WO2023245514A1 - 一种测距方法、装置和系统 - Google Patents

一种测距方法、装置和系统 Download PDF

Info

Publication number
WO2023245514A1
WO2023245514A1 PCT/CN2022/100548 CN2022100548W WO2023245514A1 WO 2023245514 A1 WO2023245514 A1 WO 2023245514A1 CN 2022100548 W CN2022100548 W CN 2022100548W WO 2023245514 A1 WO2023245514 A1 WO 2023245514A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency hopping
channel
information
ranging
frequency
Prior art date
Application number
PCT/CN2022/100548
Other languages
English (en)
French (fr)
Inventor
李德建
高磊
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/100548 priority Critical patent/WO2023245514A1/zh
Publication of WO2023245514A1 publication Critical patent/WO2023245514A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the present application relates to the field of wireless communication technology, and in particular, to a ranging method, device and system.
  • PEPS Passive Entry Passive Start
  • the user does not need to use a key, but uses the vehicle-mounted positioning system to locate the car key/mobile phone carried by the user, and then automatically Lock or unlock the doors.
  • This application provides a ranging method, device and system for improving the accuracy of positioning/ranging/angle measurement/perception of targets by equipment.
  • the first aspect is to provide a ranging method, which can be applied to any wireless communication scenario, such as vehicle positioning/ranging/angle measurement/sensing scenarios, indoor positioning/ranging/angle measurement/sensing scenarios, etc.
  • the method includes: The first device sends a first ranging signal and/or receives a second ranging signal on at least one first channel; the first device performs at least one frequency hopping according to the frequency hopping parameter; the first device sends on at least one second channel The third ranging signal and/or receiving the fourth ranging signal.
  • the first device performs at least one frequency hopping according to the frequency hopping parameters, and can perform multiple signal measurements on different channels in a preset order, thereby achieving the technical effect of merging multiple channels of large-bandwidth signal measurement (signal measurement
  • the bandwidth is the total bandwidth of at least one first channel and at least one second channel), which can improve ranging resolution and ranging accuracy.
  • the second device performs at least one frequency hopping based on the same frequency hopping parameters, it can ensure that the first device and the second device are hopping synchronously, avoiding large differences in frequency hopping parameters between different devices and difficulty in frequency hopping without a synchronization protocol. Synchronous frequency hopping and other issues.
  • the multiple channels can be regarded as a channel group.
  • a channel group when the number of channels of at least one first channel is multiple, at least one first channel One channel may be called a first channel group, and when the number of at least one second channel is multiple, at least one second channel may be called a second channel group.
  • the first ranging signal, the second ranging signal, the third ranging signal and/or the fourth ranging signal are orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) signals.
  • the embodiments of the present application can achieve the technical effect of merging multiple channels of large-bandwidth OFDM signal measurement through frequency hopping, and both sides of the signal measurement (the first device and the second device)
  • problems such as large differences in frequency hopping parameters between different devices and difficulty in synchronizing frequency hopping without a synchronization protocol can be solved. Therefore, the resolution and accuracy of ranging based on OFDM signals can be improved.
  • the OFDM signal includes at least one of the following signals: channel state information reference signal (Channel-State Information-Reference Signal, CSI-RS), sounding reference signal (Sounding Reference Signal, SRS), first training signal (First Training Signal, FTS), Second Training Signal (Second Training Signal, STS), Positioning Reference Signal (Positioning Rreference Signal, PRS).
  • channel state information reference signal Channel State Information reference Signal
  • SRS Sounding Reference Signal
  • SRS Sounding reference signal
  • first training signal First Training Signal
  • FTS Second Training Signal
  • STS Second Training Signal
  • Positioning Reference Signal Positioning Reference Signal
  • the frequency hopping parameters include one or more of the following: the first frequency hopping stable duration; the first listen-before-talk (LBT) maximum window period; the first frequency hopping pattern, For indicating the frequency hopping sequence of the first device and the second device, the first frequency hopping pattern includes channel number information of at least one first channel and channel number information of at least one second channel.
  • LBT listen-before-talk
  • the status of the first device and the second device can be synchronized during the frequency hopping process (for example, synchronizing into the LBT stage); by setting the first LBT maximum window period, the channel can be guaranteed to be long.
  • the first device and the second device synchronously switch to the next hop channel at the end of the first LBT maximum window period. This avoids both parties from repeatedly evaluating idle channels due to long-term competition for channels, which can save resources and equipment performance. consumption and improve the efficiency of frequency hopping measurement; by setting the first frequency hopping pattern, it can be ensured that the first device and the second device perform frequency hopping in the same frequency hopping order to ensure frequency hopping synchronization between the two parties of ranging.
  • the stable duration of the first frequency hopping may be different.
  • at least one channel belongs to the first frequency band, and the first frequency hopping stable duration is the first duration; or, at least one channel belongs to the second frequency band, and the first frequency hopping stable duration is the second duration; wherein, the first frequency bands are different In the second frequency band, there is no overlap in frequency domain between the first frequency band and the second frequency band, and the first duration is different from the second duration.
  • the value of the first frequency hopping stable duration is related to whether the device needs to perform channel idle assessment when hopping in the corresponding frequency band. For example, when the first device is frequency hopping in different frequency bands, the first frequency hopping stable duration when idle channel evaluation needs to be performed is shorter than the first frequency hopping stable duration when ranging signals are directly transmitted (that is, idle channel evaluation does not need to be performed). .
  • the first device adopts different first frequency hopping stable durations when hopping in different frequency bands, which can save the frequency hopping waiting time of the first device as much as possible, improve the efficiency of frequency hopping ranging, and save power consumption.
  • the stable duration of the first frequency hopping may be different.
  • the first frequency hopping stabilization time when idle channel evaluation needs to be performed is shorter than the first frequency hopping when the ranging signal is directly transmitted (that is, idle channel evaluation does not need to be performed). Frequency hopping stable duration.
  • the first device adopts different first frequency hopping stable durations when hopping on different channels (groups), which can save the frequency hopping waiting time of the first device as much as possible, improve the efficiency of frequency hopping ranging and save power consumption.
  • the maximum window period of the first LBT is configured for the first device. For example, if the first device is the master node and the second device is the slave node, then the first LBT maximum window period is configured for the first device.
  • the first device can manage the signal measurement process of the first device and the second device, and the reliability of the solution can be improved.
  • the first frequency hopping stable duration is the maximum value of the frequency hopping stable duration of the first device and the frequency hopping stable duration of the second device.
  • the frequency hopping stable duration is the time when the device reaches a stable state when performing frequency hopping. duration.
  • the first frequency hopping pattern is determined through negotiation between the first device and the second device.
  • the first frequency hopping pattern can be supported by the first device and the second device, ensuring the synchronization state of frequency hopping ranging between the first device and the second device, and enhancing the reliability of ranging.
  • the number of channels included in the at least one second channel is multiple; the channel number information of the at least one second channel is: the channel number information of the channel with the lowest frequency or the highest frequency among the at least one second channel. .
  • the first device performs at least one frequency hopping according to the frequency hopping parameters, including: the first device switches from at least one first channel to at least one second channel according to the first frequency hopping pattern; and waits for the first frequency hopping. After the stabilization period, the first device performs a first idle channel assessment.
  • the first device sends a third ranging signal and/or receives a fourth ranging signal on at least one second channel, including: when the first device determines that at least one second channel is idle, the first device determines that at least one second channel is idle. Send the third ranging signal and/or receive the fourth ranging signal on the second channel.
  • the first device performs one frequency hopping to switch to the second channel.
  • the first frequency hopping pattern further includes channel number information of at least one third channel.
  • the first device performs at least one frequency hopping according to the frequency hopping parameters, including: the first device switches from at least one first channel to at least one third channel according to the first frequency hopping pattern; and after waiting for the first frequency hopping to stabilize, the first device Perform a second idle channel evaluation; when the first device determines that the idle channel evaluation result obtained within the LBT window corresponding to the second idle channel evaluation is that at least one third channel is not idle, after the LBT window corresponding to the second idle channel evaluation ends , the first device switches from at least one third channel to at least one second channel according to the first frequency hopping pattern; wherein the length of the LBT window corresponding to the second idle channel evaluation is equal to the first LBT maximum window period; waiting for the first frequency hopping After the stabilization period, the first device performs a third idle channel evaluation.
  • the first device sends a third ranging signal and/or receives a fourth ranging signal on at least one second channel, including: when the first device determines that at least one second channel is idle, the first device determines that at least one second channel is idle. Send the third ranging signal and/or receive the fourth ranging signal on the second channel.
  • the first device performs two consecutive frequency hoppings (the first time the LBT switching fails, resulting in the inability to perform signal measurement on the third channel) before switching to the second channel.
  • the first device may perform more frequency hopping before LBT can succeed, and then transmit the ranging signal on the channel where LBT succeeds.
  • the method further includes: the first device sending the frequency hopping measurement information of the first device to the second device; and/or the first device receiving the frequency hopping measurement information of the second device.
  • both sides of the signal measurement can learn the frequency hopping measurement information of the other party, and then determine the frequency hopping parameters based on the frequency hopping measurement information, ensuring that the finally determined frequency hopping parameters can be supported by both parties, which can improve the reliability of ranging.
  • the frequency hopping measurement information of the first device includes one or more of the following:
  • First information used to indicate whether the first device allows channel overlap
  • second information used to indicate the number of overlapping channels allowed by the first device
  • Third information used to indicate the second frequency hopping pattern expected by the first device
  • the fourth information is used to indicate the frequency hopping stabilization duration of the first device
  • the frequency hopping measurement information of the second device includes one or more of the following:
  • the seventh information is used to indicate the number of overlapping channels allowed by the second device.
  • the eighth information is used to indicate the third frequency hopping pattern expected by the second device.
  • the ninth information is used to indicate the frequency hopping stabilization duration of the second device
  • the tenth information is used to indicate the third LBT maximum window period expected by the second device.
  • the method further includes: the first device determines frequency hopping measurement information of the first device, where the frequency hopping measurement information is based on frequency hopping capability information of the first device, frequency hopping capability information of the second device, or Determined by pre-configured or defined frequency hopping capability information.
  • the frequency hopping measurement information of the first device used in the frequency hopping parameter negotiation process can be supported by the frequency hopping capability of the first device, and the frequency hopping measurement information of the second device can be supported by the frequency hopping capability of the second device.
  • the reliability of the ranging scheme can be improved.
  • the method further includes: the first device sending the frequency hopping capability information of the first device to the second device; and/or the first device receiving the frequency hopping capability information of the second device.
  • the first device and the second device can accurately obtain the frequency hopping capability information of the other party, which can improve the applicability of the solution.
  • the frequency hopping capability information of the first device includes one or more of the following:
  • Frequency band information supported by the first device for frequency hopping
  • the frequency hopping capability information of the second device includes one or more of the following:
  • Frequency band information for frequency hopping supported by the second device
  • the first frequency hopping pattern also includes channel number information of the initial working channel; the method also includes: the first device starts frequency hopping from the initial working channel, where the last hop channel indicated by the first frequency hopping pattern is Initial working channel.
  • the device can ensure that the device measures distances on different channels during the signal measurement process to achieve large-bandwidth measurement results.
  • it can ensure that after the ranging is completed, the device returns to the initial working channel to ensure that the device's subsequent Communication performance.
  • a ranging method is provided, which can be applied to any wireless communication scenario, such as vehicle positioning/ranging/angle measurement/sensing scenarios, indoor positioning/ranging/angle measurement/sensing scenarios, etc.
  • the method includes: The second device receives the first ranging signal and/or sends the second ranging signal on at least one first channel; the second device performs at least one frequency hopping according to the frequency hopping parameter; the second device receives on at least one second channel a third ranging signal and/or transmitting a fourth ranging signal.
  • the first ranging signal, the second ranging signal, the third ranging signal and/or the fourth ranging signal are OFDM signals.
  • the OFDM signal includes at least one of the following signals: CSI-RS, SRS, FTS, STS, and PRS.
  • the frequency hopping parameters include one or more of the following:
  • the first frequency hopping pattern is used to indicate the frequency hopping sequence of the first device and the second device.
  • the first frequency hopping pattern includes channel number information of at least one first channel and channel number information of at least one second channel.
  • At least one channel belongs to the first frequency band, and the stable duration of the first frequency hopping is the first duration; or, at least one channel belongs to the second frequency band, and the stable duration of the first frequency hopping is the second duration; wherein, The first frequency band is different from the second frequency band, the first frequency band and the second frequency band do not overlap in frequency domain, and the first duration is different from the second duration.
  • the maximum window period of the first LBT is configured for the first device.
  • the first frequency hopping stable duration is the maximum value of the frequency hopping stable duration of the first device and the frequency hopping stable duration of the second device.
  • the frequency hopping stable duration is the time when the device reaches a stable state when performing frequency hopping. duration.
  • the first frequency hopping pattern is determined through negotiation between the first device and the second device.
  • the number of channels included in the at least one second channel is multiple; the channel number information of the at least one second channel is: the channel number information of the channel with the lowest frequency or the highest frequency among the at least one second channel. .
  • the first device performs at least one frequency hopping according to the frequency hopping parameters, including: the second device switches from at least one first channel to at least one second channel according to the first frequency hopping pattern; and waits for the first frequency hopping.
  • the second device performs a fourth idle channel evaluation.
  • the second device receives the third ranging signal and/or sends the fourth ranging signal on at least one second channel, including: when the second device determines that at least one second channel is idle, the second device determines that at least one second channel is idle. Receive the third ranging signal and/or send the fourth ranging signal on the second channel.
  • the first frequency hopping pattern further includes channel number information of at least one third channel.
  • the second device performs at least one frequency hopping according to the frequency hopping parameters, including: the second device switches from at least one first channel to at least one third channel according to the first frequency hopping pattern; and after waiting for the first frequency hopping to stabilize, the second device Performing the fifth idle channel evaluation; when the second device determines that the idle channel evaluation result obtained within the LBT window corresponding to the fifth idle channel evaluation is that at least one third channel is not idle, after the end of the LBT window corresponding to the fifth idle channel evaluation , the second device switches from at least one third channel to at least one second channel according to the first frequency hopping pattern; wherein the length of the LBT window corresponding to the fifth idle channel evaluation is equal to the first LBT maximum window period; waiting for the first frequency hopping After the stabilization period, the second device performs a sixth idle channel evaluation.
  • the second device receives the third ranging signal and/or sends the fourth ranging signal on at least one second channel, including: when the second device determines that at least one second channel is idle, the second device determines that at least one second channel is idle. Receive the third ranging signal and/or send the fourth ranging signal on the second channel.
  • the method further includes: the second device receiving frequency hopping measurement information of the first device; and/or the second device sending the frequency hopping measurement information of the second device to the first device.
  • the frequency hopping measurement information of the first device includes one or more of the following:
  • First information used to indicate whether the first device allows channel overlap
  • second information used to indicate the number of overlapping channels allowed by the first device
  • Third information used to indicate the second frequency hopping pattern expected by the first device
  • the fourth information is used to indicate the frequency hopping stabilization duration of the first device
  • the frequency hopping measurement information of the second device includes one or more of the following:
  • the seventh information is used to indicate the number of overlapping channels allowed by the second device.
  • the eighth information is used to indicate the third frequency hopping pattern expected by the second device.
  • the ninth information is used to indicate the frequency hopping stabilization duration of the second device
  • the tenth information is used to indicate the third LBT maximum window period expected by the second device.
  • the method further includes: the second device determines the frequency hopping measurement information of the second device, where the frequency hopping measurement information is based on the frequency hopping capability information of the first device, the frequency hopping capability information of the second device, or Determined by pre-configured or defined frequency hopping capability information.
  • the method further includes: the second device sending the frequency hopping capability information of the second device to the first device; and/or the second device receiving the frequency hopping capability information of the first device.
  • the frequency hopping capability information of the first device includes one or more of the following:
  • Frequency band information supported by the first device for frequency hopping
  • the frequency hopping capability information of the second device includes one or more of the following:
  • Frequency band information for frequency hopping supported by the second device
  • the first frequency hopping pattern also includes channel number information of the initial working channel.
  • the method also includes: the second device starts frequency hopping from an initial working channel, where the last hop channel indicated by the first frequency hopping pattern is the initial working channel.
  • a distance measuring device is provided.
  • the device may be a first device or a chip in the first device.
  • the device includes the steps described in any possible design of the first aspect or the first aspect.
  • the device may include:
  • a transceiver unit configured to send a first ranging signal and/or receive a second ranging signal on at least one first channel
  • a processing unit configured to perform at least one frequency hopping according to the frequency hopping parameters
  • the transceiver unit is also configured to send a third ranging signal and/or receive a fourth ranging signal on at least one second channel.
  • the first ranging signal, the second ranging signal, the third ranging signal and/or the fourth ranging signal are orthogonal frequency division multiplexing OFDM signals.
  • the OFDM signal includes at least one of the following signals: CSI-RS, SRS, FTS, STS, and PRS.
  • frequency hopping parameters include one or more of the following:
  • the first frequency hopping pattern is used to indicate the frequency hopping sequence of the device and the second device.
  • the first frequency hopping pattern includes channel number information of at least one first channel and channel number information of at least one second channel.
  • At least one channel belongs to the first frequency band, and the first frequency hopping stable duration is the first duration; or, at least one channel belongs to the second frequency band, and the first frequency hopping stable duration is the second duration; wherein, the first frequency bands are different.
  • the second frequency band there is no overlap in frequency domain between the first frequency band and the second frequency band, and the first duration is different from the second duration.
  • the first LBT maximum window period is configured for the device.
  • the first frequency hopping stable duration is the maximum value of the frequency hopping stable duration of the device and the frequency hopping stable duration of the second device.
  • the frequency hopping stable duration is the duration for the device to reach a stable state when performing frequency hopping.
  • the first frequency hopping pattern is determined through negotiation between the device and the second device.
  • the number of channels included in the at least one second channel is multiple; the channel number information of the at least one second channel is: the channel number information of the channel with the lowest frequency or the highest frequency among the at least one second channel.
  • the processing unit is specifically configured to: switch from at least one first channel to at least one second channel according to the first frequency hopping pattern; wait for the first frequency hopping to stabilize for a period of time, and then perform a first idle channel evaluation; and the transceiver unit at least When sending a third ranging signal and/or receiving a fourth ranging signal on a second channel, it is specifically used for: when at least one second channel is idle, sending a third ranging signal and/or on at least one second channel. Receive the fourth ranging signal.
  • the first frequency hopping pattern also includes channel number information of at least one third channel; the processing unit is specifically configured to: switch from at least one first channel to at least one third channel according to the first frequency hopping pattern; wait for the first After the frequency hopping has stabilized for a period of time, the second idle channel evaluation is performed; when the idle channel evaluation result obtained within the LBT window corresponding to the second idle channel evaluation is that at least one third channel is not idle, the second idle channel evaluation is performed in the LBT window corresponding to the second idle channel evaluation.
  • the transceiver unit After completion, switch from at least one third channel to at least one second channel according to the first frequency hopping pattern; wherein the length of the LBT window corresponding to the second idle channel evaluation is equal to the first LBT maximum window period; wait for the first frequency hopping to stabilize After the duration, a third idle channel evaluation is performed.
  • the transceiver unit sends the third ranging signal and/or receives the fourth ranging signal on at least one second channel, it is specifically used to: when at least one second channel is idle, send the third ranging signal on at least one second channel. signal and/or receive a fourth ranging signal.
  • the transceiver unit is also configured to: send frequency hopping measurement information of the device to the second device; and/or receive frequency hopping measurement information of the second device.
  • the frequency hopping measurement information of the device includes one or more of the following:
  • First information used to indicate whether the device allows channel overlap
  • the second information is used to indicate the number of overlapping channels allowed by the device
  • Third information used to indicate the second frequency hopping pattern expected by the device
  • the fourth information is used to indicate the frequency hopping stable duration of the device
  • the fifth information is used to indicate the second LBT maximum window period expected by the device
  • the frequency hopping measurement information of the second device includes one or more of the following:
  • the seventh information is used to indicate the number of overlapping channels allowed by the second device.
  • the eighth information is used to indicate the third frequency hopping pattern expected by the second device.
  • the ninth information is used to indicate the frequency hopping stabilization duration of the second device
  • the tenth information is used to indicate the third LBT maximum window period expected by the second device.
  • the processing unit is also configured to: determine frequency hopping measurement information of the device, where the frequency hopping measurement information is based on frequency hopping capability information of the device, frequency hopping capability information of the second device, or preconfigured or defined hopping information. frequency capability information.
  • the transceiver unit is also configured to: send frequency hopping capability information of the device to the second device; and/or receive frequency hopping capability information of the second device.
  • the frequency hopping capability information of the device includes one or more of the following:
  • the maximum bandwidth supported by the device for transmitting and/or receiving ranging signals is the maximum bandwidth supported by the device for transmitting and/or receiving ranging signals
  • the frequency hopping capability information of the second device includes one or more of the following:
  • Frequency band information for frequency hopping supported by the second device
  • the first frequency hopping pattern also includes channel number information of the initial working channel; the processing unit is further configured to: start frequency hopping from the initial working channel, where the last hop channel indicated by the first frequency hopping pattern is the initial working channel.
  • the fourth aspect provides a ranging device.
  • the device may be a second device or a chip in the second device.
  • the device includes the steps described in any possible design of the second aspect or the second aspect.
  • the device may include: a transceiver unit, configured to receive a first ranging signal and/or send a second ranging signal on at least one first channel; a processing unit configured to perform at least one hopping according to the frequency hopping parameter. frequency; a transceiver unit, further configured to receive a third ranging signal and/or send a fourth ranging signal on at least one second channel.
  • the first ranging signal, the second ranging signal, the third ranging signal and/or the fourth ranging signal are OFDM signals.
  • the OFDM signal includes at least one of the following signals: CSI-RS, SRS, FTS, STS, and PRS.
  • frequency hopping parameters include one or more of the following:
  • the first frequency hopping pattern is used to indicate the frequency hopping sequence of the first device and the device.
  • the first frequency hopping pattern includes channel number information of at least one first channel and channel number information of at least one second channel.
  • At least one channel belongs to the first frequency band, and the first frequency hopping stable duration is the first duration; or, at least one channel belongs to the second frequency band, and the first frequency hopping stable duration is the second duration; wherein, the first frequency bands are different.
  • the second frequency band there is no overlap in frequency domain between the first frequency band and the second frequency band, and the first duration is different from the second duration.
  • the first LBT maximum window period is configured for the first device.
  • the first frequency hopping stable duration is the maximum value of the frequency hopping stable duration of the first device and the frequency hopping stable duration of the device.
  • the frequency hopping stable duration is the duration for the device to reach a stable state when performing frequency hopping.
  • the first frequency hopping pattern is determined through negotiation between the first device and the device.
