WO2023245399A1 - 基于土地系统和气候变化耦合的水稻生产潜力模拟方法 - Google Patents
基于土地系统和气候变化耦合的水稻生产潜力模拟方法 Download PDFInfo
- Publication number
- WO2023245399A1 WO2023245399A1 PCT/CN2022/100006 CN2022100006W WO2023245399A1 WO 2023245399 A1 WO2023245399 A1 WO 2023245399A1 CN 2022100006 W CN2022100006 W CN 2022100006W WO 2023245399 A1 WO2023245399 A1 WO 2023245399A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- land
- production potential
- model
- rice production
- climate
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 95
- 235000007164 Oryza sativa Nutrition 0.000 title claims abstract description 67
- 235000009566 rice Nutrition 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 45
- 230000008859 change Effects 0.000 title claims abstract description 40
- 238000004088 simulation Methods 0.000 title claims abstract description 23
- 230000008878 coupling Effects 0.000 title claims abstract description 21
- 238000010168 coupling process Methods 0.000 title claims abstract description 21
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 21
- 240000007594 Oryza sativa Species 0.000 title 1
- 241000209094 Oryza Species 0.000 claims abstract description 67
- 238000009826 distribution Methods 0.000 claims abstract description 11
- 230000014509 gene expression Effects 0.000 claims description 21
- 238000011161 development Methods 0.000 claims description 10
- 230000003044 adaptive effect Effects 0.000 claims description 8
- 238000001556 precipitation Methods 0.000 claims description 8
- 238000012360 testing method Methods 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 229910001868 water Inorganic materials 0.000 claims description 8
- 238000009825 accumulation Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 238000013528 artificial neural network Methods 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 claims description 5
- 230000000243 photosynthetic effect Effects 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- 230000001413 cellular effect Effects 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 230000002087 whitening effect Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 235000021393 food security Nutrition 0.000 abstract description 5
- 239000002689 soil Substances 0.000 abstract description 4
- 230000010485 coping Effects 0.000 abstract description 2
- 230000037361 pathway Effects 0.000 abstract 1
- 235000013339 cereals Nutrition 0.000 description 10
- 235000013305 food Nutrition 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000003973 irrigation Methods 0.000 description 2
- 230000002262 irrigation Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000006424 Flood reaction Methods 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004836 empirical method Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000009336 multiple cropping Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/22—Yield analysis or yield optimisation
Definitions
- the invention relates to the field of geographic information technology, and in particular to a rice production potential simulation method based on the coupling of land systems and climate change.
- Food is an important strategic material related to the national economy and people's death.
- Food security is an important foundation for achieving economic development, social stability, and national security. Affected by global population expansion and declining food production capacity, ensuring food security is an eternal issue. Land and climate are the two basic factors that affect food production.
- Empirical method This method considers factors related to grain production and is obtained by establishing functional equations to fit the trend of grain production series.
- the main models used include Miami model, wageningen model, etc. This type of model can only be used for Grain yields are roughly estimated in study areas with relatively uniform climatic conditions, especially in areas with huge differences in climatic conditions between different regions.
- Crop growth model method This method is based on crop growth dynamics and considers crop photosynthesis, physiological and ecological characteristics, and the external environment to simulate the flow of water, carbon, and nitrogen in the farmland production system, crop growth, and crop yield.
- Commonly used models include DSSAT, ORYZA, SWAP, EPIC, WOFOST, AquaCrop, APSIM, etc. This type of model requires many parameters and has high computational cost. It can simulate grain yield in small-scale research areas with higher accuracy;
- the third category machine/deep learning model. This type of method is more expensive to build models and requires a large number of reliable training samples to train a more stable and accurate model;
- Category 4 climate production potential model method, which is recognized at home and abroad as the most basic method for simulating food production potential.
- Representative models include the step-by-step correction model, the agricultural ecological zone (AEZ) model, the GAEZ model, etc.
- AEZ agricultural ecological zone
- GAEZ GAEZ model
- This type of method Comprehensive consideration of changes in climate factors and land elements, grain production is obtained by gradually calculating photosynthetic production potential, light and temperature production potential, climate production potential, and land production potential, which can more scientifically reflect the grain production potential under the influence of natural and human factors. As a result, the data required for the model are easy to obtain, and the simulation results at the macro scale are more consistent with actual production conditions.
- the present invention proposes a rice production potential simulation method based on the coupling of land systems and climate change to overcome the above technical problems existing in existing related technologies.
- the method includes the following steps:
- the construction of the GM-FLUS model to simulate land system changes includes the following steps:
- collecting original data and predicting the number of future land use types based on system change patterns includes the following steps:
- S112. Process the number of each land use type, find the system change rules, generate a regular data sequence, and establish a corresponding differential equation model to predict the number of future land use types.
- constructing a gray prediction model and using the number of land use changes predicted by it as the input of the FLUS model includes the following steps:
- X (0) ⁇ x (0) (1),(x) (0) (2),...,x (0) (n) ⁇
- X (1) ⁇ x (1) (1),(x) (1) (2),...,x (1) (n) ⁇
- n the number of original sequences
- a represents the development gray level
- b represents the endogenous control gray level
- a and b satisfy:
- the accuracy test and evaluation of the established gray prediction model includes the following steps:
- q (0) represents the residual sequence
- q represents the mean of the residual sequence
- S 1 represents the standard deviation of the original sequence
- S 2 represents the standard deviation of the residual sequence
- a represents the development gray scale
- b represents the internal generation control grayscale
- t represents time.
