WO2023243462A1 - Welded tube manufacturing method and welded tube manufacturing apparatus - Google Patents

Welded tube manufacturing method and welded tube manufacturing apparatus Download PDF

Info

Publication number
WO2023243462A1
WO2023243462A1 PCT/JP2023/020822 JP2023020822W WO2023243462A1 WO 2023243462 A1 WO2023243462 A1 WO 2023243462A1 JP 2023020822 W JP2023020822 W JP 2023020822W WO 2023243462 A1 WO2023243462 A1 WO 2023243462A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum chamber
metal plate
band
welded pipe
vacuum
Prior art date
Application number
PCT/JP2023/020822
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 齋藤
武士 物種
洋次 尾中
泰作 五明
良太 赤岩
利幸 吉川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2023243462A1 publication Critical patent/WO2023243462A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting

Definitions

  • the present disclosure relates to a welded pipe manufacturing method and a welded pipe manufacturing apparatus.
  • a welded pipe is manufactured by bending a band-shaped metal plate into a tubular shape in the width direction, and welding both ends in the width direction together.
  • a welded pipe if the welded portion becomes oxidized, the strength of the welded pipe itself will decrease. Therefore, a method for manufacturing a welded pipe that suppresses oxidation of the welded portion has been developed.
  • Patent Document 1 a band-shaped metal plate is curved in the width direction, and the joined ends are welded while supplying shielding gas to the internal space of a tubular body formed by bringing together both ends in the width direction.
  • a method for manufacturing a welded pipe is disclosed.
  • an inert gas is used as the shielding gas.
  • the inert gas is a special gas. Therefore, preparation of shielding gas and welding work are not easy.
  • the present disclosure has been made to solve the above problems, and aims to provide a welded pipe manufacturing method and a welded pipe manufacturing apparatus that can suppress oxidation of a welded part without using an inert gas.
  • a welded pipe manufacturing method is provided by forming a welded pipe by bending a band-shaped metal plate into a tubular shape in the width direction, and forming a welded pipe with a first end face in the width direction of the band-shaped metal plate and a first
  • a welded tube is formed by colliding an electron beam with the first end surface and second end surface of the tubular body, which are opposite to each other, and welding the first end surface and the second end surface to each other.
  • an electron beam collides with the first end face and second end face of the tubular body to weld the first end face and the second end face to each other. Create.
  • the welded portion where the first end surface and the second end surface are welded together is less likely to be oxidized.
  • oxidation of the welded portion can be suppressed without using an inert gas.
  • a side view of the first half of a welded pipe manufacturing apparatus according to an embodiment of the present disclosure Side view of the latter half of the welded pipe manufacturing apparatus according to the embodiment of the present disclosure
  • a sectional view of a forming machine and a welding machine included in a welded pipe manufacturing apparatus according to an embodiment of the present disclosure A sectional view of a breakdown roll included in a forming machine included in a welded pipe manufacturing apparatus according to an embodiment of the present disclosure, and a band-shaped metal plate formed by the breakdown roll.
  • a sectional view of a modified example of a forming machine and a welding machine included in the welded pipe manufacturing apparatus according to the embodiment of the present disclosure A sectional view of another modification of the forming machine and welding machine included in the welded pipe manufacturing apparatus according to the embodiment of the present disclosure
  • a sectional view of still another modification of the forming machine and welding machine included in the welded pipe manufacturing apparatus according to the embodiment of the present disclosure A sectional view of a modification of the welded pipe manufacturing apparatus according to the embodiment of the present disclosure
  • the welded pipe manufacturing apparatus is an apparatus for manufacturing a welded pipe from a band-shaped metal plate.
  • This manufacturing apparatus manufactures a welded pipe by welding the joints of a tubular body formed by curving a band-shaped metal plate into a tubular shape in the width direction. The welding is performed in a vacuum by applying an electron beam to the joint in order to suppress oxidation of the weld.
  • the configuration of this manufacturing apparatus will be described below, taking as an example a case where the welded tube to be manufactured is a heat exchanger tube used in a heat exchanger. First, the overall configuration of this manufacturing apparatus will be described with reference to FIGS. 1, 2, 3A, 3B, and 3C.
  • FIG. 1 is a side view of the first half of a welded pipe manufacturing apparatus 1 according to an embodiment.
  • FIG. 2 is a side view of the latter half of the manufacturing apparatus 1.
  • the welded pipe manufacturing apparatus 1 includes an uncoiler 10, a connecting machine 11, an accumulator 12, stamping machines 13 and 14, a forming machine 15, a welding machine 16, a drawing machine 17, and a cutting machine 18. and a recoiler 19.
  • a belt-shaped metal plate wound into a coil is supplied to the welded pipe manufacturing apparatus 1.
  • the manufacturing apparatus 1 then manufactures a welded pipe from the band-shaped metal plate.
  • the uncoiler 10 shown in FIG. 1 unwinds the coil around which the band-shaped metal plate is wound, and pulls out one end side of the band-shaped metal plate from the coil.
  • the uncoiler 10 includes a cylindrical holder 111 that holds a coil of a band-shaped metal plate from the inside, and a drive unit (not shown) that rotates the holder 111.
  • a drive unit (not shown) rotates the holder 111 in a direction opposite to the coil winding direction. Thereby, the uncoiler 10 pulls out one end side of the band-shaped metal plate from the coil.
  • the uncoiler 10 supplies one end of the pulled out strip-shaped metal plate to the connecting machine 11 .
  • the connector 11 connects the other end of the strip-shaped metal plate and one end of another strip-shaped metal plate. Specifically, although not shown in the drawings, in the uncoiler 10, when the strip metal plate is completely pulled out from the coil, the next coil is set, and one end side of the strip metal plate is pulled out from the next coil.
  • the connecting device 11 connects the other end of the previous coil on the opposite side to one end of the strip-shaped metal plate and one end of the pulled-out strip-shaped metal plate of the next coil.
  • the connecting machine 11 has a welding machine (not shown).
  • the connecting machine 11 uses its welding machine to weld the other end of the band-shaped metal plate of the previous coil to one end of the band-shaped metal plate of the next coil.
  • the connecting machine is also referred to as strip joining.
  • the accumulator 12 stores a certain length of the band-shaped metal plate pulled out from the coil.
  • the accumulator 12 includes a roller (not shown). On the roller is hung the middle part of the strip-shaped metal plate drawn out from the coil.
  • the roller should be used to feed the intermediate portion of the strip metal plate during the welding time of the splicing machine 11. Roll it up to a certain length.
  • the accumulator 12 retains the band-shaped metal plate for a certain length. After the accumulator 12 winds up the middle part of the band-shaped metal plate by a certain length, the one end side part of the band-shaped metal plate, that is, the +X end part in the orthogonal coordinate system XYZ shown in FIG. send to.
  • the stamping machines 13 and 14 are used to form grooves on the inner wall of the welded tube to be manufactured, specifically, to form grooves on the inner wall to improve heat exchange performance when the welded tube is used as a heat transfer tube. , is the part where grooves are formed in the band-shaped metal plate.
  • the engraving machines 13 and 14 include a first roll called a groove roll or a G roll with grooves formed on the outer periphery, and a first roll with grooves formed on the outer periphery without unevenness on the outer periphery. and a second roll having a smooth curved surface. Then, the engraving machine 13 inserts the band-shaped metal plate sent from the accumulator 12 and whose tension has been adjusted by the dancer rolls 131 and 132 shown in FIG. 1 between the first roll and the second roll described above. The stamping machine 13 passes the belt-shaped metal plate between the first roll and the second roll in a state where the first roll and the second roll are pressed against the belt-shaped metal plate. Thereby, the engraving machine 13 forms a groove on the band-shaped metal plate.
  • a first roll called a groove roll or a G roll with grooves formed on the outer periphery
  • a second roll having a smooth
  • the engraving machine 14 has a third roll in which grooves of a different shape from the grooves of the first roll are formed on the outer periphery, and a curved surface with a smooth outer periphery without any unevenness on the outer periphery. and a fourth roll.
  • the stamping machine 14 sandwiches the band-shaped metal plate, on which grooves have been formed by the stamping machine 13 and whose tension has been adjusted by dancer rolls 132 and 133, between the third roll and the fourth roll. Further, the stamping machine 14 presses the third roll and the fourth roll against the band-shaped metal plate. Furthermore, the stamping machine 14 passes the band-shaped metal plate between the third roll and the fourth roll. As a result, the stamping machine 14 forms a groove different from that in the case of the stamping machine 13 on the band-shaped metal plate.
  • the engraving machines 13 and 14 form a plurality of grooves with different shapes in the metal band plate by performing the above-described processing on the metal band plate. Examples of band-shaped metal plates in which such grooves are formed are shown in FIGS. 3A, 3B, and 3C.
  • FIG. 3A is a top view showing an example of a band-shaped metal plate 2 formed by the stamping machines 13 and 14 included in the welded pipe manufacturing apparatus 1.
  • FIG. 3B is a top view showing another example of the band-shaped metal plate 2.
  • FIG. 3C is a top view showing still another example of the band-shaped metal plate 2.
  • the engraving machines 13 and 14 form a herringbone-shaped groove in the band-shaped metal plate 2, in which a plurality of V-shaped grooves are arranged in the extending direction of the band of the band-shaped metal plate 2. do.
  • the engraving machines 13 and 14 form a plurality of X-shaped intersecting grooves on the band-shaped metal plate 2, as shown in FIG. 3B.
  • the stamping machines 13 and 14 form grooves that are inclined with respect to the extending direction of the band of the band-shaped metal plate 2 and embossments that are circular in top view on the band-shaped metal plate 2, as shown in FIG. 3C.
  • the stamping machines 13 and 14 improve the heat exchange efficiency of the welded tube by forming such grooves on the band-shaped metal plate 2 when the manufactured welded tube is used as a heat exchanger tube of a heat exchanger. enhance After the stamping machines 13 and 14 form such grooves on the band-shaped metal plate 2, they send the grooved portions to a forming machine 15 and a welding machine 16 shown in FIG.
  • the forming machine 15 bends the band-shaped metal plate 2 in the width direction of the band into a tubular shape, for example, a circular tube shape. Then, a tubular body having a shape that combines both ends of the band-shaped metal plate 2 in the width direction, that is, the +Y end and the -Y end, is formed.
  • the molding machine 15 includes a breakdown roll and a fin pass roll, which will be described later. Then, the forming machine 15 uses these rolls to form a tubular body on the +X end side of the band-shaped metal plate 2, with the +Y end and the -Y end aligned.
  • the welding machine 16 welds the seam of the tubular body described above.
  • the welding machine 16 includes an electron beam welding machine to be described later, and uses the electron beam welding machine to weld the seam of the tubular body to produce a welded pipe portion on the +X end side of the band-shaped metal plate 2. Then, the welding machine 16 sends the welded pipe portion of the band-shaped metal plate 2 to the drawing machine 17.
  • the drawing machine 17 adjusts the size of the outer diameter and inner diameter of the welded pipe portion produced by the welding machine 16.
  • the drawing machine 17 includes a die provided with a through hole that is smaller in outer diameter than the welded pipe produced by the welding machine 16 and has the same diameter as the target outer diameter. Then, the drawing machine 17 passes the welded pipe portion of the strip metal plate 2 through the die and pulls out the welded pipe portion from the die. Thereby, the drawing machine 17 processes the welded pipe portion of the strip metal plate 2 to have the same outer diameter as the diameter of the through hole of the die. The drawing machine 17 sends the processed welded pipe portion of the band-shaped metal plate 2 to the cutting machine 18 shown in FIG.
  • the cutting machine 18 includes a cutter 181 that is movable from the front to the back in FIG. 2, that is, in the Y direction. Then, the cutting machine 18 moves the cutter 181 to cut the welded pipe portion of the band-shaped metal plate 2 processed by the drawing machine 17 to a desired length. Thereby, the cutting machine 18 produces a welded pipe of a desired length. Then, the cutting machine 18 sends the welded pipe made to the desired length to the recoiler 19.
  • the recoiler 19 has a cylindrical winding section 191, and the welded tube cut to a desired length by the cutting machine 18 is wound up into the winding section 191 and re-coiled. Thereby, the recoiler 19 puts the produced welded pipe into a state where it can be supplied to an external device.
  • the coiled band-shaped metal plate 2 mounted on the uncoiler 10 is, for example, a plate of rolled copper or copper alloy.
  • the heat treatment is preferably O material, 1/2H material, or 1/4H material compliant with JIS H3100.
  • the width of the band-shaped metal plate 2 is preferably a size corresponding to the outer diameter of the welded pipe before being reduced in diameter by the drawing machine 17. For example, if the outer diameter of the welded pipe before being reduced by the drawing machine 17 is 7 mm, the width of the band-shaped metal plate 2 is determined by adding a welding margin of 0.5 mm to the circumference determined from the outer diameter. It is 5mm.
  • the thickness of the band-shaped metal plate 2 is reduced by 0.05 mm by the stamping machine 14, it is preferable that the thickness of the band-shaped metal plate 2 is 0.05 mm thicker than the thickness of the welded pipe before being reduced in diameter by the drawing machine 17.
  • the uncoiler 10 pulls out the band-shaped metal plate 2 wound into a coil, and the stamping machines 13 and 14 form grooves in the band-shaped metal plate 2. Further, the forming machine 15 bends the band-shaped metal plate 2 into a tubular shape in the Y direction, and aligns the +Y end and the -Y end of the band-shaped metal plate 2. Then, the welding machine 16 welds the seam formed by matching the +Y end and the -Y end of the band-shaped metal plate 2 to produce a welded pipe.
  • a general welding device such as high frequency induction heating welding or TIG (Tungsten insert gas) welding is used as the welding machine 16, and the atmosphere when welding with that device contains a lot of oxygen. , the weld that is formed will be oxidized. In that case, the strength of the manufactured welded pipe will decrease.
  • TIG Tungsten insert gas
  • a nozzle is installed in the high-frequency induction welding or TIG welding equipment, and an inert gas shielding gas such as argon gas or helium gas is sometimes supplied from the nozzle.
  • an inert gas shielding gas such as argon gas or helium gas
  • the inert gas is a special gas, preparation of the inert gas and work using the inert gas are not easy. Further, as a result of providing gas supply equipment, the device structure becomes complicated and the device settings are complicated.
  • the forming machine 15 and the welding machine 16 are provided with a vacuum chamber, and forming and welding are performed within the vacuum chamber.
  • the configurations of the forming machine 15 and the welding machine 16 will be described with reference to FIGS. 4, 5A to 5C, and 6A to 6C.
  • FIG. 4 is a sectional view of a forming machine 15 and a welding machine 16 included in the welded pipe manufacturing apparatus 1.
  • 5A to 5C are sectional views of the breakdown rolls 30-35 of the forming machine 15 and the belt-shaped metal plate 2 formed by the breakdown rolls 30-35.
  • 6A and 6B are cross-sectional views of the fin pass rolls 36-39 of the forming machine 15 and the band-shaped metal plate 2 formed by the fin pass rolls 36-39.
  • FIG. 6C is a cross-sectional view of the tubular body 3 finally molded by the molding machine 15.
  • the plate surface of the band-shaped metal plate 2 on which the grooves are formed by the stamping machines 13 and 14 is directed upward, that is, toward the +Z side. It is being
  • the welded pipe manufacturing apparatus 1 includes vacuum chambers 20-22, breakdown rolls 30-35 and fin pass rolls 36-39 provided in the vacuum chamber 21, and the upper part of the vacuum chamber 21.
  • the vacuum chamber 40 is provided with a vacuum chamber 40, and an electron beam welder 41 is provided within the vacuum chamber 40.
  • vacuum chamber 20-22, breakdown rolls 30-35, and fin pass rolls 36-39 are members that constitute the molding machine 15.
  • vacuum chamber 40 and the electron beam welder 41 are members that constitute the welder 16.
  • the vacuum chambers 20-22 are rooms provided to maintain a vacuum level that allows electron beam welding. Specifically, the vacuum chambers 20-22 are arranged in the order of vacuum chambers 20, 21, and 22 from the upstream side of the welded tube manufacturing apparatus 1, that is, from the ⁇ X side. The vacuum chambers 20-22 are adjacent to each other in the X direction. Further, the vacuum chambers 20 and 22 on both sides in the X direction are provided with transport rolls 23 and 24 for transporting the strip metal plate 2 to be processed and the welded pipe portion of the strip metal plate 2 after processing. . Further, the vacuum chamber 21 located at the center in the X direction accommodates a breakdown roll 30-35 and a fin pass roll 36-39 for forming the tubular body 3 to be welded from the strip metal plate 2 to be processed. Further, a vacuum chamber 40 that accommodates an electron beam welding machine 41 is connected to the vacuum chamber 21. As a result, inside the vacuum chamber 21, forming and welding, which are the manufacturing steps of a welded tube, are possible.
  • the vacuum chamber 21 preferably has a larger volume than the vacuum chambers 20 and 22 in order to form and weld the strip metal plate 2 to be processed.
  • the vacuum chamber 21 in order to increase the degree of vacuum in the vacuum chamber 21 located at the center in the X direction, although not shown, the vacuum chamber 21 has a higher ultimate degree of vacuum than the vacuum pump that evacuates the vacuum chambers 20 and 22. It is evacuated using a vacuum pump.
  • each of the vacuum chambers 20-22 has an exhaust port (not shown) formed therein, and a vacuum pump (not shown) is connected to each of the exhaust ports.
  • the vacuum pumps connected to the exhaust ports of the vacuum chambers 20 and 22 are for low vacuum.
  • the vacuum pump for low vacuum is a mechanical pump such as a water jet pump, reciprocating type, rotary type, or centrifugal type.
  • the vacuum pump connected to the exhaust port of the vacuum chamber 21 is for medium vacuum, such as a mechanical booster or a turbo molecular pump.
  • a structure is realized in which the vacuum chamber 21 with a high degree of vacuum is sandwiched between the vacuum chambers 20 and 22 with a low degree of vacuum from both sides in the X direction.
  • a structure is realized in which a vacuum chamber 21 of 2.0 to 6.0 Pa is sandwiched between vacuum chambers 20 and 22 of 50 to 800 Pa.
  • medium vacuum refers to a degree of vacuum that falls under one of the vacuum categories defined by Japanese Industrial Standards, and refers to a degree of vacuum of 0.1 to 100 Pa.
  • Low vacuum refers to a degree of vacuum that falls under another category of vacuum defined by the same standard, and refers to a degree of vacuum of 100,000 to 100 Pa.
  • the term "in a vacuum” refers to a low vacuum or a vacuum with a higher degree of vacuum than a low vacuum.
  • the vacuum chambers 20 and 22 have the same low vacuum, the same degree of vacuum here means that they are in the same vacuum category as described above.
  • the vacuum chamber 20 is provided with an inlet 201 and an outlet 202, as shown in FIG. 4, in order to supply and discharge the strip metal plate 2 to be processed.
  • the YZ cross-sectional shapes of the inlet 201 and the outlet 202 are larger than the YZ cross-sectional shape of the band-shaped metal plate 2 to the extent that they have play.
  • a band-shaped metal plate 2 is passed through the inlet 201 and the outlet 202.
  • gaps 205 and 206 are formed between the inner walls of the inlet 201 and the outlet 202 and the strip metal plate 2, which are small enough to allow the strip metal plate 2 to slide.
  • the flow of air from the outside into the vacuum chamber 20 is small, and as a result, a decrease in the degree of vacuum in the vacuum chamber 20 is suppressed.
  • the vacuum chamber 21 is provided with an inlet 211 having the same shape and size as the outlet 202 of the vacuum chamber 20 in order to supply the strip metal plate 2 to be processed. Further, the inlet 211 is adjacent to and continuous with the outlet 202 in the X direction. As a result, inlet 211 is in communication with vacuum chamber 20 . Further, a band-shaped metal plate 2 is passed through the entrance 211. As a result, a minute gap 215 is formed between the inner wall of the inlet 211 and the strip metal plate 2 to the extent that the strip metal plate 2 can be slid, and a decrease in the degree of vacuum in the vacuum chamber 21 is suppressed. There is. In particular, since the inlet 211 communicates with the low vacuum vacuum chamber 20 in the -X direction, the degree of vacuum in the vacuum chamber 21 is less likely to decrease compared to the case where the inlet 211 is directly connected to the external space.