  • the number of channels included in the at least one second channel is multiple; the channel number information of the at least one second channel is: the channel number information of the channel with the lowest frequency or the highest frequency among the at least one second channel.
  • the processing unit is specifically configured to: switch from at least one first channel to at least one second channel according to the first frequency hopping pattern; wait for the first frequency hopping to stabilize, and then perform a fourth idle channel evaluation.
  • the transceiver unit receives the third ranging signal and/or sends the fourth ranging signal on at least one second channel, it is specifically used to: when at least one second channel is idle, receive the third ranging signal on at least one second channel. three ranging signals and/or transmitting a fourth ranging signal.
  • the first frequency hopping pattern also includes channel number information of at least one third channel.
  • the processing unit is specifically configured to: switch from at least one first channel to at least one third channel according to the first frequency hopping pattern; wait for the first frequency hopping to stabilize for a period of time before performing a fifth idle channel evaluation; determine whether the fifth idle channel evaluation corresponds to When the idle channel evaluation result obtained within the LBT window is that at least one third channel is not idle, after the end of the LBT window corresponding to the fifth idle channel evaluation, switching from at least one third channel to at least one third channel is performed according to the first frequency hopping pattern.
  • the transceiver unit receives the third ranging signal and/or sends the fourth ranging signal on at least one second channel, it is specifically used to: when at least one second channel is idle, receive the third ranging signal on at least one second channel. three ranging signals and/or transmitting a fourth ranging signal.
  • the transceiver unit is also configured to: receive frequency hopping measurement information of the first device; and/or send frequency hopping measurement information of the device to the first device.
  • the frequency hopping measurement information of the first device includes one or more of the following:
  • First information used to indicate whether the first device allows channel overlap
  • second information used to indicate the number of overlapping channels allowed by the first device
  • Third information used to indicate the second frequency hopping pattern expected by the first device
  • the fourth information is used to indicate the frequency hopping stabilization duration of the first device
  • the frequency hopping measurement information of the device includes one or more of the following:
  • the sixth information is used to indicate whether the device allows channel overlap
  • the seventh information is used to indicate the number of overlapping channels allowed by the device.
  • the eighth information is used to indicate the third frequency hopping pattern expected by the device.
  • the ninth information is used to indicate the frequency hopping stable duration of the device.
  • the tenth information is used to indicate the third LBT maximum window period expected by the device.
  • the processing unit is also configured to: determine frequency hopping measurement information of the device, where the frequency hopping measurement information is based on frequency hopping capability information of the first device, frequency hopping capability information of the device, or preconfigured or defined hopping information. frequency capability information.
  • the transceiver unit is also configured to: send frequency hopping capability information of the device to the first device; and/or receive frequency hopping capability information of the first device.
  • the frequency hopping capability information of the first device includes one or more of the following:
  • Frequency band information supported by the first device for frequency hopping
  • the frequency hopping capability information of the device includes one or more of the following:
  • the maximum bandwidth supported by the device for transmitting and/or receiving ranging signals is the maximum bandwidth supported by the device for transmitting and/or receiving ranging signals
  • the first frequency hopping pattern also includes channel number information of the initial working channel.
  • the transceiver unit is also configured to start frequency hopping from the initial working channel, where the last hop channel indicated by the first frequency hopping pattern is the initial working channel.
  • a ranging device including: at least one processor and an interface circuit; the interface circuit is used to receive signals from other devices other than the device and send or receive signals to the processor or send signals from the processor
  • the processor uses logic circuits or execution code instructions to implement the first aspect or any possible design of the first aspect or the second aspect or any possible design of the second aspect. method described.
  • a computer-readable storage medium is provided.
  • Computer programs or instructions are stored in the storage medium.
  • the computer program or instructions are executed by a communication device, the first aspect or any possible design of the first aspect is realized or The method described in the second aspect or any possible design of the second aspect.
  • a computer program product is provided. Instructions are stored in the computer program product. When it is run on a computer, it causes the computer to execute the first aspect or any possible design of the first aspect or the second aspect or the third aspect. Either of the two possible designs is described in the method.
  • An eighth aspect provides a ranging system, including:
  • a first device used to perform the method described in the first aspect or any possible design of the first aspect
  • the second device is used to perform the method described in the second aspect or any possible design of the second aspect.
  • Figure 1 is a schematic diagram of a possible application scenario provided by the embodiment of the present application.
  • Figure 2 is a flow chart of a ranging method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of ranging signal interaction on a channel (group).
  • Figure 4A and Figure 4B are schematic diagrams of the first device and the second device negotiating frequency hopping parameters
  • Figure 5 is a possible frequency hopping schematic diagram provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of another possible frequency hopping provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of the simulation results of frequency hopping ranging based on an OFDM signal with a bandwidth of 20MHz;
  • Figure 8 is a schematic structural diagram of a distance measuring device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of another distance measuring device provided by an embodiment of the present application.
  • the technical solutions provided by the embodiments of this application can be applied to various wireless communication scenarios, such as vehicle positioning/ranging/angle measurement/sensing scenarios, indoor positioning/ranging/angle measurement/sensing scenarios, or other wide-area wireless communications or office scenarios.
  • This application does not limit the domain wireless communication scenario.
  • Specific wireless communication technologies include but are not limited to Wireless Fidelity (Wi-Fi), Bluetooth, Bluetooth Low Energy (BLE) or Ultra Wide Band (UWB), Sparklink, etc.
  • FIG. 1 is a schematic diagram of a possible application scenario provided by an embodiment of the present application.
  • positioning stations are deployed at four corners outside the car, and at least one positioning station is deployed inside the car (such as the rearview mirror or inside the roof, etc.).
  • the car key is a target that needs to be located (i.e., the located device). Its specific implementation may be a traditional car key with positioning function, or a mobile phone/wearable device with positioning function, etc.
  • the positioning station and/or the car key can send and/or receive ranging signals, and measure the received ranging signals to obtain corresponding measurement quantities. By calculating the measurements obtained by the positioning station and/or the car key, the position information of the car key (e.g. distance relative to the car) can be obtained.
  • a communication domain refers to a system composed of a group of communication nodes with communication relationships and communication connections (i.e. communication links) between communication nodes.
  • a communication domain includes a main communication node (which can be referred to as the main node or G node). and at least one slave communication node (which can be referred to as slave node or T node for short).
  • the master node is also called the management node, which is responsible for managing the time-frequency resources of the communication domain and has the function of communicating or positioning between communication nodes in the communication domain. The function of scheduling resources.
  • positioning stations, car keys, etc. can form a communication domain.
  • the car key can be a master node (G node), and each positioning station can be a slave node (T node); or, one positioning station can be the master node, and other positioning stations and car keys can be slave nodes.
  • G node master node
  • T node slave node
  • one positioning station can be the master node
  • other positioning stations and car keys can be slave nodes.
  • FIG. 2 is a flow chart of a ranging method provided by an embodiment of the present application.
  • the method includes:
  • the first device sends a first ranging signal and/or receives a second ranging signal on at least one first channel.
  • the second device receives the first ranging signal and/or on at least one first channel. Send a second ranging signal.
  • one device is a G node and the other device is a T node, where the G node is responsible for scheduling time-frequency resources for ranging interaction between the G node and the T node.
  • the T node is used to perform ranging interaction (such as sending and/or receiving ranging signals) with the G node under the scheduling of the G node.
  • the initiator of ranging (that is, the node that initiates the ranging process between G node and T node) can be G node, and the responder can be T node, or the initiator is T node and the responder is G Nodes are not limited in this application.
  • the G node is the car key and the T node is the positioning station.
  • the first device is the positioning station and the second device is the car key, or the first device is the car key and the second device is the positioning station. stand.
  • the following mainly takes G nodes and T nodes as examples for explanation. In fact, the specific node types are not limited, and the solution that can realize the present application shall prevail.
  • the first device and/or the second device may perform signal measurement on the received ranging signal.
  • the signal measurement may be one-way signal measurement (or called one-way signal measurement, One Way Ranging in English).
  • the second device receives and measures the first ranging signal sent by the first device.
  • the first device receives and measures the second ranging signal sent by the second device.
  • signal measurement may be two-way signal measurement (or bilateral signal measurement, Two Way Ranging in English), that is, the second device receives and measures the first ranging signal sent by the first device, and The first device receives and measures the second ranging signal sent by the second device.
  • Bidirectional signal measurement can eliminate problems such as timing deviation and random initial phase between the first device and the second device caused by frequency hopping, so that the ranging signals of each frequency band and/or channel can be coherently combined in the frequency domain to achieve a large combined bandwidth. Measurement improves the resolution of ranging, which in turn can improve the accuracy of ranging.
  • the second device can obtain the first measurement quantity by performing signal measurement on the first ranging signal; and/or the first device can obtain the second measurement quantity by performing signal measurement on the second ranging signal.
  • signal measurement on the ranging signal can be described as measuring the channel carrying the ranging signal.
  • the first ranging signal and/or the second ranging signal are carried on at least one first channel, so performing signal measurement on the first ranging signal and/or the second ranging signal can also be described as measuring at least one The first channel performs measurements.
  • the measurement quantity of the ranging signal can also be described as the measurement quantity of the corresponding channel, such as the channel state information in the time domain or frequency domain, the time of arrival (TOA)/time of departure (TOD) in the time domain, or the corresponding frequency domain The complex-valued frequency response of the carrier/subcarrier.
  • the at least one first channel can be regarded as a channel group, such as the first channel group.
  • the first device performs at least one frequency hopping according to the frequency hopping parameters; S202B.
  • the second device performs at least one frequency hopping according to the frequency hopping parameters.
  • Frequency hopping means that the channel used by the device for ranging (that is, sending and/or receiving ranging signals) switches from one channel to another.
  • the channels before and after switching correspond to different carrier frequencies.
  • the first device and the second device switch from at least one first channel to at least one second channel, where the carrier frequencies corresponding to the at least one first channel and the at least one second channel are different.
  • the first device and the second device directly switch from at least one first channel to at least one second channel; if the number of frequency hopping is more than one, the first device and the second device switch directly from at least one first channel to at least one second channel. Starting from a first channel, it switches to at least one second channel after multiple channel switches. For example, the first device and the second device first switch from at least one first channel to at least one third channel, and then switch from at least one third channel. The three channels are switched to at least one second channel.
  • the first device and the second device perform frequency hopping based on the same frequency hopping parameters, so that the first device and the second device can synchronize frequency hopping.
  • the first device switches from at least one first channel to at least one third channel.
  • the second device also switches from at least one first channel to at least one second channel.
  • the frequency hopping in the embodiment of the present application may be radio frequency (RF) frequency hopping, digital frequency hopping or frequency hopping based on a phase-locked loop (PLL) circuit, without limitation.
  • radio frequency hopping or frequency hopping based on PLL circuit switches the working channel of the device by changing the carrier frequency of the local oscillator signal of the radio frequency channel.
  • This frequency hopping method takes a long time, usually at the millisecond level (for example, 2 ⁇ 3ms) .
  • Digital frequency hopping takes a shorter time, generally at the microsecond level (such as 1us to 100us), and is achieved by modulating the signal at different frequencies/channels in the baseband module without changing the carrier frequency of the local oscillator signal.
  • the frequency hopping modes of the first device and the second device may be the same (for example, both are radio frequency hopping or digital frequency hopping), or they may be different (for example, the first device is radio frequency hopping and the second device is digital frequency hopping). , this application is not limited.
  • the device when the difference between the center frequency of the next hop channel measured by the device (such as the first device or the second device) and the center frequency of the currently working channel exceeds the maximum RF bandwidth supported by the device, the device Perform radio frequency hopping; otherwise, the device can perform digital frequency hopping.
  • the first device sends a third ranging signal and/or receives a fourth ranging signal on at least one second channel.
  • the second device receives a third ranging signal and/or on at least one second channel. Send the fourth ranging signal.
  • the at least one second channel is the channel where the first device and the second device are located after performing at least one frequency hopping. After the first device and the second device switch to the at least one second channel, signal measurement is performed again on the at least one second channel. Similarly, after receiving the fourth ranging signal, the second device can obtain the fourth measurement quantity by performing measurement on the fourth ranging signal; and/or after receiving the third ranging signal, the first device can obtain the fourth measurement quantity by performing measurement on the fourth ranging signal. By performing measurement on the three ranging signals, the third measurement quantity can be obtained.
  • the at least one second channel can be regarded as a channel group, such as a second channel group, and the second channel group and the first channel group correspond to different carrier frequencies.
  • this article may regard the operation of the first device and the second device performing signal measurement on one channel as one signal measurement process, and the operation of performing signal measurement on different channels as different signal measurement processes (for example, S201 and S203 are two signal measurement processes).
  • the computing device may combine the measurement quantities obtained from the two signal measurements (the first measurement quantity and/or the second measurement quantity, and the third measurement quantity and/or the fourth measurement quantity) to calculate the first device and The distance between the second device.
  • the computing device may be the first device, the second device, or other devices, which is not limited by this application.
  • the computing device may be the initiator in the first device and the second device.
  • the responder receives and measures the ranging signal, the responder needs to feed back the measurement quantity obtained by the signal measurement to Initiator.
  • the first device and the second device perform at least one frequency hopping based on the same frequency hopping parameters, and can simultaneously perform multiple signal measurements on different channels in a preset order, thereby achieving large-bandwidth signal measurement by merging multiple channels.
  • the technical effect (the bandwidth of signal measurement is the total bandwidth of at least one first channel and at least one second channel) can improve ranging resolution and ranging accuracy.
  • the first device and the second device performing two signal measurement processes.
  • the first device and the second device may also perform more frequency hopping, and then in more The signal measurement process is performed on multiple channels, and finally the computing device can determine the distance between the first device and the second device by integrating the measurement quantities obtained by all signal measurement processes, further improving the ranging resolution and ranging accuracy.
  • the number of devices that perform ranging interaction (also called measurement interaction) with the same device is not limited to one (for example, there is a third device that performs ranging interaction with the first device).
  • multiple positioning stations can interact with the car key at the same time to measure the distance of each positioning station relative to the car key, which can then be determined based on the distance of the car key relative to each positioning station. The position of the car key relative to the car.
  • the interaction process between each device and the first device can refer to the above-mentioned interaction process between the first device and the second device, which will not be described again here.
  • the ranging signals involved in the embodiments of the present application are orthogonal frequency signals.
  • Orthogonal Frequency Division Multiplexing (OFDM) signal is orthogonal Frequency Division Multiplexing (OFDM) signal.
  • OFDM also known as Discrete Multi-Tone modulation (DMT)
  • DMT Discrete Multi-Tone modulation
  • OFDM uses a large number of adjacent orthogonal sub-carriers, and each sub-carrier uses a traditional modulation scheme for low symbol rate modulation.
  • OFDM can be regarded as a combination of modulation technology and multiplexing technology.
  • the OFDM signal may include one or more of the following signals: channel state information reference signal (Channel-State Information-Reference Signal, CSI-RS), sounding reference signal (Sounding Reference Signal, SRS), positioning Reference signal (Positioning Rreference Signal, PRS), synchronization signal, etc.
  • CSI-RS Channel state information reference signal
  • SRS Sounding Reference Signal
  • PRS positioning Reference signal
  • synchronization signal etc.
  • CSI-RS is a channel state information reference signal sent by the G node in the communication domain and used by other nodes to measure the transmission channel characteristics from the G node to the other nodes.
  • SRS is a channel detection signal sent by other nodes (T nodes) received by the G node in the communication domain, and is used by the G node to measure the transmission channel characteristics from other nodes to the G node.
  • PRS is another positioning reference signal based on OFDM modulation designed for ranging.
  • the synchronization signal may be a signal used for time and frequency synchronization in a wireless short-range communication system (such as a vehicle-mounted wireless short-range communication system, specifically such as the SparkLink Basic (SLB) standard), such as the first training signal (First Training Signal, FTS) and/or Second Training Signal (Second Training Signal, STS).
  • a wireless short-range communication system such as a vehicle-mounted wireless short-range communication system, specifically such as the SparkLink Basic (SLB) standard
  • FTS First Training Signal
  • STS Second Training Signal
  • OFDM signals can be used as communication and ranging signals.
  • the OFDM signal with a physical bandwidth of about 20MHz is called a carrier (the channel that sends the carrier OFDM signal is called the carrier channel), and the center frequency point (that is, the DC subcarrier) of the 20MHz OFDM signal is called the carrier frequency.
  • a carrier consists of 39 consecutive sub-carriers.
  • the 39 sub-carriers are numbered #0, #1,..., #38 in order from low to high corresponding frequencies.
  • #19 sub-carrier is a direct current (DC) sub-carrier.
  • the other 38 subcarriers are called effective subcarriers.
  • G nodes and T nodes may work on multiple carrier channels, and multiple carrier channels constitute a carrier channel group (corresponding to a channel group).
  • the embodiment of this application refers to the carrier channel as simply a channel.
  • OFDM frequency hopping is defined as switching the DC subcarrier of an OFDM symbol from the center frequency of one channel to the center frequency of another channel.
  • frequency hopping switching of a single carrier it refers to the switching of DC subcarriers from one channel to another channel; for frequency hopping switching of multiple carriers, it refers to the switching of the channel group corresponding to multiple carriers to another channel group.
  • the switching of the first device and the second device from the at least one first channel to the at least one second channel is a frequency hopping switching of a single carrier.
  • the first device and the second device originally worked on channel 1, but switched to channel 2 after at least one frequency hopping.
  • the first device and the second device switch from the at least one first channel to the at least one second channel, which is a frequency hopping switching of multiple carriers ( Or multiple channel switching or channel group switching).
  • the first device and the second device originally worked on channels 1 to 4, but switched to channels 5 to 8 after at least one frequency hopping.
  • OFDM signals are transmitted using multiple subcarriers, the bandwidth supported by OFDM signals is generally larger (for example, greater than or equal to 20MHz).
  • Different devices may have different operating bandwidths and different stable frequency hopping times, making frequency hopping difficult for broadband systems.
  • the specific problem is that there are large differences in frequency hopping parameters between different devices, and it is difficult to synchronize frequency hopping without a synchronization protocol.
  • the first device and the second device use the same frequency hopping parameters for frequency hopping, which can realize synchronous frequency hopping between the first device and the second device, and combine multiple channels through frequency hopping.
  • the technical effect of large-bandwidth signal measurement can improve ranging resolution and ranging accuracy.
  • frequency hopping parameters may include one or more of the following:
  • the frequency hopping stable duration refers to the duration for the device to reach a stable state when performing frequency hopping, that is, the duration from the moment the device performs frequency hopping to the moment the device reaches a stable state.
  • the device that reaches a stable state can transmit and/or receive ranging signals, or can perform idle channel evaluation operations before transmission.
  • the length of time that the first device reaches a stable state when performing frequency hopping is the frequency hopping stable duration of the first device, and the length of time that the second device reaches a stable state when performing frequency hopping is the frequency hopping stabilization duration of the second device.
  • the device's stable duration includes the stabilization duration of the RF channel, as well as some other operations after the RF channel is stabilized (such as baseband configuration, register configuration refresh, etc.). Since frequency hopping is stable The duration accounts for most of the device stabilization duration. Therefore, in the embodiment of this application, the "device stabilization duration" and the “frequency hopping stabilization duration" are regarded as the same.
  • the first frequency hopping stable duration can be understood as the duration required for both the first device and the second device to reach a stable state when the first device and the second device in the communication connection perform frequency hopping.
  • the first frequency hopping stable duration is greater than or equal to the frequency hopping stable duration of the first device, and the first frequency hopping stable duration is greater than or equal to the frequency hopping stable duration of the second device.
  • the first device or the second device can reach a stable state before the first frequency hopping stable time period is reached.
  • T RF can be indicated with 16 bits
  • the change step can be 0.5us (that is, for every 1-bit change in the value of T RF , the corresponding duration change is 0.5us), and the indication range is 0.5us ⁇ 32.8ms.
  • the duration to reach a stable state may be different, and the stabilization duration of the first frequency hopping may be different.
  • at least one channel belongs to the first frequency band, that is, when the first device performs at least one frequency hopping on the first frequency band, the first frequency hopping stable duration is the first duration;
  • at least one channel belongs to the second frequency band, that is, the first When the device performs at least one frequency hopping on the second frequency band, the stable duration of the first frequency hopping is the second duration; wherein the first frequency band is different from the second frequency band, and the first duration is different from the second duration.
  • each of the different frequency bands does not overlap in the frequency domain.
  • each of the different frequency bands can be used to divide channels or channel groups, so there can be no overlap.
  • the frequency band described in this article refers to a relatively large frequency range, and each frequency band can be divided into multiple channels or channel groups.
  • T RF,5.1GHz and T RF,5.8GHz respectively indicate the time to reach a stable state when performing frequency hopping in the 5.1GHz frequency band and the time to reach a stable state when performing frequency hopping in the 5.8GHz frequency band.
  • the frequency range of the 5.1GHz band is, for example, 5150MHz ⁇ 5350MHz (this frequency range is an approximate value, and the actual value may vary), and the frequency range of the 5.8GHz band is, for example, 5725MHz ⁇ 5850MHz (this frequency range is an approximate value, the actual value may vary) .
  • whether the stable duration of the first frequency hopping is different can be determined based on whether it is necessary to perform idle channel evaluation on the channel (channel group) after frequency hopping.
  • the "Technical Requirements for Interference Avoidance of Radio Transmitting Equipment in the 2400MHz, 5100MHz and 5800MHz Frequency Bands” stipulates that equipment needs to conduct idle channel evaluation before transmitting in the 5100MHz frequency band (5.1GHz frequency band) and 2400MHz frequency band (2.4GHz frequency band); "Micro "Catalogue and Technical Requirements for Power Short-distance Radio Transmission Equipment” stipulates that the 5725-5850MHz frequency band (5.8GHz frequency band) can perform radio transmission in a micro-power short-distance manner, that is, the equipment can directly send ranging signals without idle channel evaluation.
  • performing idle channel evaluation or directly transmitting ranging signals determines the stable duration of the first device during frequency hopping, that is, the frequency hopping stabilization duration when idle channel evaluation is required is shorter than when direct transmission is required.
  • the frequency hopping stabilization time of the device can be different.
  • whether the stable duration of the first frequency hopping is different can be determined based on whether it is necessary to perform idle channel evaluation on the channels (groups) after frequency hopping.
  • the first device configures the frequency hopping stabilization duration parameter according to the frequency hopping stabilization duration T RF,1 ; otherwise, the first device configures the frequency hopping stabilization duration parameter according to the frequency hopping stabilization duration.
  • T RF,2 configures the frequency hopping stabilization duration, where T RF,1 ⁇ T RF,2 .
  • the first LBT maximum window period may be used to indicate whether the channel (group) needs to perform idle channel evaluation. For example, setting the LBT maximum window period of the 5.8 GHz frequency band to 0 indicates that the channels (groups) included in the 5.8 GHz frequency band do not need to perform idle channel evaluation.
  • Adopting different frequency hopping stabilization times for different operations after frequency hopping can save the frequency hopping waiting time of the device, improve the efficiency of frequency hopping ranging, and save power consumption.
  • the first frequency hopping stable time period includes the time period for the device to reach a stable state when performing frequency hopping in each frequency band (or channel or channel group).
  • the specific form of the first frequency hopping stable duration may be an array. Each element in the array corresponds to the frequency hopping stable duration of the device in one frequency band (or channel or channel group). Different elements correspond to the device in different frequency bands (or Channel or channel group) frequency hopping stable duration.
  • the duration for the device to reach a stable state when performing frequency hopping in different frequency bands (or channels or channel groups) may be different.
  • the first frequency hopping stable duration may be when the device performs frequency hopping in each frequency band (or channel or channel group).
  • the maximum length of time to reach steady state may be different.
  • the device will have entered a stable state when the first frequency hopping stable duration ends.
  • the amount of information required to transmit the first frequency hopping stable duration can be reduced. Save system resources.