- the adaptive inertial competition mechanism based on roulette selection is used to simulate future land changes and deal with the uncertainty and complexity when multiple land use types transform into each other.
- sp(p,k,t) is the suitability probability of the k-th land type on grid p and time t;
- ⁇ j,k is the weight between the hidden layer and the output layer
- sigmoid() is the activation function from the hidden layer to the output layer
- net j (p,t) is the signal received by the j-th hidden layer grid p at time t.
- the adaptive inertia competition mechanism based on roulette selection simulates future land changes and handles the uncertainty and complexity when multiple land use types transform into each other, including the following steps:
- sc c ⁇ k represents the cost of converting land type c into k
- ⁇ k represents the weight of the domain influence degree of each land use type.
- the use of the GAEZ model to estimate rice production potential includes the following steps:
- step-by-step restriction method is used to calculate rice production potential.
- the production potential includes photosynthetic production potential, light and temperature production potential, light and temperature water production potential, climate production potential and rice production potential in order.
- the beneficial effects of the present invention are: simulating land system changes by constructing a GM-FLUS model, combined with SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 in the shared socio-economic road under the CAS-ESM2 climate scenario model comparison plan
- Four future climate scenarios use the GAEZ model to comprehensively consider climate, soil, terrain, land system and other factors to estimate rice production potential, which can provide technical support for coping with future climate change, rational use of cultivated land resources, and ensuring food security.
- Figure 1 is a flow chart of a rice production potential simulation method based on the coupling of land systems and climate change according to an embodiment of the present invention
- Figure 2 is an overall technical roadmap of a rice production potential simulation method based on land system and climate change coupling according to an embodiment of the present invention
- Figure 3 is a structural diagram of the GAEZ model in the rice production potential simulation method based on the coupling of land system and climate change according to an embodiment of the present invention
- Figure 4 is a spatial distribution diagram of rice production potential in 2020 in the rice production potential simulation method based on coupling of land system and climate change according to an embodiment of the present invention
- Figure 5 is a schematic diagram of the correlation verification of the rice production potential simulation method based on the coupling of land system and climate change according to an embodiment of the present invention.
- a rice production potential simulation method based on coupling of land systems and climate change is provided.
- a rice production potential simulation method based on the coupling of land systems and climate change is provided.
- the method includes the following steps :
- S112. Process the number of each land use type, find the system change rules, generate a regular data sequence, and establish a corresponding differential equation model to predict the number of future land use types.
- This invention uses a total of seven periods of land use remote sensing monitoring data in 1990, 1995, 2000, 2005, 2010, 2015, and 2020 as original data to process the quantity of each land use type and find the system change rules. , generate a data sequence with strong regularity, and then establish a corresponding differential equation model to predict the number of land use types in 2030, 2040, 2050, and 2060.
- X (0) ⁇ x (0) (1),(x) (0) (2),...,x (0) (n) ⁇
- X (1) ⁇ x (1) (1),(x) (1) (2),...,x (1) (n) ⁇
- n the number of original sequences
- a represents the development gray level
- b represents the endogenous control gray level
- a and b satisfy:
- q (0) represents the residual sequence
- q represents the mean of the residual sequence
- S 1 represents the standard deviation of the original sequence
- S 2 represents the standard deviation of the residual sequence
- a represents the development gray scale
- b represents the internal generation control grayscale
- t represents time.
- sp(p,k,t) is the suitability probability of the k-th land type on grid p and time t;
- ⁇ j,k is the weight between the hidden layer and the output layer
- sigmoid() is the activation function from the hidden layer to the output layer
- net j (p,t) is the signal received by the j-th hidden layer grid p at time t.
- the adaptive inertial competition mechanism based on roulette selection is used to simulate future land changes and deal with the uncertainty and complexity when multiple land use types transform into each other, including the following steps:
- sc c ⁇ k represents the cost of converting land type c into k
- ⁇ k represents the weight of the domain influence degree of each land use type.
- step-by-step restriction method is used to calculate rice production potential.
- the production potential includes photosynthetic production potential, light and temperature production potential, light and temperature water production potential, climate production potential and rice production potential in order.
- This invention uses the GAEZ model to estimate rice production potential. First, it evaluates the spatial distribution of rice based on temperature (daily average temperature, daily maximum temperature, daily minimum temperature, accumulated temperature) and precipitation (precipitation amount, relative humidity, precipitation intensity, precipitation variability) conditions. According to the climate suitability of the rice planting area, the step-by-step restriction method is used to calculate the rice production potential, that is, according to photosynthetic production potential (only light limitation) - light and temperature production potential (light and temperature limitation) - light, temperature and water production potential (light, temperature and water restrictions) - climate production potential (agricultural climate disaster restrictions) - rice production potential (soil and various management measures restrictions) are carried out step by step, as shown in Figure 3.
