WO2023245580A1 - 反应釜的液位测量方法、装置及具有其的反应釜 - Google Patents
反应釜的液位测量方法、装置及具有其的反应釜 Download PDFInfo
- Publication number
- WO2023245580A1 WO2023245580A1 PCT/CN2022/100913 CN2022100913W WO2023245580A1 WO 2023245580 A1 WO2023245580 A1 WO 2023245580A1 CN 2022100913 W CN2022100913 W CN 2022100913W WO 2023245580 A1 WO2023245580 A1 WO 2023245580A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solvent
- liquid level
- reaction kettle
- real
- time
- Prior art date
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 206
- 238000000691 measurement method Methods 0.000 title claims abstract description 30
- 239000002904 solvent Substances 0.000 claims abstract description 268
- 238000006243 chemical reaction Methods 0.000 claims abstract description 227
- 238000005259 measurement Methods 0.000 claims abstract description 37
- 238000001514 detection method Methods 0.000 claims description 76
- 239000007789 gas Substances 0.000 claims description 16
- 238000002955 isolation Methods 0.000 claims description 9
- 239000012495 reaction gas Substances 0.000 claims description 5
- 238000003860 storage Methods 0.000 claims description 4
- 238000012986 modification Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 239000007810 chemical reaction solvent Substances 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 229910003002 lithium salt Inorganic materials 0.000 description 4
- 159000000002 lithium salts Chemical class 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 239000010887 waste solvent Substances 0.000 description 3
- 206010024769 Local reaction Diseases 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/14—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
Definitions
- the liquid level of the reaction vessel cannot be well detected.
- the reaction There will be a blocking surface on the inner wall of the container that interferes with the radar level gauge.
- the existing radar level gauge is measuring, the interference clutter is larger than the detection echo, and the radar level gauge cannot accurately measure the liquid level.
- embodiments of the present application provide a liquid level measurement method and device for a reaction kettle and a reaction kettle having the same.
- the liquid level measurement method and device can adapt to the complex internal structure of the reaction kettle and complex reaction conditions. It reduces the interference of the complex internal structure of the reactor and the complex reaction conditions on the liquid level measurement.
- the first aspect of this application provides a liquid level measurement method for a reaction kettle.
- the liquid level measurement method includes: obtaining the solvent state of the solvent in the reaction kettle; and obtaining the real-time solvent that the solvent is in the chemical reaction state based on the solvent state being the chemical reaction state. Density and real-time solvent hydraulic pressure; calculate the solvent level of the solvent based on real-time solvent density and real-time solvent hydraulic pressure.
- the liquid level measurement method provided in this embodiment can adapt to the interior of the reactor and the complex reaction conditions, and reduces the interference of the complex internal structure of the reactor and the complex reaction conditions on the liquid level measurement.
- the liquid level measurement method of the reaction kettle proposed in the embodiment of the present application is to measure the solvent liquid level based on real-time solvent density and real-time solvent hydraulic pressure, so that there is no need to emit liquid level detection waves to the solvent liquid surface, thereby reducing the internal cost of the reaction kettle.
- the influence of complex structure and complex reaction conditions on the liquid level detection wave improves the reliability of liquid level detection.
- the real-time solvent hydraulic pressure is the real-time solvent hydraulic pressure at a specified height of the reactor, and calculating the solvent level of the solvent based on the real-time solvent density and the real-time solvent hydraulic pressure includes: calculating the specified height and the solvent based on the real-time solvent density and the real-time solvent hydraulic pressure. The height difference between liquid levels, and the solvent level based on the sum of the specified height and the height difference.
- obtaining the real-time solvent density and the real-time solvent pressure when the solvent is in a chemical reaction state specifically includes: obtaining the real-time solvent pressure when the solvent is in a chemical reaction state and the real-time reaction pressure inside the reactor; according to the real-time solvent pressure and the real-time reaction The difference in air pressure determines the real-time solvent hydraulic pressure.
- Embodiments of the present application propose that the real-time solvent pressure detected by the hydraulic sensor is subtracted from the real-time air pressure to obtain the real-time solvent hydraulic pressure, and then the solvent liquid level is calculated based on the real-time solvent hydraulic pressure, thereby improving the calculation accuracy of the solvent liquid level.
- a second aspect of the application provides a liquid level measuring device for a reaction kettle.
- the liquid level measuring device is used to perform the liquid level measuring method for a reaction kettle according to the first aspect of the application.
- the liquid level measuring device includes monitoring the real-time temperature of the reaction kettle. Density sensor for solvent density, hydraulic pressure sensor for monitoring the real-time solvent pressure of the reactor, and air pressure sensor for monitoring the real-time reaction pressure of the reactor.
- the liquid level measurement device provided in this embodiment can adapt to the interior of the reactor and complex reaction conditions, reducing the interference of the complex internal structure of the reactor and the complex reaction conditions on liquid level measurement.
- the liquid level measurement device of the reaction kettle proposed in the embodiment of the present application measures the solvent liquid level based on the real-time solvent density and real-time solvent hydraulic pressure, thereby eliminating the need to emit liquid level detection waves to the solvent liquid surface, thereby reducing the amount of space inside the reaction kettle.
- the influence of complex structure and complex reaction conditions on the liquid level detection wave improves the working reliability of the liquid level measuring device.
- the liquid level measuring device further includes a detection tube connected to the reaction kettle, and the density sensor, hydraulic pressure sensor and air pressure sensor are all connected to the reaction kettle through the detection tube.
- the liquid level measurement device further includes a control valve disposed on the detection tube, and the liquid level measurement device controls the on/off of the detection tube through the control valve.
- the controller controls the on and off of the solenoid valve, and the control valve controls the on and off of the detection tube.
- the liquid level measuring device further includes a bypass pipe connected to the reaction kettle and disposed along the height direction of the reaction kettle, and the density sensor, hydraulic pressure sensor and air pressure sensor are all disposed in the bypass pipe.
- the bypass pipe is located outside the reactor, which can reduce the impact of the complex structure in the reactor on the solvent level measurement, and can also reduce the interference of the complex working conditions of the solvent in the reactor on the solvent level measurement.
- the bottom side wall of the bypass pipe is connected to the bottom of the reaction kettle through the liquid flow pipe
- the top side wall of the bypass pipe is connected to the top of the reaction kettle through the gas flow pipe.
- the liquid flow pipe is used to make the hydraulic pressure inside the bypass pipe consistent with the hydraulic pressure inside the reactor
- the air flow pipe is used to make the air pressure inside the bypass pipe consistent with the air pressure inside the reactor, thereby reducing the impact of the air pressure difference between the two on the liquid level. Measurement effects.
- the liquid level measuring device further includes a liquid level detection sensor, which is disposed on the top of the bypass pipe and faces the solvent liquid level inside the bypass pipe.
- a liquid level detection sensor which is disposed on the top of the bypass pipe and faces the solvent liquid level inside the bypass pipe.
