WO2023245660A1 - 一种紧凑、大视场角抬头显示系统 - Google Patents

一种紧凑、大视场角抬头显示系统 Download PDF

Info

Publication number
WO2023245660A1
WO2023245660A1 PCT/CN2022/101271 CN2022101271W WO2023245660A1 WO 2023245660 A1 WO2023245660 A1 WO 2023245660A1 CN 2022101271 W CN2022101271 W CN 2022101271W WO 2023245660 A1 WO2023245660 A1 WO 2023245660A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
layer
phase modulation
display
light
Prior art date
Application number
PCT/CN2022/101271
Other languages
English (en)
French (fr)
Inventor
王勇竞
蒋卫敏
张喜玉
王昱华
郑港
Original Assignee
深圳光子晶体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光子晶体科技有限公司 filed Critical 深圳光子晶体科技有限公司
Priority to PCT/CN2022/101271 priority Critical patent/WO2023245660A1/zh
Publication of WO2023245660A1 publication Critical patent/WO2023245660A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the invention belongs to the field of optical display technology, and in particular relates to a compact, large field of view head-up display system.
  • Head Up Display HUD has been widely used in cars, ships, airplanes, etc. Its characteristic is that the displayed content is superimposed on the outside world, so that the driver can see the external road conditions and the displayed information at the same time while driving. The driver does not have to lower his head when looking at the displayed information, which greatly improves driving safety and comfort.
  • the main implementation method of automobile head-up display is to use high-brightness micro-displays and a number of traditional lenses or reflectors. In existing head-up display systems, all these optical components are placed under the dashboard of the car. In order to achieve a large field of view (FOV), the last lens requires a fairly large aperture, resulting in a bulky head-up display system. The huge size limits the application of head-up displays, which are only used on a few high-end, large vehicles.
  • FOV field of view
  • the object of the present invention is to provide a new small-volume compact head-up display system with a large viewing angle.
  • the invention discloses a head-up display system, which includes 1) a micro display chip; 2) a transparent optical element at a certain distance from the display chip.
  • the optical element further includes a transflective layer, a phase modulation layer, and a phase compensation layer.
  • the phase modulation layer controls the light from the above-mentioned micro-display chip and reflects it to the human eye, making the light become a virtual image in the distance; the above-mentioned semi-reflective and semi-transparent layer also allows part of the light in the real world to pass through.
  • the displayed content will be superimposed on the real world outside, without affecting the driver's normal driving.
  • the phase modulation layer is provided with the semi-reflective and semi-transparent layer, and the light emitted from the micro-display chip directly enters the semi-reflective and semi-transparent layer, or passes through the light of the above-mentioned auxiliary optical imaging system and then enters the semi-reflective layer.
  • Semi-transparent layer after the reflection of the semi-reflective layer, a set phase modulation is generated. On the one hand, it is reflected to the human eye, and on the other hand, the phase modulation produces a virtual image relative to the position of the optical element in the opposite direction to the human eye.
  • the phase compensation layer compensates for the phase change of the phase modulation layer, so that the light passing through the optical element achieves no phase modulation effect and enters the human eye without interference.
  • the compact, large field of view head-up display system may also include: 3) an auxiliary optical imaging system located between the micro display chip and the transparent element.
  • the micro display chip can be commonly used micro display technologies such as LCOS, LCD, DLP, OLED, Micro-LED, etc. This miniature display chip produces a high-brightness, compact display image.
  • display technologies such as LCOS, LCD, and DLP
  • the micro display chip also includes related light source lighting modules.
  • self-luminous display chips such as LED, Micro-LED, and OLED
  • the light source display module can be removed to achieve a smaller size.
  • the above-mentioned optical element further includes a phase modulation layer, a semi-reflective layer, and a phase compensation layer.
  • the phase modulation layer combined with the semi-reflective and semi-transparent layer, specifically controls the light emitted by the micro-display chip and passed through the auxiliary optical imaging system, and reflects it into the human eye, making the light become a virtual image in the distance.
  • the semi-reflective and semi-transparent layer allows a part of the real world light to pass through. Therefore, a virtual display is superimposed on the real world without affecting the driver's normal driving.
  • the phase modulation surface is a holographic structure.
  • the holographic structure can be produced using computational holography or coherent recording using two laser beams.
  • the design requirement of the holographic structure is that the above-mentioned micro-display chip forms a virtual image through the holographic structure.
  • the phase modulation surface can be a Fresnel lens.
  • the so-called Fresnel lens retains the surface shape of a lens and removes the parallel plate portion of the lens that does not affect light. , turning a lens with a certain thickness into a thin plate while retaining the original function of the lens.
  • the surface shape of a Fresnel lens can be derived from a spherical surface, an aspheric surface, a free-form surface, or a hologram.
  • phase modulation surface is also coated with a semi-reflective and semi-transmissive layer.
  • the light emitted from the above-mentioned micro-display chip and passing through the above-mentioned auxiliary optical imaging system will produce specific phase modulation after being reflected by the semi-reflective semi-transparent mirror. On the one hand, it will Reflected into the human eye, the effect of the phase modulation on the other hand is to produce a virtual image located outside the optical element.
  • the above-mentioned phase compensation layer compensates the phase change of the phase modulation layer, so that the light passing through the optical element has no phase modulation at all and enters the eye without interference.
  • the optical function of the optical element is a device that is both transparent and capable of imaging. . It has no effect on the light of the outside world and is basically transparent, but it can form a virtual image for the light of the micro-display.
  • This patent discloses a head-up display system, which is characterized by further including other optical imaging systems, such as spherical mirrors, reflective mirrors, aspherical surfaces, and free-form surfaces, used in conjunction with the transparent optical element.
  • the light emitted by the microdisplay and amplified by the above-mentioned auxiliary optical imaging system becomes a virtual image, which is displayed outside the optical element.
  • These optical elements also play the role of folding the optical path, so that except for the last optical element, the other parts of the optical system are as small as possible and can be placed under the car dashboard, thus being able to adapt to more models.
  • the auxiliary optical imaging system can be configured so that when the light emitted by the microdisplay enters the transparent optical element and directly forms a virtual image, the auxiliary optical imaging system may not be needed.
  • the shape of the transparent optical element is a planar structure or close to a planar structure. Furthermore, the transparent optical element has a planar structure or is sufficiently close to a planar structure.
  • the curvature of the transparent optical element is small enough that it can be installed on the windshield of a car.
  • the curvature of the automotive glass is designed into the overall curvature of the system.
  • the head-up display system features a final transparent optic integrated into the windshield.
  • the existing space on the windshield and the dashboard can be used, and only part of the optical engine needs to be integrated under the dashboard. Only the volume of this part of the optical engine integrated under the dashboard will have an impact on the installation of the head-up display. The space required for the head-up display optical machine is greatly reduced.
  • the head-up display can be applied to vehicles of various sizes.
  • the phase modulation surface is also coated with a semi-reflective and semi-transparent layer.
  • a semi-reflective layer means that part of the light irradiating on its surface is reflected and part of the light is transmitted. Its reflectivity R and transmittance T can be in any interval from 0% to 100%.
  • the semi-reflective and semi-transmissive layer can be realized by a metal reflective film or by using a high refractive index medium to form a refractive index gradient.
  • the above-mentioned semi-reflective and semi-transmissive layer has polarization selectivity, and only reflects light in a certain polarization state, while transmitting light in another polarization state.
  • the light emitted by the micro-display chip is also set in this polarization state, so the light emitted by the micro-display chip can be reflected to the human eye with a high reflectivity, improving the luminous efficiency of the display. It also maintains a high transmittance.
  • the light emitted by the micro-display chip is narrow-band light of red, green and blue, and the reflection wavelength range of the dielectric reflective layer of the semi-reflective layer is close to the wavelength range of the light emitted by the micro-display chip. Most of the light emitted from the micro-display chip is reflected into the eyeball, thereby improving the luminous efficiency of the display while maintaining a high transmittance.