  • the status of the first device and the second device can be synchronized during the frequency hopping process (for example, the post-synchronization enters the LBT stage).
  • the first device and the second device perform frequency hopping, after switching from one channel (or channel group) to another channel (or channel group), if the other channel (or channel group) is contention-based channel (or channel group), you need to perform Listen-Before-Talk (LBT) or Clear Channel Assess (CCA) or Carrier Sense Multiple Access to monitor the switched channel (or channel group), and then access the channel (or channel group) when it is idle and start sending and/or receiving ranging signals.
  • LBT Listen-Before-Talk
  • CCA Clear Channel Assess
  • Carrier Sense Multiple Access to monitor the switched channel (or channel group) when it is idle and start sending and/or receiving ranging signals.
  • LBT Long Term Evolution
  • CCA carrier sense multiple access
  • the time for the device (such as the first device or the second device) to evaluate the idle channel depends on the busy and idle status of the monitored channel (or channel group), that is, when the channel (or channel group) is busy, the device Continue to monitor the channel (or channel group); when the channel (or channel group) is idle, access the channel and start sending ranging signals.
  • the first LBT maximum window period, TLBT,max represents the preconfigured maximum value of TLBT so that the first device and/or the second device are busy and idle in the currently monitored channel (or channel group).
  • T LBT,max the idle channel evaluation of the monitored channel (or channel group) is stopped, and frequency hopping is continued to switch to another channel (or channel group). channel group) for idle channel evaluation.
  • T LBT,max is configured by the master node (G node) in the communication domain where the first device and the second device are located.
  • the maximum window period of the first LBT is configured for the first device.
  • T LBT,max can be configured by the car key and notified to each positioning station.
  • the first LBT maximum window period is greater than or equal to a preset value, which is, for example, 25 us.
  • TLBT,max 3ms (close to TRF ).
  • T LBT,max can be indicated with 16 bits
  • the change step can be 1us (that is, for every 1-bit change in the value of T LBT,max , the corresponding duration change is 1us), and the indication range is 1us ⁇ 65.5ms.
  • T LBT,max By setting T LBT,max , it can be ensured that when the channel is busy for a long time, the first device and the second device will synchronously switch to the next hop channel when T LBT,max ends, preventing both parties from repeatedly being idle due to long-term competition for the channel.
  • Channel evaluation can save resources and equipment power consumption and improve the efficiency of frequency hopping measurements.
  • the first frequency hopping pattern is used to indicate the frequency hopping sequence of the first device and the second device.
  • the first frequency hopping pattern includes channel number information of at least one first channel and channel number information of at least one second channel.
  • the first frequency hopping pattern includes multiple channel number information arranged in sequence. Based on the arrangement order of the multiple channel number information, the frequency hopping sequence of the first device and the second device can be indicated.
  • the first frequency hopping pattern may be [41, 125, 209,...,791], then the frequency hopping sequence of the first device and the second device is: channel 41, channel 125, channel 209,..., channel 791.
  • the first frequency hopping pattern may indicate the channel number information of the channel at a preset position in each channel group, such as the frequency in each channel group Channel number information for the lowest or highest frequency channel.
  • the frequency hopping sequence of the first device and the second device is: channel group 1 (including three channels, channel numbers are a, b, c), channel group 2 (including three channels, channel numbers are d, e, f), channel group 3 (including three channels, channel numbers are g, h, i respectively), then the first frequency hopping pattern can be expressed as [channel number a, channel number d, channel number g].
  • a single channel group corresponds to a carrier with a bandwidth of 80 MHz. If the channel number of the initial working channel indicated by the first frequency hopping pattern is 41, then the minimum channel number corresponding to the working channel of the next hop is 291.
  • the first frequency hopping pattern By setting the first frequency hopping pattern, it can be ensured that the first device and the second device perform frequency hopping according to the same frequency hopping sequence, so as to ensure that both parties of ranging are synchronously hopping.
  • the first device switches from at least one first channel to at least one second channel according to the first frequency hopping pattern; after waiting for T RF1 , the first device performs the first idle channel evaluation.
  • the first device determines that at least one second channel is idle, then the first device sends a third ranging signal and/or receives a fourth ranging signal on at least one second channel, where T LBT1 ⁇ T LBT,max .
  • the process of the second device performing a frequency hopping is similar to that of the first device, and will not be described again here.
  • the first device switches from at least one first channel to at least one third channel according to the first frequency hopping pattern; after waiting for the first frequency hopping to stabilize for a duration T RF2 , the first device performs Second idle channel evaluation.
  • the first device determines at least one If the second channel is idle, the first device sends a third ranging signal and/or receives a fourth ranging signal on at least one second channel, where TLBT3 ⁇ TLBT,max , and T RF2 is the same as or different from T RF3 .
  • the process of the second device performing two frequency hopping is similar to that of the first device and will not be described again here.
  • the at least one second channel being idle includes a part of the second channel being idle or all the second channels being idle in the at least one second channel.
  • the first device and the second device can access the channel and then send and/or receive ranging signals on the channel.
  • the G node (such as the first device) needs to resend the preamble, so that the T node (such as the second device) can re-send timing and carrier frequency offset (CFO) to the G node. ) to control the timing deviation t res and f CFO within acceptable thresholds.
  • CFO carrier frequency offset
  • FIG. 3 is a schematic diagram of ranging signal interaction on a channel (group).
  • the G node and/or the T node must start idle channel evaluation after the T RF ends.
  • the channel (group) indicates idle, alternate transmission of ranging signals (called ranging interaction/measurement interaction) begins.
  • the initiator such as G node
  • the responder such as T node
  • GAP gap
  • the G node and the T node can perform signal measurement based on the SLB technology.
  • the ranging signal can be composed of a positioning reference signal (PRS), and the frame length containing the ranging signal is at least the length of the SLB wireless frame.
  • PRS positioning reference signal
  • the G node serves as the preamble and the sender of the first wireless frame. Its CCA can start at T pre before the end of T RF . This is because the T node will switch to stable reception at the end of T RF . status, if CCA indicates that the channel is idle, the G node can start sending the preamble signal at the end of T RF to save time and improve ranging efficiency.
  • the G node can be in the communication/sleep state before the T node reaches the stable state, and make itself in the T RF end time. Reach a stable state, thereby making full use of T RF time resources.
  • the frequency hopping parameters are determined through negotiation between the first device and the second device.
  • the negotiation process may include: the first device sending the frequency hopping measurement information of the first device to the second device; and/or the first device receiving the frequency hopping measurement information of the second device.
  • Example 1 Take the first device as the initiator and the second device as the responder. See Figure 4A: S401A.
  • the first device sends a ranging request message to the second device.
  • the ranging request message includes the hop of the first device. frequency measurement information;
  • S402A the second device sends a ranging response message to the first device, and the ranging response message includes the frequency hopping measurement information of the second device;
  • S403A the first device calculates the frequency hopping measurement information of the first device according to the frequency hopping measurement information of the first device and the frequency hopping measurement information of the first device.
  • the frequency hopping measurement information of the two devices determines the frequency hopping parameters.
  • the first device sends a ranging confirmation message to the second device, and the ranging confirmation message contains the frequency hopping parameters.
  • Example 2 Take the first device as the initiator and the second device as the responder. See Figure 4B: S401B.
  • the first device sends a ranging request message to the second device.
  • the ranging request message includes the hop of the first device.
  • the second device determines the frequency hopping parameters according to the frequency hopping measurement information of the first device and the frequency hopping measurement information of the second device.
  • the second device sends a ranging response message to the first device. In the ranging response message, Includes frequency hopping parameters.
  • the frequency hopping measurement information of the first device may include one or more of the following:
  • the first device supports multi-carrier (ie, channel group) frequency hopping switching.
  • the number of channels of at least one first channel and at least one second channel is multiple.
  • the number of channels of at least one first channel and at least one second channel is multiple.
  • overlapping at least one first channel and at least one second channel. Some of the two channels are the same; non-overlapping situation: at least one first channel and at least one second channel do not have the same channel.
  • the second information is used to indicate the number of overlapping channels N overlap allowed by the first device
  • the number of overlapping channels between different channel groups cannot exceed N overlap .
  • the carrier overlap range is B-20MHz ⁇ B
  • the change step is 20MHz (that is, for each overlapping channel, the corresponding carrier overlap range changes by 20MHz bandwidth).
  • N overlap 1 or 2 or 3
  • Figure 5 is a possible frequency hopping schematic diagram provided by an embodiment of the present application.
  • the first device may determine the second frequency hopping pattern in advance based on its own frequency hopping capability information, and use it as the second frequency hopping pattern expected by the first device.
  • the fourth information is used to indicate the frequency hopping stabilization duration of the first device
  • the time elapsed from the moment when the first device performs frequency hopping to the moment when the first device reaches a stable state is, the time elapsed from the moment when the first device performs frequency hopping to the moment when the first device reaches a stable state.
  • the fifth information is used to indicate the second LBT maximum window period expected by the first device.
  • the frequency hopping measurement information of the second device may include one or more of the following:
  • the sixth information is used to indicate whether the second device allows channel overlap. Please refer to the introduction of the first information.
  • the seventh information is used to indicate the number of overlapping channels allowed by the second device. Please refer to the introduction of the second information;
  • the eighth information is used to indicate the third frequency hopping pattern expected by the second device. Please refer to the introduction of the third information;
  • the ninth information is used to indicate the frequency hopping stabilization duration of the second device. You can refer to the introduction of the fourth information;
  • the tenth information is used to indicate the third LBT maximum window period expected by the second device.
  • frequency hopping measurement information is only an example and not a limitation, and may actually include other information.
  • the first device or the second device determines the frequency hopping parameters based on the frequency hopping measurement information of the first device and the frequency hopping measurement information of the second device:
  • Example 1 The first device or the second device determines the first frequency hopping pattern based on the first information, the second information, the sixth information, and the seventh information.
  • the first device and the second device allow channel overlap, there may be overlapping channels between channel groups corresponding to different frequency hopping positions in the first frequency hopping pattern.
  • the number of overlapping channels in the first frequency hopping pattern cannot exceed the number of overlapping channels allowed by the first device and the number of overlapping channels allowed by the second device.
  • the minimum value in the quantity is the number of overlapping channels allowed by the first device and the number of overlapping channels allowed by the second device.
  • Example 2 The first device or the second device determines the frequency hopping stabilization duration based on the fourth information and the ninth information.
  • the first frequency hopping stable duration is the maximum value of the frequency hopping stable duration of the first device and the frequency hopping stable duration of the second device.
  • Example 3 The first device or the second device determines the first LBT maximum window period based on the fifth information and/or the tenth information.
  • the first device is a G node
  • the first LBT maximum window period is the second LBT maximum window period expected by the first device.
  • the second device is a G node
  • the first LBT maximum window period is the third LBT maximum window period expected by the second device.
  • the first LBT maximum window period is the maximum value or the minimum value of the second LBT maximum window period and the third LBT maximum window period.
  • the first device and the second device determine the frequency hopping parameters through negotiation, so that the determined frequency hopping parameters can be well supported by the first device and the second device, ensuring that the first device and the second device.
  • the synchronization status of the device's frequency hopping ranging enhances the reliability of ranging.
  • the first device determines the frequency hopping measurement information of the first device, where the frequency hopping measurement information of the first device is based on the frequency hopping capability information of the first device, the frequency hopping capability information of the second device, or Determined by pre-configured or defined frequency hopping capability information.
  • the second device determines the frequency hopping measurement information of the second device, wherein the frequency hopping measurement information of the second device is based on the frequency hopping capability information of the first device, the frequency hopping capability information of the second device, or a preconfigured or defined frequency hopping Capability information is determined.
  • the frequency hopping capability information of the first device and the frequency hopping capability information of the second device are preconfigured or defined.
  • the frequency hopping capability information of each device in the same communication domain is pre-configured and notified to other devices in the communication domain, or, for example, the frequency hopping capability information of each device in the same communication domain is configured to the same value. Therefore, the first device can directly determine the frequency hopping measurement information of the first device based on the frequency hopping capability information configured or defined first, and the second device can directly determine the frequency hopping measurement information of the second device based on the frequency hopping capability information configured or defined first. information. In this way, the efficiency of the first device and the second device in obtaining each other's frequency hopping capability information can be improved, thereby improving the ranging efficiency.
  • the first device and the second device may also exchange frequency hopping capability information first, so that the first device and the second device may exchange frequency hopping capability information first.
  • One device and/or the second device can determine its own frequency hopping measurement information based on the frequency hopping capability information of both parties.
  • the first device sends the frequency hopping capability information of the first device to the second device, and the second device receives the frequency hopping capability information of the first device, and then the second device can use the frequency hopping capability information of the first device and the second device to
  • the frequency hopping capability information determines the frequency hopping measurement information of the second device; and/or the second device sends the frequency hopping capability information of the second device to the first device, and the first device receives the frequency hopping capability information of the second device, and then
  • the first device may determine the frequency hopping measurement information of the first device based on the frequency hopping capability information of the first device and the frequency hopping capability information of the second device. In this way, it can be ensured that the first device and the second device accurately obtain each other's frequency hopping capability information, which can improve the applicability of the solution.
  • the first device and the second device may exchange frequency hopping capability information in an associated state or an unassociated state.
  • the association status for example, the first device and the second device have established a reliable connection after completing authentication, association and other operations, then the first device and the second device can exchange frequency hopping capabilities based on the ranging request message and the ranging response message. information.
  • the first device and the second device in the unassociated state, for example, when the first device and the second device have not performed an association operation or established a connection, the first device and the second device can broadcast their own frequency hopping capability information through system broadcast messages, so that they are located Devices within the preset range of the first device (including the second device) can receive the frequency hopping capability information of the first device broadcast by the first device. In addition, they can also broadcast the frequency hopping parameters through system broadcast messages, so that the devices of both parties can complete the unfinished business. Ranging in associated state.
  • the frequency hopping capability information of the first device may include one or more of the following:
  • available frequency bands including supported frequency hopping ranging.
  • the first device can indicate the frequency hopping ranging capability of the 5150-5350MHz frequency band; if the first device supports the 5.8GHz frequency band, it can indicate the frequency hopping ranging capability of the 5725-5850MHz frequency band.
  • the working bandwidth of the first device for example, 20MHz ⁇ 200MHz.
  • the change step size is 20MHz, which may be determined by the maximum bandwidth of the RF chain of the first device.
  • This duration is defined as the time when the entire device (including the RF chain and baseband processing unit) reaches a stable transmitting state or receiving state when the RF chain with the maximum bandwidth supported by the first device for transmitting and/or receiving ranging signals needs to switch the working frequency point.
  • This value may be determined based on design parameters and/or test parameters of the first device.
  • the frequency hopping stabilization duration of the first device indicated by the fourth information above may be the same as the preset stabilization duration when the first device performs frequency hopping here, or may be different.
  • the temperature of the first device during the frequency hopping capability information exchange phase is different from the temperature of the first device during the frequency hopping parameter negotiation phase. Therefore, the first device obtains the first temperature during the frequency hopping capability information exchange phase.
  • the preset stable time period when the device performs frequency hopping may be different from the preset stable time period when the first device performs frequency hopping obtained during the frequency hopping parameter negotiation stage.
  • the operating frequency band of the first device in the frequency hopping capability information exchange stage is different from the operating frequency band of the first device in the frequency hopping parameter negotiation stage. Therefore, the first device obtains the frequency band in the frequency hopping capability information exchange stage.
  • the preset stable time period when the first device performs frequency hopping may be different from the preset stable time period when the first device performs frequency hopping obtained during the frequency hopping parameter negotiation stage.
  • the stabilization time is 1 ms
  • the stabilization time is 2 ms. This is because the first device needs to perform idle channel evaluation first at 5.1 GHz, but does not need to perform idle channel evaluation when using micro-power transmission at 5.8 GHz.
  • the first device can use a shorter stabilization time to frequency hop to the channel; otherwise, when the first device does not need to perform an idle channel evaluation operation on a channel
  • the first device should use a longer stable duration when frequency hopping to the channel.
  • the frequency hopping capability information of the second device includes one or more of the following:
  • frequency hopping capability information of the second device please refer to the detailed introduction of the frequency hopping capability information of the first device, which will not be described again here.
  • the first device Take the first device as an example to determine the frequency hopping measurement information of the first device based on the frequency hopping capability information of the first device and the frequency hopping capability information of the second device:
  • the first device The device may use the frequency band information supported by the first device for frequency hopping and the frequency band information supported by the second device for frequency hopping, the maximum bandwidth supported by the first device for transmitting and/or receiving ranging signals, and the second device.
  • the maximum bandwidth supported by the device for transmitting and/or receiving ranging signals, etc. determines the first information (ie, whether the first device allows channel overlap), the second information (ie, the number of overlapping channels allowed by the first device) and /or third information (ie, the second frequency hopping pattern expected by the first device), etc.
  • the frequency hopping measurement information of the first device can be supported by the frequency hopping capability of the first device
  • the frequency hopping measurement information of the second device can be supported by the frequency hopping capability of the second device, improving the reliability of the scheme.
  • the first frequency hopping pattern also includes channel number information of the initial working channel, and the last hop channel indicated by the first frequency hopping pattern is the initial working channel.
  • the method also includes: starting from the initial working channel, the first device and the second device perform one or more frequency hopping according to the frequency hopping sequence indicated by the first frequency hopping pattern, and return to the initial working channel when performing the last hop.
  • the initial working channel is the channel (or channel group) with the highest frequency in the first frequency hopping pattern.
  • FIG. 5 is a possible frequency hopping schematic diagram provided by an embodiment of the present application.
  • G node and T node perform ranging interaction on channel 3, channel 2, and channel 1 through frequency hopping.
  • the last frequency hopping returns to channel 3.
  • the responders in G node and T node report to the initiator. Feedback of channel status information is performed on channel 3.
  • the device starts frequency hopping from the initial working channel, and the last hop returns to the initial working channel. This can not only ensure that the device can measure distances on different channels during the signal measurement process, achieve large-bandwidth measurement results, but also ensure that the device is After the ranging is completed, return to the initial working channel to ensure the subsequent communication performance of the device.
  • the working bandwidth of the device serving as the G node among the first device and the second device is greater than the working bandwidth of the device serving as the T node.
  • the frequency hopping switching duration T 0 may only depend on the frequency hopping capability of the T node and has nothing to do with the G node.
  • FIG. 6 is another possible frequency hopping schematic diagram provided by an embodiment of the present application.
  • the G node and the T node perform ranging interactions on channel 3, channel 2, and channel 1 in sequence through frequency hopping, and return to channel 3 for the last frequency hopping.
  • the working bandwidth of G node is 200MHz
  • the working bandwidth of T node is 80MHz.
  • the T node 80MHz
  • the frequency hopping switching duration T0 depends on the switching capability of the T node and has nothing to do with the G node.
  • the G node continues to work on a large bandwidth (such as 200MHz), the availability of each small bandwidth (such as each 80MHz) on the large bandwidth is guaranteed.
  • the frequency switching efficiency of the G node can be guaranteed (because the G node does not need to perform RF Frequency hopping), on the other hand, it also eliminates the need for the T node to perform channel idle evaluation (because the channel is within the access period of the G node, and there is no LBT failure), which can improve the efficiency of ranging interaction.
  • FIG 7 is a schematic diagram of the simulation results of frequency hopping ranging based on an OFDM signal with a bandwidth of 20MHz.
  • the G node and the T node use a 20MHz single carrier and use the ranging signal based on OFDM symbols to perform frequency hopping ranging.
  • the measurement results of multiple carriers can be coherently merged, making it possible for two devices with only a 20MHz operating bandwidth to Small bandwidth equipment, through multiple frequency hopping measurements, the fast measurement bandwidth reaches 200MHz, achieving a wide bandwidth ranging performance close to 200MHz, and the accuracy can reach more than 10 centimeters (CDF 80%).
  • CDF 80% centimeters
  • 200MHz means no frequency hopping, and the ranging cumulative distribution function (CDF) curve of the 200MHz bandwidth channel is measured at one time;
  • 20MHz x 10 means that a pair of G nodes and T nodes with a 20MHz operating bandwidth pass through Frequency hopping 10 times completed the CDF curve of 200MHz bandwidth.
  • the channel model in this simulation uses a 9-path Rayleigh fading model (i.e., Model-B of the 802.11ax channel model), and a total of 1,000 simulations were performed.
  • embodiments of the present application provide a ranging device, which includes modules/units/means for executing the method performed by the first device and/or the second device in the above method embodiment.
  • This module/unit/means can be implemented by software, or implemented by hardware, or it can also be implemented by hardware executing corresponding software.
  • the device may include a transceiver unit 801 and a processing unit 802 .
  • the transceiver unit 801 is configured to send a first ranging signal and/or receive a second ranging signal on at least one first channel;
  • the processing unit 802 is configured to perform at least one frequency hopping according to the frequency hopping parameters
  • the transceiver unit 801 is also configured to send a third ranging signal and/or receive a fourth ranging signal on at least one second channel.
  • the transceiver unit 801 is configured to receive the first ranging signal and/or send the second ranging signal on at least one first channel; the processing unit 802, The transceiver unit 801 is configured to perform at least one frequency hopping according to the frequency hopping parameters; the transceiver unit 801 is also configured to receive a third ranging signal and/or send a fourth ranging signal on at least one second channel.
  • the above device can have multiple product forms.
  • Several possible product forms are introduced below.
  • an embodiment of the present application also provides a ranging device.
  • the device includes at least one processor 901 and an interface circuit 902; the interface circuit 902 is used to receive signals from other devices other than the device and send or receive them to
  • the processor 901 may send signals from the processor 901 to other communication devices outside the device, and the processor 901 may implement the method executed by the first device or the second device through logic circuits or execution of code instructions.
  • the processor mentioned in the embodiments of this application can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software code stored in memory.
  • the processor can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), or application specific integrated circuit (Application Specific Integrated Circuit, ASIC) , off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Eate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous link dynamic random access memory
  • Synchlink DRAM, SLDRAM direct memory bus random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • embodiments of the present application also provide a computer-readable storage medium, including a program or instructions.
  • the program or instructions When the program or instructions are run on a computer, the method performed by the above-mentioned second device or the first device is be executed.
  • embodiments of the present application also provide a computer program product containing instructions.
  • the computer program product stores instructions.
  • the computer program product When the computer program product is run on a computer, it causes the method executed by the above-mentioned second device or the first device. be executed.
  • embodiments of the present application also provide a ranging system, including the above-mentioned second device and the first device.
  • embodiments of the present application also provide a terminal device, including the second device or the first device described above.
  • the terminal device can be a vehicle, a drone, a helicopter, an airplane, a ship, an intelligent transportation device, or a smart home device, etc.
  • the embodiments of this application do not limit the specific form of the terminal device.
  • “at least one” refers to one or more, and “plurality” refers to two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects before and after are an “or” relationship; in the formula of this application, the character “/” indicates that the related objects before and after are a kind of "division” Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种测距方法、装置和系统,用于提高设备对目标进行定位/测距/测角/感知的精度。第一设备在至少一个第一信道上发送第一测距信号和/或接收第二测距信号,第二设备在至少一个第一信道上接收第一测距信号和/或发送第二测距信号;第一设备、第二设备根据跳频参数执行至少一次跳频;第一设备在至少一个第二信道上发送第三测距信号和/或接收第四测距信号,第二设备在至少一个第二信道上接收第三测距信号和/或发送第四测距信号。第一设备和第二设备根据相同跳频参数执行至少一次跳频,可以同步地按预设顺序在不同信道上执行多次信号测量,进而实现合并出多信道的大带宽信号测量的技术效果,可以提高测距分辨率和测距准确度。