  • the YZ cross-sectional shape has more play than the YZ cross-sectional shape of the welded pipe portion 4.
  • An outlet 212 is provided which is large enough to have a diameter.
  • a minute gap 216 is formed between the inner wall of the outlet 212 and the welded pipe part 4 to the extent that the welded pipe part 4 can slide, and a decrease in the degree of vacuum in the vacuum chamber 21 is suppressed.
  • the outlet 212 communicates with a low vacuum chamber 22 via an inlet 221, which will be described later. This prevents the degree of vacuum in the vacuum chamber 21 from rapidly decreasing due to the outlet 212.
  • the vacuum chamber 22 is provided with an inlet 221 and an outlet 222 having the same shape and size as the outlet 212 of the vacuum chamber 21 in order to allow the welded pipe portion 4 to pass therethrough.
  • the welded pipe portion 4 that has passed through the outlet 212 of the vacuum chamber 21 is passed through the inlet 221 and the outlet 222 . Due to these, minute gaps 225 and 226 are formed between the inner walls of the inlet 221 and the outlet 222 and the welded pipe portion 4 to the extent that the welded pipe portion 4 can be slid. Further, the flow of air from the outside into the vacuum chamber 22 is small, and a decrease in the degree of vacuum in the vacuum chamber 22 is suppressed. Further, the inlet 221 is adjacent to and continuous with the outlet 212 of the vacuum chamber 21 in the X direction. As a result, the degree of vacuum in the adjacent vacuum chamber 21 is less likely to decrease compared to the case where it is directly connected to the external space.
  • the welded pipe portion 4 has a space at the center of the pipe. Therefore, air from outside the apparatus may flow into the vacuum chambers 21 and 22 through the inside of the welded tube section 4. Therefore, before operating the welded pipe manufacturing apparatus 1 to manufacture welded pipes, special settings are made to pass the strip metal plate 2 to be processed through the vacuum chambers 20-22.
  • a welded pipe portion 4 is prepared on the +X end side of the band-shaped metal plate 2, and the +X end of the welded pipe portion 4 is sealed.
  • a device for crushing the end of the tube is provided in the vacuum chamber 21 in an area on the +X side of the area where the electron beam is applied to the tubular body 3, which will be described later, or in the vacuum chamber 22, and the device is used for welding.
  • the degree of vacuum is maintained in the vacuum chamber 20-22 by providing such inlets 201, 211, 221 and outlets 202, 212, 222. Further, the vacuum chamber 21 located at the center in the X direction has a higher degree of vacuum than the vacuum chambers 20 and 22 located on both sides of the vacuum chamber 21 in the X direction, and the vacuum chamber 21 is maintained at a degree of vacuum that allows electron beam welding. In order to form the strip metal plate 2 into a weldable shape in the vacuum chamber 21, the vacuum chamber 21 is provided with breakdown rolls 30-35 and fin pass rolls 36-39, as described above. .
  • the breakdown rolls 30-35 are arranged above or below, and the strip metal plate 2 is passed between them, thereby making the strip metal plate 2 arc-shaped in cross-sectional view. Roughly shape.
  • the breakdown rolls 30-35 are arranged in the order of breakdown rolls 30 and 31, 32 and 33, and 34 and 35 from the upstream side, that is, from the ⁇ X side as shown in FIG.
  • the breakdown roll 30 having a convex portion 301 that protrudes downward, that is, protruding toward the ⁇ Z side, and the breakdown roll 31 having a concave portion 311 recessed toward the ⁇ Z side are They are arranged in the direction and form pairs.
  • a breakdown roll 32 having a protrusion 321 protruding toward the -Z side and a breakdown roll 33 having a recess 331 concave toward the -Z side are arranged in the Z direction and form a pair.
  • a breakdown roll 34 having a convex portion 341 protruding toward the ⁇ Z side and a breakdown roll 35 having a concave portion 351 concave toward the ⁇ Z side are arranged in the Z direction to form a pair.
  • the heights of the convex portions 301, 321, and 341 in the Z direction are arranged in the order of the convex portions 301, 321, and 341, in other words, toward the downstream side, that is, toward the +X side. They are higher in order.
  • the widths of the convex portions 301, 321, and 341 in the Y direction become narrower in the same order.
  • the YZ cross-sectional shapes of the tips of the convex portions 301, 321, and 341 are rounded more in the same order.
  • the depth of the recesses 311, 331, 351 in the Z direction becomes deeper in the order in which the breakdown rolls 31, 33, 35 are arranged toward the +X side. ing.
  • the widths of the recesses 311, 331, and 351 in the Y direction become narrower in the same order.
  • the YZ cross-sectional shapes of the recesses 311, 331, and 351 are more curved in the same order, approaching an arc shape.
  • the breakdown rolls 30-35 curve the band-shaped metal plate 2 more toward the +X side.
  • the breakdown rolls 30-35 are roughly formed into the shape of an arc in the YZ cross-sectional view shown in FIGS. 5A to 5C. Note that the plate surface of the band-shaped metal plate 2 on which the grooves are formed faces inside the arc in the YZ cross-sectional view.
  • the fin pass rolls 36-39 are arranged in the Z direction in the same way as the breakdown rolls 30-35 and form a pair, but Unlike the case, the band-shaped metal plate 2 is passed between the pair of rolls, thereby finishing the band-shaped metal plate 2 into a circular shape in YZ cross-sectional view.
  • the fin pass rolls 36-39 are arranged in the order of fin pass rolls 36 and 37, and 38 and 39 from the -X side, as shown in FIG.
  • the fin pass roll 36 has a fin portion 361 formed in a recess that is arcuate in cross section and protrudes triangularly in cross section toward ⁇ Z side toward +Z side, and ⁇ Z side.
  • Fin pass rolls 37 each having a recess formed in an arcuate shape when viewed in cross section are arranged in the Z direction and form a pair.
  • a fin pass roll 38 in which a fin portion 381 protruding triangularly in cross-section toward the -Z side is formed in a recess that is recessed in an arc shape in cross section toward the +Z side, and a recess that is recessed in an arc shape in cross section toward the ⁇ Z side is formed.
  • the formed fin path rolls 39 are arranged in the Z direction and form pairs.
  • the width in the Y direction and the height in the Z direction of the fin parts 361 and 381 are arranged in the order of the fin parts 361 and 381, in other words, toward the downstream side, that is, toward the +X side. They are decreasing in order of size.
  • the recesses of the fin pass rolls 36 and 38 and the recesses of the fin pass rolls 37 and 39 face each other in the Z direction and form a circular space in cross-section.
  • the fin pass rolls 36-39 finish the band-shaped metal plate 2 into a circular shape in a YZ cross-sectional view, with the +Y end and -Y end of the band-shaped metal plate 2 approaching toward the +X side. Shape. Finally, the fin pass rolls 36-39 do not have a shape in which the +Y ends and -Y ends of the strip metal plate 2 face each other in a V-shape, as indicated by the dotted line in FIG.
  • a tubular body 3 is formed having a seam 5 in a shape where both ends of the band-shaped metal plate 2 face each other as shown by the solid line in FIG. 6C, instead of facing each other in a V-shape. Note that in the molded tubular body 3, the grooved surface of the band-shaped metal plate 2 is oriented inward, so that the inner wall is provided with grooves.
  • an electron beam welding machine 41 is installed on the fin pass rolls 38 and 39 in the vacuum chamber 21 in order to weld the joint 5 of the tubular body 3 formed by the fin pass rolls 36-39.
  • a vacuum chamber 40 is provided.
  • a communication hole 42 is formed in the lower surface of the vacuum chamber 40 and is continuous with the through hole 25 in the upper surface of the vacuum chamber 21 .
  • An electron beam welder 41 is disposed inside the vacuum chamber 40 and above the communication hole 42 .
  • the electron beam welding machine 41 includes a cathode part to which a voltage is applied to generate an electron beam, an anode part to accelerate the electron beam, and an electron lens part to converge or deflect the electron beam. Then, the electron beam welding machine 41 emits an electron beam generated by the cathode section toward the communication hole 42 and the through hole 25 described above, and directs the electron beam to the seam 5 of the tubular body 3 of the vacuum chamber 21. guess. Thereby, the electron beam welding machine 41 welds the seam 5 of the tubular body 3 to produce the welded pipe portion 4.
  • both ends of the band-shaped metal plate 2 described above are examples of the first end face and the second end face in the width direction of the band-shaped metal plate 2 in the present disclosure.
  • the portion formed or welded on the +X side of the band-shaped metal plate 2 is an example of the first portion on one end side in the present disclosure.
  • the vacuum chamber 21 and the inlet 211 and outlet 212 of the vacuum chamber 21 described above are examples of the first vacuum chamber, the first inlet, and the first outlet in the present disclosure.
  • the vacuum chamber 20 and the inlet 201 and outlet 202 of the vacuum chamber 20 are examples of a second vacuum chamber, a second inlet, and a second outlet as referred to in the present disclosure.
  • the vacuum chamber 22 and the inlet 221 and outlet 222 of the vacuum chamber 22 are examples of a third vacuum chamber, a third inlet, and a third outlet as referred to in the present disclosure.
  • the gaps 205, 206, and 215 are examples of first gaps referred to in the present disclosure.
  • the gaps 216, 225, and 226 are examples of second gaps referred to in the present disclosure.
  • the transport rolls 23 and 24 described above are an example of a feeding mechanism in the present disclosure.
  • the conveyance rolls 23 and 24 feeding the strip metal plate 2 is an example of the process of feeding the strip metal plate into the first vacuum chamber or the process of feeding the welded tube from the first vacuum chamber as referred to in the present disclosure.
  • the breakdown rolls 30-35 and the fin pass rolls 36-39 are examples of forming rolls as referred to in the present disclosure.
  • the formation of grooves on the band-shaped metal plate 2 by the above-mentioned stamping machines 13 and 14 is an example of the process of forming grooves in the present disclosure.
  • the first roll, second roll, third roll, and fourth roll provided in the stamping machines 13 and 14 are examples of groove forming rolls as referred to in the present disclosure.
  • the forming of the tubular body 3 using the breakdown rolls 30-35 and the fin pass rolls 36-39 described above is an example of the process of forming a tubular body as referred to in the present disclosure.
  • the welding of the joint 5 of the tubular body 3 by the electron beam welder 41 that is, the welding process, is an example of the process of producing a welded pipe as referred to in the present disclosure.
  • the various conditions of the electron beam welding machine 41 described above depend on the size and material of the welded tube to be manufactured, but for example, the rated output is 6 kW, the acceleration voltage is 40 kV, the electron beam current is 5 to 150 mA, and the cathode section is W. It is best to make it into a rod shape.
  • the electron beam welding machine 41 performs welding by colliding electron beams in a vacuum. Therefore, the manufacturing apparatus 1 can suppress oxidation of the welded portion to be formed. As a result, the strength of the welded part is high, and the strength of the welded pipe manufactured is high.
  • the electron beam welder 41 performs welding in a vacuum, there is no need to use an inert gas. As a result, there is no need to prepare a special gas, so preparation and work for manufacturing welded pipes is easy.
  • a vacuum chamber 20 having a lower degree of vacuum than the vacuum chamber 21 is adjacent to the entrance 211 of the vacuum chamber 21 where welding is performed. Then, after passing through the vacuum chamber 20, the one end portion of the strip metal plate 2 to be processed is fed into the vacuum chamber 21 from the inlet 211. Therefore, the degree of vacuum in the vacuum chamber 21 is unlikely to decrease, and it is easy to maintain a degree of vacuum that allows electron beam welding.
  • a vacuum chamber 22 having a lower degree of vacuum than the vacuum chamber 21 is adjacent to the outlet 212 of the vacuum chamber 21. Then, the welded pipe portion 4 of the band-shaped metal plate 2 after processing is sent out from the outlet 212, after passing through the vacuum chamber 22. Therefore, the degree of vacuum in the vacuum chamber 21 is unlikely to decrease, and it is easy to maintain a degree of vacuum that allows electron beam welding.
  • the welded pipe manufacturing method and welded pipe manufacturing apparatus 1 are not limited thereto.
  • FIG. 7 is a sectional view of a modification of the forming machine and welding machine included in the welded pipe manufacturing apparatus 1.
  • a seal 50 may be provided at the entrance 211 of the vacuum chamber 21 along the inner wall surface. Further, a seal 51 may be provided at the outlet 212 of the vacuum chamber 21 along the inner wall surface. This is because with such a configuration, the airtightness of the vacuum chamber 21 can be improved and the degree of vacuum in the vacuum chamber 21 can be easily maintained. Moreover, as a result, oxidation of the welded portion can be further suppressed.
  • the seals 50 and 51 are preferably frame-shaped or O-ring shaped.
  • the seals 50 and 51 are preferably made of a low-friction material, such as polytetrafluoroethylene, which is a fluororesin, in order to allow the band-shaped metal plate 2 or the welded pipe portion 4 to be taken in and out of the vacuum chamber 21.
  • the seals 50 and 51 may be installed at the inlet 201 and outlet 202 of the vacuum chamber 20 and the inlet 221 and outlet 222 of the vacuum chamber 22 in the same arrangement as in the case of the vacuum chamber 21. In this case, it is preferable that the seals 50 and 51 be installed in the vacuum chamber 21 having a high degree of vacuum in preference to the vacuum chambers 20 and 22.
  • Modification 2 In the first embodiment, in order to prevent air from outside the device from flowing into the vacuum chambers 21 and 22, the end of the welded pipe portion 4 formed at one end of the band-shaped metal plate 2 is sealed in advance. In this state, the welded pipe manufacturing apparatus 1 is operated to manufacture a welded pipe.
  • the means for preventing air from flowing into the vacuum chambers 21 and 22 is not limited to this.
  • the welded pipe portion 4 of the strip metal plate 2 may be plugged.
  • FIG. 8 is a sectional view of another modification of the forming machine and welding machine included in the welded pipe manufacturing apparatus 1.
  • a plug 60 may be provided in the internal space of the ⁇ X end portion of the welded pipe portion 4.
  • a small cylindrical plug 60 may be provided in the internal space of the portion immediately after the band-shaped metal plate 2 is formed into the tubular body 3 and welded by the electron beam welding machine 41. This is because with such a configuration, it is possible to prevent air from flowing in through the internal space of the welded pipe portion 4 of the band-shaped metal plate 2.
  • the plug 60 has one end fixed to the inner wall of the vacuum chamber 21 and the other end bent, parallel to the X direction, and inserted into the internal space of the welded pipe section 4 from the -X side. It is preferable that it is supported by a support rod 61.
  • the plug 60 preferably has an outer diameter that allows it to be loosely inserted into the welded pipe section 4.
  • the plug 60 is preferably made of a low-friction material, similar to the seals 50 and 51 of the first modification.
  • a measuring device is not provided in the vacuum chamber 20-22, but a measuring device may be provided in the vacuum chamber 20-22. Then, the welded pipe manufacturing apparatus 1 may operate based on the measurement results of the measuring device.
  • the welded tube manufacturing apparatus 1 may include a vacuum gauge that is provided in the vacuum chamber 21 and measures the degree of vacuum within the vacuum chamber 21.
  • the vacuum gauge is, for example, a U-tube manometer or a diaphragm vacuum gauge.
  • the welded tube manufacturing apparatus 1 when a welding defect exists in the welded tube portion 4 of the tubular body 3 that is welded in the vacuum chamber 21, the welded defective portion passes through the vacuum chamber 22 to the outside of the vacuum chamber 22. If air escapes, air may flow into the welded pipe section 4 from the location where the welding defect exists. In that case, the inflowing air enters the vacuum chamber 21 through the unwelded seam 5 of the tubular body 3, lowering the degree of vacuum in the vacuum chamber 21, and further oxidizing the welded portion.
  • a vacuum gauge may be provided in the vacuum chamber 21, and a control device, which will be described later and included in the welded pipe manufacturing apparatus 1, may determine the presence or absence of the above-mentioned welding defect based on pressure data measured by the vacuum gauge. If the control device determines that there is a welding defect, the manufacturing apparatus 1 may stop manufacturing the welded pipe. Further, if the control device determines that there is a welding defect, the welded pipe portion 4 which is exposed outside the vacuum chamber 22 at that time may be determined to be defective, or the inside of the vacuum chamber 21 where the degree of vacuum has decreased. The parts after welded pipe part 4 may be considered defective.
  • the pressure measured by the vacuum gauge is a gauge pressure
  • the vacuum gauge may be provided in at least one of the vacuum chambers 20-22.
  • the vacuum gauge described above may be replaced by other vacuum measuring instruments.
  • a vacuum gauge may be replaced with an optical leak detector.
  • FIG. 9 is a sectional view of yet another modification of the forming machine and welding machine included in the welded pipe manufacturing apparatus 1.
  • the welded pipe manufacturing apparatus 1 may include an optical leak detector 70 that is installed in the vacuum chamber 22 and measures the degree of vacuum within the vacuum chamber 22.
  • the optical leak detector 70 is arranged in a measurement environment, here, in a case communicating with the vacuum chamber 22, and has two electrodes that are provided with a potential difference and emit electrons; and an optical measuring device that measures the spectral intensity of light emitted when the electrons collide with gas atoms and molecules in the case, and the partial pressure of the gas can be determined from the spectral intensity measured by the optical measuring device. This refers to the device you are looking for. Note that the above two electrodes and the optical measuring device may be provided directly within the vacuum chamber 22 instead of within the above case.
  • the optical measuring instrument included in the optical leak detector 70 measures the spectral intensity of purple light when outside air flows into the vacuum chamber 22, as a result of the outside air containing a large amount of nitrogen.
  • optical measuring instruments measure the spectral intensity of dim purple light depending on the concentration of oxygen in the outside air.
  • the optical leak detector 70 determines the pressure inside the vacuum chamber 22 by determining the pressure inside the case from the measured spectral intensity when outside air flows into the vacuum chamber 22. Good. Then, the control device 80 may determine the presence or absence of the above-mentioned welding defect from the pressure determined by the optical leak detector 70.
  • optical leak detector 70 is preferably provided in the vacuum chamber 20 or 22 instead of the vacuum chamber 21. This is because if the optical leak detector 70 is provided in the vacuum chamber 21, the two electrodes included in the optical leak detector 70 may affect electron beam welding, and welding may not be performed at an appropriate location.
  • control device 80 includes a CPU (Central Processing Unit) 81 and a memory 82, and the CPU 81 reads and executes a determination program stored in the memory 82, thereby performing the above-described process of determining the presence or absence of a welding defect. It's good to do.
  • CPU Central Processing Unit
  • the welded pipe manufacturing apparatus 1 includes three vacuum chambers 20-22.
  • the vacuum chamber 20-22 is formed by bending the band-shaped metal plate 2 into a tubular shape in the width direction
  • the vacuum chamber 20-22 is formed by bending the band-shaped metal plate 2 into a tubular shape in the width direction
  • the vacuum chamber 20-22 is formed by bending the band-shaped metal plate 2 into a tubular shape in the width direction
  • the vacuum chamber 20-22 is formed by bending the band-shaped metal plate 2 into a tubular shape in the width direction.
  • Any structure may be used as long as it accommodates a tubular body whose second end face on the opposite side faces each other.
  • the electron beam welding machine 41 collides the electron beam with the first end surface and the second end surface of the tubular body to weld the first end surface and the second end surface to each other. It is enough to make a welded pipe. Therefore, the number of vacuum chambers 20-22 is arbitrary as long as these conditions are satisfied.
  • the welded pipe manufacturing apparatus 1 may include only one vacuum chamber 21. This is because even in this form, oxidation of the welded portion can be suppressed.
  • a molding machine 15 and a welding machine 16 are housed in the vacuum chamber 20-22.
  • the equipment accommodated in the vacuum chambers 20-22 is not limited to this. Since the electron beam welding machine 41 only needs to satisfy the above conditions and create the welded tube, other equipment for processing the band-shaped metal plate 2 may be housed in the vacuum chamber 20-22.