  • the semi-reflective and semi-transmissive layer further includes an optical-electrical or optical-optical device, the reflectivity and transmittance of which can be adjusted to adapt to light in different environments.
  • the optoelectronic devices can be various liquid crystal, electrochromic, electrophoretic and other devices.
  • the photo-optical device may be various photochromic devices.
  • phase compensation layer The function of the above-mentioned phase compensation layer is to work closely with the phase modulation layer.
  • the phases of the two are exactly opposite and they compensate each other. For the penetrating light, the two cancel each other out and do not produce any effect, so the external image is not affected and reaches people's eyes, forming a transparent display.
  • the processing technology of the phase compensation layer can be to use various well-known optical processing methods to process and manufacture the phase modulation layer separately, and then use optical glue to bond them together. It is also possible to directly fill the phase modulation layer with flexible optical material after it is processed and formed, and then solidify to form it automatically.
  • the invention discloses a vehicle head-up display system, in which a transparent optical element forming a virtual image is installed on the windshield, realizing a large field of view and a small-volume head-up display. Its advantages are:
  • the curvature of the transparent optical element is small enough and has no effect on the penetrating light, it can be placed on the front windshield of the car. Make full use of the original space.
  • the volume under the dashboard is small and can be adapted to more types of vehicle models.
  • FIG. 1(a) is a schematic diagram of an embodiment of the present invention
  • FIG. 1(b) is a schematic diagram of an embodiment of the present invention including a virtual image.
  • Figure 2 is a schematic structural diagram of a transparent optical element, in which the phase structure is a holographic structure.
  • Figure 3 is a schematic structural diagram of a transparent optical element, in which the phase structure is a Fresnel surface type.
  • Figure 4 is a schematic structural diagram of a transparent optical element, in which the phase structure is a binary optical surface type.
  • Figure 5 is a schematic structural diagram of a transparent optical element, in which the phase structure is a holographic surface type.
  • the first embodiment of the present invention is shown in Figures 1(a) and 1(b).
  • This embodiment only takes a car as an example to illustrate the application of the present invention.
  • Engineers in the industry can apply the concept of this embodiment to various other vehicles and transportation vehicles (such as aviation, etc.) to form a virtual image that is integrated with the real world without departing from the scope of the present invention.
  • the micro display chip (microdisplay) 101 produces a small image with high brightness. This image is transformed into an enlarged virtual image 112 for the driver (mainly the driver's eyes) 111 through the auxiliary imaging optical element 103 and the transparent optical element 105.
  • the human-shaped virtual image 112 shown in Figure 1 is only an example.
  • the core is to enlarge the image generated by the micro display chip into a virtual image, which does not mean that the virtual image is human-shaped.
  • the outer shape of the transparent optical element 105 has a planar structure or is close to a planar structure. Furthermore, the transparent optical element has a planar structure or is sufficiently close to a planar structure.
  • the curvature of the transparent optical element 105 can be small enough and transparent to external images. It can be integrated on the windshield 107 to display driving information or entertainment information on the road.
  • the transparent optical element 105 is a planar-like structure with extremely small thickness and sufficiently small curvature.
  • the transparent optical element 105 can be placed in front of the windshield 107 through a separate structure such as a bracket, or can be attached to the windshield 107 .
  • the curvature of the windshield 107 can be adapted to the curvature of the transparent optical element 105 and directly integrated into the existing windshield 107 .
  • the position of the transparent optical element 105 is mainly to enable the driver to see the displayed information without having to lower his head while driving. This design can greatly enhance driving safety and comfort.
  • one side of the transparent optical element 105 of this patent is installed on the windshield 107 of the car, utilizing a large amount of space between the instrument panel 109 and the windshield 107. This reduces the space that really needs to be installed in the car below the instrument panel 109, making the head-up display applicable to various vehicle models.
  • micro display 101 can be one of the common micro display technologies such as LCD, LED, LCOS, DLP, OLED, Micro-LED, electronic paper eInk, etc. In order to produce a high-brightness image, it can be further Including related light sources, diffusers, electronic controllers, communication modules, heat dissipation modules, etc. Different types of microdisplay chips do not depart from the scope of this patent.
  • auxiliary imaging optical lenses or auxiliary optical imaging systems
  • auxiliary imaging optical lenses can include reflectors to adjust the direction of the light path, fold the light path to achieve the smallest volume, as well as lenses, prisms, aspherical mirrors, free-form mirrors and other optical components that are well known to engineers in the industry. These different component combinations do not deviate from the original The scope of protection of the invention.
  • FIG. 3 An enlarged view of the transparent optical element 105 is given in FIG. 3 and includes a phase modulation surface 302, a transflective layer 303, and a phase compensation layer 304.
  • the phase modulation layer combined with the semi-reflective and semi-transparent layer, performs specific control on the light emitted by the micro-display chip 101 and amplified by the auxiliary imaging optical system 103, and reflects it to the human eye, while allowing the light passing through the optical system to be reflected at a distance. It becomes a virtual image everywhere.
  • the semi-reflective and semi-transmissive layer 303 allows a portion of real world light to pass through.
  • phase compensation layer 304 compensates the phase change of the phase modulation layer 302, so that the phase disturbance generated by the transparent optical element 105 for the light passing through the optical element is sufficiently small. There is no phase modulation, and it enters the eye without interference, functioning as a transparent optical flat panel.
  • the optical function of this optical component is a device that is both transparent and capable of imaging. It has no effect on the light of the outside world and is basically transparent, and can form a virtual image for the light emitted by the optical system below the instrument panel 109.
  • the phase modulation layer 302 can be provided with the semi-reflective and semi-transparent layer 303, and the light emitted from the micro-display chip 101 directly enters the semi-reflective and semi-transparent layer 303, or enters after passing through the light of the above-mentioned auxiliary optical imaging system 103.
  • the semi-reflective and semi-transmissive layer 303 produces a set phase modulation after being reflected by the semi-reflective and semi-transmissive layer.
  • the phase The compensation layer compensates for the phase change of the phase modulation layer, so that the light passing through the optical element has no phase modulation effect and enters the human eye without interference.
  • the optical path is set so that the light emitted from the microdisplay chip 101 through the above-mentioned auxiliary optical imaging system 103 enters the semi-reflective and semi-transparent layer 303, and the reflection of the semi-reflective and semi-transparent layer produces the set phase modulation.
  • the phase modulation On the one hand, it is reflected into the human eye, and a set phase modulation is generated after reflection by the semi-reflective and semi-transparent layer.
  • the phase modulation generates a virtual image relative to the opposite position of the optical element and the human eye.
  • the phase compensation layer allows the light passing through the optical element to enter the human eye without interference.
  • the transparent optical element 105 has a sufficiently small curvature and is transparent to external images. It can be integrated on the windshield 107 to display driving information or entertainment information on the road. The driver can see the displayed information without having to lower his head while driving, which greatly enhances the safety and comfort of driving.
  • one side of the transparent optical element 105 of this patent is installed on the windshield 107 of the car, utilizing a large amount of space on the instrument panel 109 and the windshield 107. This greatly reduces the space that really needs to be installed in the vehicle body below the instrument panel 109, making the head-up display applicable to various vehicle models.
  • the first core feature of a transparent optical element is that the phase compensation layer compensates the phase change of the phase modulation layer so that the light passing through the optical element has no phase modulation effect and enters the human eye without interference.
  • a phase modulation layer that can have a nano- or micron-level phase modulation structure; 2) a phase compensation layer with a nano- or micron-level phase compensation structure, which compensates for the phase change produced by the phase modulation layer; 3) between the phase modulation layer and the phase compensation layer A partially transparent and reflective layer in between that partially reflects light and allows light to partially pass through.