- the GAEZ model can simulate two scenarios: rainfed and irrigated. Under rainfed conditions, only the yield-reducing effect of precipitation on rice production potential is considered; while under irrigated conditions, it is assumed that water is sufficient and the impact of water on rice production potential is not considered.
- This invention assumes that irrigation technology will reach a higher level in the future, and therefore directly uses the grain production potential under irrigation scenarios.
- the calculation process combines cultivated land distribution data and potential ripening data. Rice is only grown on paddy fields, and multiple cropping systems are considered to obtain the maximum rice production potential.
- This invention estimates the rice production potential of paddy fields in 2020. Taking each province (municipality) across the country as the basic statistical unit, the total rice production potential of each province and municipality in 2020 is calculated, and compared with the 2020 national 31 provinces (municipalities) (excluding Hong Kong Special Administrative Region, Taiwan province, and Macao Special Administrative Region) released by the National Bureau of Statistics. (External) rice yield data for correlation verification.
- the red dotted line in the figure represents the correlation trend line between the estimated simulated potential rice production in 2020 and the actual rice production in 2020 released by the National Bureau of Statistics.
- the correlation coefficient between the two is 0.82, indicating that there is a strong correlation between the two, that is Changes in potential rice yield can largely reflect the changing trend of actual rice yield.
- the correlation coefficient between the total rice production potential estimated by this invention and the actual production in 2020 is 0.82, and the total rice production potential is 1.27 times the national actual rice production statistical value. This is consistent with Liu Luo (2014) et al.
- the correlation verification results between the estimated total grain production potential in 2010 and the actual grain production are basically consistent.
- the total rice potential estimated by the present invention is closer to the actual statistical value.
- the land system changes are simulated by constructing the GM-FLUS model, combined with the SSP1-2.6, SSP2-4.5, and SSP2-4.5 of the shared socio-economic road under the CAS-ESM2 climate scenario model comparison plan.
- SSP3-7.0 and SSP5-8.5 use the GAEZ model to comprehensively consider climate, soil, terrain, land system and other factors to estimate rice production potential, which can provide solutions for future climate change, rational utilization of cultivated land resources, and security Food security provides technical support.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Health & Medical Sciences (AREA)
