WO2023243562A1 - Substrate processing apparatus and substrate processing method - Google Patents

Substrate processing apparatus and substrate processing method Download PDF

Info

Publication number
WO2023243562A1
WO2023243562A1 PCT/JP2023/021576 JP2023021576W WO2023243562A1 WO 2023243562 A1 WO2023243562 A1 WO 2023243562A1 JP 2023021576 W JP2023021576 W JP 2023021576W WO 2023243562 A1 WO2023243562 A1 WO 2023243562A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
substrate processing
unit
wafer
image data
Prior art date
Application number
PCT/JP2023/021576
Other languages
French (fr)
Japanese (ja)
Inventor
水根 李
洋 丸本
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023243562A1 publication Critical patent/WO2023243562A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the disclosed embodiments relate to a substrate processing apparatus and a substrate processing method.
  • a substrate processing apparatus includes a substrate holding section, an imaging device, and a control section.
  • the substrate holding section holds and rotates a substrate to be processed.
  • the imaging device images the substrate held by the substrate holding section.
  • the control section controls each section.
  • the control section includes an execution section, an acquisition section, and a detection section.
  • the execution unit executes a series of substrate processing on the substrate carried in from the outside and held by the substrate holding unit.
  • the acquisition unit acquires image data by capturing an image of the substrate after substrate processing using the imaging device.
  • the detection unit detects a positional shift in the rotational direction of the substrate after substrate processing based on the acquired image data and stored reference data.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment.
  • FIG. 2 is a schematic diagram showing an example of a specific configuration of the processing unit according to the embodiment.
  • FIG. 3 is a block diagram showing an example of the configuration of the control device according to the embodiment.
  • FIG. 4 is a diagram for explaining an example of the acquisition process according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of difference data according to the embodiment.
  • FIG. 6 is a diagram showing the correlation between the X coordinate of the peak caused by the notch and the position of the notch in the rotational direction.
  • FIG. 7 is a diagram for explaining prediction processing according to the embodiment.
  • FIG. 8 is a diagram for explaining another example of the control process according to the embodiment.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment.
  • FIG. 2 is a schematic diagram showing an example of a specific configuration of the processing unit according to the embodiment.
  • FIG. 9 is a diagram for explaining another example of the control process according to the embodiment.
  • FIG. 10 is a flowchart illustrating an example of a control processing procedure executed by the substrate processing system according to the embodiment.
  • FIG. 11 is a flowchart illustrating an example of a procedure for positional displacement detection processing executed by the substrate processing system according to the embodiment.
  • FIG. 12 is a flowchart illustrating an example of the procedure of the temporal change detection process executed by the substrate processing system according to the embodiment.
  • FIG. 13 is a flowchart illustrating another example of a control processing procedure executed by the substrate processing system according to the embodiment.
  • wafer processing in which substrates such as semiconductor wafers (hereinafter also referred to as wafers) are processed one by one is performed while rotating the substrate while holding it in a substrate holder. Therefore, if substrate processing is performed while the substrate is not being held sufficiently, the substrate will slip along the rotation direction, resulting in insufficient substrate processing or large splashes of processing liquid on the inner walls of the chamber. Problems such as this may occur.
  • FIG. 1 is a diagram showing a schematic configuration of a substrate processing system 1 according to an embodiment.
  • the substrate processing system 1 is an example of a substrate processing apparatus.
  • an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other are defined, and the positive direction of the Z-axis is defined as a vertically upward direction.
  • the substrate processing system 1 includes a loading/unloading station 2 and a processing station 3.
  • the loading/unloading station 2 and the processing station 3 are provided adjacent to each other.
  • the loading/unloading station 2 includes a hoop placement section 11 and a transport section 12.
  • the transport section 12 is provided adjacent to the hoop mounting section 11 and includes a substrate transport device 13 and a transfer section 14 inside.
  • the substrate transfer device 13 includes a wafer holding mechanism that holds the wafer W. Further, the substrate transfer device 13 is capable of horizontal and vertical movement and rotation about a vertical axis, and uses a wafer holding mechanism to transfer the wafer W between the hoop H and the transfer section 14. conduct.
  • the processing station 3 is provided adjacent to the transport section 12.
  • the processing station 3 includes a transport section 15 and a plurality of processing units 16.
  • the plurality of processing units 16 are arranged side by side on both sides of the transport section 15 .
  • the transport section 15 includes a substrate transport device 17 inside.
  • the substrate transfer device 17 includes a wafer holding mechanism that holds the wafer W. Further, the substrate transfer device 17 is capable of horizontal and vertical movement and rotation about a vertical axis, and is capable of transferring wafers W between the transfer section 14 and the processing unit 16 using a wafer holding mechanism. I do.
  • the processing unit 16 performs predetermined substrate processing on the wafer W transported by the substrate transport device 17.
  • Such a program may be one that has been recorded on a computer-readable storage medium, and may be one that is installed in the storage unit 19 of the control device 4 from the storage medium.
  • Examples of computer-readable storage media include hard disks (HD), flexible disks (FD), compact disks (CD), magnetic optical disks (MO), and memory cards.
  • FIG. 2 is a schematic diagram showing an example of a specific configuration of the processing unit 16.
  • the processing unit 16 includes a chamber 20, a substrate processing section 30, a liquid supply section 40, a collection cup 50, and an imaging device 60.
  • the chamber 20 accommodates a substrate processing section 30, a liquid supply section 40, a collection cup 50, and an imaging device 60.
  • a fan filter unit (FFU) 21 is provided on the ceiling of the chamber 20 .
  • FFU 21 forms a downflow within chamber 20 .
  • the substrate processing unit 30 rotates the substrate holding unit 31 supported by the support unit 32 by rotating the support unit 32 using the drive unit 33, thereby rotating the wafer W held by the substrate holding unit 31. Rotate.
  • the substrate holding unit 31 is not limited to holding the substrate by the holding member 31a, and may hold the wafer W horizontally by suctioning the lower surface of the wafer W, for example.
  • the substrate holding section 31 may be an electrostatic chuck or the like.
  • the nozzle 41a is connected to a processing liquid supply source 46a via a valve 44a and a flow rate regulator 45a.
  • the processing liquid supply source 46a is a tank that stores processing liquid.
  • Such a treatment liquid is used, for example, for liquid treatment of the wafer W (eg, etching treatment, cleaning treatment, etc.).
  • FIG. 2 shows an example in which the liquid supply unit 40 supplies the processing liquid and the rinsing liquid (DIW) to the wafer W
  • the present disclosure is not limited to such an example, and other chemical liquids may be supplied to the wafer W. It may be configured to do so.
  • FIG. 3 is a block diagram showing an example of the configuration of the control device 4 according to the embodiment.
  • the control device 4 includes a control section 18 and a storage section 19.
  • control device 4 may include various functional units included in known computers, such as various input devices and audio output devices.
  • the storage unit 19 is realized by, for example, a semiconductor memory element such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disk.
  • the storage unit 19 includes a reference data storage unit 19a, a captured image storage unit 19b, and a positional deviation angle storage unit 19c. Details of these storage units will be described later. Furthermore, the storage unit 19 stores information used for various processes in the control unit 18.
  • the control unit 18 includes an execution unit 18a, an acquisition unit 18b, a creation unit 18c, a detection unit 18d, a notification unit 18e, and a prediction unit 18f, and realizes the functions and actions of the control processing described below. Or run. Note that the internal configuration of the control unit 18 is not limited to the configuration shown in FIG. 3, and may be any other configuration as long as it performs the control processing described below.
  • this captured image before substrate processing for example, an outline Wa of the outer peripheral edge of the wafer W and a notch N formed at the outer peripheral edge of the wafer W are recorded.
  • this image data before substrate processing is stored, for example, in the reference data storage section 19a of the storage section 19 as reference data.
  • the acquisition unit 18b images the wafer W held by the substrate holding unit 31 with the imaging device 60 after substrate processing, and acquires a captured image of the wafer W.
  • the outline Wa of the outer circumferential edge of the wafer W and the notch N formed at the outer circumferential edge of the wafer W are also recorded in the captured image after this substrate processing.
  • image processing for example, edge detection processing, etc.
  • edge detection processing may be performed on these captured images in order to clarify the outline Wa and the notch N.
  • the creation unit 18c creates difference data of the outline Wa of the outer peripheral edge of the wafer W using the image data of the wafer W after substrate processing acquired by the acquisition unit 18b and the reference data stored in the reference data storage unit 19a. create.
  • the creation unit 18c first identifies the X and Y coordinates of multiple points where the outline Wa stored in the reference data (for example, image data of the wafer W before substrate processing) is located. Similarly, the creation unit 18c identifies the X coordinates and Y coordinates of multiple points where the outline Wa stored in the image data of the wafer W after substrate processing is located.
  • the creation unit 18c calculates the Y-coordinate value of the contour Wa in the image data of the wafer W after substrate processing from the Y-coordinate value of the contour Wa in the image data of the wafer W before substrate processing at the same X coordinate value. Subtract the value. That is, the creation unit 18c calculates the difference between the Y-coordinate value of the contour Wa before substrate processing and the Y-coordinate value of the contour Wa after substrate processing, at the same X-coordinate value.
  • the outline Wa of the wafer W before the substrate processing and the outline Wa of the wafer W after the substrate processing basically all match. Therefore, in this case, at the same X coordinate value, the Y coordinate value of the outline Wa before substrate processing and the Y coordinate value of the outline Wa after substrate processing are approximately equal (that is, the difference is almost zero). .
  • FIG. 5 is a diagram showing an example of difference data according to the embodiment, and is a diagram showing an example of difference data when two image data as shown in FIG. 4 are obtained before and after substrate processing. Note that FIG. 5 is data obtained by smoothing the transition of the difference using the moving average method.
  • the detection unit 18d detects a positional shift in the rotational direction of the wafer W after the substrate processing, based on the image data acquired after the substrate processing and the reference data stored in the reference data storage unit 19a.
  • the detection unit 18d determines that a positional shift in the rotational direction has occurred in the wafer W after processing.
  • the detection unit 18d determines the amount of deviation of the notch N after processing the substrate, that is, the rotation The amount of positional deviation in the direction can be estimated.
  • FIG. 6 is a diagram showing the correlation between the X coordinate of the peak caused by the notch N and the position of the wafer W in the rotational direction. Note that in the data shown in FIG. 6, the position of the wafer W in the rotational direction when the notch N is located approximately at the center of the image data (for example, the case shown in FIG. 4(a)) is defined as 180 (deg). are doing.
  • the detection unit 18d calculates the position of the notch N before substrate processing shown in FIG. 5 (that is, the position in the rotational direction of the wafer W) based on the correlation shown in FIG. 6. Furthermore, the detection unit 18d calculates the position of the notch N after substrate processing (that is, the position in the rotational direction of the wafer W) based on the correlation shown in FIG.
  • the detection unit 18d detects the rotation of the wafer W after the substrate processing by taking the difference between the calculated rotational direction position of the wafer W before the substrate processing and the rotational direction position of the wafer W after the substrate processing.
  • the positional deviation angle in the direction can be calculated.
  • slippage in the rotational direction of the wafer W can be detected by detecting the positional deviation of the wafer W in the rotational direction based on image data after substrate processing.
  • the correlation used to calculate the position of the wafer W in the rotational direction is not limited to the linear correlation shown in FIG. 6.
  • data storing the correlation between the rotational direction position of the wafer W and the peak X value is prepared in advance as a table, and this table is referred to when calculating the rotational direction position of the wafer W. It's okay.
  • the notification unit 18e notifies that the positional deviation of the wafer W has occurred when the positional deviation angle of the wafer W calculated by the detection unit 18d is greater than or equal to a given threshold value. This allows the operator to recognize the abnormal state of the substrate holding section 31.
  • the notification unit 18e may save the captured image of the wafer W being processed when the positional deviation angle of the wafer W is greater than or equal to a given threshold value.
  • a captured image is, for example, a moving image, and is stored in the captured image storage section 19b of the storage section 19.
  • the notification unit 18e may associate the captured image during substrate processing stored in the captured image storage unit 19b as described above with log information indicating that an abnormal state has been reported for the same wafer W.
  • the operator can check the details of the defect again at a later date using the stored captured image. can. Furthermore, by associating captured images during substrate processing with log information indicating that an abnormal condition has been reported, the operator can easily check captured images during abnormal conditions.
  • the above-mentioned detection unit 18d calculates the positional deviation angle in the rotational direction for each of the plurality of wafers W successively carried into the processing unit 16, and stores the positional deviation angle in the storage unit 19. It is stored in the positional deviation angle storage section 19c.
  • FIG. 7 is a diagram for explaining prediction processing according to the embodiment.
  • the horizontal axis is time (or the number of processed wafers W), and the vertical axis is the value of the positional deviation angle of the wafer W.
  • Data of a plurality of wafers W is plotted in the XY space.
  • the prediction unit 18f predicts the holding state of the substrate holding unit 31 based on the change in positional deviation angle over time as shown in FIG.
  • the prediction unit 18f predicts the holding state of the substrate holding unit 31 by, for example, linear regression analysis.
  • the prediction unit 18f predicts that when the holding state becomes abnormal at time T2, which is the intersection of the straight line L and the upper limit value (or lower limit value) of the positional deviation angle at which the holding state is considered to be maintained satisfactorily, Prediction is made at time T1.
  • FIG. 8 is a diagram for explaining another example of the control processing according to the embodiment.
  • slippage in the rotational direction of the wafer W is detected based on the line C of the pattern formed on the surface of the wafer W.
  • the index for detecting the position of the wafer W in the rotational direction is not limited to the notch N or the line C of the pattern shape.
  • the position of the wafer W in the rotational direction may be detected based on the position of a stamp such as a lot number stamped on the back side of the wafer W.
  • the imaging device 60 is preferably arranged so as to be able to image the back side of the wafer W.
  • FIG. 9 is a diagram for explaining another example of the detection process according to the embodiment.
  • the outline Wa of the outer peripheral edge of the wafer W and the notch N are shown by broken lines for easy understanding.
  • a given elliptic approximation curve O is used as reference data.
  • the detection unit 18d determines the absolute position of the notch N after substrate processing (that is, the rotational direction of the wafer W) by taking the difference between the ellipse approximate curve O and the outline Wa of the wafer W after substrate processing. absolute position) is calculated based on the given correlation. This also makes it possible to detect slippage in the rotational direction of the wafer W.
  • the processing unit 16 can perform alignment of the wafer W in the rotational direction (so-called alignment process).
  • control unit 18 temporarily returns the wafer W to the substrate transfer device 17 and changes the rotational direction of the substrate holding unit 31. Adjust the position.
  • the embodiment alignment of the wafer W in the rotational direction can be performed in the processing unit 16. Therefore, according to the embodiment, the cost of the substrate processing system 1 can be reduced because the rotational direction alignment of the wafer W can be performed without using a dedicated alignment adjustment device.
  • the substrate processing apparatus (substrate processing system 1) according to the embodiment includes a substrate holding section 31, an imaging device 60, and a control section 18.
  • the substrate holding unit 31 holds and rotates a substrate (wafer W) to be processed.
  • the imaging device 60 images the substrate (wafer W) held by the substrate holder 31.
  • the control section 18 controls each section.
  • the control unit 18 includes an execution unit 18a, an acquisition unit 18b, and a detection unit 18d.
  • the execution unit 18a executes a series of substrate processing on a substrate (wafer W) carried in from the outside and held by the substrate holding unit 31.
  • the acquisition unit 18b images the substrate (wafer W) after substrate processing using the imaging device 60 and acquires image data.
  • the detection unit 18d detects a positional shift in the rotational direction of the substrate (wafer W) after substrate processing based on the acquired image data and the stored reference data. Thereby, slippage in the rotational direction of the wafer W can be detected.
  • the acquisition unit 18b images and separates the substrate (wafer W) carried in from the outside and held by the substrate holding unit 31 before a series of substrate processing. Obtain the image data of.
  • the acquisition unit 18b also stores other acquired image data as reference data. Thereby, slippage in the rotational direction of the wafer W that occurs during substrate processing can be detected.
  • control unit 18 includes a creation unit that creates difference data of the outline Wa of the outer peripheral edge of the substrate (wafer W) using the image data and the reference data. 18c. Furthermore, the detection unit 18d detects a positional shift in the rotational direction of the substrate (wafer W) after substrate processing based on the difference data. Thereby, slippage in the rotational direction of the wafer W can be detected with high accuracy.
  • the detection unit performs the following based on the pattern shape of the surface of the substrate shown in the image data and the pattern shape of the surface of the substrate shown in the reference data. Detects displacement in the rotational direction of the substrate after substrate processing. Thereby, slippage in the rotational direction of the wafer W can be detected.
  • the detection unit 18d stores the positional deviation angle in the storage unit 19 when the calculated positional deviation angle is less than a given threshold. do. Thereby, the change in positional deviation angle over time can be stored in the storage unit 19.
  • the acquisition unit 18b acquires image data of the substrate (wafer W) held by the substrate holding unit 31 before or after substrate processing. Further, the detection unit 18d detects the position (absolute position) of the substrate (wafer W) in the rotational direction with respect to the substrate holding unit 31 based on the acquired image data and the stored reference data. Thereby, the wafer W can be aligned in the rotational direction without using a dedicated alignment adjustment device, so the cost of the substrate processing system 1 can be reduced.
  • FIG. 10 is a flowchart illustrating an example of a control processing procedure executed by the substrate processing system 1 according to the embodiment.
  • control section 18 holds the wafer W carried into the processing unit 16 with the substrate holding section 31 (step S101).
  • control unit 18 stores the reference data (step S102).
  • the control unit 18 images the wafer W before substrate processing with the imaging device 60, and stores the image data of this wafer W as reference data.
  • Such reference data is stored in the reference data storage section 19a of the storage section 19, for example.
  • control unit 18 supplies a processing liquid, a rinsing liquid, etc. to the wafer W while rotating the wafer W held by the substrate holding unit 31, and performs a given process on the wafer W (step S103).
  • FIG. 11 is a flowchart illustrating an example of a procedure for positional deviation detection processing performed by the substrate processing system 1 according to the embodiment.
  • the control unit 18 acquires image data of the wafer W after substrate processing held by the substrate holding unit 31 using the imaging device 60 (step S201).
  • control unit 18 determines whether two peaks P1 and P2 are detected in the difference data of the created contour Wa (step S203). If the two peaks P1 and P2 are not detected in the difference data (step S203, No), the control unit 18 determines that no slippage in the rotational direction has occurred in the wafer W (step S204), and sets the series of positions. End the shift detection process.
  • step S206 If the positional deviation angle of the wafer W is within the given range (step S206, Yes), the series of positional deviation detection processing is ended. On the other hand, if the positional deviation angle of the wafer W is not within the given range (step S206, No), the control unit 18 notifies that the positional deviation has occurred in the wafer W held by the substrate holding unit 31 ( Step S207).
  • control unit 18 stores the captured image of the wafer W during substrate processing, captured by the imaging device 60, in the captured image storage unit 19b of the storage unit 19 (step S208), and ends the series of positional deviation detection processing. do.
  • control unit 18 stores the positional deviation angle of the wafer W detected in the process of step S205 described above in the positional deviation angle storage unit 19c of the storage unit 19 (step S301).
  • control unit 18 performs a linear regression analysis of the change in positional deviation angle over time in the XY space in which the change in positional deviation angle over time in the plurality of wafers W is plotted (step S302).
  • control unit 18 notifies the worker of the predicted deviation timing (step S305), and ends the series of temporal change detection processing. On the other hand, if it is determined that there is no significant difference in the slope of the straight line created by the linear regression analysis (step S303, No), the series of temporal change detection processing is ended.
  • FIG. 13 is a flowchart illustrating another example of the control processing procedure executed by the substrate processing system 1 according to the embodiment.
  • the processing unit 16 performs an alignment process on the wafer W.
  • control unit 18 detects the absolute position in the rotational direction of the wafer W held by the substrate holding unit 31 based on the created difference data (step S404). Then, the control unit 18 determines whether the absolute position of the wafer W in the rotational direction is within a given range (step S405).
  • step S405 If the absolute position of the wafer W in the rotational direction is within the given range (step S405, Yes), the series of control processing ends. On the other hand, if the absolute position of the wafer W in the rotational direction is not within the given range (step S405, No), the control unit 18 returns the wafer W from the substrate holding unit 31 to the substrate transfer device 17 (step S406).
  • the substrate processing method includes a holding step (step S101), an executing step (step S103), an acquiring step (step S201), and a detecting step (steps S203 to S205).
  • the substrate holding unit 31 holds the substrate (wafer W) carried in from the outside.
  • the step to be performed (step S103) is to perform a series of substrate processing on the substrate (wafer W).
  • the acquiring step (step S201) the substrate (wafer W) after substrate processing is imaged by the imaging device 60 to acquire image data.
  • the detecting step (steps S203 to S205) detects a positional shift in the rotational direction of the substrate (wafer W) after substrate processing, based on the acquired image data and the stored reference data. Thereby, slippage in the rotational direction of the wafer W can be detected.
  • the substrate processing method according to the embodiment further includes a storing step (step S102).
  • a substrate (wafer W) brought in from the outside and held in the substrate holding unit 31 is imaged by the imaging device 60 before a series of substrate processing to obtain another image data.
  • Other image data is stored as reference data. Thereby, slippage in the rotational direction of the wafer W that occurs during substrate processing can be detected.
  • the substrate processing method according to the embodiment further includes a step of notifying (step S207).
  • step S207 if the calculated positional deviation angle is greater than or equal to a given threshold, it is notified that a positional deviation has occurred in the substrate (wafer W). This allows the operator to recognize the abnormal state of the substrate holding section 31.
  • the step of detecting (steps S203 to S205) stores the positional deviation angle in the storage unit 19 when the calculated positional deviation angle is less than a given threshold value. do. Thereby, the change in positional deviation angle over time can be stored in the storage unit 19.
  • the substrate processing method according to the embodiment further includes a step of predicting (step S304).
  • the predicting step (step S304) predicts the holding state of the substrate holding section 31 based on the temporal change of the plurality of stored positional deviation angles. Thereby, the holding state of the substrate holding section 31 can be predicted with high accuracy.
  • W wafer (an example of a substrate) Wa Outline 1 Substrate processing system (an example of substrate processing equipment) 4 Control device 16 Processing unit 18 Control section 18a Execution section 18b Acquisition section 18c Creation section 18d Detection section 18e Notification section 18f Prediction section 19 Storage section 19a Reference data storage section 19b Captured image storage section 19c Position deviation angle storage section 31 Substrate holding section 60 Imaging device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Image Processing (AREA)