  • the above structure can be repeated multiple times to form a multi-layer structure (from 1,2 to i-1,i).
  • Different light rays from a, b...z, please note that English letters are only used to represent different light rays, not limited to 26) pass through the optical film at different positions and different angles.
  • the difference in optical path length between the two paths is often called the optical path difference (OPD).
  • OPD optical path difference
  • the optical path length is important because it determines the phase of light and controls interference and diffraction as light propagates.
  • the optical path length between the phase modulation layer and the phase compensation layer is OPD1.
  • the phase modulation layer and the phase compensation layer have opposite optical phases, so they compensate each other.
  • the phase structure can realize complex optical functions and meet various imaging needs.
  • the optical manufacturing process of the phase modulation structure is produced using methods including but not limited to optical etching, optical photolithography, nanopressing, nanoimprinting, and the like. After the light passing through the transparent optical element is reflected by the semi-reflective and semi-transparent layer, a set phase modulation is generated, and the phase modulation also generates a virtual image relative to the opposite position of the optical element and the human eye.
  • phase modulation structure in the above-mentioned transparent optical element 105 is further explained as shown in FIG. 2, FIG. 3, FIG. 4, and FIG. 5.
  • the phase structure can be implemented in different ways, including but not limited to scattering surface relief structures, various grating structures and computational holograms (CGH).
  • the surface relief structure may be replicated from a holographically recorded master.
  • the phase modulation layer is a computational hologram CGH structure, as shown in Figure 2(a) and (b).
  • CGH structures can be designed by computational methods based on the point light source concept, where objects are decomposed in self-illuminating points (Fig. 2(a)).
  • Elementary holograms are calculated for each point source and the final hologram is synthesized by superimposing all elementary holograms. Light from the microdisplay chip is reflected in a certain direction, forming a virtual image.
  • phase modulation layers that can redirect light into different directions with different distribution angles, and these variations do not depart from the scope of the techniques and methods disclosed herein.
  • the transparent optical element 301 in the embodiment of FIG. 3 adopts a Fresnel surface type. It includes a phase modulation layer 302, the surface of the phase modulation layer is also coated with a semi-transmissive/semi-reflective layer 303, and a phase compensation layer 304 that cooperates with the phase modulation layer.
  • the phase modulation layer 302 can be an improved Fresnel lens, for example, a Fresnel lens with a lens surface and a thin structure.
  • the surface shape of the Fresnel lens 302 can be derived from a spherical surface, an aspherical surface, or a free-form surface. Or a hologram.
  • the surface design is generated by optical design software and cooperates with other optical parts in the system to produce an enlarged virtual image of the image generated by the microdisplay chip.
  • phase compensation layer 304 and the phase modulation layer 302 work closely together. For the penetrating light, the phases of the two cancel each other out and do not produce any effect, so that the external image can reach the human eye without being affected, forming a transparent show.
  • FIG 4 is another implementation of the transparent optical element 401.
  • a binary optical structure is used. It includes a phase modulation layer 402 with a binary optical structure designed by a computer. The surface is equipped with a unique surface structure. The surface is coated with a semi-reflective and semi-transparent metal film layer, a polarizing film or an optical medium film 403, and a phase compensation layer 404.
  • the phase modulation layer 402 is designed to form an amplified virtual image for the light emitted by the microdisplay chip 101 and amplified by the auxiliary optical imaging system 103 .
  • the surface of the modulation surface can be processed by nanoimprinting. Computer control is used to form a specific surface shape on the mold, and it is produced on the optical substrate through nanoimprinting.
  • FIG. 5 is another implementation of the transparent optical element 501.
  • Holographic optical structures are used. It includes a holographic phase modulation layer 502 designed by a computer, the surface is equipped with a unique surface structure, the surface is coated with a semi-reflective and semi-transparent metal film layer or optical medium film 503, and a phase compensation layer 504.
  • the phase modulation layer 502 is designed to form an amplified virtual image for the light emitted by the microdisplay chip 101 and amplified by the auxiliary optical imaging system 103 .
  • the surface of the modulated surface can be processed by nanoimprinting. Computer control is used to form a specific surface shape on the mold, and it is produced on the optical substrate through nanoimprinting. Coherent light can also be used to record on an optical substrate.
  • Figure 6 is an example of a computer generated holographic phase modulation layer.
  • the phase modulation surface is further coated with a semi-reflective and semi-transparent layer.
  • a semi-reflective layer means that part of the light irradiating on its surface is reflected and part of the light is transmitted. Its reflectivity R and transmittance T can be in any interval from 0% to 100%.
  • the semi-reflective and semi-transmissive layer can be realized by using a metal reflective film or by using a medium with a high refractive index to form a refractive index gradient.
  • the above-mentioned semi-reflective and semi-transmissive layer has polarization selectivity, and only reflects light in a certain polarization state, while transmitting light in another polarization state.
  • the light emitted by the micro-display chip is also set in this polarization state, so the light emitted by the micro-display chip can be reflected to the human eye with a very high reflectivity, improving the luminous efficiency of the display. Also maintains high transmittance.
  • the light emitted by the micro-display chip is narrow-band light of red, green and blue, and the reflection wavelength range of the dielectric reflective layer of the semi-reflective layer is close to the wavelength range of the light emitted by the micro-display chip. Most of the light emitted from the micro-display chip is reflected into the eyeball, thereby improving the luminous efficiency of the display while maintaining a high transmittance.
  • the semi-reflective and semi-transmissive layer further includes an optical-electrical or optical-optical device, the reflectivity and transmittance of which can be adjusted to adapt to light in different environments.
  • the optoelectronic devices can be various liquid crystal, electrochromic, electrophoretic and other devices.
  • the photo-optical device may be various photochromic devices.
  • phase compensation layer The function of the above-mentioned phase compensation layer is to work closely with the phase modulation layer.
  • the phases of the two are exactly opposite and they compensate each other. For the light transmitted through the optical path, the two cancel each other out and do not produce any effect, so the external image is not affected and reaches the human eye to form a transparent display.
  • the processing technology of the phase compensation layer can be to use various well-known optical processing methods to process and manufacture the phase modulation layer separately, and then use optical glue to bond them together. It is also possible to directly fill the phase modulation layer with flexible optical material after it is processed and formed, and then solidify to form it automatically.
  • the auxiliary optical element 103 is an alternative device that can further reduce the size of the system.
  • the microdisplay chip and the transparent optical element are directly formed into a light path.
  • the phase modulation layer is provided with the semi-reflective and semi-transparent layer, and the light emitted from the micro-display chip directly enters the semi-reflective and semi-transparent layer; after being reflected by the semi-reflective and semi-transparent layer, the set phase modulation is generated.
  • phase modulation produces a virtual image relative to the position of the optical element in the opposite direction to the human eye; the phase compensation layer compensates for the phase change of the phase modulation layer, so that the light passing through the optical element achieves There is no phase modulation effect, so it enters the human eye without interference.
  • the present invention provides a compact large viewing angle head-up display HUD system, including: a micro display chip (micro display), an auxiliary optical imaging system and a transparent optical element.
  • the micro display chip is used to generate a display image
  • the auxiliary optics The imaging system is used to amplify the image from the micro display chip, and the transparent optical element further amplifies the light amplified by other optical systems into a virtual image.
  • Reflective optical elements include phase modulation and phase compensation layers. For the transmitted light, the two cancel each other out and do not produce any effect, so that the external image can reach the human eye without being affected, forming a transparent display.
  • the clear optics are mounted on the car's windshield, taking advantage of the large amount of space between the dashboard and windshield. This greatly reduces the space that really needs to be installed in the car below the dashboard, making the head-up display suitable for various vehicle models.

