功耗的方法
CN107769833A (zh) * 2017-08-30 2018-03-06 努比亚技术有限公司 一种天线切换方法、终端及计算机可读存储介质
CN112886978A (zh) * 2021-01-28 2021-06-01 维沃移动通信有限公司 射频电路、电子设备及控制方法
CN113949174A (zh) * 2021-09-29 2022-01-18 联想(北京)有限公司 一种无线射频充电方法和设备
CN115241990A (zh) * 2022-06-20 2022-10-25 Oppo广东移动通信有限公司 无线充电电路、方法、系统、终端设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187850A (ja) * 1991-05-22 1993-07-27 Wolff Controls Corp 近距離場効果を利用して目標物の近接を感知する方法および装置
CN104539014A (zh) * 2014-12-29 2015-04-22 深圳市航盛电子股份有限公司 一种新型无线充电器及其降低无线充电待机功耗的方法
CN107769833A (zh) * 2017-08-30 2018-03-06 努比亚技术有限公司 一种天线切换方法、终端及计算机可读存储介质
CN112886978A (zh) * 2021-01-28 2021-06-01 维沃移动通信有限公司 射频电路、电子设备及控制方法
CN113949174A (zh) * 2021-09-29 2022-01-18 联想(北京)有限公司 一种无线射频充电方法和设备
CN115241990A (zh) * 2022-06-20 2022-10-25 Oppo广东移动通信有限公司 无线充电电路、方法、系统、终端设备及存储介质

Also Published As

Publication number Publication date
CN115241990A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
CN109067418B (zh) 一种天线控制方法及移动终端
WO2023246016A1 (zh) 无线充电电路、方法、系统、终端设备及存储介质
US20120062424A1 (en) Electronic device and control method thereof
CN108712175B (zh) 一种天线控制方法及终端
CN103428314A (zh) 一种调整移动终端辐射方向的方法及移动终端
CN109474300B (zh) 移动终端的天线控制方法及移动终端
CN111970639B (zh) 保持安全距离的方法、装置、终端设备和存储介质
EP4270639A1 (en) Terminal antenna and method for controlling beam direction of antenna
CN106549451A (zh) 一种无线充电方法及装置
WO2014179818A1 (en) Antenna environment sensing device
US20230291827A1 (en) Screen state control method and apparatus, and storage medium
CN112468177B (zh) 射频前端电路、电子设备、以及测距方法
WO2023045792A1 (zh) 充电设备、自移动设备、充电方法、系统及存储介质
WO2018214871A1 (zh) 射频干扰处理方法及电子设备
KR20200144759A (ko) 블루투스 통신 연결 방법 및 그 전자 장치
CN108882084B (zh) 一种可穿戴设备电量均衡方法及相关产品
CN108649716B (zh) 一种信号传输方法、接收端、发送端及终端设备
CN108834013B (zh) 一种可穿戴设备电量均衡方法及相关产品
CN112350744B (zh) 天线切换方法、装置、信号收发电路和电子设备
CN108540658A (zh) 电子设备控制方法、装置、存储介质及电子设备
CN203180922U (zh) 一种近场电磁感应的无线耳机系统
US11482095B2 (en) Wireless control method, system, and apparatus for determining the state of a power switch
CN203352632U (zh) 一种移动通信终端
CN108432160B (zh) 在无线通信系统中基于声音信号发送和接收数据的设备和方法
CN207650581U (zh) 无人车通讯控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947751

Country of ref document: EP

Kind code of ref document: A1