Abstract

A substrate processing apparatus according to one embodiment of the present disclosure comprises a substrate holding unit (31), an imaging device (60), and a control unit (18). The substrate holding unit (31) holds and rotates the substrate to be processed. The imaging device (60) images the substrate held by the substrate holding unit (31). The control unit (18) controls units. Additionally, the control unit (18) includes an execution unit (18a), an acquisition unit (18b), and a detection unit (18d). The execution unit (18a) executes a series of substrate processing operations on a substrate delivered from outside and held by the substrate holding unit (31). The acquisition unit (18b) acquires image data by imaging, using the imaging device (60), the substrate following substrate processing. On the basis of the acquired image data and stored reference data, the detection unit (18d) detects a positional deviation of the substrate in the rotation direction following substrate processing.

Description

基板処理装置および基板処理方法Substrate processing equipment and substrate processing method
 開示の実施形態は、基板処理装置および基板処理方法に関する。 The disclosed embodiments relate to a substrate processing apparatus and a substrate processing method.
 従来、半導体ウェハ(以下、ウェハとも呼称する。)などの基板を一枚ずつ処理する枚葉処理は、基板保持部において基板を保持した状態で回転させながら行われる(特許文献1参照)。 Conventionally, single-wafer processing in which substrates such as semiconductor wafers (hereinafter also referred to as wafers) are processed one by one is performed while rotating the substrate while holding it in a substrate holder (see Patent Document 1).
特許第5847661号公報Patent No. 5847661
 本開示は、基板における回転方向の滑りを検知することができる技術を提供する。 The present disclosure provides a technique that can detect rotational slippage in a substrate.
 本開示の一態様による基板処理装置は、基板保持部と、撮像装置と、制御部と、を備える。基板保持部は、処理する基板を保持して回転させる。撮像装置は、前記基板保持部に保持される前記基板を撮像する。制御部は、各部を制御する。また、前記制御部は、実行部と、取得部と、検出部と、を有する。実行部は、外部から搬入され基板保持部に保持された前記基板に対して一連の基板処理を実行する。取得部は、基板処理後の前記基板を前記撮像装置で撮像して画像データを取得する。検出部は、取得された前記画像データと記憶されたリファレンスデータとに基づいて、基板処理後の前記基板の回転方向の位置ずれを検出する。 A substrate processing apparatus according to one aspect of the present disclosure includes a substrate holding section, an imaging device, and a control section. The substrate holding section holds and rotates a substrate to be processed. The imaging device images the substrate held by the substrate holding section. The control section controls each section. Further, the control section includes an execution section, an acquisition section, and a detection section. The execution unit executes a series of substrate processing on the substrate carried in from the outside and held by the substrate holding unit. The acquisition unit acquires image data by capturing an image of the substrate after substrate processing using the imaging device. The detection unit detects a positional shift in the rotational direction of the substrate after substrate processing based on the acquired image data and stored reference data.
 本開示によれば、基板における回転方向の滑りを検知することができる。 According to the present disclosure, slippage in the rotational direction of the substrate can be detected.
図1は、実施形態に係る基板処理システムの概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment. 図2は、実施形態に係る処理ユニットの具体的な構成の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a specific configuration of the processing unit according to the embodiment. 図3は、実施形態に係る制御装置の構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of the configuration of the control device according to the embodiment. 図4は、実施形態に係る取得処理の一例を説明するための図である。FIG. 4 is a diagram for explaining an example of the acquisition process according to the embodiment. 図5は、実施形態に係る差分データの一例を示す図である。FIG. 5 is a diagram illustrating an example of difference data according to the embodiment. 図6は、ノッチに起因するピークのX座標と、ノッチの回転方向の位置との相関関係を示す図である。FIG. 6 is a diagram showing the correlation between the X coordinate of the peak caused by the notch and the position of the notch in the rotational direction. 図7は、実施形態に係る予測処理を説明するための図である。FIG. 7 is a diagram for explaining prediction processing according to the embodiment. 図8は、実施形態に係る制御処理の別の一例を説明するための図である。FIG. 8 is a diagram for explaining another example of the control process according to the embodiment. 図9は、実施形態に係る制御処理の別の一例を説明するための図である。FIG. 9 is a diagram for explaining another example of the control process according to the embodiment. 図10は、実施形態に係る基板処理システムが実行する制御処理の手順の一例を示すフローチャートである。FIG. 10 is a flowchart illustrating an example of a control processing procedure executed by the substrate processing system according to the embodiment. 図11は、実施形態に係る基板処理システムが実行する位置ずれ検知処理の手順の一例を示すフローチャートである。FIG. 11 is a flowchart illustrating an example of a procedure for positional displacement detection processing executed by the substrate processing system according to the embodiment. 図12は、実施形態に係る基板処理システムが実行する経時変化検知処理の手順の一例を示すフローチャートである。FIG. 12 is a flowchart illustrating an example of the procedure of the temporal change detection process executed by the substrate processing system according to the embodiment. 図13は、実施形態に係る基板処理システムが実行する制御処理の手順の別の一例を示すフローチャートである。FIG. 13 is a flowchart illustrating another example of a control processing procedure executed by the substrate processing system according to the embodiment.
 以下、添付図面を参照して、本願の開示する基板処理装置および基板処理方法の実施形態を詳細に説明する。なお、以下に示す実施形態により本開示が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。 Hereinafter, embodiments of a substrate processing apparatus and a substrate processing method disclosed in the present application will be described in detail with reference to the accompanying drawings. Note that the present disclosure is not limited to the embodiments described below. Furthermore, it should be noted that the drawings are schematic, and the dimensional relationship of each element, the ratio of each element, etc. may differ from reality. Furthermore, drawings may include portions with different dimensional relationships and ratios.
 従来、半導体ウェハ(以下、ウェハとも呼称する。)などの基板を一枚ずつ処理する枚葉処理は、基板保持部において基板を保持した状態で回転させながら行われる。そのため、十分に基板が保持されていない状態で基板処理が行われると、基板が回転方向に沿って滑ってしまうため、基板処理が十分にできなかったり、チャンバの内壁などに処理液が大きく飛び散るなどの不具合が生じる恐れがある。 Conventionally, single-wafer processing in which substrates such as semiconductor wafers (hereinafter also referred to as wafers) are processed one by one is performed while rotating the substrate while holding it in a substrate holder. Therefore, if substrate processing is performed while the substrate is not being held sufficiently, the substrate will slip along the rotation direction, resulting in insufficient substrate processing or large splashes of processing liquid on the inner walls of the chamber. Problems such as this may occur.
 一方で、従来技術では、搬送装置から基板保持部に載置された基板の位置ずれについては検出できる一方で、枚葉処理後に発生する可能性のある回転方向の滑りを検出することはできなかった。 On the other hand, while conventional technology can detect misalignment of the substrate placed on the substrate holder from the transport device, it cannot detect slippage in the rotational direction that may occur after single-wafer processing. Ta.
 そこで、上述の問題点を克服し、基板における回転方向の滑りを検知することができる技術の実現が期待されている。 Therefore, it is hoped that a technology will be realized that can overcome the above-mentioned problems and detect slippage in the rotational direction of the substrate.
<基板処理システムの概要>
 最初に、図1を参照しながら、実施形態に係る基板処理システム1の概略構成について説明する。図1は、実施形態に係る基板処理システム1の概略構成を示す図である。かかる基板処理システム1は、基板処理装置の一例である。以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。
<Summary of substrate processing system>
First, a schematic configuration of a substrate processing system 1 according to an embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a schematic configuration of a substrate processing system 1 according to an embodiment. The substrate processing system 1 is an example of a substrate processing apparatus. In the following, in order to clarify the positional relationship, an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other are defined, and the positive direction of the Z-axis is defined as a vertically upward direction.
 図1に示すように、基板処理システム1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2と処理ステーション3とは隣接して設けられる。 As shown in FIG. 1, the substrate processing system 1 includes a loading/unloading station 2 and a processing station 3. The loading/unloading station 2 and the processing station 3 are provided adjacent to each other.
 搬入出ステーション2は、フープ載置部11と、搬送部12とを備える。フープ載置部11には、複数枚の基板、実施形態では半導体ウェハW(以下、ウェハWと呼称する。)を水平状態で収容する複数のフープHが載置される。 The loading/unloading station 2 includes a hoop placement section 11 and a transport section 12. A plurality of hoops H that horizontally accommodate a plurality of substrates, in the embodiment semiconductor wafers W (hereinafter referred to as wafers W), are placed on the hoop mounting section 11 .
 搬送部12は、フープ載置部11に隣接して設けられ、内部に基板搬送装置13と、受渡部14とを備える。基板搬送装置13は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置13は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いてフープHと受渡部14との間でウェハWの搬送を行う。 The transport section 12 is provided adjacent to the hoop mounting section 11 and includes a substrate transport device 13 and a transfer section 14 inside. The substrate transfer device 13 includes a wafer holding mechanism that holds the wafer W. Further, the substrate transfer device 13 is capable of horizontal and vertical movement and rotation about a vertical axis, and uses a wafer holding mechanism to transfer the wafer W between the hoop H and the transfer section 14. conduct.
 処理ステーション3は、搬送部12に隣接して設けられる。処理ステーション3は、搬送部15と、複数の処理ユニット16とを備える。複数の処理ユニット16は、搬送部15の両側に並べて設けられる。 The processing station 3 is provided adjacent to the transport section 12. The processing station 3 includes a transport section 15 and a plurality of processing units 16. The plurality of processing units 16 are arranged side by side on both sides of the transport section 15 .
 搬送部15は、内部に基板搬送装置17を備える。基板搬送装置17は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置17は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いて受渡部14と処理ユニット16との間でウェハWの搬送を行う。 The transport section 15 includes a substrate transport device 17 inside. The substrate transfer device 17 includes a wafer holding mechanism that holds the wafer W. Further, the substrate transfer device 17 is capable of horizontal and vertical movement and rotation about a vertical axis, and is capable of transferring wafers W between the transfer section 14 and the processing unit 16 using a wafer holding mechanism. I do.
 処理ユニット16は、基板搬送装置17によって搬送されるウェハWに対して所定の基板処理を行う。 The processing unit 16 performs predetermined substrate processing on the wafer W transported by the substrate transport device 17.
 また、基板処理システム1は、制御装置4を備える。制御装置4は、たとえばコンピュータであり、制御部18と記憶部19とを備える。記憶部19には、基板処理システム1において実行される各種の処理を制御するプログラムが格納される。制御部18は、記憶部19に記憶されたプログラムを読み出して実行することによって基板処理システム1の動作を制御する。 The substrate processing system 1 also includes a control device 4. The control device 4 is, for example, a computer, and includes a control section 18 and a storage section 19. The storage unit 19 stores programs that control various processes executed in the substrate processing system 1. The control unit 18 controls the operation of the substrate processing system 1 by reading and executing a program stored in the storage unit 19 .
 なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置4の記憶部19にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 Note that such a program may be one that has been recorded on a computer-readable storage medium, and may be one that is installed in the storage unit 19 of the control device 4 from the storage medium. Examples of computer-readable storage media include hard disks (HD), flexible disks (FD), compact disks (CD), magnetic optical disks (MO), and memory cards.
 上記のように構成された基板処理システム1では、まず、搬入出ステーション2の基板搬送装置13が、フープ載置部11に載置されたフープHからウェハWを取り出し、取り出したウェハWを受渡部14に載置する。受渡部14に載置されたウェハWは、処理ステーション3の基板搬送装置17によって受渡部14から取り出されて、処理ユニット16へ搬入される。 In the substrate processing system 1 configured as described above, first, the substrate transfer device 13 of the loading/unloading station 2 takes out a wafer W from the hoop H placed on the hoop placement section 11, and receives the taken out wafer W. Place it on Watabe 14. The wafer W placed on the transfer section 14 is taken out from the transfer section 14 by the substrate transport device 17 of the processing station 3 and carried into the processing unit 16.
 処理ユニット16へ搬入されたウェハWは、処理ユニット16によって処理された後、基板搬送装置17によって処理ユニット16から搬出されて、受渡部14に載置される。そして、受渡部14に載置された処理済のウェハWは、基板搬送装置13によってフープ載置部11のフープHへ戻される。 The wafer W carried into the processing unit 16 is processed by the processing unit 16, and then carried out from the processing unit 16 by the substrate transport device 17 and placed on the transfer section 14. Then, the processed wafer W placed on the transfer section 14 is returned to the hoop H of the hoop placement section 11 by the substrate transfer device 13.
<処理ユニットの構成>
 次に、実施形態に係る処理ユニット16の構成について、図2を参照しながら説明する。図2は、処理ユニット16の具体的な構成の一例を示す模式図である。図2に示すように、処理ユニット16は、チャンバ20と、基板処理部30と、液供給部40と、回収カップ50と、撮像装置60とを備える。
<Processing unit configuration>
Next, the configuration of the processing unit 16 according to the embodiment will be described with reference to FIG. 2. FIG. 2 is a schematic diagram showing an example of a specific configuration of the processing unit 16. As shown in FIG. 2, the processing unit 16 includes a chamber 20, a substrate processing section 30, a liquid supply section 40, a collection cup 50, and an imaging device 60.
 チャンバ20は、基板処理部30と、液供給部40と、回収カップ50と、撮像装置60とを収容する。チャンバ20の天井部には、FFU(Fan Filter Unit)21が設けられる。FFU21は、チャンバ20内にダウンフローを形成する。 The chamber 20 accommodates a substrate processing section 30, a liquid supply section 40, a collection cup 50, and an imaging device 60. A fan filter unit (FFU) 21 is provided on the ceiling of the chamber 20 . FFU 21 forms a downflow within chamber 20 .
 基板処理部30は、基板保持部31と、支柱部32と、駆動部33とを備え、載置されたウェハWに所与の基板処理を施す。基板保持部31は、ウェハWを水平に保持する。支柱部32は、鉛直方向に延在する部材であり、基端部が駆動部33によって回転可能に支持され、先端部において基板保持部31を水平に支持する。駆動部33は、支柱部32を鉛直軸まわりに回転させる。 The substrate processing section 30 includes a substrate holding section 31, a support section 32, and a driving section 33, and performs a given substrate processing on the mounted wafer W. The substrate holding section 31 holds the wafer W horizontally. The support portion 32 is a member extending in the vertical direction, has a base end rotatably supported by a drive portion 33, and a distal end portion that supports the substrate holding portion 31 horizontally. The drive section 33 rotates the support section 32 around a vertical axis.
