WO2023243889A1 - Water-cooled linear motor system - Google Patents

Water-cooled linear motor system Download PDF

Info

Publication number
WO2023243889A1
WO2023243889A1 PCT/KR2023/006859 KR2023006859W WO2023243889A1 WO 2023243889 A1 WO2023243889 A1 WO 2023243889A1 KR 2023006859 W KR2023006859 W KR 2023006859W WO 2023243889 A1 WO2023243889 A1 WO 2023243889A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
linear motor
cooling
coil mold
motor system
Prior art date
Application number
PCT/KR2023/006859
Other languages
French (fr)
Korean (ko)
Inventor
조성훈
정용훈
Original Assignee
주식회사 져스텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 져스텍 filed Critical 주식회사 져스텍
Publication of WO2023243889A1 publication Critical patent/WO2023243889A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/44Protection against moisture or chemical attack; Windings specially adapted for operation in liquid or gas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/47Air-gap windings, i.e. iron-free windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/193Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/225Heat pipes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/09Machines characterised by drain passages or by venting, breathing or pressure compensating means

Definitions

  • the present invention relates to a linear motor system, and more specifically, in constructing a linear motor with high speed, high precision, and stability, it is formed with a structure that can simplify the manufacturing process as well as improve cooling efficiency, thereby increasing the overall output. It is about a linear motor system that can improve stability and productivity.
  • Linear motors are widely used in the electronics, automobile, and aerospace industries, and as their precision and accuracy improve, they are becoming more common in semiconductor equipment and precision processing equipment, and the demand for additional technological improvements is also increasing.
  • semiconductor circuit chips produced through wafers go through the process of dividing the multiple semiconductor circuit chip structures formed through the front-end process into individual pieces through the dicing process in the back-end process. , it is produced into a finished semiconductor product through the remaining post-processes. At this time, the production rate of the final finished semiconductor circuit chip from one wafer can be expressed as the wafer defect rate.
  • This wafer defect rate affects the production cost of semiconductor manufacturing, so there is a need to reduce this wafer defect rate in the manufacturing process.
  • wafers may be discarded due to poor cutting quality, so they are used for dicing.
  • the cutting-related driving part of the equipment requires accuracy, stability, and speed.
  • the driving unit is configured to use a linear motor configured to achieve linear movement using the polarity of the magnet in order to satisfy the accuracy, stability, and speed required as a device for linear movement, which is the linear movement of the linear motor itself.
  • a linear motor configured to achieve linear movement using the polarity of the magnet in order to satisfy the accuracy, stability, and speed required as a device for linear movement, which is the linear movement of the linear motor itself.
  • the core type has a problem in that the metallic core located in the center of the coil generates an attractive force between external permanent magnets, resulting in a cogging phenomenon that prevents the linear motor from operating smoothly.
  • the coreless type linear motor had the problem that the overall structural rigidity of the linear motor was weak compared to the core type motor.
  • the coreless type linear motor has a problem of lower output at the same power compared to the core type motor, so application of higher power is required compared to the same speed, and this causes heat generation in the coil part to increase, causing problems related to this. Some cooling performance has become important.
  • the cooling performance of the coil part is improved, the coil can be cooled well and the amount of heat generated does not increase even when high power output is applied to the coil.
  • the speed of the linear motor can be further increased, so manufacturers of coreless linear motors Methods to improve the cooling performance of coreless linear motors were researched and developed.
  • the flow path is designed to be expanded to improve cooling performance, which increases the volume of the linear motor, or the flow path structure itself is designed in a complicated manner, which increases the processing or forming time of the flow path area and complicates the structure. This resulted in low productivity and high overall production costs.
  • the present invention is intended to improve the above-described conventional problems, and provides a linear motor system that can improve the maximum speed of the linear motor by improving cooling efficiency in forming the cooling structure of the linear motor. There is a purpose.
  • the purpose is to provide a linear motor system that can save time and cost by forming an internal coolant flow path in a simple manner.
  • the purpose is to provide a linear motor system that can be used in small devices by compactly configuring the size of the linear motor.
  • the purpose is to provide a linear motor system configured to simply form a flow path through which the internal coolant can flow.
  • the manufacturing method of the linear motor can be simplified to reduce the time consumed in the entire manufacturing process and to provide a linear motor system that can also reduce the manufacturing cost. There is a purpose.
  • a linear motor according to an embodiment of the present invention is a linear motor system having a coil in at least one of a mover or a stator, and the mover or stator has the coil inside.
  • a coil mold portion provided and formed by molding a composite resin material; And, a jacket portion adhesively bonded to cover at least one side of the coil mold portion, wherein a flow path groove is provided on the side surface of the coil mold portion to cool the coil mold portion and the jacket portion by adhesive bonding. It has a structure that forms a cooling passage that provides a flow path for fluid.
  • the jacket portion may be formed of a non-metallic material.
  • the channel grooves formed at the top and bottom of the sides of the coil mold part may be configured to have a width of the channel grooves larger than the channel grooves formed in the middle.
  • the flow path groove provided on the side of the coil mold portion allows cooling fluid to flow through the coil mold portion along the winding shape of the coil provided inside the coil mold portion. It can be formed to reflect the winding shape of the coil so that the side can flow.
  • the jacket portion may be configured to further include a second cooling passage outside the cooling passage formed by adhesive bonding of the coil mold portion and the jacket portion.
  • the linear motor according to an embodiment of the present invention may be configured by limiting the size, shape, and flow rate of the cooling passage so that the cooling fluid for cooling the linear motor flows laminarly inside the linear motor.
  • the jacket portion includes: a plate-shaped jacket member formed of a plate-shaped material and adhesively coupled to the side of the coil mold portion; And, a pocket-type jacket member formed in a 'U'-shaped or ' ⁇ '-shaped cross-sectional shape and adhesively coupled in a structure that directly or indirectly surrounds the outside of the coil mold part, including the side surface of the coil mold part. It can be configured.
  • the flow grooves provided on the side of the coil mold portion are provided in plural numbers, and are formed to connect one side and the other side of the coil mold portion according to the direction of movement of the linear motor. It is formed with an inflow and outflow manifold block on one side and the other side of the coil mold part, one of the inflow and outflow manifold blocks is provided with a split supply port corresponding to the plurality of flow grooves, and the other one is provided with an inflow and outflow manifold block. It may be configured with a structure provided with a collection discharge port corresponding to a plurality of flow grooves.
  • the linear motor system according to the present invention has the effect of providing a linear motor system that can improve the maximum speed of the linear motor by improving cooling efficiency in forming the cooling structure of the linear motor.
  • the internal coolant flow path can be formed in a simple way, which has the effect of providing a linear motor system that can save time and cost.
  • the size of the linear motor is compactly configured, which has the effect of providing a linear motor system that can be used in small devices.
  • the time consumed in the entire manufacturing process can be reduced by simply configuring the manufacturing method of the linear motor, and the effect of providing a linear motor system that can also reduce the manufacturing cost is.
  • FIG. 1 is a perspective view showing the overall configuration of an exemplary mover in a linear motor system according to an embodiment of the present invention.
  • Figure 2 is a front view and a side view showing the composite material molding surface structure of the coil mold part of the overall structure of the mover in the linear motor system according to an embodiment of the present invention.
  • Figure 3 is a front view and a side view of the overall configuration of the mover in the linear motor system according to an embodiment of the present invention.
  • Figure 4 is a front view shown in perspective so that the correlation between the flow path and the coil among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention can be understood.
  • Figure 5 is a front view illustrating a modified embodiment of the channel groove structure of the coil mold portion among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention.
  • Figure 6 is a front view showing another modified embodiment of the flow groove structure of the coil mold part among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention.
  • Figure 7 is a side view illustrating another modified embodiment having a modified flow path structure using an inlet/outlet manifold block among the overall configuration of the mover in a linear motor system according to an embodiment of the present invention.
  • FIG. 8 is a side view illustrating another modified embodiment including a flow path structure added in the thickness direction of the jacket portion among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention.
  • Figure 1 is a perspective view showing the overall configuration of the mover in a linear motor system according to an embodiment of the present invention, and is shown as a perspective view to aid understanding in explaining the structure of a water-cooled linear motor.
  • Figure 2 is a front view and a side view showing the surface structure of the composite resin molding among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention. It is shown in a side view, and is a drawing to explain the structure formed so that the adhesive can be uniformly applied to ensure the adhesive strength of the plate-shaped jacket member forming the flow path.
  • Figure 3 is a front view and a side view of the overall configuration of the mover in the linear motor system according to an embodiment of the present invention.
  • the front view shows the inside to explain the arrangement structure of the internal coil and the flow path structure for cooling it.
  • the coil arrangement is shown, and the side view shows the internal cut surface, but is partially enlarged for understanding.
  • Figure 4 is a front view showing a perspective view of the coil so that the correlation between the flow path groove and the coil among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention can be understood, and the flow of coolant and the direct flow of the coil are shown in Figure 4. This is a drawing to explain the cooling point.
  • Figure 5 is a front view illustrating a modified example of the flow path structure among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention, in which the width of the flow groove is changed to improve the cooling efficiency of the coil.
  • Figure 6 is a front view illustrating another modified embodiment in which the path structure of the flow groove among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention is modified, in order to improve the cooling efficiency of the coil.
  • Figure 7 is an explanatory diagram showing a side view of another modified embodiment having a modified flow path structure using an inflow and outflow manifold block among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention. This is a drawing to explain the flow path structure that can ensure even cooling performance for the entire movable body by configuring the flow paths to flow in alternating directions.
  • Figure 8 is an explanatory diagram showing a side view of another modified embodiment with a flow path structure added in the thickness direction of the jacket part among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention, which is used to cool the coil
  • a structure having a plurality of channels in the thickness direction is shown, and the representation of the adhesive layer that performs adhesive bonding between components is omitted to simplify the drawing.
  • the linear motor system improves cooling efficiency by optimizing the flow path structure for water-cooled cooling and simplifies the manufacturing process, thereby increasing the output of the motor. It is a linear motor system that improves productivity and economic efficiency.
  • a linear motor consists of a stator with permanent magnets arranged and a mover with electromagnets that travel using the stator as a running rail, and these permanent magnets are arranged in pairs so that the different polarities point toward the center.
  • the polarities of permanent magnets arranged along the longitudinal direction may also be configured to cross each other.
  • a linear motor may be configured in such a way that a permanent magnet is provided in a mover and an electromagnet is provided in a stator, or it may be configured by providing electromagnets in both the stator and the mover.
  • the present invention relates to a cooling structure of a mover or stator equipped with an electromagnet coil in a linear motor system.
  • the electromagnet coil is provided in the mover.
  • the electromagnet coil is provided in the mover.
  • the case where it is provided on the stator can also be explained in the same way.
  • the linear motor system may be configured to include, for example, a mover disposed between a pair of stators and having a coil therein.
  • the mover 100 of the linear motor system is equipped with a coil for an electromagnet inside, and depending on the energization state of the coil 11, it takes the form of magnetic levitation in a non-contact state by repulsion between the permanent magnets constituting the stator. In this state, it can be configured to move by the attraction of adjacent coils.
  • a cooling passage F through which cooling fluid can flow is formed around the coil 11 inside the mover 100 to cool the coil 11.
  • a cooling structure is needed to cool the area and its surroundings.
  • the mover 100 of the linear motor system includes a coil mold part 10 that surrounds the coil 11 by molding the area around the coil 11 with a composite resin material.
  • a flow groove 12 for forming a cooling passage F is formed on the surface of the coil mold part 10, and a jacket part joined in a structure that covers the outer surface of the coil mold part 10 ( By providing 20), the inner surface of the jacket portion 20 and the portion of the flow groove 12 can form a cooling passage F together.
  • the coil mold portion 10 is formed integrally by molding the peripheral portion of the coil 11, and the cooling passage F is formed by attaching the jacket portion 20 to the outer surface of the coil mold portion 10.
  • the method of construction is to form a flow path around the coil, which reduces the probability of a defective flow path being formed during manufacturing, makes maintenance easy, and allows the coils to be aligned on one side during molding work. This has the effect of reducing the defect rate of wiring for each coil.
  • the movable part 100 has a coil 11 embedded therein to form a flow path structure for cooling the coil 11, as shown in FIG. 2. It is configured to include a coil mold portion 10, and a flow path groove 12 is provided on the outer surface of at least one of both horizontal sides of the coil mold portion 10.
  • the coil mold portion 10 can be formed by performing a molding operation in which the entire exterior of the coil 11 is sealed using a composite resin or the like.
  • a furrow-shaped channel groove 12 can be formed in the frame of the coil mold part 10 to form a cooling flow path F on the outer surface of the coil mold part 10 at the same time as the molding operation.
  • An uneven structure is provided.
  • the coil mold unit 10 may be configured to perform an individual molding operation on each coil, but preferably has one or more coils 11 therein, forming a plurality of coils 11. By being formed in an integrated form, it can be prepared and used as a coil assembly of a certain size to constitute the mover 100 of the linear motor system.
  • the composite resin material for coil molding in the coil mold unit 10 may be, for example, a thermosetting plastic material such as epoxy resin, but is not limited thereto.
  • the movable part 100 is located at the longitudinal front and rear ends of the coil mold part 10 formed to have an internal coil assembly, as shown in FIG. 2.
  • the side inflow and outflow manifold block 30 and the rear end inflow and outflow manifold block 40 may be additionally combined, and the front end inflow and outflow manifold block 30 and the rear end inflow and outflow manifold block 40 are inside the inflow and outflow manifold block 40.
  • a passage through which coolant can flow is provided, and the passage is connected in fluid communication with the base block 50 at the upper end of the inflow and outflow manifold block, and a coil mold portion ( It may be provided with a split supply port 31 and/or a collection discharge port 41 so as to be connected in fluid communication with the flow path groove 12 formed on the corresponding side of 10).
  • a block groove 35 is formed on the side of the inflow and outflow manifold block in a structure connected to the flow groove 12 of the coil mold part 10, and a split supply port 31 and/or are formed within the block groove 35.
  • a collection discharge port 41 is provided.
  • the inflow and outflow manifold blocks 30 and the inflow and outflow manifold blocks 40 prepared in this way can be combined to the front and rear sides of the coil mold part 10, respectively, to form an assembly, and the combination is performed using a fastening means. It can be applied by selecting from fastening bonding using adhesive bonding, fusion bonding, or bonding bonding using adhesives.
  • the movable part 100 is a jacket part bonded in a structure that covers at least one side of the coil mold part 10, as shown in FIG. 20); It consists of:
  • the jacket portion 20 is selected from at least one member formed in a flat shape, a member formed in a pocket structure, etc., and covers at least one side of the coil mold portion 10 by bonding such as fusion or adhesive bonding. It can be composed of a structure.
  • the material of the jacket portion 20 may be selected from a non-metallic material or a non-magnetic metal material to prevent the influence of the magnetic field for the electromagnet formed by the coil, for example, fiber-reinforced plastic material, carbon fiber-reinforced material. It is preferable that it is selected from plastic materials, etc. In addition, in the case of a linear motor system for a vacuum environment, etc., it is desirable to select the material of the jacket portion 20 from among non-magnetic metal materials.
  • the jacket portion 20, which is coupled with the coil mold portion 10 to form the cooling passage F has a flat plate shape, as shown in FIG. 3. It may be configured to include a plate-shaped jacket member 21 formed of. That is, the plate-shaped jacket member 21 is provided in a form that is adhered to the side wall of the coil mold part 10 through an adhesive layer (p), so that the plate-shaped jacket member 21 covers the flow groove 12 of the coil mold part 10.
  • the cooling passage (F) is formed by the inner surface of the jacket member (21) and the passage groove (12) of the coil mold portion (10).
  • the outer wall of the assembly may be configured in the form of furrows and ridges
  • the plate-shaped jacket member 21 is configured to be attached to the adhesive surface portion 13, which is configured in the form of ridges on the outer wall of the assembly, and may be formed in the form of furrows.
  • the configured flow path groove 12 may be configured to be formed as the cooling flow path (F).
  • the cooling passage (F) in forming the cooling passage (F), a separate processing procedure is not required, and the cooling passage (F) can be formed through a single molding operation and an adhesion process of the plate-shaped jacket member (21). , the cost and time for constructing the cooling passage (F) can be reduced, and it can have the effect of preventing defective structures from occurring due to collapse during the formation process of the cooling passage (F).
  • the adhesive surface portion 13 of the coil mold portion 10 is spaced apart to ensure uniformity of the adhesive layer (p) for attaching the plate-shaped jacket member (21) for forming the cooling passage (F).
  • a protrusion 14 structure may be additionally configured.
  • the adhesive layer (p) applied in the process of attaching the plate-shaped jacket member 21 to the outer wall of the coil mold portion 10 is applied to the adhesive surface portion 13, and the adhesive layer p is applied on the adhesive surface portion 13.
  • the plate-shaped jacket member 21 is bonded by the adhesive layer (p).
  • the plate-shaped jacket member 21 is bonded by the adhesive layer (p).
  • the adhesive strength of the member 21 may not be maintained consistently, and some adhesive may flow into the channel groove, making it difficult to properly form the internal channel.
  • the spacing protrusions 14 have a height to ensure the minimum amount of adhesive layer (p) required for attaching the plate-shaped jacket member 21, and can be configured to be provided at dispersed positions on the adhesive surface portion 13, , More preferably, in the adhesive structure of the plate-shaped jacket member 21, it is bonded at positions such as the top, bottom, and center of the coil mold portion 10, which correspond to the edge portion and center, etc., which are highly related to adhesive strength. It is preferable that it is formed on the face portion 13 and distributed.
  • spaced protrusions may be provided around the block grooves 35 provided in the inlet/outlet manifold block 30 and the inlet/outlet manifold block 40 to have the same effect as the spaced protrusions 14, or, A block protrusion 36 may be formed as an alternative means having a similar effect to the spacing protrusion 14.
  • the block protrusion 36 may be configured in the form of a protruding band around the block groove 35, which secures a predetermined thickness of the adhesive layer (p) during pressure bonding with the adhesive object after applying the adhesive. In addition to the effect, it can also have the effect of solving the problem of the adhesive flowing into the block groove 35, preventing the formation of a flow path or reducing the cross-section of the flow path.
  • the jacket part 20 which is combined with the coil mold part 10 to form the cooling passage (F), has 'U' as shown in FIG. 3. It may be configured to include a pocket-type jacket member 23 formed as a pocket structure having a ' ⁇ ' or ' ⁇ ' cross-sectional shape, and is provided with a structure that directly or indirectly covers the adhesive surface portions on both sides of the coil mold part 10. It can be.
  • the structure that directly covers the adhesive surface portions on both sides of the coil mold portion 10 is used to connect the pocket-type jacket member 23 and the It may be somewhat inconvenient to form a good adhesive layer because the adhesive for bonding the coil mold portion 10 is pushed out.
  • the structure that indirectly covers the adhesive surface portions on both sides of the coil mold portion 10 includes, for example, an inlet/outlet manifold block 30 and an inlet/outlet manifold block 30 at the front and rear ends of the coil mold portion 10, respectively.
  • the plate-shaped jacket member 21 is attached to both walls of the coil mold part 10 and inserted into the pocket structure in the assembled state, and the pocket-shaped jacket member
  • the horizontal side of (23) is not directly bonded to the horizontal side of the coil mold portion 10, but is indirectly bonded through bonding with the plate-shaped jacket member 21, and the pocket-type jacket member 23 includes a plurality of Since the surfaces of the structure are integrally connected, the sealing performance for cooling fluid, etc. can be improved.
  • the coil mold part 10 may have a problem in attaching the plate-shaped jacket member due to the small area of the coil mold part 10 itself, so first, the coil mold part 10 An assembly is prepared by first forming a cooling passage (F) on the side wall by attaching the plate-shaped jacket member 21 to the side wall, and then inserting the assembly into the inner space of the pocket-type jacket member 23.
  • the lower end of the jacket member 23 and the bottom of the coil mold portion 10 may be configured to come into contact with each other to form a bottom flow path (B) together with the flow path groove provided on the bottom.
  • the width of the bottom channel B formed at the bottom of the coil mold part 10 is configured to have a shape as wide as possible to maximize heat exchange efficiency. It can be configured to do so.
  • the pocket-type jacket member 23 may be formed to further include a flange portion extending from an upper end thereof in an outwardly bent shape, and the flange portion may be formed by forming the pocket-type jacket member 23.
  • This is to form a coupling structure that can maintain a solid coupling state when coupled with the base block 50 while the assembly is inserted into the interior of (23).
  • the fastening structure is formed through the flange portion of the pocket-type jacket member 23, there is an effect of securing high sealing performance due to a strong bonding force and an effect of easy separation and assembly for maintenance, etc. You can have it.
  • a plate-type jacket is installed at the front and rear ends of the assembly assembled by combining the pocket-type jacket member 23.
  • the sealing performance can be further improved by attaching additional members, or, as shown in Figures 1 and 3, the sealing performance can be improved by covering the front and rear ends of the assembly with a cap-shaped finishing cap member 60, respectively. You can do it.
  • a method of implementing sealing performance can be used by forming the pocket-type jacket member 23 into a pocket structure with only the upper side open, inserting the assembly, and then sealing the assembly and the pocket-type jacket member 23 with a strong bonding force. It may be possible.
  • a cover-type jacket member 26 may be additionally provided on the outside of the pocket-type jacket member 23, and the cover-type jacket member 26 has the effect of protecting the outer surface of the pocket-type jacket member 23.
  • a pressure resistance effect that prevents adhesive damage or swelling of the inner plate-shaped jacket member 21 and/or pocket-type jacket member 23 from occurring due to the internal pressure of the cooling fluid, and a structure that surrounds the assembly from the outside. This can provide the effect of improving sealing performance.
  • the mover 100 in the linear motor system according to an embodiment of the present invention, has a coil mold part 10 equipped with a coil 11 and a jacket part 20 at the bottom. It may be provided with a base block 50 at the top, and the base block 50 has a cooling water inlet 51 at either the front end or the rear end based on the moving direction of the mover 100 of the linear motor system. ) may be provided and a cooling water outlet 52 may be provided on the other side.
  • the cooling fluid supplied through the cooling water inlet 51 may flow through the cooling passage F, cool the temperature of the coil 11, and be discharged through the cooling water outlet 52.
  • the cooling fluid discharged through the cooling water outlet 52 may be configured in a circulation structure in which the cooling fluid is supplied again through the cooling water inlet 51 using a predetermined path, and in this case, the cooling fluid can be naturally cooled. It is preferable that the coolant is supplied again through the coolant inlet 51 in a reduced temperature state through a predetermined path or through a separate cooler such as a chiller.
  • the positions of the coolant inlet 51 and the coolant outlet 52 are arranged in the longitudinal direction of the base block 50 as described above, so that the mover 100 of the linear motor system When assembled with a stator and mounted on a system, the piping for supplying cooling fluid protrudes from the external area of the stator, smoothly improving the phenomenon of the cooling water piping getting caught in or interfering with the stator when driving a linear motor. It has a possible effect.
  • a wiring hole 54 is provided at the front or rear end of the base block 50 for connecting a current cable for applying and controlling current to the coil 11, and is connected through the wiring hole 54. It can be configured so that wiring for external driving current supply and electrical communication can be arranged, and a sensor fastening hole 53 is added for inserting and installing sensors necessary for auxiliary operation of the system, such as temperature sensors and current sensors. It can be configured.
  • the structure formed to be connected through the base block 50 is such that the related piping and wiring are connected to the base. It can be configured to be located on the block 50 side, which has the effect of resolving problems of collision or interference with the stator during the operation of the linear motor.
  • the upper and both ends of the base block 50 are provided with one or more structure fastening parts 55 so that the payload can be fixed to the mover when implementing a transfer stage or other structure using a linear motor system.
  • This structure fastening part 55 may be provided in the form of a general bolt fastening hole, and in addition, for example, it may be formed in the form of a hole with a counterbore structure with one side open to conceal the bolt head and provide a tool. It can also provide effects such as convenience of work.
  • the top of the assembly may be configured to be coupled to the base block 50, and the wiring of the coil portion protruding from the top of the coil mold portion 10 constituting the assembly may be connected to the base block 50. It can be inserted into the inside through the bottom of the base block 50 and electrically connected to other components of the system, external devices, power sources, etc. through the wiring hole 54 provided on the front or rear side of the base block 50.
  • coolant inlet 51 and the coolant outlet 52 formed in the base block 50 are connected to pipes for supplying and discharging cooling fluid for cooling the coil 11, and the base block (
  • the inflow and outflow manifold blocks 30 and the upper ends of the inflow and outflow manifold blocks 40 may be connected in fluid communication through the internal flow path of 50).
  • the coupling between the jacket portion 20 and the base block 50 is configured to be sturdy and easily detachable, and the connection between the jacket portion 20 and the base block 50 is rigid and easily detachable.
  • the fixing structure is preferably constructed using the flange portion of the pocket-type jacket member 23 described above.
  • the coolant flowing in through the coolant inlet 51 of the base block 50 flows from the front end of the base block 50 to the top of the inflow and outflow manifold block 30, and the inflow and outflow manifold block 30 ) flows downward along the internal flow path of the inflow and outflow manifold block 30, and split supply port 31 provided on at least one of the two horizontal sides of the inlet and outflow manifold block 30. It can be configured to be supplied to each cooling passage (F) through.
  • each cooling passage (F) flows into the collection discharge port 41 of the inflow and outflow manifold block 40 from the rear end and passes through the upper end of the inflow and outflow manifold block 40 into the base block. It may be configured to flow into (50) and exit through the cooling water outlet (52) located at the rear end of the base block (50). Using this flow path, the cooling fluid approaches the surroundings of the coil (11) and cools it. The function can be performed, and the cooling fluid with an increased temperature is cooled from the outside and re-introduced through the cooling water inlet 51, or the cooling fluid with an increased temperature is discharged to the outside and discarded and replaced with new cooling fluid. It may be configured in the form of an inflow.
  • the coil 11 A flow path groove 12 having a uniform flow path width is formed on the side of the disposed coil mold portion 10, and based on this, the cooling flow path F can be configured to have a uniform flow path width.
  • the split supply ports 31 of the inflow and outflow manifold blocks 30 can also be configured to have the same size and be arranged at equal intervals, and the supplied Cooling water may also be supplied at a uniform flow rate to cool the side wall of the coil mold part 10.
  • the cooling fluid flowing along the inside of the cooling passage (F) for cooling mainly performs a conduction cooling function through contact with the inner surface of the cooling passage (F). Therefore, the cooling passage (F) through which the cooling fluid flows can be provided adjacent to the coil 11 or configured to increase the contact surface, thereby providing the effect of improving cooling efficiency.
  • the linear motor system according to an embodiment of the present invention is a modified embodiment of the cooling passage, and as shown in FIG. 5, the upper passage groove 12a and the lower passage groove 12c are located in the middle.
  • the channel groove may be configured to have a wider width than the channel groove 12b of .
  • the coil mold part ( 10) The arrangement path of the flow groove 12 located on the side wall continuously matches or is as close as possible to the winding-shaped arrangement structure of the coil 11 on the side wall, but the upper flow groove (12) is provided so that the heat transfer surface can also be expanded.
  • the upper flow groove (12) is provided so that the heat transfer surface can also be expanded.
  • cooling efficiency can be improved by providing a wider channel groove width.
  • the split supply port 31 of the inflow and outflow manifold block 30 and the collection outlet 41 of the inflow and outflow manifold block 40 are connected to the upper part. It is preferable to increase the diameter and/or number of the split supply ports 31 and the collection discharge ports 41 at positions corresponding to the flow path grooves 12a and the lower flow path grooves 12c.
  • the linear motor system according to an embodiment of the present invention is another modified embodiment for improving cooling efficiency by reducing the separation distance between the heating part of the coil 11 and the cooling passage (F) for cooling, Figure 6
  • a cooling passage can be formed according to the winding shape of the coil 11.
  • the coil 11 when manufacturing the coil mold part 10, the coil 11 is configured as a coreless type while ensuring the structural strength of the coil mold part 10.
  • Epoxy resin, etc. may be injected into the coil to support the center of the coil.
  • the heat transfer path passing from the coil through the center of the coil or the heat transfer path passing through the periphery of the coil improves cooling performance. Since this inevitably has a limited effect on improvement, the cooling passage for cooling the coil 11 is configured to appropriately follow the winding shape of the coil 11 to cool it efficiently.
  • cooling is achieved by providing a partition wall in a structure in which the coils 11 are continuously disposed and molded to connect the central parts of the coils 11 filled with epoxy resin, etc. It is desirable to form a smoothly distributed flow structure of fluid.
  • the entire coil 11 is continuously provided with a semicircular flow path groove that follows half of the winding shape of the coil. It is possible to form a cooling passage (F) that secures a short heat transfer path from the coil 11 by dividing the winding shape into two, upper and lower.
  • cooling passage (F) it is desirable to form the structure of the passage groove to have a curved shape with respect to the bend of the internal passage in order to smoothly flow the internal cooling fluid.
  • the split supply port 31 of the inflow and outflow manifold block 30 and the collection discharge port 41 of the inflow and outflow manifold block 40 provide cooling fluid to the cooling passage F. It can be configured with a two-part supply and discharge structure on the side to efficiently supply.
  • the linear motor system according to an embodiment of the present invention is another modified embodiment for improving the cooling efficiency for heat generation of the coil 11, and as shown in FIG. 7, the coil mold part ( 10), the inflow and outflow manifold block (30) provided at the front end, and the inflow and outflow manifold block (40) provided at the rear end are provided with an internal flow path for supplying cooling fluid and an internal flow path for discharging the cooling fluid.
  • the flow direction of the cooling fluid can be formed differently for each channel groove 12 of the coil mold part 10.
  • the inflow and outflow manifold block 30 provided at the front end of the coil mold part 10 is provided with a split supply port 31 and a collection discharge port 32, and the inflow and outflow manifold block 40 provided at the rear end. It is provided with a split supply port (42) along with a collection discharge port (41), so that the cooling fluid supplied through the split supply port (31) of the inflow and outflow manifold block (30) passes through the corresponding flow path groove (12) to the inflow and outflow manifold block.
  • the cooling fluid is discharged through the collection outlet (41) of (40) and supplied through the split supply port (42) of the inflow and outflow manifold block (40) through the corresponding flow path groove (12) to the inflow and outflow manifold block (30).
  • the flow direction of the cooling fluid can be formed differently for each flow path groove 12.
  • the coil mold portion (10) When comparing the cooling effect in the case where the flow direction is different for each flow path groove (12) and the case where the flow direction of the cooling fluid for the flow path grooves (12) is configured to be uniform, the coil mold portion (10)
  • the cooling effect on the supply side of the cooling fluid is excessively high.
  • the cooling effect on the discharge side is excessively low, resulting in an imbalance in cooling performance, which may lead to a decrease in the electromagnetic field control performance of the operator.
  • the cooling fluid flow direction for each channel groove 12 of the coil mold part 10 may occur. By setting and configuring differently, cooling performance can be secured evenly, and this can provide the effect of ensuring good electromagnetic field control performance of the operator.
  • the front and rear inflow and outflow manifold blocks (30, 40) are provided with an internal flow path for supplying the cooling fluid and an internal flow path for discharging the cooling fluid, so that the flow direction of the cooling fluid can be varied for each flow groove (12).
  • fluid communication with the front and rear inflow and outflow manifold blocks 30 and 40 must also be provided in a modified structure.
  • part of the cooling fluid flowing into the internal flow path of the base block 50 through the coolant inlet 51 provided at the front of the base block 50 is connected to the inflow and outflow manifold block 30 at the front position.
  • the internal flow path for supplying cooling fluid connected to the cooling water inlet 51 is branched so that the remaining cooling fluid flows across the base block 50 and is supplied to the inflow and outflow manifold block 40 at the rear end. It has an additional structure that extends across the base block 50 to the rear end position and is connected to the inflow and outflow manifold block 40 at the rear end position.
  • the cooling fluid discharged from the inflow and outflow manifold block 30 at the front position and flowing into the internal flow path of the base block 50 extends across the base block 50 to the rear end position to form an inflow and outflow manifold at the rear end position.
  • the internal flow path for discharging the cooling fluid connected to the coolant outlet 52 is connected to the base block 50 so that it is discharged from the block 40 and flows into the internal flow path of the base block 50 and is discharged through the coolant outlet 52. ) and an additional structure extending across the shear position.
  • a structure having both a coolant inlet 51 and a coolant outlet 52 at the front and rear ends of the base block 50 may be used.
  • the cooling fluid flowing into the coolant inlet 51 at the front passes through the cooling passage (F) by the coil mold part 10 and the jacket part 20, and then is discharged to the coolant outlet 52 at the rear end
  • the cooling fluid flowing into the cooling water inlet 51 at the rear end passes through the cooling passage (F) formed by the coil mold part 10 and the jacket part 20, and then is discharged through the cooling water outlet 52 at the front end.
  • the linear motor system according to an embodiment of the present invention is another modified embodiment for improving the cooling efficiency for heat generation of the coil 11, and as shown in FIG. 8, the coil mold part ( 10) It may be configured to include a second cooling passage (S) forming a flow path for the cooling fluid on the outer side of the cooling passage (F) in the thickness direction.
  • a second cooling passage (S) forming a flow path for the cooling fluid on the outer side of the cooling passage (F) in the thickness direction.
  • the cooling passage (F) formed on the surface of the coil mold part 10 to cool the coil 11 is a conductive cooling structure, which improves cooling efficiency at adjacent points, but reduces cooling efficiency at other points. Therefore, a problem may occur where the temperature increases at a point where the cooling passage (F) is not provided.
  • the cooling passage (F) is primarily formed by attaching a plate-shaped jacket member 21 to the outer surface of the coil mold part 10, and another plate-shaped jacket member 21 is additionally attached thereon.
  • the second cooling passage (S) cooling efficiency can be further improved.
  • the second cooling passage (S) only needs to provide a cooling function for the amount of heat generated that is not cooled in the cooling passage (F), so the flow rate does not have to be fast, and the hydraulic pressure of the cooling fluid flowing inside is not high, so the second cooling passage (S) only needs to provide a cooling function for the heat generation that is not cooled in the cooling passage (F).
  • the width of the cooling passage (S) may be configured to be wider than the width of the first cooling passage (F), and the contact structure for forming the second cooling passage (S) in the thickness direction of the jacket portion through this is also shown. It has an effect that can be configured in a simple form.
  • another plate-shaped jacket member 21 is additionally coupled to the plate-shaped jacket member 21 attached to the outer surface of the coil mold part 10.
  • the plate-shaped jacket members 21 are first combined with each other to form the second cooling passage (S), and then the combination of the plate-shaped jacket members 21 is formed into the coil mold part.
  • a method of forming a cooling passage (F) by attaching to the outer surface of (10) may be adopted.
  • the linear motor of the present invention can be used as a moving part in ultra-precision equipment such as semiconductor manufacturing equipment, so there is a need to ensure stability.
  • the flow of the cooling fluid for cooling of the present invention is composed of a high-speed flow to improve cooling efficiency, but the internal cooling fluid flows only in a laminar flow state by suppressing turbulent fluidization and limiting the Reynolds number for the flow. It can be formed to have this configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Linear Motors (AREA)

Abstract

The objective of the present invention is to provide a linear motor that has high speed, high precision, and stability, and has a structure that can improve cooling efficiency as well as simplify the manufacturing process, thereby improving overall output, stability, and productivity. In order to achieve the above objective, a linear motor according to one embodiment of the present invention is a linear motor system having a coil in at least one of a mover or a stator, wherein the mover or the stator comprises: a coil mold part formed by molding a composite resin material and having the coil thereinside; and a jacket part adhesively bonded to cover at least one side surface of the coil mold part, wherein the side surface of the coil mold part has a flow path groove to form a cooling passage that provides a flow path of a cooling fluid through the adhesive bonding between the coil mold part and the jacket part.