Description

一种测距方法、装置和系统 技术领域
本申请涉及无线通信技术领域,尤其涉及一种测距方法、装置和系统。
背景技术
随着全球通信技术的不断发展,无线通信技术的发展速度与应用已经超过了有线通信技术,呈现出如火如荼的发展态势。智能运输设备、智能家居设备、机器人等智能设备正在逐步进入人们的日常生活中。设备基于无线通信技术,可以对目标进行定位/测距/测角/感知等。例如,无钥匙进入和启动(Passive Entry Passive Start,PEPS),是车载无线定位应用的一个实例,用户无需使用钥匙,而是通过车载定位系统对用户携带的车钥匙/手机进行定位,即可自动锁定或解锁车门。
然而,在现有技术中,设备对目标进行定位/测距/测角/感知时,可用的带宽较小,导致定位/测距/测角/感知精度差的问题。
发明内容
本申请提供一种测距方法、装置和系统,用于提高设备对目标进行定位/测距/测角/感知的精度。
第一方面,提供一种测距方法,该方法可以应用于任何无线通信场景,例如车载定位/测距/测角/感知场景、室内定位/测距/测角/感知场景等,方法包括:第一设备在至少一个第一信道上发送第一测距信号和/或接收第二测距信号;第一设备根据跳频参数执行至少一次跳频;第一设备在至少一个第二信道上发送第三测距信号和/或接收第四测距信号。
上述方案中,第一设备根据跳频参数执行至少一次跳频,可以按预设顺序在不同信道上执行多次信号测量,进而实现合并出多信道的大带宽信号测量的技术效果(信号测量的带宽为至少一个第一信道和至少一个第二信道的总带宽),可以提高测距分辨率和测距准确度。并且,只要第二设备根据相同跳频参数执行至少一次跳频,就可以保证第一设备和第二设备同步跳频,避免不同设备之间存在跳频参数差异较大、跳频没有同步协议难以同步跳频等问题。
可以理解的,当第一设备在多个信道上发送和/或测距信号时,该多个信道可视为一个信道组,例如至少一个第一信道的信道数量为多个时,至少一个第一信道可称为第一信道组,至少一个第二信道的信道数量为多个时,至少一个第二信道可称为第二信道组。
一种可能的设计中,第一测距信号、第二测距信号、第三测距信号和/或第四测距信号为正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)信号。
换而言之,在基于OFDM信号的测距场景,本申请实施例可以通过跳频实现合并出多信道的大带宽的OFDM信号测量的技术效果,信号测量双方(第一设备和第二设备)通过使用相同的跳频参数,可以解决不同设备之间存在跳频参数差异较大、跳频没有同步协议难以同步跳频等问题,因此可以提高基于OFDM信号的测距的分辨率和准确度。
一种可能的设计中,OFDM信号包含以下至少一种信号:信道状态信息参考信号(Channel-State Information-Reference Signal,CSI-RS),探测参考信号(Sounding Reference  Signal,SRS),第一训练信号(First Training Signal,FTS),第二训练信号(Second Training Signal,STS),定位参考信号(Positioning Rreference Signal,PRS)。
可以理解的,以上几种信号仅为示例而非具体限定。
一种可能的设计中,跳频参数包括以下一项或多项:第一跳频稳定时长;第一发送前先听(Listen-Before-Talk,LBT)最大窗口期;第一跳频图案,用于指示第一设备和第二设备的跳频顺序,第一跳频图案包括至少一个第一信道的信道编号信息和至少一个第二信道的信道编号信息。
该设计中,通过设置第一跳频稳定时长,可以使得第一设备和第二设备在跳频过程中状态同步(例如同步进入LBT阶段);通过设置第一LBT最大窗口期,可以保证信道长时间为忙时,第一设备和第二设备在第一LBT最大窗口期结束时,同步切换至下一跳信道,避免双方因长时间竞争信道而反复进行空闲信道评估,可以节省资源和设备功耗,提高跳频测量的效率;通过设置第一跳频图案,可以保证第一设备和第二设备按照相同的跳频顺序执行跳频,以保证测距双方跳频同步。
可以理解的,实际应用中跳频参数还可以有其它,本申请不做限制。
一种可能的设计中,第一设备在不同频段(如2.1GHz、5.1GHz、5.8GHz等)跳频时,第一跳频稳定时长可以不同。示例性的,至少一个信道属于第一频段,第一跳频稳定时长为第一时长;或者,至少一个信道属于第二频段,第一跳频稳定时长为第二时长;其中,第一频段不同于第二频段,第一频段与第二频段在频域上不存在重叠,第一时长不同于第二时长。
其中,第一跳频稳定时长的取值与设备在对应频段跳频时是否需要执行信道空闲评估相关。例如,当第一设备在不同的频段跳频时,需要执行空闲信道评估时的第一跳频稳定时长小于直接发射测距信号(即不需要执行空闲信道评估)时的第一跳频稳定时长。
如此,第一设备在不同频段跳频时采取不同的第一跳频稳定时长,可以尽可能地节省第一设备的跳频等待时长,提高跳频测距的效率和节省功耗。
一种可能的设计中,第一设备在不同信道(组)跳频时,第一跳频稳定时长可以不同。类似的,当第一设备在不同的信道(组)跳频时,需要执行空闲信道评估时的第一跳频稳定时长小于直接发射测距信号(即不需要执行空闲信道评估)时的第一跳频稳定时长。
如此,第一设备在不同信道(组)跳频时采取不同的第一跳频稳定时长,可以尽可能地节省第一设备的跳频等待时长,提高跳频测距的效率和节省功耗。
一种可能的设计中,第一LBT最大窗口期为第一设备配置的。例如,第一设备为主节点,第二设备为从节点,则第一LBT最大窗口期为第一设备配置的。
如此,可以实现第一设备管理第一设备和第二设备的信号测量过程,可以提高方案的可靠性。
一种可能的设计中,第一跳频稳定时长为第一设备的跳频稳定时长和第二设备的跳频稳定时长中的最大值,跳频稳定时长是设备执行跳频时达到稳定状态的时长。
如此,可以保证第一跳频稳定时长结束时第一设备和第二设备均进入稳定状态,保证跳频测距的可靠性。
一种可能的设计中,第一跳频图案是第一设备与第二设备协商确定的。
如此,可以使得第一跳频图案能够得到第一设备和第二设备的支持,保证第一设备和第二设备跳频测距的同步状态,增强了测距的可靠性。
一种可能的设计中,至少一个第二信道中包含的信道的数量为多个;至少一个第二信道的信道编号信息为:至少一个第二信道中频率最低或频率最高的信道的信道编号信息。
如此,可以减少传输第一跳频图案所需的信息量,节省系统资源。
一种可能的设计中,第一设备根据跳频参数执行至少一次跳频,包括:第一设备根据第一跳频图案从至少一个第一信道切换至至少一个第二信道;等待第一跳频稳定时长之后,第一设备执行第一空闲信道评估。相应的,第一设备在至少一个第二信道上发送第三测距信号和/或接收第四测距信号,包括:第一设备确定至少一个第二信道空闲时,第一设备在至少一个第二信道上发送第三测距信号和/或接收第四测距信号。
换而言之,第一设备执行一次跳频即可切换到第二信道上。
一种可能的设计中,第一跳频图案还包括至少一个第三信道的信道编号信息。第一设备根据跳频参数执行至少一次跳频,包括:第一设备根据第一跳频图案从至少一个第一信道切换至至少一个第三信道;等待第一跳频稳定时长之后,第一设备执行第二空闲信道评估;第一设备确定在第二空闲信道评估对应的LBT窗口内获得的空闲信道评估结果为至少一个第三信道非空闲时,在第二空闲信道评估对应的LBT窗口结束后,第一设备根据第一跳频图案从至少一个第三信道切换至至少一个第二信道;其中,第二空闲信道评估对应的LBT窗口的时长等于第一LBT最大窗口期;等待第一跳频稳定时长之后,第一设备执行第三空闲信道评估。相应的,第一设备在至少一个第二信道上发送第三测距信号和/或接收第四测距信号,包括:第一设备确定至少一个第二信道空闲时,第一设备在至少一个第二信道上发送第三测距信号和/或接收第四测距信号。
换而言之,第一设备执行连续两次跳频(其中第一次切换LBT失败,导致无法在第三信道上进行信号测量)才切换到第二信道上。
当然,实际应用中,第一设备还可能执行更多次的跳频才能LBT成功,进而在LBT成功的信道上传输测距信号。
一种可能的设计中,方法还包括:第一设备向第二设备发送第一设备的跳频测量信息;和/或,第一设备接收第二设备的跳频测量信息。
如此,可以使得信号测量双方获知对方的跳频测量信息,进而根据跳频测量信息确定跳频参数,保证最终确定出的跳频参数能够得到双方支持,可以提高测距的可靠性。
一种可能的设计中,第一设备的跳频测量信息包括以下一项或多项:
第一信息,用于指示第一设备是否允许信道重叠;
第二信息,用于指示第一设备允许的重叠的信道的数量;
第三信息,用于指示第一设备期望的第二跳频图案;
第四信息,用于指示第一设备的跳频稳定时长;
第五信息,用于指示第一设备期望的第二LBT最大窗口期;
第二设备的跳频测量信息包括以下一项或多项:
第六信息,用于指示第二设备是否允许信道重叠;
第七信息,用于指示第二设备允许的重叠的信道的数量;
第八信息,用于指示第二设备期望的第三跳频图案;
第九信息,用于指示第二设备的跳频稳定时长;
第十信息,用于指示第二设备期望的第三LBT最大窗口期。
当然,以上信息仅为示例,而非具体限定。
一种可能的设计中,方法还包括:第一设备确定第一设备的跳频测量信息,其中跳频测量信息是根据第一设备的跳频能力信息、第二设备的跳频能力信息、或者预先配置或定义的跳频能力信息确定的。
如此,可以保证跳频参数协商过程中使用的第一设备的跳频测量信息能够得到第一设备的跳频能力支持、第二设备的跳频测量信息能够得到第二设备的跳频能力支持,可以提高测距方案的可靠性。
一种可能的设计中,方法还包括:第一设备向第二设备发送第一设备的跳频能力信息;和/或,第一设备接收第二设备的跳频能力信息。
如此,可以保证第一设备和第二设备能够准确获取到对方的跳频能力信息,可以提高方案的适用性。
一种可能的设计中,第一设备的跳频能力信息包括以下一项或多项:
第一设备是否支持跳频;
第一设备支持的用于跳频的频段信息;
第一设备支持的用于发送和/或接收测距信号的最大带宽;
第一设备执行跳频时的预设稳定时长;
第一设备执行跳频时的预设稳定时长在不同频段是否不同;
第二设备的跳频能力信息包括以下一项或多项:
第二设备是否支持跳频;
第二设备支持的用于跳频的频段信息;
第二设备支持的用于发送和/或接收测距信号的最大带宽;
第二设备执行跳频时的预设稳定时长;
第二设备执行跳频时的预设稳定时长在不同频段是否不同。
当然,以上信息仅为示例,而非具体限定。
一种可能的设计中,第一跳频图案还包括初始工作信道的信道编号信息;方法还包括:第一设备从初始工作信道开始跳频,其中第一跳频图案指示的最后一跳信道为初始工作信道。
如此,一方面可以保证信号测量过程中设备在不同信道上测距,实现大带宽的测量效果,另一方面可以保证设备在测距完成之后,设备回到初始工作信道上,以保证设备后续的通信性能。
第二方面,提供一种测距方法,该方法可以应用于任何无线通信场景,例如车载定位/测距/测角/感知场景、室内定位/测距/测角/感知场景等,方法包括:第二设备在至少一个第一信道上接收第一测距信号和/或发送第二测距信号;第二设备根据跳频参数执行至少一次跳频;第二设备在至少一个第二信道上接收第三测距信号和/或发送第四测距信号。
一种可能的设计中,第一测距信号、第二测距信号、第三测距信号和/或第四测距信号为OFDM信号。
一种可能的设计中,OFDM信号包含以下至少一种信号:CSI-RS,SRS,FTS,STS,PRS。
一种可能的设计中,跳频参数包括以下一项或多项:
第一跳频稳定时长;
第一LBT最大窗口期;
第一跳频图案,用于指示第一设备和第二设备的跳频顺序,第一跳频图案包括至少一个第一信道的信道编号信息和至少一个第二信道的信道编号信息。
一种可能的设计中,至少一个信道属于第一频段,第一跳频稳定时长为第一时长;或者,至少一个信道属于第二频段,第一跳频稳定时长为第二时长;其中,第一频段不同于第二频段,第一频段与第二频段在频域上不存在重叠,第一时长不同于第二时长。
一种可能的设计中,第一LBT最大窗口期为第一设备配置的。
一种可能的设计中,第一跳频稳定时长为第一设备的跳频稳定时长和第二设备的跳频稳定时长中的最大值,跳频稳定时长是设备执行跳频时达到稳定状态的时长。
一种可能的设计中,第一跳频图案是第一设备与第二设备协商确定的。
一种可能的设计中,至少一个第二信道中包含的信道的数量为多个;至少一个第二信道的信道编号信息为:至少一个第二信道中频率最低或频率最高的信道的信道编号信息。
一种可能的设计中,第一设备根据跳频参数执行至少一次跳频,包括:第二设备根据第一跳频图案从至少一个第一信道切换至至少一个第二信道;等待第一跳频稳定时长之后,第二设备执行第四空闲信道评估。相应的,第二设备在至少一个第二信道上接收第三测距信号和/或发送第四测距信号,包括:第二设备确定至少一个第二信道空闲时,第二设备在至少一个第二信道上接收第三测距信号和/或发送第四测距信号。
一种可能的设计中,第一跳频图案还包括至少一个第三信道的信道编号信息。第二设备根据跳频参数执行至少一次跳频,包括:第二设备根据第一跳频图案从至少一个第一信道切换至至少一个第三信道;等待第一跳频稳定时长之后,第二设备执行第五空闲信道评估;第二设备确定在第五空闲信道评估对应的LBT窗口内获得的空闲信道评估结果为至少一个第三信道非空闲时,在第五空闲信道评估对应的LBT窗口结束后,第二设备根据第一跳频图案从至少一个第三信道切换至至少一个第二信道;其中,第五空闲信道评估对应的LBT窗口的时长等于第一LBT最大窗口期;等待第一跳频稳定时长之后,第二设备执行第六空闲信道评估。相应的,第二设备在至少一个第二信道上接收第三测距信号和/或发送第四测距信号,包括:第二设备确定至少一个第二信道空闲时,第二设备在至少一个第二信道上接收第三测距信号和/或发送第四测距信号。
一种可能的设计中,方法还包括:第二设备接收第一设备的跳频测量信息;和/或,第二设备向第一设备发送第二设备的跳频测量信息。
一种可能的设计中,第一设备的跳频测量信息包括以下一项或多项:
第一信息,用于指示第一设备是否允许信道重叠;
第二信息,用于指示第一设备允许的重叠的信道的数量;
第三信息,用于指示第一设备期望的第二跳频图案;
第四信息,用于指示第一设备的跳频稳定时长;
第五信息,用于指示第一设备期望的第二LBT最大窗口期;
第二设备的跳频测量信息包括以下一项或多项:
第六信息,用于指示第二设备是否允许信道重叠;
第七信息,用于指示第二设备允许的重叠的信道的数量;
第八信息,用于指示第二设备期望的第三跳频图案;
第九信息,用于指示第二设备的跳频稳定时长;
第十信息,用于指示第二设备期望的第三LBT最大窗口期。
一种可能的设计中,方法还包括:第二设备确定第二设备的跳频测量信息,其中跳频测量信息是根据第一设备的跳频能力信息、第二设备的跳频能力信息、或者预先配置或定义的跳频能力信息确定的。
一种可能的设计中,方法还包括:第二设备向第一设备发送第二设备的跳频能力信息;和/或,第二设备接收第一设备的跳频能力信息。
一种可能的设计中,第一设备的跳频能力信息包括以下一项或多项:
第一设备是否支持跳频;
第一设备支持的用于跳频的频段信息;
第一设备支持的用于发送和/或接收测距信号的最大带宽;
第一设备执行跳频时的预设稳定时长;
第一设备执行跳频时的预设稳定时长在不同频段是否不同;
第二设备的跳频能力信息包括以下一项或多项:
第二设备是否支持跳频;
第二设备支持的用于跳频的频段信息;
第二设备支持的用于发送和/或接收测距信号的最大带宽;
第二设备执行跳频时的预设稳定时长;
第二设备执行跳频时的预设稳定时长在不同频段是否不同。
一种可能的设计中,第一跳频图案还包括初始工作信道的信道编号信息。方法还包括:第二设备从初始工作信道开始跳频,其中第一跳频图案指示的最后一跳信道为初始工作信道。
第三方面,提供一种测距装置,该装置可以为第一设备,或者为第一设备中的芯片,该装置包括用于实现第一方面或第一方面任一种可能的设计中所述的方法的单元/模块/技术手段。
示例性的,该装置可以包括:
收发单元,用于在至少一个第一信道上发送第一测距信号和/或接收第二测距信号;
处理单元,用于根据跳频参数执行至少一次跳频;
收发单元,还用于在至少一个第二信道上发送第三测距信号和/或接收第四测距信号。
可选的,第一测距信号、第二测距信号、第三测距信号和/或第四测距信号为正交频分复用OFDM信号。
可选的,OFDM信号包含以下至少一种信号:CSI-RS,SRS,FTS,STS,PRS。
可选的,跳频参数包括以下一项或多项:
第一跳频稳定时长;
第一LBT最大窗口期;
第一跳频图案,用于指示该装置和第二设备的跳频顺序,第一跳频图案包括至少一个第一信道的信道编号信息和至少一个第二信道的信道编号信息。
可选的,至少一个信道属于第一频段,第一跳频稳定时长为第一时长;或者,至少一个信道属于第二频段,第一跳频稳定时长为第二时长;其中,第一频段不同于第二频段,第一频段与第二频段在频域上不存在重叠,第一时长不同于第二时长。
可选的,第一LBT最大窗口期为该装置配置的。
可选的,第一跳频稳定时长为该装置的跳频稳定时长和第二设备的跳频稳定时长中的 最大值,跳频稳定时长是设备执行跳频时达到稳定状态的时长。
可选的,第一跳频图案是该装置与第二设备协商确定的。
可选的,至少一个第二信道中包含的信道的数量为多个;至少一个第二信道的信道编号信息为:至少一个第二信道中频率最低或频率最高的信道的信道编号信息。