Abstract

一种紧凑、大视场角抬头显示系统,包括1)一个微显示芯片(101);2)距微显示芯片(101)一定距离的一个透明光学元件(105,301,401,501)。光学元件(105,301,401,501)进一步包含了一个相位调制层(302,402,502),半反半透层(303,403,503),以及一个相位补偿层(304,404,504)。相位调制层(302,402,502)对微显示芯片(101)的光做特定的控制,使得光线在远处成一个虚像。相位调制层(302,402,502)可以是一个多层全息结构,或一个菲涅尔透镜。菲涅尔透镜的面型可以来源于球面,非球面,或者自由曲面,或者全息图。相位补偿层(304,404,504)通过补偿相位调制层(302,402,502)的相位变化,使得对于穿过透明元件(105,301,401,501)的光线透明。透明光学元件(105,301,401,501)可以被集成在汽车前挡风玻璃(107)上。微显示芯片(101)被安放在汽车仪表盘底下。抬头显示系统利用了前挡风玻璃(107)和仪表盘之间的汽车空间,大大降低了抬头显示的体积。

Description

一种紧凑、大视场角抬头显示系统 技术领域
本发明属于光学显示技术领域,尤其涉及一种紧凑、大视场角抬头显示系统。
背景技术
抬头显示(Head Up Display HUD)被已经被广泛的应用于汽车,轮船,飞机等方面。其特点是把显示的内容叠加在外界的世界上,使得驾驶员在驾驶时同时看到外界道路的情况和显示的信息。驾驶员在看显示信息的时候不用低头,大大的提高了驾驶安全性能以及驾驶的舒适性。目前汽车抬头显示主要的实现方式,是利用高亮度微型显示器和若干传统的透镜或反射镜来实现的。现有的抬头显示系统中,所有这些光学器件都要被安放在汽车仪表台底下。为了实现大的视场角(FOV),最后一面透镜需要相当大的孔径,导致抬头显示系统体积庞大。体积巨大限制了抬头显示的应用,只有在少数高端,大型的车辆上使用。
现在急需一种结构简单、体积小、成本低的抬头显示系统。
发明内容
鉴于上述现有技术中的不足之处,本发明的目的在于提供一种新的小体积的紧凑、大视场角抬头显示系统。
本发明所公开的一种抬头显示系统,它包括1)一个微型显示芯片;2)距该显示芯片一定距离的一个透明光学元件。该光学元件进一步包含了一个半反半透层,相位调制层,以及一个相位补偿层。该相位调制层对上述微显示芯片的光做控制,反射到人眼,使得光线在远处成为一个虚像;上述半反半透层还允许真实世界的一部分光穿过。显示的内容会被叠加到外界的真实世界上,不影响驾驶员的正常驾驶。
一种实现的方案为:该相位调制层上设有该半反半透层,从该微显示芯片发出光直接进入半反半透层,或通过上述辅助光学成像系统的光后进入该半反半透层;经该半反半透层的反射之后产生设定的相位调制,一方面反射到人眼中,另一方面该相位调制产生一个相对于该光学元件与人眼反方向位置的一个虚像;该相位补偿层通过补偿该相位调制层的相位变化,使得对于穿过该光学元件的光线达到没有相位调制之功效,以无干扰的进入到人眼中。
紧凑、大视场角抬头显示系统还可以包括:3)位于微型显示芯片和该透明元件中间的辅助光学成像系统。
所述微型显示芯片,可以是LCOS、LCD、DLP、OLED、Micro-LED等常用的微型显示器技术。该微型显示芯片,产生一个高亮度,小型的显示图像。在LCOS,LCD,DLP等显示技术中,该微型显示芯片还包括与之相关的光源照明模组。在LED,Micro-LED、OLED等自发光显示芯片中,可以去掉光源显示模组,达到更小的体积。
上述光学元件进一步包含了一个相位调制层,半反半透层,以及一个相位补偿层。该相位调制层结合半反半透层,对上述微显示芯片发出的且通过上述辅助光学成像系统的光做特定的控制,反射到人眼中,使得光线在远处成为一个虚像。所述半反半透层,使得一部分真实世界的光透过。所以一个虚拟的显示和真实世界叠加在一起,不影响驾驶员的正常驾驶。
在本发明的第一个实施例中,该相位调制面是一个全息结构。该全息结构可以用计算全息方法或者用两束激光相干记录的方法产生。该全息结构的设计要求是对上述微显示芯片通过该全息结构成一个虚像。
在本创明的另外的一个实施例中,该相位调制面可以是一个菲涅尔透镜,所谓菲涅尔透镜是保留一个透镜的面形,形状去掉透镜中对光线不起作用的平行平板部分,使得一个有一定厚度的透镜变成一个薄板,同时又保留透镜原有的功能。菲涅尔透镜的面型可以来源于球面,非球面,或者自由曲面,或者全息图。在设计过程中,用各种光学仿真软件,设计出球面,非球面和自由曲面,然后利用本行业工光学工程师所知道的方式,把这些有一定矢高的曲面做成菲涅耳透镜的形状。该相位调制面上还镀有半反半透层,从上述微显示芯片发出且通过上述辅助光学成像系统的光,经该半反半透镜的反射之后,就产生特定的相位调制,一方面会反射到人眼中,另外一方面所述相位调制产生的效果是产生一个位于该光学元件以外的一个虚像。
上述相位补偿层通过补偿相位调制层的相位变化,使得对于穿过该光学元件的光线完全没有相位调制,无干扰的进入到眼中,该光学元器件的光学作用就是一个既透明又能成像的器件。对外界世界的光没有作用,基本透明,而对于微型显示器的光又可以成一个虚像。
本专利公开的一种抬头显示系统,其特征在于进一步包含其他光学成 像系统,比如球面镜,反射镜,非球面,以及自由曲面,与所述透明光学元件配合使用。对微型显示器发出且被上述辅助光学成像系统放大的光成一个虚像,显示在所述光学元件的外部。这些光学元件还同时起到折叠光路的作用,使得除了最后一面光学元件之外,其他部分的光学系统的体积尽可能的小,可以被安放在汽车仪表盘下,从而可以适配更多的车型。辅助光学成像系统可以设置,当微型显示器发出的光进透明光学元件直接成一虚像时,也可以不需要辅助光学成像系统。
该透明光学元件外形呈平面结构或接近平面结构。进一步地,该透明光学元件外形呈平面结构或足够接近平面结构。比如,该透明光学元件的曲率足够的小,它可以被安装在汽车的挡风玻璃上。在本专利的另外一个实施例中,汽车玻璃的曲率被设计进系统的整体曲率中。
由于该元件对于外界世界的光是透明的,所以可以被直接集成在挡风玻璃上,并不影响驾驶员的正常使用。该抬头显示系统特点是最后一个透明光学器件被集成在挡风玻璃上。可以利用挡风玻璃和仪表台上已有的空间,只需要把一部分的光机集成在仪表台底下,只有这一部分集成在仪表台底下的光机体积才会对抬头显示器的安装产生影响。大大的缩小了抬头显示器光机需要的空间。使得抬头显示器可以被应用于各种大小车辆。
该相位调制面上还镀有半反半透层。半反半透层是指照射在其表面上部分的光线被反射,部分的光线被透射。其反射率R和透过率T可以是在0%到100%的任何区间内。半反半透层可以通过金属反射膜来实现,也可以利用高折射率的介质形成折射率梯度来实现。
在本发明的一个实施例中,上述半反半透层具有偏振选择性,只对某一个偏振状态的光反射,而对另外一个偏振状态的光透射。在这个实施例中,微显示芯片发射的光也被设置在这一偏振状态,所以微显示芯片发射 的光可以以一个很高的反射率被反射到人眼中,提高了显示的发光效率。同时也保持较高的透过率。