  • FIG. 10 is a sectional view of a modification of the welded pipe manufacturing apparatus 1 according to the embodiment.
  • the engraving machines 13, 14 and dancer rolls 131-133 described in the embodiment may be housed in the vacuum chamber 21.
  • grooves are preferably formed in the band-shaped metal plate 2 in the vacuum chamber 21.
  • the gap 215 at the entrance 211 is made small to reduce the vacuum in the vacuum chamber 21. This is because the degree can be lowered. This is also because it becomes easier to maintain the degree of vacuum in the vacuum chamber 21.
  • the welded pipe manufacturing apparatus 1 includes an accumulator 12.
  • the welded pipe manufacturing apparatus 1 is not limited to this.
  • the accumulator 12 has an arbitrary configuration. For example, if production efficiency may be reduced, the welded pipe manufacturing apparatus 1 may not include the accumulator 12.
  • the welded pipe manufacturing apparatus 1 includes stamping machines 13 and 14.
  • the welded pipe manufacturing apparatus 1 is not limited to this.
  • the engraving machines 13 and 14 have an arbitrary configuration.
  • the welded pipe manufacturing apparatus 1 when manufacturing a welded pipe without grooves, the welded pipe manufacturing apparatus 1 does not need to include the engraving machines 13 and 14.
  • the welded pipe manufacturing apparatus 1 when manufacturing a welded pipe having a groove, the welded pipe manufacturing apparatus 1 only needs to include at least one stamping machine 13, 14 in order to form the groove.
  • the welded pipe manufacturing apparatus 1 does not include any machine or device after the recoiler 19.
  • the welded pipe manufacturing apparatus 1 is not limited to this.
  • the welded pipe manufacturing apparatus 1 may include an annealing device after the recoiler 19 in order to prevent the manufactured welded pipe from cracking during bending or expansion.
  • the welded tube manufacturing apparatus 1 will be described using an example in which the welded tubes to be manufactured are heat exchanger tubes used in a heat exchanger.
  • the welded pipe manufactured is not limited to this.
  • the welded pipe manufacturing method and welded pipe manufacturing apparatus 1 according to the embodiments of the present disclosure are applicable to all welded pipes that require suppression of oxidation of the welded portion.
  • the welded pipe manufacturing method and welded pipe manufacturing apparatus 1 are not limited to the above embodiments, and various modifications and substitutions can be made. Various aspects of the present disclosure are described below as supplementary notes.
  • a tubular shape formed by curving a band-shaped metal plate into a tubular shape in the width direction, and in which a first end face in the width direction of the band-shaped metal plate and a second end face opposite to the first end face face each other. producing a welded pipe by colliding an electron beam with the first end surface and the second end surface of the body to weld the first end surface and the second end surface to each other; Method for manufacturing welded pipes.
  • the step of producing the welded pipe includes causing electrons to collide with a gas in another space communicating with the space in which the electron beam collides with the first end face and the second end face, causing the gas to emit light, and adjusting the spectrum of the light. by measuring the pressure of the gas to determine the degree of vacuum of the space in which the electron beam collides, and determining the presence or absence of a welding defect based on the determined degree of vacuum.
  • a method for manufacturing a welded pipe according to any one of Supplementary Notes 1 to 7.
  • a tubular shape formed by curving a band-shaped metal plate into a tubular shape in the width direction, and in which a first end face in the width direction of the band-shaped metal plate and a second end face opposite to the first end face face each other.
  • a first vacuum chamber that accommodates the body;
  • a welded tube is produced by colliding an electron beam with the first end surface and the second end surface of the tubular body inside the first vacuum chamber to weld the first end surface and the second end surface to each other.
  • An electron beam welding machine that A welded pipe manufacturing device comprising: (Appendix 11) further comprising a feeding mechanism that feeds the band-shaped metal plate into the first vacuum chamber from one end in the direction in which the band extends,
  • the first vacuum chamber is a first entrance into which the band-shaped metal plate is fed from the one end side;
  • the second end surface is welded to the first end surface of the tubular body by the electron beam welding machine.
  • a first outlet through which the welded pipe manufactured at the portion on the one end side is sent out; has In the first vacuum chamber, a portion on the one end side of the band-shaped metal plate fed into the first vacuum chamber from the first inlet by the feeding mechanism is inserted into the inner space in a tubular shape in the width direction.
  • the welded pipe manufacturing apparatus according to appendix 10. (Appendix 12)
  • the first vacuum chamber accommodates in its internal space a groove forming roll that forms grooves on the plate surface of the strip-shaped metal plate fed into the first vacuum chamber from the first inlet by the feeding mechanism.
  • the forming roll forms the tubular body by curving the first portion of the band-shaped metal plate with the plate surface on which the grooves are formed facing inward.
  • the welded pipe manufacturing apparatus according to appendix 11. (Appendix 13) a second vacuum chamber adjacent to the first vacuum chamber on the side where the first inlet of the first vacuum chamber is located and having a lower degree of vacuum than the first vacuum chamber; a third vacuum chamber adjacent to the first vacuum chamber on the side where the first outlet of the first vacuum chamber is located and having a lower degree of vacuum than the first vacuum chamber; Furthermore, The second vacuum chamber includes a second inlet into which the band-shaped metal plate is fed from the one end side by the feeding mechanism, and a second inlet into which the band-shaped metal plate is fed from the one end side by the feeding mechanism.
  • the third vacuum chamber includes a third inlet into which the welded pipe produced on the one end side of the band-shaped metal plate is fed from the first outlet by the feeding mechanism, and the feeding mechanism. and a third outlet through which the welded pipe is sent out by feeding the welded pipe made on the one end side of the band-shaped metal plate into the third inlet, A third inlet communicates with the first vacuum chamber by connecting with the first outlet;
  • the welded pipe manufacturing apparatus according to appendix 11 or 12.
  • the first inlet, the second inlet, and the second outlet are a first gap in which the band-shaped metal plate can slide between the flat metal plate and the band-shaped metal plate with the band-shaped metal plate inserted therethrough.
  • has The first outlet, the third inlet, and the third outlet are connected to the welded tube between the welded tube and the welded tube, which is made in a portion on the one end side of the band-shaped metal plate, and is inserted therethrough. having a second gap in which the pipe can slide;
  • the welded pipe manufacturing apparatus according to appendix 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

This welded tube manufacturing method comprises a step for fabricating a welded tube. In the step for fabricating a welded tube, a band-shaped metal plate (2) having a first end face and a second end face on the opposite side to the first end face in the width direction thereof is curved in the width direction into a tubular form, thereby forming a tubular body (3) with the first end face and the second end face facing each other, and then the first end face and the second end face are welded together by impinging an electronic beam thereon, thereby fabricating a welded tube.

Description

溶接管の製造方法および溶接管の製造装置Welded pipe manufacturing method and welded pipe manufacturing device
 本開示は溶接管の製造方法および溶接管の製造装置に関する。 The present disclosure relates to a welded pipe manufacturing method and a welded pipe manufacturing apparatus.
 溶接管は、帯状金属板が幅方向へ管状に湾曲され、その幅方向にある両端が合わせられて溶接されることにより製造されている。このような溶接管では、溶接部が酸化してしまうと、溶接管それ自体の強度が低下してしまう。そこで、溶接部の酸化を抑制する溶接管の製造方法が開発されている。 A welded pipe is manufactured by bending a band-shaped metal plate into a tubular shape in the width direction, and welding both ends in the width direction together. In such a welded pipe, if the welded portion becomes oxidized, the strength of the welded pipe itself will decrease. Therefore, a method for manufacturing a welded pipe that suppresses oxidation of the welded portion has been developed.
 例えば、特許文献1には、帯状金属板が幅方向へ湾曲され、幅方向にある両端が合わせられることにより形成された管状体の内部空間にシールドガスを供給しながら、合わせられた両端を溶接する溶接管の製造方法が開示されている。 For example, in Patent Document 1, a band-shaped metal plate is curved in the width direction, and the joined ends are welded while supplying shielding gas to the internal space of a tubular body formed by bringing together both ends in the width direction. A method for manufacturing a welded pipe is disclosed.
特開2000-271790号公報Japanese Patent Application Publication No. 2000-271790
 特許文献1に記載の溶接管の製造方法では、シールドガスとして不活性ガスが用いられている。その不活性ガスは、特殊なガスである。このため、シールドガスの準備と溶接作業が容易でない。 In the welded pipe manufacturing method described in Patent Document 1, an inert gas is used as the shielding gas. The inert gas is a special gas. Therefore, preparation of shielding gas and welding work are not easy.
 本開示は上記の課題を解決するためになされたもので、不活性ガスを用いることなく溶接部の酸化を抑制できる溶接管の製造方法および溶接管の製造装置を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a welded pipe manufacturing method and a welded pipe manufacturing apparatus that can suppress oxidation of a welded part without using an inert gas.
 上記の目的を達成するため、本開示に係る溶接管の製造方法は、帯状金属板が幅方向へ管状に湾曲されることにより形成され、帯状金属板の幅方向にある第一端面と第一端面の反対側にある第二端面とが向かい合わせられた管状体の第一端面と第二端面とに電子ビームを衝突させて第一端面と第二端面を互いに溶接することにより、溶接管を作製する工程を備える。 In order to achieve the above object, a welded pipe manufacturing method according to the present disclosure is provided by forming a welded pipe by bending a band-shaped metal plate into a tubular shape in the width direction, and forming a welded pipe with a first end face in the width direction of the band-shaped metal plate and a first A welded tube is formed by colliding an electron beam with the first end surface and second end surface of the tubular body, which are opposite to each other, and welding the first end surface and the second end surface to each other. A manufacturing process is provided.
 本開示の構成によれば、溶接管を作製する工程で、管状体の第一端面と第二端面とに電子ビームを衝突させて第一端面と第二端面を互いに溶接することにより、溶接管を作製する。その結果、第一端面と第二端面を互いに溶接する溶接部が酸化しにくい。本開示の構成によれば、不活性ガスを用いることなく溶接部の酸化を抑制できる。 According to the configuration of the present disclosure, in the process of manufacturing a welded pipe, an electron beam collides with the first end face and second end face of the tubular body to weld the first end face and the second end face to each other. Create. As a result, the welded portion where the first end surface and the second end surface are welded together is less likely to be oxidized. According to the configuration of the present disclosure, oxidation of the welded portion can be suppressed without using an inert gas.
本開示の実施の形態に係る溶接管の製造装置の前半部分の側面図A side view of the first half of a welded pipe manufacturing apparatus according to an embodiment of the present disclosure 本開示の実施の形態に係る溶接管の製造装置の後半部分の側面図Side view of the latter half of the welded pipe manufacturing apparatus according to the embodiment of the present disclosure 本開示の実施の形態に係る溶接管の製造装置が備える刻印加工機より成形される帯状金属板の一例を示す上面図A top view showing an example of a band-shaped metal plate formed by a stamping machine included in a welded pipe manufacturing apparatus according to an embodiment of the present disclosure. 本開示の実施の形態に係る溶接管の製造装置が備える刻印加工機より成形される帯状金属板の他の例を示す上面図A top view showing another example of a band-shaped metal plate formed by the stamping machine included in the welded pipe manufacturing apparatus according to the embodiment of the present disclosure. 本開示の実施の形態に係る溶接管の製造装置が備える刻印加工機より成形される帯状金属板のさらに他の例を示す上面図A top view showing still another example of a band-shaped metal plate formed by a stamping machine included in a welded pipe manufacturing apparatus according to an embodiment of the present disclosure. 本開示の実施の形態に係る溶接管の製造装置が備える成形機と溶接機の断面図A sectional view of a forming machine and a welding machine included in a welded pipe manufacturing apparatus according to an embodiment of the present disclosure 本開示の実施の形態に係る溶接管の製造装置が備える成形機が有するブレークダウンロールとブレークダウンロールにより成形される帯状金属板の断面図A sectional view of a breakdown roll included in a forming machine included in a welded pipe manufacturing apparatus according to an embodiment of the present disclosure, and a band-shaped metal plate formed by the breakdown roll. 本開示の実施の形態に係る溶接管の製造装置が備える成形機が有するブレークダウンロールとブレークダウンロールにより成形される帯状金属板の断面図A sectional view of a breakdown roll included in a forming machine included in a welded pipe manufacturing apparatus according to an embodiment of the present disclosure, and a band-shaped metal plate formed by the breakdown roll. 本開示の実施の形態に係る溶接管の製造装置が備える成形機が有するブレークダウンロールとブレークダウンロールにより成形される帯状金属板の断面図A sectional view of a breakdown roll included in a forming machine included in a welded pipe manufacturing apparatus according to an embodiment of the present disclosure, and a band-shaped metal plate formed by the breakdown roll. 本開示の実施の形態に係る溶接管の製造装置が備える成形機が有するフィンパスロールとフィンパスロールにより成形される帯状金属板の断面図A sectional view of a fin pass roll included in a forming machine included in a welded pipe manufacturing apparatus according to an embodiment of the present disclosure, and a band-shaped metal plate formed by the fin pass roll. 本開示の実施の形態に係る溶接管の製造装置が備える成形機が有するフィンパスロールとフィンパスロールにより成形される帯状金属板の断面図A sectional view of a fin pass roll included in a forming machine included in a welded pipe manufacturing apparatus according to an embodiment of the present disclosure, and a band-shaped metal plate formed by the fin pass roll. 本開示の実施の形態に係る溶接管の製造装置が備える成形機により最終的に成形される管状体の断面図A cross-sectional view of a tubular body finally formed by a forming machine included in a welded pipe manufacturing apparatus according to an embodiment of the present disclosure. 本開示の実施の形態に係る溶接管の製造装置が備える成形機と溶接機の変形例の断面図A sectional view of a modified example of a forming machine and a welding machine included in the welded pipe manufacturing apparatus according to the embodiment of the present disclosure 本開示の実施の形態に係る溶接管の製造装置が備える成形機と溶接機の他の変形例の断面図A sectional view of another modification of the forming machine and welding machine included in the welded pipe manufacturing apparatus according to the embodiment of the present disclosure 本開示の実施の形態に係る溶接管の製造装置が備える成形機と溶接機のさらに別の変形例の断面図A sectional view of still another modification of the forming machine and welding machine included in the welded pipe manufacturing apparatus according to the embodiment of the present disclosure 本開示の実施の形態に係る溶接管の製造装置の変形例の断面図A sectional view of a modification of the welded pipe manufacturing apparatus according to the embodiment of the present disclosure
 以下、本開示の実施の形態に係る溶接管の製造方法および溶接管の製造装置について図面を参照して詳細に説明する。なお、図中、同一又は同等の部分には同一の符号を付す。また、図に示す直交座標系XYZにおいて、溶接管の製造装置の上流、下流の方向を水平方向に向けたときの、鉛直方向がZ軸、水平方向のうちの上流、下流の方向がX軸、Z軸とX軸に直交する方向がY軸である。 Hereinafter, a welded pipe manufacturing method and a welded pipe manufacturing apparatus according to an embodiment of the present disclosure will be described in detail with reference to the drawings. In addition, in the figures, the same or equivalent parts are given the same reference numerals. In addition, in the orthogonal coordinate system XYZ shown in the figure, when the upstream and downstream directions of the welded pipe manufacturing equipment are oriented horizontally, the vertical direction is the Z axis, and the upstream and downstream directions of the horizontal direction are the X axis. , the direction perpendicular to the Z-axis and the X-axis is the Y-axis.
(実施の形態)
 実施の形態に係る溶接管の製造装置は、帯状金属板から溶接管を製造する装置である。この製造装置は、帯状金属板を幅方向へ管状に湾曲させて成形した管状体の合わせ目を溶接して溶接管を製造する。その溶接は、溶接部の酸化を抑制するため、真空中で電子ビームを合わせ目にあてることにより行われる。以下、製造対象の溶接管が熱交換器に使用される伝熱管である場合を例に、この製造装置の構成について説明する。まず、図1、図2、図3A、図3Bおよび図3Cを参照して、この製造装置の全体の構成について説明する。
(Embodiment)
The welded pipe manufacturing apparatus according to the embodiment is an apparatus for manufacturing a welded pipe from a band-shaped metal plate. This manufacturing apparatus manufactures a welded pipe by welding the joints of a tubular body formed by curving a band-shaped metal plate into a tubular shape in the width direction. The welding is performed in a vacuum by applying an electron beam to the joint in order to suppress oxidation of the weld. The configuration of this manufacturing apparatus will be described below, taking as an example a case where the welded tube to be manufactured is a heat exchanger tube used in a heat exchanger. First, the overall configuration of this manufacturing apparatus will be described with reference to FIGS. 1, 2, 3A, 3B, and 3C.
 図1は、実施の形態に係る溶接管の製造装置1の前半部分の側面図である。図2は、製造装置1の後半部分の側面図である。 FIG. 1 is a side view of the first half of a welded pipe manufacturing apparatus 1 according to an embodiment. FIG. 2 is a side view of the latter half of the manufacturing apparatus 1.
 図1および図2に示すように、溶接管の製造装置1は、アンコイラ10、接続機11、アキュムレータ12、刻印加工機13、14、成形機15、溶接機16、抽伸機17、切断機18およびリコイラ19を備える。 As shown in FIGS. 1 and 2, the welded pipe manufacturing apparatus 1 includes an uncoiler 10, a connecting machine 11, an accumulator 12, stamping machines 13 and 14, a forming machine 15, a welding machine 16, a drawing machine 17, and a cutting machine 18. and a recoiler 19.
 溶接管の製造装置1には、コイル状に巻き取られた帯状金属板が供給される。そして、その製造装置1は、その帯状金属板から溶接管を製造する。図1に示すアンコイラ10は、その帯状金属板が巻き取られたコイルを巻き戻して、コイルから帯状金属板の一端側を引き出す。 A belt-shaped metal plate wound into a coil is supplied to the welded pipe manufacturing apparatus 1. The manufacturing apparatus 1 then manufactures a welded pipe from the band-shaped metal plate. The uncoiler 10 shown in FIG. 1 unwinds the coil around which the band-shaped metal plate is wound, and pulls out one end side of the band-shaped metal plate from the coil.
 詳細には、アンコイラ10は、帯状金属板のコイルを内側から保持する円筒状のホルダー111と、そのホルダー111を回転させる図示しない駆動部とを有する。そして、アンコイラ10は、図示しない駆動部がホルダー111をコイルの巻き取り方向と反対側へ回転させる。これにより、アンコイラ10は、コイルから帯状金属板の一端側を引き出す。アンコイラ10は、引き出された帯状金属板の一端側を接続機11へ供給する。 Specifically, the uncoiler 10 includes a cylindrical holder 111 that holds a coil of a band-shaped metal plate from the inside, and a drive unit (not shown) that rotates the holder 111. In the uncoiler 10, a drive unit (not shown) rotates the holder 111 in a direction opposite to the coil winding direction. Thereby, the uncoiler 10 pulls out one end side of the band-shaped metal plate from the coil. The uncoiler 10 supplies one end of the pulled out strip-shaped metal plate to the connecting machine 11 .
 接続機11は、帯状金属板の他端と別の帯状金属板の一端とを接続する。詳細には、アンコイラ10では、図示しないが、コイルから帯状金属板が完全に引き出されると、次のコイルがセットされ、その次のコイルから帯状金属板の一端側が引き出される。接続機11は、その前のコイルの帯状金属板の一端とは反対側にある他端とその次のコイルの、引き出された帯状金属板の一端とを接続する。 The connector 11 connects the other end of the strip-shaped metal plate and one end of another strip-shaped metal plate. Specifically, although not shown in the drawings, in the uncoiler 10, when the strip metal plate is completely pulled out from the coil, the next coil is set, and one end side of the strip metal plate is pulled out from the next coil. The connecting device 11 connects the other end of the previous coil on the opposite side to one end of the strip-shaped metal plate and one end of the pulled-out strip-shaped metal plate of the next coil.
