WO2023243997A1 - 아포지단백질을 포함하는 하이브리드 나노입자의 합성 방법 - Google Patents

아포지단백질을 포함하는 하이브리드 나노입자의 합성 방법 Download PDF

Info

Publication number
WO2023243997A1
WO2023243997A1 PCT/KR2023/008146 KR2023008146W WO2023243997A1 WO 2023243997 A1 WO2023243997 A1 WO 2023243997A1 KR 2023008146 W KR2023008146 W KR 2023008146W WO 2023243997 A1 WO2023243997 A1 WO 2023243997A1
Authority
WO
WIPO (PCT)
Prior art keywords
phnp
hybrid nanoparticles
protein
microvortex
hybrid
Prior art date
Application number
PCT/KR2023/008146
Other languages
English (en)
French (fr)
Inventor
전미연
이우승
김세연
Original Assignee
(주) 멥스젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 멥스젠 filed Critical (주) 멥스젠
Publication of WO2023243997A1 publication Critical patent/WO2023243997A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to a method for synthesizing hybrid nanoparticles containing apolipoprotein. Specifically, the present invention relates to a method for synthesizing hybrid nanoparticles that can contain proteins with various functionalities, including apolipoproteins, using a vortex microvortex device, and has various physiological activities through the production method of the present invention. Small, uniform, and stable nanoparticles can be manufactured.
  • Nanoparticles refer to particles with a size of microns or less. They are attracting attention as next-generation drug delivery vehicles because they can move freely within the body due to their size and can impart various physical properties depending on their constituent materials.
  • Nanoparticles for drug delivery are composed of various components such as phospholipids and polymers, depending on the need, and have different properties depending on the components. Nanoparticles made of inorganic materials are mainly used for diagnostic purposes, and polymer nanoparticles are mainly used as drug carriers to control the release rate of drugs and circulation time in vivo. Phospholipid nanoparticles are amphipathic, easy to self-assemble, and have various molecular sieves, so various types of phospholipid nanoparticles are being studied as drug delivery vehicles.
  • the present inventors developed a polymer-lipid hybrid nanoparticle (PHNP) using PLGA (poly(lactic-co-glycolic acid)), a polymer that is biodegradable and biocompatible and can protect drugs from degradation at the same time.
  • PHNP polymer-lipid hybrid nanoparticle
  • PLGA poly(lactic-co-glycolic acid)
  • the present invention was completed by researching a synthetic method that can include functional proteins.
  • Non-patent Document 1 Toth et al., Robust manufacturing of lipid-polymer nanoparticles through feedback control of parallelized swirling microvortices. 2017, Lab. Chip., 17.16: 2805-2813.
  • the purpose of the present invention is to provide a method of producing hybrid nanoparticles containing a mixture of hydrophilic and hydrophobic materials by mixing phospholipids and polymers under a vortex microvortex.
  • the purpose of the present invention is to provide a method for producing hybrid nanoparticles containing a protein, which includes adding the protein to the hybrid nanoparticle by colliding the protein with the hybrid nanoparticle under a vortex microvortex.
  • the present invention aims to provide hybrid nanoparticles containing proteins prepared by the above method.
  • the present invention relates to a vortex microvortex device including a first inlet, a second inlet, and an outlet, injecting hybrid nanoparticles into the first inlet, injecting a protein into the second inlet, and into the vortex microvortex.
  • a method for producing hybrid nanoparticles containing a protein is provided, including the step of adding a protein to the hybrid nanoparticle.
  • the Reynolds flow rate in the vortex microvortex device may be 50 to 300.
  • the protein may be an apolipoprotein or a polymer with amphiphilic properties.
  • the apolipoprotein may be one or more selected from the group consisting of apolipoprotein A1, A2, E2, E3, J, and M.
  • the synthesis weight ratio of the hybrid nanoparticle and apolipoprotein may be 20:1 to 0.5:1, preferably 20:1 to 2:1.
  • the manufacturing method may further include recovering nanoparticles containing protein from the outlet.
  • the phospholipids include 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), egg phosphatidylcholine (EPC), dilauroylphosphatidylcholine (DLPC), and 1,2-dimyristoyl-sn-glycerol.
  • DOPC 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine
  • EPC egg phosphatidylcholine
  • DLPC dilauroylphosphatidylcholine
  • 1,2-dimyristoyl-sn-glycerol 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine
  • DOPC 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine
  • EPC egg phosphatidylcholine
  • DLPC dilauroylphosphatidylcholine
  • DMPC dipalmitoylphosphatidylcholine
  • DPPC dipalmitoylphosphatidylcholine
  • DSPC distearoylphosphatidylcholine
  • MPPC 1-myristoyl-2-palmitoylphosphatidylcholine
  • PMPC 1-palmitoyl-2- Myristoylphosphatidylcholine
  • PSPC 1-palmitoyl-2-stearoylphosphatidylcholine
  • SPPC 1,2-distearoyl-sn-glyce rho-3-phosphocholine
  • DAPC 1,2-diarachidoyl-sn-glycero-3-phosphocholine
  • DBPC 1,2-diicosanoyl-sn-glycero-3-phos
  • DEPC palmitoyloleoylphosphatidylcholine
  • POPC palmitoyloleoylphosphatidylcholine
  • the ratio of DPPC and DSPE-PEG2000 may be 2.3:1 to 1:1.
  • the polymer may be PLGA (poly(lactic-co-glycolic acid)).
  • the hybrid nanoparticle may be a polymer-lipid hybrid nanoparticle (PHNP).
  • PHNP polymer-lipid hybrid nanoparticle
  • the present invention provides hybrid nanoparticles containing proteins prepared by the above production method.
  • the present invention provides a vortex microvortex device including a first inlet, a second inlet, and an outlet, including the steps of injecting phospholipids into the first inlet and injecting a polymer into the second inlet; and a first step of preparing hybrid nanoparticles comprising mixing phospholipids and polymers with a vortex microvortex, injecting the obtained hybrid nanoparticles into the first injection port, and injecting the protein into the second injection port. It provides a method for producing hybrid nanoparticles containing a protein, including a second step of producing hybrid nanoparticles containing a protein.
  • the protein may be an apolipoprotein or a polymer with amphiphilic properties.
  • the synthetic weight ratio of the hybrid nanoparticle and apolipoprotein may be 20:1 to 2:1.
  • polymers such as PEG located on the surface of hybrid nanoparticles can prevent foreign substances from being adsorbed to the particle surface or removed by immune cells within the human body, enabling safer drug delivery. Therefore, it can be used for intracellular drug delivery, etc. to help with efficient treatment.
  • Figure 1 is a schematic diagram of the synthesis process of hybrid nanoparticles (PHNP-E3/A1) containing both ApoE3 and ApoA1 and the form of PHNP-E3/A1.
  • Figure 2 is a graph comparing the size of hybrid nanoparticles (PHNP-2000) according to the synthetic weight ratio of DSPE-PEG2000 to DPPC.
  • Figure 4 is a graph comparing the size of hybrid nanoparticles (PHNP) according to the PEG molecular weight of DSPE-PEG.
  • Figure 7 is a schematic diagram of the synthesis process of hybrid nanoparticles (PHNP-E3) containing ApoE3 using a vortex microvortex device and the shape of PHNP-E3.
  • Figure 12 is a schematic diagram of the synthesis process of hybrid nanoparticles (PHNP-A1) containing ApoA1 and the shape of the hybrid nanoparticles (PHNP-A1).
  • Figure 14 is a TEM photo of PHNP-A1.
  • Figure 15 is a fluorescence photograph showing hybrid nanoparticles (PHNP-PEG2000) labeled with Rhodamine delivered into HAECs cells.
  • Figure 17 is a graph comparing the quantitative fluorescence intensity of rhodamine in Figures 15 and 16.
  • Figure 19 is a graph comparing the yield of ApoA1 using ELISA after synthesizing PHNP-A1 (SMR) and PHNP-A1 (BT) according to the synthesis weight ratio of PHNP to ApoA1.
  • Figure 20 is a graph comparing the yield of ApoA1 using ELISA after synthesizing PHNP-A1 (SMR) and PHNP-A1 (BT) according to the synthesis weight ratio of PHNP to ApoA1.
  • Figure 23 shows the size and PDI results on the day of synthesis, 1 day, 3 days, 7 days, and 14 days after synthesis, showing the stability of PHNP-E3/A1.
  • phospholipid specifically refers to 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), egg phosphatidylcholine (EPC), dilauroylphosphatidylcholine (DLPC), 1,2 -Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC), 1-myristoyl-2-palmitoylphosphatidylcholine (MPPC) ), 1-palmitoyl-2-myristoylphosphatidylcholine (PMPC), 1-palmitoyl-2-stearoylphosphatidylcholine (PSPC), 1-stearoyl-2-palmitoyl phosphatidylcholine (SPPC), 1,2 -Distearoyl-sn-glycero-3-phosphocholine (DAPC), 1,2-diste
  • apolipoprotein E in the hybrid nanoparticle is a recombinant protein produced by genetic engineering, or a synthetic protein produced by chemical synthesis.
  • apolipoprotein A1 is a protein disclosed in GenBank under accession number AAS68227.1 or at least 95% sequence identity, preferably at least 98% or 99% sequence identity.
  • apolipoprotein A1 in the hybrid nanoparticle is a recombinant protein produced by genetic engineering, or a synthetic protein produced by chemical synthesis.
  • apolipoprotein E is meant to include fragments and functional variants thereof.
  • vortex microvortex refers to a small fluid flowing while rotating in a fluid flow.
  • microvortex device refers to a device that includes microchannels for fluid to flow on a substrate made of various materials including plastic, glass, metal, or silicon, including organic polymer materials. it means.
  • step 1 is the step of synthesizing polymer-lipid hybrid nanoparticles (PHNP)
  • step 2 is the step of incorporating apolipoprotein into the hybrid nanoparticle, and the same swirling microvortex device is used in each step. was used.
  • Figure 1 A schematic diagram of the vortex microvortex device and synthesis method used to synthesize the hybrid nanoparticle (PHNP) of the present invention is shown in Figure 1.
  • the vortex microvortex device includes two inlets and one outlet.
  • the device was designed by optimizing the diameter and height (Toth et al., Robust manufacturing of lipid-polymer nanoparticles through feedback control of parallelized swirling microvortices. 2017, Lab. Chip. , 17.16: 2805-2813 ).
  • polymer-lipid hybrid nanoparticle (PHNP) synthesis step one of the two entrances is filled with a phospholipid mixture, DPPC (dipalmitoylphosphatidylcholine) and DSPE-PEG (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-polyethylene). glycol) was injected, and PLGA (poly(lactic-co-glycolic acid)) polymer was injected into one inlet located on the other side to synthesize polymer-lipid hybrid nanoparticles (PHNP).
  • DPPC dipalmitoylphosphatidylcholine
  • DSPE-PEG 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-polyethylene
  • Polymer-lipid hybrid nanoparticles containing lipids DPPC and DSPE-PEG2000
  • polymer PLGA
  • DSPE-PEG2000 contains PEG and can prevent plasma proteins in the human body from being adsorbed to the surface of nanoparticles or removed by immune cells, so it was used to ensure the stability of nanoparticles in the body.
  • PHNP stable polymer-lipid hybrid nanoparticles
  • Hybrid nanoparticles containing DSPE-PEG having various PEG molecular weights were prepared using the vortex microvortex device of Example 1.
  • Polymer-lipid hybrid nanoparticles (PHNP-PEG2000) containing DPPC, DSPE-PEG2000, and PLGA were prepared using a vortex microvortex device, and then hybrid nanoparticles (PHNP-E3) containing apolipoprotein E3 (ApoE3) were prepared. ) was manufactured, and a schematic diagram thereof is shown in Figure 7.
  • PHNP-E3 particles were synthesized at various Reynolds flow rates, and the resulting particle size distribution was confirmed by DLS, and the results are shown in Figure 10. As shown in FIG. 10, under conditions where the Reynolds flow rate was less than 50 (Re 10), the average particle size was 158 nm, and relatively large particles were measured compared to other conditions. This may be because under excessively slow flow conditions, normal PHNP-E3 was not synthesized, and E3 was adsorbed to the surface of PHNP-PEG2000 and aggregates were formed.
  • the Reynolds flow rate of the present invention is set to be 50 to 300. You can see what is desirable.
  • PHNP-PEG-2000 contains PEG-2000 in the shell of the nanoparticle, but when synthesized by adding apolipoprotein, it was confirmed that it is stably included in PHNP-PEG-2000 in proportion to the amount of apolipoprotein added. .
  • Hybrid nanoparticles (PHNP-A1) containing ApoA1 were synthesized in the same manner as shown in FIG. 12 using a vortex microvortex device.
  • PLGA was prepared in an anhydrous acetonitrile (ACN) solution
  • DPPC and each DSPE-PEG2000 were prepared in an anhydrous ethanol solution.
  • DPPC:DSPE-PEG2000 was synthesized at a mixing ratio of 2.3:1 using a vortex microvortex device, and the final solution was purified with DW to prepare PHNP-PEG2000.
  • PHNP-A1 has a core-shell structure with a center core, as shown in Figure 14.
  • PHNP-PEG2000 and PHNP-A1 labeled with rhodamine into HAECs (P4) cells was observed using a confocal laser scanning microscope (CLSM).
  • Rhodamine equivalent to 30% of the mass of PLGA was added to the PLGA solution.
  • HAEC cells were treated with PHNP-PEG2000 and PHNP-A1, respectively, cultured for 24 hours, and then the cells were fixed with 4% paraformaldehyde solution. Afterwards, the cells were stained with DAPI and observed using a confocal laser scanning microscope.
  • FIG. 15 and 16 Images of intracellular delivery of PHNP-PEG2000 and PHNP-A1 are shown in Figures 15 and 16. As shown in Figures 15 and 16, it was confirmed that compared to PHNP-PEG2000, PHNP-A1 was delivered more into HAECs cells due to the effect of entering the cells through the ApoA1 receptor.
  • PHNP-A1 (SMR) containing ApoA1 was synthesized using a vortex microvortex device (SMR) in the same manner as in Example 7.
  • PHNP-A1 (BT) containing ApoA1 was synthesized using a general bench-top (BT) method without using the microvortex device of the present invention.
  • the benchtop method used general magnetic stirring.
  • PHNP-A1 SMR
  • PHNP-A1 BT
  • PHNP-A1 SMR
  • BT PHNP-A1
  • SMR polydispersity index
  • iHBEC human intrahepatic biliary epithelial cells
  • BT PHNP-A1
  • SMR PHNP-A1
  • PHNP-E3/A1 was synthesized by injecting a mixed aqueous solution of PHNP-PEG2000 and ApoE3/ApoA1 into each inlet of the microvortex device. At this time, the Reynolds number was set to 250. The final synthesized PHNP-E3/A1 was purified by centrifugation using an Amicon filter (MWCO 50kDa).
  • PHNP-E3/A1(250/100) has size 96.58 ⁇ 12.16 nm and PDI 0.26 ⁇ 0.01
  • PHNP-E3/A1(250/250) has size 73.03 ⁇ 5.45 nm and PDI 0.23 ⁇ 0.01.
  • PHNP-A1 (0/500) was confirmed to have a size of 75.55 ⁇ 2.88 nm and a PDI of 0.26 ⁇ 0.03. Therefore, through the size of less than 100 nm and the PDI result of less than 0.3, it can be seen that ApoE3 and ApoA1 are uniform and highly dispersed in the generated PHNP-E3/A1.
  • FIG. 23 The results of confirming the dispersion stability of PHNP-E3/A1 synthesized according to the weight ratio of ApoE3 and ApoA1 in a PBS (1% trehalose) solution at 4 o C through DLS are shown in FIG. 23. As shown in FIG. 23, it was confirmed that all PHNP-E3/A1 had a size of less than 80 nm and a PDI of less than 0.3 by day 14. This means that PHNP-E3/A1 maintains high dispersion stability for 14 days without change in size.
  • FRET fluorescence resonance energy transfer
  • PHNP-E3/A1 the fluorescence intensity of Alexa Fluor 488 attached to ApoE3 decreased compared to PHNP-E3 (520 nm, dark gray arrow), and the fluorescence intensity of Alexa Fluor 568 attached to ApoA1 increased compared to PHNP-A1 (600 nm, dark gray arrow). nm, light gray arrow) was confirmed.
  • the FRET effect was proven through a decrease in the fluorescence intensity of Alexa Fluor 488 and an increase in Alexa Fluor 568 fluorescence at the same time. Through this, it was confirmed that two types of proteins exist simultaneously within PHNP-E3/A1.