- Embodiments of the present application use liquid level detection sensors to double detect the solvent level, which can improve the detection accuracy of the solvent level, thereby reducing the risk of errors in one liquid level detection method.
- the liquid level measuring device further includes an isolation valve, which is disposed in the bypass pipe and located between the solvent liquid level and the liquid level detection sensor.
- the solvent in the reaction kettle may cause local tumbling and local waves during the reaction.
- embodiments of the present application propose to isolate the liquid level detection sensor and the solvent through an isolation valve.
- the liquid level measuring device further includes a disassembly valve, and both the liquid flow pipe and the gas flow pipe of the reaction kettle are detachably connected to the reaction kettle through the disassembly valve.
- the liquid level measuring device can be removed from the reactor by disassembling the valve, thereby facilitating maintenance and replacement of the liquid level measuring device.
- the liquid level measuring device further includes: an acquisition module, used to acquire the solvent state of the solvent in the reaction kettle; and, according to the chemical reaction state of the solvent state, to acquire the real-time solvent density of the solvent in the chemical reaction state and the real-time Solvent hydraulic pressure; calculation module used to calculate the solvent level of the solvent based on real-time solvent density and real-time solvent hydraulic pressure.
- the liquid level measurement device further includes a controller provided with a computer-readable storage medium and an acquisition module and a calculation module.
- a third aspect of the present application provides a reaction kettle, which includes a liquid level measuring device of the reaction kettle according to the second aspect of the present application.
- the liquid level measurement method provided in this embodiment can adapt to the interior of the reactor and the complex reaction conditions, and reduces the interference of the complex internal structure of the reactor and the complex reaction conditions on the liquid level measurement.
- the liquid level measurement method of the reaction kettle proposed in the embodiment of the present application is to measure the solvent liquid level based on real-time solvent density and real-time solvent hydraulic pressure, so that there is no need to emit liquid level detection waves to the solvent liquid surface, thereby reducing the internal cost of the reaction kettle.
- the influence of complex structure and complex reaction conditions on the liquid level detection wave improves the reliability of liquid level detection.
- Figure 1 is a schematic structural diagram of a liquid level measuring device of a reactor according to some embodiments of the present application
- Figure 2 is a schematic structural diagram of a liquid level measuring device of a reactor according to other embodiments of the present application.
- Figure 3 is a flow chart of a liquid level measurement method for a reactor in some embodiments of the present application.
- Figure 4 is a structural block diagram of a controller of a reactor according to some embodiments of the present application.
- reaction kettle includes a lithium salt reaction kettle, an acidic solvent reaction kettle or an alkaline solvent reaction kettle, etc.
- the following description of the reaction kettle, liquid level measurement method and liquid level measurement device of this application is based on the lithium salt reaction kettle.
- the preferred embodiment does not limit the scope of protection of the embodiments of the present application.
- the liquid level measurement method and device of the reaction kettle can also be applied to other types of reaction kettles.
- the reaction kettle 100 proposed in the embodiment of the present application mainly includes a kettle body 10 and a liquid level measuring device 20.
- the inside of the kettle body 10 forms a holding chamber for accommodating solvents.
- the liquid level measuring device 20 is connected with the kettle body 10 and is used to measure the content of the holding chamber.
- Solvent level because the structure and working conditions of the kettle 10 are relatively complex, especially the refrigeration coil inside the reactor is very complex, if the conventional ultrasonic liquid level measurement method is used, the ultrasonic waves will collide with the complex inside the kettle 10 Interference clutter will be formed behind the internal structure. When the interference clutter is larger than the detection echo, the ultrasonic wave cannot accurately measure the solvent level.
- the chemical foam or chemical gas generated by the chemical reaction will also affect the ultrasonic measurement of the solvent level.
- the liquid level measurement method of the reaction kettle 100 proposed by the embodiment of the present application is to measure the solvent liquid level based on real-time solvent density and real-time solvent hydraulic pressure, thereby eliminating the need to emit liquid level detection waves to the solvent liquid surface, thereby reducing
- the complex internal structure of the reactor 100 and the complex reaction conditions affect the liquid level detection wave, thereby improving the reliability of the liquid level detection.
- obtaining the real-time solvent density and the real-time solvent pressure when the solvent is in a chemical reaction state specifically includes: obtaining the real-time solvent pressure when the solvent is in a chemical reaction state and the real-time reaction pressure inside the reactor 100; according to the real-time solvent pressure The difference from the real-time reaction gas pressure determines the real-time solvent hydraulic pressure.
- the reaction kettle 100 when a chemical reaction occurs inside the reaction kettle 100, several different solvents will react. During the chemical reaction of the solvents, the gas phase pressure inside the reaction kettle 100 also changes. It is located at the solvent liquid level. The increase or decrease in air pressure above will affect the real-time solvent hydraulic pressure detected by the hydraulic sensor 22.
- the real-time solvent pressure detected by the hydraulic sensor 22 is actually the sum of the real-time solvent hydraulic pressure and the real-time air pressure. At this time, if the real-time solvent pressure detected directly by the hydraulic sensor 22 If the real-time solvent pressure calculates the solvent level of the reaction kettle 100, the calculation of the solvent level will be distorted.
- the second aspect of the present application provides a liquid level measuring device 20 for a reactor 100.
- the liquid level measuring device 20 is used to perform the liquid level measuring method for the reactor 100 of the first aspect of the present application.
- the liquid level measuring device 20 includes a density sensor 21 for monitoring the real-time solvent density of the reaction kettle 100 , a hydraulic pressure sensor 22 for monitoring the real-time solvent pressure of the reaction kettle 100 , and a gas pressure sensor 23 for monitoring the real-time reaction gas pressure of the reaction kettle 100 .
- the density sensor 21 can be a capacitive liquid density sensor 21.
- the capacitive liquid density sensor 21 can use the different buoyancy of the standard object in different liquids to be measured, thereby causing the distance between the two plates of the capacitor connected to the standard object. Different capacitance changes can reduce the interference of the internal structure of the reactor 100 and the reaction state of the solvent on the detection of the solvent density.
- the hydraulic sensor 22 can be a strain gauge pressure sensor, a ceramic pressure sensor or a diffused silicon pressure sensor. These three types of hydraulic sensors 22 can reduce the interference of the internal structure of the reactor 100 and the solvent reaction state on real-time solvent pressure detection.
- the embodiment of the present application does not limit the installation positions of the density sensor 21 , the hydraulic sensor 22 and the air pressure sensor 23 in the reactor 100 , because the density sensor 21 , the hydraulic sensor 22 and the air pressure sensor 23 are already It can be directly installed in the reaction kettle 100, or can be connected to the reaction kettle 100 through an intermediate component. Both installation methods belong to the protection scope of the embodiments of the present application.
- the liquid level measurement device 20 also includes a detection tube 201 connected to the reaction kettle 100.