 かかる基板処理部30は、駆動部33を用いて支柱部32を回転させることによって支柱部32に支持された基板保持部31を回転させ、これにより、基板保持部31に保持されたウェハWを回転させる。 The substrate processing unit 30 rotates the substrate holding unit 31 supported by the support unit 32 by rotating the support unit 32 using the drive unit 33, thereby rotating the wafer W held by the substrate holding unit 31. Rotate.
 基板処理部30が備える基板保持部31の上面には、ウェハWを側面から保持する保持部材31aが設けられる。ウェハWは、かかる保持部材31aによって基板保持部31の上面からわずかに離間した状態で水平保持される。なお、ウェハWは、基板処理が行われる表面を上方に向けた状態で基板保持部31に保持される。 A holding member 31a that holds the wafer W from the side is provided on the upper surface of the substrate holding section 31 included in the substrate processing section 30. The wafer W is held horizontally by the holding member 31a while being slightly spaced apart from the upper surface of the substrate holding section 31. Note that the wafer W is held by the substrate holder 31 with the surface on which substrate processing is performed facing upward.
 なお、基板保持部31は、保持部材31aによって基板を保持する場合に限られず、たとえば、ウェハWの下面を吸着することにより、かかるウェハWを水平に保持してもよい。さらに、基板保持部31は、静電チャックなどであってもよい。 Note that the substrate holding unit 31 is not limited to holding the substrate by the holding member 31a, and may hold the wafer W horizontally by suctioning the lower surface of the wafer W, for example. Furthermore, the substrate holding section 31 may be an electrostatic chuck or the like.
 液供給部40は、ウェハWに対して処理流体を供給する。液供給部40は、ノズル41a、41bと、かかるノズル41a、41bを水平に支持するアーム42と、アーム42を旋回および昇降させる旋回昇降機構43とを備える。 The liquid supply unit 40 supplies processing fluid to the wafer W. The liquid supply section 40 includes nozzles 41a and 41b, an arm 42 that horizontally supports the nozzles 41a and 41b, and a turning and lifting mechanism 43 that turns and raises and lowers the arm 42.
 ノズル41aは、バルブ44aおよび流量調整器45aを介して処理液供給源46aに接続される。処理液供給源46aは、処理液を貯留するタンクである。かかる処理液は、たとえばウェハWの液処理(たとえば、エッチング処理や洗浄処理など)に用いられる。 The nozzle 41a is connected to a processing liquid supply source 46a via a valve 44a and a flow rate regulator 45a. The processing liquid supply source 46a is a tank that stores processing liquid. Such a treatment liquid is used, for example, for liquid treatment of the wafer W (eg, etching treatment, cleaning treatment, etc.).
 ノズル41bは、バルブ44bおよび流量調整器45bを介してDIW供給源46bに接続される。DIW供給源46bは、たとえば、DIW(DeIonized Water:脱イオン水)を貯留するタンクである。かかるDIWは、たとえばウェハWのリンス処理に用いられる。 The nozzle 41b is connected to a DIW supply source 46b via a valve 44b and a flow regulator 45b. The DIW supply source 46b is, for example, a tank that stores DIW (DeIonized Water). Such DIW is used for rinsing the wafer W, for example.
 なお、図2の例では、液供給部40が処理液およびリンス液(DIW)をウェハWに供給する例について示したが、本開示はかかる例に限られず、その他の薬液をウェハWに供給するように構成されてもよい。 Although the example in FIG. 2 shows an example in which the liquid supply unit 40 supplies the processing liquid and the rinsing liquid (DIW) to the wafer W, the present disclosure is not limited to such an example, and other chemical liquids may be supplied to the wafer W. It may be configured to do so.
 回収カップ50は、基板保持部31を取り囲むように配置され、基板保持部31の回転によってウェハWから飛散する処理液を捕集する。回収カップ50の底部には、排液口51が形成されており、回収カップ50によって捕集された処理液は、かかる排液口51から処理ユニット16の外部へ排出される。また、回収カップ50の底部には、FFU21から供給される気体を処理ユニット16の外部へ排出する排気口52が形成される。 The collection cup 50 is arranged to surround the substrate holding part 31 and collects the processing liquid scattered from the wafer W by the rotation of the substrate holding part 31. A drain port 51 is formed at the bottom of the recovery cup 50, and the processing liquid collected by the recovery cup 50 is discharged to the outside of the processing unit 16 from the drain port 51. Furthermore, an exhaust port 52 is formed at the bottom of the collection cup 50 to discharge the gas supplied from the FFU 21 to the outside of the processing unit 16.
 撮像装置60は、たとえばウェハWの周縁部近傍でウェハWよりも上方に配置され、基板保持部31に保持されるウェハWを撮像する。撮像装置60は、たとえば、ウェハWの外周端の輪郭Wa(図4参照)を撮像することができる位置に配置される。 The imaging device 60 is disposed above the wafer W near the periphery of the wafer W, for example, and images the wafer W held by the substrate holder 31. The imaging device 60 is arranged at a position where it can image the outline Wa (see FIG. 4) of the outer peripheral edge of the wafer W, for example.
<検知処理の詳細>
 次に、実施形態に係る検知処理の詳細について、図3~図7を参照しながら説明する。図3は、実施形態に係る制御装置4の構成の一例を示すブロック図である。図3に示すように、制御装置4は、制御部18と、記憶部19とを備える。
<Details of detection processing>
Next, details of the detection processing according to the embodiment will be explained with reference to FIGS. 3 to 7. FIG. 3 is a block diagram showing an example of the configuration of the control device 4 according to the embodiment. As shown in FIG. 3, the control device 4 includes a control section 18 and a storage section 19.
 また、制御装置4には、上述した基板処理部30と、液供給部40と、撮像装置60とが接続される。なお、制御装置4は、図3に示す機能部以外にも、既知のコンピュータが有する各種の機能部、たとえば各種の入力デバイスや音声出力デバイスなどの機能部を有することとしてもかまわない。 Further, the above-described substrate processing section 30, liquid supply section 40, and imaging device 60 are connected to the control device 4. In addition to the functional units shown in FIG. 3, the control device 4 may include various functional units included in known computers, such as various input devices and audio output devices.
 記憶部19は、たとえば、RAM、フラッシュメモリなどの半導体メモリ素子、ハードディスクや光ディスクなどの記憶装置によって実現される。記憶部19は、リファレンスデータ記憶部19aと、撮像画像記憶部19bと、位置ずれ角度記憶部19cとを有する。これらの記憶部についての詳細は後述する。また、記憶部19は、制御部18での各種処理に用いられる情報を記憶する。 The storage unit 19 is realized by, for example, a semiconductor memory element such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disk. The storage unit 19 includes a reference data storage unit 19a, a captured image storage unit 19b, and a positional deviation angle storage unit 19c. Details of these storage units will be described later. Furthermore, the storage unit 19 stores information used for various processes in the control unit 18.
 制御部18は、たとえば、CPU、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)などによって、記憶部19に記憶されているプログラムがRAMを作業領域として実行されることにより実現される。 The control unit 18 is realized by, for example, a CPU, an MPU (Micro Processing Unit), a GPU (Graphics Processing Unit), etc., executing a program stored in the storage unit 19 using the RAM as a work area.
 また、制御部18は、たとえば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などの集積回路により実現されるようにしてもよい。 Further, the control unit 18 may be realized by, for example, an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
 制御部18は、実行部18aと、取得部18bと、作成部18cと、検出部18dと、報知部18eと、予測部18fとを有し、以下に説明する制御処理の機能や作用を実現または実行する。なお、制御部18の内部構成は、図3に示した構成に限られず、以降で説明する制御処理を行う構成であれば他の構成であってもよい。 The control unit 18 includes an execution unit 18a, an acquisition unit 18b, a creation unit 18c, a detection unit 18d, a notification unit 18e, and a prediction unit 18f, and realizes the functions and actions of the control processing described below. Or run. Note that the internal configuration of the control unit 18 is not limited to the configuration shown in FIG. 3, and may be any other configuration as long as it performs the control processing described below.
 実行部18aは、処理ユニット16の外部から搬入され基板保持部31に保持されたウェハWに対して、一連の基板処理を実行する。実行部18aは、たとえば、作業者等から指定されたレシピに応じて、基板処理部30などを制御してウェハWを所与の回転数で回転させ、液供給部40などを制御してウェハW上に所与の供給量で処理液を供給する。 The execution unit 18a executes a series of substrate processing on the wafer W carried in from the outside of the processing unit 16 and held by the substrate holding unit 31. For example, the execution unit 18a controls the substrate processing unit 30 and the like to rotate the wafer W at a given rotation speed, and controls the liquid supply unit 40 and the like to rotate the wafer W according to a recipe specified by an operator or the like. A processing liquid is supplied onto W at a given supply amount.
 また、実行部18aは、処理液による液処理が終了したウェハWに対して、DIWによるリンス処理を実施する。さらに、実行部18aは、リンス処理が終了したウェハWに対して、スピン乾燥などによる乾燥処理を実施する。 Furthermore, the execution unit 18a performs a DIW rinsing process on the wafer W that has been subjected to the liquid treatment using the treatment liquid. Further, the execution unit 18a performs a drying process such as spin drying on the wafer W after the rinsing process.
 取得部18bは、実行部18aによって基板処理が施された後のウェハWを撮像装置60で撮像して、画像データを取得する。また、取得部18bは、実行部18aによって基板処理が施される前のウェハWを撮像装置60で撮像して、別の画像データを取得してもよい。かかる取得部18bによる取得処理の詳細について、図4を参照しながら説明する。 The acquisition unit 18b images the wafer W, which has been subjected to substrate processing by the execution unit 18a, with the imaging device 60, and acquires image data. Further, the acquisition unit 18b may acquire another image data by capturing an image of the wafer W before the substrate processing is performed by the execution unit 18a using the imaging device 60. The details of the acquisition processing by the acquisition unit 18b will be explained with reference to FIG. 4.
 図4は、実施形態に係る取得処理の一例を説明するための図である。図4の(a)に示すように、取得部18bは、基板保持部31(図2参照)に保持されたウェハWを、基板処理の前に撮像装置60(図2参照)によって撮像し、ウェハWの撮像画像を取得する。 FIG. 4 is a diagram for explaining an example of acquisition processing according to the embodiment. As shown in (a) of FIG. 4, the acquisition unit 18b images the wafer W held by the substrate holding unit 31 (see FIG. 2) using the imaging device 60 (see FIG. 2) before substrate processing; A captured image of the wafer W is acquired.
 この基板処理前の撮像画像には、たとえば、ウェハWの外周端の輪郭Waと、ウェハWの外周端に形成されるノッチNとが記録される。なお、この基板処理前の画像データは、たとえば、リファレンスデータとして記憶部19のリファレンスデータ記憶部19aに記憶される。 In this captured image before substrate processing, for example, an outline Wa of the outer peripheral edge of the wafer W and a notch N formed at the outer peripheral edge of the wafer W are recorded. Note that this image data before substrate processing is stored, for example, in the reference data storage section 19a of the storage section 19 as reference data.
 また、取得部18bは、図4の(b)に示すように、基板保持部31に保持されたウェハWを、基板処理の後に撮像装置60によって撮像し、ウェハWの撮像画像を取得する。この基板処理後の撮像画像にも、ウェハWの外周端の輪郭Waと、ウェハWの外周端に形成されるノッチNとが記録される。 Further, as shown in FIG. 4B, the acquisition unit 18b images the wafer W held by the substrate holding unit 31 with the imaging device 60 after substrate processing, and acquires a captured image of the wafer W. The outline Wa of the outer circumferential edge of the wafer W and the notch N formed at the outer circumferential edge of the wafer W are also recorded in the captured image after this substrate processing.
 なお、これらの撮像画像に対しては、輪郭WaやノッチNを明確にするため、各種画像処理(たとえば、エッジ検出処理など)が施されてもよい。 Note that various image processing (for example, edge detection processing, etc.) may be performed on these captured images in order to clarify the outline Wa and the notch N.
 図3の説明に戻る。作成部18cは、取得部18bが取得した基板処理後のウェハWの画像データと、リファレンスデータ記憶部19aに記憶されるリファレンスデータとを用いて、ウェハWの外周端の輪郭Waの差分データを作成する。 Returning to the explanation of FIG. 3. The creation unit 18c creates difference data of the outline Wa of the outer peripheral edge of the wafer W using the image data of the wafer W after substrate processing acquired by the acquisition unit 18b and the reference data stored in the reference data storage unit 19a. create.
 作成部18cが作成処理の際に用いるリファレンスデータは、たとえば、取得部18bが取得した基板処理前のウェハWの画像データである。この作成処理の詳細について、図4および図5を参照しながら説明する。 The reference data used by the creation unit 18c during the creation process is, for example, image data of the wafer W before substrate processing acquired by the acquisition unit 18b. The details of this creation process will be explained with reference to FIGS. 4 and 5.
 作成部18cは、まず、リファレンスデータ(たとえば、基板処理前のウェハWの画像データ)に記憶される輪郭Waが位置する複数点のX座標およびY座標を同定する。また、作成部18cは、同様に、基板処理後のウェハWの画像データに記憶される輪郭Waが位置する複数点のX座標およびY座標を同定する。 The creation unit 18c first identifies the X and Y coordinates of multiple points where the outline Wa stored in the reference data (for example, image data of the wafer W before substrate processing) is located. Similarly, the creation unit 18c identifies the X coordinates and Y coordinates of multiple points where the outline Wa stored in the image data of the wafer W after substrate processing is located.
 次に、作成部18cは、同じ値のX座標において、基板処理前のウェハWの画像データにおける輪郭WaのY座標の値から、基板処理後のウェハWの画像データにおける輪郭WaのY座標の値を引く。すなわち、作成部18cは、同じ値のX座標において、基板処理前の輪郭WaのY座標の値と基板処理後の輪郭WaのY座標の値との差分を取る。 Next, the creation unit 18c calculates the Y-coordinate value of the contour Wa in the image data of the wafer W after substrate processing from the Y-coordinate value of the contour Wa in the image data of the wafer W before substrate processing at the same X coordinate value. Subtract the value. That is, the creation unit 18c calculates the difference between the Y-coordinate value of the contour Wa before substrate processing and the Y-coordinate value of the contour Wa after substrate processing, at the same X-coordinate value.
 ここで、仮に基板処理後のウェハWに回転方向の滑りが発生していない場合、基板処理前のウェハWの輪郭Waと基板処理後のウェハWの輪郭Waとは基本的にすべて一致する。そのため、この場合、同じ値のX座標において、基板処理前の輪郭WaのY座標の値と基板処理後の輪郭WaのY座標の値とは略等しくなる(すなわち、差分はほぼゼロになる)。 Here, if no slippage in the rotational direction occurs in the wafer W after the substrate processing, the outline Wa of the wafer W before the substrate processing and the outline Wa of the wafer W after the substrate processing basically all match. Therefore, in this case, at the same X coordinate value, the Y coordinate value of the outline Wa before substrate processing and the Y coordinate value of the outline Wa after substrate processing are approximately equal (that is, the difference is almost zero). .
 一方で、図4に示したように、基板処理後のウェハWに回転方向の滑りが発生した場合、ノッチNが位置するX座標において、基板処理前のウェハWの輪郭Waと基板処理後のウェハWの輪郭Waとは一致しなくなる。 On the other hand, as shown in FIG. 4, if slippage in the rotational direction occurs in the wafer W after substrate processing, at the X coordinate where the notch N is located, the contour Wa of the wafer W before substrate processing and the contour Wa after substrate processing It no longer matches the contour Wa of the wafer W.
 図5は、実施形態に係る差分データの一例を示す図であり、基板処理前後で図4に示すような2つの画像データが得られた場合の差分データの一例を示す図である。なお、図5は、差分の推移を移動平均法で平滑化したデータである。 FIG. 5 is a diagram showing an example of difference data according to the embodiment, and is a diagram showing an example of difference data when two image data as shown in FIG. 4 are obtained before and after substrate processing. Note that FIG. 5 is data obtained by smoothing the transition of the difference using the moving average method.