Abstract

본 발명은 아포지단백질을 포함하는 하이브리드 나노입자의 합성 방법에 관한 것이다. 구체적으로, 본 발명은 소용돌이 미세와류 장치를 이용하여 아포지단백질을 포함하여 다양한 기능성을 가진 단백질을 포함할 수 있는 하이브리드 나노입자의 합성 방법에 관한 것으로, 본 발명의 제조방법을 통하여 다양한 생리활성을 가진 작고 균일하며 안정한 나노입자를 제조할 수 있다.

Description

아포지단백질을 포함하는 하이브리드 나노입자의 합성 방법
본 발명은 아포지단백질을 포함하는 하이브리드 나노입자의 합성 방법에 관한 것이다. 구체적으로, 본 발명은 소용돌이 미세와류 장치를 이용하여 아포지단백질을 포함하여 다양한 기능성을 가진 단백질을 포함할 수 있는 하이브리드 나노입자의 합성 방법에 관한 것으로, 본 발명의 제조방법을 통하여 다양한 생리활성을 가진 작고 균일하며 안정한 나노입자를 제조할 수 있다.
나노입자는 마이크론 이하의 크기를 가진 입자를 의미한다. 이들은 그 크기로 인해 신체 내에서 자유롭게 이동 가능하고, 구성 물질에 따라 다양한 물성을 부여할 수 있어 차세대 약물전달체로 주목받고 있다.
약물전달용 나노입자는 필요에 따라 인지질, 고분자 등의 다양한 성분으로 구성되며, 구성성분에 따라 각각 다른 특성을 갖는다. 무기물질로 이루어진 나노입자는 진단 목적으로 주로 사용되며, 고분자 나노입자는 약물전달체로서 주로 약물의 방출 속도 조절 및 생체 내 순환 시간 조절을 목적으로 사용된다. 인지질 나노입자는 양친매성을 띄어 자가조립이 쉽고 다양한 분자체를 가지고 있어, 다양한 종류의 인지질 나노입자가 약물전달체로 연구되고 있다.
최근 이러한 나노입자들의 장점을 결합한 하이브리드 나노입자들이 연구되어지고 있다. 그러나, 기존의 나노입자 제조 방법은 주로 나노침전법(nanoprecipitation) 및 유화 기반 용매 증발법(emulsification-based solvent evaporation)과 같은 표준화되지 않은 다단계 공정으로 구성되어, 기존의 나노입자 제조 방법으로 하이브리드 나노입자를 균일한 크기로 대량생산하는데 많은 어려움이 있다. 특히, 기능성 단백질과 같은 고분자를 나노입자에 포함시키는 것은 그 합성의 복잡성 때문에 한 번에 합성하기 어렵고 많은 과정을 거쳐 제조하는 경우 그 균일성과 안정성을 잃게 되어 대량 생산에 있어 많은 어려움이 있다.
본 발명자들은 생분해성과 생체적합성을 가지면서 동시에 분해로부터 약물을 보호할 수 있는 고분자인 PLGA(poly(lactic-co-glycolic acid))를 이용한 고분자-지질 하이브리드 나노입자(polymer-lipid hybrid nanoparticle; PHNP)에 기능성을 가진 단백질을 포함시킬 수 있는 합성 방법을 연구하여 본 발명을 완성하였다.
[선행기술문헌]
[비특허문헌]
(비특허문헌 1) Toth et al., Robust manufacturing of lipid-polymer nanoparticles through feedback control of parallelized swirling microvortices. 2017, Lab. Chip., 17.16: 2805-2813.
본 발명은 소용돌이 미세와류 하에서 인지질 및 고분자를 혼합하여 친수성 및 소수성 물질이 혼합된 하이브리드 나노입자를 제조하는 방법을 제공하는 것을 목적으로 한다.
본 발명은 소용돌이 미세와류 하에서 상기 하이브리드 나노입자에 단백질을 충돌시켜 하이브리드 나노입자에 단백질을 첨가하는 단계를 포함하는, 단백질을 포함하는 하이브리드 나노 입자의 제조 방법을 제공하는 것을 목적으로 한다.
또한 본 발명은, 상기 방법으로 제조된 단백질을 포함하는 하이브리드 나노입자를 제공하는 것을 목적으로 한다.
본 발명은 제1 주입구 및 제2 주입구, 및 출구를 포함하는 소용돌이 미세와류 장치에서, 상기 제1 주입구에 하이브리드 나노입자를 주입하고, 상기 제2 주입구에 단백질을 주입하는 단계, 및 소용돌이 미세와류로 단백질이 하이브리드 나노입자에 첨가되는 단계를 포함하는 단백질을 포함하는 하이브리드 나노입자의 제조방법을 제공한다.
일 실시태양에서, 상기 소용돌이 미세와류 장치에서의 레이놀즈 유속은 50 내지 300일 수 있다.
일 실시태양에서, 상기 단백질은 아포지단백질 또는 양쪽성 특성을 갖는 고분자일 수 있다.
일 실시태양에서, 상기 아포지단백질은 아포지단백질 A1, A2, E2, E3, J 및 M으로 이루어진 군에서 선택된 하나 이상일 수 있다.
일 실시태양에서, 상기 하이브리드 나노입자 및 아포지단백질의 합성 배합 중량비는 20:1 내지 0.5:1일 수 있으며, 바람직하게 20:1 내지 2:1일 수 있다.
일 실시태양에서, 상기 제조방법은 상기 출구로부터 단백질을 포함하는 나노입자를 회수하는 단계를 추가로 포함할 수 있다.
일 실시태양에서, 상기 하이브리드 나노입자는 상기 소용돌이 미세와류 장치에서, 상기 제1 주입구에 인지질을 주입하고, 상기 제2 주입구에 고분자를 주입하는 단계, 및 소용돌이 미세와류로 인지질 및 고분자를 혼합하는 단계를 포함하는 제조방법으로 제조될 수 있다.
상기 인지질은 1,2-디올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 달걀 포스파티딜콜린(EPC), 디라우로일포스파티딜콜린(DLPC), 1,2-디미리스토일-sn-글리세로-3-포스포콜린(DMPC), 디팔미토일포스파티딜콜린(DPPC), 디스테아로일포스파티딜콜린(DSPC), 1-미리스토일-2-팔미토일포스파티딜콜린(MPPC), 1-팔미토일-2-미리스토일포스파티딜콜린(PMPC), 1-팔미토일-2-스테아로일포스파티딜콜린(PSPC), 1-스테아로일-2-팔미토일 포스파티딜콜린(SPPC), 1,2-디스테아로일-sn-글리세로-3-포스포콜린(DAPC), 1,2-디아라키도일-sn-글리세로-3-포스포콜린(DBPC), 1,2-디아이코사노일-sn-글리세로-3-포스포콜린(DEPC), 팔미토일올레오일포스파티딜콜린(POPC), 리소포스파티딜콜린, 디리놀레오일포스파티딜콜린, 디스테아로일포스파티딜에탄올아민(DSPE), 디스테아로일포스파티딜에탄올아민-폴리에틸렌글리콜(DSPE-PEG), 디미리스토일포스파티딜에탄올아민(DMPE), 디팔미토일포스파티딜에탄올아민(DPPE), 팔미토일올레오일포스파티딜에탄올아민(POPE), 리소포스파티딜에탄올아민, N1-[2-((1S)-1-[(3-아미노프로필)아미노]-4-[디(3-아미노-프로필)아미노]부틸카복사마이도)에틸]-3,4-디[올레일옥시]-벤즈아마이드)(VL-5), 디옥타데실아미도글리클스페르민 4트리플르오로아세틱 산(DOGS), 3β-[N-(N',N'-디메틸아미노에탄)-카바모일]콜레스테롤(DC-Chol), 1,2-디-O-옥타데세닐-3-트리메틸암모늄 프로판(DOTMA), 1,2-디올레일-3-트리메틸암모늄-프로판(DOTAP), (1,2-디올레일옥시프로필)-3디메틸하이드록시에틸 암모늄브로마이드(DORIE), 1,2-디미리스틸옥시-프로필-3-디메틸-하이드록시 에틸 암모늄 브로마이드(DMRIE), 2,3-디올레일옥시-N-[2(스페르민카복사마이도)에틸]-N,N-디메틸-1-프로판아미늄 트리플루오로아세테이트(DOSPA), N-(3-아미노프로필)-N,N-디메틸-2,3-bis(도데실옥시)-1-프로판암모늄 브로마이드(GAP-DLRIE), N-t-부틸-N'-테트라데실-3-테트라데실아미노프로피온아미딘(diC14-amidine), 에틸포스포콜린(Ethyl PC), 디메틸디옥타데실암모늄 브로마이드(DDAB), N4-콜레스테릴-스페르민(GL67), 1,2-디올레일옥시-3-디메틸아미노프로판(DODMA), 및 D-Lin-MC3-DMA(MC3, DLin-MC3-DMA), DLin-KC2-DMA, DLin-DMA으로 이루어진 군에서 하나 이상 선택되는 것일 수 있으며, 바람직하게는 DPPC 및 DSPE-PEG이고, 더욱 바람직하게는, DPPC 및 DSPE-PEG2000 내지 5000일 수 있다.
일 실시태양에서, 상기 DPPC 및 DSPE-PEG2000의 비율은 2.3:1 내지 1:1일 수 있다.
일 실시태양에서, 상기 고분자는 PLGA(폴리(락틱-코-글리콜산); poly(lactic-co-glycolic acid))일 수 있다.
일 실시태양에서, 상기 하이브리드 나노입자는 고분자-지질 하이브리드 나노입자(polymer-lipid hybrid nanoparticle; PHNP)일 수 있다.
본 발명은 상기 제조방법으로 제조된 단백질을 포함하는 하이브리드 나노입자를 제공한다.
본 발명은 제1 주입구 및 제2 주입구, 및 출구를 포함하는 소용돌이 미세와류 장치에서, 상기 제1 주입구에 인지질을 주입하고, 상기 제2 주입구에 고분자를 주입하는 단계; 및 소용돌이 미세와류로 인지질 및 고분자를 혼합하는 단계를 포함하는 하이브리드 나노입자를 제조하는 제1 단계, 상기 제1 주입구에 상기 수득된 하이브리드 나노입자를 주입하고, 상기 제2 주입구에 단백질을 주입하는 단계를 포함하는 단백질을 포함하는 하이브리드 나노입자를 제조하는 제 2단계를 포함하는 단백질을 포함하는 하이브리드 나노입자의 제조방법을 제공한다.
일 실시태양에서, 상기 단백질은 아포지단백질 또는 양쪽성 특성을 갖는 고분자일 수 있다.
일 실시태양에서, 상기 하이브리드 나노입자 및 아포지단백질의 합성 배합 중량비는 20:1 내지 2:1일 수 있다.
일 실시태양에서, 상기 고분자는 PLGA(폴리(락틱-코-글리콜산); poly(lactic-co-glycolic acid))일 수 있다.
일 실시태양에서, 상기 하이브리드 나노입자는 고분자-지질 하이브리드 나노입자(polymer-lipid hybrid nanoparticle; PHNP)일 수 있다.