可选的,处理单元具体用于:根据第一跳频图案从至少一个第一信道切换至至少一个第二信道;等待第一跳频稳定时长之后,执行第一空闲信道评估;收发单元在至少一个第二信道上发送第三测距信号和/或接收第四测距信号时,具体用于:至少一个第二信道空闲时,在至少一个第二信道上发送第三测距信号和/或接收第四测距信号。
可选的,第一跳频图案还包括至少一个第三信道的信道编号信息;处理单元具体用于:根据第一跳频图案从至少一个第一信道切换至至少一个第三信道;等待第一跳频稳定时长之后,执行第二空闲信道评估;在第二空闲信道评估对应的LBT窗口内获得的空闲信道评估结果为至少一个第三信道非空闲时,在第二空闲信道评估对应的LBT窗口结束后,根据第一跳频图案从至少一个第三信道切换至至少一个第二信道;其中,第二空闲信道评估对应的LBT窗口的时长等于第一LBT最大窗口期;等待第一跳频稳定时长之后,执行第三空闲信道评估。收发单元在至少一个第二信道上发送第三测距信号和/或接收第四测距信号时,具体用于:至少一个第二信道空闲时,在至少一个第二信道上发送第三测距信号和/或接收第四测距信号。
可选的,收发单元还用于:向第二设备发送该装置的跳频测量信息;和/或,接收第二设备的跳频测量信息。
可选的,该装置的跳频测量信息包括以下一项或多项:
第一信息,用于指示该装置是否允许信道重叠;
第二信息,用于指示该装置允许的重叠的信道的数量;
第三信息,用于指示该装置期望的第二跳频图案;
第四信息,用于指示该装置的跳频稳定时长;
第五信息,用于指示该装置期望的第二LBT最大窗口期;
第二设备的跳频测量信息包括以下一项或多项:
第六信息,用于指示第二设备是否允许信道重叠;
第七信息,用于指示第二设备允许的重叠的信道的数量;
第八信息,用于指示第二设备期望的第三跳频图案;
第九信息,用于指示第二设备的跳频稳定时长;
第十信息,用于指示第二设备期望的第三LBT最大窗口期。
可选的,处理单元还用于:确定该装置的跳频测量信息,其中跳频测量信息是根据该装置的跳频能力信息、第二设备的跳频能力信息、或者预先配置或定义的跳频能力信息确定的。
可选的,收发单元还用于:向第二设备发送该装置的跳频能力信息;和/或,接收第二设备的跳频能力信息。
可选的,该装置的跳频能力信息包括以下一项或多项:
该装置是否支持跳频;
该装置支持的用于跳频的频段信息;
该装置支持的用于发送和/或接收测距信号的最大带宽;
该装置执行跳频时的预设稳定时长;
该装置执行跳频时的预设稳定时长在不同频段是否不同;
第二设备的跳频能力信息包括以下一项或多项:
第二设备是否支持跳频;
第二设备支持的用于跳频的频段信息;
第二设备支持的用于发送和/或接收测距信号的最大带宽;
第二设备执行跳频时的预设稳定时长;
第二设备执行跳频时的预设稳定时长在不同频段是否不同。
可选的,第一跳频图案还包括初始工作信道的信道编号信息;处理单元还用于:从初始工作信道开始跳频,其中第一跳频图案指示的最后一跳信道为初始工作信道。
第四方面,提供一种测距装置,该装置可以为第二设备,或者为第二设备中的芯片,该装置包括用于实现第二方面或第二方面任一种可能的设计中所述的方法的单元/模块/技术手段。
示例性的,该装置可以包括:收发单元,用于在至少一个第一信道上接收第一测距信号和/或发送第二测距信号;处理单元,用于根据跳频参数执行至少一次跳频;收发单元,还用于在至少一个第二信道上接收第三测距信号和/或发送第四测距信号。
可选的,第一测距信号、第二测距信号、第三测距信号和/或第四测距信号为OFDM信号。
可选的,OFDM信号包含以下至少一种信号:CSI-RS,SRS,FTS,STS,PRS。
可选的,跳频参数包括以下一项或多项:
第一跳频稳定时长;
第一LBT最大窗口期;
第一跳频图案,用于指示第一设备和该装置的跳频顺序,第一跳频图案包括至少一个第一信道的信道编号信息和至少一个第二信道的信道编号信息。
可选的,至少一个信道属于第一频段,第一跳频稳定时长为第一时长;或者,至少一个信道属于第二频段,第一跳频稳定时长为第二时长;其中,第一频段不同于第二频段,第一频段与第二频段在频域上不存在重叠,第一时长不同于第二时长。
可选的,第一LBT最大窗口期为第一设备配置的。
可选的,第一跳频稳定时长为第一设备的跳频稳定时长和该装置的跳频稳定时长中的最大值,跳频稳定时长是设备执行跳频时达到稳定状态的时长。
可选的,第一跳频图案是第一设备与该装置协商确定的。
可选的,至少一个第二信道中包含的信道的数量为多个;至少一个第二信道的信道编号信息为:至少一个第二信道中频率最低或频率最高的信道的信道编号信息。
可选的,处理单元具体用于:根据第一跳频图案从至少一个第一信道切换至至少一个第二信道;等待第一跳频稳定时长之后,执行第四空闲信道评估。相应的,收发单元在至少一个第二信道上接收第三测距信号和/或发送第四测距信号时,具体用于:至少一个第二信道空闲时,在至少一个第二信道上接收第三测距信号和/或发送第四测距信号。
可选的,第一跳频图案还包括至少一个第三信道的信道编号信息。处理单元具体用于:根据第一跳频图案从至少一个第一信道切换至至少一个第三信道;等待第一跳频稳定时长之后,执行第五空闲信道评估;确定在第五空闲信道评估对应的LBT窗口内获得的空闲信 道评估结果为至少一个第三信道非空闲时,在第五空闲信道评估对应的LBT窗口结束后,根据第一跳频图案从至少一个第三信道切换至至少一个第二信道;其中,第五空闲信道评估对应的LBT窗口的时长等于第一LBT最大窗口期;等待第一跳频稳定时长之后,执行第六空闲信道评估。相应的,收发单元在至少一个第二信道上接收第三测距信号和/或发送第四测距信号时,具体用于:至少一个第二信道空闲时,在至少一个第二信道上接收第三测距信号和/或发送第四测距信号。
可选的,收发单元还用于:接收第一设备的跳频测量信息;和/或,向第一设备发送该装置的跳频测量信息。
可选的,第一设备的跳频测量信息包括以下一项或多项:
第一信息,用于指示第一设备是否允许信道重叠;
第二信息,用于指示第一设备允许的重叠的信道的数量;
第三信息,用于指示第一设备期望的第二跳频图案;
第四信息,用于指示第一设备的跳频稳定时长;
第五信息,用于指示第一设备期望的第二LBT最大窗口期;
该装置的跳频测量信息包括以下一项或多项:
第六信息,用于指示该装置是否允许信道重叠;
第七信息,用于指示该装置允许的重叠的信道的数量;
第八信息,用于指示该装置期望的第三跳频图案;
第九信息,用于指示该装置的跳频稳定时长;
第十信息,用于指示该装置期望的第三LBT最大窗口期。
可选的,处理单元还用于:确定该装置的跳频测量信息,其中跳频测量信息是根据第一设备的跳频能力信息、该装置的跳频能力信息、或者预先配置或定义的跳频能力信息确定的。
可选的,收发单元还用于:向第一设备发送该装置的跳频能力信息;和/或,接收第一设备的跳频能力信息。
可选的,第一设备的跳频能力信息包括以下一项或多项:
第一设备是否支持跳频;
第一设备支持的用于跳频的频段信息;
第一设备支持的用于发送和/或接收测距信号的最大带宽;
第一设备执行跳频时的预设稳定时长;
第一设备执行跳频时的预设稳定时长在不同频段是否不同;
该装置的跳频能力信息包括以下一项或多项:
该装置是否支持跳频;
该装置支持的用于跳频的频段信息;
该装置支持的用于发送和/或接收测距信号的最大带宽;
该装置执行跳频时的预设稳定时长;
该装置执行跳频时的预设稳定时长在不同频段是否不同。
可选的,第一跳频图案还包括初始工作信道的信道编号信息。收发单元还用于:从初始工作信道开始跳频,其中第一跳频图案指示的最后一跳信道为初始工作信道。
第五方面,提供一种测距装置,包括:至少一个处理器和接口电路;接口电路用于接 收来自装置之外的其它装置的信号并发送或接收至处理器或将来自处理器的信号发送给装置之外的其它装置,处理器通过逻辑电路或执行代码指令用于实现如第一方面或第一方面任一种可能的设计或第二方面或第二方面任一种可能的设计中所述的方法。
第六方面,提供一种计算机可读存储介质,存储介质中存储有计算机程序或指令,当计算机程序或指令被通信装置执行时,实现如第一方面或第一方面任一种可能的设计或第二方面或第二方面任一种可能的设计中所述的方法。
第七方面,提供一种计算机程序产品,计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行如第一方面或第一方面任一种可能的设计或第二方面或第二方面任一种可能的设计中所述的方法。
第八方面,提供一种测距系统,包括:
第一设备,用于执行如第一方面或第一方面任一种可能的设计中所述的方法;
第二设备,用于执行如第二方面或第二方面任一种可能的设计中所述的方法。
以上第二方面至第八方面的有益效果,具体请参照上述第一方面中相应设计可以达到的技术效果,这里不再重复赘述。
附图说明
图1为本申请实施例提供的一种可能的应用场景的示意图;
图2为本申请实施例提供的一种测距方法的流程图;
图3为一个信道(组)上的测距信号交互的示意图;
图4A、图4B为第一设备和第二设备协商跳频参数的示意图;
图5为本申请实施例提供的一种可能的跳频示意图;
图6为本申请实施例提供的另一种可能的跳频示意图;
图7为基于20MHz带宽的OFDM信号进跳频测距的仿真结果示意图;
图8为本申请实施例提供的一种测距装置的结构示意图;
图9为本申请实施例提供的另一种测距装置的结构示意图。
具体实施方式
本申请实施例提供的技术方案可以应用于各类无线通信场景,例如车载定位/测距/测角/感知场景、室内定位/测距/测角/感知场景,或者其它广域无线通信或局域无线通信场景,本申请不做限制。具体的无线通信技术包括但不限于无线保真(Wi-Fi)、蓝牙、低功耗蓝牙(BLE)或超宽带(Ultra Wide Band,UWB)、星闪(Sparklink)等。
可以理解的是,在本申请实施例中,实现定位、测距、测角、感知等具有类似的步骤,因而可以用其中任意一个术语同时指代“定位”、“测距”、“测角”、“感知”等。
参见图1,为本申请实施例提供的一种可能的应用场景的示意图。车载定位场景中,车外的4个车角部署定位站,车内(如车内后视镜或车顶内部等)部署至少一个定位站。车钥匙是需要被定位的目标(即被定位设备),其具体实现可以是具有定位功能的传统的车钥匙,也可以是具有定位功能的手机/可穿戴设备等。定位站和/或车钥匙可以发送和/或接收测距信号,以及对接收到的测距信号进行测量获得对应的测量量。通过计算定位站和 /或车钥匙获得的测量量,可以获得车钥匙的位置信息(例如相对于车的距离)。
在无线通信场景中,在一定通信区域或范围内可以包括多个通信域。通信域是指一组具有通信关系的通信节点,以及通信节点之间的通信连接关系(即通信链路)组成的系统,一个通信域包括一个主通信节点(可以简称为主节点或G节点)和至少一个从通信节点(可以简称为从节点或T节点),其中,主节点又称为管理节点,负责管理通信域的时频资源,并具有为通信域中的通信节点间的通信或定位调度资源的功能。
以图1所示的场景为例,定位站、车钥匙等可以组成一个通信域。其中,车钥匙可以是主节点(G节点),各定位站为从节点(T节点);或者,一个定位站为主节点,其它定位站和车钥匙为从节点,本申请不做限制。
可以理解的,图1所示场景仅为示例,实际应用中本申请实施例还可以应用于其他无线通信场景。
参见图2,为本申请实施例提供的一种测距方法的流程图,方法包括:
S201、第一设备在至少一个第一信道上发送第一测距信号和/或接收第二测距信号,相应的,第二设备在至少一个第一信道上接收第一测距信号和/或发送第二测距信号。
一种可能的设计中,第一设备和第二设备中,一个设备为G节点,另一个设备为T节点,其中G节点负责为G节点和T节点之间的测距交互调度时频资源,T节点用于在G节点的调度之下与G节点进行测距交互(例如发送和/或接收测距信号)。在具体实施时,测距的发起者(即发起G节点和T节点之间的测距流程的节点)可以是G节点,响应者可以是T节点,或者发起者是T节点,响应者为G节点,本申请不做限制。以图1所示的场景为例,G节点为车钥匙,T节点为定位站,其中第一设备是定位站,第二设备是车钥匙,或者第一设备是车钥匙,第二设备是定位站。为方便描述,下文主要以G节点和T节点为例进行阐述,实际上并不限制具体节点的类型,以能实现本申请的方案为准。
本申请实施例中,第一设备和/或第二设备可以对接收到的测距信号执行信号测量。
一种可能的设计中,信号测量具体可以是单向信号测量(或称为单边信号测量,英文为One Way Ranging),例如第二设备接收并测量第一设备发送的第一测距信号,或者第一设备接收并测量第二设备发送的第二测距信号。
另一种可能的设计中,信号测量具体可以是双向信号测量(或称为双边信号测量,英文为Two Way Ranging),即第二设备接收并测量第一设备发送的第一测距信号,并且第一设备接收并测量第二设备发送的第二测距信号。双向信号测量可以消除跳频所引入的第一设备和第二设备的定时偏差、随机初相等问题,使得各个频段和/或信道的测距信号能够在频域相干合并,以合并后的大带宽测量提高测距的分辨率,进而可以提升测距的准确度。
相应的,第二设备通过对第一测距信号执行信号测量,可以获得第一测量量;和/或,第一设备通过对第二测距信号执行信号测量,可以获得第二测量量。
在一些可能实施例中,对测距信号进行信号测量又可以描述为对承载该测距信号的信道进行测量。例如,第一测距信号和/或第二测距信号承载在至少一个第一信道上,因此对第一测距信号和/或第二测距信号执行信号测量,还可以描述为对至少一个第一信道执行测量。相应的,对测距信号的测量量还可以描述为对应信道的测量量,例如时域或频域的信道状态信息,即时域的到达时间(TOA)/离开时间(TOD),或频域对应的载波/子载波的复数值频率响应。
可以理解的,当至少一个第一信道中信道的数量为多个时,至少一个第一信道可以视为一个信道组,如第一信道组。
S202A、第一设备根据跳频参数执行至少一次跳频;S202B、第二设备根据跳频参数执行至少一次跳频。
跳频是指设备用于测距(即发送和/或接收测距信号)的信道从一种信道切换到另一种信道上,切换前后的信道对应不同的载波频率。例如,第一设备和第二设备从至少一个第一信道切换到至少一个第二信道上,其中至少一个第一信道和至少一个第二信道对应的载波频率不同。
若跳频次数为1次,则第一设备和第二设备直接从至少一个第一信道切换到至少一个第二信道;若跳频次数多于1次,则第一设备和第二设备从至少一个第一信道开始,经过多次信道切换,才切换到至少一个第二信道,例如,第一设备和第二设备先从至少一个第一信道切换到至少一个第三信道,再从至少一个第三信道切换到至少一个第二信道。
本申请实施例中第一设备和第二设备依据相同的跳频参数执行跳频,使得第一设备和第二设备可以同步跳频,例如第一设备从至少一个第一信道切换到至少一个第二信道时,第二设备也从至少一个第一信道切换到至少一个第二信道。
本申请实施例中的跳频,可以是射频(RF)跳频,也可以是数字跳频或者,或者基于锁相环(PLL)电路的跳频,不做限制。其中,射频跳频或基于PLL电路的跳频是通过改变射频通道本振信号的载频进而切换设备的工作信道,这种跳频方式耗时较长,一般在毫秒级别(例如2~3ms)。而数字跳频则耗时较短,一般在微秒级别(例如1us~100us),通过在基带模块将信号调制在不同的频率/信道来实现,不需要改变本振信号的载频。
进一步的,第一设备和第二设备的跳频方式可以相同(例如均为射频跳频或数字跳频),也可以不同(例如第一设备为射频跳频,第二设备为数字跳频),本申请不做限制。
在具体实现时,当设备(如第一设备或第二设备)测量的下一跳的信道的中心频率与当前工作的信道的中心频率的差值超过设备的支持的最大RF带宽时,则设备执行射频跳频;否则,设备可以执行数字跳频。
S203、第一设备在至少一个第二信道上发送第三测距信号和/或接收第四测距信号,相应的,第二设备在至少一个第二信道上接收第三测距信号和/或发送第四测距信号。
可以理解的,至少一个第二信道为第一设备和第二设备执行至少一次跳频后所在的信道。第一设备和第二设备切换到至少一个第二信道之后,在至少一个第二信道上再次执行信号测量。类似的,第二设备在接收第四测距信号之后,通过对第四测距信号执行测量,可以获得第四测量量;和/或,第一设备接收第三测距信号之后,通过对第三测距信号执行测量,可以获得第三测量量。
类似的,至少一个第二信道中信道的数量为多个时,至少一个第二信道可以视为一个信道组,如第二信道组,第二信道组与第一信道组对应不同的载波频率。
为了便于描述,本文可以将第一设备和第二设备在一种信道上执行信号测量的操作视为一次信号测量过程,在不同种信道上执行信号测量的操作视为不同的信号测量过程(例如S201和S203为两次信号测量过程)。
在步骤S203之后,计算设备可以综合两次信号测量获得的测量量(第一测量量和/或第二测量量,以及,第三测量量和/或第四测量量),计算第一设备和第二设备之间的距离。例如,在图1所示的场景中,车钥匙相对于车的距离。其中,计算设备可以是第一设备, 也可以是第二设备,还可以是其它设备,本申请不做限制。一种可能的设计中,计算设备可以是第一设备和第二设备中的发起者,相应的,若响应者有接收并测量测距信号,则响应者需要将信号测量获得的测量量反馈给发起者。
上述方案中,第一设备和第二设备根据相同跳频参数执行至少一次跳频,可以同步地按预设顺序在不同信道上执行多次信号测量,进而实现合并出多信道的大带宽信号测量的技术效果(信号测量的带宽为至少一个第一信道和至少一个第二信道的总带宽),可以提高测距分辨率和测距准确度。