 その構成について説明すると、接続機11は、図示しない溶接機を有する。接続機11は、その溶接機により、前のコイルの帯状金属板の他端と次のコイルの帯状金属板の一端とを溶接する。なお、接続機は、ストリップジョイニングともいう。 To explain its configuration, the connecting machine 11 has a welding machine (not shown). The connecting machine 11 uses its welding machine to weld the other end of the band-shaped metal plate of the previous coil to one end of the band-shaped metal plate of the next coil. Note that the connecting machine is also referred to as strip joining.
 一方、アキュムレータ12は、コイルから引き出された帯状金属板を一定の長さだけ貯える。詳細には、アキュムレータ12は、図示しないローラを備える。そのローラには、コイルから引き出された帯状金属板の中間部分が掛けられる。そして、そのローラは、接続機11で溶接している間に帯状金属板の供給が停止してしまうことを防ぐため、帯状金属板の中間部分を、接続機11の溶接時間に供給されるべき一定の長さだけ、巻き取る。これにより、アキュムレータ12は、帯状金属板を一定の長さだけ滞留させている。アキュムレータ12は、帯状金属板の中間部分を一定の長さだけ巻き取った後、帯状金属板の一端側部分を、すなわち、図1に示す直交座標系XYZでの+X端部分を刻印加工機13へ送り出す。 On the other hand, the accumulator 12 stores a certain length of the band-shaped metal plate pulled out from the coil. Specifically, the accumulator 12 includes a roller (not shown). On the roller is hung the middle part of the strip-shaped metal plate drawn out from the coil. In order to prevent the supply of the strip metal plate from being stopped while welding is being performed by the splicing machine 11, the roller should be used to feed the intermediate portion of the strip metal plate during the welding time of the splicing machine 11. Roll it up to a certain length. Thereby, the accumulator 12 retains the band-shaped metal plate for a certain length. After the accumulator 12 winds up the middle part of the band-shaped metal plate by a certain length, the one end side part of the band-shaped metal plate, that is, the +X end part in the orthogonal coordinate system XYZ shown in FIG. send to.
 刻印加工機13、14は、製造対象の溶接管の内壁に溝を形成するため、詳細には、溶接管が伝熱管として用いられたときの、熱交換性能を高める溝を内壁に形成するため、帯状金属板に溝を形成する部分である。 The stamping machines 13 and 14 are used to form grooves on the inner wall of the welded tube to be manufactured, specifically, to form grooves on the inner wall to improve heat exchange performance when the welded tube is used as a heat transfer tube. , is the part where grooves are formed in the band-shaped metal plate.
 詳細には、刻印加工機13、14は、図示しないが、グルーブロールと呼ばれる、またはGロールと略される外周部に溝が形成された第一ロールと、外周部に凹凸がなく外周部が滑らかな曲面状である第二ロールとを有する。そして、刻印加工機13は、アキュムレータ12から送られ、かつ図1に示すダンサーロール131、132によって張力が調整された帯状金属板を、上述した第一ロールと第二ロールの間に挟み込む。刻印加工機13は、それら第一ロールと第二ロールが帯状金属板に押し当てられた状態で、それら第一ロールと第二ロールの間に帯状金属板を通す。これにより、刻印加工機13は、帯状金属板に溝を形成する。 In detail, although not shown, the engraving machines 13 and 14 include a first roll called a groove roll or a G roll with grooves formed on the outer periphery, and a first roll with grooves formed on the outer periphery without unevenness on the outer periphery. and a second roll having a smooth curved surface. Then, the engraving machine 13 inserts the band-shaped metal plate sent from the accumulator 12 and whose tension has been adjusted by the dancer rolls 131 and 132 shown in FIG. 1 between the first roll and the second roll described above. The stamping machine 13 passes the belt-shaped metal plate between the first roll and the second roll in a state where the first roll and the second roll are pressed against the belt-shaped metal plate. Thereby, the engraving machine 13 forms a groove on the band-shaped metal plate.
 これに対して、刻印加工機14は、外周部に第一ロールの溝とは別の形状の溝が形成された第三ロールと、外周部に凹凸がなく外周部が滑らかな曲面状である第四ロールとを有する。刻印加工機14は、刻印加工機13によって溝が形成され、かつダンサーロール132と133によって張力が調整された帯状金属板を、上記の第三ロールと第四ロールによって挟み込む。また、刻印加工機14は、それら第三ロールと第四ロールを帯状金属板に押し当てる。さらに、刻印加工機14は、第三ロールと第四ロールの間に帯状金属板を通す。これにより、刻印加工機14は、帯状金属板に刻印加工機13の場合とは別の溝を形成する。 On the other hand, the engraving machine 14 has a third roll in which grooves of a different shape from the grooves of the first roll are formed on the outer periphery, and a curved surface with a smooth outer periphery without any unevenness on the outer periphery. and a fourth roll. The stamping machine 14 sandwiches the band-shaped metal plate, on which grooves have been formed by the stamping machine 13 and whose tension has been adjusted by dancer rolls 132 and 133, between the third roll and the fourth roll. Further, the stamping machine 14 presses the third roll and the fourth roll against the band-shaped metal plate. Furthermore, the stamping machine 14 passes the band-shaped metal plate between the third roll and the fourth roll. As a result, the stamping machine 14 forms a groove different from that in the case of the stamping machine 13 on the band-shaped metal plate.
 刻印加工機13と14は、上述した加工を帯状金属板に施すことにより、形状が異なる複数の溝を帯状金属板に形成する。そのような溝が形成された帯状金属板の例を図3A、図3Bおよび図3Cに示す。 The engraving machines 13 and 14 form a plurality of grooves with different shapes in the metal band plate by performing the above-described processing on the metal band plate. Examples of band-shaped metal plates in which such grooves are formed are shown in FIGS. 3A, 3B, and 3C.
 図3Aは、溶接管の製造装置1が備える刻印加工機13、14より成形される帯状金属板2の一例を示す上面図である。図3Bは、帯状金属板2の他の例を示す上面図である。図3Cは、帯状金属板2のさらに他の例を示す上面図である。 FIG. 3A is a top view showing an example of a band-shaped metal plate 2 formed by the stamping machines 13 and 14 included in the welded pipe manufacturing apparatus 1. FIG. 3B is a top view showing another example of the band-shaped metal plate 2. FIG. 3C is a top view showing still another example of the band-shaped metal plate 2.
 例えば、刻印加工機13、14は、図3Aに示すように、V字状の溝が帯状金属板2の帯の延在方向に複数個、配列したヘリンボーン状の溝を帯状金属板2に形成する。若しくは、刻印加工機13、14は、図3Bに示すように、X状に交差した溝を複数個、帯状金属板2に形成する。または、刻印加工機13、14は、図3Cに示すように、帯状金属板2の帯の延在方向に対して傾斜した溝と上面視円形状のエンボスを帯状金属板2に形成する。刻印加工機13と14は、このような溝を帯状金属板2に形成することにより、製造された溶接管が熱交換器の伝熱管として用いられた場合に、溶接管の熱交換交換効率を高める。刻印加工機13と14は、このような溝を帯状金属板2に形成した後、その溝が形成された部分を図2に示す成形機15と溶接機16へ送り出す。 For example, as shown in FIG. 3A, the engraving machines 13 and 14 form a herringbone-shaped groove in the band-shaped metal plate 2, in which a plurality of V-shaped grooves are arranged in the extending direction of the band of the band-shaped metal plate 2. do. Alternatively, the engraving machines 13 and 14 form a plurality of X-shaped intersecting grooves on the band-shaped metal plate 2, as shown in FIG. 3B. Alternatively, the stamping machines 13 and 14 form grooves that are inclined with respect to the extending direction of the band of the band-shaped metal plate 2 and embossments that are circular in top view on the band-shaped metal plate 2, as shown in FIG. 3C. The stamping machines 13 and 14 improve the heat exchange efficiency of the welded tube by forming such grooves on the band-shaped metal plate 2 when the manufactured welded tube is used as a heat exchanger tube of a heat exchanger. enhance After the stamping machines 13 and 14 form such grooves on the band-shaped metal plate 2, they send the grooved portions to a forming machine 15 and a welding machine 16 shown in FIG.
 成形機15と溶接機16の詳細な構成は後述するが、それらの機能を簡単に説明すると、成形機15は、帯状金属板2を帯の幅方向に管状、例えば円管の形状に湾曲させて、帯状金属板2の幅方向の両端、すなわち、+Y端と-Y端とを合わせた形状の管状体を成形する。具体的には、成形機15は、後述するブレークダウンロールとフィンパスロールとを備える。そして、成形機15は、これらロールにより、帯状金属板2の+X端側に、+Y端と-Y端が合わせられた管状体を成形する。 The detailed configuration of the forming machine 15 and the welding machine 16 will be described later, but to briefly explain their functions, the forming machine 15 bends the band-shaped metal plate 2 in the width direction of the band into a tubular shape, for example, a circular tube shape. Then, a tubular body having a shape that combines both ends of the band-shaped metal plate 2 in the width direction, that is, the +Y end and the -Y end, is formed. Specifically, the molding machine 15 includes a breakdown roll and a fin pass roll, which will be described later. Then, the forming machine 15 uses these rolls to form a tubular body on the +X end side of the band-shaped metal plate 2, with the +Y end and the -Y end aligned.
 一方、溶接機16は、上述した管状体の合わせ目を溶接する。溶接機16は、後述する電子ビーム溶接機を備え、その電子ビーム溶接機により、管状体の合わせ目を溶接して、帯状金属板2の+X端側に溶接管部分を作製する。そして、溶接機16は、その帯状金属板2の溶接管部分を抽伸機17へ送る。 On the other hand, the welding machine 16 welds the seam of the tubular body described above. The welding machine 16 includes an electron beam welding machine to be described later, and uses the electron beam welding machine to weld the seam of the tubular body to produce a welded pipe portion on the +X end side of the band-shaped metal plate 2. Then, the welding machine 16 sends the welded pipe portion of the band-shaped metal plate 2 to the drawing machine 17.
 抽伸機17は、溶接機16により作製された溶接管部分の外径と内径のサイズを調整する。抽伸機17は、図示しないが、溶接機16により作製された溶接管の外径より小さく、かつ目標とする外径と同径の貫通孔が設けられたダイスを備える。そして、抽伸機17は、そのダイスに帯状金属板2の溶接管部分を通してダイスからその溶接管部分を引き抜く。これにより、抽伸機17は、帯状金属板2の溶接管部分をダイスの貫通孔の径と同じ外径に加工する。抽伸機17は、帯状金属板2の加工した溶接管部分を、図2に示す切断機18へ送る。 The drawing machine 17 adjusts the size of the outer diameter and inner diameter of the welded pipe portion produced by the welding machine 16. Although not shown, the drawing machine 17 includes a die provided with a through hole that is smaller in outer diameter than the welded pipe produced by the welding machine 16 and has the same diameter as the target outer diameter. Then, the drawing machine 17 passes the welded pipe portion of the strip metal plate 2 through the die and pulls out the welded pipe portion from the die. Thereby, the drawing machine 17 processes the welded pipe portion of the strip metal plate 2 to have the same outer diameter as the diameter of the through hole of the die. The drawing machine 17 sends the processed welded pipe portion of the band-shaped metal plate 2 to the cutting machine 18 shown in FIG.
 切断機18は、図2における正面から背面の方向、すなわち、Y方向へ移動可能なカッター181を備える。そして、切断機18は、そのカッター181を移動させることにより、所望の長さで、帯状金属板2の、抽伸機17により加工された溶接管部分を切断する。これにより、切断機18は、所望の長さの溶接管を作製する。そして、切断機18は、所望の長さにした溶接管をリコイラ19へ送る。 The cutting machine 18 includes a cutter 181 that is movable from the front to the back in FIG. 2, that is, in the Y direction. Then, the cutting machine 18 moves the cutter 181 to cut the welded pipe portion of the band-shaped metal plate 2 processed by the drawing machine 17 to a desired length. Thereby, the cutting machine 18 produces a welded pipe of a desired length. Then, the cutting machine 18 sends the welded pipe made to the desired length to the recoiler 19.
 リコイラ19は、円筒状の巻き取り部191を有し、切断機18が所望の長さに切断した溶接管を巻き取り部191に巻き取って再度コイル状にする。これにより、リコイラ19は、作製された溶接管を外部装置へ供給可能な状態にする。 The recoiler 19 has a cylindrical winding section 191, and the welded tube cut to a desired length by the cutting machine 18 is wound up into the winding section 191 and re-coiled. Thereby, the recoiler 19 puts the produced welded pipe into a state where it can be supplied to an external device.
 なお、アンコイラ10に装着されるコイル状の帯状金属板2は、例えば、圧延された銅および銅合金の板である。その場合、調質は、JIS H3100に規格されたO材、1/2H材または1/4H材であるとよい。また、帯状金属板2の幅は、抽伸機17で縮径される前の溶接管の外径に応じた大きさであるとよい。帯状金属板2の幅は、例えば、抽伸機17で縮径される前の溶接管の外径が7mmである場合、その外径から求められる円周に溶接代0.5mmを加えた22.5mmである。帯状金属板2の厚みは、刻印加工機14で0.05mm薄くなるものと仮定し、抽伸機17で縮径される前の溶接管の厚みよりも0.05mmだけ厚いとよい。 Note that the coiled band-shaped metal plate 2 mounted on the uncoiler 10 is, for example, a plate of rolled copper or copper alloy. In that case, the heat treatment is preferably O material, 1/2H material, or 1/4H material compliant with JIS H3100. Further, the width of the band-shaped metal plate 2 is preferably a size corresponding to the outer diameter of the welded pipe before being reduced in diameter by the drawing machine 17. For example, if the outer diameter of the welded pipe before being reduced by the drawing machine 17 is 7 mm, the width of the band-shaped metal plate 2 is determined by adding a welding margin of 0.5 mm to the circumference determined from the outer diameter. It is 5mm. Assuming that the thickness of the band-shaped metal plate 2 is reduced by 0.05 mm by the stamping machine 14, it is preferable that the thickness of the band-shaped metal plate 2 is 0.05 mm thicker than the thickness of the welded pipe before being reduced in diameter by the drawing machine 17.
 このように、溶接管の製造装置1では、アンコイラ10がコイル状に巻き取られた帯状金属板2を引き出し、刻印加工機13、14が帯状金属板2に溝を形成する。さらに、成形機15が、その帯状金属板2をY方向に管状に湾曲させ、帯状金属板2の+Y端と-Y端とを合わせる。そして、溶接機16が帯状金属板2の+Y端と-Y端が合わせられて形成された合わせ目を溶接して、溶接管を作製する。 In this manner, in the welded pipe manufacturing apparatus 1, the uncoiler 10 pulls out the band-shaped metal plate 2 wound into a coil, and the stamping machines 13 and 14 form grooves in the band-shaped metal plate 2. Further, the forming machine 15 bends the band-shaped metal plate 2 into a tubular shape in the Y direction, and aligns the +Y end and the -Y end of the band-shaped metal plate 2. Then, the welding machine 16 welds the seam formed by matching the +Y end and the -Y end of the band-shaped metal plate 2 to produce a welded pipe.
 このとき、溶接機16として一般的な溶接である高周波誘導加熱溶接または、TIG(Tungsten Insert Gas)溶接の装置が用いられ、その装置で溶接するときの雰囲気中に酸素が多く含まれていると、形成される溶接部が酸化してしまう。その場合、製造される溶接管の強度が低下してしまう。 At this time, a general welding device such as high frequency induction heating welding or TIG (Tungsten insert gas) welding is used as the welding machine 16, and the atmosphere when welding with that device contains a lot of oxygen. , the weld that is formed will be oxidized. In that case, the strength of the manufactured welded pipe will decrease.
 一方、溶接部の酸化を抑制するため、高周波誘導加熱溶接または、TIG溶接の装置にノズルが設けられ、そのノズルから、アルゴンガス、ヘリウムガス等の不活性ガスシールドガスが供給されることがある。しかし、この場合、不活性ガスが特殊なガスであるため、その不活性ガスの準備と不活性ガスを用いた作業が容易でない。また、ガス供給設備を設ける結果、装置構造が複雑になり、その装置設定が煩雑である。 On the other hand, in order to suppress oxidation of the welded part, a nozzle is installed in the high-frequency induction welding or TIG welding equipment, and an inert gas shielding gas such as argon gas or helium gas is sometimes supplied from the nozzle. . However, in this case, since the inert gas is a special gas, preparation of the inert gas and work using the inert gas are not easy. Further, as a result of providing gas supply equipment, the device structure becomes complicated and the device settings are complicated.
 そこで、溶接管の製造装置1では、溶接部の酸化を抑制するため、成形機15と溶接機16が真空室を備え、その真空室内で成形と溶接が行われる。次に、図4、図5A-図5Cおよび図6A-図6Cを参照して、成形機15と溶接機16の構成について説明する。 Therefore, in the welded pipe manufacturing apparatus 1, in order to suppress oxidation of the welded portion, the forming machine 15 and the welding machine 16 are provided with a vacuum chamber, and forming and welding are performed within the vacuum chamber. Next, the configurations of the forming machine 15 and the welding machine 16 will be described with reference to FIGS. 4, 5A to 5C, and 6A to 6C.
 図4は、溶接管の製造装置1が備える成形機15と溶接機16の断面図である。図5A-図5Cは、成形機15が有するブレークダウンロール30-35とブレークダウンロール30-35により成形される帯状金属板2の断面図である。図6Aおよび図6Bは、成形機15が有するフィンパスロール36-39とフィンパスロール36-39により成形される帯状金属板2の断面図である。図6Cは、成形機15により最終的に成形される管状体3の断面図である。 FIG. 4 is a sectional view of a forming machine 15 and a welding machine 16 included in the welded pipe manufacturing apparatus 1. 5A to 5C are sectional views of the breakdown rolls 30-35 of the forming machine 15 and the belt-shaped metal plate 2 formed by the breakdown rolls 30-35. 6A and 6B are cross-sectional views of the fin pass rolls 36-39 of the forming machine 15 and the band-shaped metal plate 2 formed by the fin pass rolls 36-39. FIG. 6C is a cross-sectional view of the tubular body 3 finally molded by the molding machine 15.
 なお、図5A-図5C、図6Aおよび図6Bに図示されていないが、帯状金属板2の、刻印加工機13、14によって溝が形成された板面は、上、すなわち、+Z側に向けられている。 Although not shown in FIGS. 5A to 5C, 6A, and 6B, the plate surface of the band-shaped metal plate 2 on which the grooves are formed by the stamping machines 13 and 14 is directed upward, that is, toward the +Z side. It is being
 図4に示すように、溶接管の製造装置1は、真空室20-22と、真空室21内に設けられたブレークダウンロール30-35およびフィンパスロール36-39と、真空室21の上に設けられた真空室40と、真空室40内に設けられた電子ビーム溶接機41とを備える。 As shown in FIG. 4, the welded pipe manufacturing apparatus 1 includes vacuum chambers 20-22, breakdown rolls 30-35 and fin pass rolls 36-39 provided in the vacuum chamber 21, and the upper part of the vacuum chamber 21. The vacuum chamber 40 is provided with a vacuum chamber 40, and an electron beam welder 41 is provided within the vacuum chamber 40.
 なお、真空室20-22、ブレークダウンロール30-35およびフィンパスロール36-39は、成形機15を構成する部材である。一方、真空室40および電子ビーム溶接機41は、溶接機16を構成する部材である。 Note that the vacuum chamber 20-22, breakdown rolls 30-35, and fin pass rolls 36-39 are members that constitute the molding machine 15. On the other hand, the vacuum chamber 40 and the electron beam welder 41 are members that constitute the welder 16.