- the density sensor 21, the hydraulic sensor 22 and the air pressure sensor 23 all communicate with the reaction through the detection tube 201.
- Cauldron 100 connected.
- the detection tube 201 can also play a buffering role to reduce the phenomenon that the solvent in the reaction kettle 100 directly contacts and damages the density sensor 21, the hydraulic sensor 22 and the air pressure sensor 23.
- the liquid level measurement device 20 further includes a control valve disposed on the detection pipe 201 , and the liquid level measurement device 20 controls the opening and closing of the detection pipe 201 through the control valve.
- the detection pipe 201 of the density sensor 21 is provided with a first control valve 211
- the detection pipe 201 of the hydraulic sensor 22 is provided with a second control valve 221
- the detection pipe 201 of the air pressure sensor 23 is provided with a third control valve 231
- the control valve can be a solenoid valve.
- the control valve is electrically connected to the controller 40 of the reaction kettle 100.
- the controller 40 controls the on and off of the solenoid valve, and controls the on and off of the detection tube 201 through the control valve.
- the detection tube 201 can be controlled to be disconnected. At this time, there is no need to detect the solvent level of the reaction kettle 100.
- the detection tube 201 can be controlled to be connected. At this time, the solvent level of the reaction kettle 100 needs to be detected. Solvent level.
- the embodiment of the present application proposes to control the working status of the corresponding sensor according to the working status of the reactor 100, thereby reducing the failure phenomenon of the corresponding sensor caused by long-term working and improving the service life of the sensor. Furthermore, since the reaction kettle 100 is provided with a reaction solvent, when the reaction solvent is abnormal, such as the temperature is too high and the reaction corrodes the sensor, the detection tube 201 can be temporarily closed, and then the sensor can be replaced with a sensor that can adapt to the reaction solvent.
- the liquid level measuring device 20 also includes a bypass pipe 30 connected with the reaction kettle 100 and disposed along the height direction of the reaction kettle 100 , a density sensor 21 , a hydraulic sensor 22 and an air pressure sensor.
- the sensors 23 are all arranged in the bypass pipe 30 .
- the bypass pipe 30 is connected to the reaction kettle 100 using the connecting pipe principle, so that the solvent in the reaction kettle 100 can flow to the bypass pipe 30.
- the solvent in the bypass pipe 30 is connected to the reaction kettle 100.
- Solvent equivalent including density, hydraulic pressure and height equivalent
- the purpose of measuring the solvent in the reaction kettle 100 can be achieved by measuring the solvent in the bypass pipe 30.
- the reason why this application detects the solvent through the bypass pipe 30 is that Because the bypass pipe 30 is located outside the reaction kettle 100, the influence of the complex structure in the reaction kettle 100 on the solvent level measurement can be reduced, and the interference of the complex working conditions of the solvent in the reaction kettle 100 on the solvent level measurement can be reduced.
- bypass pipe 30 is set as a vertical pipe, and the bypass pipe 30 is provided with a plurality of installation positions for installing the density sensor 21, the hydraulic sensor 22, and the air pressure sensor 23.
- the bypass pipe 30 is connected with the degree sensor, the hydraulic sensor 22, and the air pressure sensor. 23 constitute the detection module, so that there is no need to provide installation positions for the density sensor 21, the hydraulic sensor 22 and the air pressure sensor 23 on the reactor 100, thus reducing the structural modification of the reactor 100.
- the embodiment of the present application proposes to obtain the parameters of the solvent in the reaction kettle 100 based on the parameters of the solvent in the bypass pipe 30, thereby improving the detection accuracy and reducing the structural modification of the reaction kettle 100.
- the bottom side wall of the bypass pipe 30 is connected to the bottom of the reaction kettle 100 through the liquid flow pipe 31, and the top side wall of the bypass pipe 30 is connected to the reaction kettle 100 through the gas flow pipe 32.
- the top of the cauldron 100 is connected to the bottom of the reaction kettle 100 through the liquid flow pipe 31, and the top side wall of the bypass pipe 30 is connected to the reaction kettle 100 through the gas flow pipe 32.
- the embodiment of the present application proposes to connect the internal gas of the bypass pipe 30 to the internal gas of the reaction kettle 100, thereby improving the solvent level measurement through the bypass pipe 30. Calculation accuracy of solvent level in reactor 100.
- the liquid level measuring device 20 further includes a liquid level detection sensor 35, which is disposed on the top of the bypass pipe 30 and faces the solvent in the bypass pipe 30.
- the solvent level of the bypass pipe 30 can be directly detected through the liquid level detection sensor 35.
- the liquid level detection sensor 35 includes ultrasonic waves. Sensors, infrared sensors, etc.
- the embodiment of the present application uses the liquid level detection sensor 35 to double detect the solvent level, which can improve the detection accuracy of the solvent level, thereby reducing the risk of errors in one liquid level detection method.
- the liquid level measuring device 20 further includes an isolation valve 36 , which is disposed in the bypass pipe 30 and located between the solvent liquid level and the liquid level detection sensor 35 .
- the solvent in the reaction kettle 100 may undergo local tumbling and local waves during the reaction process.
- the embodiment of the present application proposes to isolate the solvent through an isolation valve 36 Liquid level detection sensor 35 and solvent.
- the liquid level measuring device 20 can be removed from the reaction kettle 100 by disassembling the valve 33, thereby facilitating maintenance and replacement of the liquid level measuring device 20.
- the disassembly valve 33 can be provided at the joint or flange at a specified height, thereby reducing structural modifications to the reaction kettle 100 .
- the third aspect of the present application provides a reaction kettle 100, which includes the liquid level measuring device 20 of the reaction kettle 100 according to the second aspect of the present application.
- reaction kettle 100 includes a lithium salt reaction kettle 100, an acidic solvent reaction kettle 100 or an alkaline solvent reaction kettle 100, etc.