- Game Theory and Decision Science (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Marine Sciences & Fisheries (AREA)
- Animal Husbandry (AREA)
- Agronomy & Crop Science (AREA)
- Development Economics (AREA)
- Primary Health Care (AREA)
- Entrepreneurship & Innovation (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种基于土地系统和气候变化耦合的水稻生产潜力模拟方法,包括以下步骤:构建GM-FLUS模型模拟土地系统变化(S1),采用GAEZ模型估算水稻生产潜力(S2),分析不同情景下水稻生产潜力的空间分布特征和时间变化趋势(S3)。通过构建GM-FLUS模型模拟土地系统变化,结合CAS-ESM2气候情景模式比较计划下的共享社会经济路中的SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5四个未来气候情景,采用GAEZ模型综合考虑气候、土壤、地形、土地系统等多方面因素,估算了水稻生产潜力,为应对未来气候变化、合理利用耕地资源、保障粮食安全提供了技术支撑。
Description
本发明涉及地理信息技术领域,尤其涉及基于土地系统和气候变化耦合的水稻生产潜力模拟方法。
粮食是关系国计民生的重要战略物资,粮食安全是实现经济发展、社会稳定、国家安全的重要基础。受全球性人口膨胀和粮食生产能力下降的影响,保障粮食安全是一个永恒的课题。而土地和气候正是影响粮食产量的两大基本因素。
据政府间气候变化专门委员会(IPCC)发布的第六次评估报告(AR6)指出,自19世纪以来,全球气温已经平均上升了1.1℃,如果全球温度继续上升,会引发干旱、暴雨、洪水、寒潮等极端天气频繁发生,改变粮食作物生长发育条件,进而导致产量的减产。
同时,受到工业化、城市化等进程影响,以及退耕还林还草等政策驱动,发展中国家耕地的数量有所减少、质量有所下降以及空间分布发生了变化,进而对粮食产量造成深远的影响,多次引发全球性的粮食危机。因此,科学估测土地系统和气候变化对于粮食产量和安全问题的影响,探索在未来土地利用情况、不同气候条件下的粮食产量,对政策制定和国民经济可持续发展具有重要意义。
对粮食生产潜力的计算,国内外学者采用不同的方法开展了大量的研究。常用的方法可以概括为四类:
第一类:经验法,这类方法考虑反映与粮食产量相关的因子,通过建立函数方程拟合粮食产量序列趋势得到,主要用到的模型有Miami模型、wageningen模型等,这类模型只能对气候条件较为均一的研究区粮食产量进行粗略地估算,尤其在不同区域气候条件差异巨大的区域效果较差;
第二类:作物生长模型法,这类方法以作物生长动力学为基础,考虑了作物光合作用、生理生态特性以及外部环境模拟农田生产系统水、碳、氮的流动、作物生长以及作物产量,常用的模型有DSSAT、ORYZA、SWAP、EPIC、WOFOST、AquaCrop、APSIM等,这类模型所需要的参数较多,计算成本较高,对小尺度的研究区进行粮食产量模拟的精度较高;
第三类:机器/深度学习模型,该类方法构建模型的成本较高,需要大量可靠的训练 样本,才能训练出较为稳定精确的模型;
第四类:气候生产潜力模型法,是国内外公认为是模拟粮食生产潜力最基本的方法,具有代表性的模型有逐级订正模型、农业生态区位(AEZ)模型、GAEZ模型等,这类方法综合考虑了气候因素和土地要素的变化,通过逐步计算光合生产潜力、光温生产潜力、气候生产潜力、土地生产潜力得到粮食产量,能较为科学地反映在自然和人文要素影响下粮食生产潜力的结果,且模型所需的数据易获取,在宏观尺度的模拟结果更符合实际生产情况。
然而,上述模型均基于现状或历史数据开展耕地产量模拟,并未考虑未来自然与人文发展不确定性对耕地产量的影响,因此对于远期耕地保护或者农业生产布局等空间决策的指导价值较低。
发明内容
针对相关技术中的问题,本发明提出基于土地系统和气候变化耦合的水稻生产潜力模拟方法,以克服现有相关技术所存在的上述技术问题。
为此,本发明采用的具体技术方案如下:该方法包括以下步骤:
S1、构建GM-FLUS模型模拟土地系统变化;
S2、采用GAEZ模型估算水稻生产潜力;
S3、分析不同情景下水稻生产潜力的空间分布特征和时间变化趋势。
进一步的,所述构建GM-FLUS模型模拟土地系统变化,包括以下步骤:
S11、采集原始数据,并根据系统变动规律预测未来土地利用类型的数量;
S12、构建灰色预测模型,并将其预测出的土地利用变化的数量作为FLUS模型的输入;
S13、对建立的灰色预测模型进行精度检验与评估;
S14、利用所述FLUS模型未来土地系统变化。
进一步的,所述采集原始数据,并根据系统变动规律预测未来土地利用类型的数量,包括以下步骤:
S111、选取多组历史土地利用遥感监测数据作为原始数据;
S112、对每种土地利用类型数量进行处理,寻找系统变动规律,生成有规律性的数据序列,并建立相应的微分方程模型,预测未来土地利用类型的数量。
进一步的,所述构建灰色预测模型,并将其预测出的土地利用变化的数量作为FLUS 模型的输入,包括以下步骤:
S121、设每一类土地利用数据原始非负序列为X
(0),其表达式为:
X
(0)={x
(0)(1),(x)
(0)(2),…,x
(0)(n)}
S122、对X
(0)构造一次累加序列为X
(1),其表达式为:
X
(1)={x
(1)(1),(x)
(1)(2),…,x
(1)(n)}
式中,i=1,…,k,k=1,2,…,n,n表示原始序列的个数;
S123、构建一阶灰色预测模型,其白化方程为:
式中,a表示发展灰度,b表示内生成控制灰度,且a、b满足:
z
(1)(k)=0.5x
(1)(k)+0.5x
(1)(k-1)
式中,z
(1)表示X
(1)紧邻均值生成序列,k=2,3,…,n,T表示转置运算符号。
进一步的,其特征在于,所述对建立的灰色预测模型进行精度检验与评估,包括以下步骤:
S131、依据后验差比值c与小误差概率p两个指标对灰色预测模型进行检验,其表达式分别为:
p=P{|q
(0)(k)-q|<0.6745s
1}
式中,q
(0)表示残差序列;
q表示残差序列的均值;
S
1表示原始序列的标准差;
S
2表示残差序列的标准差;
S132、若所述灰色预测模型的精度不符合要求,则使用残差序列建立灰色预测模型对原模型进行修正,提高精度;