需要说明的是,以上是以第一设备和第二设备执行两次信号测量过程为例,在具体实施过程中,第一设备和第二设备还可以执行更多次的跳频,进而在更多信道上执行信号测量过程,最终计算设备可以综合所有信号测量过程获得的测量量确定第一设备和第二设备的距离,进一步提高测距分辨率和测距精度。
另外,在实际应用中,与同一设备进行测距交互(也称作测量交互)设备的数量不限于是1个(例如还存在第三设备与第一设备进行测距交互)。例如,在图1所示的场景中,同时可以有多个定位站与车钥匙进行交互,以测量每个定位站相对于车钥匙的距离,进而可以根据车钥匙相对于各个定位站的距离确定车钥匙的相对于车的位置。当有多个设备同时与第一设备进行测距交互时,每个设备与第一设的交互流程可以参考上述第一设备和第二设备的交互流程,此处不再赘述。
一种可能的设计中,本申请实施例中涉及的测距信号,例如第一测距信号、第二测距信号、第三测距信号和/或第四测距信号等,为正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)信号。
其中,OFDM又称为离散多载波调制(Discrete Multi Tone modulation,DMT),可以视为多载波传输的一个特例,具备高速率传输的能力。OFDM使用大量紧邻的正交子载波(Orthogonal sub-carrier),每个子载波采用传统的调制方案,进行低符号率调制。OFDM可以视为调制技术与复用技术的结合。
在本申请实施例中,OFDM信号可以包含以下一种或多种信号:信道状态信息参考信号(Channel-State Information-Reference Signal,CSI-RS),探测参考信号(Sounding Reference Signal,SRS),定位参考信号(Positioning Rreference Signal,PRS),同步信号等。
其中,CSI-RS是通信域的G节点在该通信域发送信道状态信息参考信号,用于其它节点测量该G节点到该其它节点的传输信道特性。SRS是G节点在该通信域接收其他节点(T节点)发送的信道探测信号,用于该G节点测量其他节点到该G节点的传输信道特性。PRS是为测距设计的基于OFDM调制的其它定位参考信号。同步信号可以是无线短距通信系统(例如车载无线短距通信系统,具体例如星闪联盟基础(SparkLink Basic,SLB)标准)中用作时间和频率同步的信号,例如是第一训练信号(First Training Signal,FTS)和/或第二训练信号(Second Training Signal,STS)。可以理解的,无线短距通信系统中,同步信号是成对出现的,即两个同步信号为一组同步信号,一组同步信号中,在时间域上先出现的OFDM符号称为FTS,在时间域上先出现的OFDM符号称为STS。
在无线短距通信系统中,可以采用OFDM信号作为通信与测距信号。其中,物理带宽约为20MHz的OFDM信号称为一个载波(发送载波OFDM信号的信道称为载波信道),20MHz的OFDM信号的中心频点(即直流子载波)称为载波频率。即一个载波由连续39 个子载波组成,39个子载波按照对应频率从低到高的顺序依次编号为#0,#1,…,#38,其中#19子载波为直流(DC)子载波,除DC子载波外,其它38个子载波称为有效子载波。G节点和T节点可能工作在多个载波信道上,多个载波信道构成一个载波信道组(对应一个信道组)。为了便于描述,本申请实施例将载波信道简称为信道。
OFDM跳频的定义为,OFDM符号的DC子载波从一个信道的中心频点切换到另一个信道的中心频点。对于单个载波的跳频切换,指的是DC子载波从一个信道切换至另一个信道;对于多个载波的跳频切换,指的是多个载波对应的信道组,切换至另一个信道组。
相应的,上述至少一个第一信道和至少一个第二信道的信道数量为单个时,第一设备和第二设备从至少一个第一信道切换到至少一个第二信道,是单个载波的跳频切换(或者说单个信道的切换)。例如,第一设备和第二设备原来工作在信道1上,经过至少一次跳频后切换至信道2。上述至少一个第一信道和至少一个第二信道的信道数量为多个时,第一设备和第二设备从至少一个第一信道切换到至少一个第二信道,是多个载波的跳频切换(或者说多个信道的切换或信道组切换)。例如,第一设备和第二设备原来工作在信道1~4上,经过至少一次跳频后切换至信道5~8。
由于OFDM信号采用多个子载波进行传输,OFDM信号支持的带宽一般较大(例如大于或等于20MHz),不同的设备的工作带宽可能不同,跳频的稳定时长也不同,导致宽带系统跳频困难的问题,具体表现为不同设备之间存在跳频参数差异较大、跳频没有同步协议难以同步跳频等问题。
而本申请实施例中,在测距过程中,第一设备和第二设备使用相同跳频参数跳频,可以实现第一设备和第二设备同步跳频,通过跳频实现合并出多信道的大带宽信号测量的技术效果,可以提高测距分辨率和测距准确度。
一种可能的设计中,跳频参数可以包括以下一项或多项:
1、第一跳频稳定时长(用T RF表示)。
可以理解,跳频稳定时长是指设备执行跳频时达到稳定状态的时长,即从设备执行跳频的时刻到设备达到稳定状态的时刻所经历的时长。其中,达到稳定状态的设备能够发送和/或接收测距信号,或者能够执行发送前的空闲信道评估操作。第一设备执行跳频时达到稳定状态的时长为第一设备的跳频稳定时长,第二设备执行跳频时达到稳定状态的时长为第二设备的跳频稳定时长。
需要说明的是,设备在执行RF跳频时,设备的稳定时长包括了RF通道的稳定时长,以及RF通道稳定后的一些其它操作(例如基带配置、寄存器配置的刷新等),由于跳频稳定时长占了设备稳定时长的绝大部分时间,因此本申请实施例中将“设备稳定时长”与“跳频稳定时长”视为相同。
第一跳频稳定时长,可以理解为处于通信连接中的第一设备和第二设备执行跳频时,第一设备和第二设备均达到稳定状态所需要的时长。第一跳频稳定时长大于或等于第一设备的跳频稳定时长,且第一跳频稳定时长大于或等于第二设备的跳频稳定时长。换而言之,第一设备或第二设备,可以在第一跳频稳定时长到达前,达到稳定状态。
可选的,第一跳频稳定时长为第一设备的跳频稳定时长(用T RF,1表示)和第二设备的跳频稳定时长(用T RF,2表示)中的最大值,即T RF=max{T RF,1,T RF,2}。
可以理解的,当有多个设备参与跳频测量时(例如一个主节点和多个从节点),T RF为 多个设备的跳频稳定时长中的最大值,即T RF=max{T RF,1,T RF,2,T RF,3,…}。
可选的,T RF可用16比特(bit)指示,变化步长可以为0.5us(即T RF的值每变化1比特,对应时长变化为0.5us),指示范围0.5us~32.8ms。
可选的,设备(第一设备或第二设备)在不同频段跳频时,达到稳定状态的时长可以不同,第一跳频稳定时长可以不同。示例性的,至少一个信道属于第一频段,即第一设备在第一频段上执行至少一次跳频时,第一跳频稳定时长为第一时长;至少一个信道属于第二频段,即第一设备在第二频段上执行至少一次跳频时,第一跳频稳定时长为第二时长;其中,第一频段与第二频段不同,第一时长与第二时长不同。
需要说明的是,这里的不同频段在频域上是不存在重叠的。进一步,不同频段中的每个频段可以用来划分信道或信道组,因此也不能存在重叠。
可以理解的,本文所描述的频段,是指一个比较大的频率范围,每个频段上可以划分出多个信道或信道组。例如T RF,5.1GHz和T RF,5.8GHz,分别指示在5.1GHz频段执行跳频时达到稳定状态的时长和在5.8GHz频段执行跳频时达到稳定状态的时长。其中5.1GHz频段的频率范围例如是5150MHz~5350MHz(该频率范围为大概值,实际可以有出入),5.8GHz频段的频率范围例如是5725MHz~5850MHz(该频率范围为大概值,实际可以有出入)。
其中,设备在不同频段跳频时,第一跳频稳定时长是否不同,可以根据是否需要对跳频后的信道(信道组)执行空闲信道评估来判断。
示例性的,《2400MHz、5100MHz和5800MHz频段无线电发射设备干扰规避技术要求》中规定,设备需要在5100MHz频段(5.1GHz频段)、2400MHz频段(2.4GHz频段)在发射前进行空闲信道评估;《微功率短距离无线电发射设备目录和技术要求》规定,5725~5850MHz频段(5.8GHz频段)可以以微功率短距离方式进行无线电发射,即设备可以直接发送测距信号而无需空闲信道评估。当需要在不同的频段跳频时,执行空闲信道评估或者直接发射测距信号,决定了第一设备在跳频时的稳定时长,即需要空闲信道评估时的跳频稳定时长,小于需要直接发射测距信号时的稳定时长。当跳频后的信道1处于一个可直接发送测距信号的频段(如5.8GHz频段)时,跳频稳定时长T RF,5.8G,可大于跳到需要空闲信道评估的信道2(例如位于5.1GHz频段)的稳定时长T RF,5.1G,例如T RF,5.8G=2ms,T RF,5.1G=1ms。
另一种描述方式下,设备在不同信道(组)跳频时,设备的跳频稳定时长可以不同。类似的,设备在不同信道(组)跳频时,第一跳频稳定时长是否不同,可以根据是否需要对跳频后的信道(组)执行空闲信道评估来判断。
例如,当设备跳频后所在的信道(组)需要执行空闲信道评估时,则第一设备按照跳频稳定时长T RF,1配置跳频稳定时长参数;否则,第一设备按照跳频稳定时长T RF,2配置跳频稳定时长,其中,T RF,1≤T RF,2
在具体实现时,可利用第一LBT最大窗口期指示信道(组)是否需要执行空闲信道评估。例如,将5.8GHz频段的LBT最大窗口期设置为0,指示5.8GHz频段包含的信道(组)不需要执行空闲信道评估。
针对跳频后采取的不同操作(例如空闲信道评估或传输测距信号)而采取不同的跳频稳定时长,可以节省设备的跳频等待时长,提高跳频测距的效率和节省功耗。
一种可能的设计中,第一跳频稳定时长包括设备在各个频段(或信道或信道组)执行跳频时达到稳定状态的时长。例如,第一跳频稳定时长的具体形式可以是一个数组,数组 中的每个元素对应设备在一个频段(或信道或信道组)的跳频稳定时长,不同的元素对应设备在不同频段(或信道或信道组)的跳频稳定时长。
可选的,设备在不同频段(或信道或信道组)执行跳频时达到稳定状态的时长可以不同,第一跳频稳定时长可以为设备在各个频段(或信道或信道组)执行跳频时达到稳定状态的时长中的最大值。
如此,可以保证设备无论在哪个频段(或信道或信道组)跳频,第一跳频稳定时长结束时设备都已经进入稳定状态,同时可以减少传输第一跳频稳定时长所需的信息量,节省系统资源。
通过设置T RF,可以使得第一设备和第二设备在跳频过程中状态同步(例如后同步进入LBT阶段)。
2、第一LBT最大窗口期(用T LBT,max表示)。
可以理解的,第一设备和第二设备在执行跳频时,从一个信道(或信道组)切换到另一个信道(或信道组)之后,若另一个信道(或信道组)为基于竞争的信道(或信道组),则需要执行发送前先听(Listen-Before-Talk,LBT)或空闲信道评估(Clear Channel Assess,CCA)或载波侦听多路访问,以监听切换后的信道(或信道组)的忙闲状态,进而在该信道(或信道组)空闲时接入该信道(或信道组),开始发送和/或接收测距信号。
可以理解的,LBT、CCA、载波侦听多路访问等具有相同含义,都包含监听信道的忙闲状态的含义,为了便于描述,后文均主要以“空闲信道评估”为例进行描述。相关术语可以进行相互替换,例如LBT可替换为CCA。
设备(如第一设备或第二设备)进行空闲信道评估的时间(用T LBT表示),依赖于被监听的信道(或信道组)忙闲状态,即信道(或信道组)忙时,设备继续保持对该信道(或信道组)监听;该信道(或信道组)空闲时接入信道,开始发送测距信号。
第一LBT最大窗口期,即T LBT,max,表示预配置的T LBT的最大值,以使第一设备和/或第二设备在当前被监听的信道(或信道组)忙且空闲信道评估的时间达到T LBT,max时,停止对该被监听的信道(或信道组)进行空闲信道评估,继续执行跳频,以切换到另一个信道(或信道组),对该另一个信道(或信道组)进行空闲信道评估。
可选的,T LBT,max由第一设备和第二设备所在通信域中的主节点(G节点)配置。
例如,第一设备为主节点,则第一LBT最大窗口期为第一设备配置的。以图1所示场景为例,若车钥匙为主节点,则T LBT,max可以由车钥匙配置并通知给各定位站。
可选的,第一LBT最大窗口期大于或等于预设值,该预设值例如为25us。示例性的,T LBT,max=3ms(与T RF相接近)。
在具体实现时,T LBT,max可用16比特(bit)指示,变化步长可以为1us(即T LBT,max的值每变化1比特,对应时长变化为1us),指示范围1us~65.5ms。
通过设置T LBT,max,可以保证信道长时间为忙时,第一设备和第二设备在T LBT,max结束时,同步切换至下一跳信道,避免双方因长时间竞争信道而反复进行空闲信道评估,可以节省资源和设备功耗,提高跳频测量的效率。
3、第一跳频图案(pattern)。
第一跳频图案用于指示第一设备和第二设备的跳频顺序,第一跳频图案包括至少一个第一信道的信道编号信息和至少一个第二信道的信道编号信息。
可选的,第一跳频图案中包含顺序排列的多个信道编号信息,基于该多个信道编号信 息的排列顺序,可以指示第一设备和第二设备的跳频顺序。
表1
信道号 载波中心频率(MHz)
41 5159.84
125 5180
209 5200.16
291 5219.84
375 5240
459 5260.16
541 5279.84
625 5300
709 5320.16
791 5339.84
示例性的,参考表1,为20MHz载波的信道号与对应的载波中心频率。第一跳频图案可以为[41,125,209,…,791],则第一设备和第二设备的跳频顺序为:信道41,信道125,信道209,…,信道791。
可选的,当跳频是多载波切换(即信道组切换)时,第一跳频图案中,可以指示各个信道组中处于预设位置的信道的信道编号信息,比如每个信道组中频率最低或频率最高的信道的信道编号信息。例如,第一设备和第二设备的跳频顺序为:信道组1(包括三个信道,信道号分别为a、b、c),信道组2(包括三个信道,信道号分别为d、e、f),信道组3(包括三个信道,信道号分别为g、h、i),则第一跳频图案可以可表示为[信道号a,信道号d,信道号g]。如此,可以减少传输第一跳频图案所需的信息量,节省系统资源。仍以表1为例,单个信道组对应80MHz带宽的载波,若第一跳频图案指示的初始工作信道的信道号为41,则下一跳的工作信道对应的最小信道号为291。
通过设置第一跳频图案,可以保证第一设备和第二设备按照相同的跳频顺序执行跳频,以保证测距双方同步跳频。
应理解,以上三种频参数仅为示例,实际应用中不限于此。
一种可能的设计中,跳频切换时长T 0=T RF+T LBT。即第一设备和/或第二设备从开始跳频起,需等待T 0之后,才能在切换后的信道(或信道组)上发送和/或接收测距信号。
以第一设备执行一次跳频为例:第一设备根据第一跳频图案从至少一个第一信道切换至至少一个第二信道;等待T RF1之后,第一设备执行第一空闲信道评估,经过T LBT1时长的第一空闲信道评估,第一设备确定至少一个第二信道空闲,则第一设备在至少一个第二信道上发送第三测距信号和/或接收第四测距信号,其中T LBT1<T LBT,max。第二设备执行一次跳频的过程与第一设备类似,此处不再赘述。
以第一设备执行两次跳频为例:第一设备根据第一跳频图案从至少一个第一信道切换至至少一个第三信道;等待第一跳频稳定时长T RF2之后,第一设备执行第二空闲信道评估,经过T LBT2时长的第二空闲信道评估,第一设备确定在第二空闲信道评估对应的LBT窗口内获得的空闲信道评估结果为至少一个第三信道非空闲,其中T LBT2=T LBT,max;在第二空 闲信道评估对应的LBT窗口即T LBT2结束后(即第一设备执行空闲信道评估的时长达到T LBT,max),第一设备根据第一跳频图案从至少一个第三信道切换至至少一个第二信道,等待第一跳频稳定时长T RF3之后,第一设备执行第三空闲信道评估,经过T LBT3时长的第三空闲信道评估,第一设备确定至少一个第二信道空闲,则第一设备在至少一个第二信道上发送第三测距信号和/或接收第四测距信号,其中T LBT3<T LBT,max,T RF2与T RF3相同或不同。第二设备执行两次跳频的过程与第一设备类似,此处不再赘述。
可以理解的,若至少一个第二信道中的信道数量为多个,则至少一个第二信道空闲包括至少一个第二信道中部分第二信道空闲或全部第二信道空闲。换而言之,只要至少一个第二信道中存在一个第二信道空闲,则第一设备和第二设备就可以接入该信道,进而在该信道上发送和/或接收测距信号。
可选的,每次空闲信道评估之后,G节点(如第一设备)都需要重新发送前导,用于T节点(如第二设备)重新向G节点进行定时(timing)和载波频偏(CFO)的重新同步,以将定时偏差t res和f CFO控制在可接受的门限范围内。
示例性的,参见图3,为一个信道(组)上的测距信号交互的示意图。以T RF主要由PLL锁相环的稳定时长作为举例,G节点和/或T节点必须在T RF结束后,才能开始空闲信道评估。在LBT窗口内,如果信道(组)指示空闲,则开始测距信号的交替发送(称为测距交互/测量交互)。其中,发起者(如G节点)在发送完前导信号和测距信号后,响应者(如T节点)在一个空隙(GAP)后发送测距信号,双侧均发送完前导信号和测距信号的过程为一次测距交互。