- the embodiments of the present application only illustrate the structure of the reaction kettle 100 related to the invention. It does not mean that the reactor 100 only has these structures, and other structures on the reactor 100 will not be described one by one here.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
一种反应釜(100)的液位测量方法、装置(20)及具有其的反应釜(100)。液位测量方法包括:获取反应釜(100)内溶剂的溶剂状态;根据溶剂状态为化学反应状态,获取溶剂处于化学反应状态的实时溶剂密度以及实时溶剂液压;根据实时溶剂密度以及实时溶剂液压计算溶剂的溶剂液位。液位测量装置(20)能够适应反应釜(100)的内部和复杂的反应工况,减少了反应釜(100)的内部复杂结构和复杂反应工况对液位测量的干扰,提高了液位测量装置(20)的工作可靠性。
Description
本申请实施例涉及反应容器技术领域,具体涉及一种反应釜的液位测量方法、装置及具有其的反应釜。
现有的反应容器由于自身结构较为复杂以及内部溶剂的工作状态会出现实时变化的情况,导致反应容器的液位不能够得到很好的检测,例如,在新型材料锂盐的生产过程中,反应容器的内壁会出现干扰雷达液位计的阻挡面,造成现有雷达液位计测量时,干扰杂波大于检测回波,雷达液位计无法准确测量液位。
发明内容
鉴于上述问题,本申请的实施例提供了一种反应釜的液位测量方法、装置及具有其的反应釜,液位测量方法、装置能够适应反应釜的内部复杂结构和复杂的反应工况,减少了反应釜的内部复杂结构和复杂反应工况对液位测量的干扰。
本申请的第一方面提供了一种反应釜的液位测量方法,液位测量方法包括:获取反应釜内溶剂的溶剂状态;根据溶剂状态为化学反应状态,获取溶剂处于化学反应状态的实时溶剂密度以及实时溶剂液压;根据实时溶剂密度以及实时溶剂液压计算溶剂的溶剂液位。
本实施例提供的液位测量方法能够适应反应釜的内部和复杂的反应工况,减少了反应釜的内部复杂结构和复杂反应工况对液位测量的干扰。具体地,本申请实施例提出的反应釜的液位测量方法是根据实时溶剂密度以及实时溶剂液压测量溶剂液位,从而不需要向溶剂液面发射液位检测波,以此减少反 应釜的内部复杂结构和复杂的反应工况对液位检测波的影响,提高了液位检测的可靠性。
在一些实施例中,实时溶剂液压为反应釜的指定高度处的实时溶剂液压,根据实时溶剂密度以及实时溶剂液压计算溶剂的溶剂液位包括:根据实时溶剂密度以及实时溶剂液压计算指定高度与溶剂液面之间的高度差,以及根据指定高度与高度差的和确定溶剂液位。通过检测指定高度处的实时溶剂液压,可以提高液压传感器的设置位置的灵活性,从而不需要将液压传感器设置于反应釜的底部,将液压传感器设置于反应釜的侧壁的指定位置即可,方便在反应釜的侧壁设置检测管。
在一些实施例中,获取溶剂处于化学反应状态的实时溶剂密度以及实时溶剂液压具体包括:获取溶剂处于化学反应状态的实时溶剂压以及反应釜的内部的实时反应气压;根据实时溶剂压与实时反应气压的差值确定实时溶剂液压。本申请的实施例提出了将液压传感器检测到的实时溶剂压减去实时气压得到实时溶剂液压,然后再通过该实时溶剂液压计算溶剂液位,以此提高溶剂液位的计算准确性。
本申请的第二方面提供了一种反应釜的液位测量装置,液位测量装置用于执行本申请的第一方面的反应釜的液位测量方法,液位测量装置包括监测反应釜的实时溶剂密度的密度传感器、监测反应釜的实时溶剂压的液压传感器以及监测反应釜的实时反应气压的气压传感器。
本实施例提供的液位测量装置能够适应反应釜的内部和复杂的反应工况,减少了反应釜的内部复杂结构和复杂反应工况对液位测量的干扰。具体地,本申请实施例提出的反应釜的液位测量装置是根据实时溶剂密度以及实时溶剂液压测量溶剂液位,从而不需要向溶剂液面发射液位检测波,以此减少反应釜的内部复杂结构和复杂的反应工况对液位检测波的影响,提高了液位测量装置的工作可靠性。
在一些实施例中,液位测量装置还包括与反应釜连通的检测管,密度传感器、液压传感器以及气压传感器均通过检测管与反应釜连通。通过将密度传感器、液压传感器以及气压传感器均通过检测管与反应釜连通,从而不需要将密度传感器、液压传感器以及气压传感器均设置于反应釜,可以减少对 反应釜的结构改造,以及提高了密度传感器、液压传感器以及气压传感器的位置灵活性。
在一些实施例中,液位测量装置还包括设置于检测管的控制阀,液位测量装置通过控制阀控制检测管的通断。通过控制器控制电磁阀的通断,通过控制阀控制检测管的通断,当反应釜处于闲置状态时,可以控制检测管断开,此时,不需要检测反应釜的溶剂液位,以此减少相应传感器长时间工作导致失效的现象。
在一些实施例中,液位测量装置还包括与反应釜连通并沿反应釜的高度方向设置的旁通管,密度传感器、液压传感器以及气压传感器均设置于旁通管。旁通管位于反应釜的外部,可以减少反应釜内的复杂结构对溶剂液位测量的影响,还可以减少反应釜内溶剂的复杂工况对溶剂液位测量的干扰。
在一些实施例中,旁通管的底部侧壁通过液流管连通于反应釜的底部,旁通管的顶部侧壁通过气流管连通于反应釜的顶部。通过液流管使旁通管内部的液压与反应釜内部的液压一致,通过气流管使旁通管内部的气压与反应釜内部的气压一致,以此减少两者之间的气压差对液位测量的影响。
在一些实施例中,液位测量装置还包括液位检测传感器,液位检测传感器设置于旁通管的顶部并面向旁通管的内部的溶剂液面。本申请的实施例通过液位检测传感器对溶剂液位进行双重检测,可以提高溶剂液位的检测准确性,以此降低一种液位检测方式出现失误的风险。
在一些实施例中,液位测量装置还包括隔离阀,隔离阀设置于旁通管并位于溶剂液面与液位检测传感器之间。反应釜内的溶剂在反应过程中可能出现局部翻滚和局部波浪,为了减少溶剂上涌至液位检测传感器的现象,本申请的实施例提出了通过隔离阀隔断液位检测传感器与溶剂。
在一些实施例中,液位测量装置还包括拆卸阀,反应釜的液流管和气流管均通过拆卸阀可拆卸地连通至反应釜。通过拆卸阀可以将液位测量装置从反应釜上拆除,从而方便对液位测量装置进行维护和更换。
在一些实施例中,液位测量装置还包括:获取模块,用于获取反应釜内溶剂的溶剂状态;以及用于根据溶剂状态为化学反应状态,获取溶剂处于化学反应状态的实时溶剂密度以及实时溶剂液压;计算模块,用于根据实时溶 剂密度以及实时溶剂液压计算溶剂的溶剂液位。
在一些实施例中,液位测量装置还包括控制器,控制器设置有计算机可读存储介质以及获取模块和计算模块。
本申请的第三方面提供了一种反应釜,反应釜包括根据本申请的第二方面的反应釜的液位测量装置。
本实施例提供的液位测量方法能够适应反应釜的内部和复杂的反应工况,减少了反应釜的内部复杂结构和复杂反应工况对液位测量的干扰。具体地,本申请实施例提出的反应釜的液位测量方法是根据实时溶剂密度以及实时溶剂液压测量溶剂液位,从而不需要向溶剂液面发射液位检测波,以此减少反应釜的内部复杂结构和复杂的反应工况对液位检测波的影响,提高了液位检测的可靠性。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一些实施例的反应釜的液位测量装置的结构示意图;