S133、若所述灰色预测模型的精度符合要求,则还原数据与预测值,其运算表达式为:
式中,a表示发展灰度;
b表示内生成控制灰度;
x
(0)表示原始非负序列;
e表示自然常数;
t表示时间。
进一步的,利用所述FLUS模型未来土地系统变化,包括以下步骤:
S141、采用人工神经网络从原始土地利用数据与驱动因子获取各类用地类型的适宜性概率;
S142、基于轮盘赌选择的自适应惯性竞争机制进行未来土地变化的模拟,处理多种土地利用类型相互转化时的不确定性与复杂性。
进一步的,所述采用人工神经网络从原始土地利用数据与驱动因子获取各类用地类型的适宜性概率的运算表达式为:
式中,sp(p,k,t)为第k种地类在栅格p和时间t上的适宜性概率;
ω
j,k为隐藏层与输出层间的权重;
sigmoid()为隐藏层到输出层的激励函数;
net
j(p,t)为第j个隐藏层栅格p在时间t上所接收到的信号。
进一步的,所述基于轮盘赌选择的自适应惯性竞争机制进行未来土地变化的模拟,处理多种土地利用类型相互转化时的不确定性与复杂性,包括以下步骤:
式中,sc
c→k表示用地类型c转化为k的成本,
1-sc
c→k表示转化的难易程度;
ω
k表示各用地类型的领域影响程度的权重。
进一步的,所述采用GAEZ模型估算水稻生产潜力,包括以下步骤:
S21、根据温度和降水条件来评价水稻空间分布的气候适宜性;
S22、针对水稻适宜种植区域,采用逐级限制法来计算水稻生产潜力。
进一步的,所述生产潜力依次包括光合生产潜力、光温生产潜力、光温水生产潜力、气候生产潜力及水稻生产潜力。
本发明的有益效果为:通过构建GM-FLUS模型模拟土地系统变化,结合CAS-ESM2气候情景模式比较计划下的共享社会经济路中的SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5四个未来气候情景,采用GAEZ模型综合考虑气候、土壤、地形、土地系统等多方面因素,估算了水稻生产潜力,可以为应对未来气候变化、合理利用耕地资源、保障粮食安全提供了技术支撑。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的基于土地系统和气候变化耦合的水稻生产潜力模拟方法的流程图;
图2是根据本发明实施例的基于土地系统和气候变化耦合的水稻生产潜力模拟方法的总体技术路线图;
图3是根据本发明实施例的基于土地系统和气候变化耦合的水稻生产潜力模拟方法中GAEZ模型结构图;
图4是根据本发明实施例的基于土地系统和气候变化耦合的水稻生产潜力模拟方法中2020年水稻生产潜力空间分布图;
图5是根据本发明实施例的基于土地系统和气候变化耦合的水稻生产潜力模拟方法的相关性验证示意图。
为进一步说明各实施例,本发明提供有附图,这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理,配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本发明的优点,图中的组件并未按比例绘制,而类似的组件符号通常用来表示类似的组件。
根据本发明的实施例,提供了基于土地系统和气候变化耦合的水稻生产潜力模拟方法。
现结合附图和具体实施方式对本发明进一步说明,如图1-7所示,根据本发明的一个实施例,提供了基于土地系统和气候变化耦合的水稻生产潜力模拟方法,该方法包括以下步骤:
S1、构建GM-FLUS模型模拟土地系统变化,包括以下步骤:
S11、采集原始数据,并根据系统变动规律预测未来土地利用类型的数量,包括以下步骤:
S111、选取多组历史土地利用遥感监测数据作为原始数据;
S112、对每种土地利用类型数量进行处理,寻找系统变动规律,生成有规律性的数据序列,并建立相应的微分方程模型,预测未来土地利用类型的数量。
本发明使用1990年、1995年、2000年、2005年、2010年、2015年、2020年共七期土地利用遥感监测数据作为原始数据,对每一种土地利用类型数量进行处理,寻找系统变动规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测2030年、2040年、2050年、2060年的土地利用类型的数量。
S12、构建灰色预测模型,并将其预测出的土地利用变化的数量作为FLUS模型的输入,包括以下步骤:
S121、设每一类土地利用数据原始非负序列为X
(0),其表达式为:
X
(0)={x
(0)(1),(x)
(0)(2),…,x
(0)(n)}
S122、对X
(0)构造一次累加序列为X
(1),其表达式为:
X
(1)={x
(1)(1),(x)
(1)(2),…,x
(1)(n)}
式中,i=1,…,k,k=1,2,…,n,n表示原始序列的个数;
S123、构建一阶灰色预测模型,其白化方程为:
式中,a表示发展灰度,b表示内生成控制灰度,且a、b满足:
z
(1)(k)=0.5x
(1)(k)+0.5x
(1)(k-1)
式中,z
(1)表示X
(1)紧邻均值生成序列,k=2,3,…,n,T表示转置运算符号。
S13、对建立的灰色预测模型进行精度检验与评估,包括以下步骤:
S131、依据后验差比值c与小误差概率p两个指标对灰色预测模型进行检验,其表达式分别为:
p=P{|q
(0)(k)-q|<0.6745s
1}
式中,q
(0)表示残差序列;
q表示残差序列的均值;
S
1表示原始序列的标准差;
S
2表示残差序列的标准差;
S132、若所述灰色预测模型的精度不符合要求,则使用残差序列建立灰色预测模型对原模型进行修正,提高精度;
S133、若所述灰色预测模型的精度符合要求,则还原数据与预测值,其运算表达式为:
式中,a表示发展灰度;
b表示内生成控制灰度;
x
(0)表示原始非负序列;
e表示自然常数;
t表示时间。
S14、利用所述FLUS模型未来土地系统变化,包括以下步骤:
S141、采用人工神经网络从原始土地利用数据与驱动因子获取各类用地类型的适宜性概率,其运算表达式为:
式中,sp(p,k,t)为第k种地类在栅格p和时间t上的适宜性概率;
ω
j,k为隐藏层与输出层间的权重;
sigmoid()为隐藏层到输出层的激励函数;
net
j(p,t)为第j个隐藏层栅格p在时间t上所接收到的信号。
S142、基于轮盘赌选择的自适应惯性竞争机制进行未来土地变化的模拟,处理多种土地利用类型相互转化时的不确定性与复杂性,包括以下步骤:
式中,sc
c→k表示用地类型c转化为k的成本,
1-sc
c→k表示转化的难易程度;
ω
k表示各用地类型的领域影响程度的权重。
S2、采用GAEZ模型估算水稻生产潜力,包括以下步骤:
S21、根据温度和降水条件来评价水稻空间分布的气候适宜性;
S22、针对水稻适宜种植区域,采用逐级限制法来计算水稻生产潜力。
其中,所述生产潜力依次包括光合生产潜力、光温生产潜力、光温水生产潜力、气候生产潜力及水稻生产潜力。
本发明使用GAEZ模型估算水稻生产潜力,首先根据温度(日均温、日最高温度、日最低温度、积温)和降水(降水量、相对湿度、降水强度、降水变率)条件来评价水稻空间分布的气候适宜性,然后针对水稻适宜种植区域,采用逐级限制法来计算水稻生产潜力,即:按光合生产潜力(仅光照限制)—光温生产潜力(光照和温度限制)—光温水生产潜力(光照、温度和水分限制)—气候生产潜力(农业气候灾害限制)—水稻生产潜力(土壤及各种管理措施限制)逐级进行,如图3所示。
GAEZ模型可以模拟雨养和灌溉两种情景,在雨养条件下仅考虑降水对水稻生产潜力的减产效应;而在灌溉条件下,假设水分是充足的,不考虑水分对水稻生产潜力的影响。本发明假设未来灌溉技术达到较高水平,因而直接采用灌溉情景下的粮食生产潜力。计算过程中结合了耕地分布数据和潜在熟制数据,水稻仅在水田上种植,考虑了多熟制来获取最大的水稻生产潜力。
S3、分析不同情景下水稻生产潜力的空间分布特征和时间变化趋势。
本发明估算了2020年水田的水稻生产潜力。以全国各省(市)为基本统计单元,统计各省市2020年水稻生产潜力总产量,并与国家统计局发布的2020年全国31个省(市)(除香港特别行政区、台湾省、澳门特别行政区外)水稻产量数据进行相关性验证。图中红色虚线表示估算出的2020年模拟的潜在水稻产量与国家统计局发布的2020年实际水稻产量的相关趋势线,二者相关性系数为0.82,说明二者存在较强的相关性,即潜在水稻产量的变化在很大程度上能反映实际水稻产量的变化趋势。
从估算结果来看,本发明估算的2020年水稻生产潜力总量与实际产量相关性系数为0.82,水稻生产潜力总量是全国实际水稻产量统计值的1.27倍,与刘洛(2014)等人估算的2010年粮食生产潜力总量与实际粮食产量的相关性验证结果基本一致,本发明估算的水稻潜力总量与实际统计值更为接近。
综上所述,借助于本发明的上述技术方案,通过构建GM-FLUS模型模拟土地系统变化,结合CAS-ESM2气候情景模式比较计划下的共享社会经济路中的SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5四个未来气候情景,采用GAEZ模型综合考虑气候、土壤、地形、土地系统等多方面因素,估算了水稻生产潜力,可以为应对未来气候变化、合理利用耕地资源、保障粮食安全提供了技术支撑。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 基于土地系统和气候变化耦合的水稻生产潜力模拟方法,其特征在于,该方法包括以下步骤:S1、构建GM-FLUS模型模拟土地系统变化;S2、采用GAEZ模型估算水稻生产潜力;S3、分析不同情景下水稻生产潜力的空间分布特征和时间变化趋势。
- 根据权利要求1所述的基于土地系统和气候变化耦合的水稻生产潜力模拟方法,其特征在于,所述构建GM-FLUS模型模拟土地系统变化,包括以下步骤:S11、采集原始数据,并根据系统变动规律预测未来土地利用类型的数量;S12、构建灰色预测模型,并将其预测出的土地利用变化的数量作为FLUS模型的输入;S13、对建立的灰色预测模型进行精度检验与评估;S14、利用所述FLUS模型未来土地系统变化。
- 根据权利要求2所述的基于土地系统和气候变化耦合的水稻生产潜力模拟方法,其特征在于,所述采集原始数据,并根据系统变动规律预测未来土地利用类型的数量,包括以下步骤:S111、选取多组历史土地利用遥感监测数据作为原始数据;S112、对每种土地利用类型数量进行处理,寻找系统变动规律,生成有规律性的数据序列,并建立相应的微分方程模型,预测未来土地利用类型的数量。
- 根据权利要求3所述的基于土地系统和气候变化耦合的水稻生产潜力模拟方法,其特征在于,所述构建灰色预测模型,并将其预测出的土地利用变化的数量作为FLUS模型的输入,包括以下步骤:S121、设每一类土地利用数据原始非负序列为X (0),其表达式为:X (0)={x (0)(1),(x) (0)(2),…,x (0)(n)}S122、对X (0)构造一次累加序列为X (1),其表达式为:X (1)={x (1)(1),(x) (1)(2),…,x (1)(n)}式中,i=1,…,k,k=1,2,…,n,n表示原始序列的个数;S123、构建一阶灰色预测模型,其白化方程为:式中,a表示发展灰度,b表示内生成控制灰度,且a、b满足:z (1)(k)=0.5x (1)(k)+0.5x (1)(k-1)式中,z (1)表示X (1)紧邻均值生成序列,k=2,3,…,n,T表示转置运算符号。
- 根据权利要求4所述的基于土地系统和气候变化耦合的水稻生产潜力模拟方法,其特征在于,所述对建立的灰色预测模型进行精度检验与评估,包括以下步骤:S131、依据后验差比值c与小误差概率p两个指标对灰色预测模型进行检验,其表达式分别为:p=P{|q (0)(k)-q|<0.6745s 1}式中,q (0)表示残差序列;q表示残差序列的均值;S 1表示原始序列的标准差;S 2表示残差序列的标准差;S132、若所述灰色预测模型的精度不符合要求,则使用残差序列建立灰色预测模型对原模型进行修正,提高精度;S133、若所述灰色预测模型的精度符合要求,则还原数据与预测值,其运算表达式为:式中,a表示发展灰度;b表示内生成控制灰度;x (0)表示原始非负序列;e表示自然常数;t表示时间。
- 根据权利要求5所述的基于土地系统和气候变化耦合的水稻生产潜力模拟方法,其特征在于,利用所述FLUS模型未来土地系统变化,包括以下步骤:S141、采用人工神经网络从原始土地利用数据与驱动因子获取各类用地类型的适宜性概率;S142、基于轮盘赌选择的自适应惯性竞争机制进行未来土地变化的模拟,处理多种土地利用类型相互转化时的不确定性与复杂性。
- 根据权利要求7所述的基于土地系统和气候变化耦合的水稻生产潜力模拟方法,其特征在于,所述基于轮盘赌选择的自适应惯性竞争机制进行未来土地变化的模拟,处 理多种土地利用类型相互转化时的不确定性与复杂性,包括以下步骤:式中,sc c→k表示用地类型c转化为k的成本,1-sc c→k表示转化的难易程度;ω k表示各用地类型的领域影响程度的权重。
- 根据权利要求1所述的基于土地系统和气候变化耦合的水稻生产潜力模拟方法,其特征在于,所述采用GAEZ模型估算水稻生产潜力,包括以下步骤:S21、根据温度和降水条件来评价水稻空间分布的气候适宜性;S22、针对水稻适宜种植区域,采用逐级限制法来计算水稻生产潜力。