본 발명의 제조방법으로 제조된 고분자-지질 하이브리드 나노입자(polymer-lipid hybrid nanoparticle, PHNP)는 친수성 물질과 소수성 물질을 동시에 포함하여, 고분자로 이루어진 나노입자의 중심을 소수성 물질이 감싸는 형태를 가지고, 고농도의 소수성 약물을 내부에 효과적으로 봉입하여 전달할 수 있다.
또한, 본 발명의 하이브리드 나노입자에서 표면, 중간 쉘(shell) 부분 및 중심(core) 부분을 각각 활용하여, 복수의 약물을 전달할 수 있는 물질로 사용할 수 있다. 예를 들어, 본 발명의 하이브리드 나노입자는 유전자와 같은 음이온성 약물의 효과적인 전달체로 사용될 수 있다.
또한, 하이브리드 나노입자의 표면에 위치한 PEG와 같은 고분자는 인체 내에서 외부 물질이 입자표면으로 흡착되거나 면역세포에 의해서 제거되는 것을 방지하여 더욱 안전한 약물전달을 가능하게 할 수 있다. 따라서 세포 내 약물 전달 등에 이용하여 효율적인 치료에 도움을 줄 수 있다.
도 1은 ApoE3와 ApoA1을 모두 포함하는 하이브리드 나노입자(PHNP-E3/A1)의 합성 과정과 PHNP-E3/A1의 형태에 관한 모식도이다.
도 2는 DPPC에 대한 DSPE-PEG2000의 합성 배합 중량비에 따른 하이브리드 나노입자(PHNP-2000)의 크기를 비교한 그래프이다.
도 3은 도 2의 DPPC에 대한 DSPE-PEG2000의 합성 배합 중량비에 따른 하이브리드 나노입자(PHNP-2000)의 TEM 사진이다.
도 4는 DSPE-PEG의 PEG 분자량에 따른 하이브리드 나노입자(PHNP)의 크기를 비교한 그래프이다.
도 5는 도 4의 DSPE-PEG의 PEG 분자량에 따른 하이브리드 나노입자(PHNP)의 TEM 사진이다.
도 6은 도 4에서 합성한 하이브리드 나노입자(PHNP)의 합성 당일과 합성 3일 후의 크기를 측정함으로써 각 나노입자의 안정성을 나타내는 그래프이다
도 7은 소용돌이 미세와류 장치를 이용한 ApoE3가 포함된 하이브리드 나노입자(PHNP-E3)의 합성 과정과 PHNP-E3의 형태에 관한 모식도이다.
도 8은 PHNP-PEG2000과 PHNP-E3의 크기를 비교한 그래프이다.
도 9는 PHNP-E3의 TEM 사진이다.
도 10은 각 레이놀즈 유속 조건에서 합성된 PHNP-E3의 크기를 비교한 그래프이다.
도 11은 PHNP-E3에 포함된 ApoE3의 수득량을 나타낸 그래프이다.
도 12는 ApoA1이 포함된 하이브리드 나노입자(PHNP-A1)의 합성 과정과 하이브리드 나노입자(PHNP-A1)의 형태의 모식도이다.
도 13은 PHNP-PEG2000와 PHNP-A1의 크기를 비교한 그래프이다.
도 14는 PHNP-A1의 TEM 사진이다.
도 15는 로다민(Rhodamine)으로 라벨링(labeling)한 하이브리드 나노입자(PHNP-PEG2000)를 HAECs 세포 내로 전달한 형광 사진이다.
도 16은 로다민으로 라벨링한 하이브리드 나노입자(PHNP-A1)를 HAECs 세포 내로 전달한 형광 사진이다.
도 17은 도 15 및 도 16의 로다민 형광 세기를 정량하여 비교한 그래프이다.
도 18은 소용돌이 미세와류 장치의 유무에 따라 합성한 PHNP-A1 (SMR), PHNP-A1 (BT)의 크기와 다분산지표 (PDI)를 비교한 그래프이다.
도 19는 ApoA1에 대한 PHNP의 합성 중량비에 따른 PHNP-A1 (SMR)과 PHNP-A1 (BT)를 합성한 후 ELISA를 이용하여 ApoA1의 각 수득량을 비교한 그래프이다.
도 20은 ApoA1에 대한 PHNP의 합성 중량비에 따른 PHNP-A1 (SMR)과 PHNP-A1 (BT)를 합성한 후 ELISA를 이용하여 ApoA1의 각 수득률을 비교한 그래프이다.
도 21은 PHNP-A1 (SMR)과 PHNP-A1 (BT)를 iHBECs 내로 전달한 형광 사진과 형광을 정량하여 비교한 그래프이다.
도 22는 ApoE3와 ApoA1의 각 배합 중량에 따라 합성한 PHNP-E3/A1의 크기 분포 그래프이다.
도 23은 PHNP-E3/A1의 안정도를 보여주는 합성 당일, 1일, 3일, 7일, 14일 후의 크기와 PDI 결과이다.
도 24는 PHNP-PEG2000, PHNP-E3, PHNP-A1, PHNP-E3/A1의 형광 파장을 나타낸 그래프이다.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시태양 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 형태로 구현될 수 있으며 여기에서 설명하는 실시태양 및 실시예에 한정되지 않는다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본원에 사용된 용어 "하이브리드 나노입자"는 친수성 물질과 소수성 물질이 공존하며 형성되는 나노물질을 의미하며, 바람직하게는 고분자와 지질이 혼합된 나노입자(polymer-lipid hybrid nanoparticle; PHNP)를 의미하며, "PHNP"로 지칭되기도 한다.
본원에 사용된 용어 "PLGA"는 폴리(락틱-코-글리콜산)을 의미하며, 생분해성과 생체적합성을 가지는 고분자이다.
본원에 사용된 용어 "DPPC"는 디팔미토일포스파티딜콜린(Dipalmitoylphosphatidylcholine)을 의미하며, 지질의 일종이다.
본원에 사용된 용어 "DSPE-PEG"는 디스테아로일포스파티딜에탄올아민(Distearoylphosphoethanolamine)에 폴리에틸렌글리콜(PEG)가 결합된 지질을 의미하며, 바람직하게, 폴리에틸렌글리콜의 분자량은 2000 내지 5000일 수 있다.
본원에 사용된 용어 "양쪽성 특성을 갖는 고분자"는 소수성과 친수성을 동시에 가지는 단백질을 의미하며, 예시로는 글리코포린(Glycophorin), 로돕신 (Rhodopsin), CD36(cluster of differentiation 36), Seipin, 글루코스 퍼미아제 (Glucose Permease), 시토크롬c (Cytochrome c), cupredoxins, high potential iron protein, 아드레노독신 환원효소(adrenodoxin reductase) 및 플라보단백질 (flavoprotein) 등이 있다.
본원에 사용된 용어 "인지질"은 구체적으로, 1,2-디올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 달걀 포스파티딜콜린(EPC), 디라우로일포스파티딜콜린(DLPC), 1,2-디미리스토일-sn-글리세로-3-포스포콜린(DMPC), 디팔미토일포스파티딜콜린(DPPC), 디스테아로일포스파티딜콜린(DSPC), 1-미리스토일-2-팔미토일포스파티딜콜린(MPPC), 1-팔미토일-2-미리스토일포스파티딜콜린(PMPC), 1-팔미토일-2-스테아로일포스파티딜콜린(PSPC), 1-스테아로일-2-팔미토일 포스파티딜콜린(SPPC), 1,2-디스테아로일-sn-글리세로-3-포스포콜린(DAPC), 1,2-디아라키도일-sn-글리세로-3-포스포콜린(DBPC), 1,2-디아이코사노일-sn-글리세로-3-포스포콜린(DEPC), 팔미토일올레오일포스파티딜콜린(POPC), 리소포스파티딜콜린, 디리놀레오일포스파티딜콜린, 디스테아로일포스파티딜에탄올아민(DSPE), 디스테아로일포스파티딜에탄올아민-폴리에틸렌글리콜(DSPE-PEG), 디미리스토일포스파티딜에탄올아민(DMPE), 디팔미토일포스파티딜에탄올아민(DPPE), 팔미토일올레오일포스파티딜에탄올아민(POPE), 리소포스파티딜에탄올아민, N1-[2-((1S)-1-[(3-아미노프로필)아미노]-4-[디(3-아미노-프로필)아미노]부틸카복사마이도)에틸]-3,4-디[올레일옥시]-벤즈아마이드)(VL-5), 디옥타데실아미도글리클스페르민 4트리플르오로아세틱 산(DOGS), 3β-[N-(N',N'-디메틸아미노에탄)-카바모일]콜레스테롤(DC-Chol), 1,2-디-O-옥타데세닐-3-트리메틸암모늄 프로판(DOTMA), 1,2-디올레일-3-트리메틸암모늄-프로판(DOTAP), (1,2-디올레일옥시프로필)-3디메틸하이드록시에틸 암모늄브로마이드(DORIE), 1,2-디미리스틸옥시-프로필-3-디메틸-하이드록시 에틸 암모늄 브로마이드(DMRIE), 2,3-디올레일옥시-N-[2(스페르민카복사마이도)에틸]-N,N-디메틸-1-프로판아미늄 트리플루오로아세테이트(DOSPA), N-(3-아미노프로필)-N,N-디메틸-2,3-bis(도데실옥시)-1-프로판암모늄 브로마이드(GAP-DLRIE), N-t-부틸-N'-테트라데실-3-테트라데실아미노프로피온아미딘(diC14-amidine), 에틸포스포콜린(Ethyl PC), 디메틸디옥타데실암모늄 브로마이드(DDAB), N4-콜레스테릴-스페르민(GL67), 1,2-디올레일옥시-3-디메틸아미노프로판(DODMA), 및 D-Lin-MC3-DMA(MC3, DLin-MC3-DMA), DLin-KC2-DMA, DLin-DMA으로 이루어진 군에서 하나 이상 선택되는 것일 수 있으나, 이에 한정되지 않는다.
용어 "아포지단백질 E"는 APOE 유전자 또는 이의 기능적 변이체에 의해 코딩되는 포유동물 단백질을 의미한다. 바람직한 실시태양에서, 아포지단백질 E는 염색체 19 상의 인간 APOE 유전자에 의해 코딩되는 인간 단백질이다. 아포지단백질 E는 APOE 유전자 생성물의 이소형 중 어느 하나, 예컨대 아포지단백질 E2 ("APOE2"), 아포지단백질 E3 ("APOE3") 및 아포지단백질 E4 (APOE4)일 수 있다. APOE는 3개의 주요 대립유전자 (엡실론 2, 엡실론 3 및 엡실론 4)를 갖는 다형체이다. 임의의 대립유전자가 본 발명의 다양한 실시태양에서 사용될 수 있다. 이것의 "기능적 변이체"는 APOE 유전자 생성물과 동일하거나 유사한 생물학적 기능을 유지하는 APOE 유전자에 의해 코딩되는 포유동물 단백질의 변이체를 의미한다. 일부 경우에, 기능적 변이체는 인간 APOE 유전자에 의해 코딩되는 단백질과 비교하여 아미노산 삽입, 결실 및/또는 치환을 포함한다. 일부 경우에, 기능적 변이체는 인간 APOE 유전자에 의해 코딩되는 단백질의 단편이다.