Description

수냉식 리니어 모터 시스템Water-cooled linear motor system
본 발명은 리니어 모터 시스템에 관한 것으로서, 더욱 상세하게는, 고속 및 고정밀성과 안정성을 모두 갖춘 리니어 모터를 구성하는데 있어서, 냉각효율의 향상과 더불어 제조 공정을 간략화 할 수 있는 구조로 형성되어, 전체 출력의 향상과 안정성 및 생산성이 향상될 수 있는 리니어 모터 시스템에 관한 것이다.The present invention relates to a linear motor system, and more specifically, in constructing a linear motor with high speed, high precision, and stability, it is formed with a structure that can simplify the manufacturing process as well as improve cooling efficiency, thereby increasing the overall output. It is about a linear motor system that can improve stability and productivity.
리니어 모터는 전자, 자동차, 항공우주 산업분야 등에서 매우 널리 사용되고 있으며, 그 정밀도 및 정확도 향상에 따라 반도체 장비 및 정밀 가공 장치 등에서 더욱 보편화되고 있고, 이에 따른 추가적인 기술개선 수요도 증가하고 있다.Linear motors are widely used in the electronics, automobile, and aerospace industries, and as their precision and accuracy improve, they are becoming more common in semiconductor equipment and precision processing equipment, and the demand for additional technological improvements is also increasing.
예를 들어, 반도체 제조 생산 공정에 있어서, 웨이퍼를 통해 생산되는 반도체 회로 칩은 전공정을 통하여 형성된 여러 개의 반도체 회로 칩 구조에 대하여 후공정의 다이싱 공정을 통하여 하나씩 개별로 분할되는 과정을 거치게 되고, 남은 후공정을 통하여 완제품의 반도체로 생산되는데, 이때, 한 장의 웨이퍼에서 최종 완제품의 반도체 회로 칩의 생산 비율을 웨이퍼 불량률로 나타낼 수 있다.For example, in the semiconductor manufacturing process, semiconductor circuit chips produced through wafers go through the process of dividing the multiple semiconductor circuit chip structures formed through the front-end process into individual pieces through the dicing process in the back-end process. , it is produced into a finished semiconductor product through the remaining post-processes. At this time, the production rate of the final finished semiconductor circuit chip from one wafer can be expressed as the wafer defect rate.
이러한, 웨이퍼 불량률은 반도체 제조 생산 단가에 영향을 주게 되어 제조공정에서 이러한 웨이퍼 불량률을 낮추어야 될 필요성이 있으며, 다이싱 과정에서 절단 품질이 좋지 못하여 웨이퍼가 폐기되는 경우도 발생할 수 있어, 다이싱에 사용되는 장비의 절단과 관련된 구동부는 정확도와 안정성 및 신속성이 요구된다.This wafer defect rate affects the production cost of semiconductor manufacturing, so there is a need to reduce this wafer defect rate in the manufacturing process. In the dicing process, wafers may be discarded due to poor cutting quality, so they are used for dicing. The cutting-related driving part of the equipment requires accuracy, stability, and speed.
이때, 상기 구동부는 선형운동을 하기 위한 장치로 요구되는 정확도와 안정성 및 신속성을 만족시키기 위하여, 자석의 극성을 이용하여 선형운동이 이루어지도록 구성되는 리니어 모터를 사용하도록 구성되고, 이는 리니어 모터 자체의 운동 특성상 물리적인 마찰을 최소화한 형태로 구동되도록 구성됨에 따라 진동이 발생할 위험이 적고, 선형운동 속도를 매우 빠르게 구현가능한 이점이 있기 때문이다.At this time, the driving unit is configured to use a linear motor configured to achieve linear movement using the polarity of the magnet in order to satisfy the accuracy, stability, and speed required as a device for linear movement, which is the linear movement of the linear motor itself. This is because, due to the nature of the movement, it is designed to be driven in a way that minimizes physical friction, so there is less risk of vibration occurring and there is an advantage in that linear movement speed can be achieved very quickly.
이와 관련하여, 반도체 제조를 위한 새로운 기술들이 등장함에 따라 반도체를 제조하는 웨이퍼의 요구 두께는 더욱 얇아 지게 되고, 상기 다이싱 공정의 절단 방법 또한 물리적인 칼날을 이용하는 블레이드 다이싱에서 절단간극을 미소면적으로 구성할 수 있고, 커팅 정밀도를 향상시킬 수 있는 레이저 다이싱 및 플라즈마 다이싱 방법으로 발전하는 추세이다.In this regard, as new technologies for semiconductor manufacturing emerge, the required thickness of wafers for manufacturing semiconductors becomes thinner, and the cutting method of the dicing process also changes the cutting gap into a microscopic area in blade dicing using a physical blade. There is a trend toward developing laser dicing and plasma dicing methods that can improve cutting precision.
이러한, 다이싱 장비의 발전에 따라 다이싱 장비의 구동부에 적용되는 리니어 모터 또한, 요구되는 정밀도와 직진도, 안정성, 속도 등의 기준이 향상되고 있으며, 이와 관련하여 여러가지 다양한 리니어 모터들이 개발되어 왔었다.With the development of dicing equipment, the standards for precision, straightness, stability, speed, etc. required for linear motors applied to the driving part of dicing equipment are also improving, and in relation to this, various linear motors have been developed. .
그러나, 종래의 리니어 모터들은 코어타입의 경우 코일의 중심부에 위치하는 금속성 코어로 인하여 외부 영구자석 간에 인력이 발생하게 되고 이에 따라 리니어 모터의 동작이 매끄럽지 못하는 코깅 현상이 발생하게 되는 문제가 있으며, 코깅 현상을 해결하기 위한 코어리스 타입의 리니어 모터는 코어타입 모터 대비 리니어모터 전체의 구조적 강성이 취약한 문제가 발생하였다.However, in the case of conventional linear motors, the core type has a problem in that the metallic core located in the center of the coil generates an attractive force between external permanent magnets, resulting in a cogging phenomenon that prevents the linear motor from operating smoothly. In order to solve this problem, the coreless type linear motor had the problem that the overall structural rigidity of the linear motor was weak compared to the core type motor.
또한, 상기 코어리스 타입의 리니어 모터는 코어 타입 모터 대비 동일 전력시의 출력저하 문제가 발생하여 동일속도 대비 더 높은 고전력의 인가가 요구되고 이로 인한 코일부의 발열이 커져 이와 관련된 문제점이 발생하여 코일부의 냉각성능이 중요하게 되었다.In addition, the coreless type linear motor has a problem of lower output at the same power compared to the core type motor, so application of higher power is required compared to the same speed, and this causes heat generation in the coil part to increase, causing problems related to this. Some cooling performance has become important.
즉, 코일부의 냉각성능이 향상하게 되면 코일의 냉각이 잘되게 되고 고전력의 출력을 코일에 인가하더라도 발열량이 커지지 않으므로 결론적으로 리니어 모터의 속도를 더 증가시킬 수 있어서, 코어리스 리니어 모터의 제조회사들은 코어리스 리니어 모터의 냉각 성능을 향상시키기 위한 방안들을 연구 개발하였다.In other words, if the cooling performance of the coil part is improved, the coil can be cooled well and the amount of heat generated does not increase even when high power output is applied to the coil. As a result, the speed of the linear motor can be further increased, so manufacturers of coreless linear motors Methods to improve the cooling performance of coreless linear motors were researched and developed.
그러나, 종래의 코어리스 리니어 모터들은 냉각 성능을 향상시키기 위하여 유로를 확장 설계하여 리니어 모터의 부피가 커지거나, 유로 구조 자체가 복잡하게 설계되어 유로부위의 가공시간 또는 성형시간이 길어지고, 복잡한 구조로 인한 생산성이 낮으며, 전체적인 생산 비용 또한 비싼 문제가 있었다.However, in conventional coreless linear motors, the flow path is designed to be expanded to improve cooling performance, which increases the volume of the linear motor, or the flow path structure itself is designed in a complicated manner, which increases the processing or forming time of the flow path area and complicates the structure. This resulted in low productivity and high overall production costs.
따라서, 코어리스 타입 리니어 모터의 코일 냉각 구조에 있어서, 냉각 효율을 향상시킬 수 있고, 리니어 모터의 부피를 크게 형성하지 않으며, 유로를 형성하기 위한 제조 시간을 간략화 할 수 있고, 전체 제조 비용 또한 절감할 수 있는 리니어 모터 시스템의 개발이 요구되고 있다.Therefore, in the coil cooling structure of a coreless type linear motor, cooling efficiency can be improved, the volume of the linear motor is not increased, the manufacturing time for forming the flow path can be simplified, and the overall manufacturing cost can also be reduced. There is a need for the development of a linear motor system that can
이에 따라, 본 발명은 상기와 같은 종래의 문제점을 개선하기 위한 것으로서, 리니어 모터의 냉각 구조를 형성하는데 있어서, 냉각 효율을 향상시켜 리니어 모터의 최대 속도를 향상시킬 수 있는 리니어 모터 시스템을 제공하는데 그 목적이 있다.Accordingly, the present invention is intended to improve the above-described conventional problems, and provides a linear motor system that can improve the maximum speed of the linear motor by improving cooling efficiency in forming the cooling structure of the linear motor. There is a purpose.
또한, 리니어 모터의 냉각 구조를 형성하는데 있어서, 내부의 냉각수 유로를 간단한 방법으로 형성할 수 있어 시간과 비용이 절약될 수 있는 리니어 모터 시스템을 제공하는데 그 목적이 있다.Additionally, in forming the cooling structure of a linear motor, the purpose is to provide a linear motor system that can save time and cost by forming an internal coolant flow path in a simple manner.
또한, 리니어 모터의 냉각 구조를 형성하는데 있어서, 리니어 모터의 크기를 컴팩트하게 구성하여 소형 장치에서 사용가능한 리니어 모터 시스템을 제공하는데 그 목적이 있다.In addition, in forming a cooling structure for a linear motor, the purpose is to provide a linear motor system that can be used in small devices by compactly configuring the size of the linear motor.
또한, 리니어 모터의 냉각 구조를 형성하는데 있어서, 내부의 냉각수가 유동할 수 있는 유로를 간단하게 형성할 수 있도록 구성한 리니어 모터 시스템을 제공하는데 그 목적이 있다.Additionally, in forming the cooling structure of the linear motor, the purpose is to provide a linear motor system configured to simply form a flow path through which the internal coolant can flow.
또한, 리니어 모터의 냉각 구조를 형성하는데 있어서, 리니어 모터의 제조 방법을 간략하게 구성하여 전체 제조 공정에 소모되는 시간을 감소시킬 수 있고, 그 제조 비용 또한 감소시킬 수 있는 리니어 모터 시스템을 제공하는데 그 목적이 있다.In addition, in forming the cooling structure of the linear motor, the manufacturing method of the linear motor can be simplified to reduce the time consumed in the entire manufacturing process and to provide a linear motor system that can also reduce the manufacturing cost. There is a purpose.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일실시예에 따른 리니어 모터는, 가동자 또는 고정자 중 적어도 어느 하나에 코일을 구비하는 리니어 모터 시스템으로서, 상기 가동자 또는 고정자는, 내부에 상기 코일이 구비되고 복합수지 재질로 몰딩되어 형성된 코일몰드부; 및, 상기 코일몰드부의 적어도 어느 한 측면을 덮는 구조로 접착 결합된 자켓부;를 포함하여 구성되며, 상기 코일몰드부의 상기 측면에는 유로홈이 구비되어 상기 코일몰드부와 자켓부의 접착 결합에 의해서 냉각유체의 유동 경로를 제공하는 냉각유로를 형성하는 구조를 갖는다.In order to achieve the above technical problem, a linear motor according to an embodiment of the present invention is a linear motor system having a coil in at least one of a mover or a stator, and the mover or stator has the coil inside. A coil mold portion provided and formed by molding a composite resin material; And, a jacket portion adhesively bonded to cover at least one side of the coil mold portion, wherein a flow path groove is provided on the side surface of the coil mold portion to cool the coil mold portion and the jacket portion by adhesive bonding. It has a structure that forms a cooling passage that provides a flow path for fluid.
또한, 본 발명의 일실시예에 따른 리니어 모터에서, 상기 자켓부는 비금속성 소재로 형성될 수 있다.Additionally, in the linear motor according to an embodiment of the present invention, the jacket portion may be formed of a non-metallic material.
또한, 본 발명의 일실시예에 따른 리니어 모터에서, 상기 코일몰드부의 상기 측면 중 상단과 하단에 형성된 유로홈은 중간에 형성된 유로홈보다 유로홈의 폭이 크도록 구성될 수 있다.Additionally, in the linear motor according to an embodiment of the present invention, the channel grooves formed at the top and bottom of the sides of the coil mold part may be configured to have a width of the channel grooves larger than the channel grooves formed in the middle.
또한, 본 발명의 일실시예에 따른 리니어 모터에서, 상기 코일몰드부의 상기 측면에 구비된 유로홈은, 냉각유체가 상기 코일몰드부의 내부에 구비된 상기 코일의 권선형상을 따라 상기 코일몰드부의 상기 측면을 유동할 수 있도록 상기 코일의 권선형상을 반영하여 형성될 수 있다.Additionally, in the linear motor according to an embodiment of the present invention, the flow path groove provided on the side of the coil mold portion allows cooling fluid to flow through the coil mold portion along the winding shape of the coil provided inside the coil mold portion. It can be formed to reflect the winding shape of the coil so that the side can flow.
또한, 본 발명의 일실시예에 따른 리니어 모터에서, 상기 자켓부는, 상기 코일몰드부와 자켓부의 접착 결합에 의해서 형성된 상기 냉각유로보다 외측으로 제2냉각유로를 더 구비하여 구성될 수 있다.Additionally, in the linear motor according to an embodiment of the present invention, the jacket portion may be configured to further include a second cooling passage outside the cooling passage formed by adhesive bonding of the coil mold portion and the jacket portion.
또한, 본 발명의 일실시예에 따른 리니어 모터는, 리니어 모터의 냉각을 위한 냉각유체가 리니어 모터의 내부에서 층류 유동하도록 상기 냉각유로의 치수 및 형태, 유속을 제한하여 구성될 수 있다.Additionally, the linear motor according to an embodiment of the present invention may be configured by limiting the size, shape, and flow rate of the cooling passage so that the cooling fluid for cooling the linear motor flows laminarly inside the linear motor.
또한, 본 발명의 일실시예에 따른 리니어 모터에서, 상기 자켓부는, 판상의 소재로 형성되어 상기 코일몰드부의 상기 측면에 접착 결합되는 판형 자켓부재; 및, ‘U’자 또는 ‘ㄷ’자 단면 형상으로 형성되고, 상기 코일몰드부의 상기 측면을 포함하여 상기 코일몰드부의 외측을 직접적으로 또는 간접적으로 감싸는 구조로 접착 결합되는 포켓형 자켓부재;를 포함하여 구성될 수 있다.Additionally, in the linear motor according to an embodiment of the present invention, the jacket portion includes: a plate-shaped jacket member formed of a plate-shaped material and adhesively coupled to the side of the coil mold portion; And, a pocket-type jacket member formed in a 'U'-shaped or 'ㄷ'-shaped cross-sectional shape and adhesively coupled in a structure that directly or indirectly surrounds the outside of the coil mold part, including the side surface of the coil mold part. It can be configured.
또한, 본 발명의 일실시예에 따른 리니어 모터에서, 상기 코일몰드부의 상기 측면에 구비된 유로홈은, 복수개로 구비되되, 리니어 모터의 운동방향에 따른 상기 코일몰드부의 일측과 타측을 연결하는 형태로 형성되며, 상기 코일몰드부의 상기 일측 및 타측에는 각각 유출입 매니폴드블록이 구비되며, 상기 유출입 매니폴드블록 중 어느 하나에는 상기 복수개의 유로홈에 대응되는 분할공급구가 구비되고, 나머지 하나에는 상기 복수개의 유로홈에 대응되는 취합토출구가 구비된 구조로 구성될 수 있다.In addition, in the linear motor according to an embodiment of the present invention, the flow grooves provided on the side of the coil mold portion are provided in plural numbers, and are formed to connect one side and the other side of the coil mold portion according to the direction of movement of the linear motor. It is formed with an inflow and outflow manifold block on one side and the other side of the coil mold part, one of the inflow and outflow manifold blocks is provided with a split supply port corresponding to the plurality of flow grooves, and the other one is provided with an inflow and outflow manifold block. It may be configured with a structure provided with a collection discharge port corresponding to a plurality of flow grooves.
이상의 구성 및 작용에서 설명한 바와 같이, 본 발명의 의한 리니어 모터 시스템은 리니어 모터의 냉각 구조를 형성하는데 있어서, 냉각 효율을 향상시켜 리니어 모터의 최대 속도를 향상시킬 수 있는 리니어 모터 시스템을 제공하는 효과를 가진다.As explained in the above configuration and operation, the linear motor system according to the present invention has the effect of providing a linear motor system that can improve the maximum speed of the linear motor by improving cooling efficiency in forming the cooling structure of the linear motor. have
또한, 리니어 모터의 냉각 구조를 형성하는데 있어서, 내부의 냉각수 유로를 간단한 방법으로 형성할 수 있어 시간과 비용이 절약될 수 있는 리니어 모터 시스템을 제공하는 효과를 가진다.In addition, when forming the cooling structure of a linear motor, the internal coolant flow path can be formed in a simple way, which has the effect of providing a linear motor system that can save time and cost.
또한, 리니어 모터의 냉각 구조를 형성하는데 있어서, 리니어 모터의 크기를 컴팩트하게 구성하여 소형 장치에서 사용가능한 리니어 모터 시스템을 제공하는 효과를 가진다.In addition, in forming the cooling structure of the linear motor, the size of the linear motor is compactly configured, which has the effect of providing a linear motor system that can be used in small devices.
또한, 리니어 모터의 냉각 구조를 형성하는데 있어서, 내부의 냉각수가 유동할 수 있는 유로를 간단하게 형성할 수 있도록 구성한 리니어 모터 시스템을 제공하는 효과를 가진다.In addition, in forming the cooling structure of the linear motor, it has the effect of providing a linear motor system configured to easily form a flow path through which the internal coolant can flow.
또한, 리니어 모터의 냉각 구조를 형성하는데 있어서, 리니어 모터의 제조 방법을 간략하게 구성하여 전체 제조 공정에 소모되는 시간을 감소시킬 수 있고, 그 제조 비용 또한 감소시킬 수 있는 리니어 모터 시스템을 제공하는 효과를 가진다.In addition, in forming the cooling structure of the linear motor, the time consumed in the entire manufacturing process can be reduced by simply configuring the manufacturing method of the linear motor, and the effect of providing a linear motor system that can also reduce the manufacturing cost is. has
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the effects described above, and should be understood to include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명의 일실시예에 따른 리니어 모터 시스템에서 예시적으로 가동자에 대한 전체 구성을 나타낸 사시도.1 is a perspective view showing the overall configuration of an exemplary mover in a linear motor system according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 리니어 모터 시스템에서 가동자에 대한 전체 구성 중 코일몰드부의 복합소재 몰딩 표면구조를 나타낸 정면도 및 측면도.Figure 2 is a front view and a side view showing the composite material molding surface structure of the coil mold part of the overall structure of the mover in the linear motor system according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 리니어 모터 시스템에서 가동자에 대한 전체 구성에 대한 정면도 및 측면도.Figure 3 is a front view and a side view of the overall configuration of the mover in the linear motor system according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 리니어 모터 시스템에서 가동자에 대한 전체 구성 중 유로와 코일간의 상관관계를 파악할 수 있도록 투시도면으로 나타낸 정면도.Figure 4 is a front view shown in perspective so that the correlation between the flow path and the coil among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention can be understood.