在本发明的另外一个实施例中,上述微显示芯片发出的光是红绿蓝的窄带光线,所述半反射层的介质反射层的反射波长区间和所述微显示芯片发射光波长区间接近,使得从上述微显示芯片发出的光,大部分被反射到眼球中,提高了显示的发光效率,同时也保持较高的透过率。
在本专利的另外一个实施例中,半反半透层进一步包含一个光-电或者光-光器件,其反射率和透过率可以被调节,以适应不同环境的光。所述光电器件可以是各种液晶,电致变色,电泳等器件。所述光光器件可以是各种光致变色器件。
上述一个相位补偿层,其作用是和相位调制层紧密配合在一起,二者相位刚好相反,互为补偿。对于穿透的光,二者相互抵消,不产生任何作用,所以使得外界的图像不受影响的,到达人的眼中,形成透明的显示。相位补偿层的加工工艺可以是用各种人们熟知的光学加工方式,和相位调制层分别加工制造,然后用光学胶贴合在一起。也可以在相位调制层加工成型之后,直接在其上用柔性光学材料填充,然后固化自动形成。
本发明公开了一种车辆抬头显示系统,其中成虚像的透明光学元件被安装在挡风玻璃上,实现了大视场角,小体积抬头显示。其优势在于:
●视场角大,显示面积大,可以显示更多的内容。
●由于透明光学元件曲率足够小,并且对穿透的光线没有作用,所以可以安放在汽车前挡风玻璃上。充分利用了原有空间。
●仪表盘下体积小,可以适配更多种车型。
附图说明
图1(a)为本发明的一个实施例的示意图,图1(b)为本发明的一个实施例包含有虚像的示意图。
图2为透明光学元件的一种结构示意图,其中相位结构是一种全息结构。
图3为透明光学元件的一种结构示意图,其中相位结构是一种菲涅尔面型。
图4为透明光学元件的一种结构示意图,其中相位结构是一种二元光学面型。
图5为透明光学元件的一种结构示意图,其中相位结构是一种全息面型。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明的范畴。
第一实施例
本发明的第一个实施例如图1(a)、1(b)所示。该实施例仅以汽车为例,说明本发明的应用方式。业内工程师可以把本实施例的概念应用到各种其他车辆和交通工具(如航空等)上,成一个与现实世界融合的虚像,就不脱离本发明的范畴。
微型显示芯片(微显示屏)101产生一个高亮度小型图像。该图像经辅助成像光学元件103,以及透明光学元件105,对司机(主要是指驾驶者的眼睛)111成一个放大的虚像112。如图1所示的人形虚像112仅是一个示例,核心在于将微型显示芯片产生的图像放大成虚像,并不是指虚像为人形。
透明光学元件105的外形呈平面结构或接近平面结构。进一步地,该透明光学元件外形呈平面结构或足够接近平面结构。该透明光学元件105的曲率可以为足够小,同时对外界的图像是透明的,可以集成在挡风玻璃107上,把关于行车的信息或者娱乐的信息显示在路面上。透明光学元件105呈现为厚度极小、曲率可以为足够小的类似平面结构,该透明光学元件105可以通过支架等单独结构设置在挡风玻璃107之前,也可以贴设在挡风玻璃107。当该透明光学元件105被汽车等厂家预先采购时,可以将挡风玻璃107的曲度与该透明光学元件105的曲度适配,直接集成在现行的挡风玻璃107上。透明光学元件105设置的位置主要是能使得司机在开车的时候不用 低头,就可以看到显示的信息为准。这种设计可以大大的增强了驾驶的安全性和舒适度。与传统汽车抬头显示不同,本专利透明光学元件105的一面安装在汽车的挡风玻璃107上,利用了仪表盘109和挡风玻璃107之间的大量空间。缩小了真正需要安装在仪表盘109以下车体内的空间,使得抬头显示器可以适用于各种车型。
上述微型显示芯片(微显示屏)101可以是常见的LCD,LED,LCOS、DLP、OLED、Micro-LED,电子纸eInk等微型显示器技术的一种,为了产生一个高亮度的图像,还可以进一步包括相关的光源,匀光器(diffuser),电子控制器,通讯模块,散热模块等。微显示芯片的不同种类并不脱离本专利的范畴。
为了进一步提高成像的质量,在微型显示芯片上还可以有一片或者多片辅助成像光学镜头(或称为辅助光学成像系统)103。它可以包括反射镜以调节光路的方向,折叠光路达到最小的体积,以及透镜,棱镜,非球面反射镜,自由曲面镜等业内工程师熟知的光学元器件,这些不同的元器件组合并不脱离本发明的保护范畴。
透明光学元件105的放大图在图3中给出,包括一个相位调制面302,一个半反半透层303,以及一个相位补偿层304。该相位调制层结合半反半透层,对上述微显示芯片101发出且被上述辅助成像光学系统103放大的光做特定的控制,反射到人的眼中,同时使得经前述光学系统的光在远处成为一个虚像。所述半反半透层303使得一部分真实世界的光透过。
上述相位补偿层304通过补偿相位调制层302的相位变化,使得透明光学元件105对于穿过该光学元件的光线,产生的相位扰动足够的小。没有相位调制,无干扰的进入到眼中,起到一个透明光学平板的作用。该光学元器件的光学作用就是一个既透明又能成像的器件。对外界世界的光没 有作用,基本透明,而对于仪表盘109下方光学系统发出的光又可以成一个虚像。
具体来说,该相位调制层302上可以设有该半反半透层303,从该微显示芯片101发出光直接进入半反半透层303,或通过上述辅助光学成像系统103的光后进入该半反半透层303;经该半反半透层的反射之后产生设定的相位调制,一方面反射到人眼中产生一个相对于该光学元件与人眼反方向位置的一个虚像;该相位补偿层通过补偿该相位调制层的相位变化,使得对于穿过该光学元件的光线达到没有相位调制之功效,以无干扰的进入到人眼中。
换个角度来说,光路设置为从该微显示芯片101发出通过上述辅助光学成像系统103的光后进入该半反半透层303,该半反半透层的反射之后产生设定的相位调制,一方面反射到人眼中,经该半反半透层的反射之后产生设定的相位调制,该相位调制产生一个相对于该光学元件与人眼反方向位置的一个虚像。该相位补偿层通过补偿该相位调制层的相位变化,对于穿过该光学元件的光线无干扰的进入到人眼。既透明又能成像的该光学元器件实现了大视场角的视觉效果,而且,光路的这种设计和光学器械的精而小,使得各器件可以安装在利用挡风玻璃和仪表台的各种可利用空间,达到适配的车型多的功效。该透明光学元件105曲率足够小,同时对外界的图像是透明的,可以集成在挡风玻璃107上,把关于行车的信息或者娱乐的信息显示在路面上。使得司机在开车的时候不用低头,就可以看到显示的信息,大大的增强了驾驶的安全性和舒适度。与传统汽车抬头显示不同,本专利透明光学元件105的一面安装在汽车的挡风玻璃107上,利用了仪表盘109和挡风玻璃107上的大量空间。使得真正需要安装在仪表盘109以下车体内的空间大大的缩小,使得抬头显示器可以适用于各种车型。