 図5に示すように、X=X1に位置するピークP1は、基板処理前(図4の(a)参照)のノッチNに起因するピークである。なぜなら、X=X1では、基板処理前にはノッチNが位置するためYの値が大きいのに対し、基板処理後はノッチNが位置しないため、Yの値が小さくなるからである。 As shown in FIG. 5, the peak P1 located at X=X1 is a peak caused by the notch N before substrate processing (see (a) in FIG. 4). This is because when X=X1, the value of Y is large because the notch N is located before the substrate processing, whereas the value of Y is small because the notch N is not located after the substrate processing.
 また、図5の例において、X=X2に位置する負のピークP2は、基板処理後(図4の(b)参照)のノッチNに起因するピークである。なぜなら、X=X2では、基板処理前にはノッチNが位置しないためYの値が小さいのに対し、基板処理後はノッチNが位置するため、Yの値が大きくなるからである。 Furthermore, in the example of FIG. 5, the negative peak P2 located at X=X2 is a peak resulting from the notch N after substrate processing (see (b) in FIG. 4). This is because when X=X2, the value of Y is small because the notch N is not located before the substrate processing, whereas the value of Y is large because the notch N is located after the substrate processing.
 図3の説明に戻る。検出部18dは、基板処理後に取得された画像データと、リファレンスデータ記憶部19aに記憶されたリファレンスデータとに基づいて、基板処理後のウェハWの回転方向の位置ずれを検出する。 Returning to the explanation of FIG. 3. The detection unit 18d detects a positional shift in the rotational direction of the wafer W after the substrate processing, based on the image data acquired after the substrate processing and the reference data stored in the reference data storage unit 19a.
 たとえば、検出部18dは、図5に示すように、所与のしきい値A以上のピークP1と、所与のしきい値-A以下のピークP2とが差分データに検出された場合、基板処理後のウェハWに回転方向の位置ずれが発生していると判定することができる。 For example, as shown in FIG. 5, when a peak P1 greater than or equal to a given threshold value A and a peak P2 less than or equal to a given threshold value −A are detected in the differential data, the detection unit 18d It can be determined that a positional shift in the rotational direction has occurred in the wafer W after processing.
 さらに、検出部18dは、差分データに検出された2つのピークP1、P2におけるXの値(ここでは、X1、X2)の差異に基づいて、基板処理後におけるノッチNのずれ量、すなわち、回転方向の位置ずれ量を推定することができる。 Further, the detection unit 18d determines the amount of deviation of the notch N after processing the substrate, that is, the rotation The amount of positional deviation in the direction can be estimated.
 図6は、ノッチNに起因するピークのX座標と、ウェハWの回転方向の位置との相関関係を示す図である。なお、図6に示すデータでは、ノッチNが画像データの略中央に位置する場合(たとえば、図4の(a)に示す場合)におけるウェハWの回転方向の位置を、180(deg)と規定している。 FIG. 6 is a diagram showing the correlation between the X coordinate of the peak caused by the notch N and the position of the wafer W in the rotational direction. Note that in the data shown in FIG. 6, the position of the wafer W in the rotational direction when the notch N is located approximately at the center of the image data (for example, the case shown in FIG. 4(a)) is defined as 180 (deg). are doing.
 図6に示すように、輪郭Waの画像データにおいて、ノッチNに起因するピークのXの値と、ウェハWの回転方向の位置とは、非常に相関性が高いことが分かる。 As shown in FIG. 6, it can be seen that in the image data of the contour Wa, the value of the peak X caused by the notch N and the position of the wafer W in the rotational direction have a very high correlation.
 そこで、検出部18dは、図5に示した基板処理前のノッチNの位置(すなわち、ウェハWの回転方向の位置)を図6に示した相関関係に基づいて算出する。さらに、検出部18dは、基板処理後のノッチNの位置(すなわち、ウェハWの回転方向の位置)を図6に示した相関関係に基づいて算出する。 Therefore, the detection unit 18d calculates the position of the notch N before substrate processing shown in FIG. 5 (that is, the position in the rotational direction of the wafer W) based on the correlation shown in FIG. 6. Furthermore, the detection unit 18d calculates the position of the notch N after substrate processing (that is, the position in the rotational direction of the wafer W) based on the correlation shown in FIG.
 そして、検出部18dは、算出された基板処理前のウェハWの回転方向の位置と、基板処理後のウェハWの回転方向の位置との差分を取ることで、基板処理後のウェハWにおける回転方向の位置ずれ角度を算出することができる。 Then, the detection unit 18d detects the rotation of the wafer W after the substrate processing by taking the difference between the calculated rotational direction position of the wafer W before the substrate processing and the rotational direction position of the wafer W after the substrate processing. The positional deviation angle in the direction can be calculated.
 ここまで説明したように、実施形態では、基板処理後の画像データに基づいてウェハWの回転方向の位置ずれを検出することで、ウェハWにおける回転方向の滑りを検知することができる。 As described so far, in the embodiment, slippage in the rotational direction of the wafer W can be detected by detecting the positional deviation of the wafer W in the rotational direction based on image data after substrate processing.
 なお、本開示において、ウェハWの回転方向の位置を算出するために用いられる相関関係は、図6に示す直線状の相関関係に限られない。たとえば、あらかじめウェハWの回転方向の位置と、ピークのXの値との相関関係が記憶されたデータをテーブルとしてあらかじめ準備し、ウェハWの回転方向の位置を算出する際にかかるテーブルを参照してもよい。 Note that in the present disclosure, the correlation used to calculate the position of the wafer W in the rotational direction is not limited to the linear correlation shown in FIG. 6. For example, data storing the correlation between the rotational direction position of the wafer W and the peak X value is prepared in advance as a table, and this table is referred to when calculating the rotational direction position of the wafer W. It's okay.
 図3の説明に戻る。報知部18eは、検出部18dによって算出されたウェハWの位置ずれ角度が所与のしきい値以上である場合に、ウェハWに位置ずれが発生した旨を報知する。これにより、作業者が基板保持部31の異常状態を認知することができる。 Returning to the explanation of FIG. 3. The notification unit 18e notifies that the positional deviation of the wafer W has occurred when the positional deviation angle of the wafer W calculated by the detection unit 18d is greater than or equal to a given threshold value. This allows the operator to recognize the abnormal state of the substrate holding section 31.
 また、報知部18eは、ウェハWの位置ずれ角度が所与のしきい値以上である場合に、かかるウェハWの処理中の撮像画像を保存してもよい。かかる撮像画像は、たとえば動画であり、記憶部19の撮像画像記憶部19bに保存される。 Additionally, the notification unit 18e may save the captured image of the wafer W being processed when the positional deviation angle of the wafer W is greater than or equal to a given threshold value. Such a captured image is, for example, a moving image, and is stored in the captured image storage section 19b of the storage section 19.
 さらに、報知部18eは、上記の通り撮像画像記憶部19bに保存された基板処理中の撮像画像と、同じウェハWについて異常状態が報知された旨のログ情報とを対応付けてもよい。 Further, the notification unit 18e may associate the captured image during substrate processing stored in the captured image storage unit 19b as described above with log information indicating that an abnormal state has been reported for the same wafer W.
 このように、回転方向の滑りが検知されたウェハWについて、処理中の撮像画像を記憶部19に保存することで、作業者が後日改めて不具合の詳細を記憶された撮像画像によって確認することができる。また、基板処理中の撮像画像と異常状態が報知された旨のログ情報とを対応付けることで、作業者が簡便に異常時の撮像画像を確認することができる。 In this way, by storing the captured image of the wafer W in which slippage in the rotational direction has been detected during processing in the storage unit 19, the operator can check the details of the defect again at a later date using the stored captured image. can. Furthermore, by associating captured images during substrate processing with log information indicating that an abnormal condition has been reported, the operator can easily check captured images during abnormal conditions.
 上述した検出部18dは、上記の検出処理に加えて、処理ユニット16に続けて搬入される複数のウェハWについて、それぞれ回転方向の位置ずれ角度を算出し、かかる位置ずれ角度を記憶部19の位置ずれ角度記憶部19cに記憶する。 In addition to the above-mentioned detection processing, the above-mentioned detection unit 18d calculates the positional deviation angle in the rotational direction for each of the plurality of wafers W successively carried into the processing unit 16, and stores the positional deviation angle in the storage unit 19. It is stored in the positional deviation angle storage section 19c.
 そして、予測部18fは、かかる位置ずれ角度記憶部19cに記憶された複数の位置ずれ角度の経時変化に基づいて、基板保持部31の保持状態を予測する。図7は、実施形態に係る予測処理を説明するための図である。 Then, the prediction unit 18f predicts the holding state of the substrate holding unit 31 based on the change over time of the plurality of positional deviation angles stored in the positional deviation angle storage unit 19c. FIG. 7 is a diagram for explaining prediction processing according to the embodiment.
 図7に示すように、実施形態に係る位置ずれ角度記憶部19cには、たとえば、横軸が時間(またはウェハWの処理枚数)であり、縦軸がウェハWの位置ずれ角度の値であるXY空間に、複数のウェハWのデータがプロットされる。 As shown in FIG. 7, in the positional deviation angle storage unit 19c according to the embodiment, for example, the horizontal axis is time (or the number of processed wafers W), and the vertical axis is the value of the positional deviation angle of the wafer W. Data of a plurality of wafers W is plotted in the XY space.
 予測部18fは、図7に示されるような位置ずれ角度の経時変化に基づいて、基板保持部31の保持状態を予測する。予測部18fは、たとえば、直線回帰分析によって基板保持部31の保持状態を予測する。 The prediction unit 18f predicts the holding state of the substrate holding unit 31 based on the change in positional deviation angle over time as shown in FIG. The prediction unit 18f predicts the holding state of the substrate holding unit 31 by, for example, linear regression analysis.
 たとえば、図7の例では、時間T0までの期間において、位置ずれ角度の時間経過は、位置ずれ角度=0の直線に回帰している。すなわち、図7の例において、時間T0まではウェハWの位置ずれ角度に目立った変化はなく、良好な保持状態が維持されていると推定される。 For example, in the example of FIG. 7, the time course of the positional deviation angle regresses to a straight line with positional deviation angle = 0 in the period up to time T0. That is, in the example of FIG. 7, there is no noticeable change in the positional deviation angle of the wafer W until time T0, and it is presumed that a good holding state is maintained.
 一方で、時間T0以降は、位置ずれ角度の時間経過が、傾きを有する直線Lに回帰している。そこで、予測部18fは、かかる直線Lと、保持状態が良好に維持されるとみなされる位置ずれ角度の上限値(または下限値)との交点である時間T2で保持状態が正常でなくなると、時間T1の時点に予測する。 On the other hand, after time T0, the time course of the positional deviation angle regresses to the straight line L having an inclination. Therefore, the prediction unit 18f predicts that when the holding state becomes abnormal at time T2, which is the intersection of the straight line L and the upper limit value (or lower limit value) of the positional deviation angle at which the holding state is considered to be maintained satisfactorily, Prediction is made at time T1.
 このように、実施形態では、位置ずれ角度の経時変化に基づいて、基板保持部31の保持状態を精度よく予測することができる。したがって、実施形態によれば、得られた予測に基づいて、作業者は事前に基板保持部31などの部品を準備し、メンテナンスを計画することができる。 In this way, in the embodiment, the holding state of the substrate holding section 31 can be predicted with high accuracy based on the change in the positional deviation angle over time. Therefore, according to the embodiment, based on the obtained prediction, the operator can prepare parts such as the board holding part 31 in advance and plan maintenance.
 なお、図7の例では、予測部18fが、直線回帰分析によって基板保持部31の保持状態を予測する例について示したが、本開示はかかる例に限られず、種々の分析法を用いて基板保持部31の保持状態を予測してもよい。 Although the example of FIG. 7 shows an example in which the prediction unit 18f predicts the holding state of the substrate holding unit 31 by linear regression analysis, the present disclosure is not limited to such an example, and the prediction unit 18f predicts the holding state of the substrate holding unit 31 by using various analysis methods. The holding state of the holding section 31 may be predicted.
<制御処理の別の例>
 つづいて、上記の制御部18における各種処理における別の例について、図8および図9を参照しながら説明する。上記の実施形態では、撮像装置60で撮像された画像データに示されるノッチN(図4参照)の位置に基づいて回転方向の位置ずれを検知する例について示したが、本開示はかかる例に限られない。
<Another example of control processing>
Next, another example of various processes in the control section 18 will be described with reference to FIGS. 8 and 9. In the above embodiment, an example was shown in which a positional shift in the rotational direction is detected based on the position of the notch N (see FIG. 4) shown in the image data captured by the imaging device 60, but the present disclosure does not apply to such an example. Not limited.
 図8は、実施形態に係る制御処理の別の一例を説明するための図である。図8の例では、ウェハWの表面に形成されるパターン形状のラインCに基づいて、ウェハWにおける回転方向の滑りを検出する。 FIG. 8 is a diagram for explaining another example of the control processing according to the embodiment. In the example of FIG. 8, slippage in the rotational direction of the wafer W is detected based on the line C of the pattern formed on the surface of the wafer W.
 たとえば、検出部18d(図3参照)は、図8の(a)に示される基板処理前のウェハWに示されるパターン形状のラインCの向き(たとえば、ラインCの傾斜角)に応じて、基板処理前のウェハWにおける回転方向の位置を算出する。 For example, the detection unit 18d (see FIG. 3) detects the following depending on the direction (for example, the inclination angle of the line C) of the line C of the pattern shape shown on the wafer W before substrate processing shown in FIG. The position in the rotational direction of the wafer W before substrate processing is calculated.
 また、検出部18dは、図8の(b)に示される基板処理後のウェハWに示されるパターン形状のラインCの向き(たとえば、ラインCの傾斜角)に応じて、基板処理前のウェハWにおける回転方向の位置を算出する。ウェハWに示されるパターン形状のラインCは、たとえば、Hough変換処理などによって検出される。 Further, the detection unit 18d detects the wafer W before substrate processing according to the direction (for example, the inclination angle of line C) of the line C of the pattern shape shown on the wafer W after substrate processing shown in FIG. 8(b). The position in the rotational direction at W is calculated. The line C of the pattern shape shown on the wafer W is detected by, for example, Hough conversion processing.
 なおこの場合、ラインCの傾斜角と、ウェハWの回転方向の位置(回転角度)とは必ずしも一致しない。そこで、ウェハWにおける所与の部位でのラインCの傾斜角と、ウェハWの回転方向の位置(回転角度)との相関関係が記憶されたデータを予めテーブルとして準備し、ラインCの傾斜角からウェハWの回転方向の位置を算出する際にかかるテーブルを参照するとよい。 Note that in this case, the inclination angle of the line C and the position (rotation angle) of the wafer W in the rotation direction do not necessarily match. Therefore, data storing the correlation between the inclination angle of the line C at a given part of the wafer W and the position (rotation angle) in the rotational direction of the wafer W is prepared in advance as a table, and the inclination angle of the line C is It is preferable to refer to this table when calculating the position of the wafer W in the rotational direction.
 そして、検出部18dは、算出された基板処理前のウェハWの回転方向の位置と、基板処理後のウェハWの回転方向の位置との差分を取ることで、基板処理後のウェハWにおける回転方向の位置ずれ角度を算出することができる。 Then, the detection unit 18d detects the rotation of the wafer W after the substrate processing by taking the difference between the calculated rotational direction position of the wafer W before the substrate processing and the rotational direction position of the wafer W after the substrate processing. The positional deviation angle in the direction can be calculated.