일부 실시태양에서, 아포지단백질 E3는 GenBank에 수탁번호 ARQ79461.1로 개시된 단백질 또는 이와 적어도 95% 서열 동일성, 바람직하게는 적어도 98% 또는 99% 서열 동일성이다.
일부 실시태양에서, 하이브리드 나노입자 내의 아포지단백질 E는 유전 공학에 의해 생성된 재조합 단백질, 또는 화학적 합성에 의해 생성된 합성 단백질이다.
용어 "아포지단백질 A1"은 APOA1 유전자 또는 이의 기능적 변이체에 의해 코딩되는 포유동물 단백질을 의미한다. 바람직한 실시태양에서, 아포지단백질 A1은 염색체 11 상에 위치한 인간 APOA1 유전자에 의해 코딩되는 인간 단백질이다. 이것의 "기능적 변이체"는 APOA1 유전자 생성물과 동일하거나 유사한 생물학적 기능을 유지하는 APOA1 유전자에 의해 코딩되는 포유동물 단백질의 변이체를 의미한다. 일부 경우에, 기능적 변이체는 인간 APOA1 유전자에 의해 코딩되는 단백질과 비교하여 아미노산 삽입, 결실 및/또는 치환을 포함한다. 일부 경우에, 기능적 변이체는 인간 APOA1 유전자에 의해 코딩되는 단백질의 단편이다.
일부 실시태양에서, 아포지단백질 A1은 GenBank에 수탁번호 AAS68227.1로 개시된 단백질 또는 이와 적어도 95% 서열 동일성, 바람직하게는 적어도 98% 또는 99% 서열 동일성이다.
일부 실시태양에서, 하이브리드 나노입자 내의 아포지단백질 A1은 유전 공학에 의해 생성된 재조합 단백질, 또는 화학적 합성에 의해 생성된 합성 단백질이다.
본원에 사용된 용어 "아포지단백질 E"는 이의 단편 및 기능적 변이체를 포함하는 것을 의미한다.
본원에 사용된 용어 "소용돌이 미세와류"는 유체의 흐름에서 작은 유체가 회전 운동을 하면서 흐르는 것을 의미한다.
본원에 사용된 용어 "미세와류 장치"는 유기 고분자 물질을 포함하는 플라스틱, 유리, 금속 또는 실리콘을 포함하는 다양한 소재로 제조된 기판 위에 유체가 흐를 수 있도록 구비된 미세채널 등을 포함하고 있는 장치를 의미한다.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원 발명의 범위를 한정하고자 하는 것은 아니다.
[실시예 1]
소용돌이 미세와류 장치를 이용한 아포지단백질을 포함하는 하이브리드 나노입자의 합성 방법
아포지단백질을 포함하는 하이브리드 나노입자 합성을 진행하였다. 구체적으로, 1단계는 고분자-지질 하이브리드 나노입자(PHNP)를 합성하는 단계이고, 2단계는 아포지단백질을 하이브리드 나노입자에 포함시키는 단계이며, 각 단계에서 모두 동일한 소용돌이 미세와류 장치(swirling microvortex device)를 사용하였다. 본 발명의 하이브리드 나노입자(PHNP) 합성에 사용된 소용돌이 미세와류 장치 및 합성 방법의 모식도를 도 1에 나타내었다.
상기 소용돌이 미세와류 장치는 2개의 입구(inlet) 및 1개의 출구(outlet)를 포함한다. 소용돌이 미세와류의 형성을 통해 지질 및 PLGA 고분자를 효과적으로 혼합시키기 위하여, 장치의 직경과 높이를 최적화하여 설계하였다(Toth et al., Robust manufacturing of lipid-polymer nanoparticles through feedback control of parallelized swirling microvortices. 2017, Lab. Chip., 17.16: 2805-2813 참고).
고분자-지질 하이브리드 나노입자(PHNP) 합성 단계에서 2개의 입구 중, 1개의 입구에 인지질 혼합물인 DPPC(dipalmitoylphosphatidylcholine) 및 DSPE-PEG(1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-polyethylene glycol)를 주입하고, 반대쪽에 위치한 1개의 입구로는 PLGA(poly(lactic-co-glycolic acid)) 고분자를 주입하여 고분자-지질 하이브리드 나노입자(PHNP)를 합성하였다.
이후, 1개의 입구에 상기 합성된 고분자-지질 하이브리드 나노입자(PHNP)를 주입하고, 반대쪽 입구에 아포지단백질을 주입한 후 혼합시켜 최종적으로 아포지단백질을 포함한 하이브리드 나노입자를 합성하였다.
[실시예 2]
DPPC:DSPE-PEG2000의 배합중량비에 따른 고분자-지질 하이브리드 나노입자의 합성
상기 소용돌이 미세와류 장치를 이용하여 다음과 같은 방법으로 지질(DPPC 및 DSPE-PEG2000) 및 고분자(PLGA)를 포함하는 고분자-지질 하이브리드 나노입자을 합성하였다. DSPE-PEG2000는 PEG를 포함하고 있어, 인체 내 혈장 단백질 등이 나노 입자표면으로 흡착되거나 면역세포에 의해서 제거되는 것을 방지할 수 있으므로, 체내 나노입자의 안정성을 위하여 사용하였다.
PLGA를 무수 아세토니트릴(acetonitrile; ACN)에 용해시킨 용액을 준비하고, DPPC 및 DSPE-PEG2000를 무수 에탄올 용액으로 준비하였다. 소용돌이 미세와류 장치를 이용하여 합성 후 최종 용액은 즉시 DW(deionized water)로 정제하였다.
본 발명의 안정한 고분자-지질 하이브리드 나노입자(PHNP)를 제조를 위하여, 무수 에탄올 용액 내의 지질 배합 비율에 따른 입자 최적화를 진행하였다.
DPPC 및 DSPE-PEG2000의 합성 배합 중량비가 10:0, 9:1, 2.3:1, 1:1인 조건에서 합성된 나노입자의 크기를 측정한 결과, 생성된 입자들의 크기를 도 2에 나타내었다. 도 2에 나타낸 바와 같이, 합성 배합 중량비가 10:0, 9:1, 2.3:1, 1:1인 조건에서 생성된 입자들의 크기가 각각 130 nm 및 90 nm인 것을 확인하였다.
또한, 합성 배합 중량비가 2.3:1 및 1:1인 조건에서 생성된 입자들의 크기가 30 nm이고, 특히 합성 배합 중량비가 1:1인 조건에서 입자들의 크기가 매우 균질한 것을 확인하였다. 따라서, 합성 배합 중량비가 2.3:1 내지 1:1인 조건에서 작고 균일한 크기를 갖는 나노입자가 생성되는 것을 알 수 있다.
또한, 나노입자의 형태를 TEM을 사용하여 관찰한 결과를 도 3에 나타내었다. 상기 도 3에 나타낸 바와 같이, DPPC 및 DSPE-PEG2000의 합성 배합 중량비가 10:0와 9:1인 경우 입자 크기가 균일하지 않고, 7:3 및 5:5인 경우 입자 크기가 작고 균일한 것을 확인하였다.
[실시예 3]
DSPE-PEG의 분자량에 따른 하이브리드 나노입자의 합성
실시예 1의 소용돌이 미세와류 장치를 이용하여 다양한 PEG 분자량을 갖는 DSPE-PEG를 포함하는 하이브리드 나노입자(PHNP)를 제조하였다.
PLGA를 무수 아세토니트릴(acetonitrile; ACN) 용액으로 준비하고, DPPC 및 DSPE-PEG (550, 2000 및 5000)를 무수 에탄올 용액으로 준비하였고, DPPC 및 DSPE-PEG의 합성 배합 중량비를 2.3:1로 하여 소용돌이 미세와류 장치에서 합성을 진행하였다. 최종 합성 산물은 DW로 정제하였다.
이후, 다양한 PEG 분자량을 갖는 DSPE-PEG를 포함하는 입자 크기를 비교하여 도 4에 나타내었다. 상기 도 4에 나타낸 바와 같이, DSPE-PEG550을 포함하는 하이브리드 나노입자(PHNP-PEG550)의 경우 50 nm의 불균일한 입자들이 생성되는 것을 확인하였고, DSPE-PEG5000을 포함하는 하이브리드 나노입자(PHNP-PEG5000)의 경우 27 nm의 입자들이 생성되는 것을 확인하였다. 또한, DSPE-PEG2000을 포함하는 하이브리드 나노입자(PHNP-PEG2000)의 경우 18 nm의 작고 균일한 입자들이 생성되는 것을 확인하였다.
또한, 상기 생성된 하이브리드 나노입자의 형태를 TEM을 사용하여 관찰한 결과를 도 5에 나타내었다. 상기 도 5에 나타낸 바와 같이, PEG의 분자량에 따라 생성된 나노입자의 크기 및 형태가 달라지는 것을 알 수 있다. PHNP-PEG550의 경우 입자의 크기가 불균일하며 DLS로 측정한 결과 30-80 nm의 크기를 갖고, PHNP-PEG2000의 경우 20 nm의 균일한 입자 크기를 갖는 것을 확인하였다.
또한, 상기 생성된 하이브리드 나노입자의 안정성을 확인하기 위해 3일 후 DLS를 통해 입자 크기를 확인하여, 그 결과를 도 6에 나타내었다. 상기 도 6에 나타낸 바와 같이, 3일 후 PHNP-PEG2000 및 PHNP-PEG5000의 경우 입자 크기의 변화가 없이 안정한 것을 확인하였다.
따라서, PHNP-PEG2000 및 PHNP-PEG5000의 경우 작고 균일하면서 안정한 입자를 수득할 수 있는 것을 알 수 있다.
[실시예 4]
아포지단백질를 포함하는 하이브리드 나노입자의 합성
소용돌이 미세와류 장치를 이용하여 DPPC, DSPE-PEG2000 및 PLGA를 포함하는 고분자-지질 하이브리드 나노입자(PHNP-PEG2000)를 제조하고, 이후 아포지단백질 apolipoprotein E3(ApoE3)를 포함하는 하이브리드 나노입자(PHNP-E3)를 제조하였으며, 도 7에 이에 대한 모식도를 나타내었다.