 真空室20-22は、電子ビーム溶接が可能な真空度を維持するために設けられた部屋である。詳細には、真空室20-22は、溶接管の製造装置1の上流側から、すなわち、-X側から真空室20、21、22の順序で配列されている。そして、真空室20-22は、X方向に互いに隣り合っている。さらに、X方向の両側にある真空室20と22には、加工対象の帯状金属板2と帯状金属板2の加工後の溶接管部分を搬送するための搬送ロール23と24が設けられている。また、X方向中央にある真空室21には、加工対象の帯状金属板2から溶接対象の管状体3を成形するブレークダウンロール30-35およびフィンパスロール36-39が収容されている。また、真空室21には、電子ビーム溶接機41を収容する真空室40がつなげられている。これらにより、真空室21の内部では、溶接管の製造工程である成形、溶接が可能である。 The vacuum chambers 20-22 are rooms provided to maintain a vacuum level that allows electron beam welding. Specifically, the vacuum chambers 20-22 are arranged in the order of vacuum chambers 20, 21, and 22 from the upstream side of the welded tube manufacturing apparatus 1, that is, from the −X side. The vacuum chambers 20-22 are adjacent to each other in the X direction. Further, the vacuum chambers 20 and 22 on both sides in the X direction are provided with transport rolls 23 and 24 for transporting the strip metal plate 2 to be processed and the welded pipe portion of the strip metal plate 2 after processing. . Further, the vacuum chamber 21 located at the center in the X direction accommodates a breakdown roll 30-35 and a fin pass roll 36-39 for forming the tubular body 3 to be welded from the strip metal plate 2 to be processed. Further, a vacuum chamber 40 that accommodates an electron beam welding machine 41 is connected to the vacuum chamber 21. As a result, inside the vacuum chamber 21, forming and welding, which are the manufacturing steps of a welded tube, are possible.
 なお、真空室21は、加工対象の帯状金属板2の成形と溶接を行うため、真空室20、22よりも容積が大きいとよい。 Note that the vacuum chamber 21 preferably has a larger volume than the vacuum chambers 20 and 22 in order to form and weld the strip metal plate 2 to be processed.
 真空室20-22では、上述したX方向中央にある真空室21で真空度を高めるため、図示しないが、真空室21が真空室20、22を真空引きする真空ポンプよりも高い到達真空度を実現する真空ポンプで真空引きされている。 In the vacuum chambers 20-22, in order to increase the degree of vacuum in the vacuum chamber 21 located at the center in the X direction, although not shown, the vacuum chamber 21 has a higher ultimate degree of vacuum than the vacuum pump that evacuates the vacuum chambers 20 and 22. It is evacuated using a vacuum pump.
 詳細には、真空室20-22それぞれには、図示しない排気口が形成され、それら排気口それぞれに図示しない真空ポンプが接続されている。それら図示しない真空ポンプのうち、真空室20、22の排気口に接続された真空ポンプは低真空用である。例えば、その低真空用の真空ポンプは、水流ポンプ、往復式、回転式、遠心式などの機械力によるポンプである。これに対して、真空室21の排気口に接続された真空ポンプは中真空用であり、例えば、メカニカルブースタ、ターボ分子ポンプである。真空室20-22では、このような真空ポンプが接続されることにより、真空度の高い真空室21がX方向両側から真空度の低い真空室20、22によって挟み込まれた構造が実現されている。例えば、2.0~6.0Paの真空室21が50~800Paの真空室20、22によって挟み込まれた構造が実現される。 Specifically, each of the vacuum chambers 20-22 has an exhaust port (not shown) formed therein, and a vacuum pump (not shown) is connected to each of the exhaust ports. Among these vacuum pumps (not shown), the vacuum pumps connected to the exhaust ports of the vacuum chambers 20 and 22 are for low vacuum. For example, the vacuum pump for low vacuum is a mechanical pump such as a water jet pump, reciprocating type, rotary type, or centrifugal type. On the other hand, the vacuum pump connected to the exhaust port of the vacuum chamber 21 is for medium vacuum, such as a mechanical booster or a turbo molecular pump. By connecting such a vacuum pump to the vacuum chambers 20-22, a structure is realized in which the vacuum chamber 21 with a high degree of vacuum is sandwiched between the vacuum chambers 20 and 22 with a low degree of vacuum from both sides in the X direction. . For example, a structure is realized in which a vacuum chamber 21 of 2.0 to 6.0 Pa is sandwiched between vacuum chambers 20 and 22 of 50 to 800 Pa.
 なお、中真空とは、日本産業規格で定められた真空の区分の一つに該当する真空の程度のことであり、真空度が0.1~100Paであることをいう。低真空とは、同規格で定められた真空の区分のもう一つに該当する真空の程度のことであり、真空度が100000~100Paであることをいう。そして、本明細書でいう真空中とは、低真空または低真空よりも真空度が高い真空の中のことをいう。また、真空室20と22が同じ低真空であるが、ここでいう同じ真空度とは、上記の真空の区分で同じ区分であることをいう。 Note that medium vacuum refers to a degree of vacuum that falls under one of the vacuum categories defined by Japanese Industrial Standards, and refers to a degree of vacuum of 0.1 to 100 Pa. Low vacuum refers to a degree of vacuum that falls under another category of vacuum defined by the same standard, and refers to a degree of vacuum of 100,000 to 100 Pa. In this specification, the term "in a vacuum" refers to a low vacuum or a vacuum with a higher degree of vacuum than a low vacuum. Furthermore, although the vacuum chambers 20 and 22 have the same low vacuum, the same degree of vacuum here means that they are in the same vacuum category as described above.
 さらに、真空室20には、加工対象の帯状金属板2を供給、排出するため、図4に示すように、入口201および出口202が設けられている。それら入口201および出口202のYZ断面形状は、帯状金属板2のYZ断面形状よりも遊びを有する程度に大きい。そして、入口201および出口202には帯状金属板2が通されている。これらにより、入口201および出口202の内壁と帯状金属板2との間に帯状金属板2を摺動可能にする程度に微小な隙間205、206が形成されている。また、外部から真空室20への空気の流れ込みが小さく、その結果、真空室20の真空度の低下が抑制されている。 Further, the vacuum chamber 20 is provided with an inlet 201 and an outlet 202, as shown in FIG. 4, in order to supply and discharge the strip metal plate 2 to be processed. The YZ cross-sectional shapes of the inlet 201 and the outlet 202 are larger than the YZ cross-sectional shape of the band-shaped metal plate 2 to the extent that they have play. A band-shaped metal plate 2 is passed through the inlet 201 and the outlet 202. As a result, gaps 205 and 206 are formed between the inner walls of the inlet 201 and the outlet 202 and the strip metal plate 2, which are small enough to allow the strip metal plate 2 to slide. Further, the flow of air from the outside into the vacuum chamber 20 is small, and as a result, a decrease in the degree of vacuum in the vacuum chamber 20 is suppressed.
 同様に、真空室21には、加工対象の帯状金属板2を供給するため、真空室20の出口202と同じ形状、同じ大きさの入口211が設けられている。また、その入口211は、その出口202とX方向に隣り合い連続している。その結果、入口211は、真空室20と連通している。さらに、入口211には帯状金属板2が通されている。これらにより、入口211の内壁と帯状金属板2との間に帯状金属板2を摺動可能にする程度に微小な隙間215が形成されると共に、真空室21の真空度の低下が抑制されている。特に、真空室21の真空度は、入口211が-X方向にある低真空の真空室20と連通しているため、入口211が外部空間に直接つながる場合と比較して低下しにくい。 Similarly, the vacuum chamber 21 is provided with an inlet 211 having the same shape and size as the outlet 202 of the vacuum chamber 20 in order to supply the strip metal plate 2 to be processed. Further, the inlet 211 is adjacent to and continuous with the outlet 202 in the X direction. As a result, inlet 211 is in communication with vacuum chamber 20 . Further, a band-shaped metal plate 2 is passed through the entrance 211. As a result, a minute gap 215 is formed between the inner wall of the inlet 211 and the strip metal plate 2 to the extent that the strip metal plate 2 can be slid, and a decrease in the degree of vacuum in the vacuum chamber 21 is suppressed. There is. In particular, since the inlet 211 communicates with the low vacuum vacuum chamber 20 in the -X direction, the degree of vacuum in the vacuum chamber 21 is less likely to decrease compared to the case where the inlet 211 is directly connected to the external space.
 また、真空室21には、帯状金属板2の、真空室21内で成形され、かつ溶接された溶接管部分4を排出するため、YZ断面形状が溶接管部分4のYZ断面形状よりも遊びを有する程度に大きい出口212が設けられている。そして、出口212には、帯状金属板2の一端側に成形された、すなわち+X端側に成形された溶接管部分4が通されている。これらにより、出口212の内壁と溶接管部分4との間に溶接管部分4が摺動可能な程度に微小な隙間216が形成されると共に、真空室21の真空度の低下が抑制されている。また、出口212は、後述する入口221を介して低真空の真空室22と連通している。これにより、真空室21の真空度が出口212によって急激に低下してしまうことが抑制されている。 In addition, since the welded pipe portion 4 of the band-shaped metal plate 2 formed and welded in the vacuum chamber 21 is discharged into the vacuum chamber 21, the YZ cross-sectional shape has more play than the YZ cross-sectional shape of the welded pipe portion 4. An outlet 212 is provided which is large enough to have a diameter. A welded pipe portion 4 formed on one end side of the band-shaped metal plate 2, that is, formed on the +X end side, is passed through the outlet 212. As a result, a minute gap 216 is formed between the inner wall of the outlet 212 and the welded pipe part 4 to the extent that the welded pipe part 4 can slide, and a decrease in the degree of vacuum in the vacuum chamber 21 is suppressed. . Further, the outlet 212 communicates with a low vacuum chamber 22 via an inlet 221, which will be described later. This prevents the degree of vacuum in the vacuum chamber 21 from rapidly decreasing due to the outlet 212.
 一方、真空室22には、溶接管部分4を通過させるため、真空室21の出口212と同じ形状、同じ大きさの入口221および出口222が設けられている。そして、入口221および出口222には、真空室21の出口212を通過した溶接管部分4が通されている。これらにより、入口221および出口222の内壁と溶接管部分4との間に溶接管部分4を摺動可能にする程度に微小な隙間225、226が形成されている。また、外部から真空室22への空気の流れ込みが小さく、真空室22の真空度の低下が抑制されている。さらに、入口221は、真空室21の出口212とX方向に隣り合い連続している。その結果、隣の真空室21の真空度が外部空間に直接つながる場合と比較して低下しにくい。 On the other hand, the vacuum chamber 22 is provided with an inlet 221 and an outlet 222 having the same shape and size as the outlet 212 of the vacuum chamber 21 in order to allow the welded pipe portion 4 to pass therethrough. The welded pipe portion 4 that has passed through the outlet 212 of the vacuum chamber 21 is passed through the inlet 221 and the outlet 222 . Due to these, minute gaps 225 and 226 are formed between the inner walls of the inlet 221 and the outlet 222 and the welded pipe portion 4 to the extent that the welded pipe portion 4 can be slid. Further, the flow of air from the outside into the vacuum chamber 22 is small, and a decrease in the degree of vacuum in the vacuum chamber 22 is suppressed. Further, the inlet 221 is adjacent to and continuous with the outlet 212 of the vacuum chamber 21 in the X direction. As a result, the degree of vacuum in the adjacent vacuum chamber 21 is less likely to decrease compared to the case where it is directly connected to the external space.
 なお、溶接管部分4は、管中央に空間を有する。このため、溶接管部分4の内部を通って、真空室21と22に装置外部の空気が流れ込む可能性がある。そこで、溶接管の製造装置1を動作させて溶接管を製造する前の、加工対象の帯状金属板2を真空室20-22に通す特別なセッティングを行う。その特別なセッティングでは、帯状金属板2の+X端側に溶接管部分4を作製しておくと共に、その溶接管部分4の+X端を封止しておく。例えば、真空室21内の、管状体3に後述する電子ビームがあてられる箇所よりも+X側領域に、または、真空室22内に、管の端部をつぶす装置が設けられ、その装置が溶接管部分4の+X端をつぶす。これにより、溶接管部分4の内部空間を介して、真空室21と22の真空度が低下することが防がれている。なお、溶接管部分4のつぶされた+X端は、溶接管として使用できない。このため、+X端は、上述した切断機18によって取り除かれるとよい。 Note that the welded pipe portion 4 has a space at the center of the pipe. Therefore, air from outside the apparatus may flow into the vacuum chambers 21 and 22 through the inside of the welded tube section 4. Therefore, before operating the welded pipe manufacturing apparatus 1 to manufacture welded pipes, special settings are made to pass the strip metal plate 2 to be processed through the vacuum chambers 20-22. In this special setting, a welded pipe portion 4 is prepared on the +X end side of the band-shaped metal plate 2, and the +X end of the welded pipe portion 4 is sealed. For example, a device for crushing the end of the tube is provided in the vacuum chamber 21 in an area on the +X side of the area where the electron beam is applied to the tubular body 3, which will be described later, or in the vacuum chamber 22, and the device is used for welding. Crush the +X end of tube section 4. This prevents the degree of vacuum in the vacuum chambers 21 and 22 from decreasing through the internal space of the welded pipe portion 4. Note that the crushed +X end of the welded pipe portion 4 cannot be used as a welded pipe. For this reason, the +X end is preferably removed by the cutting machine 18 described above.
 真空室20-22には、このような入口201、211、221と出口202、212、222が設けられることにより、真空度が保たれている。また、X方向中央にある真空室21が真空室21のX方向両側にある真空室20、22よりも真空度が高く、真空室21では電子ビーム溶接が可能な真空度に保たれている。そして、その真空室21で帯状金属板2を溶接可能な形状に成形するため、真空室21には、上述したように、ブレークダウンロール30-35およびフィンパスロール36-39が設けられている。 The degree of vacuum is maintained in the vacuum chamber 20-22 by providing such inlets 201, 211, 221 and outlets 202, 212, 222. Further, the vacuum chamber 21 located at the center in the X direction has a higher degree of vacuum than the vacuum chambers 20 and 22 located on both sides of the vacuum chamber 21 in the X direction, and the vacuum chamber 21 is maintained at a degree of vacuum that allows electron beam welding. In order to form the strip metal plate 2 into a weldable shape in the vacuum chamber 21, the vacuum chamber 21 is provided with breakdown rolls 30-35 and fin pass rolls 36-39, as described above. .
 ブレークダウンロール30-35は、図5A-図5Cに示すように、上または下に配置され、それらの間に帯状金属板2が通されることにより、帯状金属板2を断面視円弧状に粗成形する。 As shown in FIGS. 5A to 5C, the breakdown rolls 30-35 are arranged above or below, and the strip metal plate 2 is passed between them, thereby making the strip metal plate 2 arc-shaped in cross-sectional view. Roughly shape.
 詳細には、ブレークダウンロール30-35は、図4に示す上流側、すなわち、-X側からブレークダウンロール30と31、32と33、34と35の順序で配列されている。そして、図5A-図5Cに示すように、下に突出する、すなわち-Z側に突出する凸部301を有するブレークダウンロール30と-Z側に凹んだ凹部311を有するブレークダウンロール31がZ方向に配列され、対を形成している。また、-Z側に突出する凸部321を有するブレークダウンロール32と-Z側に凹んだ凹部331を有するブレークダウンロール33がZ方向に配列され、対を形成している。さらに、-Z側に突出する凸部341を有するブレークダウンロール34と-Z側に凹んだ凹部351を有するブレークダウンロール35がZ方向に配列され、対を形成している。 Specifically, the breakdown rolls 30-35 are arranged in the order of breakdown rolls 30 and 31, 32 and 33, and 34 and 35 from the upstream side, that is, from the −X side as shown in FIG. As shown in FIGS. 5A to 5C, the breakdown roll 30 having a convex portion 301 that protrudes downward, that is, protruding toward the −Z side, and the breakdown roll 31 having a concave portion 311 recessed toward the −Z side are They are arranged in the direction and form pairs. Further, a breakdown roll 32 having a protrusion 321 protruding toward the -Z side and a breakdown roll 33 having a recess 331 concave toward the -Z side are arranged in the Z direction and form a pair. Further, a breakdown roll 34 having a convex portion 341 protruding toward the −Z side and a breakdown roll 35 having a concave portion 351 concave toward the −Z side are arranged in the Z direction to form a pair.
 さらに、ブレークダウンロール30、32、34では、凸部301、321、341のZ方向の高さが凸部301、321、341の順序、換言すると、下流側、すなわち+X側に向かって配列された順序で高くなっている。一方、凸部301、321、341のY方向の幅は、同順序で狭くなっている。そして、凸部301、321、341の先端のYZ断面視形状は、同順序で、より大きく丸められている。 Further, in the breakdown rolls 30, 32, and 34, the heights of the convex portions 301, 321, and 341 in the Z direction are arranged in the order of the convex portions 301, 321, and 341, in other words, toward the downstream side, that is, toward the +X side. They are higher in order. On the other hand, the widths of the convex portions 301, 321, and 341 in the Y direction become narrower in the same order. The YZ cross-sectional shapes of the tips of the convex portions 301, 321, and 341 are rounded more in the same order.
 これに対して、ブレークダウンロール31、33、35では、凹部311、331、351のZ方向の深さは、ブレークダウンロール31、33、35が+X側に向かって配列された順序で深くなっている。一方、凹部311、331、351のY方向の幅は、同順序で狭くなっている。そして、凹部311、331、351のYZ断面視形状は、同順序でより湾曲して円弧形状に近づいている。 On the other hand, in the breakdown rolls 31, 33, 35, the depth of the recesses 311, 331, 351 in the Z direction becomes deeper in the order in which the breakdown rolls 31, 33, 35 are arranged toward the +X side. ing. On the other hand, the widths of the recesses 311, 331, and 351 in the Y direction become narrower in the same order. The YZ cross-sectional shapes of the recesses 311, 331, and 351 are more curved in the same order, approaching an arc shape.
 ブレークダウンロール30-35は、このような形状を有することにより、帯状金属板2を+X側に向かうに従い、より湾曲させる。これにより、ブレークダウンロール30-35は、図5A-図5Cに示すYZ断面視円弧の形状に粗成形する。なお、YZ断面視円弧の内側には、帯状金属板2の溝が形成された板面が向けられている。 By having such a shape, the breakdown rolls 30-35 curve the band-shaped metal plate 2 more toward the +X side. As a result, the breakdown rolls 30-35 are roughly formed into the shape of an arc in the YZ cross-sectional view shown in FIGS. 5A to 5C. Note that the plate surface of the band-shaped metal plate 2 on which the grooves are formed faces inside the arc in the YZ cross-sectional view.
 一方、フィンパスロール36-39は、図6Aおよび図6Bに示すように、ブレークダウンロール30-35の場合と同様にZ方向に配列され、対を形成するが、ブレークダウンロール30-35の場合と異なり、それらの対のロールの間に帯状金属板2が通されることにより、帯状金属板2をYZ断面視円形状に仕上げ成形する。 On the other hand, as shown in FIGS. 6A and 6B, the fin pass rolls 36-39 are arranged in the Z direction in the same way as the breakdown rolls 30-35 and form a pair, but Unlike the case, the band-shaped metal plate 2 is passed between the pair of rolls, thereby finishing the band-shaped metal plate 2 into a circular shape in YZ cross-sectional view.
 詳細には、フィンパスロール36-39は、図4に示すように、-X側からフィンパスロール36と37、38と39の順序で配列されている。そして、図6Aおよび図6Bに示すように、+Z側へ断面視円弧状に凹んだ凹みに断面視三角状に-Z側へ突出するフィン部361が形成されたフィンパスロール36と-Z側へ断面視円弧状に凹んだ凹みが形成されたフィンパスロール37がZ方向に配列され、対を形成している。また、+Z側へ断面視円弧状に凹んだ凹みに-Z側へ断面視三角状に突出するフィン部381が形成されたフィンパスロール38と-Z側へ断面視円弧状に凹んだ凹みが形成されたフィンパスロール39がZ方向に配列され、対を形成している。 In detail, the fin pass rolls 36-39 are arranged in the order of fin pass rolls 36 and 37, and 38 and 39 from the -X side, as shown in FIG. As shown in FIGS. 6A and 6B, the fin pass roll 36 has a fin portion 361 formed in a recess that is arcuate in cross section and protrudes triangularly in cross section toward −Z side toward +Z side, and −Z side. Fin pass rolls 37 each having a recess formed in an arcuate shape when viewed in cross section are arranged in the Z direction and form a pair. In addition, a fin pass roll 38 in which a fin portion 381 protruding triangularly in cross-section toward the -Z side is formed in a recess that is recessed in an arc shape in cross section toward the +Z side, and a recess that is recessed in an arc shape in cross section toward the −Z side is formed. The formed fin path rolls 39 are arranged in the Z direction and form pairs.