图2为本申请另一些实施例的反应釜的液位测量装置的结构示意图;
图3为本申请一些实施例的反应釜的液位测量方法的流程图;
图4为本申请一些实施例的反应釜的控制器的结构框图。
具体实施方式中的部分附图标号如下:
100反应釜;
10釜体;
20液位测量装置,201检测管,21密度传感器,211第一控制阀,22液 压传感器,221第二控制阀,23气压传感器,231第三控制阀;
30旁通管,31液流管,32气流管,33拆卸阀,34排污阀,35液位检测传感器,36隔离阀,37可拆卸底板;
40控制器,410计算机可读存储介质,420获取模块,430计算模块。
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个), 同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“垂直”“平行”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
需要说明的是,反应釜包括锂盐反应釜、酸性溶剂反应釜或者碱性溶剂反应釜等,下文通过锂盐反应釜阐述本申请的反应釜、液位测量方法以及液位测量装置只是本申请的优选实施例,并不是对本申请实施例的保护范围的限制,例如,根据本申请的其他实施例,反应釜的液位测量方法以、装置还可以应用于其他类型的反应釜。
本申请实施例提出的反应釜100主要包括釜体10和液位测量装置20,釜体10的内部形成容纳溶剂的容纳腔,液位测量装置20与釜体10连通,用于测量容纳腔的溶剂液位,由于釜体10的结构和工况均较为复杂,尤其是反应釜内部的冷冻盘管非常复杂,如果采用常规的超声波式的液位测量方式,超声波在釜体10内碰撞复杂的内部结构后会形成干扰杂波,当干扰杂波大于检测回波时,导致超声波无法准确测量溶剂液位。当釜体10的内部发生化学反应时,化学反应产生的化学泡沫或者化学气体也会影响超声波测量溶剂液位。
如图1所示,为了解决现有反应釜所存在的溶剂液位难以测量的技术问题,本申请的第一方面提供了一种反应釜100的液位测量方法,液位测量方 法包括:获取反应釜100内溶剂的溶剂状态;根据溶剂状态为化学反应状态,获取溶剂处于化学反应状态的实时溶剂密度以及实时溶剂液压;根据实时溶剂密度以及实时溶剂液压计算溶剂的溶剂液位。
在本实施例中,本申请实施例提出的反应釜100的液位测量方法是根据实时溶剂密度以及实时溶剂液压测量溶剂液位,从而不需要向溶剂液面发射液位检测波,以此减少反应釜100的内部复杂结构和复杂的反应工况对液位检测波的影响,提高了液位检测的可靠性。
具体地,当反应釜100的内部发生化学反应时,几种不同的溶剂会发生反应,发生反应的过程中,反应釜100内部的气相压力(包括位于溶剂的上方的反应气体的气压)及溶剂密度也是变化的,本申请的实施例提出了根据公式:
P=ρgh计算液位深度,然后根据液位深度计算溶剂液位,其中,P为实时溶剂液压,ρ为实时溶剂密度,h待检测点的液位深度。
由此可见,本申请实施例提供的液位测量方法能够适应反应釜100的内部和复杂的反应工况,减少了反应釜100的内部复杂结构和复杂反应工况对液位测量的干扰。该液位测量方法不涉及到溶剂液位表面的测量,也不涉及超声波或者电磁波,可以减少反应釜100的内部结构和工作状态对溶剂液位的影响,而且能够实时获取反应釜100的溶剂液位,以此来控制溶剂液位的瞬时增加或者减小对反应釜100的工作状态的影响。
进一步地,本申请实施例提供的液位测量方法不仅可以用于检测反应釜100的实时溶剂液位,还可以根据检测到的实时溶剂密度以及实时溶剂液压确定溶剂的实时化学反应状态,以此为判断化学反应状态的是否正常提供数据支撑,达到了对反应釜100进行多方位检测的目的。
另外,需要说明的是,本申请实施例中所述的实时溶剂液压并未限定反应釜100的具体高度处的实时溶剂液压,实时溶剂液压包括了反应釜100底部的实时溶剂液压或者反应釜100的指定高度处的实时溶剂液压,对应地,需要在釜底部的底部或者反应釜100的指定高度处设置液压传感器22,通过反应釜100底部的实时溶剂液压计算出的液位即为反应釜100的溶剂液位,通过反应釜100的指定高度处的实时溶剂液压计算出的液位加上指定高度即 为反应釜100的溶剂液位。
根据本申请的一些实施例,可选地,实时溶剂液压为反应釜100的指定高度处的实时溶剂液压,根据实时溶剂密度以及实时溶剂液压计算溶剂的溶剂液位包括:根据实时溶剂密度以及实时溶剂液压计算指定高度与溶剂液面之间的高度差,以及根据指定高度与高度差的和确定溶剂液位。
在本实施例中,通过检测指定高度处的实时溶剂液压,可以提高液压传感器22的设置位置的灵活性,从而不需要将液压传感器22设置于反应釜100的底部,将液压传感器22设置于反应釜100的侧壁的指定位置即可,方便在反应釜100的侧壁设置检测管201。进一步地,指定高度还可以根据反应釜100的结构而定,例如,当反应釜100的侧壁设置有接头或者法兰时,可以将液压传感器22通过检测管201设置于指定高度处的接头或者法兰处,以此来减少对反应釜100的结构改造。
另外,密度传感器21和液压传感器22的具体设置位置还可以根据反应釜100的溶剂反应状态而定,例如,当反应釜100的液位不一致甚至出现局部翻滚和局部波浪时,还可以在反应釜100的多个位置处设置多个液压传感器22和多个密度传感器21,通过多个液压传感器22和多个密度传感器21检测反应釜100的多处溶剂液位,以此确定溶剂液位的平整度以及局部的溶剂液位是否翻滚和波浪现象。
进一步地,多个液压传感器22和多个密度传感器21还用于检测溶剂反应状态的均衡性,以此来确定溶剂是否出现局部反应强烈或者局部反应迟钝的现象。
根据本申请的一些实施例,获取溶剂处于化学反应状态的实时溶剂密度以及实时溶剂液压具体包括:获取溶剂处于化学反应状态的实时溶剂压以及反应釜100的内部的实时反应气压;根据实时溶剂压与实时反应气压的差值确定实时溶剂液压。
在本实施例中,当反应釜100的内部发生化学反应时,几种不同的溶剂会发生反应,在溶剂发生化学反应的过程中,反应釜100内部的气相压力也是变化的,位于溶剂液面的上方的气压增减均会影响液压传感器22检测的实时溶剂液压,液压传感器22检测到的实时溶剂压实际为实时溶剂液压与实时 气压的和,此时,如果直接通过液压传感器22检测到的实时溶剂压计算反应釜100的溶剂液位,则会出现溶剂液位计算失真的现象,因此,本申请的实施例提出了将液压传感器22检测到的实时溶剂压减去实时气压得到实时溶剂液压,然后再通过该实时溶剂液压计算溶剂液位,以此提高溶剂液位的计算准确性。
如图1所示,本申请的第二方面提供了一种反应釜100的液位测量装置20,液位测量装置20用于执行本申请的第一方面的反应釜100的液位测量方法,液位测量装置20包括监测反应釜100的实时溶剂密度的密度传感器21、监测反应釜100的实时溶剂压的液压传感器22以及监测反应釜100的实时反应气压的气压传感器23。
本实施例提供的液位测量装置20能够适应反应釜100的内部和复杂的反应工况,减少了反应釜100的内部复杂结构和复杂反应工况对液位测量的干扰。具体地,本申请实施例提出的反应釜100的液位测量装置20是根据实时溶剂密度以及实时溶剂液压测量溶剂液位,从而不需要向溶剂液面发射液位检测波,以此减少反应釜100的内部复杂结构和复杂的反应工况对液位检测波的影响,提高了液位测量装置20的工作可靠性。