구체적으로는 PLGA를 무수 아세토니트릴(acetonitrile; ACN) 용액으로 준비하고, DPPC 및 DSPE-PEG2000를 무수 에탄올 용액으로 준비하였다. DPPC:DSPE-PEG2000의 합성 배합 비율을 2.3:1로 소용돌이 미세와류 장치를 이용하여 합성 후 최종 용액은 즉시 DW로 정제해주었다. 이후 합성된 PHNP-PEG2000 및 ApoE3를 소용돌이 미세와류 장치의 각 입구로 주입하였다. 이 때, PHNP-PEG2000 및 ApoE3의 배합 중량비를 4:1로 하였으며, Reynolds number는 250으로 하였다. 최종적으로 합성된 ApoE3을 포함하는 하이브리드 나노입자(PHNP-E3)를 Amicon filter(MWCO 50kDa)를 이용하여 정제하였다.
ApoE3을 포함하지 않은 PHNP-PEG2000 및 ApoE3을 포함하는 PHNP-E3의 크기를 DLS로 확인한 결과를 도 8에 나타내었다. 상기 도 8에 나타낸 바와 같이, PHNP-PEG2000는 21 nm의 입자크기를 가졌으며, PHNP-E3는 24 nm의 입자크기를 갖는 것을 확인하였다. 또한, 정제 과정에서 ApoE3의 양을 BCA assay로 확인한 결과, 70%의 ApoE3이 최종 형성된 나노입자에 포함된 것을 확인하였다.
또한, 도 9에 나타낸 바와 같이, 상기 합성된 PHNP-E3를 TEM을 사용하여 관찰한 결과, 나노입자 가운데 core가 있는 core-shell 구조가 관찰되었다.
따라서, 상기 방법을 통해 core-shell를 갖는 작고 균일한 PHNP-E3가 수득되는 것을 알 수 있다.
[실시예 5]
레이놀즈 유속에 따른 아포지단백질을 포함하는 하이브리드 나노입자의 합성
소용돌이 미세와류 장치를 이용하여 도 7과 같은 방법으로 DPPC, DSPE-PEG 2000 및 PLGA를 포함하는 하이브리드 나노입자(PHNP-PEG2000)를 합성한 후, ApoE3를 포함시켜 최종적으로 하이브리드 나노입자(PHNP-E3)를 합성하였다.
실시예 4와 동일하게 PLGA를 무수 아세토니트릴(acetonitrile; ACN) 용액으로 준비하고, DPPC 및 DSPE-PEG2000를 무수 에탄올 용액으로 준비해 소용돌이 미세와류 장치를 통해 합성 후 최종 용액을 DW로 정제하였다. 합성된 하이브리드 나노입자(PHNP-PEG2000) 및 ApoE3 단백질을 합성 비율에 맞춰 각각의 입구로 주입하였다. 이때 PHNP-PEG2000과 ApoE3의 비율은 10:1로 하였다.
다양한 레이놀즈 유속에서 PHNP-E3의 입자를 합성하여, 생성된 입자 크기 분포를 DLS로 확인하여 그 결과를 도 10에 나타내었다. 상기 도 10에 나타낸 바와 같이, 레이놀즈 유속이 50 미만인 조건(Re 10)에서는 입자의 평균 크기가 158 nm로 다른 조건들과 비교하여 상대적으로 큰 입자들이 측정되었다. 이는 과도하게 느린 유속 조건 하에서, 정상적인 PHNP-E3이 합성되지 않고, E3가 PHNP-PEG2000의 표면에 흡착되며 응집체(aggregation)가 형성된 것일 수 있다.
또한, 레이놀즈 유속이 300인 조건에서 정상적인 입자 크기 분포를 나타내는 PHNP-E3이 합성된 것을 확인하였다.
소용돌이 미세와류 장치 내에서 혼합효율은 레이놀즈 유속에 비례하여 증가하다가, 고도 혼합 구간(highly mixed regime)에 도달하면 혼합효율은 더이상 증가하지 않고 최대값에 수렴하게 된다(Manon, R., et al. Optimal self-assembly of lipid nanoparticles (LNP) in a ring micromixer, Scientific reports, 12:9483 (2022)). 따라서, 고도 혼합 구간에 도달한 이후에는 레이놀즈 유속을 증가시킬 필요가 없게 된다. 또한, 과도한 레이놀즈 유속은 단백질의 3차원 구조에 부정적인 영향을 미칠 수 있다. 예를 들어 인슐린의 경우 전단률(shear rate) 200 s-1 또는 전단응력 1000 dyne/cm2을 기준으로 구조 변경 및 응집체가 형성된다고 알려져 있다(Bekard, I., et al. The Effects of Shear Flow on Protein Structure and Function. Biopolymers, 95, 11, 733-745 (2011)).
결국, 레이놀즈 유속이 300인 조건에서 실제 유속은 14.14 mL/min으로, 이 이상의 유속조건은 미세와류 장치 및 단백질에 과도한 압력을 가할 수 있으므로, 본 발명의 레이놀즈 유속은 50 내지 300인 조건을 갖는 것이 바람직한 것을 알 수 있다.
[실시예 6]
아포지단백질을 포함하는 하이브리드 나노입자의 합성 배합 비율 최적화
PHNP-PEG2000 및 ApoE3의 합성 배합 비율(20:1, 10:1, 5:1, 2:1, 1:1, 0.5:1)을 다르게 하여 PHNP-E3를 제조하였다. 이 때 사용한 PHNP-PEG2000은 1000 μg이고, ApoE3의 양은 하기 표 1과 같다.
PHNP-PEG2000:ApoE3
PHNP-PEG2000:ApoE3
합성 배합 중량비
20:1 10:1 5:1 2:1 1:1 0.5:1
첨가한 ApoE3 (μg) 50 100 200 500 1000 2000
PHNP-E3에 포함된 ApoE3 (μg) 31.4 55.6 112 231 545 1100
입자 크기 (nm) 60.3 64.2 58.5 52.9 47.6 27.7
PDI 0.127 0.029 0.12 0.172 0.193 0.215
실시예 4와 동일한 방법으로, PLGA를 무수 아세토니트릴(acetonitrile; ACN) 용액으로 준비하고, DPPC 및 각각의 DSPE-PEG2000를 무수 에탄올 용액으로 준비해 소용돌이 미세와류 장치를 통해 합성 후 최종 용액을 DW로 정제하였다. PHNP-PEG2000 및 ApoE3를 상기 표 1에 따른 합성 배합 비율로 각각의 입구로 주입하였다. PHNP-PEG2000 및 ApoE3의 합성 배합 비율(20:1, 10:1, 5:1, 2:1, 1:1, 0.5:1)에 따라 생성된 입자 크기를 DLS로 확인하였다. 상기 표 1에 나타난 바와 같이, PHNP-E3 (20:1)는 60.3 nm, PHNP-E3 (10:1)는 64.2 nm, PHNP-E3 (5:1)는 58.5 nm, PHNP-E3 (2:1)는 52.9 nm의 입자 크기를 갖고, 모두 다분산성 지표 (polydispersity index, PDI)가 0.18 이하로 안정적인 것을 확인하였다. PDI는 0에 가까울수록 나노입자가 균일한 크기로 존재함을 의미하여, 일반적으로 나노입자는 0.3~0.4의 수치를 갖는다. PDI는 0에 가까울 수록 나노입자가 균일한 크기로 존재함을 의미하여, 일반적으로 나노입자는 0.3~0.4의 수치를 갖는다.
반면, 나노입자(PHNP-E3 (1:1))는 47.6 nm, PHNP-E3 (0.5:1)는 27.7 nm의 입자 크기를 갖고 PDI는 0.18 초과로 상기 입자들과 비교하여 증가한 것을 확인하였다.
또한, 단백질 정량법인 BCA assay를 이용하여 합성 배합 중량비에 따라 PHNP-E3에 포함된 ApoE3의 양을 확인하였다. 상기 표 1 및 도 11에 나타낸 바와 같이, PHNP-E3 (20:1)는 31.4 μg의 ApoE3를, PHNP-E3 (10:1)는 55.6 μg의 ApoE3를, PHNP-E3 (5:1)는 112 μg의 ApoE3를, PHNP-E3 (2:1)는 231 μg의 ApoE3를, PHNP-E3 (1:1)는 545 μg의 ApoE3를, PHNP-E3 (0.5:1)는 1100 μg의 ApoE3를 포함하는 것을 확인하였다. 따라서, PHNP-E3에 포함된 ApoE3의 양은 합성 배합 중량비에 따라 농도 의존적으로 포함되는 것을 확인하였다.
또한, PHNP-PEG-2000는 나노입자의 shell에 PEG-2000를 포함하지만, 아포지단백질을 첨가하여 합성할 경우 첨가된 아포지단백질의 양에 비례하여 PHNP-PEG-2000에 안정적으로 포함되는 것을 확인하였다. 이는 기존의 합성 방법으로는 수득될 수 없는 것으로, 소용돌이 미세와류 장치를 이용하여 레이놀즈 유속을 조절함으로써 아포지단백질을 비탄성충돌과 같이 물리적으로 PHNP-PEG-2000에 밀어 넣는 과정을 통해서 수득될 수 있는 것으로, 수득된 PHNP-E3은 작고 균일하며 안정적인 입자를 갖는 것을 알 수 있다.
[실시예 7]
아포지단백질(ApoA1)을 포함하는 하이브리드 나노입자의 합성 방법
소용돌이 미세와류 장치를 이용하여 도 12와 같은 방법으로, ApoA1을 포함하는 하이브리드 나노입자(PHNP-A1)를 합성하였다.
구체적으로, PLGA를 무수 아세토니트릴(acetonitrile; ACN) 용액으로 준비하고, DPPC 및 각각의 DSPE-PEG2000를 무수 에탄올 용액으로 준비하였다. DPPC:DSPE-PEG2000의 배합비율을 2.3:1로 진행하여 소용돌이 미세와류 장치를 이용하여 합성한 후 최종 용액은 DW로 정제하여 PHNP-PEG2000를 제조하였다.
상기 합성된 PHNP-PEG2000 및 아포지단백질 A1(ApoA1)을 소용돌이 미세와류 장치에 각각의 입구로 주입하였다. 이 때, Reynolds number는 250으로 하고 최종적으로 합성된 ApoA1을 포함하는 하이브리드 나노입자(PHNP-A1)를 Amicon filter(MWCO 50kDa)를 이용하여 정제하였다.
ApoA1를 포함하지 않는 하이브리드 나노입자(PHNP-PEG2000) 및 ApoA1를 포함하는 하이브리드 나노입자(PHNP-A1)의 크기를 DLS로 확인한 결과를 도 13에 나타내었다. 상기 도 13에 나타낸 바와 같이, PHNP-PEG2000는 21 nm의 입자크기를 가지고, PHNP-A1는 25 nm의 입자크기를 갖는 것을 확인하였다.