- 根据权利要求9所述的基于土地系统和气候变化耦合的水稻生产潜力模拟方法,其特征在于,所述生产潜力依次包括光合生产潜力、光温生产潜力、光温水生产潜力、气候生产潜力及水稻生产潜力。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/100006 WO2023245399A1 (zh) | 2022-06-21 | 2022-06-21 | 基于土地系统和气候变化耦合的水稻生产潜力模拟方法 |
LU503105A LU503105B1 (en) | 2022-06-21 | 2022-11-24 | Rice Productive Potential Simulation Method Based on Coupling of Land System and Climate Change |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/100006 WO2023245399A1 (zh) | 2022-06-21 | 2022-06-21 | 基于土地系统和气候变化耦合的水稻生产潜力模拟方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023245399A1 true WO2023245399A1 (zh) | 2023-12-28 |
Family
ID=86426699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/100006 WO2023245399A1 (zh) | 2022-06-21 | 2022-06-21 | 基于土地系统和气候变化耦合的水稻生产潜力模拟方法 |
Country Status (2)
Country | Link |
---|---|
LU (1) | LU503105B1 (zh) |
WO (1) | WO2023245399A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117933477A (zh) * | 2024-01-26 | 2024-04-26 | 中国科学院西北生态环境资源研究院 | 一种青藏高原多年冻土区植被特性时间变化趋势预测方法 |
CN118212088A (zh) * | 2024-03-27 | 2024-06-18 | 中国科学院地理科学与资源研究所 | 农作物种植空间布局多目标优化方法、系统、设备及介质 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101916337A (zh) * | 2010-08-23 | 2010-12-15 | 湖南大学 | 一种基于地理信息系统的水稻生产潜力动态预测方法 |
CN105447235A (zh) * | 2015-11-12 | 2016-03-30 | 中山大学 | 一种土地未来利用情景动态模拟方法 |
CN110390129A (zh) * | 2019-06-11 | 2019-10-29 | 同济大学 | 基于GeoSOS-FLUS的土地利用政策有效性的定量评价方法 |
AU2021102457A4 (en) * | 2021-05-11 | 2021-07-01 | Jiangxi Agricultural University | High-resolution coupling simulation system and method for land use and forest landscape process |
CN113177345A (zh) * | 2021-06-30 | 2021-07-27 | 中国科学院地理科学与资源研究所 | 一种网格化作物种植布局优化方法 |
CN113222316A (zh) * | 2021-01-15 | 2021-08-06 | 中山大学 | 一种基于flus模型和生物多样性模型的变化情景模拟方法 |
US20210256640A1 (en) * | 2020-02-14 | 2021-08-19 | Cibo Technologies, Inc. | Method and apparatus for generation and employment of parcel production stability attributes for land parcel valuation |
CN113641946A (zh) * | 2021-10-15 | 2021-11-12 | 中国科学院地理科学与资源研究所 | 耗水作物种植布局优化方法及装置 |
CN114357879A (zh) * | 2021-12-31 | 2022-04-15 | 中山大学 | 一种未来土地利用模拟方法、装置、存储介质及终端设备 |
-
2022
- 2022-06-21 WO PCT/CN2022/100006 patent/WO2023245399A1/zh unknown
- 2022-11-24 LU LU503105A patent/LU503105B1/en active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101916337A (zh) * | 2010-08-23 | 2010-12-15 | 湖南大学 | 一种基于地理信息系统的水稻生产潜力动态预测方法 |
CN105447235A (zh) * | 2015-11-12 | 2016-03-30 | 中山大学 | 一种土地未来利用情景动态模拟方法 |
CN110390129A (zh) * | 2019-06-11 | 2019-10-29 | 同济大学 | 基于GeoSOS-FLUS的土地利用政策有效性的定量评价方法 |
US20210256640A1 (en) * | 2020-02-14 | 2021-08-19 | Cibo Technologies, Inc. | Method and apparatus for generation and employment of parcel production stability attributes for land parcel valuation |
CN113222316A (zh) * | 2021-01-15 | 2021-08-06 | 中山大学 | 一种基于flus模型和生物多样性模型的变化情景模拟方法 |