 さらに、フィンパスロール36、38では、フィン部361、381のY方向の幅とZ方向の高さが、フィン部361、381の順序、換言すると、下流側、すなわち+X側に向かって配列された順序で小さくなっている。そして、フィンパスロール36、38の凹みとフィンパスロール37、39の凹みは、Z方向に対向して断面視円形状の空間を形成している。 Furthermore, in the fin path rolls 36 and 38, the width in the Y direction and the height in the Z direction of the fin parts 361 and 381 are arranged in the order of the fin parts 361 and 381, in other words, toward the downstream side, that is, toward the +X side. They are decreasing in order of size. The recesses of the fin pass rolls 36 and 38 and the recesses of the fin pass rolls 37 and 39 face each other in the Z direction and form a circular space in cross-section.
 フィンパスロール36-39は、このような形状を有することにより、帯状金属板2を、+X側に向かうに従い、帯状金属板2の+Y端と-Y端が近づくYZ断面視円形の形状に仕上げ成形する。そして、フィンパスロール36-39は、最終的に、図6Cの点線で示す帯状金属板2の+Y端と-Y端がV字状に向き合った形状ではなく、すなわち、帯状金属板2の両端がV字状に向き合った形状ではなく、帯状金属板2の両端が図6Cの実線で示す状態に向かい合わされた形状の合わせ目5を備える管状体3を成形する。なお、成型された管状体3では、帯状金属板2の溝が形成された板面が内側に向けられた結果、内壁に溝が設けられている。 By having such a shape, the fin pass rolls 36-39 finish the band-shaped metal plate 2 into a circular shape in a YZ cross-sectional view, with the +Y end and -Y end of the band-shaped metal plate 2 approaching toward the +X side. Shape. Finally, the fin pass rolls 36-39 do not have a shape in which the +Y ends and -Y ends of the strip metal plate 2 face each other in a V-shape, as indicated by the dotted line in FIG. A tubular body 3 is formed having a seam 5 in a shape where both ends of the band-shaped metal plate 2 face each other as shown by the solid line in FIG. 6C, instead of facing each other in a V-shape. Note that in the molded tubular body 3, the grooved surface of the band-shaped metal plate 2 is oriented inward, so that the inner wall is provided with grooves.
 図4に戻って、真空室21の、フィンパスロール38、39の上には、フィンパスロール36-39によって成形された管状体3の合わせ目5を溶接するため、電子ビーム溶接機41を収容する真空室40が設けられている。 Returning to FIG. 4, an electron beam welding machine 41 is installed on the fin pass rolls 38 and 39 in the vacuum chamber 21 in order to weld the joint 5 of the tubular body 3 formed by the fin pass rolls 36-39. A vacuum chamber 40 is provided.
 真空室40の下面部には、真空室21の上面部にある貫通孔25と連続する連通孔42が形成されている。そして、真空室40の内部の、連通孔42の上側には、電子ビーム溶接機41が配置されている。 A communication hole 42 is formed in the lower surface of the vacuum chamber 40 and is continuous with the through hole 25 in the upper surface of the vacuum chamber 21 . An electron beam welder 41 is disposed inside the vacuum chamber 40 and above the communication hole 42 .
 電子ビーム溶接機41は、図示しないが、電圧が印加されて電子ビームを発生させる陰極部と、電子ビームを加速させる陽極部と、電子ビームを収束または偏向させる電子レンズ部とを備える。そして、電子ビーム溶接機41は、陰極部が発生させた電子ビームを、上述した連通孔42および貫通孔25に向けて放出し、その電子ビームを真空室21の管状体3の合わせ目5に当てる。これにより、電子ビーム溶接機41は、管状体3の合わせ目5を溶接して溶接管部分4を作製する。 Although not shown, the electron beam welding machine 41 includes a cathode part to which a voltage is applied to generate an electron beam, an anode part to accelerate the electron beam, and an electron lens part to converge or deflect the electron beam. Then, the electron beam welding machine 41 emits an electron beam generated by the cathode section toward the communication hole 42 and the through hole 25 described above, and directs the electron beam to the seam 5 of the tubular body 3 of the vacuum chamber 21. guess. Thereby, the electron beam welding machine 41 welds the seam 5 of the tubular body 3 to produce the welded pipe portion 4.
 このとき、真空室21の内部は、真空状態であるため、ほとんど酸素が存在しない。その結果、溶接管の製造装置1では、電子ビームが当てられた管状体3の合わせ目5に形成される溶接部が酸化しにくい。これにより、製造される溶接管の強度が高い。 At this time, since the inside of the vacuum chamber 21 is in a vacuum state, almost no oxygen exists. As a result, in the welded tube manufacturing apparatus 1, the welded portion formed at the seam 5 of the tubular body 3 to which the electron beam is applied is unlikely to oxidize. As a result, the strength of the welded pipe manufactured is high.
 なお、上述した帯状金属板2の両端、換言すると帯状金属板2の+Y端と-Y端は、本開示でいうところの帯状金属板2の幅方向の第一端面と第二端面の一例である。また、帯状金属板2の+X側で成形され、または溶接される部分は、本開示でいうところの一端側にある第一部分の一例である。 Note that both ends of the band-shaped metal plate 2 described above, in other words, the +Y end and the -Y end of the band-shaped metal plate 2 are examples of the first end face and the second end face in the width direction of the band-shaped metal plate 2 in the present disclosure. be. Further, the portion formed or welded on the +X side of the band-shaped metal plate 2 is an example of the first portion on one end side in the present disclosure.
 また、上述した真空室21、真空室21の入口211および出口212は、本開示でいうところの第一真空室、第一入口および第一出口の一例である。また、真空室20、真空室20の入口201および出口202は、本開示でいうところの第二真空室、第二入口および第二出口の一例である。真空室22、真空室22の入口221および出口222は、本開示でいうところの第三真空室、第三入口および第三出口の一例である。さらに、隙間205、206、215は、本開示でいうところの第一隙間の一例である。隙間216、225、226は、本開示でいうところの第二隙間の一例である。 Furthermore, the vacuum chamber 21 and the inlet 211 and outlet 212 of the vacuum chamber 21 described above are examples of the first vacuum chamber, the first inlet, and the first outlet in the present disclosure. Further, the vacuum chamber 20 and the inlet 201 and outlet 202 of the vacuum chamber 20 are examples of a second vacuum chamber, a second inlet, and a second outlet as referred to in the present disclosure. The vacuum chamber 22 and the inlet 221 and outlet 222 of the vacuum chamber 22 are examples of a third vacuum chamber, a third inlet, and a third outlet as referred to in the present disclosure. Furthermore, the gaps 205, 206, and 215 are examples of first gaps referred to in the present disclosure. The gaps 216, 225, and 226 are examples of second gaps referred to in the present disclosure.
 上述した搬送ロール23,24は、本開示でいうところの送り機構の一例である。搬送ロール23,24が帯状金属板2を送ることは、本開示でいうところの帯状金属板を第一真空室に送り込む工程または、溶接管を第一真空室から送り出す工程の一例である。また、ブレークダウンロール30-35およびフィンパスロール36-39は、本開示でいうところの成形ロールの一例である。 The transport rolls 23 and 24 described above are an example of a feeding mechanism in the present disclosure. The conveyance rolls 23 and 24 feeding the strip metal plate 2 is an example of the process of feeding the strip metal plate into the first vacuum chamber or the process of feeding the welded tube from the first vacuum chamber as referred to in the present disclosure. Further, the breakdown rolls 30-35 and the fin pass rolls 36-39 are examples of forming rolls as referred to in the present disclosure.
 さらに、上述した刻印加工機13、14が帯状金属板2に溝を形成することは、本開示でいうところの溝を形成する工程の一例である。刻印加工機13、14が備える第一ロール、第二ロール、第三ロールおよび第四ロールは、本開示でいうところの溝形成ロールの一例である。また、上述したブレークダウンロール30-35およびフィンパスロール36-39による管状体3の成形は、本開示でいうところの管状体を成形する工程の一例である。また、電子ビーム溶接機41による管状体3の合わせ目5の溶接、すなわち溶接工程は、本開示でいうところの溶接管を作製する工程の一例である。 Furthermore, the formation of grooves on the band-shaped metal plate 2 by the above-mentioned stamping machines 13 and 14 is an example of the process of forming grooves in the present disclosure. The first roll, second roll, third roll, and fourth roll provided in the stamping machines 13 and 14 are examples of groove forming rolls as referred to in the present disclosure. Further, the forming of the tubular body 3 using the breakdown rolls 30-35 and the fin pass rolls 36-39 described above is an example of the process of forming a tubular body as referred to in the present disclosure. Further, the welding of the joint 5 of the tubular body 3 by the electron beam welder 41, that is, the welding process, is an example of the process of producing a welded pipe as referred to in the present disclosure.
 また、上述した電子ビーム溶接機41の各種条件は、製造対象の溶接管の大きさ、材質によるが、例えば、定格出力6kW、加速電圧は40kV、電子ビーム電流は5~150mA、陰極部はW棒状とするとよい。 Further, the various conditions of the electron beam welding machine 41 described above depend on the size and material of the welded tube to be manufactured, but for example, the rated output is 6 kW, the acceleration voltage is 40 kV, the electron beam current is 5 to 150 mA, and the cathode section is W. It is best to make it into a rod shape.
 以上のように、実施の形態に係る溶接管の製造装置1では、電子ビーム溶接機41が真空中で電子ビームを衝突させて溶接を行う。このため、製造装置1は、形成される溶接部の酸化を抑制でできる。その結果、溶接部の強度が高く、製造される溶接管の強度が高い。 As described above, in the welded pipe manufacturing apparatus 1 according to the embodiment, the electron beam welding machine 41 performs welding by colliding electron beams in a vacuum. Therefore, the manufacturing apparatus 1 can suppress oxidation of the welded portion to be formed. As a result, the strength of the welded part is high, and the strength of the welded pipe manufactured is high.
 また、溶接管の製造装置1では、電子ビーム溶接機41が真空中で溶接を行うため、不活性ガスを用いる必要がない。その結果、特殊なガスを用意する必要がないため、溶接管の製造の準備と作業が容易である。 Furthermore, in the welded pipe manufacturing apparatus 1, since the electron beam welder 41 performs welding in a vacuum, there is no need to use an inert gas. As a result, there is no need to prepare a special gas, so preparation and work for manufacturing welded pipes is easy.
 溶接管の製造装置1では、溶接が行われる真空室21の入口211の側に、真空室21よりも真空度が低い真空室20が隣接している。そして、加工対象である帯状金属板2の一端側の部分は、その真空室20を通った後、入口211から真空室21へ送り込まれる。このため、真空室21の真空度が低下しにくく、電子ビーム溶接が可能な真空度を保つことが容易である。 In the welded pipe manufacturing apparatus 1, a vacuum chamber 20 having a lower degree of vacuum than the vacuum chamber 21 is adjacent to the entrance 211 of the vacuum chamber 21 where welding is performed. Then, after passing through the vacuum chamber 20, the one end portion of the strip metal plate 2 to be processed is fed into the vacuum chamber 21 from the inlet 211. Therefore, the degree of vacuum in the vacuum chamber 21 is unlikely to decrease, and it is easy to maintain a degree of vacuum that allows electron beam welding.
 同様に、溶接管の製造装置1では、真空室21の出口212の側に、真空室21よりも真空度が低い真空室22が隣接している。そして、帯状金属板2の加工後の溶接管部分4が出口212から、真空室22を通った後、外部へ送り出される。このため、真空室21の真空度が低下しにくく、電子ビーム溶接が可能な真空度を保つことが容易である。 Similarly, in the welded tube manufacturing apparatus 1, a vacuum chamber 22 having a lower degree of vacuum than the vacuum chamber 21 is adjacent to the outlet 212 of the vacuum chamber 21. Then, the welded pipe portion 4 of the band-shaped metal plate 2 after processing is sent out from the outlet 212, after passing through the vacuum chamber 22. Therefore, the degree of vacuum in the vacuum chamber 21 is unlikely to decrease, and it is easy to maintain a degree of vacuum that allows electron beam welding.
 以上、本開示の実施の形態に係る溶接管の製造方法および溶接管の製造装置1について説明したが、溶接管の製造方法および溶接管の製造装置1は、これに限定されない。 Although the welded pipe manufacturing method and welded pipe manufacturing apparatus 1 according to the embodiment of the present disclosure have been described above, the welded pipe manufacturing method and welded pipe manufacturing apparatus 1 are not limited thereto.
(変形例1)
 実施の形態1では、真空室21の入口211と出口212に微小な隙間215と216が設けられるだけである。しかし、真空室21はこれに限定されない。真空室21の入口211と出口212にシールを設けてもよい。
(Modification 1)
In the first embodiment, only minute gaps 215 and 216 are provided between the inlet 211 and the outlet 212 of the vacuum chamber 21. However, the vacuum chamber 21 is not limited to this. Seals may be provided at the inlet 211 and outlet 212 of the vacuum chamber 21.
 図7は、溶接管の製造装置1が備える成形機と溶接機の変形例の断面図である。 FIG. 7 is a sectional view of a modification of the forming machine and welding machine included in the welded pipe manufacturing apparatus 1.
 図7に示すように、真空室21の入口211に内壁面に沿うシール50が設けられてもよい。また、真空室21の出口212に内壁面に沿うシール51が設けられてもよい。このような形態であれば、真空室21の気密性を高めて、真空室21の真空度を保ちやすいからである。また、その結果、溶接部の酸化をより抑制できるからである。 As shown in FIG. 7, a seal 50 may be provided at the entrance 211 of the vacuum chamber 21 along the inner wall surface. Further, a seal 51 may be provided at the outlet 212 of the vacuum chamber 21 along the inner wall surface. This is because with such a configuration, the airtightness of the vacuum chamber 21 can be improved and the degree of vacuum in the vacuum chamber 21 can be easily maintained. Moreover, as a result, oxidation of the welded portion can be further suppressed.
 この場合、図示しないが、シール50、51は、枠状またはOリング状であるとよい。そして、シール50、51は、帯状金属板2または溶接管部分4を真空室21に出し入れ可能とするため、低摩擦性の材料、例えば、フッ素樹脂のポリテトラフルオロエチレンで形成されるとよい。なお、シール50、51は、真空室20の入口201、出口202,真空室22の入口221、出口222にも、真空室21の場合と同様の配置で設置されてもよい。この場合、真空度が高い真空室21に真空室20、22よりも優先してシール50、51が設置されるとよい。 In this case, although not shown, the seals 50 and 51 are preferably frame-shaped or O-ring shaped. The seals 50 and 51 are preferably made of a low-friction material, such as polytetrafluoroethylene, which is a fluororesin, in order to allow the band-shaped metal plate 2 or the welded pipe portion 4 to be taken in and out of the vacuum chamber 21. Note that the seals 50 and 51 may be installed at the inlet 201 and outlet 202 of the vacuum chamber 20 and the inlet 221 and outlet 222 of the vacuum chamber 22 in the same arrangement as in the case of the vacuum chamber 21. In this case, it is preferable that the seals 50 and 51 be installed in the vacuum chamber 21 having a high degree of vacuum in preference to the vacuum chambers 20 and 22.
(変形例2)
 実施の形態1では、真空室21と22に装置外部の空気が流入することを防ぐため、帯状金属板2の一端側に形成された溶接管部分4の端部を予め封止しておき、その状態で、溶接管の製造装置1を動作させて溶接管を製造する。しかし、真空室21、22への空気の流入を防ぐ手段はこれに限定されない。帯状金属板2の溶接管部分4に栓をしてもよい。
(Modification 2)
In the first embodiment, in order to prevent air from outside the device from flowing into the vacuum chambers 21 and 22, the end of the welded pipe portion 4 formed at one end of the band-shaped metal plate 2 is sealed in advance. In this state, the welded pipe manufacturing apparatus 1 is operated to manufacture a welded pipe. However, the means for preventing air from flowing into the vacuum chambers 21 and 22 is not limited to this. The welded pipe portion 4 of the strip metal plate 2 may be plugged.
 図8は、溶接管の製造装置1が備える成形機と溶接機の他の変形例の断面図である。 FIG. 8 is a sectional view of another modification of the forming machine and welding machine included in the welded pipe manufacturing apparatus 1.
 図8に示すように、溶接管部分4の-X端部分の内部空間に栓60が設けられてもよい。詳細には、帯状金属板2が管状体3に成形され、かつ電子ビーム溶接機41により溶接された直後の部分の内部空間に円柱状の微小な栓60が設けられてもよい。このような形態であれば、帯状金属板2の溶接管部分4の内部空間を通って空気が流入することを防ぐことができるからである。 As shown in FIG. 8, a plug 60 may be provided in the internal space of the −X end portion of the welded pipe portion 4. Specifically, a small cylindrical plug 60 may be provided in the internal space of the portion immediately after the band-shaped metal plate 2 is formed into the tubular body 3 and welded by the electron beam welding machine 41. This is because with such a configuration, it is possible to prevent air from flowing in through the internal space of the welded pipe portion 4 of the band-shaped metal plate 2.
 この場合、栓60は、一端が真空室21の内壁に固定され、他端の側が折り曲げられた後、X方向に平行であり、かつ-X側から溶接管部分4の内部空間に差し込まれた支持棒61によって支持されているとよい。そして、栓60は、溶接管部分4に緩挿可能な外径を有するとよい。また、栓60は、変形例1のシール50、51と同様に、低摩擦性の材料で形成されているとよい。 In this case, the plug 60 has one end fixed to the inner wall of the vacuum chamber 21 and the other end bent, parallel to the X direction, and inserted into the internal space of the welded pipe section 4 from the -X side. It is preferable that it is supported by a support rod 61. The plug 60 preferably has an outer diameter that allows it to be loosely inserted into the welded pipe section 4. Furthermore, the plug 60 is preferably made of a low-friction material, similar to the seals 50 and 51 of the first modification.
(変形例3)
 実施の形態では、真空室20-22に測定器が設けられていないが、真空室20-22に測定器が設けられてもよい。そして、その測定機の測定結果に基づいて溶接管の製造装置1が動作してもよい。
(Modification 3)
In the embodiment, a measuring device is not provided in the vacuum chamber 20-22, but a measuring device may be provided in the vacuum chamber 20-22. Then, the welded pipe manufacturing apparatus 1 may operate based on the measurement results of the measuring device.
 例えば、溶接管の製造装置1は、真空室21に設けられ、真空室21内の真空度を測定する真空ゲージを備えてもよい。ここで、真空ゲージは、例えば、U字管マノメーター、ダイヤフラム真空計である。溶接管の製造装置1では、管状体3の、真空室21で溶接した溶接管部分4に溶接欠陥が存在する場合に、その溶接欠陥がある箇所が真空室22を経て真空室22の外に出てしまうと、その溶接欠陥がある箇所から空気が溶接管部分4の内部に流入してしまうことがある。その場合、流入した空気は、管状体3の溶接されていない合わせ目5から真空室21へ入り込んで真空室21の真空度を低下させてしまい、さらに溶接部を酸化させてしまう。そこで、真空室21に真空ゲージを設け、真空ゲージが測定した圧力データに基づいて溶接管の製造装置1が備える後述する制御装置が上記の溶接欠陥の有無を判定してもよい。そして、溶接欠陥があると制御装置が判定した場合、製造装置1による溶接管の製造を止めてもよい。また、制御装置は、溶接欠陥があると判定した場合、そのときに真空室22の外に出ている溶接管部分4を不良としてもよいし、また、真空度が低下した真空室21の内部にある溶接管部分4以降の部分を不良としてもよい。なお、溶接欠陥の有無の判定では、真空ゲージが測定した圧力がゲージ圧の場合、そのゲージ圧を絶対圧に換算するとよい。そして、真空ゲージが測定した圧力の値が閾値よりも大きい場合に、溶接欠陥があると判定するとよい。 For example, the welded tube manufacturing apparatus 1 may include a vacuum gauge that is provided in the vacuum chamber 21 and measures the degree of vacuum within the vacuum chamber 21. Here, the vacuum gauge is, for example, a U-tube manometer or a diaphragm vacuum gauge. In the welded tube manufacturing apparatus 1, when a welding defect exists in the welded tube portion 4 of the tubular body 3 that is welded in the vacuum chamber 21, the welded defective portion passes through the vacuum chamber 22 to the outside of the vacuum chamber 22. If air escapes, air may flow into the welded pipe section 4 from the location where the welding defect exists. In that case, the inflowing air enters the vacuum chamber 21 through the unwelded seam 5 of the tubular body 3, lowering the degree of vacuum in the vacuum chamber 21, and further oxidizing the welded portion. Therefore, a vacuum gauge may be provided in the vacuum chamber 21, and a control device, which will be described later and included in the welded pipe manufacturing apparatus 1, may determine the presence or absence of the above-mentioned welding defect based on pressure data measured by the vacuum gauge. If the control device determines that there is a welding defect, the manufacturing apparatus 1 may stop manufacturing the welded pipe. Further, if the control device determines that there is a welding defect, the welded pipe portion 4 which is exposed outside the vacuum chamber 22 at that time may be determined to be defective, or the inside of the vacuum chamber 21 where the degree of vacuum has decreased. The parts after welded pipe part 4 may be considered defective. In addition, in determining the presence or absence of a welding defect, if the pressure measured by the vacuum gauge is a gauge pressure, it is preferable to convert the gauge pressure into an absolute pressure. Then, when the value of the pressure measured by the vacuum gauge is larger than a threshold value, it may be determined that there is a welding defect.