以下具体介绍透明光学元件的原理,并举几个例子来说明该元件。透明光学元件的第一核心之处在于:该相位补偿层通过补偿该相位调制层的相位变化,使得对于穿过该光学元件的光线达到没有相位调制之功效,以无干扰的进入到人眼中。其具体如下方式可以实现。可以具有纳米或微米级相位调制结构的相位调制层;2)具有纳米或微米级相位补偿结构的相位补偿层,其补偿相位调制层产生的相位变化;3)在相位调制层和相位补偿层之间的部分透明和反射层,其部分地反射光线并允许光线部分地穿过。可以重复上述结构多次以形成多层结构(从1,2到i-1,i)。不同的光线(从a,b….z,请注意英文字母仅用于表示不同的光线,不限于26个)在不同的位置和不同的角度穿过光学薄膜。
在光学中,光程长度(OPL)或光学距离是通过系统的不同路径光线(L1,L2,到Li)的几何长度与通过它的介质的折射率(n)的乘积,(OPL=L X N)。两个路径之间的光程长度的差异通常被称为光程差(OPD)。光程很重要,因为它决定光的相位并控制光传播时的干涉和衍射。相位调制层和相位补偿层之间的光程长度是OPD1。相位调制层和相位补偿层具有相反的光学相位,因此它们彼此补偿。通过整个薄膜的所有光线(a,b…z)的总光
Figure PCTCN2022101271-appb-000001
到n。
由于多层相位结构存在众多的设计的自由度,所以该相位结构可以实现复杂的光学的功能,满足各种成像的需求。
所述相位调制结构的光学制造工艺使用包括但不限于光学蚀刻,光学光刻,纳米压制,纳米压印等的方法生产。经过透明光学元件的光线经该半反半透层的反射之后产生设定的相位调制,该相位调制还产生一个相对于该光学元件与人眼反方向位置的一个虚像。
上述透明光学元件105中的相位调制结构进一步说明如图2,图3,图4,图5所示。其中一个实施例中(如图2所示),该相位结构可以以不同的方式实现,包括但不限于散射表面浮雕结构,各种光栅结构和计算全息 图(CGH)等。在一个实施例中,表面浮雕结构可以从全息记录的母版复制。相位调制层是计算全息图CGH结构,如图2(a)和(b)所示。作为一个例子,CGH结构可以通过基于点光源概念的计算方法来设计,其中对象在自发光点图2(a)中被分解。计算每个点源的基本全息图,并通过叠加所有基本全息图来合成最终的全息图。来自微显示芯片的光被反射到某个方向,成一个虚像。
在阅读说明书的其余部分后,本领域普通技术人员将更好地理解这些实施例的特征和以及其他实施例。存在不同的相位调制层,其可以将光重定向到具有不同分布角度的不同方向,这些变化并不脱离本发明所公开的技术和方法的范围。
在本发明的透明光学元件的一种具体实施例中,图3的实施例中上述透明光学元件301采用了菲涅尔面型。包括相位调制层302,相位调制层表面还涂覆有一层半透射/半反射层303,与相位调制层配合的相位补偿层304。
所述相位调制层302可以为改进的菲涅尔透镜,比如,透镜面且呈薄形结构的菲涅尔透镜,菲涅尔透镜302的面型可以来源于球面,非球面,或者自由曲面,或者全息图。该面型设计由光学设计软件产生,配合系统中的其他光学部分,对微显示芯片产生的图像产生一个放大的虚像。
所述相位补偿层304和相位调制层302紧密配合在一起,对于穿透的光,二者相位相互抵消,不产生任何作用,使得外界的图像可以不受影响的到达人的眼中,形成透明的显示。
图4是该透明光学元件401的另外一种实现方式。其中用到了二元光学结构。包括由计算机设计出来的二元光学结构的相位调制层402,表面配以独特的面形结构,表面镀半反半透的金属膜层、偏振膜或光学介质膜403,以及相位补偿层404。相位调制层402被设计成对微显示芯片101发出且被辅助光学成像系统103放大的光线成一个放大的虚像。调制面表面 的加工可以采用纳米压印方式,用计算机控制在模具上形成特定的表面形状,通过纳米压印的方式把它制作在光学基板上。
图5是该透明光学元件501的另外一种实现方式。其中用到了全息光学结构。包括由计算机设计出来的全息相位调制层502,表面配以独特的面形结构,表面镀半反半透的金属膜层或光学介质膜503,以及相位补偿层504。相位调制层502被设计成对微显示芯片101发出且被辅助光学成像系统103放大的光线成一个放大的虚像。调制面表面的加工可以采用纳米压印方式,用计算机控制在模具上形成特定的表面形状,通过纳米压印方式把它制作在光学基板上。也可以用相干光在光学基板上记录的方式。
图6是一个由计算机产生的全息相位调制层的例子。
在本发明的实施例中,该相位调制面上还镀有半反半透层。半反半透层是指照射在其表面上部分的光线被反射,部分的光线被透射。其反射率R和透过率T可以是在0%到100%的任何区间内。半反半透层可以用金属反射膜来实现,也可以利用高折射率的介质形成折射率梯度来实现。
在本发明的一个实施例中,上述半反半透层具有偏振选择性,只对某一个偏振状态的光反射,而对另外一个偏振状态的光透射。在这个实施例中,微显示芯片发射的光也被设置在这一偏振状态,所以微显示芯片发射的光可以以一个很高的反射率被反射到人眼中,提高了显示的发光效率,同时也保持较高的透过率。
在本发明的另外一个实施例中,上述微显示芯片发出的光是红绿蓝的窄带光线,所述半反射层的介质反射层的反射波长区间和所述微显示芯片发射光波长区间接近,使得从上述微显示芯片发出的光,大部分被反射到眼球中,提高了显示的发光效率,同时也保持较高的透过率。
在本专利的另外一个实施例中,半反半透层进一步包含一个光-电或者光-光器件,其反射率和透过率可以被调节,以适应不同环境的光。所述光电器件可以是各种液晶,电致变色,电泳等器件。所述光光器件可以是各种光致变色器件。
上述一个相位补偿层,其作用是和相位调制层紧密配合在一起,二者相位刚好相反,互为补偿。对于透射光路的光,二者相互抵消,不产生任何作用,所以使得外界的图像不受影响的,到达人眼中形成透明的显示。相位补偿层的加工工艺可以是用各种人们熟知的光学加工方式,和相位调制层分别加工制造,然后用光学胶贴合在一起。也可以在相位调制层加工成型之后,直接在其上用柔性光学材料填充,然后固化自动形成。
第二实例
在本发明的该实施例中,辅助光学元件103是备选器件,可以进一步降低系统的体积。比如,直接将微显示芯片和透明光学元件形成光通路。该相位调制层上设有该半反半透层,从该微显示芯片发出光直接进入半反半透层;经该半反半透层的反射之后产生设定的相位调制,一方面反射到人眼中,另一方面该相位调制产生一个相对于该光学元件与人眼反方向位置的一个虚像;该相位补偿层通过补偿该相位调制层的相位变化,使得对于穿过该光学元件的光线达到没有相位调制之功效,以无干扰的进入到人眼中。
综上所述,本发明提供了一种紧凑大视角抬头显示HUD系统,包括:微型显示芯片(微显示屏)、辅助光学成像系统和透明光学元件,微型显示芯片用于产生显示图像,辅助光学成像系统用于将来自微型显示芯片的图像放大,透明光学元件将被其他光学系统放大的光进一步放大成虚像。反 射型光学元件包括相位调制和相位补偿层,对于透射的光,二者相互抵消,不产生任何作用,使得外界的图像可以不受影响的,到达人的眼中,形成透明的显示。与传统汽车抬头显示不同,透明光学元件安装在汽车的挡风玻璃上,利用了仪表盘和挡风玻璃之间的大量空间。使得真正需要安装在仪表盘以下车体内的空间大大的缩小,使得抬头显示器可以适用于各种车型。
应当理解的是,本发明的系统应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (15)