 なお、本開示において、ウェハWの回転方向の位置を検出するための指標は、ノッチNやパターン形状のラインCに限られない。たとえば、ウェハWの裏面側に印されるロット番号などの刻印の位置に基づいて、ウェハWの回転方向の位置を検出してもよい。この場合、撮像装置60は、ウェハWの裏面側を撮像可能に配置されるとよい。 Note that in the present disclosure, the index for detecting the position of the wafer W in the rotational direction is not limited to the notch N or the line C of the pattern shape. For example, the position of the wafer W in the rotational direction may be detected based on the position of a stamp such as a lot number stamped on the back side of the wafer W. In this case, the imaging device 60 is preferably arranged so as to be able to image the back side of the wafer W.
 また、上記の実施形態では、リファレンスデータとして、基板処理前のウェハWの画像データを用いているが、本開示はかかる例に限られない。図9は、実施形態に係る検出処理の別の一例を説明するための図である。なお、図9では、理解を容易にするため、ウェハWの外周端の輪郭WaおよびノッチNを破線で示している。 Further, in the above embodiment, image data of the wafer W before substrate processing is used as the reference data, but the present disclosure is not limited to such an example. FIG. 9 is a diagram for explaining another example of the detection process according to the embodiment. In addition, in FIG. 9, the outline Wa of the outer peripheral edge of the wafer W and the notch N are shown by broken lines for easy understanding.
 図9の例では、リファレンスデータとして、所与の楕円近似曲線Oを用いている。そしてこの例では、検出部18dが、楕円近似曲線Oと、基板処理後のウェハWの輪郭Waとの差分を取ることで、基板処理後のノッチNの絶対位置(すなわち、ウェハWの回転方向の絶対位置)を所与の相関関係に基づいて算出する。これによっても、ウェハWにおける回転方向の滑りを検知することができる。 In the example of FIG. 9, a given elliptic approximation curve O is used as reference data. In this example, the detection unit 18d determines the absolute position of the notch N after substrate processing (that is, the rotational direction of the wafer W) by taking the difference between the ellipse approximate curve O and the outline Wa of the wafer W after substrate processing. absolute position) is calculated based on the given correlation. This also makes it possible to detect slippage in the rotational direction of the wafer W.
 さらに、上述のようにノッチNの絶対位置の検出処理を用いることで、処理ユニット16において、ウェハWの回転方向の位置合わせ(いわゆるアライメント処理)を実施することができる。 Further, by using the process of detecting the absolute position of the notch N as described above, the processing unit 16 can perform alignment of the wafer W in the rotational direction (so-called alignment process).
 具体的には、たとえば、制御部18が、搬入され基板保持部31に保持されたウェハWを撮像装置60で撮像し、得られたウェハWの撮像データに基づいて、撮像データ内のウェハWの輪郭Waと、楕円近似曲線Oとの差分を取る。これにより、制御部18は、ウェハWの回転方向の絶対位置を求める。 Specifically, for example, the control unit 18 images the wafer W carried in and held by the substrate holding unit 31 with the imaging device 60, and based on the obtained imaging data of the wafer W, the control unit 18 images the wafer W in the imaging data. The difference between the contour Wa and the ellipse approximate curve O is calculated. Thereby, the control unit 18 determines the absolute position of the wafer W in the rotational direction.
 次に、制御部18は、かかるウェハWの回転方向の絶対位置が所与の設定位置に対して合っているか否かを判定する。そして、かかるウェハWの回転方向の絶対位置が所与の設定位置に対して合っている場合、制御部18は、ウェハWのアライメントが合っているとみなし、一連のアライメント処理を終了する。 Next, the control unit 18 determines whether the absolute position of the wafer W in the rotational direction matches a given set position. If the absolute position of the wafer W in the rotational direction matches the given set position, the control unit 18 considers that the alignment of the wafer W is correct, and ends the series of alignment processes.
 一方で、かかるウェハWの回転方向の絶対位置が所与の設定位置に対してずれている場合、制御部18は、ウェハWを一旦基板搬送装置17に戻すとともに、基板保持部31の回転方向の位置を調整する。 On the other hand, if the absolute position of the wafer W in the rotational direction is shifted from the given set position, the control unit 18 temporarily returns the wafer W to the substrate transfer device 17 and changes the rotational direction of the substrate holding unit 31. Adjust the position.
 この際、制御部18は、上記にて検出されたウェハWの回転方向の絶対位置に基づいて、ウェハWの回転方向の絶対位置が所与の範囲内になるように、基板保持部31の回転方向の位置を調整するとよい。 At this time, the control unit 18 controls the substrate holding unit 31 so that the absolute position of the wafer W in the rotational direction is within a given range, based on the absolute position of the wafer W in the rotational direction detected above. It is best to adjust the position in the rotation direction.
 次に、制御部18は、再度搬入され基板保持部31に保持されたウェハWを撮像装置60で撮像し、得られたウェハWの撮像データに基づいて、撮像データ内のウェハWの輪郭Waと、楕円近似曲線Oとの差分を取る。これにより、制御部18は、ウェハWの回転方向の絶対位置を再度求める。 Next, the control unit 18 images the wafer W carried in again and held by the substrate holding unit 31 with the imaging device 60, and based on the obtained imaging data of the wafer W, the control unit 18 determines the contour Wa of the wafer W in the imaging data. and the elliptic approximate curve O. Thereby, the control unit 18 calculates the absolute position of the wafer W in the rotational direction again.
 次に、制御部18は、かかるウェハWの回転方向の絶対位置が所与の設定位置に対して合っているか否かを再度判定する。そして、制御部18は、ウェハWの回転方向の絶対位置が所与の設定位置に対して合うまで、上述の処理を繰り返す。 Next, the control unit 18 determines again whether the absolute position of the wafer W in the rotational direction matches the given set position. Then, the control unit 18 repeats the above-described process until the absolute position of the wafer W in the rotational direction matches the predetermined set position.
 これにより、実施形態では、処理ユニット16において、ウェハWの回転方向の位置合わせを実施することができる。したがって、実施形態によれば、専用のアライメント調整装置を用いることなく、ウェハWの回転方向の位置合わせを実施できることから、基板処理システム1のコストを低減することができる。 Thereby, in the embodiment, alignment of the wafer W in the rotational direction can be performed in the processing unit 16. Therefore, according to the embodiment, the cost of the substrate processing system 1 can be reduced because the rotational direction alignment of the wafer W can be performed without using a dedicated alignment adjustment device.
 実施形態に係る基板処理装置(基板処理システム1)は、基板保持部31と、撮像装置60と、制御部18と、を備える。基板保持部31は、処理する基板(ウェハW)を保持して回転させる。撮像装置60は、基板保持部31に保持される基板(ウェハW)を撮像する。制御部18は、各部を制御する。また、制御部18は、実行部18aと、取得部18bと、検出部18dと、を有する。実行部18aは、外部から搬入され基板保持部31に保持された基板(ウェハW)に対して一連の基板処理を実行する。取得部18bは、基板処理後の基板(ウェハW)を撮像装置60で撮像して画像データを取得する。検出部18dは、取得された画像データと記憶されたリファレンスデータとに基づいて、基板処理後の基板(ウェハW)の回転方向の位置ずれを検出する。これにより、ウェハWにおける回転方向の滑りを検知することができる。 The substrate processing apparatus (substrate processing system 1) according to the embodiment includes a substrate holding section 31, an imaging device 60, and a control section 18. The substrate holding unit 31 holds and rotates a substrate (wafer W) to be processed. The imaging device 60 images the substrate (wafer W) held by the substrate holder 31. The control section 18 controls each section. Further, the control unit 18 includes an execution unit 18a, an acquisition unit 18b, and a detection unit 18d. The execution unit 18a executes a series of substrate processing on a substrate (wafer W) carried in from the outside and held by the substrate holding unit 31. The acquisition unit 18b images the substrate (wafer W) after substrate processing using the imaging device 60 and acquires image data. The detection unit 18d detects a positional shift in the rotational direction of the substrate (wafer W) after substrate processing based on the acquired image data and the stored reference data. Thereby, slippage in the rotational direction of the wafer W can be detected.
 また、実施形態に係る基板処理装置(基板処理システム1)において、検出部18dは、画像データとリファレンスデータとに基づいて、基板処理後の基板(ウェハW)の回転方向の位置ずれ角度を算出する。これにより、ウェハWにおける回転方向の滑りを精度よく検知することができる。 Further, in the substrate processing apparatus (substrate processing system 1) according to the embodiment, the detection unit 18d calculates the positional deviation angle in the rotational direction of the substrate (wafer W) after substrate processing based on the image data and the reference data. do. Thereby, slippage in the rotational direction of the wafer W can be detected with high accuracy.
 また、実施形態に係る基板処理装置(基板処理システム1)において、取得部18bは、外部から搬入され基板保持部31に保持された基板(ウェハW)を一連の基板処理前に撮像して別の画像データを取得する。また、取得部18bは、取得された別の画像データをリファレンスデータとして記憶する。これにより、基板処理中に発生したウェハWにおける回転方向の滑りを検知することができる。 In the substrate processing apparatus (substrate processing system 1) according to the embodiment, the acquisition unit 18b images and separates the substrate (wafer W) carried in from the outside and held by the substrate holding unit 31 before a series of substrate processing. Obtain the image data of. The acquisition unit 18b also stores other acquired image data as reference data. Thereby, slippage in the rotational direction of the wafer W that occurs during substrate processing can be detected.
 また、実施形態に係る基板処理装置(基板処理システム1)において、制御部18は、画像データおよびリファレンスデータを用いて、基板(ウェハW)の外周端の輪郭Waの差分データを作成する作成部18c、をさらに有する。また、検出部18dは、差分データに基づいて、基板処理後の基板(ウェハW)の回転方向の位置ずれを検出する。これにより、ウェハWにおける回転方向の滑りを精度よく検知することができる。 Further, in the substrate processing apparatus (substrate processing system 1) according to the embodiment, the control unit 18 includes a creation unit that creates difference data of the outline Wa of the outer peripheral edge of the substrate (wafer W) using the image data and the reference data. 18c. Furthermore, the detection unit 18d detects a positional shift in the rotational direction of the substrate (wafer W) after substrate processing based on the difference data. Thereby, slippage in the rotational direction of the wafer W can be detected with high accuracy.
 また、実施形態に係る基板処理装置(基板処理システム1)において、検出部は、画像データに示される基板の表面のパターン形状と、リファレンスデータに示される基板の表面のパターン形状とに基づいて、基板処理後の基板の回転方向の位置ずれを検出する。これにより、ウェハWにおける回転方向の滑りを検知することができる。 Further, in the substrate processing apparatus (substrate processing system 1) according to the embodiment, the detection unit performs the following based on the pattern shape of the surface of the substrate shown in the image data and the pattern shape of the surface of the substrate shown in the reference data. Detects displacement in the rotational direction of the substrate after substrate processing. Thereby, slippage in the rotational direction of the wafer W can be detected.
 また、実施形態に係る基板処理装置(基板処理システム1)において、制御部18は、算出された位置ずれ角度が所与のしきい値以上である場合に、基板(ウェハW)に位置ずれが発生した旨を報知する報知部18e、をさらに有する。これにより、作業者が基板保持部31の異常状態を認知することができる。 Further, in the substrate processing apparatus (substrate processing system 1) according to the embodiment, the control unit 18 controls whether the substrate (wafer W) is misaligned when the calculated misalignment angle is greater than or equal to a given threshold. It further includes a notification section 18e that notifies the occurrence of the occurrence. This allows the operator to recognize the abnormal state of the substrate holding section 31.
 また、実施形態に係る基板処理装置(基板処理システム1)において、検出部18dは、算出された位置ずれ角度が所与のしきい値未満である場合に、位置ずれ角度を記憶部19に記憶する。これにより、位置ずれ角度の経時変化を記憶部19に記憶することができる。 In the substrate processing apparatus (substrate processing system 1) according to the embodiment, the detection unit 18d stores the positional deviation angle in the storage unit 19 when the calculated positional deviation angle is less than a given threshold. do. Thereby, the change in positional deviation angle over time can be stored in the storage unit 19.
 また、実施形態に係る基板処理装置(基板処理システム1)において、制御部18は、記憶された複数の位置ずれ角度の経時変化に基づいて、基板保持部31の保持状態を予測する予測部18f、をさらに有する。これにより、基板保持部31の保持状態を精度よく予測することができる。 Further, in the substrate processing apparatus (substrate processing system 1) according to the embodiment, the control unit 18 includes a prediction unit 18f that predicts the holding state of the substrate holding unit 31 based on the temporal change of the plurality of stored positional deviation angles. , further has. Thereby, the holding state of the substrate holding section 31 can be predicted with high accuracy.
 また、実施形態に係る基板処理装置(基板処理システム1)において、取得部18bは、基板保持部31に保持された基板処理前または基板処理後の基板(ウェハW)の画像データを取得する。また、検出部18dは、取得された画像データと記憶されたリファレンスデータとに基づいて、基板保持部31に対する基板(ウェハW)の回転方向の位置(絶対位置)を検出する。これにより、専用のアライメント調整装置を用いることなく、ウェハWの回転方向の位置合わせを実施できることから、基板処理システム1のコストを低減することができる。 In the substrate processing apparatus (substrate processing system 1) according to the embodiment, the acquisition unit 18b acquires image data of the substrate (wafer W) held by the substrate holding unit 31 before or after substrate processing. Further, the detection unit 18d detects the position (absolute position) of the substrate (wafer W) in the rotational direction with respect to the substrate holding unit 31 based on the acquired image data and the stored reference data. Thereby, the wafer W can be aligned in the rotational direction without using a dedicated alignment adjustment device, so the cost of the substrate processing system 1 can be reduced.
<制御処理の手順>
 つづいて、実施形態に係る制御処理の手順について、図10~図13を参照しながら説明する。図10は、実施形態に係る基板処理システム1が実行する制御処理の手順の一例を示すフローチャートである。
<Control processing procedure>
Next, the procedure of the control processing according to the embodiment will be explained with reference to FIGS. 10 to 13. FIG. 10 is a flowchart illustrating an example of a control processing procedure executed by the substrate processing system 1 according to the embodiment.
 実施形態に係る制御処理では、まず、制御部18が、処理ユニット16に搬入されたウェハWを基板保持部31で保持する(ステップS101)。 In the control process according to the embodiment, first, the control section 18 holds the wafer W carried into the processing unit 16 with the substrate holding section 31 (step S101).
 次に、制御部18は、リファレンスデータを記憶する(ステップS102)。たとえば、制御部18は、基板処理前のウェハWを撮像装置60で撮像し、このウェハWの画像データをリファレンスデータとして記憶する。かかるリファレンスデータは、たとえば、記憶部19のリファレンスデータ記憶部19aに記憶される。 Next, the control unit 18 stores the reference data (step S102). For example, the control unit 18 images the wafer W before substrate processing with the imaging device 60, and stores the image data of this wafer W as reference data. Such reference data is stored in the reference data storage section 19a of the storage section 19, for example.
 次に、制御部18は、基板保持部31に保持されたウェハWを回転させながら処理液やリンス液などをウェハWに供給して、ウェハWに所与の処理を行う(ステップS103)。 Next, the control unit 18 supplies a processing liquid, a rinsing liquid, etc. to the wafer W while rotating the wafer W held by the substrate holding unit 31, and performs a given process on the wafer W (step S103).
 次に、制御部18は、基板保持部31に保持されたウェハWにおける回転方向の位置ずれを検知する位置ずれ検知処理を実施する(ステップS104)。かかる位置ずれ検知処理の詳細については後述する。 Next, the control unit 18 performs a positional deviation detection process to detect a positional deviation in the rotational direction of the wafer W held by the substrate holding unit 31 (step S104). Details of this positional deviation detection processing will be described later.
 最後に、制御部18は、基板保持部31に保持されたウェハWの保持状態の経時変化を検知する経時変化検知処理を実施し(ステップS105)、一連の制御処理を終了する。かかる経時変化検知処理の詳細については後述する。 Finally, the control unit 18 performs a temporal change detection process to detect a temporal change in the holding state of the wafer W held by the substrate holding unit 31 (step S105), and ends the series of control processes. Details of this temporal change detection processing will be described later.