 なお、真空ゲージは、真空室21に設けられた例を説明したが、真空ゲージは、真空室20-22の少なくとも1つに設けられていればよい。 Although an example has been described in which the vacuum gauge is provided in the vacuum chamber 21, the vacuum gauge may be provided in at least one of the vacuum chambers 20-22.
(変形例4)
 上述した真空ゲージは、他の真空測定器に置き換えられてもよい。例えば、真空ゲージは、光学式リークディテクタに置き換えられてもよい。
(Modification 4)
The vacuum gauge described above may be replaced by other vacuum measuring instruments. For example, a vacuum gauge may be replaced with an optical leak detector.
 図9は、溶接管の製造装置1が備える成形機と溶接機のさらに別の変形例の断面図である。 FIG. 9 is a sectional view of yet another modification of the forming machine and welding machine included in the welded pipe manufacturing apparatus 1.
 図9に示すように、溶接管の製造装置1は、真空室22に設けられ、真空室22内の真空度を測定する光学式リークディテクタ70を備えてもよい。ここで、光学式リークディテクタ70とは、測定環境内に配置され、ここでは真空室22と連通するケース内に配置され、かつ電位差が設けられて電子が放出される2つの電極と、放出された電子が上記ケース内にある気体の原子、分子に衝突することにより放出される光のスペクトル強度を測定する光学測定器と、を備え、光学測定器が測定したスペクトル強度から気体の分圧を求める装置のことである。なお、上記の2つの電極と光学測定機器は、上記ケース内ではなく、真空室22内に直接設けられてもよい。 As shown in FIG. 9, the welded pipe manufacturing apparatus 1 may include an optical leak detector 70 that is installed in the vacuum chamber 22 and measures the degree of vacuum within the vacuum chamber 22. Here, the optical leak detector 70 is arranged in a measurement environment, here, in a case communicating with the vacuum chamber 22, and has two electrodes that are provided with a potential difference and emit electrons; and an optical measuring device that measures the spectral intensity of light emitted when the electrons collide with gas atoms and molecules in the case, and the partial pressure of the gas can be determined from the spectral intensity measured by the optical measuring device. This refers to the device you are looking for. Note that the above two electrodes and the optical measuring device may be provided directly within the vacuum chamber 22 instead of within the above case.
 光学式リークディテクタ70が備える光学測定器は、真空室22内に外気が流入した場合、その外気に窒素が多く含まれる結果、紫色の光のスペクトル強度を測定する。または、光学測定器は、外気に酸素も含まれるため、その濃度により、薄暗い紫色の光のスペクトル強度を測定する。このような背景から、光学式リークディテクタ70は、真空室22内に外気が流入した場合に、上記の測定したスペクトル強度からそのケース内の圧力を求めることにより、真空室22内の圧力を求めるとよい。そして、制御装置80が、光学式リークディテクタ70が求めた圧力から上記の溶接欠陥の有無を判定してもよい。 The optical measuring instrument included in the optical leak detector 70 measures the spectral intensity of purple light when outside air flows into the vacuum chamber 22, as a result of the outside air containing a large amount of nitrogen. Alternatively, optical measuring instruments measure the spectral intensity of dim purple light depending on the concentration of oxygen in the outside air. Against this background, the optical leak detector 70 determines the pressure inside the vacuum chamber 22 by determining the pressure inside the case from the measured spectral intensity when outside air flows into the vacuum chamber 22. Good. Then, the control device 80 may determine the presence or absence of the above-mentioned welding defect from the pressure determined by the optical leak detector 70.
 なお、光学式リークディテクタ70は、真空室21ではなく、真空室20または22に設けられるとよい。真空室21に光学式リークディテクタ70が設けられると、光学式リークディテクタ70が備える2つの電極が、電子ビーム溶接に作用して、溶接が適切な箇所に行われなくなるおそれがあるからである。 Note that the optical leak detector 70 is preferably provided in the vacuum chamber 20 or 22 instead of the vacuum chamber 21. This is because if the optical leak detector 70 is provided in the vacuum chamber 21, the two electrodes included in the optical leak detector 70 may affect electron beam welding, and welding may not be performed at an appropriate location.
 また、上記の制御装置80は、CPU(Central Processing Unit)81とメモリ82を備え、CPU81がメモリ82に記憶された判定プログラムを読み出して実行することにより、上記の溶接欠陥の有無の判定処理を行うとよい。 Further, the above-described control device 80 includes a CPU (Central Processing Unit) 81 and a memory 82, and the CPU 81 reads and executes a determination program stored in the memory 82, thereby performing the above-described process of determining the presence or absence of a welding defect. It's good to do.
 また、実施の形態では、溶接管の製造装置1が3つの真空室20-22を備える。しかし、溶接管の製造装置1はこれに限定されない。溶接管の製造装置1では、真空室20-22が、帯状金属板2が幅方向へ管状に湾曲されることにより形成され、帯状金属板2の幅方向にある第一端面と第一端面の反対側にある第二端面とが向かい合わせられた管状体を収容するものであればよい。そして、その真空室20-22の内部で、管状体が有する第一端面と第二端面とに電子ビームを衝突させて第一端面と第二端面を互いに溶接することにより、電子ビーム溶接機41が溶接管を作製すればよい。このため、これらの条件を満たす限りにおいて、真空室20-22の数は任意である。例えば、溶接管の製造装置1が真空室21を一つだけ備えていてもよい。このような形態でも、溶接部の酸化を抑制できるからである。 Furthermore, in the embodiment, the welded pipe manufacturing apparatus 1 includes three vacuum chambers 20-22. However, the welded pipe manufacturing apparatus 1 is not limited to this. In the welded pipe manufacturing apparatus 1, the vacuum chamber 20-22 is formed by bending the band-shaped metal plate 2 into a tubular shape in the width direction, and the vacuum chamber 20-22 is formed by bending the band-shaped metal plate 2 into a tubular shape in the width direction, and the vacuum chamber 20-22 is formed by bending the band-shaped metal plate 2 into a tubular shape in the width direction. Any structure may be used as long as it accommodates a tubular body whose second end face on the opposite side faces each other. Then, inside the vacuum chamber 20-22, the electron beam welding machine 41 collides the electron beam with the first end surface and the second end surface of the tubular body to weld the first end surface and the second end surface to each other. It is enough to make a welded pipe. Therefore, the number of vacuum chambers 20-22 is arbitrary as long as these conditions are satisfied. For example, the welded pipe manufacturing apparatus 1 may include only one vacuum chamber 21. This is because even in this form, oxidation of the welded portion can be suppressed.
 また、実施の形態では、真空室20-22に成形機15と溶接機16が収容されている。しかし、真空室20-22に収容される機器は、これに限定されない。上記の条件を満たして、電子ビーム溶接機41が溶接管を作成すればよいので、帯状金属板2を加工する他の機器が真空室20-22に収容されてもよい。 Furthermore, in the embodiment, a molding machine 15 and a welding machine 16 are housed in the vacuum chamber 20-22. However, the equipment accommodated in the vacuum chambers 20-22 is not limited to this. Since the electron beam welding machine 41 only needs to satisfy the above conditions and create the welded tube, other equipment for processing the band-shaped metal plate 2 may be housed in the vacuum chamber 20-22.
 図10は、実施の形態に係る溶接管の製造装置1の変形例の断面図である。 FIG. 10 is a sectional view of a modification of the welded pipe manufacturing apparatus 1 according to the embodiment.
 図10に示すように、実施の形態で説明した刻印加工機13、14およびダンサーロール131-133が真空室21に収容されてもよい。これにより、真空室21で帯状金属板2に溝が形成されるとよい。このような形態であれば、真空室21の入口211から溝が形成されていない平坦な板面を有する帯状金属板2が入るため、入口211の隙間215を小さくして、真空室21の真空度をより低くすることができるからである。また、真空室21の真空度を維持しやすくなるからである。 As shown in FIG. 10, the engraving machines 13, 14 and dancer rolls 131-133 described in the embodiment may be housed in the vacuum chamber 21. As a result, grooves are preferably formed in the band-shaped metal plate 2 in the vacuum chamber 21. In such a configuration, since the strip-shaped metal plate 2 having a flat plate surface without grooves is inserted from the entrance 211 of the vacuum chamber 21, the gap 215 at the entrance 211 is made small to reduce the vacuum in the vacuum chamber 21. This is because the degree can be lowered. This is also because it becomes easier to maintain the degree of vacuum in the vacuum chamber 21.
 実施の形態では、溶接管の製造装置1がアキュムレータ12を備える。しかし、溶接管の製造装置1はこれに限定されない。溶接管の製造装置1では、アキュムレータ12は任意の構成である。例えば、生産効率が低下してもよい場合は、溶接管の製造装置1は、アキュムレータ12を備えなくてもよい。 In the embodiment, the welded pipe manufacturing apparatus 1 includes an accumulator 12. However, the welded pipe manufacturing apparatus 1 is not limited to this. In the welded pipe manufacturing apparatus 1, the accumulator 12 has an arbitrary configuration. For example, if production efficiency may be reduced, the welded pipe manufacturing apparatus 1 may not include the accumulator 12.
 実施の形態では、溶接管の製造装置1が刻印加工機13と14を備える。しかし、溶接管の製造装置1はこれに限定されない。溶接管の製造装置1では、刻印加工機13、14は任意の構成である。例えば、溝を有さない溶接管を製造する場合、溶接管の製造装置1は、刻印加工機13、14を備えていなくてもよい。また、溝を有する溶接管を製造する場合、溶接管の製造装置1は、その溝を形成するため、刻印加工機13、14を少なくとも1つ以上備えていればよい。 In the embodiment, the welded pipe manufacturing apparatus 1 includes stamping machines 13 and 14. However, the welded pipe manufacturing apparatus 1 is not limited to this. In the welded pipe manufacturing apparatus 1, the engraving machines 13 and 14 have an arbitrary configuration. For example, when manufacturing a welded pipe without grooves, the welded pipe manufacturing apparatus 1 does not need to include the engraving machines 13 and 14. Further, when manufacturing a welded pipe having a groove, the welded pipe manufacturing apparatus 1 only needs to include at least one stamping machine 13, 14 in order to form the groove.
 実施の形態では、溶接管の製造装置1は、リコイラ19の後に、機械、装置を備えない。しかし、溶接管の製造装置1はこれに限定されない。溶接管の製造装置1は、リコイラ19の後に、作製された溶接管が曲げ時に、または拡管時に割れることを抑制するため、焼鈍装置を備えていてもよい。 In the embodiment, the welded pipe manufacturing apparatus 1 does not include any machine or device after the recoiler 19. However, the welded pipe manufacturing apparatus 1 is not limited to this. The welded pipe manufacturing apparatus 1 may include an annealing device after the recoiler 19 in order to prevent the manufactured welded pipe from cracking during bending or expansion.
 実施の形態では、製造される溶接管が熱交換器に使用される伝熱管である場合を例に、溶接管の製造装置1について説明している。しかし、製造される溶接管は、これに限定されない。本開示の実施の形態に係る溶接管の製造方法および溶接管の製造装置1は、溶接部の酸化の抑制が必要な溶接管全般に適用可能である。 In the embodiment, the welded tube manufacturing apparatus 1 will be described using an example in which the welded tubes to be manufactured are heat exchanger tubes used in a heat exchanger. However, the welded pipe manufactured is not limited to this. The welded pipe manufacturing method and welded pipe manufacturing apparatus 1 according to the embodiments of the present disclosure are applicable to all welded pipes that require suppression of oxidation of the welded portion.
 以上のように、溶接管の製造方法および溶接管の製造装置1は、上記の実施の形態に限定されず、様々な変形および置換を加えることができる。以下に、本開示の様々な形態を付記として記載する。 As described above, the welded pipe manufacturing method and welded pipe manufacturing apparatus 1 are not limited to the above embodiments, and various modifications and substitutions can be made. Various aspects of the present disclosure are described below as supplementary notes.
(付記1)
 帯状金属板が幅方向へ管状に湾曲されることにより形成され、前記帯状金属板の前記幅方向にある第一端面と前記第一端面の反対側にある第二端面とが向かい合わせられた管状体の前記第一端面と前記第二端面とに電子ビームを衝突させて前記第一端面と前記第二端面を互いに溶接することにより、溶接管を作製する工程を備える、
 溶接管の製造方法。
(付記2)
 真空の空間内で前記帯状金属板を前記幅方向へ管状に湾曲させることにより、前記第一端面と前記第二端面とを向かい合わせた形状の前記管状体を成形する工程をさらに備え、
 前記溶接管を作製する工程では、前記真空の空間内で前記管状体の前記第一端面と前記第二端面とに前記電子ビームを衝突させて前記第一端面と前記第二端面を互いに溶接する、
 付記1に記載の溶接管の製造方法。
(付記3)
 前記帯状金属板を、帯が延在する方向にある一端側から前記真空の空間を有する第一真空室に送り込む工程をさらに備え、
 前記管状体を成形する工程では、前記第一真空室の内部で前記帯状金属板の前記一端側にある第一部分を前記幅方向へ管状に湾曲させることにより、前記第一部分に前記管状体を成形し、
 前記溶接管を作製する工程では、前記第一真空室の内部で、前記第一部分に成形された前記管状体が有する前記第一端面と前記第二端面とに前記電子ビームを衝突させて前記第一端面と前記第二端面を互いに溶接する、
 付記2に記載の溶接管の製造方法。
(付記4)
 真空の空間内で前記帯状金属板の板面に溝を形成する工程をさらに備え、
 前記溶接管を作製する工程では、前記溝が形成された板面を内側に向けた状態で前記帯状金属板を湾曲させることにより形成された前記管状体の前記第一端面と前記第二端面とに、前記真空の空間内で前記電子ビームを衝突させて前記第一端面と前記第二端面を互いに溶接する、
 付記1から3のいずれか1つに記載の溶接管の製造方法。
(付記5)
 前記帯状金属板を、帯が延在する方向にある一端側から前記真空の空間を有する第一真空室に送り込む工程をさらに備え、
 前記溝を形成する工程では、前記第一真空室の内部で前記帯状金属板の前記一端側にある第一部分の板面に前記溝を形成し、
 前記溶接管を作製する工程では、前記溝が形成された板面を内側に向けた状態で、前記帯状金属板が有する前記第一部分を湾曲させることにより前記第一部分に形成された前記管状体の前記第一端面と前記第二端面とに、前記第一真空室の内部で前記電子ビームを衝突させて前記第一端面と前記第二端面を互いに溶接する、
 付記4に記載の溶接管の製造方法。
(付記6)
 前記第一部分に作製された前記溶接管を前記第一真空室から送り出す工程をさらに備え、
 前記第一真空室の前記帯状金属板の前記一端側が送り込まれる側には、前記第一真空室と隣接し、前記第一真空室よりも真空度が低い第二真空室が設けられ、
 前記第一真空室の前記溶接管が送り出される側には、前記第一真空室と隣接し、前記第一真空室よりも真空度が低い第三真空室が設けられており、
 前記帯状金属板を前記第一真空室に送り込む工程では、前記第二真空室を経由して、前記帯状金属板を前記第一真空室に送り込み、
 前記溶接管を前記第一真空室から送り出す工程では、前記第三真空室を経由して、前記溶接管を前記第一真空室から外部へ送り出す、
 付記3または5に記載の溶接管の製造方法。
(付記7)
 前記溶接管を作製する工程では、前記溶接管の一端が封止され、前記溶接管の内部空間が前記第一真空室の内部と同じ真空である、
 付記3、5、6のいずれ1つに記載の溶接管の製造方法。
(付記8)
 前記溶接管を作製する工程は、真空ゲージにより、前記第一端面と前記第二端面とに前記電子ビームを衝突させる空間の真空度を測定し、該真空度の測定値に基づいて溶接欠陥の有無を判定する工程を含む、
 付記1から7のいずれか1つに記載の溶接管の製造方法。
(付記9)
 前記溶接管を作製する工程は、前記第一端面と前記第二端面とに前記電子ビームを衝突させる空間と連通するもう一つの空間にある気体に電子を衝突させて発光させ、その光のスペクトルを測定して気体の圧力を求めることにより、前記電子ビームを衝突させる前記空間の真空度を求め、求めた真空度に基づいて溶接欠陥の有無を判定する工程を含む、
 付記1から7のいずれか1つに記載の溶接管の製造方法。
(付記10)
 帯状金属板が幅方向へ管状に湾曲されることにより形成され、前記帯状金属板の前記幅方向にある第一端面と前記第一端面の反対側にある第二端面とが向かい合わせられた管状体を収容する第一真空室と、
 前記第一真空室の内部で前記管状体が有する前記第一端面と前記第二端面とに電子ビームを衝突させて前記第一端面と前記第二端面を互いに溶接することにより、溶接管を作製する電子ビーム溶接機と、
 を備える溶接管の製造装置。
(付記11)
 前記帯状金属板を、帯が延在する方向にある一端側から前記第一真空室に送り込んでいく送り機構をさらに備え、
 前記第一真空室は、
 前記帯状金属板が前記一端側から送り込まれていく第一入口と、
 前記送り機構によって前記帯状金属板が前記一端側から前記第一入口に送り込まれていくことにより、前記管状体の前記第一端面に前記第二端面が前記電子ビーム溶接機によって溶接されることにより形成された、前記一端側にある部分に作製された前記溶接管が送り出されていく第一出口と、
 を有し、
 前記第一真空室には、その内部空間に、前記送り機構によって前記第一入口から前記第一真空室の内部に送り込まれた前記帯状金属板の前記一端側にある部分を幅方向へ管状に湾曲させ、前記一端側にある部分に前記第一端面と前記第二端面とが向かい合わされた形状の管状体を成形する成形ロールが収容されている、
 付記10に記載の溶接管の製造装置。
(付記12)
 前記第一真空室には、その内部空間に、前記送り機構によって前記第一入口から前記第一真空室の内部に送り込まれた前記帯状金属板の板面に溝を形成する溝形成ロールが収容され、
 前記成形ロールは、前記溝が形成された板面を内側に向けた状態で、前記帯状金属板が有する前記第一部分を湾曲させることにより前記管状体を成形する、
 付記11に記載の溶接管の製造装置。
(付記13)
 前記第一真空室の前記第一入口がある側で前記第一真空室と隣接し、前記第一真空室よりも真空度が低い第二真空室と、
 前記第一真空室の前記第一出口がある側で前記第一真空室と隣接し、前記第一真空室よりも真空度が低い第三真空室と、
 をさらに備え、
 前記第二真空室は、前記送り機構によって、前記帯状金属板が前記一端側から送り込まれていく第二入口と、前記送り機構によって前記帯状金属板が前記一端側から前記第二入口に送り込まれていくことにより、前記帯状金属板が前記一端側から送り出されていく第二出口と、を有し、前記第二出口が前記第一入口とつながることにより、前記第一真空室と連通し、
 前記第三真空室は、前記送り機構によって前記第一出口から送り出される、前記帯状金属板の前記一端側にある部分に作製された前記溶接管が送り込まれていく第三入口と、前記送り機構によって前記帯状金属板の前記一端側にある部分に作製された前記溶接管が前記第三入口に送り込まれていくことにより、前記溶接管が送り出されていく第三出口と、を有し、前記第三入口が前記第一出口とつながることにより、前記第一真空室と連通する、
 付記11または12に記載の溶接管の製造装置。
(付記14)
 前記第一入口、前記第二入口および前記第二出口は、前記帯状金属板が挿通された状態で、平板状の前記帯状金属板との間に前記帯状金属板が摺動可能な第一隙間を有し、
 前記第一出口、前記第三入口および前記第三出口は、前記帯状金属板の前記一端側にある部分に作製された前記溶接管が挿通された状態で、前記溶接管との間に前記溶接管が摺動可能な第二隙間を有する、
 付記13に記載の溶接管の製造装置。
(付記15)
 前記溶接管の前記第一真空室の外側にある一端が封止され、前記溶接管の内部空間が前記第一真空室の内部と同じ真空である、
 付記10から14のいずれか1つに記載の溶接管の製造装置。
(付記16)
 前記第一真空室の内部空間の真空度を測定する真空ゲージと、
 前記真空ゲージの測定値に基づいて、前記電子ビーム溶接機が作製した前記溶接管の溶接欠陥の有無を判定する制御装置と、
 をさらに備える、
 付記10から15のいずれか1つに記載の溶接管の製造装置。
(付記17)
 前記第一真空室と連通する空間にある気体に電子が衝突することにより発せられる光のスペクトルを測定して気体の圧力を求めることにより、前記第一真空室の内部空間の真空度を求める光学式リークディテクタと、
 前記光学式リークディテクタが求めた前記内部空間の真空度に基づいて、前記電子ビーム溶接機が作製した前記溶接管の溶接欠陥の有無を判定する制御装置と、
 をさらに備える、
 付記10から15のいずれか1つに記載の溶接管の製造装置。
(Additional note 1)
A tubular shape formed by curving a band-shaped metal plate into a tubular shape in the width direction, and in which a first end face in the width direction of the band-shaped metal plate and a second end face opposite to the first end face face each other. producing a welded pipe by colliding an electron beam with the first end surface and the second end surface of the body to weld the first end surface and the second end surface to each other;
Method for manufacturing welded pipes.