도 5는 본 발명의 일실시예에 따른 리니어 모터 시스템에서 가동자에 대한 전체 구성 중 코일몰드부의 유로홈 구조에 대한 변형 실시예를 정면도로 나타낸 설명도.Figure 5 is a front view illustrating a modified embodiment of the channel groove structure of the coil mold portion among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 리니어 모터 시스템에서 가동자에 대한 전체 구성 중 코일몰드부의 유로홈 구조에 대한 다른 변형 실시예를 정면도로 나타낸 설명도.Figure 6 is a front view showing another modified embodiment of the flow groove structure of the coil mold part among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 리니어 모터 시스템에서 가동자에 대한 전체 구성 중 유출입 매니폴드블록을 이용하여 변형된 유로 구조를 구비한 또 다른 변형 실시예를 측면도로 나타낸 설명도.Figure 7 is a side view illustrating another modified embodiment having a modified flow path structure using an inlet/outlet manifold block among the overall configuration of the mover in a linear motor system according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 리니어 모터 시스템에서 가동자에 대한 전체 구성 중 자켓부의 두께방향으로 추가된 유로 구조를 구비한 또 다른 변형 실시예를 측면도로 나타낸 설명도.FIG. 8 is a side view illustrating another modified embodiment including a flow path structure added in the thickness direction of the jacket portion among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to the attached drawings. However, the present invention may be implemented in various different forms and, therefore, is not limited to the embodiments described herein.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected (connected, contacted, combined)" with another part, this means not only "directly connected" but also "indirectly connected" with another member in between. "Includes cases where it is. In addition, when a part is said to “include” a certain component, this does not mean that other components are excluded, but that other components can be added, unless specifically stated to the contrary.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used herein are only used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as “comprise” or “have” are intended to indicate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.
또한, 본 명세서에서 리니어 모터 시스템의 가동자의 구조나, 그 세부 구성요소인 코일몰드부 등의 구조를 설명함에 있어서 ‘상부’, ‘하부’, ‘수평방향 측면’, ‘전단’, ‘후단’ 등의 용어는 해당 문장에 별도의 해석 기준이 제시된 경우가 아니라면 도 1에 도시된 자세를 참고하여 해석할 수 있다.In addition, in this specification, when describing the structure of the mover of the linear motor system or the structure of the coil mold part, which is a detailed component thereof, 'top', 'bottom', 'horizontal side', 'front end', and 'rear end' are used. Terms such as these can be interpreted with reference to the posture shown in Figure 1, unless separate interpretation standards are provided in the corresponding sentence.
이하, 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 당해 분야에 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art can easily implement them.
우선, 각 도면을 살펴보면, 도 1은 본 발명의 일실시예에 따른 리니어 모터 시스템에서 가동자에 대한 전체 구성을 나타낸 사시도로서, 수냉식 리니어 모터의 구조에 대하여 설명하는데 이해를 돕기 위해 사시도로서 나타낸 도면이다. 도 2는 본 발명의 일실시예에 따른 리니어 모터 시스템에서 가동자에 대한 전체 구성 중 복합수지 몰딩 표면구조를 나타낸 정면도 및 측면도로서, 유로 형성을 간편하게 하기 위한 몰딩 구조에 대하여 설명하기 위하여 정면도와 측면도로 나타낸 것이며, 유로를 형성하는 판형 자켓부재의 접착강도를 확보하기 위하여 접착제가 균일하게 도포될 수 있도록 형성된 구조에 대하여 설명하기 위한 도면이다.First, looking at each drawing, Figure 1 is a perspective view showing the overall configuration of the mover in a linear motor system according to an embodiment of the present invention, and is shown as a perspective view to aid understanding in explaining the structure of a water-cooled linear motor. am. Figure 2 is a front view and a side view showing the surface structure of the composite resin molding among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention. It is shown in a side view, and is a drawing to explain the structure formed so that the adhesive can be uniformly applied to ensure the adhesive strength of the plate-shaped jacket member forming the flow path.
도 3은 본 발명의 일실시예에 따른 리니어 모터 시스템에서 가동자에 대한 전체 구성에 대한 정면도 및 측면도로서, 내부의 코일의 배치 구조와 이를 냉각하기 위한 유로 구조에 대하여 설명하기 위해 정면도는 내부의 코일 배치를 표시하고, 측면도는 내부 절단면을 표현하되 이해를 위하여 일부 확대하여 표현한 도면이다. 도 4는 본 발명의 일실시예에 따른 리니어 모터 시스템에서 가동자에 대한 전체 구성 중 유로홈과 코일간의 상관관계를 파악할 수 있도록 코일에 대한 투시도면으로 나타낸 정면도로서, 냉각수의 흐름과 코일의 직접적인 냉각지점에 대하여 설명하기 위한 도면이다.Figure 3 is a front view and a side view of the overall configuration of the mover in the linear motor system according to an embodiment of the present invention. The front view shows the inside to explain the arrangement structure of the internal coil and the flow path structure for cooling it. The coil arrangement is shown, and the side view shows the internal cut surface, but is partially enlarged for understanding. Figure 4 is a front view showing a perspective view of the coil so that the correlation between the flow path groove and the coil among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention can be understood, and the flow of coolant and the direct flow of the coil are shown in Figure 4. This is a drawing to explain the cooling point.
도 5는 본 발명의 일실시예에 따른 리니어 모터 시스템에서 가동자에 대한 전체 구성 중 유로 구조에 대한 변형 실시예를 정면도로 나타낸 설명도로서, 코일의 냉각 효율을 향상시키기 위해 유로홈의 폭을 변형시킨 유로 구조를 설명하기 위한 도면이다. 도 6은 본 발명의 일실시예에 따른 리니어 모터 시스템에서 가동자에 대한 전체 구성 중 유로홈의 경로 구조를 변형시킨 다른 변형 실시예를 정면도로 나타낸 설명도로서, 코일의 냉각 효율을 향상시키기 위해 유로홈이 코일의 권선형태를 추종하도록 변형시킨 유로구조를 설명하기 위한 도면이다.Figure 5 is a front view illustrating a modified example of the flow path structure among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention, in which the width of the flow groove is changed to improve the cooling efficiency of the coil. This is a drawing to explain the modified flow path structure. Figure 6 is a front view illustrating another modified embodiment in which the path structure of the flow groove among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention is modified, in order to improve the cooling efficiency of the coil. This is a drawing to explain the channel structure in which the channel grooves have been modified to follow the winding shape of the coil.
도 7은 본 발명의 일실시예에 따른 리니어 모터 시스템에서 가동자에 대한 전체 구성 중 유출입 매니폴드블록을 이용하여 변형된 유로 구조를 구비한 또 다른 변형 실시예를 측면도로 나타낸 설명도로서, 복수의 유로에 대하여 교대로 엇갈린 방향으로 유동하도록 구성하여 가동자 전체에 대한 냉각 성능의 고르게 확보할 수 있는 유로구조를 설명하기 위한 도면이다. 도 8은 본 발명의 일실시예에 따른 리니어 모터 시스템에서 가동자에 대한 전체 구성 중 자켓부의 두께 방향으로 추가된 유로 구조를 구비한 또 다른 변형 실시예를 측면도로 나타낸 설명도로서, 코일의 냉각 효율을 향상시키기 위하여 두께 방향으로 복수의 유로를 갖는 구조를 도시한 것이며, 구성들 간의 접착 결합을 수행하는 접착제층에 대한 표현을 생략하여 간략하게 도시한 도면이다.Figure 7 is an explanatory diagram showing a side view of another modified embodiment having a modified flow path structure using an inflow and outflow manifold block among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention. This is a drawing to explain the flow path structure that can ensure even cooling performance for the entire movable body by configuring the flow paths to flow in alternating directions. Figure 8 is an explanatory diagram showing a side view of another modified embodiment with a flow path structure added in the thickness direction of the jacket part among the overall configuration of the mover in the linear motor system according to an embodiment of the present invention, which is used to cool the coil In order to improve efficiency, a structure having a plurality of channels in the thickness direction is shown, and the representation of the adhesive layer that performs adhesive bonding between components is omitted to simplify the drawing.
본 발명의 일 실시예에 따른 리니어 모터 시스템은, 도 1 내지 8에 도시된 바와 같이, 수냉식 냉각을 위한 유로구조를 최적화하여 냉각 효율을 향상시키고, 그 제조과정을 간략하게 할 수 있어 모터의 출력 향상과 생산성 및 경제성을 높인 리니어 모터 시스템이다.As shown in FIGS. 1 to 8, the linear motor system according to an embodiment of the present invention improves cooling efficiency by optimizing the flow path structure for water-cooled cooling and simplifies the manufacturing process, thereby increasing the output of the motor. It is a linear motor system that improves productivity and economic efficiency.
일반적으로 리니어 모터는 영구자석이 배열된 고정자와 상기 고정자를 주행레일로 하여 주행하는 전자석이 구비된 가동자로 구성되고, 이러한 영구자석의 배열을 한 쌍으로 구성하여 서로 다른 극성이 중심을 향하도록 구성되며, 길이방향을 따라 배치되는 영구자석의 극성 또한 서로 교차되는 형태로 구성될 수 있다. 이외에도 리니어 모터는 영구자석이 가동자에 구비되고 전자석이 고정자에 구비된 형태로 구성되거나 또는 고정자와 가동자 양측 모두에 전자석을 구비하여 구성될 수도 있다.In general, a linear motor consists of a stator with permanent magnets arranged and a mover with electromagnets that travel using the stator as a running rail, and these permanent magnets are arranged in pairs so that the different polarities point toward the center. In addition, the polarities of permanent magnets arranged along the longitudinal direction may also be configured to cross each other. In addition, a linear motor may be configured in such a way that a permanent magnet is provided in a mover and an electromagnet is provided in a stator, or it may be configured by providing electromagnets in both the stator and the mover.
본 발명은 리니어 모터 시스템에서 전자석용 코일이 구비된 가동자 또는 고정자의 냉각 구조에 관한 것으로서, 이하에서는 전자석용 코일이 가동자에 구비된 경우를 대상으로 하여 예시적으로 설명하나, 전자석용 코일이 고정자에 구비된 경우에도 마찬가지로 설명될 수 있다.The present invention relates to a cooling structure of a mover or stator equipped with an electromagnet coil in a linear motor system. Hereinafter, the case in which the electromagnet coil is provided in the mover will be illustratively described. However, the electromagnet coil is provided in the mover. The case where it is provided on the stator can also be explained in the same way.
본 발명의 일실시예에 따른 리니어 모터 시스템은, 예를 들어, 한 쌍으로 배치되는 고정자 사이에 배치되고 내부에 코일이 구비된 가동자를 포함하여 구성될 수 있다. 상기 리니어 모터 시스템의 가동자(100)는 내부에 전자석용 코일이 구비되어 상기 코일(11)의 통전 상태에 따라 상기 고정자를 구성하는 영구자석 사이에서 척력에 의한 비접촉상태의 자기부상 형태가 되고 이 상태에서 인접한 코일의 인력에 의하여 이동되도록 구성될 수 있다.The linear motor system according to an embodiment of the present invention may be configured to include, for example, a mover disposed between a pair of stators and having a coil therein. The mover 100 of the linear motor system is equipped with a coil for an electromagnet inside, and depending on the energization state of the coil 11, it takes the form of magnetic levitation in a non-contact state by repulsion between the permanent magnets constituting the stator. In this state, it can be configured to move by the attraction of adjacent coils.
이때, 리니어 모터 시스템의 가동자(100)를 이동시키기 위해서는 코일(11)에 지속적인 전류가 공급되어야 하고 이 공급되는 전류의 극성을 빠르게 변환시킬수록 코일의 자기적 극성 변환속도는 올라가게 되며 이와 더불어 상기 리니어 모터 시스템의 가동자(100)의 속도도 증가하게 될 수 있다.At this time, in order to move the actuator 100 of the linear motor system, a continuous current must be supplied to the coil 11, and the faster the polarity of this supplied current is changed, the faster the magnetic polarity conversion speed of the coil increases. The speed of the actuator 100 of the linear motor system may also be increased.
그런데, 상기 리니어 모터 시스템의 가동자(100)의 속도를 증가시키기 위해서 코일의 통전속도를 빠르게 변화시킬수록 상기 코일의 전류 저항에 의한 온도 또한 상승하여 발열 정도가 심해지게 되면 코일의 통전에 의해 발생되는 자력이 약해지는 문제가 발생할 수 있다.However, in order to increase the speed of the mover 100 of the linear motor system, the faster the energization speed of the coil is changed, the temperature due to the current resistance of the coil also increases, and the degree of heat generation becomes more severe, which is caused by energization of the coil. A problem may arise where the magnetic force becomes weaker.
그러므로, 상기 코일(11)의 온도 상승을 방지하기 위하여, 상기 가동자(100) 내부에 코일(11)의 주변에 냉각유체가 유동할 수 있는 냉각유로(F)를 형성하여 상기 코일(11) 및 그 주변을 냉각하기 위한 냉각구조가 필요하다.Therefore, in order to prevent the temperature of the coil 11 from rising, a cooling passage F through which cooling fluid can flow is formed around the coil 11 inside the mover 100 to cool the coil 11. A cooling structure is needed to cool the area and its surroundings.
본 발명의 일실시예에 따른 리니어 모터 시스템의 가동자(100)는, 상기 코일(11) 주변을 복합수지 재질로 몰딩함으로써 상기 코일(11)을 감싸는 형태의 코일몰드부(10)를 포함하여 구성되고, 상기 코일몰드부(10)의 표면에 냉각유로(F)를 구성하기 위한 유로홈(12)이 형성되며, 상기 코일몰드부(10)의 외표면을 덮는 구조로 접합되는 자켓부(20)를 구비함으로써 상기 자켓부(20)의 내면과 상기 유로홈(12) 부분이 함께 냉각유로(F)를 형성할 수 있다.The mover 100 of the linear motor system according to an embodiment of the present invention includes a coil mold part 10 that surrounds the coil 11 by molding the area around the coil 11 with a composite resin material. A flow groove 12 for forming a cooling passage F is formed on the surface of the coil mold part 10, and a jacket part joined in a structure that covers the outer surface of the coil mold part 10 ( By providing 20), the inner surface of the jacket portion 20 and the portion of the flow groove 12 can form a cooling passage F together.
이처럼, 상기 코일(11)의 주변부를 몰딩하여 일체로 코일몰드부(10)를 형성하고 상기 코일몰드부(10)의 외표면에 자켓부(20)를 부착하는 형태로 냉각유로(F)를 구성하는 방법은, 코일 주변부에 유로를 형성하는데 있어서, 제조 시에 유로가 불량으로 형성될 확률이 적어지고, 유지 보수가 간편하며, 코일들은 몰딩 작업시 일측에 정렬한 상태로 작업을 수행할 수 있어, 각 코일들에 대한 배선들의 불량률이 줄어들 수 있는 효과가 있다.In this way, the coil mold portion 10 is formed integrally by molding the peripheral portion of the coil 11, and the cooling passage F is formed by attaching the jacket portion 20 to the outer surface of the coil mold portion 10. The method of construction is to form a flow path around the coil, which reduces the probability of a defective flow path being formed during manufacturing, makes maintenance easy, and allows the coils to be aligned on one side during molding work. This has the effect of reducing the defect rate of wiring for each coil.
본 발명의 일실시예에 따른 리니어 모터 시스템에서, 상기 가동부(100)는, 도 2에 도시된 바와 같이, 코일(11)을 냉각하기 위한 유로 구조를 형성하기 위하여 코일(11)이 내부에 매립되어 형성된 코일몰드부(10)를 포함하여 구성되고, 상기 코일몰드부(10)의 수평방향 양 측면 중 적어도 어느 한 측면의 외표면에 유로홈(12)이 구비된다.In the linear motor system according to an embodiment of the present invention, the movable part 100 has a coil 11 embedded therein to form a flow path structure for cooling the coil 11, as shown in FIG. 2. It is configured to include a coil mold portion 10, and a flow path groove 12 is provided on the outer surface of at least one of both horizontal sides of the coil mold portion 10.
상기 유로홈(12)이 구비된 코일몰드부(10)의 제조과정을 예를 들어 단계적으로 설명하면, 전기적 에너지를 제공받기 위한 케이블이 상단에 위치하도록 상기 코일(11)을 정렬한 상태에서, 상기 코일(11)의 외부를 통째로 복합수지 등을 사용하여 밀봉하는 형태로 몰딩 작업을 수행하여 코일몰드부(10)를 형성할 수 있다.If the manufacturing process of the coil mold part 10 provided with the flow groove 12 is explained step by step as an example, with the coil 11 aligned so that the cable for receiving electrical energy is located at the top, The coil mold portion 10 can be formed by performing a molding operation in which the entire exterior of the coil 11 is sealed using a composite resin or the like.
이때, 상기 코일몰드부(10)의 틀에는 몰딩 작업과 동시에 상기 코일몰드부(10)의 외부 표면에 냉각유로(F)를 형성하기 위한 고랑 형태의 유로홈(12)이 성형될 수 있는 형태로 요철 구조가 구비된다.At this time, a furrow-shaped channel groove 12 can be formed in the frame of the coil mold part 10 to form a cooling flow path F on the outer surface of the coil mold part 10 at the same time as the molding operation. An uneven structure is provided.
아울러, 상기 코일몰드부(10)는 각각의 코일에 대하여 개별 몰딩 작업을 수행하는 형태로 구성될 수 있으나, 바람직하게는 내부에 상기 코일(11)이 하나 이상 구비되어 복수 개의 코일(11)이 일체로 구비된 형태로 형성됨으로써 상기 리니어 모터 시스템의 가동자(100)를 구성하기 위한 소정 규모의 코일 집합체로서 준비되어 이용될 수 있다.In addition, the coil mold unit 10 may be configured to perform an individual molding operation on each coil, but preferably has one or more coils 11 therein, forming a plurality of coils 11. By being formed in an integrated form, it can be prepared and used as a coil assembly of a certain size to constitute the mover 100 of the linear motor system.
상기 코일몰드부(10)에서 코일 몰딩을 위한 복합수지 재질은, 예를 들어, 에폭시 레진 등의 열경화성 플라스틱 재질을 선택하여 채용할 수 있으나, 이에 제한되는 것은 아니다.The composite resin material for coil molding in the coil mold unit 10 may be, for example, a thermosetting plastic material such as epoxy resin, but is not limited thereto.