  1. 一种紧凑、大视场角抬头显示系统,它包括1)一个微型显示芯片;2)距该显示芯片一定距离的一个透明且成虚像的光学元件,该光学元件进一步包含了一个半反半透层、相位调制层、以及一个相位补偿层;该相位调制层对上述微显示芯片的光做控制,反射到人眼,使得光线在远处成为一个放大的虚像;上述半反半透层还允许真实世界的一部分光穿过,该透明光学元件外形呈平面结构或足够接近平面结构。
  2. 权利要求项1所述的一种紧凑、大视场角抬头显示系统,其特征在于,还进一步包括辅助光学成像系统,该微型显示芯片发出的光经该辅助光学成像系统的处理后,再进入该透明光学元件。
  3. 如权利要求1或2所述的紧凑、大视场角抬头显示系统,所述“该相位调制层对上述微显示芯片的光做控制,反射到人眼,使得光线在远处成为一个放大的虚像;上述半反半透层还允许真实世界的一部分光穿过”进一步包括:
    该相位调制层上设有半反半透层,从该微显示芯片发出光直接进入半反半透层,或通过上述辅助光学成像系统的光后进入该半反半透层;经该半反半透层的反射之后产生设定的相位调制,一方面反射到人眼中产生一个相对于该光学元件与人眼反方向位置的一个虚像;该相位补偿层通过补偿该相位调制层的相位变化,使得对于穿过该光学元件的光线达到没有相位调制之功效,以无干扰的进入到人眼中。
  4. 权利要求1所述的一种紧凑、大视场角抬头显示系统,其特征在于,所述微型显示芯片为以下微型显示技术之一:LCOS,LCD,DLP,OLED, LED,Micro-LED。
  5. 权利要求1所述的一种紧凑、大视场角抬头显示系统,其特征在于,所述透明光学元件被集成在车辆前挡风玻璃上。
  6. 权利要求1所述的一种紧凑、大视场角抬头显示系统,其特征在于,进一步包含其他光学成像系统,所述其他光学系统由球面镜,反射镜,非球面,或自由曲面组成,和透明光学元件配合使用。
  7. 权利要求1所述的一种紧凑、大视场角抬头显示系统,其特征在于,所述相位调制面是一个全息结构,该全息结构把上述微显示芯片产生的图像成一个放大的虚像。
  8. 权利要求1所述的一种抬头显示系统,其特征在于,所述相位调制面是设置一个透镜面且呈薄形结构的菲涅尔透镜,该菲涅尔透镜产生的相位调制为一个球面镜,把上述微显示芯片产生的图像成一个放大的虚像。
  9. 权利要求1所述的一种紧凑、大视场角抬头显示系统,其特征在于所述相位调制面是设置一个透镜面形且呈薄形结构的菲涅尔透镜,该菲涅尔透镜产生的相位调制为一个非球面镜,把上述微显示芯片产生的图像成一个放大的虚像。
  10. 权利要求1所述的一种紧凑、大视场角抬头显示系统,其特征在于,所述相位调制面是设置一个透镜面形且呈薄形结构的菲涅尔透镜,该菲涅尔透镜产生的相位调制为一个自由曲面镜,把上述微显示芯片产生的图像成一个放大的虚像。
  11. 权利要求1所述的一种紧凑、大视场角抬头显示系统,其特征在于,所述半反射层为金属半反射层。
  12. 权利要求1所述的一种紧凑、大视场角抬头显示系统,其特征在于,所述半反射层为介质反射层。
  13. 权利要求1所述的一种紧凑、大视场角抬头显示系统,其特征在于,所述半反射层的介质反射层的反射波长区间和所述微显示芯片发射光波长区间接近,使得从上述微显示芯片发出的光,大部分被反射到眼球中。
  14. 权利要求1所述的一种紧凑、大视场角抬头显示系统,其特征在于,所述微显示芯片发射光具有一个特定的偏振状态,上述半反射层的反射光也被控制在此偏振状态,使得从上述微显示芯片发出的光大部分被反射到眼球中。
  15. 权利要求1所述的一种抬头显示系统,其特征在于所述半反射层的反射率和透过率配置成可调节,以适应不同环境的光。
PCT/CN2022/101271 2022-06-24 2022-06-24 一种紧凑、大视场角抬头显示系统 WO2023245660A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101271 WO2023245660A1 (zh) 2022-06-24 2022-06-24 一种紧凑、大视场角抬头显示系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101271 WO2023245660A1 (zh) 2022-06-24 2022-06-24 一种紧凑、大视场角抬头显示系统