一种可能的示例中,G节点和T节点可以基于SLB技术执行信号测量,测距信号可以由定位参考信号(PRS)构成,包含测距信号的帧长至少为SLB的无线帧的长度。
一种可能的示例中,G节点作为前导和第一个无线帧的发送者,其CCA可以在T RF结束前的T pre开始,这是因为T节点在T RF结束时刻将转为稳定的接收状态,如果CCA指示信道空闲,则G节点可以在T RF结束时刻开启前导信号的发送,以节省时间,提高测距效率。
一种可能的示例中,如果G节点的跳频稳定时长小于T节点的跳频稳定时长,则G节点可以在T节点达到稳定状态之前处于通信/休眠状态,并且使自己在T RF结束时刻也达到稳定状态,从而充分利用T RF时间资源。
一种可能的设计中,跳频参数是第一设备与第二设备协商确定的。其协商过程可以包括:第一设备向第二设备发送第一设备的跳频测量信息;和/或,第一设备接收第二设备的跳频测量信息。
示例1、以第一设备为发起者,第二设备为响应者为例,参见图4A:S401A、第一设备向第二设备发送测距请求消息,测距请求消息中包括第一设备的跳频测量信息;S402A、第二设备向第一设备发送测距响应消息,测距响应消息中包括第二设备的跳频测量信息;S403A、第一设备根据第一设备的跳频测量信息和第二设备的跳频测量信息确定跳频参数,第一设备向第二设备发送测距确认消息,测距确认消息中包含跳频参数。
可以理解的,上述S403A为可选步骤。
示例2、以第一设备为发起者,第二设备为响应者为例,参见图4B:S401B、第一设备向第二设备发送测距请求消息,测距请求消息中包括第一设备的跳频测量信息;S402B、 第二设备根据第一设备的跳频测量信息和第二设备的跳频测量信息确定跳频参数,第二设备向第一设备发送测距响应消息,测距响应消息中包括跳频参数。
第一设备的跳频测量信息可以包括以下一项或多项:
1)第一信息,用于指示第一设备是否允许信道重叠;
具体来说,第一设备是否支持多载波(即信道组)跳频切换。
例如,以上述至少一个第一信道和至少一个第二信道为例,至少一个第一信道和至少一个第二信道的信道数量均为多个,重叠的情况:至少一个第一信道和至少一个第二信道中部分信道相同;不重叠的情况:至少一个第一信道和至少一个第二信道中没有相同的信道。
2)第二信息,用于指示第一设备允许的重叠的信道的数量N overlap
具体来说,第一设备支持多载波跳频切换时,不同信道组之间重叠的信道的数量不能超过N overlap
例如,对于带宽为B的多载波,载波重叠范围为B-20MHz~B,变化步长为20MHz(即每重叠一个信道,对应的载波重叠范围变化20MHz带宽)。
对于20MHz带宽的单载波,则不允许出现信道重叠(N overlap=0);
对于40MHz带宽的多载波,只允许重叠一半(20MHz)的带宽(N overlap=1);
对于80MHz带宽的多载波,允许重叠20MHz~60MHz的带宽(N overlap=1或2或3)。
例如,参见图5,为本申请实施例提供的一种可能的跳频示意图。在图5所示的场景中,相邻两个信道组之间重叠20MHz的带宽(N overlap=1)。
3)第三信息,用于指示第一设备期望的第二跳频图案;
例如,第一设备可以预先根据自身的跳频能力信息确定第二跳频图案,将其作为第一设备期望的第二跳频图案。
4)第四信息,用于指示第一设备的跳频稳定时长;
即从第一设备执行跳频的时刻到第一设备达到稳定状态的时刻所经历的时长。
5)第五信息,用于指示第一设备期望的第二LBT最大窗口期。
第二设备的跳频测量信息可以包括以下一项或多项:
1)第六信息,用于指示第二设备是否允许信道重叠,可以参考第一信息的介绍。
2)第七信息,用于指示第二设备允许的重叠的信道的数量,可以参考第二信息的介绍;
3)第八信息,用于指示第二设备期望的第三跳频图案,可以参考第三信息的介绍;
4)第九信息,用于指示第二设备的跳频稳定时长,可以参考第四信息的介绍;
5)第十信息,用于指示第二设备期望的第三LBT最大窗口期。
应理解,以上几种跳频测量信息仅为示例而非限定,实际还可以包含其他信息。
以下列举几个第一设备或第二设备根据第一设备的跳频测量信息和第二设备的跳频测量信息确定跳频参数的示例:
示例1、第一设备或第二设备根据第一信息、第二信息、第六信息和第七信息确定第一跳频图案。
例如,当第一设备和第二设备均允许信道重叠时,第一跳频图案中不同跳频位置对应的信道组之间可以有重叠的信道。
例如,当第一设备和第二设备均允许信道重叠时,第一跳频图案中重叠的信道的数量, 不能超过第一设备允许的重叠的信道的数量和第二设备允许的重叠的信道的数量中的最小值。
示例2、第一设备或第二设备根据第四信息、第九信息确定跳频稳定时长。
例如,第一跳频稳定时长是第一设备的跳频稳定时长、第二设备的跳频稳定时长中的最大值。
示例3、第一设备或第二设备根据第五信息和/或第十信息确定第一LBT最大窗口期。
例如,第一设备为G节点,第一LBT最大窗口期为第一设备期望的第二LBT最大窗口期。
例如,第二设备为G节点,第一LBT最大窗口期为第二设备期望的第三LBT最大窗口期。
例如,第一LBT最大窗口期是第二LBT最大窗口期、第三LBT最大窗口期中的最大值或最小值。
通过上述设计方式,第一设备和第二设备通过协商确定跳频参数,可以使得确定出的跳频参数能够很好地得到第一设备和第二设备的支持,保证了第一设备和第二设备跳频测距的同步状态(信道切换、等待相同的设备稳定时长和空闲信道评估期的同步结束等),增强了测距的可靠性。
一种可能的设计中,第一设备确定第一设备的跳频测量信息,其中第一设备的跳频测量信息是根据第一设备的跳频能力信息、第二设备的跳频能力信息、或者预先配置或定义的跳频能力信息确定的。第二设备确定第二设备的跳频测量信息,其中第二设备的跳频测量信息是根据第一设备的跳频能力信息、第二设备的跳频能力信息、或者预先配置或定义的跳频能力信息确定的。
一种可能的实现方式中,第一设备的跳频能力信息和第二设备的跳频能力信息为预先配置或定义的。例如,同一通信域中的每个设备的跳频能力信息被预先配置且告知通信域中的其它设备,或者例如同一通信域中的各个设备的跳频能力信息被配置为相同的值。因此,第一设备可以直接根据先配置或定义的跳频能力信息确定第一设备的跳频测量信息,第二设备可以直接根据先配置或定义的跳频能力信息确定第二设备的跳频测量信息。如此,可以提高第一设备和第二设备相互获取对方跳频能力信息的效率,进而提高测距效率。
另一种可能的实现方式中,在第一设备和第二设备协商跳频参数之前(即交互跳频测量信息之前),第一设备和第二设备还可以先交互跳频能力信息,使得第一设备和/或第二设备可以根据双方的跳频能力信息确定自身的跳频测量信息。例如,第一设备向第二设备发送第一设备的跳频能力信息,第二设备接收第一备的跳频能力信息,进而第二设备可以根据第一设备的跳频能力信息、第二设备的跳频能力信确定第二设备的跳频测量信息;和/或,第二设备向第一设备发送第二设备的跳频能力信息,第一设备接收第二设备的跳频能力信息,进而第一设备可以根据第一设备的跳频能力信息、第二设备的跳频能力信确定第一设备的跳频测量信息。如此,可以保证第一设备和第二设备准确获取对方跳频能力信息,可以提高方案的适用性。
具体的实现时,第一设备和第二设备可以在关联状态或未关联状态下交互跳频能力信息。其中,关联状态,例如第一设备和第二设备完成了鉴权、关联等操作后建立了可靠连接,则第一设备和第二设备可以基于测距请求消息和测距响应消息交互跳频能力信息。其 中,未关联状态,例如第一设备和第二设备在未进行关联操作、未建立连接的情况下,第一设备和第二设备可以通过系统广播消息来广播自身的跳频能力信息,使得位于第一设备预设范围内的设备(包括第二设备)可以接收第一设备广播的第一设备的跳频能力信息,另外还可以通过系统广播消息来广播跳频参数,从而使双方设备完成未关联状态下的测距。
第一设备的跳频能力信息可以包括以下一项或多项:
1)第一设备是否支持跳频;
2)第一设备支持的用于跳频的频段信息;
例如,包括支持的跳频测距的可用频段。例如,第一设备支持5.1GHz频段,则可以指示5150-5350MHz频段的跳频测距能力;第一设备支持5.8GHz频段,则可以指示5725-5850MHz频段的跳频测距能力。
3)第一设备支持的用于发送和/或接收测距信号的最大带宽;
即第一设备的工作带宽,例如20MHz~200MHz。变化步长为20MHz,具体可以由第一设备的RF链的最大带宽决定。
4)第一设备执行跳频时的预设稳定时长;
该时长定义为第一设备支持的用于发送和/或接收测距信号的最大带宽的RF链需要切换工作频点时,整个设备(包括RF链和基带处理单元)达到稳定发送状态或接收状态的时长。该值可根据第一设备的设计参数和/或测试参数确定。
可以理解的,上文第四信息所指示的第一设备的跳频稳定时长与这里的第一设备执行跳频时的预设稳定时长可以相同,也可以不同。
例如,由于设备温度的变化,第一设备在跳频能力信息交互阶段的温度与第一设备在跳频参数协商阶段的温度不同,所以第一设备在跳频能力信息交互阶段获取到的第一设备执行跳频时的预设稳定时长可以与跳频参数协商阶段获取到的第一设备执行跳频时的预设稳定时长不同。
例如,由于设备工作的频段变化,第一设备在跳频能力信息交互阶段的工作频段与第一设备在跳频参数协商阶段的工作频段不同,所以第一设备在跳频能力信息交互阶段获取到的第一设备执行跳频时的预设稳定时长可以与跳频参数协商阶段获取到的第一设备执行跳频时的预设稳定时长不同。
5)第一设备执行跳频时的预设稳定时长在不同频段是否不同。
示例性的,对于5.1GHz频段,例如,稳定时长为1ms,对于5.8GHz频段,稳定时长为2ms。这是因为,第一设备在5.1GHz需要先做空闲信道评估,而在5.8GHz采用微功率发送时不需要做空闲信道评估。当第一设备在一个信道上需要做空闲信道评估操作时,第一设备跳频到该信道上可采用较短的稳定时长;否则,当第一设备在一个信道上不需要做空闲信道评估操作而直接进行测距信号传输时,第一设备跳频到该信道上应采用较长的稳定时长。
类似的,第二设备的跳频能力信息包括以下一项或多项:
1)第二设备是否支持跳频;
2)第二设备支持的用于跳频的频段信息;
3)第二设备支持的用于发送和/或接收测距信号的最大带宽;
4)第二设备执行跳频时的预设稳定时长;
5)第二设备执行跳频时的预设稳定时长在不同频段是否不同。
上述第二设备的跳频能力信息可以参考第一设备的跳频能力信息的详细介绍,此处不再赘述。
以第一设备根据第一设备的跳频能力信息、第二设备的跳频能力信确定第一设备的跳频测量信息为例:第一设备和第二设备双方均支持跳频时,第一设备可以根据第一设备支持的用于跳频的频段信息和第二设备支持的用于跳频的频段信息、第一设备支持的用于发送和/或接收测距信号的最大带宽、第二设备支持的用于发送和/或接收测距信号的最大带宽等,确定第一信息(即第一设备是否允许信道重叠)、第二信息(即第一设备允许的重叠的信道的数量)和/或第三信息(即第一设备期望的第二跳频图案)等。
通过上述设计方式,可以保证协商过程中,第一设备的跳频测量信息能够得到第一设备的跳频能力支持、第二设备的跳频测量信息能够得到第二设备的跳频能力支持,提高了方案的可靠性。
一种可能的设计中,第一跳频图案还包括初始工作信道的信道编号信息,第一跳频图案指示的最后一跳信道为初始工作信道。方法还包括:第一设备和第二设备从初始工作信道开始,按照第一跳频图案指示的跳频顺序执行一次或多次跳频,在执行最后一跳时,回到初始工作信道。
可选的,初始工作信道为第一跳频图案中频率最高的信道(或信道组)。
例如,参见图5,为本申请实施例提供的一种可能的跳频示意图。图5中,G节点和T节点通过跳频,依次在信道3、信道2、信道1上执行测距交互,最后一次跳频回到信道3,G节点和T节点中的响应者向发起者在信道3上进行信道状态信息的反馈。
该设计方式中,设备从初始工作信道开始跳频,最后一跳回到初始工作信道,既可以保证信号测量过程中设备在不同信道上测距,实现大带宽的测量效果,又可以保证设备在测距完成之后,回到初始工作信道上,以保证设备后续的通信性能。
一种可能的设计中,第一设备和第二设备中担任G节点的设备的工作带宽大于担任T节点设备的工作带宽。这种情况下,跳频切换时长T 0可以仅取决于T节点的跳频能力,而与G节点无关。
例如,参见图6,为本申请实施例提供的另一种可能的跳频示意图。图6中,G节点和T节点通过跳频,依次在信道3、信道2、信道1上执行测距交互,最后一次跳频回到信道3。其中G节点的工作带宽为200MHz,T节点的工作带宽为80MHz。G节点和T节点完成跳频参数的协商后,T节点(80MHz)需要至少跳频2次才能完成全部200MHz带宽的测量,而G节点不需要射频跳频,只需要数字跳频即可完成与T节点的测距交互。其中,跳频切换时长T0:取决于T节点的切换能力,与G节点无关。
由于G节点在大带宽(如200MHz)上持续工作,保证了大带宽上的每个小带宽(如每个80MHz)的可用性,一方面可以保证G节点的切频效率(因为G节点无需执行RF跳频),另一方面还可以使得T节点无需进行信道空闲评估(因为信道在G节点的接入期内,不存在LBT失败的情况),可以提高测距交互的效率。
为了更好地说明本申请技术方案的效果,以下列举一组实验数据。
参见图7,为基于20MHz带宽的OFDM信号进跳频测距的仿真结果示意图。其中,G 节点和T节点采用20MHz单载波,使用基于OFDM符号的测距信号,进行跳频测距。通过OFDM信号(20MHz)在多个载波信道切换、测量,以及反馈各个载波信道测量的频域信道状态信息(CSI),能够使多载波的测量结果相干合并,使得2个仅有20MHz工作带宽的小带宽设备,通过多次跳频测量,快速测量带宽达到200MHz,实现了接近200MHz大带宽的测距性能,精度能达到10余厘米级别(CDF 80%)。在图7所给示例中,“200MHz”表示不跳频,一次测量200MHz带宽信道的测距累积分布函数(CDF)曲线;“20MHz x 10”表示一对20MHz工作带宽的G节点和T节点通过跳频10次完成了200MHz带宽的CDF曲线。该仿真中的信道模型采用了9径瑞利衰落模型(即802.11ax信道模型的Model-B),共仿真1000次。
应理解,本申请实施例中各实施方式可以相互结合以实现不同的技术效果。
以上结合附图介绍了本申请实施例提供的方法,以下结合附图介绍本申请实施例提供的装置。
基于同一技术构思,本申请实施例提供一种测距装置,该装置包括用于执行上述方法实施例中第一设备和/或第二设备所执行的方法的模块/单元/手段。该模块/单元/手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
示例性的,参见图8,该装置可以包括收发单元801和处理单元802。
当该装置为上述第一设备或者位于上述第一设备中时,收发单元801,用于在至少一个第一信道上发送第一测距信号和/或接收第二测距信号;
处理单元802,用于根据跳频参数执行至少一次跳频;
收发单元801,还用于在至少一个第二信道上发送第三测距信号和/或接收第四测距信号。
当该装置为上述第二设备或者位于上述第二设备中时,收发单元801,用于在至少一个第一信道上接收第一测距信号和/或发送第二测距信号;处理单元802,用于根据跳频参数执行至少一次跳频;收发单元801,还用于在至少一个第二信道上接收第三测距信号和/或发送第四测距信号。
应理解,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在具体实施时,上述装置可以有多种产品形态,以下介绍几种可能的产品形态。
参见图9,本申请实施例还提供一种测距装置,该装置包括至少一个处理器901和接口电路902;接口电路902用于接收来自该装置之外的其它装置的信号并发送或接收至处理器901或将来自处理器901的信号发送给该装置之外的其它通信装置,处理器901通过逻辑电路或执行代码指令用于实现上述第一设备或第二设备所执行的方法。
应理解,本申请实施例中提及的处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
示例性的,处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可 以是微处理器或者该处理器也可以是任何常规的处理器等。
应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Eate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
基于相同技术构思,本申请实施例还提供一种计算机可读存储介质,包括程序或指令,当所述程序或指令在计算机上运行时,使得如上述第二设备或第一设备所执行的方法被执行。
基于相同技术构思,本申请实施例还提供一种包含指令的计算机程序产品,该计算机程序产品中存储有指令,当其在计算机上运行时,使得上述第二设备或第一设备所执行的方法被执行。
基于相同技术构思,本申请实施例还提供一种测距系统,包括上述第二设备和第一设备。
基于相同技术构思,本申请实施例还提供一种终端设备,包括上文所述的第二设备或第一设备。其中,终端设备可以是车辆、无人机、直升机、飞机、轮船、智能运输设备、或智能家居设备等。本申请实施例对终端设备的具体形态不做限定。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或 方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。