또한, 정제 과정에서 ApoA1을 정량하기 위해 BCA assay로 확인한 결과, 26%의 ApoA1이 PHNP-PEG2000에 포함된 것을 확인하였다.
또한, PHNP-A1의 형태를 TEM을 사용하여 관찰한 결과, 도 14에 나타낸 바와 같이 PHNP-A1는 가운데 core가 있는 core-shell 구조를 갖는 것을 확인하였다.
[실시예 8]
아포지단백질(ApoA1)을 포함하는 하이브리드 나노입자의 세포 내 전달 확인
로다민(rhodamine)으로 라벨링한 PHNP-PEG2000 및 PHNP-A1의 HAECs(P4) 세포 내 전달을 공초점 레이저주사현미경(Confocal Laser Scanning Microscope; CLSM)으로 관찰하였다.
PLGA의 질량 30%에 해당하는 로다민을 PLGA 용액에 첨가하였다. HAEC 세포들에 PHNP-PEG2000 및 PHNP-A1를 각각 처리한 후 24시간 동안 배양을 한 후, 세포들을 4% 파라포름알데하이드 용액으로 고정시켰다. 이후 세포를 DAPI로 염색한 후 공초점 레이저주사현미경으로 관찰하였다.
PHNP-PEG2000 및 PHNP-A1의 세포 내 전달 이미지를 도 15 및 도 16에 나타내었다. 상기 도 15 및 도 16에서 나타난 바와 같이, PHNP-PEG2000와 비교하여 PHNP-A1은 ApoA1의 수용체를 통한 세포 내 진입 효과로 인해 HAECs 세포 내로 더 많이 전달되는 것을 확인하였다.
또한, 도 15 및 도 16의 이미지의 형광 세기를 정량한 결과를 도 17에 나타내었다. 상기 형광 세기를 비교한 결과, PHNP-A1의 HAEC 세포 내 전달이 PHNP과 비교하여 6배 이상 높은 것을 알 수 있다. 결국, PHNP-A1은 세포 내 전달에 우수한 효과를 갖는 것을 알 수 있다.
[실시예 9]
아포지단백질(ApoA1)을 포함하는 하이브리드 합성 방법 비교 평가
실시예 7과 동일한 방법으로 소용돌이 미세와류 장치(SMR)를 이용하여 ApoA1을 포함하는 PHNP-A1 (SMR)를 합성하였다.
또한, 본 발명의 미세와류 장치를 이용하지 않는 일반적인 벤치탑(bench-top; BT) 방법으로 ApoA1을 포함하는 PHNP-A1 (BT)를 합성하였다. 벤치탑 방법은 일반적인 마그네틱 교반을 사용하였다.
PHNP-A1 (SMR) 및 PHNP-A1 (BT)를 합성하는 과정에서 PHNP-PEG2000 및 ApoA1의 합성 배합 중량비는 2:1로 하였고, 그 결과를 도 18에 나타내었다.
상기 도 18에 나타낸 바와 같이, PHNP-A1 (SMR)은 PHNP-PEG2000에 비해 입자 크기가 증가한 반면, PHNP-A1 (BT)는 PHNP-PEG2000과 유사한 입자 크기를 갖는 것을 확인하였다.
또한, 다분산성 지표 (polydispersity index, PDI) 결과에서도 PHNP-A1 (BT)과 비교하여 PHNP-A1 (SMR)이 더 낮은 PDI 값을 갖는 것을 확인하였고, 따라서 PHNP-A1 (SMR)이 균일한 입자 크기를 갖는 것을 알 수 있다.
PHNP-2000 및 ApoA1의 합성 배합 중량비를 50:1, 10:1, 2:1로 하여 PHNP-A1 (SMR)과 PHNP-A1 (BT)를 합성하였다. ELISA를 이용하여 정량한 ApoA1의 결과를 도 19에 수득량으로, 도 20에 수득률로 나타내었다.
상기 도 19 및 도 20에 나타난 바와 같이, 동일 합성 배합 중량비로 PHNP-A1 (SMR) 및 PHNP-A1 (BT)를 합성할 경우, PHNP-A1 (SMR)은 ApoA1의 수득량 및 수득률에서 더 높은 수치를 갖는 것을 확인하였다. 따라서, 아포지단백질을 나노입자에 포함시키는 데에 있어 미세와류 장치를 이용하여 합성 방법이 월등하게 우수한 것을 알 수 있다.
또한, 인간 간내 담즙 상피 세포 (human intrahepatic biliary epithelial cell, iHBEC)에 PHNP-2000, PHNP-A1 (BT) 및 PHNP-A1 (SMR)를 각각 처리하고 24시간 후에 공초점 현미경 영상을 촬영하고 그 형광 세기를 정량하였다. 도 21에 나타난 바와 같이, 형광 영상을 통해 확인한 결과, PHNP-A1 (SMR)이 가장 많이 세포에 전달된 것을 확인하였고, PHNP-A1 (BT)과 비교하여 2배 이상 전달된 것을 확인하였다.
이는 도 19 및 도 20에서 확인한 것과 같이, PHNP-A1 (SMR)이 PHNP-A1 (BT)보다 더 많은 양의 아포지단백질을 포함하고 있기 때문인 것을 알 수 있다.
결국, 나노입자에 단백질을 첨가하는 합성 방법으로 미세와류 장치를 사용하는 방법이 기존의 합성 방법보다 월등하게 우수한 것을 알 수 있다.
[실시예 10]
아포지단백질(ApoE3 및 ApoA1)을 포함하는 하이브리드 나노입자의 합성 방법
실시예 1과 동일한 방법으로, 소용돌이 미세와류 장치를 이용하여 DPPC, DSPE-PEG2000 및 PLGA를 포함하는 PHNP-PEG2000를 제조하고, 이후 ApoA1 및 ApoE3를 모두 포함시켜 PHNP-E3/A1를 합성하였다.
ApoE3 및 ApoA1를 모두 포함하는 PHNP-E3/A1를 제조하기 위해서, ApoE3 및 ApoA1를 하기 표 2의 중량비(ApoE3 (mg)/ApoA1 (mg))로 PBS (phosphate buffered saline)에 녹여 혼합 수용액으로 준비하였다.
PHNPs PHNP-E3 PHNP-E3/A1 PHNP-A1
ApoE3:ApoA1
(중량비)
- 10:1 5:1 5:2 1:1 -
첨가한 ApoE3 (μg) 500 250 -
첨가한 ApoA1 (μg) - 25 50 100 250 500
미세와류 장치의 각 입구에 PHNP-PEG2000 및 ApoE3/ApoA1의 혼합 수용액을 주입하여 PHNP-E3/A1을 합성하였다. 이때 Reynolds number는 250이 되도록 하였다. 합성된 최종 PHNP-E3/A1은 Amicon filter (MWCO 50kDa)로 원심 분리하여 정제하였다.
PHNP-E3/A1의 입자 크기와 다분산성 지표(PDI)를 PBS(1% trehalose) 완충용액 환경에서 DLS를 통해 확인한 결과, 도 22에 나타낸 바와 같이, PHNP-E3(500/0)는 크기 85.55 ± 1.77 nm와 PDI 0.23 ± 0.03이고, PHNP-E3/A1 (250/25)는 크기 70.38 ± 5.31 nm와 PDI 0.08 ± 0.03이고, PHNP-E3/A1(250/50)는 크기 68.74 ± 3.20 nm와 PDI 0.09 ± 0.02이고, PHNP-E3/A1(250/100)는 크기 96.58 ± 12.16 nm와 PDI 0.26 ± 0.01이고, PHNP-E3/A1(250/250)는 크기 73.03 ± 5.45 nm와 PDI 0.23 ± 0.01이고, PHNP-A1(0/500)는 크기 75.55 ± 2.88 nm와 PDI 0.26 ± 0.03인 것을 확인하였다. 따라서, 100 nm 미만의 크기와 0.3 미만의 PDI 결과를 통해, 생성된 PHNP-E3/A1에서 ApoE3 및 ApoA1이 균일하면서 분산성이 높은 것을 알 수 있다.
4oC, PBS (1% trehalose) 용액 조건에서 ApoE3 및 ApoA1을 합성 배합 중량비에 따라 합성된 PHNP-E3/A1의 분산 안정도를 DLS를 통해 확인한 결과를 도 23에 나타내었다. 상기 도 23에 나타낸 바와 같이, 14일까지 모든 PHNP-E3/A1가 80 nm 미만의 크기와 0.3 미만의 PDI를 갖는 것을 확인하였다. 이는 PHNP-E3/A1이 크기 변화 없이 14일 동안 높은 분산 안정도를 유지하는 것을 의미한다.
또한, ApoE3 및 ApoA1이 PHNP-PEG2000의 나노입자에 동시에 도입되는 것을 fluorescence resonance energy transfer(FRET)를 통해 확인하였다. 즉, 형광 세기를 확인하기 위해 ApoE3에 Alexa Fluor 488 형광 분자를, ApoA1에 Alexa Fluor 568 형광 분자를 붙여서 확인하였다. ApoE3에 붙은 Alexa Fluor 488이 형광을 방출할 수 있는 470 nm의 빛 에너지를 주었을 때 ApoA1에 붙은 Alexa Fluor 568 형광 분자가 형광 파장인 600 nm의 빛 에너지를 방출한다면, ApoE3와 ApoA1이 나노입자 내에 동시에 존재한다고 할 수 있다.
이를 확인하기 위해 PHNP-PEG2000, PHNP-E3, PHNP-A1 및 PHNP-E3/A1에 470 nm의 에너지를 주었을 때의 방출한 형광 파장 결과를 도 24에 나타내었다. 상기 도 24에 나타난 바와 같이, 대조군인 PHNP-PEG2000에서는 형광 세기가 거의 없었고, PHNP-E3는 Alexa Fluor 488이 형광을 방출하기 때문에 520 nm에서 최고 세기를 나타내었다. 또한, PHNP-A1에서는 600 nm에서 형광이 방출되었지만 PHNP-E3의 형광에 비해 세기가 약한 것을 확인하였다. PHNP-E3/A1에서는 ApoE3에 붙은 Alexa Fluor 488의 형광 세기가 PHNP-E3에 비해 감소하고(520 nm, 진회색 화살표), ApoA1에 붙은 Alexa Fluor 568의 형광 세기가 PHNP-A1에 비해 증가한 것(600 nm, 연회색 화살표)을 확인하였다. PHNP-E3/A1의 형광 스펙트럼을 PHNP-E3 및 PHNP-A1의 형광 스펙트럼과 각각 비교한 결과, Alexa Fluor 488의 형광 세기 감소와 동시에 Alexa Fluor 568 형광의 증가 현상을 통해 FRET 효과를 증명하였고, 이를 통해 PHNP-E3/A1 내에서 두 종류의 단백질이 동시에 존재하는 것을 확인하였다.