본 발명의 일실시예에 따른 리니어 모터 시스템에서, 상기 가동부(100)는, 도 2에 도시된 바와 같이, 내부의 코일 집합체가 구비되도록 형성된 코일몰드부(10)의 길이방향 전단과 후단에 전단측 유출입 매니폴드블록(30)과 후단측 유출입 매니폴드블록(40)이 추가로 결합되어 구성될 수 있고, 상기 전단측 유출입 매니폴드블록(30)과 후단측 유출입 매니폴드블록(40)은 내부에 냉각수가 유동할 수 있는 유로가 구비되고, 그 유로는 유출입 매니폴드블록의 상단부에서 베이스 블록(50)과 유체 연통되게 연결되고 유출입 매니폴드블록의 양 측면 중 적어도 어느 한 측면에서 코일몰드부(10)의 대응되는 측면에 형성된 유로홈(12)과 유체 연통되게 연결 가능하도록 분할공급구(31) 및/또는 취합토출구(41)를 구비할 수 있다.In the linear motor system according to an embodiment of the present invention, the movable part 100 is located at the longitudinal front and rear ends of the coil mold part 10 formed to have an internal coil assembly, as shown in FIG. 2. The side inflow and outflow manifold block 30 and the rear end inflow and outflow manifold block 40 may be additionally combined, and the front end inflow and outflow manifold block 30 and the rear end inflow and outflow manifold block 40 are inside the inflow and outflow manifold block 40. A passage through which coolant can flow is provided, and the passage is connected in fluid communication with the base block 50 at the upper end of the inflow and outflow manifold block, and a coil mold portion ( It may be provided with a split supply port 31 and/or a collection discharge port 41 so as to be connected in fluid communication with the flow path groove 12 formed on the corresponding side of 10).
여기서 유출입 매니폴드블록의 상기 측면에는 상기 코일몰드부(10)의 유로홈(12)과 연결되는 구조로 블록홈(35)이 형성되고 상기 블록홈(35) 내에 분할공급구(31) 및/또는 취합토출구(41)가 구비되는 것이 바람직하다.Here, a block groove 35 is formed on the side of the inflow and outflow manifold block in a structure connected to the flow groove 12 of the coil mold part 10, and a split supply port 31 and/or are formed within the block groove 35. Alternatively, it is preferable that a collection discharge port 41 is provided.
이와 같이 준비된 상기 유출입 매니폴드블록(30) 및 상기 유출입 매니폴드블록(40)은 상기 코일몰드부(10)의 전단과 후단 측면에 각각 결합되어 조립체를 형성할 수 있고, 상기 결합은 체결수단을 이용한 체결결합이나 융착 또는 접착제 접착 등에 의한 접합결합 등에서 선택하여 적용할 수 있다.The inflow and outflow manifold blocks 30 and the inflow and outflow manifold blocks 40 prepared in this way can be combined to the front and rear sides of the coil mold part 10, respectively, to form an assembly, and the combination is performed using a fastening means. It can be applied by selecting from fastening bonding using adhesive bonding, fusion bonding, or bonding bonding using adhesives.
본 발명의 일실시예에 따른 리니어 모터 시스템에서, 상기 가동부(100)는, 도 3에 도시된 바와 같이, 상기 코일몰드부(10)의 적어도 어느 한 측면을 덮는 구조로 접합 결합된 자켓부(20);를 포함하여 구성된다. 상기 자켓부(20)는 평판 형태로 형성된 부재, 포켓 구조로 형성된 부재 등으로부터 적어도 어느 하나를 선택하여 융착 또는 접착제 결합 등의 접합 결합에 의하여 상기 코일몰드부(10)의 적어도 어느 한 측면을 덮는 구조로 구성될 수 있다.In the linear motor system according to an embodiment of the present invention, the movable part 100 is a jacket part bonded in a structure that covers at least one side of the coil mold part 10, as shown in FIG. 20); It consists of: The jacket portion 20 is selected from at least one member formed in a flat shape, a member formed in a pocket structure, etc., and covers at least one side of the coil mold portion 10 by bonding such as fusion or adhesive bonding. It can be composed of a structure.
상기 자켓부(20)의 재질은, 코일에 의해서 형성되는 전자석용 자기장에 대한 영향을 방지하도록 비금속성 소재나 비자성금속 소재 중에서 선택될 수 있으며, 예를 들어, 섬유강화 플라스틱 소재, 탄소 섬유강화 플라스틱 소재 등에서 선택되어 구성되는 것이 바람직하다. 또한, 진공환경용 리니어 모터 시스템 등의 경우에는 상기 자켓부(20)의 재질을, 비자성금속 소재 중에서 선택하여 구성하는 것이 바람직하다.The material of the jacket portion 20 may be selected from a non-metallic material or a non-magnetic metal material to prevent the influence of the magnetic field for the electromagnet formed by the coil, for example, fiber-reinforced plastic material, carbon fiber-reinforced material. It is preferable that it is selected from plastic materials, etc. In addition, in the case of a linear motor system for a vacuum environment, etc., it is desirable to select the material of the jacket portion 20 from among non-magnetic metal materials.
본 발명의 일실시예에 따른 리니어 모터 시스템에서, 상기 코일몰드부(10)와 함께 결합되어 상기 냉각유로(F)를 형성하는 자켓부(20)는, 도 3에 도시된 바와 같이, 평판 형태로 형성된 판형 자켓부재(21)를 포함하여 구성될 수 있다. 즉, 상기 판형 자켓부재(21)는 접착제층(p)를 통하여 상기 코일몰드부(10)의 측벽에 접착되는 형태로 구비됨으로써 상기 코일몰드부(10)의 유로홈(12)을 덮는 상기 판형 자켓부재(21)의 내면과, 상기 코일몰드부(10)의 유로홈(12)에 의하여 상기 냉각유로(F)를 형성하게 된다.In the linear motor system according to an embodiment of the present invention, the jacket portion 20, which is coupled with the coil mold portion 10 to form the cooling passage F, has a flat plate shape, as shown in FIG. 3. It may be configured to include a plate-shaped jacket member 21 formed of. That is, the plate-shaped jacket member 21 is provided in a form that is adhered to the side wall of the coil mold part 10 through an adhesive layer (p), so that the plate-shaped jacket member 21 covers the flow groove 12 of the coil mold part 10. The cooling passage (F) is formed by the inner surface of the jacket member (21) and the passage groove (12) of the coil mold portion (10).
즉, 상기 조립체의 외벽은 고랑과 이랑 형태로 구성될 수 있으며, 상기 판형 자켓부재(21)은 상기 조립체의 외벽의 이랑형태로 구성되는 접착면부(13)에 부착되는 형태로 구성되어 고랑 형태로 구성된 유로홈(12)이 상기 냉각유로(F)로 형성되도록 구성될 수 있다.That is, the outer wall of the assembly may be configured in the form of furrows and ridges, and the plate-shaped jacket member 21 is configured to be attached to the adhesive surface portion 13, which is configured in the form of ridges on the outer wall of the assembly, and may be formed in the form of furrows. The configured flow path groove 12 may be configured to be formed as the cooling flow path (F).
이와 같이, 상기 냉각유로(F)를 형성하는데 있어서, 별도의 가공 절차가 필요하지 않고, 한 번의 몰딩 작업과 상기 판형 자켓부재(21)의 접착과정을 통하여 냉각유로(F)를 형성할 수 있어, 상기 냉각유로(F)를 구성하는데 비용과 시간이 저감되고, 냉각유로(F)의 형성 작업에서 붕괴로 인한 불량 구조가 발생하는 것을 방지할 수 있는 효과를 가질 수 있다.In this way, in forming the cooling passage (F), a separate processing procedure is not required, and the cooling passage (F) can be formed through a single molding operation and an adhesion process of the plate-shaped jacket member (21). , the cost and time for constructing the cooling passage (F) can be reduced, and it can have the effect of preventing defective structures from occurring due to collapse during the formation process of the cooling passage (F).
아울러, 상기 코일몰드부(10)의 상기 접착면부(13)에는 상기 냉각유로(F)를 형성하기 위한 판형 자켓부재(21)을 부착하기 위한 접착제층(p)의 균일성을 확보하기 위한 이격돌기(14) 구조가 추가로 구성될 수 있다.In addition, the adhesive surface portion 13 of the coil mold portion 10 is spaced apart to ensure uniformity of the adhesive layer (p) for attaching the plate-shaped jacket member (21) for forming the cooling passage (F). A protrusion 14 structure may be additionally configured.
보다 상세하게 설명하면, 상기 코일몰드부(10)의 외벽에 상기 판형 자켓부재(21)가 부착되는 과정에서 도포되는 접착제층(p)는 상기 접착면부(13)에 도포되게 되고, 이 위에 상기 판형 자켓부재(21)가 상기 접착제층(p)에 의하여 접착되는 형태로 결합되는데 이때 접착을 위한 가압 단계에서 내부의 응고되지 않은 접착제층(p)의 분포가 균일하게 이루어지지 않게 되면 상기 판형 자켓부재(21)의 접착 강도가 일정하게 유지되지 못하고, 유로홈 측으로 접착제가 일부 유입되어 내부의 유로가 제대로 형성되기 어려운 문제가 발생할 수 있다.In more detail, the adhesive layer (p) applied in the process of attaching the plate-shaped jacket member 21 to the outer wall of the coil mold portion 10 is applied to the adhesive surface portion 13, and the adhesive layer p is applied on the adhesive surface portion 13. The plate-shaped jacket member 21 is bonded by the adhesive layer (p). At this time, if the distribution of the internal unsolidified adhesive layer (p) is not uniform during the pressurizing step for adhesion, the plate-shaped jacket member 21 is bonded by the adhesive layer (p). The adhesive strength of the member 21 may not be maintained consistently, and some adhesive may flow into the channel groove, making it difficult to properly form the internal channel.
따라서, 상기 이격돌기(14)는 상기 판형 자켓부재(21)가 부착되는데 필요한 접착제층(p)의 최소량을 보장하기 위한 높이로서 상기 접착면부(13)의 분산된 위치에 구비되도록 구성될 수 있으며, 보다 바람직하게는, 상기 판형 자켓부재(21)의 접착구조에서 접착강도와 관련성이 높은 테두리 부분과 중심부 등에 대응하는 상기 코일몰드부(10)의 최상단과, 최하단, 및 중심부 등의 위치에서 접착면부(13) 상에 형성되어 분산 배치되는 것이 바람직하다.Therefore, the spacing protrusions 14 have a height to ensure the minimum amount of adhesive layer (p) required for attaching the plate-shaped jacket member 21, and can be configured to be provided at dispersed positions on the adhesive surface portion 13, , More preferably, in the adhesive structure of the plate-shaped jacket member 21, it is bonded at positions such as the top, bottom, and center of the coil mold portion 10, which correspond to the edge portion and center, etc., which are highly related to adhesive strength. It is preferable that it is formed on the face portion 13 and distributed.
아울러, 상기 유출입 매니폴드블록(30)과 유출입 매니폴드블록(40)에 구비되는 블록홈(35)의 주변에도 상기 이격돌기(14)와 동일한 효과를 갖도록 이격돌기를 구비할 수 있으며, 또는, 상기 이격돌기(14)와 유사한 효과를 갖는 대안적인 수단으로서 블록돌출부(36)가 형성될 수 있다. 상기 블록돌출부(36)는 상기 상기 블록홈(35)의 주변에 돌출 띠 형태로 구성될 수 있으며, 이는 접착제의 도포 후 접착대상과의 가압접착 과정에서 접착제층(p)의 소정 두께를 확보하는 효과 이외에도 상기 블록홈(35)의 내부로 상기 접착제가 유입되어 유로의 형성을 방해하거나 유로 단면을 감소시키는 문제를 해소할 수 있는 효과도 가질 수 있다.In addition, spaced protrusions may be provided around the block grooves 35 provided in the inlet/outlet manifold block 30 and the inlet/outlet manifold block 40 to have the same effect as the spaced protrusions 14, or, A block protrusion 36 may be formed as an alternative means having a similar effect to the spacing protrusion 14. The block protrusion 36 may be configured in the form of a protruding band around the block groove 35, which secures a predetermined thickness of the adhesive layer (p) during pressure bonding with the adhesive object after applying the adhesive. In addition to the effect, it can also have the effect of solving the problem of the adhesive flowing into the block groove 35, preventing the formation of a flow path or reducing the cross-section of the flow path.
본 발명의 일실시예에 따른 리니어 모터 시스템에서, 상기 코일몰드부(10)와 함께 결합되어 상기 냉각유로(F)를 형성하는 자켓부(20)는, 도 3에 도시된 바와 같이, ‘U’자 또는 ‘ㄷ’자 단면 형상을 갖는 포켓 구조로 형성된 포켓형 자켓부재(23)를 포함하여 구성될 수 있고, 상기 코일몰드부(10)의 양 측면 접착면부를 직접 또는 간접적으로 덮는 구조로 구비될 수 있다.In the linear motor system according to an embodiment of the present invention, the jacket part 20, which is combined with the coil mold part 10 to form the cooling passage (F), has 'U' as shown in FIG. 3. It may be configured to include a pocket-type jacket member 23 formed as a pocket structure having a 'ㄷ' or 'ㄷ' cross-sectional shape, and is provided with a structure that directly or indirectly covers the adhesive surface portions on both sides of the coil mold part 10. It can be.
이때 상기 코일몰드부(10)의 양 측면 접착면부를 직접적으로 덮는 구조는, 상기 코일몰드부(10)를 포켓형 자켓부재(23)의 내측으로 삽입하는 과정에서 상기 포켓형 자켓부재(23)와 상기 코일몰드부(10)를 접착하기 위한 접착제가 밀려서 양호한 접착제층을 형성하는 것이 다소 불편할 수 있다.At this time, the structure that directly covers the adhesive surface portions on both sides of the coil mold portion 10 is used to connect the pocket-type jacket member 23 and the It may be somewhat inconvenient to form a good adhesive layer because the adhesive for bonding the coil mold portion 10 is pushed out.
한편, 간접적으로 상기 코일몰드부(10)의 양 측면 접착면부를 덮는 구조는, 예를 들어, 상기 코일몰드부(10)의 전단과 후단에 각각 유출입 매니폴드블록(30)과 유출입 매니폴드블록(40)이 결합된 후 상기 코일몰드부(10)의 양측벽에 판형 자켓부재(21)가 접착되어 조립된 상태에서 상기 포켓 구조의 내부로 삽입하는 방식을 통하여 형성될 수 있고, 포켓형 자켓부재(23)의 수평방향 측면은 코일몰드부(10)의 수평방향 측면과 직접적으로 접합되지 않고 판형 자켓부재(21)와의 접합을 통하여 간접적으로 접합되는 구조이며, 상기 포켓형 자켓부재(23)는 복수의 면이 일체로 연결된 구조여서 냉각유체 등에 대한 밀봉 성능을 개선할 수 있다.Meanwhile, the structure that indirectly covers the adhesive surface portions on both sides of the coil mold portion 10 includes, for example, an inlet/outlet manifold block 30 and an inlet/outlet manifold block 30 at the front and rear ends of the coil mold portion 10, respectively. After (40) is combined, the plate-shaped jacket member 21 is attached to both walls of the coil mold part 10 and inserted into the pocket structure in the assembled state, and the pocket-shaped jacket member The horizontal side of (23) is not directly bonded to the horizontal side of the coil mold portion 10, but is indirectly bonded through bonding with the plate-shaped jacket member 21, and the pocket-type jacket member 23 includes a plurality of Since the surfaces of the structure are integrally connected, the sealing performance for cooling fluid, etc. can be improved.
또한, 상기 코일몰드부(10)의 저면을 통한 추가적인 냉각성능을 구현할 수 있도록 상기 코일몰드부(10)의 저면에도 유로홈을 구비하여 저면유로(B)를 형성하고자 하는 경우에, 상기 코일몰드부(10)의 저면에 형성되는 유로홈(21)은 상기 코일몰드부(10) 자체의 면적이 작아 상기 판형 자켓부재 종류의 부착이 어려운 문제가 발생할 수 있어서, 먼저 상기 코일몰드부(10)의 측벽에 상기 판형 자켓부재(21)를 부착하여 측벽에 냉각유로(F)를 먼저 형성한 조립체를 준비한 후 상기 조립체를 포켓형 자켓부재(23)의 내측 공간에 삽입하는 형태로 구성하여, 상기 포켓형 자켓부재(23)의 하단부와 상기 코일몰드부(10)의 저면이 맞닿아 상기 저면에 구비된 유로홈과 함께 저면유로(B)를 형성하도록 구성될 수 있다.In addition, in the case where it is desired to form a bottom flow path (B) by providing a flow path groove on the bottom of the coil mold part 10 so as to realize additional cooling performance through the bottom of the coil mold part 10, the coil mold part 10 The channel groove 21 formed on the bottom of the part 10 may have a problem in attaching the plate-shaped jacket member due to the small area of the coil mold part 10 itself, so first, the coil mold part 10 An assembly is prepared by first forming a cooling passage (F) on the side wall by attaching the plate-shaped jacket member 21 to the side wall, and then inserting the assembly into the inner space of the pocket-type jacket member 23. The lower end of the jacket member 23 and the bottom of the coil mold portion 10 may be configured to come into contact with each other to form a bottom flow path (B) together with the flow path groove provided on the bottom.
단순히 상기 조립체를 U자 형태의 포켓 구조의 내부로 삽입하여 양 구성의 대응면을 상호 접착함으로써 저면유로를 형성하는 방식이어서, 가동자의 하부에 상기 저면유로(B)를 복잡한 제조공정 없이 간편하게 형성할 수 있는 효과가 있다.This is a method of forming a bottom flow path by simply inserting the assembly into the U-shaped pocket structure and bonding the corresponding surfaces of both components to each other, so that the bottom flow path (B) can be easily formed at the bottom of the mover without a complicated manufacturing process. There is a possible effect.
이때, 상기 포켓형 자켓부재(23)의 우수한 밀봉 구조를 기반으로 하는 점에서 상기 코일몰드부(10)의 하단에 형성되는 저면유로(B)의 폭은 최대한 넓은 형태를 갖도록 구성하여 열교환 효율을 극대화하도록 구성할 수 있다.At this time, based on the excellent sealing structure of the pocket-type jacket member 23, the width of the bottom channel B formed at the bottom of the coil mold part 10 is configured to have a shape as wide as possible to maximize heat exchange efficiency. It can be configured to do so.
아울러, 상기 포켓형 자켓부재(23)는, 도 3 등에 도시된 바와 같이, 그 상단부에서 외측으로 꺾여진 형태로 연장된 형상의 플랜지부를 더 포함하여 형성될 수 있고, 상기 플랜지부는 상기 포켓형 자켓부재(23)의 내부에 상기 조립체를 삽입한 상태에서 상기 베이스 블록(50)과 결합시에 견고한 결합상태를 유지할 수 있는 결합구조를 형성하기 위한 것이다. 이처럼 상기 포켓형 자켓부재(23)의 플랜지부를 통한 체결 결합 구조가 형성됨에 따라 견고한 결합력에 의한 높은 밀봉성능을 확보할 수 있는 효과와, 유지 보수를 위한 분리 및 결합이 간편하게 이루어질 수 있는 효과 등을 가질 수 있다.In addition, as shown in FIG. 3, etc., the pocket-type jacket member 23 may be formed to further include a flange portion extending from an upper end thereof in an outwardly bent shape, and the flange portion may be formed by forming the pocket-type jacket member 23. This is to form a coupling structure that can maintain a solid coupling state when coupled with the base block 50 while the assembly is inserted into the interior of (23). In this way, as the fastening structure is formed through the flange portion of the pocket-type jacket member 23, there is an effect of securing high sealing performance due to a strong bonding force and an effect of easy separation and assembly for maintenance, etc. You can have it.
또한, 상기 포켓형 자켓부재(23)의 전단과 후반의 개방 구조를 통한 냉각 유체의 유출 가능성을 추가로 차단하기 위하여, 상기 포켓형 자켓부재(23)를 결합하여 조립된 조립체의 전단과 후단에 판형 자켓부재를 추가로 부착하여 밀봉성능을 더욱 향상시키거나, 도 1 및 도 3에 도시된 바와 같이, 캡형태로 형성된 마감 캡부재(60)를 상기 조립체의 전단과 후단에 각각 덧씌워서 밀봉성능을 향상시킬 수 있다. 이외에도 상기 포켓형 자켓부재(23)를 상부 측면만 개방된 포켓 구조로 형성하여, 상기 조립체를 삽입한 후 조립체와 상기 포켓형 자켓부재(23)를 강한 결합력으로 밀봉결합함으로써 밀봉성능을 구현하는 방식을 이용할 수도 있다.In addition, in order to further block the possibility of cooling fluid leaking through the open structure at the front and rear ends of the pocket-type jacket member 23, a plate-type jacket is installed at the front and rear ends of the assembly assembled by combining the pocket-type jacket member 23. The sealing performance can be further improved by attaching additional members, or, as shown in Figures 1 and 3, the sealing performance can be improved by covering the front and rear ends of the assembly with a cap-shaped finishing cap member 60, respectively. You can do it. In addition, a method of implementing sealing performance can be used by forming the pocket-type jacket member 23 into a pocket structure with only the upper side open, inserting the assembly, and then sealing the assembly and the pocket-type jacket member 23 with a strong bonding force. It may be possible.