Publications (1)

Publication Number Publication Date
WO2023245660A1 true WO2023245660A1 (zh) 2023-12-28

Family

ID=89379081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101271 WO2023245660A1 (zh) 2022-06-24 2022-06-24 一种紧凑、大视场角抬头显示系统

Country Status (1)

Country Link
WO (1) WO2023245660A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052956A (ja) * 2000-08-10 2002-02-19 Yazaki Corp 車両用表示装置
CN105882527A (zh) * 2016-04-18 2016-08-24 中国科学院上海光学精密机械研究所 一种车载信息投射系统
CN108535870A (zh) * 2017-03-06 2018-09-14 矢崎总业株式会社 显示图像投影系统
CN108535869A (zh) * 2017-03-06 2018-09-14 矢崎总业株式会社 显示图像投影设备和显示图像投影系统
CN108931851A (zh) * 2017-05-25 2018-12-04 苏州苏大维格光电科技股份有限公司 抬头显示系统及汽车
CN111133754A (zh) * 2017-04-23 2020-05-08 深圳光子晶体科技有限公司 具有相位调制层和相位补偿层的光学器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052956A (ja) * 2000-08-10 2002-02-19 Yazaki Corp 車両用表示装置
CN105882527A (zh) * 2016-04-18 2016-08-24 中国科学院上海光学精密机械研究所 一种车载信息投射系统
CN108535870A (zh) * 2017-03-06 2018-09-14 矢崎总业株式会社 显示图像投影系统
CN108535869A (zh) * 2017-03-06 2018-09-14 矢崎总业株式会社 显示图像投影设备和显示图像投影系统
CN111133754A (zh) * 2017-04-23 2020-05-08 深圳光子晶体科技有限公司 具有相位调制层和相位补偿层的光学器件
CN108931851A (zh) * 2017-05-25 2018-12-04 苏州苏大维格光电科技股份有限公司 抬头显示系统及汽车

Similar Documents

Publication Publication Date Title
US6545778B2 (en) Holographic display device and method for producing a transmission diffusion hologram suitable for it
US7656585B1 (en) Embedded relay lens for head-up displays or the like
JP5950233B2 (ja) シースルーディスプレイ装置及びシースルーディスプレイ装置を搭載した車両
US9632312B1 (en) Optical combiner with curved diffractive optical element
KR20080050669A (ko) 차량용 헤드업 디스플레이 장치
US20130229712A1 (en) Sandwiched diffractive optical combiner
JP7190873B2 (ja) Hudシステム及びhudのための光学素子
CN107843985A (zh) 增强现实抬头显示器系统及方法
KR100820898B1 (ko) 차량용 hud 시스템
JPH08123333A (ja) 投写ユニット
JPH1048562A (ja) ホログラフィック表示装置
WO2023245660A1 (zh) 一种紧凑、大视场角抬头显示系统
CN218567741U (zh) 一种紧凑且大视场角抬头显示系统
CN216361884U (zh) 一种基于dlp方案ar车载抬头显示器
CN117331220A (zh) 一种紧凑、大视场角抬头显示系统
JP2019152704A (ja) 表示システム、移動体
JPH06167671A (ja) ホログラムを用いた表示システム
CN216979429U (zh) 抬头显示装置
JPH036515A (ja) ヘッドアップディスプレイ装置
JP2020166072A (ja) ヘッドアップディスプレイ装置
US20240027756A1 (en) Reflective exit pupil replicator for hud system
US20230166595A1 (en) Head-up display apparatus
CN219916082U (zh) 一种显示装置、抬头显示器和交通工具
WO2023011199A1 (zh) 一种显示设备模组、显示设备以及图像显示方法
JP2001004953A (ja) 乗り物用表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947426

Country of ref document: EP

Kind code of ref document: A1