Claims (21)

  1. 제1 주입구 및 제2 주입구, 및 출구를 포함하는 소용돌이 미세와류 장치에서, 상기 제1 주입구에 하이브리드 나노입자를 주입하고, 상기 제2 주입구에 단백질을 주입하는 단계; 및
    소용돌이 미세와류로 단백질이 하이브리드 나노입자에 첨가되는 단계를 포함하는 것을 특징으로 하는,
    단백질을 포함하는 하이브리드 나노입자의 제조방법.
  2. 제1항에 있어서, 상기 소용돌이 미세와류 장치에서 레이놀즈 유속이 50 내지 300인 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  3. 제1항에 있어서, 상기 단백질은 아포지단백질 또는 양쪽성 특성을 갖는 고분자인 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  4. 제1항에 있어서, 상기 아포지단백질은 아포지단백질 A1, A2, E2, E3, J 및 M으로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  5. 제3항에 있어서, 상기 하이브리드 나노입자 및 아포지단백질의 합성 배합 중량비가 20:1 내지 0.5:1인 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  6. 제3항에 있어서, 상기 하이브리드 나노입자 및 아포지단백질의 합성 배합 중량비가 20:1 내지 2:1인 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  7. 제1항에 있어서, 상기 출구로부터 단백질을 포함하는 나노입자를 회수하는 단계를 추가로 포함하는 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  8. 제1항에 있어서, 하이브리드 나노입자는
    상기 소용돌이 미세와류 장치에서, 상기 제1 주입구에 인지질을 주입하고, 상기 제2 주입구에 고분자를 주입하는 단계; 및 소용돌이 미세와류로 인지질 및 고분자를 혼합하는 단계를 포함하는 제조방법으로 제조된 것을 특징으로 하는,
    단백질을 포함하는 하이브리드 나노입자의 제조방법.
  9. 제8항에 있어서, 상기 인지질은 1,2-디올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 달걀 포스파티딜콜린(EPC), 디라우로일포스파티딜콜린(DLPC), 1,2-디미리스토일-sn-글리세로-3-포스포콜린(DMPC), 디팔미토일포스파티딜콜린(DPPC), 디스테아로일포스파티딜콜린(DSPC), 1-미리스토일-2-팔미토일포스파티딜콜린(MPPC), 1-팔미토일-2-미리스토일포스파티딜콜린(PMPC), 1-팔미토일-2-스테아로일포스파티딜콜린(PSPC), 1-스테아로일-2-팔미토일 포스파티딜콜린(SPPC), 1,2-디스테아로일-sn-글리세로-3-포스포콜린(DAPC), 1,2-디아라키도일-sn-글리세로-3-포스포콜린(DBPC), 1,2-디아이코사노일-sn-글리세로-3-포스포콜린(DEPC), 팔미토일올레오일포스파티딜콜린(POPC), 리소포스파티딜콜린, 디리놀레오일포스파티딜콜린, 디스테아로일포스파티딜에탄올아민(DSPE), 디스테아로일포스파티딜에탄올아민-폴리에틸렌글리콜(DSPE-PEG), 디미리스토일포스파티딜에탄올아민(DMPE), 디팔미토일포스파티딜에탄올아민(DPPE), 팔미토일올레오일포스파티딜에탄올아민(POPE), 리소포스파티딜에탄올아민, N1-[2-((1S)-1-[(3-아미노프로필)아미노]-4-[디(3-아미노-프로필)아미노]부틸카복사마이도)에틸]-3,4-디[올레일옥시]-벤즈아마이드)(VL-5), 디옥타데실아미도글리클스페르민 4트리플르오로아세틱 산(DOGS), 3β-[N-(N',N'-디메틸아미노에탄)-카바모일]콜레스테롤(DC-Chol), 1,2-디-O-옥타데세닐-3-트리메틸암모늄 프로판(DOTMA), 1,2-디올레일-3-트리메틸암모늄-프로판(DOTAP), (1,2-디올레일옥시프로필)-3디메틸하이드록시에틸 암모늄브로마이드(DORIE), 1,2-디미리스틸옥시-프로필-3-디메틸-하이드록시 에틸 암모늄 브로마이드(DMRIE), 2,3-디올레일옥시-N-[2(스페르민카복사마이도)에틸]-N,N-디메틸-1-프로판아미늄 트리플루오로아세테이트(DOSPA), N-(3-아미노프로필)-N,N-디메틸-2,3-bis(도데실옥시)-1-프로판암모늄 브로마이드(GAP-DLRIE), N-t-부틸-N'-테트라데실-3-테트라데실아미노프로피온아미딘(diC14-amidine), 에틸포스포콜린(Ethyl PC), 디메틸디옥타데실암모늄 브로마이드(DDAB), N4-콜레스테릴-스페르민(GL67), 1,2-디올레일옥시-3-디메틸아미노프로판(DODMA), D-Lin-MC3-DMA(MC3, DLin-MC3-DMA), DLin-KC2-DMA, 및 DLin-DMA으로 이루어진 군에서 하나 이상 선택되는 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  10. 제9항에 있어서, 상기 인지질은 DPPC 및 DSPE-PEG인 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  11. 제10항에 있어서, 상기 DSPE-PEG에서 PEG의 분자량이 2000 내지 5000인 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  12. 제10항에 있어서, 상기 DPPC 및 DSPE-PEG의 합성 배합 중량비가 2.3:1 내지 1:1인 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  13. 제8항에 있어서, 상기 고분자는 PLGA(폴리(락틱-코-글리콜산); poly(lactic-co-glycolic acid))인 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  14. 제8항에 있어서, 상기 하이브리드 나노입자는 고분자-지질 하이브리드 나노입자(polymer-lipid hybrid nanoparticle; PHNP)인 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  15. 제1항 내지 제14항의 제조방법으로 제조된 단백질을 포함하는 하이브리드 나노입자.
  16. 제1 주입구 및 제2 주입구, 및 출구를 포함하는 소용돌이 미세와류 장치에서,
    상기 제1 주입구에 인지질을 주입하고, 상기 제2 주입구에 고분자를 주입하는 단계; 및 소용돌이 미세와류로 인지질 및 고분자를 혼합하는 단계를 포함하는 하이브리드 나노입자를 제조하는 제1 단계;
    상기 제1 주입구에 상기 수득된 하이브리드 나노입자를 주입하고, 상기 제2 주입구에 단백질을 주입하는 단계를 포함하는 단백질을 포함하는 하이브리드 나노입자를 제조하는 제 2단계
    를 포함하는 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  17. 제16항에 있어서, 상기 단백질은 아포지단백질 또는 양쪽성 특성을 갖는 고분자인 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  18. 제16항에 있어서, 상기 하이브리드 나노입자 및 아포지단백질의 합성 배합 중량비가 20:1 내지 2:1인 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  19. 제16항에 있어서, 상기 인지질은 1,2-디올레오일-sn-글리세로-3-포스파티딜콜린(DOPC), 달걀 포스파티딜콜린(EPC), 디라우로일포스파티딜콜린(DLPC), 1,2-디미리스토일-sn-글리세로-3-포스포콜린(DMPC), 디팔미토일포스파티딜콜린(DPPC), 디스테아로일포스파티딜콜린(DSPC), 1-미리스토일-2-팔미토일포스파티딜콜린(MPPC), 1-팔미토일-2-미리스토일포스파티딜콜린(PMPC), 1-팔미토일-2-스테아로일포스파티딜콜린(PSPC), 1-스테아로일-2-팔미토일 포스파티딜콜린(SPPC), 1,2-디스테아로일-sn-글리세로-3-포스포콜린(DAPC), 1,2-디아라키도일-sn-글리세로-3-포스포콜린(DBPC), 1,2-디아이코사노일-sn-글리세로-3-포스포콜린(DEPC), 팔미토일올레오일포스파티딜콜린(POPC), 리소포스파티딜콜린, 디리놀레오일포스파티딜콜린, 디스테아로일포스파티딜에탄올아민(DSPE), 디스테아로일포스파티딜에탄올아민-폴리에틸렌글리콜(DSPE-PEG), 디미리스토일포스파티딜에탄올아민(DMPE), 디팔미토일포스파티딜에탄올아민(DPPE), 팔미토일올레오일포스파티딜에탄올아민(POPE), 리소포스파티딜에탄올아민, N1-[2-((1S)-1-[(3-아미노프로필)아미노]-4-[디(3-아미노-프로필)아미노]부틸카복사마이도)에틸]-3,4-디[올레일옥시]-벤즈아마이드)(VL-5), 디옥타데실아미도글리클스페르민 4트리플르오로아세틱 산(DOGS), 3β-[N-(N',N'-디메틸아미노에탄)-카바모일]콜레스테롤(DC-Chol), 1,2-디-O-옥타데세닐-3-트리메틸암모늄 프로판(DOTMA), 1,2-디올레일-3-트리메틸암모늄-프로판(DOTAP), (1,2-디올레일옥시프로필)-3디메틸하이드록시에틸 암모늄브로마이드(DORIE), 1,2-디미리스틸옥시-프로필-3-디메틸-하이드록시 에틸 암모늄 브로마이드(DMRIE), 2,3-디올레일옥시-N-[2(스페르민카복사마이도)에틸]-N,N-디메틸-1-프로판아미늄 트리플루오로아세테이트(DOSPA), N-(3-아미노프로필)-N,N-디메틸-2,3-bis(도데실옥시)-1-프로판암모늄 브로마이드(GAP-DLRIE), N-t-부틸-N'-테트라데실-3-테트라데실아미노프로피온아미딘(diC14-amidine), 에틸포스포콜린(Ethyl PC), 디메틸디옥타데실암모늄 브로마이드(DDAB), N4-콜레스테릴-스페르민(GL67), 1,2-디올레일옥시-3-디메틸아미노프로판(DODMA), D-Lin-MC3-DMA(MC3, DLin-MC3-DMA), DLin-KC2-DMA, 및 DLin-DMA으로 이루어진 군에서 하나 이상 선택되는 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  20. 제16항에 있어서, 상기 고분자는 PLGA(폴리(락틱-코-글리콜산); poly(lactic-co-glycolic acid))인 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
  21. 제16항에 있어서, 상기 하이브리드 나노입자는 고분자-지질 하이브리드 나노입자(polymer-lipid hybrid nanoparticle; PHNP)인 것을 특징으로 하는, 단백질을 포함하는 하이브리드 나노입자의 제조방법.
PCT/KR2023/008146 2022-06-13 2023-06-13 아포지단백질을 포함하는 하이브리드 나노입자의 합성 방법 WO2023243997A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220071495 2022-06-13
KR10-2022-0071495 2022-06-13