한편, 상기 포켓형 자켓부재(23)의 외부에는 커버형 자켓부재(26)가 추가로 구비될 수 있으며, 상기 커버형 자켓부재(26)는 상기 포켓형 자켓부재(23)의 외표면을 보호하는 효과와, 냉각유체의 내압으로 인하여 내측의 판형 자켓부재(21) 및/또는 포켓형 자켓부재(23)의 접착 훼손이나 부풀어 오름 현상 등이 발생하는 하는 것을 저지하는 내압 저항 효과, 조립체를 외부에서 감싸는 구조를 통하여 밀봉 성능을 향상시키는 효과 등을 제공할 수 있다.Meanwhile, a cover-type jacket member 26 may be additionally provided on the outside of the pocket-type jacket member 23, and the cover-type jacket member 26 has the effect of protecting the outer surface of the pocket-type jacket member 23. A pressure resistance effect that prevents adhesive damage or swelling of the inner plate-shaped jacket member 21 and/or pocket-type jacket member 23 from occurring due to the internal pressure of the cooling fluid, and a structure that surrounds the assembly from the outside. This can provide the effect of improving sealing performance.
본 발명의 일실시예에 따른 리니어 모터 시스템에서, 상기 가동자(100)는, 도 1 등에 도시된 바와 같이, 코일(11)이 구비된 코일몰드부(10) 및 자켓부(20)가 하부에 구비되고 상부에 베이스 블록(50)이 구비될 수 있으며, 상기 베이스 블록(50)에는 상기 리니어 모터 시스템의 가동자(100)의 이동방향을 기준으로 선단 또는 후단 중 어느 일측에 냉각수입구(51)가 구비되고 타측에 냉각수출구(52)가 구비되는 형태로 구성될 수 있다.In the linear motor system according to an embodiment of the present invention, the mover 100, as shown in FIG. 1, etc., has a coil mold part 10 equipped with a coil 11 and a jacket part 20 at the bottom. It may be provided with a base block 50 at the top, and the base block 50 has a cooling water inlet 51 at either the front end or the rear end based on the moving direction of the mover 100 of the linear motor system. ) may be provided and a cooling water outlet 52 may be provided on the other side.
상기 냉각수입구(51)를 통하여 공급된 냉각유체는 상기 냉각유로(F)를 유동하며 상기 코일(11)의 온도를 냉각시키고 상기 냉각수출구(52)를 통하여 토출되는 형태로 구성될 수 있으며, 필요에 따라 상기 냉각수출구(52)를 통하여 토출된 냉각유체가 소정의 경로를 이용하여 다시 상기 냉각수입구(51)를 통하여 공급되는 순환 구조로 구성될 수 있으며, 이때 냉각유체는 자연 냉각이 이루어질 수 있는 소정의 경로를 경유하거나 칠러(chiller)와 같은 별도의 냉각기를 거쳐 온도가 저하된 상태로 냉각수입구(51)를 통해 다시 공급되도록 구성되는 것이 바람직하다.The cooling fluid supplied through the cooling water inlet 51 may flow through the cooling passage F, cool the temperature of the coil 11, and be discharged through the cooling water outlet 52. Accordingly, the cooling fluid discharged through the cooling water outlet 52 may be configured in a circulation structure in which the cooling fluid is supplied again through the cooling water inlet 51 using a predetermined path, and in this case, the cooling fluid can be naturally cooled. It is preferable that the coolant is supplied again through the coolant inlet 51 in a reduced temperature state through a predetermined path or through a separate cooler such as a chiller.
한편, 상기 냉각수입구(51)와 냉각수출구(52)의 위치는 상술한 바와 같이 베이스 블록(50)의 길이방향에 대하여 배치된 상태로 구성됨에 따라, 상기 리니어 모터 시스템의 가동자(100)가 고정자와 함께 조립되어 시스템에 탑재될 경우 냉각유체를 공급하기 위한 배관이 고정자의 외부 영역에서 돌출된 형태가 되어, 리니어 모터의 구동시에 냉각수의 배관이 고정자에 걸리거나 간섭되는 현상을 원활하게 개선할 수 있는 효과를 가진다.Meanwhile, the positions of the coolant inlet 51 and the coolant outlet 52 are arranged in the longitudinal direction of the base block 50 as described above, so that the mover 100 of the linear motor system When assembled with a stator and mounted on a system, the piping for supplying cooling fluid protrudes from the external area of the stator, smoothly improving the phenomenon of the cooling water piping getting caught in or interfering with the stator when driving a linear motor. It has a possible effect.
또한, 상기 베이스 블록(50)의 전단 또는 후단에는 상기 코일(11)에 전류를 인가하고 제어하기 위한 전류 케이블이 연결되기 위한 배선배치공(54)이 구비되어 상기 배선배치공(54)을 통하여 외부와의 구동전류 공급 및 전기 통신 등의 배선이 배치될 수 있도록 구성될 수 있고, 온도센서, 전류센서 등 시스템의 운영에 보조적으로 필요한 센서들이 삽입 설치되기 위한 센서체결공(53)이 추가로 구성될 수 있다.In addition, a wiring hole 54 is provided at the front or rear end of the base block 50 for connecting a current cable for applying and controlling current to the coil 11, and is connected through the wiring hole 54. It can be configured so that wiring for external driving current supply and electrical communication can be arranged, and a sensor fastening hole 53 is added for inserting and installing sensors necessary for auxiliary operation of the system, such as temperature sensors and current sensors. It can be configured.
이와 같이, 시스템의 다른 구성 또는 외부의 장치와, 상기 리니어 모터 시스템의 가동자(100)를 유선으로 연결함에 있어서, 상기 베이스 블록(50)을 통하여 연결되도록 형성된 구조는, 관련 배관 및 배선이 베이스 블록(50) 측에 위치하도록 구성될 수 있어서 리니어 모터의 작동 과정에서 고정자와의 충돌이나 간섭 문제를 해소할 수 있는 효과를 가지게 된다.In this way, when connecting the mover 100 of the linear motor system with other components of the system or external devices by wire, the structure formed to be connected through the base block 50 is such that the related piping and wiring are connected to the base. It can be configured to be located on the block 50 side, which has the effect of resolving problems of collision or interference with the stator during the operation of the linear motor.
아울러, 상기 베이스 블록(50)의 상단 및 양측단에는 리니어 모터 시스템을 이용하여 이송 스테이지 또는 기타 구조물을 구현할 때 상기 가동자에 탑재물을 고정하여 이용할 수 있도록 구조물체결부(55)가 하나 이상 구비될 수 있으며 이러한 구조물 체결부(55)는 일반적인 볼트 체결공 형태로 구비되는 것, 이외에도, 예를 들어, 일측이 개방된 형태의 카운터보어 구조가 함께 형성된 홀 형태로 구성되어 볼트 헤드의 은폐 및 공구 작업의 편리성 등의 효과를 제공할 수도 있다.In addition, the upper and both ends of the base block 50 are provided with one or more structure fastening parts 55 so that the payload can be fixed to the mover when implementing a transfer stage or other structure using a linear motor system. This structure fastening part 55 may be provided in the form of a general bolt fastening hole, and in addition, for example, it may be formed in the form of a hole with a counterbore structure with one side open to conceal the bolt head and provide a tool. It can also provide effects such as convenience of work.
한편, 상기 조립체의 상단은 상기 베이스 블록(50)에 결합되는 형태로 구성될 수 있고, 상기 조립체를 구성하는 상기 코일몰드부(10) 상단에 돌출된 코일부의 배선은 상기 베이스 블록(50)의 저면을 통하여 내부로 삽입되고 상기 베이스 블록(50)의 선단 또는 후단 측면에 구비된 배선배치공(54)을 통하여 시스템의 다른 구성 또는 외부의 장치, 전원 등과 전기적으로 연결되도록 구성될 수 있다.Meanwhile, the top of the assembly may be configured to be coupled to the base block 50, and the wiring of the coil portion protruding from the top of the coil mold portion 10 constituting the assembly may be connected to the base block 50. It can be inserted into the inside through the bottom of the base block 50 and electrically connected to other components of the system, external devices, power sources, etc. through the wiring hole 54 provided on the front or rear side of the base block 50.
또한, 상기 베이스 블록(50)에 구성되는 상기 냉각수입구(51)와 상기 냉각수출구(52)는 코일(11)의 냉각을 위한 냉각유체를 공급 및 토출하는 배관이 연결되도록 구비되고 상기 베이스 블록(50)의 내부유로를 통하여 상기 유출입 매니폴드블록(30)과 상기 유출입 매니폴드블록(40)의 상단과 유체 연통되게 연결될 수 있다.In addition, the coolant inlet 51 and the coolant outlet 52 formed in the base block 50 are connected to pipes for supplying and discharging cooling fluid for cooling the coil 11, and the base block ( The inflow and outflow manifold blocks 30 and the upper ends of the inflow and outflow manifold blocks 40 may be connected in fluid communication through the internal flow path of 50).
이때, 상기 자켓부(20)와 상기 베이스 블록(50) 사이의 결합은 견고하면서도 탈부착이 용이하도록 구성되는 것이 바람직하며, 상기 자켓부(20)와 베이스 블록(50) 사이를 견고하면서도 탈부착 용이하게 고정하는 구조는 앞에서 설명한 포켓형 자켓부재(23)의 플랜지부를 이용하여 구성하는 것이 바람직하다.At this time, it is preferable that the coupling between the jacket portion 20 and the base block 50 is configured to be sturdy and easily detachable, and the connection between the jacket portion 20 and the base block 50 is rigid and easily detachable. The fixing structure is preferably constructed using the flange portion of the pocket-type jacket member 23 described above.
한편, 상기 베이스 블록(50)의 냉각수입구(51)를 통하여 유입된 냉각수는 상기 베이스 블록(50)의 전단에서 상기 유출입 매니폴드블록(30)의 상단으로 유입되고, 상기 유출입 매니폴드블록(30)에 유입된 냉각수는 상기 유출입 매니폴드블록(30)의 내부 유로를 따라 하방으로 유동하며, 상기 유출입 매니폴드블록(30)의 수평방향 양측면 중 적어도 어느 한 측면에 구비된 분할공급구(31)를 통하여 각각의 냉각유로(F)로 공급되도록 구성될 수 있다.Meanwhile, the coolant flowing in through the coolant inlet 51 of the base block 50 flows from the front end of the base block 50 to the top of the inflow and outflow manifold block 30, and the inflow and outflow manifold block 30 ) flows downward along the internal flow path of the inflow and outflow manifold block 30, and split supply port 31 provided on at least one of the two horizontal sides of the inlet and outflow manifold block 30. It can be configured to be supplied to each cooling passage (F) through.
또한, 상기 각각의 냉각유로(F)를 통하여 유동된 냉각유체는 후단에서 유출입 매니폴드블록(40)의 취합토출구(41)로 유입되어 상기 유출입 매니폴드블록(40)의 상단을 통해 상기 베이스 블록(50)으로 유입되고 상기 베이스 블록(50)의 후단에 위치한 냉각수출구(52)를 통해 빠져나가도록 구성될 수 있으며, 이와 같은 유로를 이용하여 냉각유체는 상기 코일(11) 주변으로 접근하여 냉각 기능을 수행할 수 있고, 온도가 상승된 냉각유체는 외부에서 냉각되어 상기 냉각수입구(51)를 통하여 다시 유입되는 형태로 구성되거나, 온도가 상승된 냉각유체는 외부로 배출하여 폐기되고 새로운 냉각유체가 유입되는 형태로 구성될 수도 있다.In addition, the cooling fluid flowing through each cooling passage (F) flows into the collection discharge port 41 of the inflow and outflow manifold block 40 from the rear end and passes through the upper end of the inflow and outflow manifold block 40 into the base block. It may be configured to flow into (50) and exit through the cooling water outlet (52) located at the rear end of the base block (50). Using this flow path, the cooling fluid approaches the surroundings of the coil (11) and cools it. The function can be performed, and the cooling fluid with an increased temperature is cooled from the outside and re-introduced through the cooling water inlet 51, or the cooling fluid with an increased temperature is discharged to the outside and discarded and replaced with new cooling fluid. It may be configured in the form of an inflow.
한편, 상기 코일몰드부(10)의 측면에 배치되어 상기 코일(11)을 냉각하기 위한 냉각수가 유동하는 냉각유로(F)의 구조를 살펴보면, 도 4에 도시된 바와 같이, 상기 코일(11)이 배치된 코일몰드부(10)의 측면에 균등한 유로폭을 갖는 유로홈(12)이 형성되어 이를 바탕으로 상기 냉각유로(F)가 균일한 유로폭을 갖는 형태로 구성될 수 있다.Meanwhile, looking at the structure of the cooling passage (F) disposed on the side of the coil mold part 10 through which coolant flows for cooling the coil 11, as shown in FIG. 4, the coil 11 A flow path groove 12 having a uniform flow path width is formed on the side of the disposed coil mold portion 10, and based on this, the cooling flow path F can be configured to have a uniform flow path width.
이처럼, 균일한 유로폭을 갖도록 유로홈(21)이 구성됨에 따라 상기 유출입 매니폴드블록(30)의 분할공급구(31)도 동일한 크기를 갖고 균등한 간격으로 배치되도록 구성될 수 있고, 공급되는 냉각수도 균일한 유속을 갖는 형태로 공급되어 상기 코일몰드부(10) 측벽을 냉각시킬 수 있는 형태로 구성될 수 있다.In this way, as the flow path groove 21 is configured to have a uniform flow path width, the split supply ports 31 of the inflow and outflow manifold blocks 30 can also be configured to have the same size and be arranged at equal intervals, and the supplied Cooling water may also be supplied at a uniform flow rate to cool the side wall of the coil mold part 10.
그런데, 상기 코일(11)의 발열과 관련하여 냉각을 위해 상기 냉각유로(F)의 내부를 따라 유동하는 냉각유체는 주로 상기 냉각유로(F)의 내표면과의 접촉을 통하여 전도냉각 기능을 수행하는 것이므로, 냉각유체가 유동하는 상기 냉각유로(F)는 상기 코일(11)과 인접하게 구비되거나 접촉 표면을 증가시킬 수 있도록 구성함으로써 냉각효율이 향상되는 효과를 제공할 수 있다.However, in relation to the heat generation of the coil 11, the cooling fluid flowing along the inside of the cooling passage (F) for cooling mainly performs a conduction cooling function through contact with the inner surface of the cooling passage (F). Therefore, the cooling passage (F) through which the cooling fluid flows can be provided adjacent to the coil 11 or configured to increase the contact surface, thereby providing the effect of improving cooling efficiency.
본 발명의 일실시예에 따른 리니어 모터 시스템은, 상기 냉각 유로에 대한 하나의 변형실시예로서, 도 5에 도시된 바와 같이, 상부의 유로홈(12a)과 하부의 유로홈(12c)이 중간의 유로홈(12b)보다 유로홈의 폭이 넓게 형성되도록 구성될 수 있다.The linear motor system according to an embodiment of the present invention is a modified embodiment of the cooling passage, and as shown in FIG. 5, the upper passage groove 12a and the lower passage groove 12c are located in the middle. The channel groove may be configured to have a wider width than the channel groove 12b of .
즉, 예를 들어, O자 형태의 코일(11)이 연속적으로 배치되는 코일몰드부(10) 내부의 코일 배치구조에 대하여 냉각유로(F)와의 접촉 면적을 증가시키기 위하여, 상기 코일몰드부(10) 측벽에 위치하는 유로홈(12)의 배치경로가 상기 측벽에서 상기 코일(11)의 권선형태의 배치구조와 가능한 한 연속적으로 일치하거나 근접하되 열전달 표면도 확대할 수 있도록 상부의 유로홈(12a)과 하부의 유로홈(12c)에 대하여 유로홈의 폭을 넓혀서 구비함으로써 냉각 효율을 향상시킬 수 있는 효과를 가질 수 있다.That is, for example, in order to increase the contact area with the cooling passage (F) for the coil arrangement structure inside the coil mold part 10 in which the O-shaped coils 11 are continuously arranged, the coil mold part ( 10) The arrangement path of the flow groove 12 located on the side wall continuously matches or is as close as possible to the winding-shaped arrangement structure of the coil 11 on the side wall, but the upper flow groove (12) is provided so that the heat transfer surface can also be expanded. For 12a) and the lower channel groove 12c, cooling efficiency can be improved by providing a wider channel groove width.
이렇게, 상기 상부의 유로홈(12a)과 상기 하부의 유로홈(12c)의 유로 폭을 넓게 하면, 상기 상부유로(23a)와 상기 하부유로(23c) 내부를 유동하는 냉각수의 유량 또한 증가하게 되고 이를 통한 냉각효율이 향상되는 효과를 가질 수 있다.In this way, when the passage widths of the upper passage groove (12a) and the lower passage groove (12c) are widened, the flow rate of the coolant flowing inside the upper passageway (23a) and the lower passageway (23c) also increases. This can have the effect of improving cooling efficiency.
아울러, 이와 같은 유로홈 구조에 부합되는 유동 구조를 형성하기 위하여, 상기 유출입 매니폴드블록(30)의 분할공급구(31)와 상기 유출입 매니폴드블록(40)의 취합토출구(41)는 상기 상부의 유로홈(12a)과 하부의 유로홈(12c)에 대응되는 위치에서 상기 분할공급구(31)와 상기 취합토출구(41)의 직경 및/또는 개수를 증가시켜서 구성되는 것이 바람직하다.In addition, in order to form a flow structure that conforms to this flow groove structure, the split supply port 31 of the inflow and outflow manifold block 30 and the collection outlet 41 of the inflow and outflow manifold block 40 are connected to the upper part. It is preferable to increase the diameter and/or number of the split supply ports 31 and the collection discharge ports 41 at positions corresponding to the flow path grooves 12a and the lower flow path grooves 12c.
본 발명의 일실시예에 따른 리니어 모터 시스템은, 상기 코일(11)의 발열부와 냉각을 위한 냉각유로(F)와의 이격거리를 감소시켜 냉각효율을 향상시키기 위한 다른 변형 실시예로서, 도 6에 도시된 바와 같이, 상기 코일(11)의 권선형태를 따라 냉각유로가 형성되도록 구성할 수 있다.The linear motor system according to an embodiment of the present invention is another modified embodiment for improving cooling efficiency by reducing the separation distance between the heating part of the coil 11 and the cooling passage (F) for cooling, Figure 6 As shown, a cooling passage can be formed according to the winding shape of the coil 11.
보다 상세하게 설명하면, 상기 코일몰드부(10)를 제작함에 있어서, 상기 코일몰드부(10)의 구조 강도를 확보하면서 상기 코일(11)은 코어리스 타입으로 구성되도록 종래의 코어가 위치하는 지점에는 에폭시 레진 등이 투입되어 상기 코일의 중심을 지지하는 역할을 하도록 구성될 수 있는데, 이러한 구조에서 상기 코일로부터 상기 코일의 중심부를 통과하는 열전달 경로나 상기 코일의 주변부를 통과하는 열전달 경로는 냉각 성능 개선에 제한적인 영향을 미칠 수밖에 없으므로 상기 코일(11)을 냉각시키기 위한 냉각 유로가 상기 코일(11)의 권선형태를 적정하게 추종하여 효율적으로 냉각하도록 구성한다.In more detail, when manufacturing the coil mold part 10, the coil 11 is configured as a coreless type while ensuring the structural strength of the coil mold part 10. Epoxy resin, etc. may be injected into the coil to support the center of the coil. In this structure, the heat transfer path passing from the coil through the center of the coil or the heat transfer path passing through the periphery of the coil improves cooling performance. Since this inevitably has a limited effect on improvement, the cooling passage for cooling the coil 11 is configured to appropriately follow the winding shape of the coil 11 to cool it efficiently.