 図11は、実施形態に係る基板処理システム1が実行する位置ずれ検知処理の手順の一例を示すフローチャートである。この位置ずれ検知処理では、まず、制御部18が、基板保持部31に保持される基板処理後のウェハWの画像データを、撮像装置60によって取得する(ステップS201)。 FIG. 11 is a flowchart illustrating an example of a procedure for positional deviation detection processing performed by the substrate processing system 1 according to the embodiment. In this positional deviation detection process, first, the control unit 18 acquires image data of the wafer W after substrate processing held by the substrate holding unit 31 using the imaging device 60 (step S201).
 次に、制御部18は、基板処理後のウェハWの画像データと、リファレンスデータ記憶部19aに記憶されるリファレンスデータとを用いて、ウェハWの外周端の輪郭Waの差分データを作成する(ステップS202)。 Next, the control unit 18 uses the image data of the wafer W after substrate processing and the reference data stored in the reference data storage unit 19a to create difference data of the outline Wa of the outer peripheral edge of the wafer W ( Step S202).
 次に、制御部18は、作成された輪郭Waの差分データに2つのピークP1、P2が検出されるか否かを判定する(ステップS203)。そして、差分データに2つのピークP1、P2が検出されない場合(ステップS203,No)、制御部18は、ウェハWに回転方向の滑りが発生していないと判定し(ステップS204)、一連の位置ずれ検知処理を終了する。 Next, the control unit 18 determines whether two peaks P1 and P2 are detected in the difference data of the created contour Wa (step S203). If the two peaks P1 and P2 are not detected in the difference data (step S203, No), the control unit 18 determines that no slippage in the rotational direction has occurred in the wafer W (step S204), and sets the series of positions. End the shift detection process.
 一方で、差分データに2つのピークP1、P2が検出される場合(ステップS203,Yes)、制御部18は、検出された2つのピークP1、P2に基づいて、ウェハWの位置ずれ角度を算出する(ステップS205)。そして、制御部18は、算出されたウェハWの位置ずれ角度が、所与の範囲内であるか否かを判定する(ステップS206)。 On the other hand, if two peaks P1 and P2 are detected in the difference data (Step S203, Yes), the control unit 18 calculates the positional deviation angle of the wafer W based on the two detected peaks P1 and P2. (Step S205). Then, the control unit 18 determines whether the calculated positional deviation angle of the wafer W is within a given range (step S206).
 そして、ウェハWの位置ずれ角度が所与の範囲内である場合(ステップS206,Yes)、一連の位置ずれ検知処理を終了する。一方で、ウェハWの位置ずれ角度が所与の範囲内でない場合(ステップS206,No)、制御部18は、基板保持部31に保持されるウェハWに位置ずれが発生した旨を報知する(ステップS207)。 Then, if the positional deviation angle of the wafer W is within the given range (step S206, Yes), the series of positional deviation detection processing is ended. On the other hand, if the positional deviation angle of the wafer W is not within the given range (step S206, No), the control unit 18 notifies that the positional deviation has occurred in the wafer W held by the substrate holding unit 31 ( Step S207).
 そして、制御部18は、撮像装置60によって撮像された基板処理中のウェハWの撮像画像を記憶部19の撮像画像記憶部19bに保存して(ステップS208)、一連の位置ずれ検知処理を終了する。 Then, the control unit 18 stores the captured image of the wafer W during substrate processing, captured by the imaging device 60, in the captured image storage unit 19b of the storage unit 19 (step S208), and ends the series of positional deviation detection processing. do.
 図12は、実施形態に係る基板処理システム1が実行する経時変化検知処理の手順の一例を示すフローチャートである。 FIG. 12 is a flowchart illustrating an example of the procedure of the temporal change detection process executed by the substrate processing system 1 according to the embodiment.
 この経時変化検知処理では、まず、制御部18が、上述のステップS205の処理で検出されたウェハWの位置ずれ角度を記憶部19の位置ずれ角度記憶部19cに記憶する(ステップS301)。 In this temporal change detection process, first, the control unit 18 stores the positional deviation angle of the wafer W detected in the process of step S205 described above in the positional deviation angle storage unit 19c of the storage unit 19 (step S301).
 なお、上述のステップS203の処理において、ウェハWに回転方向の滑りが発生していないと判定された場合、ウェハWの位置ずれ角度はゼロとして記憶部19の位置ずれ角度記憶部19cに記憶される。 In addition, in the process of step S203 described above, if it is determined that no slippage in the rotational direction has occurred in the wafer W, the positional deviation angle of the wafer W is stored as zero in the positional deviation angle storage unit 19c of the storage unit 19. Ru.
 次に、制御部18は、複数のウェハWにおける位置ずれ角度の経時変化がプロットされたXY空間において、位置ずれ角度の経時変化を直線回帰分析する(ステップS302)。 Next, the control unit 18 performs a linear regression analysis of the change in positional deviation angle over time in the XY space in which the change in positional deviation angle over time in the plurality of wafers W is plotted (step S302).
 次に、制御部18は、直線回帰分析によって作成された直線の傾きに有意差があるか否かを判定する(ステップS303)。そして、直線回帰分析によって作成された直線の傾きに有意差があると判定された場合(ステップS303,Yes)、制御部18は、ウェハWの位置ずれ角度が許容範囲を逸脱するタイミングを予測する(ステップS304)。 Next, the control unit 18 determines whether there is a significant difference in the slopes of the straight lines created by linear regression analysis (step S303). If it is determined that there is a significant difference in the slope of the straight line created by the linear regression analysis (step S303, Yes), the control unit 18 predicts the timing at which the positional deviation angle of the wafer W deviates from the allowable range. (Step S304).
 さらに、制御部18は、予測された逸脱タイミングを作業者に通知して(ステップS305)、一連の経時変化検知処理を終了する。一方で、直線回帰分析によって作成された直線の傾きに有意差がないと判定された場合(ステップS303,No)、一連の経時変化検知処理を終了する。 Furthermore, the control unit 18 notifies the worker of the predicted deviation timing (step S305), and ends the series of temporal change detection processing. On the other hand, if it is determined that there is no significant difference in the slope of the straight line created by the linear regression analysis (step S303, No), the series of temporal change detection processing is ended.
 図13は、実施形態に係る基板処理システム1が実行する制御処理の手順の別の一例を示すフローチャートである。この制御処理では、処理ユニット16においてウェハWのアライメント処理を行う。 FIG. 13 is a flowchart illustrating another example of the control processing procedure executed by the substrate processing system 1 according to the embodiment. In this control process, the processing unit 16 performs an alignment process on the wafer W.
 別の一例に係る制御処理では、まず、制御部18が、処理ユニット16に搬入されたウェハWを基板保持部31で保持する(ステップS401)。そして、制御部18は、基板保持部31に保持されたウェハWの画像データを、撮像装置60によって取得する(ステップS402)。 In a control process according to another example, first, the control unit 18 holds the wafer W carried into the processing unit 16 with the substrate holding unit 31 (step S401). Then, the control unit 18 acquires image data of the wafer W held by the substrate holding unit 31 using the imaging device 60 (step S402).
 次に、制御部18は、基板処理後のウェハWの画像データと、リファレンスデータ記憶部19aに記憶されるリファレンスデータとを用いて、ウェハWの外周端の輪郭Waの差分データを作成する(ステップS403)。なおこの場合、リファレンスデータとしては、たとえば、楕円近似曲線Oが用いられる。 Next, the control unit 18 uses the image data of the wafer W after substrate processing and the reference data stored in the reference data storage unit 19a to create difference data of the outline Wa of the outer peripheral edge of the wafer W ( Step S403). In this case, for example, an elliptic approximation curve O is used as the reference data.
 次に、制御部18は、作成された差分データに基づいて、基板保持部31に保持されるウェハWの回転方向の絶対位置を検出する(ステップS404)。そして、制御部18は、ウェハWの回転方向の絶対位置が所与の範囲内であるか否かを判定する(ステップS405)。 Next, the control unit 18 detects the absolute position in the rotational direction of the wafer W held by the substrate holding unit 31 based on the created difference data (step S404). Then, the control unit 18 determines whether the absolute position of the wafer W in the rotational direction is within a given range (step S405).
 そして、ウェハWの回転方向の絶対位置が所与の範囲内である場合(ステップS405,Yes)、一連の制御処理を終了する。一方で、ウェハWの回転方向の絶対位置が所与の範囲内でない場合(ステップS405,No)、制御部18は、ウェハWを基板保持部31から基板搬送装置17に戻す(ステップS406)。 Then, if the absolute position of the wafer W in the rotational direction is within the given range (step S405, Yes), the series of control processing ends. On the other hand, if the absolute position of the wafer W in the rotational direction is not within the given range (step S405, No), the control unit 18 returns the wafer W from the substrate holding unit 31 to the substrate transfer device 17 (step S406).
 さらに、制御部18は、ステップS404の処理にて検出されたウェハWの回転方向の絶対位置に基づいて、ウェハWの回転方向の絶対位置が所与の範囲内になるように、基板保持部31の回転方向の位置を調整する(ステップS407)。そして、ステップS401の処理に戻る。 Further, the control unit 18 controls the substrate holding unit so that the absolute position of the wafer W in the rotational direction is within a given range based on the absolute position of the wafer W in the rotational direction detected in the process of step S404. 31 in the rotational direction is adjusted (step S407). Then, the process returns to step S401.
 実施形態に係る基板処理方法は、保持する工程(ステップS101)と、実行する工程(ステップS103)と、取得する工程(ステップS201)と、検出する工程(ステップS203~S205)と、を含む。保持する工程(ステップS101)は、外部から搬入された基板(ウェハW)を基板保持部31によって保持する。実行する工程(ステップS103)は、基板(ウェハW)に一連の基板処理を実行する。取得する工程(ステップS201)は、基板処理後の基板(ウェハW)を撮像装置60で撮像して画像データを取得する。検出する工程(ステップS203~S205)は、取得された画像データと記憶されたリファレンスデータとに基づいて、基板処理後の基板(ウェハW)の回転方向の位置ずれを検出する。これにより、ウェハWにおける回転方向の滑りを検知することができる。 The substrate processing method according to the embodiment includes a holding step (step S101), an executing step (step S103), an acquiring step (step S201), and a detecting step (steps S203 to S205). In the holding step (step S101), the substrate holding unit 31 holds the substrate (wafer W) carried in from the outside. The step to be performed (step S103) is to perform a series of substrate processing on the substrate (wafer W). In the acquiring step (step S201), the substrate (wafer W) after substrate processing is imaged by the imaging device 60 to acquire image data. The detecting step (steps S203 to S205) detects a positional shift in the rotational direction of the substrate (wafer W) after substrate processing, based on the acquired image data and the stored reference data. Thereby, slippage in the rotational direction of the wafer W can be detected.
 また、実施形態に係る基板処理方法において、検出する工程(ステップS203~S205)は、画像データとリファレンスデータとに基づいて、基板処理後の基板(ウェハW)の回転方向の位置ずれ角度を算出する。これにより、ウェハWにおける回転方向の滑りを精度よく検知することができる。 Further, in the substrate processing method according to the embodiment, the step of detecting (steps S203 to S205) calculates the positional deviation angle in the rotational direction of the substrate (wafer W) after substrate processing based on the image data and the reference data. do. Thereby, slippage in the rotational direction of the wafer W can be detected with high accuracy.
 また、実施形態に係る基板処理方法は、記憶する工程(ステップS102)、をさらに含む。記憶する工程(ステップS102)は、外部から搬入され基板保持部31に保持された基板(ウェハW)を一連の基板処理前に撮像装置60で撮像して別の画像データを取得し、取得された別の画像データをリファレンスデータとして記憶する。これにより、基板処理中に発生したウェハWにおける回転方向の滑りを検知することができる。 Furthermore, the substrate processing method according to the embodiment further includes a storing step (step S102). In the storing step (step S102), a substrate (wafer W) brought in from the outside and held in the substrate holding unit 31 is imaged by the imaging device 60 before a series of substrate processing to obtain another image data. Other image data is stored as reference data. Thereby, slippage in the rotational direction of the wafer W that occurs during substrate processing can be detected.
 また、実施形態に係る基板処理方法は、報知する工程(ステップS207)、をさらに含む。報知する工程(ステップS207)は、算出された位置ずれ角度が所与のしきい値以上である場合に、基板(ウェハW)に位置ずれが発生した旨を報知する。これにより、作業者が基板保持部31の異常状態を認知することができる。 Furthermore, the substrate processing method according to the embodiment further includes a step of notifying (step S207). In the reporting step (step S207), if the calculated positional deviation angle is greater than or equal to a given threshold, it is notified that a positional deviation has occurred in the substrate (wafer W). This allows the operator to recognize the abnormal state of the substrate holding section 31.
 また、実施形態に係る基板処理方法において、検出する工程(ステップS203~S205)は、算出された位置ずれ角度が所与のしきい値未満である場合に、位置ずれ角度を記憶部19に記憶する。これにより、位置ずれ角度の経時変化を記憶部19に記憶することができる。 Further, in the substrate processing method according to the embodiment, the step of detecting (steps S203 to S205) stores the positional deviation angle in the storage unit 19 when the calculated positional deviation angle is less than a given threshold value. do. Thereby, the change in positional deviation angle over time can be stored in the storage unit 19.
 また、実施形態に係る基板処理方法は、予測する工程(ステップS304)、をさらに含む。予測する工程(ステップS304)は、記憶された複数の位置ずれ角度の経時変化に基づいて、基板保持部31の保持状態を予測する。これにより、基板保持部31の保持状態を精度よく予測することができる。 Furthermore, the substrate processing method according to the embodiment further includes a step of predicting (step S304). The predicting step (step S304) predicts the holding state of the substrate holding section 31 based on the temporal change of the plurality of stored positional deviation angles. Thereby, the holding state of the substrate holding section 31 can be predicted with high accuracy.
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、上記の実施形態では、基板処理システム1の制御装置4に設けられた記憶部19にリファレンスデータや撮像画像、位置ずれ角度の経時変化などを記憶する例について示したが、本開示はかかる例に限られない。たとえば、本開示では、制御装置4とネットワークで接続された別の記憶装置にリファレンスデータや撮像画像、位置ずれ角度の経時変化などが記憶されてもよい。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments, and various changes can be made without departing from the spirit thereof. For example, in the above embodiment, an example is shown in which reference data, captured images, changes in positional deviation angle over time, etc. are stored in the storage unit 19 provided in the control device 4 of the substrate processing system 1, but the present disclosure Not limited to examples. For example, in the present disclosure, reference data, captured images, changes in positional deviation angle over time, etc. may be stored in another storage device connected to the control device 4 via a network.
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. Indeed, the embodiments described above may be implemented in various forms. Moreover, the above-described embodiments may be omitted, replaced, or modified in various forms without departing from the scope and spirit of the appended claims.
 W   ウェハ(基板の一例)
 Wa  輪郭
 1   基板処理システム(基板処理装置の一例)
 4   制御装置
 16  処理ユニット
 18  制御部
 18a 実行部
 18b 取得部
 18c 作成部
 18d 検出部
 18e 報知部
 18f 予測部
 19  記憶部
 19a リファレンスデータ記憶部
 19b 撮像画像記憶部
 19c 位置ずれ角度記憶部
 31  基板保持部
 60  撮像装置
W wafer (an example of a substrate)
Wa Outline 1 Substrate processing system (an example of substrate processing equipment)
4 Control device 16 Processing unit 18 Control section 18a Execution section 18b Acquisition section 18c Creation section 18d Detection section 18e Notification section 18f Prediction section 19 Storage section 19a Reference data storage section 19b Captured image storage section 19c Position deviation angle storage section 31 Substrate holding section 60 Imaging device