Claims (24)

  1. 一种测距方法,其特征在于,包括:
    第一设备在至少一个第一信道上发送第一测距信号和/或接收第二测距信号;
    所述第一设备根据跳频参数执行至少一次跳频;
    所述第一设备在至少一个第二信道上发送第三测距信号和/或接收第四测距信号。
  2. 如权利要求1所述的方法,其特征在于,所述第一测距信号、所述第二测距信号、所述第三测距信号和/或所述第四测距信号为正交频分复用OFDM信号。
  3. 如权利要求2所述的方法,其特征在于,所述OFDM信号包含以下至少一种信号:信道状态信息参考信号CSI-RS,探测参考信号SRS,第一训练信号FTS,第二训练信号STS,定位参考信号PRS。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述跳频参数包括以下一项或多项:
    第一跳频稳定时长;
    第一LBT最大窗口期;
    第一跳频图案,用于指示所述第一设备和第二设备的跳频顺序,所述第一跳频图案包括所述至少一个第一信道的信道编号信息和所述至少一个第二信道的信道编号信息。
  5. 如权利要求4所述的方法,其特征在于,
    所述至少一个信道属于第一频段,所述第一跳频稳定时长为第一时长;或者,
    所述至少一个信道属于第二频段,所述第一跳频稳定时长为第二时长;
    其中,所述第一频段不同于所述第二频段,所述第一频段与所述第二频段在频域上不存在重叠,所述第一时长不同于所述第二时长。
  6. 如权利要求4或5所述的方法,其特征在于,所述第一LBT最大窗口期为所述第一设备配置的。
  7. 如权利要求4-6任一项所述的方法,其特征在于,所述第一跳频稳定时长为所述第一设备的跳频稳定时长和所述第二设备的跳频稳定时长中的最大值,所述跳频稳定时长是设备执行跳频时达到稳定状态的时长。
  8. 如权利要求4-7任一项所述的方法,其特征在于,所述第一跳频图案是所述第一设备与所述第二设备协商确定的。
  9. 如权利要求4-8任一项所述的方法,其特征在于,所述至少一个第二信道中包含的信道的数量为多个;所述至少一个第二信道的信道编号信息为:所述至少一个第二信道中频率最低或频率最高的信道的信道编号信息。
  10. 如权利要求4-9任一项所述的方法,其特征在于,所述第一设备根据跳频参数执行至少一次跳频,包括:
    所述第一设备根据所述第一跳频图案从所述至少一个第一信道切换至所述至少一个第二信道;
    等待所述第一跳频稳定时长之后,所述第一设备执行第一空闲信道评估;
    所述第一设备在至少一个第二信道上发送第三测距信号和/或接收第四测距信号,包括:
    所述第一设备确定所述至少一个第二信道空闲时,所述第一设备在所述至少一个第二信道上发送所述第三测距信号和/或接收所述第四测距信号。
  11. 如权利要求4-7任一项所述的方法,其特征在于,所述第一跳频图案还包括至少一个第三信道的信道编号信息;
    所述第一设备根据跳频参数执行至少一次跳频,包括:
    所述第一设备根据所述第一跳频图案从所述至少一个第一信道切换至所述至少一个第三信道;
    等待所述第一跳频稳定时长之后,所述第一设备执行第二空闲信道评估;
    所述第一设备确定在所述第二空闲信道评估对应的LBT窗口内获得的空闲信道评估结果为所述至少一个第三信道非空闲时,在所述第二空闲信道评估对应的LBT窗口结束后,所述第一设备根据所述第一跳频图案从所述至少一个第三信道切换至所述至少一个第二信道;其中,所述第二空闲信道评估对应的LBT窗口的时长等于所述第一LBT最大窗口期;
    等待所述第一跳频稳定时长之后,所述第一设备执行第三空闲信道评估;
    所述第一设备在至少一个第二信道上发送第三测距信号和/或接收第四测距信号,包括:
    所述第一设备确定所述至少一个第二信道空闲时,所述第一设备在所述至少一个第二信道上发送所述第三测距信号和/或接收所述第四测距信号。
  12. 如权利要求4-11任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送所述第一设备的跳频测量信息;和/或,
    所述第一设备接收所述第二设备的跳频测量信息。
  13. 如权利要求12所述的方法,其特征在于,所述第一设备的跳频测量信息包括以下一项或多项:
    第一信息,用于指示所述第一设备是否允许信道重叠;
    第二信息,用于指示所述第一设备允许的重叠的信道的数量;
    第三信息,用于指示所述第一设备期望的第二跳频图案;
    第四信息,用于指示所述第一设备的跳频稳定时长;
    第五信息,用于指示所述第一设备期望的第二LBT最大窗口期;
    所述第二设备的跳频测量信息包括以下一项或多项:
    第六信息,用于指示所述第二设备是否允许信道重叠;
    第七信息,用于指示所述第二设备允许的重叠的信道的数量;
    第八信息,用于指示所述第二设备期望的第三跳频图案;
    第九信息,用于指示所述第二设备的跳频稳定时长;
    第十信息,用于指示所述第二设备期望的第三LBT最大窗口期。
  14. 如权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述第一设备确定所述第一设备的跳频测量信息,其中所述跳频测量信息是根据所述第一设备的跳频能力信息、所述第二设备的跳频能力信息、或者预先配置或定义的跳频能力信息确定的。
  15. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送所述第一设备的跳频能力信息;和/或,
    所述第一设备接收所述第二设备的跳频能力信息。
  16. 如权利要求14或15所述的方法,其特征在于,所述第一设备的跳频能力信息包括以下一项或多项:
    所述第一设备是否支持跳频;
    所述第一设备支持的用于跳频的频段信息;
    所述第一设备支持的用于发送和/或接收测距信号的最大带宽;
    所述第一设备执行跳频时的预设稳定时长;
    所述第一设备执行跳频时的预设稳定时长在不同频段是否不同;
    所述第二设备的跳频能力信息包括以下一项或多项:
    所述第二设备是否支持跳频;
    所述第二设备支持的用于跳频的频段信息;
    所述第二设备支持的用于发送和/或接收测距信号的最大带宽;
    所述第二设备执行跳频时的预设稳定时长;
    所述第二设备执行跳频时的预设稳定时长在不同频段是否不同。
  17. 如权利要求4-16任一项所述的方法,其特征在于,所述第一跳频图案还包括初始工作信道的信道编号信息;所述方法还包括:
    所述第一设备从所述初始工作信道开始跳频,其中所述第一跳频图案指示的最后一跳信道为所述初始工作信道。
  18. 一种测距方法,其特征在于,包括:
    第二设备在至少一个第一信道上接收第一测距信号和/或发送第二测距信号;
    所述第二设备根据跳频参数执行至少一次跳频;
    所述第二设备在至少一个第二信道上接收第三测距信号和/或发送第四测距信号。
  19. 一种测距装置,其特征在于,包括:
    收发单元,用于在至少一个第一信道上发送第一测距信号和/或接收第二测距信号;
    处理单元,用于根据跳频参数执行至少一次跳频;
    所述收发单元,还用于在至少一个第二信道上发送第三测距信号和/或接收第四测距信号。
  20. 一种测距装置,其特征在于,包括:
    收发单元,用于在至少一个第一信道上接收第一测距信号和/或发送第二测距信号;
    处理单元,用于根据跳频参数执行至少一次跳频;
    所述收发单元,还用于在至少一个第二信道上接收第三测距信号和/或发送第四测距信号。
  21. 一种测距装置,其特征在于,包括:至少一个处理器和接口电路;
    所述接口电路用于接收来自所述装置之外的其它装置的信号并发送或接收至所述处理器或将来自所述处理器的信号发送给所述装置之外的其它装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-17中任一项所述的方法,或者,用于实现如权利要求18所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1-17中任一项所述的方法,或者,实现如权利要求18所述的方法。
  23. 一种计算机程序产品,其特征在于,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1-17中任一项所述的方法,或者,执行如权利要求18所述的方法。
  24. 一种测距系统,其特征在于,包括:
    第一设备,用于执行如权利要求1-17中任一项所述的方法;
    第二设备,用于执行如权利要求18所述的方法。
PCT/CN2022/100548 2022-06-22 2022-06-22 一种测距方法、装置和系统 WO2023245514A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100548 WO2023245514A1 (zh) 2022-06-22 2022-06-22 一种测距方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100548 WO2023245514A1 (zh) 2022-06-22 2022-06-22 一种测距方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2023245514A1 true WO2023245514A1 (zh) 2023-12-28

Family

ID=89378876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100548 WO2023245514A1 (zh) 2022-06-22 2022-06-22 一种测距方法、装置和系统

Country Status (1)

Country Link
WO (1) WO2023245514A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170141939A1 (en) * 2015-11-12 2017-05-18 Agency For Defense Development Method and structure for acquiring frequency hop timing synchronization for fh-fdma satellite communication system
CN106772510A (zh) * 2016-12-15 2017-05-31 浙江大学 一种基于载波相位测量的跳频测距方法
CN110601745A (zh) * 2019-09-18 2019-12-20 无锡睿思凯科技股份有限公司 一种通信/测距双系统的无人机通信方法
CN111273273A (zh) * 2020-01-15 2020-06-12 张慧 无线通信引导的双向主动测距定位方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170141939A1 (en) * 2015-11-12 2017-05-18 Agency For Defense Development Method and structure for acquiring frequency hop timing synchronization for fh-fdma satellite communication system
CN106772510A (zh) * 2016-12-15 2017-05-31 浙江大学 一种基于载波相位测量的跳频测距方法
CN110601745A (zh) * 2019-09-18 2019-12-20 无锡睿思凯科技股份有限公司 一种通信/测距双系统的无人机通信方法
CN111273273A (zh) * 2020-01-15 2020-06-12 张慧 无线通信引导的双向主动测距定位方法及系统

Similar Documents

Publication Publication Date Title
WO2018219068A1 (zh) 信道状态信息的处理方法及装置、终端、基站
WO2020164334A1 (zh) 信号传输的方法与装置
CN104333902B (zh) 数据同步方法、同步系统、具有基站功能的设备和终端
US20200413356A1 (en) Method and device for communicating synchronization signal
WO2018210243A1 (zh) 一种通信方法和装置
CN109996341A (zh) 控制信息的传输方法
EP2739114B1 (en) Method and device for implementing synchronization and perception between user equipment
US20210007069A1 (en) Signal transmission method, network device, and terminal device
US20210211845A1 (en) User equipment and method of vehicle-to-everything communication of same
WO2019037884A1 (en) MULTIPLEXING SYNCHRONIZATION SIGNALING AND RADIORECHERCHE
JP6833988B2 (ja) ダウンリンク制御信号を伝送する方法及び装置
US20220394526A1 (en) Communication method and apparatus
US20230156670A1 (en) Partial sensing method and device for device-to-device communication in wireless communication system
WO2019029586A1 (zh) 通信方法和通信设备
CN103491516A (zh) 控制信令的传输方法和基站
WO2019033388A1 (zh) 用于传输数据的方法和设备
US20130083699A1 (en) Methods and apparatus for distributed medium access in wireless peer-to-peer networks
US20140133469A1 (en) Systems and methods for multi-channel concurrency
US10306646B2 (en) Method for device-to-device communication, base station and user equipment
KR102243484B1 (ko) 수신 노드, 송신 노드, 및 송신 방법
WO2015123870A1 (zh) 使用无线资源的控制方法、装置、网元及终端
WO2021093873A1 (zh) 一种测量中间物体状态信息的方法及装置
WO2023245514A1 (zh) 一种测距方法、装置和系统
US20230318784A1 (en) Wireless communication method and device
US20160360546A1 (en) Contention for shared wireless communication channel using multiple dedicated sensing intervals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947291

Country of ref document: EP

Kind code of ref document: A1