이때, 냉각 유체의 원활한 유동을 유도하기 위하여, 상기 코일(11)이 연속적으로 배치되어 몰딩된 구조에 있어서 에폭시 레진 등에 의하여 채워진 상기 코일(11)의 중심부들을 서로 연결하는 구조로 격벽을 구비함으로써 냉각유체의 원활한 분산 유동 구조를 형성하는 것이 바람직하다.At this time, in order to induce a smooth flow of cooling fluid, cooling is achieved by providing a partition wall in a structure in which the coils 11 are continuously disposed and molded to connect the central parts of the coils 11 filled with epoxy resin, etc. It is desirable to form a smoothly distributed flow structure of fluid.
즉, 상기 코일(11)이 상기 코일몰드부(10) 내부에 연속적으로 배치된 구조에 있어서 상기 코일의 권선형태의 반을 추종하는 반원 형상의 유로홈을 연속적으로 구비함으로써, 전체 코일(11)의 권선형태를 상단과 하단으로 2분할하여 상기 코일(11)로부터 짧은 열전달 경로를 확보하는 냉각유로(F)를 형성할 수 있다.That is, in a structure in which the coil 11 is continuously arranged inside the coil mold part 10, the entire coil 11 is continuously provided with a semicircular flow path groove that follows half of the winding shape of the coil. It is possible to form a cooling passage (F) that secures a short heat transfer path from the coil 11 by dividing the winding shape into two, upper and lower.
아울러, 이러한 냉각유로(F)를 형성하는데 있어서, 내부의 냉각유체 유동을 원만하게 구성하기 위하여 내부 유로의 꺾임부에 대하여 만곡 형태를 갖도록 유로홈의 구조를 형성하는 것이 바람직하다.In addition, when forming such a cooling passage (F), it is desirable to form the structure of the passage groove to have a curved shape with respect to the bend of the internal passage in order to smoothly flow the internal cooling fluid.
상기 변형실시예의 유로홈 구조에 대응하여, 상기 유출입 매니폴드블록(30)의 분할공급구(31)와 상기 유출입 매니폴드블록(40)의 취합토출구(41)는 냉각유로(F)에 냉각유체를 효율적으로 공급할 수 있도록 측면에 대하여 2분할 공급 및 토출 구조로 구성될 수 있다.Corresponding to the flow groove structure of the modified embodiment, the split supply port 31 of the inflow and outflow manifold block 30 and the collection discharge port 41 of the inflow and outflow manifold block 40 provide cooling fluid to the cooling passage F. It can be configured with a two-part supply and discharge structure on the side to efficiently supply.
또한, 본 발명의 일실시예에 따른 리니어 모터 시스템은, 상기 코일(11)의 발열에 대한 냉각 효율을 향상시키기 위한 또 다른 변형 실시예로서, 도 7에 도시된 바와 같이, 상기 코일몰드부(10)의 선단에 구비되는 유출입 매니폴드블록(30)과, 후단에 구비되는 유출입 매니폴드블록(40)의 내부에 냉각유체의 공급을 위한 내부 유로와 냉각유체의 배출을 위한 내부 유로를 함께 구비하여 상기 코일몰드부(10)의 유로홈(12)별로 냉각유체의 유동방향을 다르게 형성하도록 구성할 수 있다.In addition, the linear motor system according to an embodiment of the present invention is another modified embodiment for improving the cooling efficiency for heat generation of the coil 11, and as shown in FIG. 7, the coil mold part ( 10), the inflow and outflow manifold block (30) provided at the front end, and the inflow and outflow manifold block (40) provided at the rear end are provided with an internal flow path for supplying cooling fluid and an internal flow path for discharging the cooling fluid. Thus, the flow direction of the cooling fluid can be formed differently for each channel groove 12 of the coil mold part 10.
즉, 상기 코일몰드부(10)의 선단에 구비되는 유출입 매니폴드블록(30)에 분할공급구(31)와 함께 취합토출구(32)를 구비하고 후단에 구비되는 유출입 매니폴드블록(40)에 취합토출구(41)와 함께 분할공급구(42)를 구비하여, 유출입 매니폴드블록(30)의 분할공급구(31)를 통하여 공급된 냉각유체는 해당 유로홈(12)을 거쳐 유출입 매니폴드블록(40)의 취합토출구(41)를 통하여 배출되고, 유출입 매니폴드블록(40)의 분할공급구(42)를 통하여 공급된 냉각유체는 해당 유로홈(12)을 거쳐 유출입 매니폴드블록(30)의 취합토출구(32)를 통하여 배출되도록 구성함으로써, 유로홈(12) 별로 냉각유체의 유동방향을 다르게 형성할 수 있다.That is, the inflow and outflow manifold block 30 provided at the front end of the coil mold part 10 is provided with a split supply port 31 and a collection discharge port 32, and the inflow and outflow manifold block 40 provided at the rear end. It is provided with a split supply port (42) along with a collection discharge port (41), so that the cooling fluid supplied through the split supply port (31) of the inflow and outflow manifold block (30) passes through the corresponding flow path groove (12) to the inflow and outflow manifold block. The cooling fluid is discharged through the collection outlet (41) of (40) and supplied through the split supply port (42) of the inflow and outflow manifold block (40) through the corresponding flow path groove (12) to the inflow and outflow manifold block (30). By configuring it to be discharged through the collection discharge port 32, the flow direction of the cooling fluid can be formed differently for each flow path groove 12.
이렇게 유로홈(12) 별로 유동방향이 다르도록 구성한 경우와 유로홈(12)에 대한 냉각유체의 유동방향이 획일화되게 구성한 경우에 대하여 냉각효과를 비교하여 살펴보면, 상기 코일몰드부(10)의 유로홈(12)을 통하여 유동하는 냉각유체가 상기 코일몰드부(10)의 선단 또는 후단 중 어느 한쪽으로부터 공통되게 공급되어 다른 쪽으로 토출되는 경우에, 냉각유체의 공급측에서의 냉각 효과는 과도하게 높고 토출측에서의 냉각 효과는 과도하게 낮아서 냉각 성능의 불균형을 초래하고 이로 인해 가동자의 전자기장 제어 성능도 저하되는 현상이 발생할 수 있는데, 상기 코일몰드부(10)의 유로홈(12)별로 냉각유체 유동방향을 다르게 설정하여 구성함으로써 냉각 성능을 고르게 확보할 수 있고 이로 인하여 가동자의 전자기장 제어 성능도 양호하게 확보할 수 있는 효과 등을 제공할 수 있다.When comparing the cooling effect in the case where the flow direction is different for each flow path groove (12) and the case where the flow direction of the cooling fluid for the flow path grooves (12) is configured to be uniform, the coil mold portion (10) In the case where the cooling fluid flowing through the flow path groove 12 is commonly supplied from either the front end or the rear end of the coil mold part 10 and discharged to the other side, the cooling effect on the supply side of the cooling fluid is excessively high. The cooling effect on the discharge side is excessively low, resulting in an imbalance in cooling performance, which may lead to a decrease in the electromagnetic field control performance of the operator. The cooling fluid flow direction for each channel groove 12 of the coil mold part 10 may occur. By setting and configuring differently, cooling performance can be secured evenly, and this can provide the effect of ensuring good electromagnetic field control performance of the operator.
한편, 전후단 유출입 매니폴드블록(30, 40)의 내부에 냉각유체의 공급을 위한 내부 유로와 냉각유체의 배출을 위한 내부 유로를 함께 구비하여 유로홈(12)별로 냉각유체의 유동방향을 다르게 형성하고자 하는 경우에, 상기 베이스 블록(50)도 전후단 유출입 매니폴드블록(30, 40)과의 유체 연통도 변형된 구조로 구비되어야 한다.Meanwhile, the front and rear inflow and outflow manifold blocks (30, 40) are provided with an internal flow path for supplying the cooling fluid and an internal flow path for discharging the cooling fluid, so that the flow direction of the cooling fluid can be varied for each flow groove (12). In the case of forming the base block 50, fluid communication with the front and rear inflow and outflow manifold blocks 30 and 40 must also be provided in a modified structure.
즉, 예를 들어, 상기 베이스 블록(50)의 전단에 구비된 냉각수입구(51)를 통하여 베이스 블록(50)의 내부유로로 유입된 냉각유체의 일부는 전단 위치의 유출입 매니폴드블록(30)으로 공급되고 상기 유입된 냉각유체의 나머지는 베이스 블록(50)을 가로질러 유동하여 후단 위치의 유출입 매니폴드블록(40)으로 공급되도록 냉각수입구(51)와 연결된 냉각유체 공급용 내부유로는 분기되어 베이스 블록(50)을 가로질러 후단 위치까지 연장 형성되어 후단 위치의 유출입 매니폴드블록(40)으로 연결되는 추가 구조를 구비한다. 마찬가지로, 전단 위치의 유출입 매니폴드블록(30)으로부터 배출되어 베이스 블록(50)의 내부유로로 유입된 냉각유체는, 베이스 블록(50)을 가로질러 후단 위치까지 연장 형성되어 후단 위치의 유출입 매니폴드블록(40)으로부터 배출되어 베이스 블록(50)의 내부유로로 유입된 냉각유체와 합류되어 냉각수출구(52)로 배출되도록, 냉각수출구(52)와 연결된 냉각유체 배출용 내부유로는 베이스 블록(50)을 가로질러 전단 위치까지 연장 형성된 추가 구조를 구비한다.That is, for example, part of the cooling fluid flowing into the internal flow path of the base block 50 through the coolant inlet 51 provided at the front of the base block 50 is connected to the inflow and outflow manifold block 30 at the front position. The internal flow path for supplying cooling fluid connected to the cooling water inlet 51 is branched so that the remaining cooling fluid flows across the base block 50 and is supplied to the inflow and outflow manifold block 40 at the rear end. It has an additional structure that extends across the base block 50 to the rear end position and is connected to the inflow and outflow manifold block 40 at the rear end position. Likewise, the cooling fluid discharged from the inflow and outflow manifold block 30 at the front position and flowing into the internal flow path of the base block 50 extends across the base block 50 to the rear end position to form an inflow and outflow manifold at the rear end position. The internal flow path for discharging the cooling fluid connected to the coolant outlet 52 is connected to the base block 50 so that it is discharged from the block 40 and flows into the internal flow path of the base block 50 and is discharged through the coolant outlet 52. ) and an additional structure extending across the shear position.
또는, 베이스 블록(50)을 가로지르는 추가적인 내부유로를 형성하는 대신, 상기 베이스 블록(50)의 전단 및 후단에 각각 냉각수입구(51)와 냉각수출구(52)를 모두 구비한 구조를 이용할 수도 있다. 이 경우에 전단의 냉각수입구(51)로 유입된 냉각유체는 코일몰드부(10)와 자켓부(20)에 의한 냉각유로(F)를 통과한 후 후단의 냉각수출구(52)로 배출되고, 후단의 냉각수입구(51)로 유입된 냉각유체는 코일몰드부(10)와 자켓부(20)에 의한 냉각유로(F)를 통과한 후 전단의 냉각수출구(52)로 배출된다.Alternatively, instead of forming an additional internal flow path across the base block 50, a structure having both a coolant inlet 51 and a coolant outlet 52 at the front and rear ends of the base block 50 may be used. . In this case, the cooling fluid flowing into the coolant inlet 51 at the front passes through the cooling passage (F) by the coil mold part 10 and the jacket part 20, and then is discharged to the coolant outlet 52 at the rear end, The cooling fluid flowing into the cooling water inlet 51 at the rear end passes through the cooling passage (F) formed by the coil mold part 10 and the jacket part 20, and then is discharged through the cooling water outlet 52 at the front end.
한편, 본 발명의 일실시예에 따른 리니어 모터 시스템은, 상기 코일(11)의 발열에 대한 냉각 효율을 향상시키기 위한 또 다른 변형 실시예로서, 도 8에 도시된 바와 같이, 상기 코일몰드부(10)를 감싸는 냉각유로(F)에 대하여 두께 방향 외측에 추가로 냉각유체의 유동경로를 형성하는 제2 냉각유로(S)가 구비되는 형태로 구성될 수 있다.Meanwhile, the linear motor system according to an embodiment of the present invention is another modified embodiment for improving the cooling efficiency for heat generation of the coil 11, and as shown in FIG. 8, the coil mold part ( 10) It may be configured to include a second cooling passage (S) forming a flow path for the cooling fluid on the outer side of the cooling passage (F) in the thickness direction.
상기 코일(11)의 냉각을 위하여 상기 코일몰드부(10)의 표면에 형성되는 냉각유로(F)는 전도를 통한 냉각구성으로서 그 인접한 지점의 냉각 효율은 향상되지만 그렇지 못한 곳은 냉각 효율이 떨어지게 되어, 상기 냉각유로(F)가 구비되지 않은 사이 지점은 온도가 증가되는 문제점이 발생할 수 있다.The cooling passage (F) formed on the surface of the coil mold part 10 to cool the coil 11 is a conductive cooling structure, which improves cooling efficiency at adjacent points, but reduces cooling efficiency at other points. Therefore, a problem may occur where the temperature increases at a point where the cooling passage (F) is not provided.
이에 대해, 상기 코일몰드부(10)의 외표면에 판형 자켓부재(21)를 부착하여 상기 냉각유로(F)를 1차로 형성하고, 그 위에 또 하나의 판형 자켓부재(21)를 추가로 부착하여 제2 냉각유로(S)를 형성하면, 냉각 효율이 더욱 개선되는 효과를 가질 수 있다.In contrast, the cooling passage (F) is primarily formed by attaching a plate-shaped jacket member 21 to the outer surface of the coil mold part 10, and another plate-shaped jacket member 21 is additionally attached thereon. By forming the second cooling passage (S), cooling efficiency can be further improved.
여기서, 상기 제2 냉각유로(S)는 상기 냉각유로(F)에서 냉각되지 못한 발열량에 대해서만 냉각 기능을 제공하면 되므로 유속의 크기가 빠르지 않아도 되고 내부를 유동하는 냉각유체의 유압이 높지 않으므로 상기 제2 냉각유로(S)의 폭은 상기 제1 냉각 유로(F)의 폭보다 넓은 형태로 구성될 수 있으며, 이를 통해 자켓부의 두께방향으로 상기 제2 냉각유로(S)를 형성하기 위한 접촉 구조도 간단한 형태로 구성할 수 있는 효과를 갖게 된다.Here, the second cooling passage (S) only needs to provide a cooling function for the amount of heat generated that is not cooled in the cooling passage (F), so the flow rate does not have to be fast, and the hydraulic pressure of the cooling fluid flowing inside is not high, so the second cooling passage (S) only needs to provide a cooling function for the heat generation that is not cooled in the cooling passage (F). 2 The width of the cooling passage (S) may be configured to be wider than the width of the first cooling passage (F), and the contact structure for forming the second cooling passage (S) in the thickness direction of the jacket portion through this is also shown. It has an effect that can be configured in a simple form.
한편, 상기 제2 냉각유로(S)를 형성함에 있어서, 상기 코일몰드부(10)의 외표면에 부착된 판형 자켓부재(21) 위에 또 하나의 판형 자켓부재(21)를 추가로 결합하여 상기 제2 냉각유로(S)를 형성하는 방식 이외에도 판형 자켓부재(21)을 먼저 상호 결합하여 상기 제2 냉각유로(S)를 먼저 형성한 후 상기 판형 자켓부재(21)의 결합체를 상기 코일몰드부(10)의 외표면에 부착하여 냉각유로(F)를 형성하는 방식 등이 채용될 수도 있다.Meanwhile, in forming the second cooling passage (S), another plate-shaped jacket member 21 is additionally coupled to the plate-shaped jacket member 21 attached to the outer surface of the coil mold part 10. In addition to forming the second cooling passage (S), the plate-shaped jacket members 21 are first combined with each other to form the second cooling passage (S), and then the combination of the plate-shaped jacket members 21 is formed into the coil mold part. A method of forming a cooling passage (F) by attaching to the outer surface of (10) may be adopted.
한편, 본 발명의 리니어 모터는 반도체 제조장치와 같은 초정밀 장치에서 가동부로서 사용될 수 있어, 안정성이 확보되어야 할 필요성이 있다.Meanwhile, the linear motor of the present invention can be used as a moving part in ultra-precision equipment such as semiconductor manufacturing equipment, so there is a need to ensure stability.
이에 따라, 본 발명의 냉각을 위한 냉각유체의 유동은 냉각 효율을 향상시키기 위하여 고속 유동으로 구성되되, 난류 유동화 되는 것을 억제하고 그 유동에 관한 레이놀즈 수를 제한하여 층류 유동인 상태로만 내부 냉각유체의 유동이 구성되도록 형성될 수 있다.Accordingly, the flow of the cooling fluid for cooling of the present invention is composed of a high-speed flow to improve cooling efficiency, but the internal cooling fluid flows only in a laminar flow state by suppressing turbulent fluidization and limiting the Reynolds number for the flow. It can be formed to have this configuration.
즉, 유체역학에서 레이놀즈 수(Reynolds number)는 유동이 층류인지 난류인지를 예측하는 데 이용될 수 있으며, 밀도, 점성 등의 유체 성질과, 유동속도, 유로 직경 등의 유동 환경 파라미터를 이용하여 레이놀즈 수(Re)를 수식으로 표현하면, Re=ρuL/μ (여기서, ρ는 밀도, u는 유동속도, L은 유로의 직경, μ는 점성 계수를 의미함)와 같이 기술할 수 있고, 레이놀즈 수(Re)가 2000 이하이면 층류 상태로 볼 수 있다.In other words, in fluid mechanics, Reynolds number can be used to predict whether a flow is laminar or turbulent, and Reynolds number can be calculated using fluid properties such as density and viscosity, and flow environment parameters such as flow speed and flow path diameter. If the number (Re) is expressed as a formula, it can be written as Re=ρuL/μ (where ρ is the density, u is the flow velocity, L is the diameter of the flow path, and μ is the viscosity coefficient), and the Reynolds number If (Re) is less than 2000, it can be considered a laminar flow state.
이처럼, 내부의 냉각을 위한 냉각유체의 유동이 고속으로 이루어져 난류 유동을 형성할 경우 내부의 냉각 유로에 있어서 난류에 의한 진동이 발생할 수 있고, 이에 따라 정밀구동을 요구하는 장치의 구동부에 있어서 정밀도가 저하되는 문제가 발생할 수 있으므로, 냉각 성능을 확보하면서도 레이놀즈 수가 2000 이하의 상태에 머물도록 리니어 모터 시스템의 가동자에 있어서 내부 유로의 단면 치수와 유동속도 등을 유기적으로 선정하여 구성한다.In this way, when the flow of cooling fluid for internal cooling occurs at high speed and forms a turbulent flow, vibration due to turbulence may occur in the internal cooling passage, and as a result, the precision of the driving part of the device requiring precision driving is reduced. Since deterioration problems may occur, the cross-sectional dimensions and flow speed of the internal flow path are organically selected and configured in the operator of the linear motor system so that the Reynolds number remains below 2000 while ensuring cooling performance.
이 외에도 전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산 또는 분할되어 실시될 수도 있으며, 마찬가지로 분산 또는 분할된 것으로 설명되어 있는 구성 요소들도 통상의 기술자가 이해하는 범위 안에서 결합된 형태로 실시될 수 있다. 또한, 방법의 단계는 단독으로 복수 회 실시되거나 혹은 적어도 다른 어느 한 단계와 조합으로 복수회 수행되는 형태로 실시될 수 있다.In addition, the description of the present invention described above is for illustrative purposes, and those skilled in the art will understand that the present invention can be easily modified into other specific forms without changing the technical idea or essential features of the present invention. You will be able to. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive. For example, each component described as single may be implemented in a distributed or divided form, and similarly, components described as distributed or divided may also be implemented in a combined form within the range understood by a person skilled in the art. there is. Additionally, the method steps may be performed multiple times alone or in combination with at least one other step.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the patent claims described below, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present invention.