Claims (15)

  1.  処理する基板を保持して回転させる基板保持部と、
     前記基板保持部に保持される前記基板を撮像する撮像装置と、
     各部を制御する制御部と、
     を備え、
     前記制御部は、
     外部から搬入され基板保持部に保持された前記基板に対して一連の基板処理を実行する実行部と、
     基板処理後の前記基板を前記撮像装置で撮像して画像データを取得する取得部と、
     取得された前記画像データと記憶されたリファレンスデータとに基づいて、基板処理後の前記基板の回転方向の位置ずれを検出する検出部と、
     を有する基板処理装置。
    a substrate holder that holds and rotates the substrate to be processed;
    an imaging device that images the substrate held by the substrate holding section;
    A control unit that controls each part,
    Equipped with
    The control unit includes:
    an execution unit that executes a series of substrate processing on the substrate carried in from the outside and held in the substrate holding unit;
    an acquisition unit that acquires image data by imaging the substrate after substrate processing with the imaging device;
    a detection unit that detects a positional shift in the rotational direction of the substrate after substrate processing based on the acquired image data and stored reference data;
    A substrate processing apparatus having:
  2.  前記検出部は、前記画像データと前記リファレンスデータとに基づいて、基板処理後の前記基板の回転方向の位置ずれ角度を算出する
     請求項1に記載の基板処理装置。
    The substrate processing apparatus according to claim 1, wherein the detection unit calculates a positional deviation angle in a rotational direction of the substrate after substrate processing based on the image data and the reference data.
  3.  前記取得部は、外部から搬入され基板保持部に保持された前記基板を一連の基板処理前に撮像して別の画像データを取得し、取得された前記別の画像データを前記リファレンスデータとして記憶する
     請求項1に記載の基板処理装置。
    The acquisition unit is configured to image the substrate brought in from the outside and held in the substrate holding unit before a series of substrate processing to acquire another image data, and store the acquired another image data as the reference data. The substrate processing apparatus according to claim 1.
  4.  前記制御部は、
     前記画像データおよび前記リファレンスデータを用いて、前記基板の外周端の輪郭の差分データを作成する作成部、をさらに有し、
     前記検出部は、前記差分データに基づいて、基板処理後の前記基板の回転方向の位置ずれを検出する
     請求項1~3のいずれか一つに記載の基板処理装置。
    The control unit includes:
    further comprising a creation unit that creates difference data of the outline of the outer peripheral edge of the substrate using the image data and the reference data,
    The substrate processing apparatus according to any one of claims 1 to 3, wherein the detection unit detects a positional shift in the rotational direction of the substrate after substrate processing based on the difference data.
  5.  前記検出部は、前記画像データに示される前記基板の表面のパターン形状と、前記リファレンスデータに示される前記基板の表面のパターン形状とに基づいて、基板処理後の前記基板の回転方向の位置ずれを検出する
     請求項1~3のいずれか一つに記載の基板処理装置。
    The detection unit detects a positional shift in the rotational direction of the substrate after substrate processing based on a pattern shape of the surface of the substrate shown in the image data and a pattern shape of the surface of the substrate shown in the reference data. The substrate processing apparatus according to any one of claims 1 to 3, wherein the substrate processing apparatus detects.
  6.  前記制御部は、
     算出された前記位置ずれ角度が所与のしきい値以上である場合に、前記基板に位置ずれが発生した旨を報知する報知部、をさらに有する
     請求項2に記載の基板処理装置。
    The control unit includes:
    The substrate processing apparatus according to claim 2, further comprising a notification unit that notifies that a positional deviation has occurred in the substrate when the calculated positional deviation angle is equal to or greater than a given threshold value.
  7.  前記検出部は、算出された前記位置ずれ角度が所与のしきい値未満である場合に、前記位置ずれ角度を記憶部に記憶する
     請求項2または6に記載の基板処理装置。
    The substrate processing apparatus according to claim 2 , wherein the detection unit stores the positional deviation angle in a storage unit when the calculated positional deviation angle is less than a given threshold value.
  8.  前記制御部は、
     記憶された複数の前記位置ずれ角度の経時変化に基づいて、前記基板保持部の保持状態を予測する予測部、をさらに有する
     請求項7に記載の基板処理装置。
    The control unit includes:
    The substrate processing apparatus according to claim 7 , further comprising a prediction unit that predicts a holding state of the substrate holding unit based on a change over time of the plurality of stored positional deviation angles.
  9.  前記取得部は、前記基板保持部に保持された基板処理前または基板処理後の前記基板の画像データを取得し、
     前記検出部は、取得された前記画像データと記憶された前記リファレンスデータとに基づいて、前記基板保持部に対する前記基板の回転方向の位置を検出する
     請求項1に記載の基板処理装置。
    The acquisition unit acquires image data of the substrate held by the substrate holding unit before substrate processing or after substrate processing,
    The substrate processing apparatus according to claim 1, wherein the detection unit detects a position of the substrate in a rotational direction with respect to the substrate holding unit based on the acquired image data and the stored reference data.
  10.  外部から搬入された基板を基板保持部によって保持する工程と、
     前記基板に一連の基板処理を実行する工程と、
     基板処理後の前記基板を撮像装置で撮像して画像データを取得する工程と、
     取得された前記画像データと記憶されたリファレンスデータとに基づいて、基板処理後の前記基板の回転方向の位置ずれを検出する工程と、
     を含む基板処理方法。
    a step of holding a board brought in from the outside by a board holder;
    performing a series of substrate treatments on the substrate;
    a step of capturing an image of the substrate after substrate processing with an imaging device to obtain image data;
    Detecting a positional shift in the rotational direction of the substrate after substrate processing based on the acquired image data and stored reference data;
    Substrate processing methods including.
  11.  前記検出する工程は、前記画像データと前記リファレンスデータとに基づいて、基板処理後の前記基板の回転方向の位置ずれ角度を算出する
     請求項10に記載の基板処理方法。
    The substrate processing method according to claim 10, wherein the step of detecting calculates a positional deviation angle in a rotational direction of the substrate after substrate processing based on the image data and the reference data.
  12.  外部から搬入され基板保持部に保持された前記基板を一連の基板処理前に前記撮像装置で撮像して別の画像データを取得し、取得された前記別の画像データを前記リファレンスデータとして記憶する工程、をさらに含む
     請求項10に記載の基板処理方法。
    The substrate brought in from the outside and held in the substrate holder is imaged by the imaging device before a series of substrate processing to obtain another image data, and the obtained another image data is stored as the reference data. The substrate processing method according to claim 10, further comprising the step of:
  13.  算出された前記位置ずれ角度が所与のしきい値以上である場合に、前記基板に位置ずれが発生した旨を報知する工程、をさらに含む
     請求項11に記載の基板処理方法。
    12. The substrate processing method according to claim 11, further comprising the step of notifying that a positional deviation has occurred in the substrate when the calculated positional deviation angle is greater than or equal to a given threshold value.
  14.  前記検出する工程は、算出された前記位置ずれ角度が所与のしきい値未満である場合に、前記位置ずれ角度を記憶部に記憶する
     請求項11または13に記載の基板処理方法。
    The substrate processing method according to claim 11 or 13, wherein the step of detecting stores the calculated positional deviation angle in a storage unit when the calculated positional deviation angle is less than a given threshold value.
  15.  記憶された複数の前記位置ずれ角度の経時変化に基づいて、前記基板保持部の保持状態を予測する工程、をさらに含む
     請求項14に記載の基板処理方法。
    15. The substrate processing method according to claim 14, further comprising the step of predicting a holding state of the substrate holder based on a change over time of the plurality of stored positional deviation angles.
PCT/JP2023/021576 2022-06-17 2023-06-09 Substrate processing apparatus and substrate processing method WO2023243562A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-097779 2022-06-17
JP2022097779 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023243562A1 true WO2023243562A1 (en) 2023-12-21