具体地,密度传感器21可选电容式液体密度传感器21,电容式液体密度传感器21能够利用标准物体在不同待测液体中的浮力不同,从而引起与标准物体相连的电容两个极板间的距离不同,导致电容发生变化,可以减少反应釜100的内部结构和溶剂反应状态对溶剂密度检测的干扰。
液压传感器22可选用应变片压力传感器、陶瓷压力传感器或者扩散硅压力传感器,这三种液压传感器22可以减少反应釜100的内部结构和溶剂反应状态对实时溶剂压检测的干扰。
气压传感器23同样可选用变片压力传感器、陶瓷压力传感器或者扩散硅压力传感器,这三种液压传感器22可以减少反应釜100的内部结构和溶剂反应状态对实时溶剂压检测的干扰。
另外,需要说明的是,本申请的实施例并未对密度传感器21、液压传感器22以及气压传感器23在反应釜100的设置位置进行限定,是因为密度传感器21、液压传感器22以及气压传感器23既可以直接设置于反应釜100, 还可以通过中间部件与反应釜100连通,两种设置方式均属于本申请实施例的保护范围。
根据本申请的一些实施例,如图1所示,,液位测量装置20还包括与反应釜100连通的检测管201,密度传感器21、液压传感器22以及气压传感器23均通过检测管201与反应釜100连通。
在本实施例中,通过将密度传感器21、液压传感器22以及气压传感器23均通过检测管201与反应釜100连通,从而不需要将密度传感器21、液压传感器22以及气压传感器23均设置于反应釜100,可以减少对反应釜100的结构改造,以及提高了密度传感器21、液压传感器22以及气压传感器23的位置灵活性。同时,检测管201还能够起到缓冲作用,减少反应釜100的溶剂直接与密度传感器21、液压传感器22以及气压传感器23接触并损坏的现象。
具体地,当反应釜100的侧壁设置有接头或者法兰时,可以将液压传感器22通过检测管201设置于指定高度处的接头或者法兰处,以此来减少对反应釜100的结构改造。
根据本申请的一些实施例,如图1所示,,液位测量装置20还包括设置于检测管201的控制阀,液位测量装置20通过控制阀控制检测管201的通断。
在本实施例中,密度传感器21的检测管201设置有第一控制阀211,液压传感器22的检测管201设置有第二控制阀221,气压传感器23的检测管201设置有第三控制阀231,控制阀可选为电磁阀,控制阀与反应釜100的控制器40电连接,通过控制器40控制电磁阀的通断,通过控制阀控制检测管201的通断,当反应釜100处于闲置状态时,可以控制检测管201断开,此时,不需要检测反应釜100的溶剂液位,当反应釜100处于工作状态时,可以控制检测管201连通,此时,需要检测反应釜100的溶剂液位。
本申请的实施例提出了根据反应釜100的工作状态控制相应传感器的工作状态,以此减少相应传感器长时间工作导致失效的现象,提高了传感器的使用寿命。进一步地,由于反应釜100内设置的是反应溶剂,当反应溶剂出现异常,如温度过高以及反应存在腐蚀传感器的现象时,可以暂时关闭检测管201,然后更换能够适应反应溶剂的传感器。
根据本申请的一些实施例,如图2所示,液位测量装置20还包括与反应釜100连通并沿反应釜100的高度方向设置的旁通管30,密度传感器21、液压传感器22以及气压传感器23均设置于旁通管30。
在本实施例中,旁通管30利用连通管原理与反应釜100连通,使反应釜100内的溶剂能够流至旁通管30,此时,旁通管30内的溶剂与反应釜100内的溶剂等效(包括密度、液压以及高度等效),通过测量旁通管30内的溶剂即可达到测量反应釜100内的溶剂的目的,本申请之所以通过旁通管30检测溶剂,是因为旁通管30位于反应釜100的外部,可以减少反应釜100内的复杂结构对溶剂液位测量的影响,还可以减少反应釜100内溶剂的复杂工况对溶剂液位测量的干扰。
另外,旁通管30设置为竖直管,旁通管30设置有安装密度传感器21、液压传感器22以及气压传感器23的多个安装位,旁通管30与度传感器、液压传感器22以及气压传感器23组成检测模块,从而不用在反应釜100上设置密度传感器21、液压传感器22以及气压传感器23的安装位,以此减少对反应釜100的结构改造。
本申请的实施例提出了根据旁通管30内溶剂的参数获取反应釜100内溶剂的参数,以此来提高检测精度,以及减少对反应釜100的结构改造。
根据本申请的一些实施例,如图2所示,旁通管30的底部侧壁通过液流管31连通于反应釜100的底部,旁通管30的顶部侧壁通过气流管32连通于反应釜100的顶部。
在本实施例中,通过液流管31使旁通管30内部的液压与反应釜100内部的液压一致,通过气流管32使旁通管30内部的气压与反应釜100内部的气压一致,以此减少两者之间的气压差对液位测量的影响。
具体地,当反应釜100的内部发生化学反应时,几种不同的溶剂会发生反应,发生反应的过程中,反应釜100内部的气相压力也是变化的,位于溶剂液位的上方的气压增减均会影响液压传感器22检测的实时溶剂液压,因此,本申请的实施例提出将旁通管30的内部气体连通于反应釜100的内部气体,以此提高通过旁通管30的溶剂液位测量反应釜100的溶剂液位的计算准确性。
根据本申请的一些实施例,如图2所示,液位测量装置20还包括液位检 测传感器35,液位检测传感器35设置于旁通管30的顶部并面向旁通管30的溶剂。
在本实施例中,由于旁通管30并未设置有反应釜100内部的复杂结构,因此,可以通过液位检测传感器35直接检测旁通管30的溶剂液位,液位检测传感器35包括超声波传感器、红外传感器等。
本申请的实施例通过液位检测传感器35对溶剂液位进行双重检测,可以提高溶剂液位的检测准确性,以此降低一种液位检测方式出现失误的风险。
根据本申请的一些实施例,如图2所示,液位测量装置20还包括隔离阀36,隔离阀36设置于旁通管30并位于溶剂液面与液位检测传感器35之间。
在本实施例中,反应釜100内的溶剂在反应过程中可能出现局部翻滚和局部波浪,为了减少溶剂上涌至液位检测传感器35的现象,本申请的实施例提出了通过隔离阀36隔断液位检测传感器35与溶剂。
具体地,当液位检测传感器35为超声波传感器时,隔离阀36可设置为通断阀,当溶剂液位较高时,关闭旁通管30的顶部通道,以此减少溶剂上涌至液位检测传感器35的现象,当液位检测传感器35为红外传感器时,隔离阀36可设置为透光隔膜。
根据本申请的一些实施例,可选地,液位测量装置20还包括拆卸阀33,反应釜100的液流管31和气流管32均通过拆卸阀33可拆卸地连通至反应釜100。
在本实施例中,通过拆卸阀33可以将液位测量装置20从反应釜100上拆除,从而方便对液位测量装置20进行维护和更换。
具体地,当反应釜100处于闲置状态以及不需要进行检测时,可以将液位测量装置20从反应釜100上拆除,另外,由于反应釜100内设置的是反应溶剂,当反应溶剂出现异常,如温度过高以及反应存在腐蚀传感器的现象时,拆除原有的液位测量装置20,然后更换能够适应反应溶剂的液位测量装置20。
另外,当反应釜100的侧壁设置有接头或者法兰时,可以将拆卸阀33设置于指定高度处的接头或者法兰处,以此来减少对反应釜100的结构改造。
根据本申请的一些实施例,液位测量装置20还包括:获取模块420,用 于获取反应釜100内溶剂的溶剂状态;以及用于根据溶剂状态为化学反应状态,获取溶剂处于化学反应状态的实时溶剂密度以及实时溶剂液压;计算模块430,用于根据实时溶剂密度以及实时溶剂液压计算溶剂的溶剂液位。