Claims (8)

  1. 가동자 또는 고정자 중 적어도 어느 하나에 코일을 구비하는 리니어 모터 시스템에 있어서,In a linear motor system having a coil in at least one of a mover or a stator,
    상기 가동자 또는 고정자는,The mover or stator is,
    내부에 상기 코일이 구비되고 복합수지 재질로 몰딩되어 형성된 코일몰드부(10); 및,A coil mold portion (10) formed by molding a composite resin material and having the coil therein; and,
    상기 코일몰드부(10)의 적어도 어느 한 측면을 덮는 구조로 구비된 자켓부(20);를 포함하여 구성되며,It is configured to include a jacket portion 20 provided in a structure that covers at least one side of the coil mold portion 10,
    상기 코일몰드부(10)의 상기 측면에는 유로홈이 구비되어 상기 자켓부(20)의 내면과 상기 코일몰드부(10)의 상기 유로홈에 의해서 냉각유체의 유동 경로를 제공하는 냉각유로(F)를 형성하는 것을 특징으로 하는, 리니어 모터 시스템.A flow path groove is provided on the side of the coil mold part 10, and a cooling flow path (F) provides a flow path for the cooling fluid through the inner surface of the jacket part 20 and the flow groove of the coil mold part 10. ), a linear motor system characterized in that it forms.
  2. 제1 항에 있어서, According to claim 1,
    상기 자켓부(20)는 비금속성 소재 또는 비자성금속 소재로 형성된 것을 특징으로 하는, 리니어 모터 시스템.A linear motor system, wherein the jacket portion 20 is made of a non-metallic material or a non-magnetic metal material.
  3. 제1 항에 있어서,According to claim 1,
    상기 코일몰드부(10)의 상기 측면 중 상부와 하부에 형성된 유로홈은 중간에 형성된 유로홈보다 유로홈의 폭이 크도록 구성된 것을 특징으로 하는, 리니어 모터 시스템.A linear motor system, characterized in that the passage grooves formed on the upper and lower sides of the coil mold portion 10 are configured to have a larger width than the passage grooves formed in the middle.
  4. 제1 항에 있어서,According to claim 1,
    상기 코일몰드부(10)의 상기 측면에 구비된 유로홈은,The flow path groove provided on the side of the coil mold part 10 is,
    냉각유체가 상기 코일몰드부(10)의 내부에 구비된 상기 코일(11)의 권선형상을 따라 상기 코일몰드부(10)의 상기 측면을 유동할 수 있도록 상기 코일(11)의 권선형상을 반영하여 형성된 것을 특징으로 하는, 리니어 모터 시스템.The cooling fluid reflects the winding shape of the coil 11 so that it flows along the side of the coil mold part 10 along the winding shape of the coil 11 provided inside the coil mold part 10. A linear motor system formed by:
  5. 제1 항에 있어서,According to claim 1,
    상기 자켓부(20)는, The jacket portion 20,
    상기 코일몰드부(10)의 유로홈과 상기 자켓부(20)의 내면에 의해서 형성된 상기 냉각유로(F)보다 외측으로 제2냉각유로(S)를 더 구비한 것을 특징으로 하는, 리니어 모터 시스템.A linear motor system further comprising a second cooling passage (S) outside the cooling passage (F) formed by the passage groove of the coil mold portion (10) and the inner surface of the jacket portion (20). .
  6. 제1항 내지 제5항 중 어느 하나에 있어서,According to any one of claims 1 to 5,
    리니어 모터의 냉각을 위한 냉각유체가 리니어 모터의 내부에서 고속유동하되 층류 유동하도록 상기 냉각유로의 치수 및 형태, 유속을 제한하여 구성된 것을 특징으로 하는, 리니어 모터 시스템.A linear motor system, characterized in that the size, shape, and flow rate of the cooling passage are limited so that the cooling fluid for cooling the linear motor flows at high speed but laminar flow inside the linear motor.
  7. 제1항에 있어서,According to paragraph 1,
    상기 자켓부(20)는,The jacket portion 20,
    판상의 소재로 형성되어 상기 코일몰드부(10)의 상기 측면에 접착 결합되는 판형 자켓부재(21); 및,A plate-shaped jacket member (21) formed of a plate-shaped material and adhesively bonded to the side of the coil mold portion (10); and,
    'U'자 또는 'ㄷ'자 단면 형상으로 형성되고, 상기 코일몰드부(10)의 상기 측면을 포함하여 상기 코일몰드부의 외측을 직접적으로 또는 간접적으로 감싸는 구조로 접착 결합되는 포켓형 자켓부재(22); 중 적어도 어느 하나를 포함하여 구성된 것을 특징으로 하는, 리니어 모터 시스템. A pocket-type jacket member (22) formed in a 'U'-shaped or 'ㄷ'-shaped cross-sectional shape and adhesively coupled in a structure that directly or indirectly surrounds the outside of the coil mold part, including the side surface of the coil mold part 10. ); A linear motor system, characterized in that it includes at least one of the following.
  8. 제1항에 있어서,According to paragraph 1,
    상기 코일몰드부(10)의 상기 측면에 구비된 유로홈은, 복수개로 구비되되, 리니어 모터의 운동방향에 따른 상기 코일몰드부(10)의 일측과 타측을 연결하는 형태로 형성되며,The flow grooves provided on the side of the coil mold portion 10 are provided in plural numbers and are formed to connect one side and the other side of the coil mold portion 10 according to the direction of movement of the linear motor,
    상기 코일몰드부(10)의 상기 일측 및 타측에는 각각 유출입 매니폴드블록(30, 40)이 구비되며, 상기 유출입 매니폴드블록(30, 40) 중 어느 하나에는 상기 복수개의 유로홈에 대응되는 분할공급구(31)가 구비되고, 나머지 하나에는 상기 복수개의 유로홈에 대응되는 취합토출구(41)가 구비된 것을 특징으로 하는, 리니어 모터 시스템.Inflow and outflow manifold blocks 30 and 40 are provided on one side and the other side of the coil mold part 10, respectively, and one of the inflow and outflow manifold blocks 30 and 40 has a division corresponding to the plurality of flow grooves. A linear motor system, characterized in that a supply port (31) is provided, and the other one is provided with a collection discharge port (41) corresponding to the plurality of flow grooves.
PCT/KR2023/006859 2022-06-15 2023-05-19 Water-cooled linear motor system WO2023243889A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220073149A KR20230172689A (en) 2022-06-15 2022-06-15 Water-cooled linear motor systems
KR10-2022-0073149 2022-06-15