Family

ID=89191264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021576 WO2023243562A1 (en) 2022-06-17 2023-06-09 Substrate processing apparatus and substrate processing method

Country Status (2)

Country Link
TW (1) TW202403948A (en)
WO (1) WO2023243562A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103396A (en) * 2015-12-03 2017-06-08 信越半導体株式会社 Vapor growth device and manufacturing method of epitaxial wafer
JP2017183496A (en) * 2016-03-30 2017-10-05 東京エレクトロン株式会社 Method for managing substrate processing apparatus, and substrate processing system
JP2021190511A (en) * 2020-05-27 2021-12-13 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103396A (en) * 2015-12-03 2017-06-08 信越半導体株式会社 Vapor growth device and manufacturing method of epitaxial wafer
JP2017183496A (en) * 2016-03-30 2017-10-05 東京エレクトロン株式会社 Method for managing substrate processing apparatus, and substrate processing system
JP2021190511A (en) * 2020-05-27 2021-12-13 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
TW202403948A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
KR101955804B1 (en) Displacement detecting apparatus, displacement detecting method and substrate processing apparatus
US8707893B2 (en) Substrate treatment system, substrate treatment method, and non-transitory computer storage medium
JP6351992B2 (en) Displacement detection apparatus, substrate processing apparatus, displacement detection method, and substrate processing method
JP6251086B2 (en) Substrate processing apparatus and substrate processing method
US11094569B2 (en) Substrate processing apparatus
JP6352133B2 (en) Position detection apparatus, substrate processing apparatus, position detection method, and substrate processing method
US20220059357A1 (en) Substrate processing method and substrate processing apparatus
KR102560788B1 (en) Peripheral exposure apparatus, peripheral exposure method, program, computer storage medium
US8052834B2 (en) Substrate treating system, substrate treating device, program, and recording medium
JP2017022197A (en) Substrate processing apparatus and substrate processing method
JP2020034344A (en) Moving part position detection method, substrate processing method, substrate processing device, and substrate processing system
WO2023243562A1 (en) Substrate processing apparatus and substrate processing method
US20170278725A1 (en) Substrate processing apparatus, substrate processing method and memory medium
JP6444277B2 (en) Substrate processing apparatus and substrate processing method
JP6397557B2 (en) Substrate processing apparatus and substrate processing method
US10474139B2 (en) Substrate processing apparatus and substrate processing method
WO2023243438A1 (en) Substrate treatment device and substrate treatment method
CN115668461A (en) Substrate processing method and substrate processing apparatus
WO2023210485A1 (en) Substrate processing device and substrate processing method
JP7202229B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
CN116264175A (en) Detection system, detection method, and storage medium
TW202117890A (en) Substrate processing system and substrate processing method
TW202205484A (en) Substrate processing system and substrate processing device
JP2019168411A (en) Position detector, substrate processing device, position detection method, and substrate processing method
JP2020178135A (en) Substrate treatment apparatus, substrate treatment method and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823852

Country of ref document: EP

Kind code of ref document: A1