本实施例提供的液位测量装置20能够适应复杂结构和工况的反应釜100的液位,减少了反应釜100的复杂结构和复杂工况对液位测量的干扰。该液位测量方法不涉及到溶剂液位表面的测量,也不涉及超声波或者电磁波,可以减少反应釜100的内部结构和工作状态对溶剂液位的影响,而且能够实时获取反应釜100的溶剂液位,可以减少溶剂液位的瞬时增加或者减小对反应釜100的工作状态的影响。
根据本申请的一些实施例,如图4所示,液位测量装置20还包括控制器40,控制器40设置有计算机可读存储介质410以及根据本申请的的获取模块420和计算模块430。
本申请的第三方面提供了一种反应釜100,反应釜100包括根据本申请的第二方面的反应釜100的液位测量装置20。
本实施例提供的液位测量方法能够适应反应釜100的内部和复杂的反应工况,减少了反应釜100的内部复杂结构和复杂反应工况对液位测量的干扰。具体地,本申请实施例提出的反应釜100的液位测量方法是根据实时溶剂密度以及实时溶剂液压测量溶剂液位,从而不需要向溶剂液面发射液位检测波,以此减少反应釜100的内部复杂结构和复杂的反应工况对液位检测波的影响,提高了液位检测的可靠性。
进一步地,反应釜100的旁通管30的底部还设置有排污阀34以及可拆卸底板37,通过排污阀34可以将反应釜100内的废溶剂排出反应釜100,以及通过可拆卸底板37可以将旁通管30内的废溶剂排出旁通管30,以此减少废溶剂长期积存于反应釜100和旁通管30的现象。
需要说明的是,反应釜100包括锂盐反应釜100、酸性溶剂反应釜100或者碱性溶剂反应釜100等,本申请的实施例只是对反应釜100上与发明点有关的结构进行了阐述,并不代表反应釜100只有这些结构,反应釜100上的其他结构在此不再进行一一阐述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对 其限制;尽管参看前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
Claims (14)
- 一种反应釜的液位测量方法,其特征在于,所述液位测量方法包括:获取所述反应釜内溶剂的溶剂状态;根据所述溶剂状态为化学反应状态,获取所述溶剂处于所述化学反应状态的实时溶剂密度以及实时溶剂液压;根据所述实时溶剂密度以及所述实时溶剂液压计算所述溶剂的溶剂液位。
- 根据权利要求1所述的反应釜的液位测量方法,其特征在于,所述实时溶剂液压为所述反应釜的指定高度处的所述实时溶剂液压,所述根据所述实时溶剂密度以及所述实时溶剂液压计算所述溶剂的溶剂液位包括:根据所述实时溶剂密度以及所述实时溶剂液压计算所述指定高度与所述溶剂液面之间的高度差,以及根据所述指定高度与所述高度差的和确定所述溶剂液位。
- 根据权利要求1所述的反应釜的液位测量方法,其特征在于,所述获取所述溶剂处于所述化学反应状态的实时溶剂密度以及实时溶剂液压具体包括:获取所述溶剂处于所述化学反应状态的实时溶剂压以及所述反应釜的内部的实时反应气压;根据所述实时溶剂压与所述实时反应气压的差值确定所述实时溶剂液压。
- 一种反应釜的液位测量装置,其特征在于,所述液位测量装置用于执行权利要求1至3中任一项所述的反应釜的液位测量方法,所述液位测量装置包括监测所述反应釜的实时溶剂密度的密度传感器、监测所述反应釜的实时溶剂压的液压传感器以及监测所述反应釜的实时反应气压的气压传感器。
- 根据权利要求4所述的反应釜的液位测量装置,其特征在于,所述液位测量装置还包括与所述反应釜连通的检测管,所述密度传感器、所述液压传感器以及所述气压传感器均通过检测管与所述反应釜连通。
- 根据权利要求5所述的反应釜的液位测量装置,其特征在于,所述液位测量装置还包括设置于所述检测管的控制阀,所述液位测量装置通过所述控制阀控制所述检测管的通断。
- 根据权利要求4所述的反应釜的液位测量装置,其特征在于,所述液位测量装置还包括与所述反应釜连通并沿所述反应釜的高度方向设置的旁通管,所述密度传感器、所述液压传感器以及所述气压传感器均设置于所述旁通管。
- 根据权利要求7所述的反应釜的液位测量装置,其特征在于,所述旁通管的底部侧壁通过液流管连通于所述反应釜的底部,所述旁通管的顶部侧壁通过气流管连通于所述反应釜的顶部。
- 根据权利要求8所述的反应釜的液位测量装置,其特征在于,所述液位测量装置还包括液位检测传感器,所述液位检测传感器设置于所述旁通管的顶部并面向所述旁通管的内部的溶剂液面。
- 根据权利要求9所述的反应釜的液位测量装置,其特征在于,所述液位测量装置还包括隔离阀,所述隔离阀设置于所述旁通管并位于溶剂液面与所述液位检测传感器之间。
- 根据权利要求8所述的反应釜的液位测量装置,其特征在于,所述液位测量装置还包括拆卸阀,所述反应釜的所述液流管和所述气流管均通过所述拆卸阀可拆卸地连通至所述反应釜。
- 根据权利要求4所述的反应釜的液位测量装置,其特征在于,所述液位测量装置还包括:获取模块,用于获取所述反应釜内溶剂的溶剂状态;以及用于根据所述溶剂状态为化学反应状态,获取所述溶剂处于所述化学反应状态的实时溶剂密度以及实时溶剂液压;计算模块,用于根据所述实时溶剂密度以及所述实时溶剂液压计算所述溶剂的溶剂液位。
- 根据权利要求4所述的反应釜的液位测量装置,其特征在于,所述液位测量装置还包括控制器,所述控制器设置有计算机可读存储介质以及所述获取模块和所述计算模块。
- 一种反应釜,其特征在于,所述反应釜包括根据权利要求4至13中任一项所述的反应釜的液位测量装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280060984.5A CN118302653A (zh) | 2022-06-23 | 2022-06-23 | 反应釜的液位测量方法、装置及具有其的反应釜 |
PCT/CN2022/100913 WO2023245580A1 (zh) | 2022-06-23 | 2022-06-23 | 反应釜的液位测量方法、装置及具有其的反应釜 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/100913 WO2023245580A1 (zh) | 2022-06-23 | 2022-06-23 | 反应釜的液位测量方法、装置及具有其的反应釜 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023245580A1 true WO2023245580A1 (zh) | 2023-12-28 |
Family
ID=89378915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/100913 WO2023245580A1 (zh) | 2022-06-23 | 2022-06-23 | 反应釜的液位测量方法、装置及具有其的反应釜 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118302653A (zh) |
WO (1) | WO2023245580A1 (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07248245A (ja) * | 1994-03-10 | 1995-09-26 | Mitsubishi Heavy Ind Ltd | 貯液槽内の液位測定装置 |