Publications (1)

Publication Number Publication Date
WO2023243889A1 true WO2023243889A1 (en) 2023-12-21

Family

ID=85985243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006859 WO2023243889A1 (en) 2022-06-15 2023-05-19 Water-cooled linear motor system

Country Status (2)

Country Link
KR (2) KR20230172689A (en)
WO (1) WO2023243889A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230172689A (en) * 2022-06-15 2023-12-26 주식회사 져스텍 Water-cooled linear motor systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357426A (en) * 2003-05-29 2004-12-16 Nikon Corp Linear motor and exposure equipment
KR20050064843A (en) * 2003-12-24 2005-06-29 두산인프라코어 주식회사 Cooling device for linear motor
JP2008283744A (en) * 2007-05-08 2008-11-20 Sumitomo Heavy Ind Ltd Cooling structure of linear motor
KR20100084120A (en) * 2009-01-15 2010-07-23 가부시키가이샤 야스카와덴키 Coreless linear motor armature and coreless linear motor
KR20120020076A (en) * 2010-08-27 2012-03-07 가부시키가이샤 야스카와덴키 Linear motor armature and linear motor
KR102510204B1 (en) * 2022-06-15 2023-03-16 주식회사 져스텍 Water-cooled linear motor systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357426A (en) * 2003-05-29 2004-12-16 Nikon Corp Linear motor and exposure equipment
KR20050064843A (en) * 2003-12-24 2005-06-29 두산인프라코어 주식회사 Cooling device for linear motor
JP2008283744A (en) * 2007-05-08 2008-11-20 Sumitomo Heavy Ind Ltd Cooling structure of linear motor
KR20100084120A (en) * 2009-01-15 2010-07-23 가부시키가이샤 야스카와덴키 Coreless linear motor armature and coreless linear motor
KR20120020076A (en) * 2010-08-27 2012-03-07 가부시키가이샤 야스카와덴키 Linear motor armature and linear motor
KR102510204B1 (en) * 2022-06-15 2023-03-16 주식회사 져스텍 Water-cooled linear motor systems

Also Published As

Publication number Publication date
KR102510204B1 (en) 2023-03-16
KR20230172689A (en) 2023-12-26

Similar Documents

Publication Publication Date Title
WO2023243889A1 (en) Water-cooled linear motor system
WO2021232835A1 (en) Electric motor rotor, electric motor, and vehicle
JP5598757B2 (en) Refrigerant cooling linear motor
JPWO2008152876A1 (en) Canned linear motor armature and canned linear motor
WO2004019470A1 (en) Coreless linear motor
AU2017355869B2 (en) Motor for washing machine and washing machine having the same
US20110277968A1 (en) Airflow generator and heat dissipation device incorporating the same
JP3540091B2 (en) Machine Tools
KR100236394B1 (en) Moving magnet type multi-phase linear motor
JP4517278B2 (en) Coreless linear motor and canned linear motor
US7446439B2 (en) Linear motor armature and linear motor using the same
JPH11122901A (en) Linear motor
JP4142610B2 (en) Actuator coil cooling system
US7939973B2 (en) Canned linear motor armature and canned linear motor
US6992410B2 (en) Cooling system for motors
JP3856057B2 (en) Linear motor
CN113964966B (en) Stator assembly, manufacturing method thereof and axial flux motor
CN113162268A (en) Stator module and motor
KR20020081891A (en) Linear motor with cooling device
JP2007336765A (en) Armature for refrigerant-cooling linear motor, and refrigerant-cooling linear motor
JP4048557B2 (en) Linear motor cooling system
WO2023224204A1 (en) Power module cooling device
JP2004350419A (en) Linear motor
WO2023085557A1 (en) Heat dissipation module of motor control unit for electric vehicle, and welding method therefor
JP2000209840A (en) Linear motor apparatus provided with cooling function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23824110

Country of ref document: EP

Kind code of ref document: A1