Publications (1)

Publication Number Publication Date
WO2023243997A1 true WO2023243997A1 (ko) 2023-12-21

Family

ID=89191559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008146 WO2023243997A1 (ko) 2022-06-13 2023-06-13 아포지단백질을 포함하는 하이브리드 나노입자의 합성 방법

Country Status (2)

Country Link
KR (1) KR20230171408A (ko)
WO (1) WO2023243997A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040204354A1 (en) * 2002-12-03 2004-10-14 Thomas Nelson Artificial low-density lipoprotein carriers for transport of substances across the blood-brain barrier
WO2018064350A1 (en) * 2016-09-30 2018-04-05 Eriochem Usa, Llc Apo-e modified lipid nanoparticles for drug delivery to targeted tissues and therapeutic methods
KR20190137687A (ko) * 2018-06-01 2019-12-11 서강대학교산학협력단 지질을 이용한 표면 개질을 통해 세포 내 섭취 효율을 향상시킨 나노입자 복합체 및 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040204354A1 (en) * 2002-12-03 2004-10-14 Thomas Nelson Artificial low-density lipoprotein carriers for transport of substances across the blood-brain barrier
WO2018064350A1 (en) * 2016-09-30 2018-04-05 Eriochem Usa, Llc Apo-e modified lipid nanoparticles for drug delivery to targeted tissues and therapeutic methods
KR20190137687A (ko) * 2018-06-01 2019-12-11 서강대학교산학협력단 지질을 이용한 표면 개질을 통해 세포 내 섭취 효율을 향상시킨 나노입자 복합체 및 이의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TOTH MICHAEL J., KIM TAEYOUNG, KIM YONGTAE: "Robust manufacturing of lipid-polymer nanoparticles through feedback control of parallelized swirling microvortices", LAB ON A CHIP, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 17, no. 16, 1 January 2017 (2017-01-01), UK , pages 2805 - 2813, XP093117055, ISSN: 1473-0197, DOI: 10.1039/C7LC00668C *
YONGTAE KIM, BOMY LEE CHUNG, MINGMING MA, WILLEM J. M. MULDER, ZAHI A. FAYAD, OMID C. FAROKHZAD, ROBERT LANGER: "Mass Production and Size Control of Lipid–Polymer Hybrid Nanoparticles through Controlled Microvortices", NANO LETTERS, AMERICAN CHEMICAL SOCIETY, vol. 12, no. 7, 11 July 2012 (2012-07-11), pages 3587 - 3591, XP055084046, ISSN: 15306984, DOI: 10.1021/nl301253v *

Also Published As

Publication number Publication date
KR20230171408A (ko) 2023-12-20

Similar Documents

Publication Publication Date Title
Ojeda et al. The influence of the polar head-group of synthetic cationic lipids on the transfection efficiency mediated by niosomes in rat retina and brain
Hu et al. Engineering the lipid layer of lipid–PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability
WO2011142515A1 (ko) 핵산 및 친수성 음이온 화합물의 고효율 포획을 위한 비대칭 리포솜 및 이의 제조방법
Mandal et al. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery
US20070134332A1 (en) Polymer particles for delivery of macromolecules and methods of use
US20100028451A1 (en) Silk microspheres for encapsulation and controlled release
US20090202620A1 (en) Polymer-stabilized liposomal compositions and methods of use
US20090110739A1 (en) Targeted cancer chemotherapy using synthetic nanoparticles
WO2011062420A2 (en) Nanoparticles for tumor-targeting and processes for the preparation thereof
WO2020116892A2 (ko) 생리활성물질 봉입을 위한 나노지질전달체 및 이의 제조방법
US20180318218A1 (en) Nanolipoprotein particles and related compositions methods and systems for loading rna
US20190046446A1 (en) Apo-e modified lipid nanoparticles for drug delivery to targeted tissues and therapeutic methods
Liu et al. Protein-bearing cubosomes prepared by liquid precursor dilution: inner ear delivery and pharmacokinetic study following intratympanic administration
Garbayo et al. Brain drug delivery systems for neurodegenerative disorders
Wang et al. Construction of a novel cationic polymeric liposomes formed from PEGylated octadecyl‐quaternized lysine modified chitosan/cholesterol for enhancing storage stability and cellular uptake efficiency
WO2023243997A1 (ko) 아포지단백질을 포함하는 하이브리드 나노입자의 합성 방법
Deng et al. An exosome-mimicking membrane hybrid nanoplatform for targeted treatment toward Kras-mutant pancreatic carcinoma
Mehanna et al. Pharmaceutical particulate carriers: lipid-based carriers
WO2017213328A1 (ko) 합성 수용체-인지질의 접합체를 포함하는 리포좀 및 상기 합성 수용체에 결합 가능한, 기능성 물질이 결합된 리간드를 유효성분으로 함유하는 기능성 물질 전달용 조성물
TW202116292A (zh) 用於免疫治療的二氧化矽奈米球
WO2020032581A1 (ko) 바이러스 전달용 고분자 나노입자 조성물 및 그의 제조방법
CN114225047A (zh) 一种免疫逃逸纳米制剂、制备方法及应用
WO2022225368A1 (ko) 지질 나노입자의 제조 방법 및 이의 제조 장치
Nekkanti et al. Preparation, characterization and in-vivo evaluation of raloxifene hydrochloride solid lipid nanoparticles
WO2023243865A1 (ko) 약물전달용 재구축 고밀도 지단백 나노입자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23824211

Country of ref document: EP

Kind code of ref document: A1