AU2021102457A4 (en) * | 2021-05-11 | 2021-07-01 | Jiangxi Agricultural University | High-resolution coupling simulation system and method for land use and forest landscape process |
CN113177345A (zh) * | 2021-06-30 | 2021-07-27 | 中国科学院地理科学与资源研究所 | 一种网格化作物种植布局优化方法 |
CN113641946A (zh) * | 2021-10-15 | 2021-11-12 | 中国科学院地理科学与资源研究所 | 耗水作物种植布局优化方法及装置 |
CN114357879A (zh) * | 2021-12-31 | 2022-04-15 | 中山大学 | 一种未来土地利用模拟方法、装置、存储介质及终端设备 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117933477A (zh) * | 2024-01-26 | 2024-04-26 | 中国科学院西北生态环境资源研究院 | 一种青藏高原多年冻土区植被特性时间变化趋势预测方法 |
CN117933477B (zh) * | 2024-01-26 | 2024-06-07 | 中国科学院西北生态环境资源研究院 | 一种青藏高原多年冻土区植被特性时间变化趋势预测方法 |
CN118212088A (zh) * | 2024-03-27 | 2024-06-18 | 中国科学院地理科学与资源研究所 | 农作物种植空间布局多目标优化方法、系统、设备及介质 |
Also Published As
Publication number | Publication date |
---|---|
LU503105B1 (en) | 2023-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110084367B (zh) | 一种基于lstm深度学习模型的土壤墒情预测方法 | |
CN108304668B (zh) | 一种结合水文过程数据和历史先验数据的洪水预测方法 | |
Waongo et al. | Adaptation to climate change: The impacts of optimized planting dates on attainable maize yields under rainfed conditions in Burkina Faso | |
Matsumura et al. | Maize yield forecasting by linear regression and artificial neural networks in Jilin, China | |
CN111027175B (zh) | 基于耦合模型集成模拟的洪水对社会经济影响的评估方法 | |
Cantelaube et al. | Seasonal weather forecasts for crop yield modelling in Europe | |
CN101480143B (zh) | 一种预测灌区作物单产量的方法 | |
CN111665575B (zh) | 一种基于统计动力的中长期降雨分级耦合预报方法及系统 | |
CN113902580B (zh) | 一种基于随机森林模型的历史耕地分布重建方法 | |
KR20170005553A (ko) | 지능형 정보제공을 위한 홍수, 가뭄정보의 평가 및 예측 기법 개발 | |
CN108520345A (zh) | 基于ga-bp神经网络模型的耕地质量评价方法及系统 | |
Verma et al. | Comparative analysis of CMIP5 and CMIP6 in conjunction with the hydrological processes of reservoir catchment, Chhattisgarh, India | |
CN110119767A (zh) | 一种基于lvq神经网络的黄瓜温室温度智能化检测装置 | |
CN111539597A (zh) | 一种网格化的流域社会经济干旱评估方法 | |
CN118350678B (zh) | 基于物联网与大数据的水环境监测数据处理方法及系统 | |
Ali et al. | Modeling wheat yield with data-intelligent algorithms: artificial neural network versus genetic programming and minimax probability machine regression | |
CN117787081A (zh) | 一种基于Morris和Sobol法的水文模型参数不确定性分析方法 | |
WO2023245399A1 (zh) | 基于土地系统和气候变化耦合的水稻生产潜力模拟方法 | |
CN115759445A (zh) | 一种基于机器学习和云模型的分类洪水随机预报方法 | |
CN116881624B (zh) | 复合型极端事件预报方法、装置、计算机设备和存储介质 | |
Tian | A combined prediction approach based on wavelet transform for crop water requirement | |
Nasseri et al. | A comparison between direct and indirect frameworks to evaluate impacts of climate change on streamflows: case study of Karkheh River basin in Iran | |
Cao et al. | Probabilistic runoff forecasting considering stepwise decomposition framework and external factor integration structure | |
CN116663404A (zh) | 一种耦合人工智能和贝叶斯理论的洪水预报方法及系统 | |
CN115828722A (zh) | 基于产汇流过程的降雨驱动的深度学习洪水预报方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22947180 Country of ref document: EP Kind code of ref document: A1 |