CN102519542A (zh) * | 2011-12-09 | 2012-06-27 | 华为技术有限公司 | 压力液位传感器 |
CN102519545A (zh) * | 2011-12-31 | 2012-06-27 | 浙江省电力试验研究院 | 一种吸收塔液位测量方法及装置 |
CN202562559U (zh) * | 2011-12-31 | 2012-11-28 | 浙江省电力试验研究院 | 一种吸收塔液位测量装置 |
CN202582655U (zh) * | 2012-04-17 | 2012-12-05 | 南京信息工程大学 | 电子式液位计 |
CN103048029A (zh) * | 2012-12-11 | 2013-04-17 | 中国核电工程有限公司 | 辅助给水除氧系统的液位测量方法及测量装置 |
CN204612779U (zh) * | 2015-05-11 | 2015-09-02 | 福建远翔化工有限公司 | 一种液位计及储液罐 |
US20180345308A1 (en) * | 2017-05-31 | 2018-12-06 | Thermochem Recovery International, Inc. | Pressure-based method and system for measuring the density and height of a fluidized bed |
CN209247121U (zh) * | 2019-01-31 | 2019-08-13 | 大唐淮南洛河发电厂 | 一种脱硫吸收塔液位测量装置 |
-
2022
- 2022-06-23 WO PCT/CN2022/100913 patent/WO2023245580A1/zh active Application Filing
- 2022-06-23 CN CN202280060984.5A patent/CN118302653A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07248245A (ja) * | 1994-03-10 | 1995-09-26 | Mitsubishi Heavy Ind Ltd | 貯液槽内の液位測定装置 |
CN102519542A (zh) * | 2011-12-09 | 2012-06-27 | 华为技术有限公司 | 压力液位传感器 |
CN102519545A (zh) * | 2011-12-31 | 2012-06-27 | 浙江省电力试验研究院 | 一种吸收塔液位测量方法及装置 |
CN202562559U (zh) * | 2011-12-31 | 2012-11-28 | 浙江省电力试验研究院 | 一种吸收塔液位测量装置 |
CN202582655U (zh) * | 2012-04-17 | 2012-12-05 | 南京信息工程大学 | 电子式液位计 |
CN103048029A (zh) * | 2012-12-11 | 2013-04-17 | 中国核电工程有限公司 | 辅助给水除氧系统的液位测量方法及测量装置 |
CN204612779U (zh) * | 2015-05-11 | 2015-09-02 | 福建远翔化工有限公司 | 一种液位计及储液罐 |
US20180345308A1 (en) * | 2017-05-31 | 2018-12-06 | Thermochem Recovery International, Inc. | Pressure-based method and system for measuring the density and height of a fluidized bed |
CN209247121U (zh) * | 2019-01-31 | 2019-08-13 | 大唐淮南洛河发电厂 | 一种脱硫吸收塔液位测量装置 |
Also Published As
Publication number | Publication date |
---|---|
CN118302653A (zh) | 2024-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140318480A1 (en) | Magnetic liquid level gauge for boiler drum water level measurement | |
CN105466521A (zh) | 一种容器中液体液位的测量方法 | |
US20170045432A1 (en) | Apparatus and methods for determining gravity and density of solids in a liquid medium | |
CN201653501U (zh) | 一种磁致伸缩液位计 | |
WO2023245580A1 (zh) | 反应釜的液位测量方法、装置及具有其的反应釜 | |
CN102959373A (zh) | 船舶用内燃机的缸排气温度测量用一体型温度测量仪 | |
CN108732058B (zh) | 一种大尺度油池火燃烧速率测量装置及测量方法 | |
CN112484816A (zh) | 一种磁翻板液位计 | |
CN209181870U (zh) | 液位测量装置 | |
CN208736524U (zh) | 一种高精度大量程称重式浮筒液位计 | |
CN208998886U (zh) | 汽包水位满量程内装平衡容器 | |
CN213658029U (zh) | 一种量器自动检定装置 | |
CN115855204A (zh) | 一种活塞式水表检定装置的检测方法及自动检测装置 | |
CN212867529U (zh) | 钻井液出口流量测量装置 | |
CN210533482U (zh) | 一种沉浸式液位计 | |
CN203274851U (zh) | 外部非接触测量筒式超声波液位计 | |
CN202814828U (zh) | 流体特性测量器 | |
CN108387287B (zh) | 一种浮筒式高温钠钾合金液位计 | |
CN203705014U (zh) | 一体化锅炉汽包液位计 | |
CN207907996U (zh) | 一种浮筒式高温钠钾合金液位计 | |
CN106017620B (zh) | 一种智能活塞体积管检定装置 | |
CN100580315C (zh) | 连通器式汽包水位取样测量装置及其几何尺寸的确定方法 | |
CN213433375U (zh) | 一种气液分离装置 | |
CN113532360A (zh) | 一种电热水器的加热管检测工装及检测方法 | |
CN216778759U (zh) | 一种带有定量上料结构的计量釜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22947351 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280060984.5 Country of ref document: CN |