(Additional note 2)
further comprising the step of forming the tubular body in a shape where the first end surface and the second end surface face each other by curving the band-shaped metal plate into a tubular shape in the width direction in a vacuum space,
In the step of producing the welded tube, the electron beam collides with the first end surface and the second end surface of the tubular body in the vacuum space to weld the first end surface and the second end surface to each other. ,
A method for manufacturing a welded pipe according to Supplementary Note 1.
(Additional note 3)
further comprising the step of feeding the band-shaped metal plate from one end side in the direction in which the band extends into the first vacuum chamber having the vacuum space,
In the step of forming the tubular body, the first portion on the one end side of the band-shaped metal plate is bent into a tubular shape in the width direction inside the first vacuum chamber, thereby forming the tubular body on the first portion. death,
In the step of producing the welded tube, the electron beam is made to collide with the first end surface and the second end surface of the tubular body formed in the first portion inside the first vacuum chamber to produce the welded tube. welding the one end surface and the second end surface to each other;
The method for manufacturing a welded pipe according to appendix 2.
(Additional note 4)
further comprising the step of forming grooves on the plate surface of the band-shaped metal plate in a vacuum space,
In the step of producing the welded pipe, the first end surface and the second end surface of the tubular body are formed by curving the band-shaped metal plate with the plate surface on which the grooves are formed facing inward. colliding the electron beam in the vacuum space to weld the first end surface and the second end surface to each other;
A method for manufacturing a welded pipe according to any one of Supplementary Notes 1 to 3.
(Appendix 5)
further comprising the step of feeding the band-shaped metal plate from one end side in the direction in which the band extends into the first vacuum chamber having the vacuum space,
In the step of forming the groove, forming the groove on the plate surface of the first portion on the one end side of the band-shaped metal plate inside the first vacuum chamber,
In the step of producing the welded pipe, the first portion of the band-shaped metal plate is bent with the plate surface on which the grooves are formed facing inward, thereby forming the tubular body formed in the first portion. Welding the first end surface and the second end surface to each other by colliding the electron beam with the first end surface and the second end surface inside the first vacuum chamber;
The method for manufacturing a welded pipe according to appendix 4.
(Appendix 6)
Further comprising the step of sending out the welded pipe produced in the first part from the first vacuum chamber,
A second vacuum chamber adjacent to the first vacuum chamber and having a lower degree of vacuum than the first vacuum chamber is provided on the side of the first vacuum chamber into which the one end side of the band-shaped metal plate is fed,
A third vacuum chamber adjacent to the first vacuum chamber and having a lower degree of vacuum than the first vacuum chamber is provided on the side of the first vacuum chamber from which the welded pipe is sent out,
In the step of feeding the band-shaped metal plate into the first vacuum chamber, feeding the band-shaped metal plate into the first vacuum chamber via the second vacuum chamber,
In the step of sending out the welded tube from the first vacuum chamber, sending out the welded tube from the first vacuum chamber to the outside via the third vacuum chamber,
The method for manufacturing a welded pipe according to appendix 3 or 5.
(Appendix 7)
In the step of producing the welded pipe, one end of the welded pipe is sealed, and the internal space of the welded pipe is at the same vacuum as the inside of the first vacuum chamber.
The method for manufacturing a welded pipe according to any one of Supplementary Notes 3, 5, and 6.
(Appendix 8)
In the step of producing the welded pipe, the degree of vacuum in the space in which the electron beam collides with the first end face and the second end face is measured using a vacuum gauge, and weld defects are detected based on the measured value of the degree of vacuum. including the step of determining the presence or absence of the
A method for manufacturing a welded pipe according to any one of Supplementary Notes 1 to 7.
(Appendix 9)
The step of producing the welded pipe includes causing electrons to collide with a gas in another space communicating with the space in which the electron beam collides with the first end face and the second end face, causing the gas to emit light, and adjusting the spectrum of the light. by measuring the pressure of the gas to determine the degree of vacuum of the space in which the electron beam collides, and determining the presence or absence of a welding defect based on the determined degree of vacuum.
A method for manufacturing a welded pipe according to any one of Supplementary Notes 1 to 7.
(Appendix 10)
A tubular shape formed by curving a band-shaped metal plate into a tubular shape in the width direction, and in which a first end face in the width direction of the band-shaped metal plate and a second end face opposite to the first end face face each other. a first vacuum chamber that accommodates the body;
A welded tube is produced by colliding an electron beam with the first end surface and the second end surface of the tubular body inside the first vacuum chamber to weld the first end surface and the second end surface to each other. An electron beam welding machine that
A welded pipe manufacturing device comprising:
(Appendix 11)
further comprising a feeding mechanism that feeds the band-shaped metal plate into the first vacuum chamber from one end in the direction in which the band extends,
The first vacuum chamber is
a first entrance into which the band-shaped metal plate is fed from the one end side;
By feeding the band-shaped metal plate from the one end side into the first inlet by the feeding mechanism, the second end surface is welded to the first end surface of the tubular body by the electron beam welding machine. a first outlet through which the welded pipe manufactured at the portion on the one end side is sent out;
has
In the first vacuum chamber, a portion on the one end side of the band-shaped metal plate fed into the first vacuum chamber from the first inlet by the feeding mechanism is inserted into the inner space in a tubular shape in the width direction. A forming roll that is curved and forms a tubular body having a shape in which the first end face and the second end face face each other is housed in a portion on the one end side.
The welded pipe manufacturing apparatus according to appendix 10.
(Appendix 12)
The first vacuum chamber accommodates in its internal space a groove forming roll that forms grooves on the plate surface of the strip-shaped metal plate fed into the first vacuum chamber from the first inlet by the feeding mechanism. is,
The forming roll forms the tubular body by curving the first portion of the band-shaped metal plate with the plate surface on which the grooves are formed facing inward.
The welded pipe manufacturing apparatus according to appendix 11.
(Appendix 13)
a second vacuum chamber adjacent to the first vacuum chamber on the side where the first inlet of the first vacuum chamber is located and having a lower degree of vacuum than the first vacuum chamber;
a third vacuum chamber adjacent to the first vacuum chamber on the side where the first outlet of the first vacuum chamber is located and having a lower degree of vacuum than the first vacuum chamber;
Furthermore,
The second vacuum chamber includes a second inlet into which the band-shaped metal plate is fed from the one end side by the feeding mechanism, and a second inlet into which the band-shaped metal plate is fed from the one end side by the feeding mechanism. a second outlet through which the band-shaped metal plate is sent out from the one end side, and the second outlet is connected to the first inlet, thereby communicating with the first vacuum chamber;
The third vacuum chamber includes a third inlet into which the welded pipe produced on the one end side of the band-shaped metal plate is fed from the first outlet by the feeding mechanism, and the feeding mechanism. and a third outlet through which the welded pipe is sent out by feeding the welded pipe made on the one end side of the band-shaped metal plate into the third inlet, A third inlet communicates with the first vacuum chamber by connecting with the first outlet;
The welded pipe manufacturing apparatus according to appendix 11 or 12.
(Appendix 14)
The first inlet, the second inlet, and the second outlet are a first gap in which the band-shaped metal plate can slide between the flat metal plate and the band-shaped metal plate with the band-shaped metal plate inserted therethrough. has
The first outlet, the third inlet, and the third outlet are connected to the welded tube between the welded tube and the welded tube, which is made in a portion on the one end side of the band-shaped metal plate, and is inserted therethrough. having a second gap in which the pipe can slide;
The welded pipe manufacturing apparatus according to appendix 13.
(Appendix 15)
one end of the welded tube outside the first vacuum chamber is sealed, and the internal space of the welded tube is at the same vacuum as the inside of the first vacuum chamber;
The welded pipe manufacturing apparatus according to any one of Supplementary Notes 10 to 14.
(Appendix 16)
a vacuum gauge that measures the degree of vacuum in the internal space of the first vacuum chamber;
a control device that determines the presence or absence of a welding defect in the welded pipe produced by the electron beam welding machine based on the measured value of the vacuum gauge;
further comprising,
The welded pipe manufacturing apparatus according to any one of appendices 10 to 15.
(Appendix 17)
Optics for determining the degree of vacuum in the internal space of the first vacuum chamber by measuring the spectrum of light emitted when electrons collide with the gas in the space communicating with the first vacuum chamber to determine the pressure of the gas. formula leak detector,
a control device that determines whether there is a welding defect in the welded pipe produced by the electron beam welding machine based on the degree of vacuum in the internal space determined by the optical leak detector;
further comprising;
The welded pipe manufacturing apparatus according to any one of appendices 10 to 15.
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施形態および変形が可能とされるものである。また、上述した実施形態は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。つまり、本開示の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内およびそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。 The present disclosure is capable of various embodiments and modifications without departing from the broad spirit and scope of the present disclosure. Further, the embodiments described above are for explaining the present disclosure, and do not limit the scope of the present disclosure. That is, the scope of the present disclosure is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and the meaning of the disclosure equivalent thereto are considered to be within the scope of the present disclosure.
 本出願は、2022年6月13日に出願された日本国特許出願特願2022-95328号に基づく。本明細書中に日本国特許出願特願2022-95328号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2022-95328 filed on June 13, 2022. The entire specification, claims, and drawings of Japanese Patent Application No. 2022-95328 are incorporated herein by reference.
 1 溶接管の製造装置、2 帯状金属板、3 管状体、4 溶接管部分、5 合わせ目、10 アンコイラ、11 接続機、12 アキュムレータ、13,14 刻印加工機、15 成形機、16 溶接機、17 抽伸機、18 切断機、19 リコイラ、20-22 真空室、23,24 搬送ロール、25 貫通孔、30-35 ブレークダウンロール、36-39 フィンパスロール、40 真空室、41 電子ビーム溶接機、42 連通孔、50,51 シール、60 栓、61 支持棒、70 光学式リークディテクタ、80 制御装置、81 CPU、82 メモリ、111 ホルダー、131-133 ダンサーロール、181 カッター、191 巻き取り部、201 入口、202 出口、205,206 隙間、211 入口、212 出口、215,216 隙間、221 入口、222 出口、225,226 隙間、301 凸部、311 凹部、321 凸部、331 凹部、341 凸部、351 凹部、361,381 フィン部。 1. Welded pipe manufacturing equipment, 2. Band-shaped metal plate, 3. Tubular body, 4. Welded pipe section, 5. Seam, 10. Uncoiler, 11. Connector, 12. Accumulator, 13, 14. Stamping machine, 15. Forming machine, 16. Welding machine. 17 drawing machine, 18 cutting machine, 19 recoiler, 20-22 vacuum chamber, 23, 24 conveyance roll, 25 through hole, 30-35 breakdown roll, 36-39 fin pass roll, 40 vacuum chamber, 41 electron beam welding machine , 42 communication hole, 50, 51 seal, 60 stopper, 61 support rod, 70 optical leak detector, 80 control device, 81 CPU, 82 memory, 111 holder, 131-133 dancer roll, 181 cutter, 191 winding section, 201 inlet, 202 outlet, 205, 206 gap, 211 inlet, 212 outlet, 215, 216 gap, 221 inlet, 222 outlet, 225, 226 gap, 301 convex part, 311 concave part, 321 convex part, 331 concave part, 341 Convex part , 351 recessed portion, 361, 381 fin portion.

Claims (17)

  1.  帯状金属板が幅方向へ管状に湾曲されることにより形成され、前記帯状金属板の前記幅方向にある第一端面と前記第一端面の反対側にある第二端面とが向かい合わせられた管状体の前記第一端面と前記第二端面とに電子ビームを衝突させて前記第一端面と前記第二端面を互いに溶接することにより、溶接管を作製する工程を備える、
     溶接管の製造方法。
    A tubular shape formed by curving a band-shaped metal plate into a tubular shape in the width direction, and in which a first end face in the width direction of the band-shaped metal plate and a second end face opposite to the first end face face each other. producing a welded pipe by colliding an electron beam with the first end surface and the second end surface of the body to weld the first end surface and the second end surface to each other;
    Method for manufacturing welded pipes.
  2.  真空の空間内で前記帯状金属板を前記幅方向へ管状に湾曲させることにより、前記第一端面と前記第二端面とを向かい合わせた形状の前記管状体を成形する工程をさらに備え、
     前記溶接管を作製する工程では、前記真空の空間内で前記管状体の前記第一端面と前記第二端面とに前記電子ビームを衝突させて前記第一端面と前記第二端面を互いに溶接する、
     請求項1に記載の溶接管の製造方法。
    further comprising the step of forming the tubular body in a shape where the first end surface and the second end surface face each other by curving the band-shaped metal plate into a tubular shape in the width direction in a vacuum space,
    In the step of producing the welded tube, the electron beam collides with the first end surface and the second end surface of the tubular body in the vacuum space to weld the first end surface and the second end surface to each other. ,
    The method for manufacturing a welded pipe according to claim 1.
  3.  前記帯状金属板を、帯が延在する方向にある一端側から前記真空の空間を有する第一真空室に送り込む工程をさらに備え、
     前記管状体を成形する工程では、前記第一真空室の内部で前記帯状金属板の前記一端側にある第一部分を前記幅方向へ管状に湾曲させることにより、前記第一部分に前記管状体を成形し、
     前記溶接管を作製する工程では、前記第一真空室の内部で、前記第一部分に成形された前記管状体が有する前記第一端面と前記第二端面とに前記電子ビームを衝突させて前記第一端面と前記第二端面を互いに溶接する、
     請求項2に記載の溶接管の製造方法。
    further comprising the step of feeding the band-shaped metal plate from one end side in the direction in which the band extends into the first vacuum chamber having the vacuum space,
    In the step of forming the tubular body, the first portion on the one end side of the band-shaped metal plate is bent into a tubular shape in the width direction inside the first vacuum chamber, thereby forming the tubular body on the first portion. death,
    In the step of producing the welded tube, the electron beam is made to collide with the first end surface and the second end surface of the tubular body formed in the first portion inside the first vacuum chamber to produce the welded tube. welding the one end surface and the second end surface to each other;
    The method for manufacturing a welded pipe according to claim 2.
  4.  真空の空間内で前記帯状金属板の板面に溝を形成する工程をさらに備え、
     前記溶接管を作製する工程では、前記溝が形成された板面を内側に向けた状態で前記帯状金属板を湾曲させることにより形成された前記管状体の前記第一端面と前記第二端面とに、前記真空の空間内で前記電子ビームを衝突させて前記第一端面と前記第二端面を互いに溶接する、
     請求項1から3のいずれか1項に記載の溶接管の製造方法。
    further comprising the step of forming grooves on the plate surface of the band-shaped metal plate in a vacuum space,
    In the step of producing the welded pipe, the first end surface and the second end surface of the tubular body are formed by curving the band-shaped metal plate with the plate surface on which the grooves are formed facing inward. colliding the electron beam in the vacuum space to weld the first end surface and the second end surface to each other;
    The method for manufacturing a welded pipe according to any one of claims 1 to 3.
  5.  前記帯状金属板を、帯が延在する方向にある一端側から前記真空の空間を有する第一真空室に送り込む工程をさらに備え、
     前記溝を形成する工程では、前記第一真空室の内部で前記帯状金属板の前記一端側にある第一部分の板面に前記溝を形成し、
     前記溶接管を作製する工程では、前記溝が形成された板面を内側に向けた状態で、前記帯状金属板が有する前記第一部分を湾曲させることにより前記第一部分に形成された前記管状体の前記第一端面と前記第二端面とに、前記第一真空室の内部で前記電子ビームを衝突させて前記第一端面と前記第二端面を互いに溶接する、
     請求項4に記載の溶接管の製造方法。
    further comprising the step of feeding the band-shaped metal plate from one end side in the direction in which the band extends into the first vacuum chamber having the vacuum space,
    In the step of forming the groove, forming the groove on the plate surface of the first portion on the one end side of the band-shaped metal plate inside the first vacuum chamber,
    In the step of producing the welded pipe, the first portion of the band-shaped metal plate is bent with the plate surface on which the grooves are formed facing inward, thereby forming the tubular body formed in the first portion. Welding the first end surface and the second end surface to each other by colliding the electron beam with the first end surface and the second end surface inside the first vacuum chamber;
    The method for manufacturing a welded pipe according to claim 4.
  6.  前記第一部分に作製された前記溶接管を前記第一真空室から送り出す工程をさらに備え、
     前記第一真空室の前記帯状金属板の前記一端側が送り込まれる側には、前記第一真空室と隣接し、前記第一真空室よりも真空度が低い第二真空室が設けられ、
     前記第一真空室の前記溶接管が送り出される側には、前記第一真空室と隣接し、前記第一真空室よりも真空度が低い第三真空室が設けられており、
     前記帯状金属板を前記第一真空室に送り込む工程では、前記第二真空室を経由して、前記帯状金属板を前記第一真空室に送り込み、
     前記溶接管を前記第一真空室から送り出す工程では、前記第三真空室を経由して、前記溶接管を前記第一真空室から外部へ送り出す、
     請求項3または5に記載の溶接管の製造方法。
    Further comprising the step of sending out the welded pipe produced in the first part from the first vacuum chamber,
    A second vacuum chamber adjacent to the first vacuum chamber and having a lower degree of vacuum than the first vacuum chamber is provided on the side of the first vacuum chamber into which the one end side of the band-shaped metal plate is fed,
    A third vacuum chamber adjacent to the first vacuum chamber and having a lower degree of vacuum than the first vacuum chamber is provided on the side of the first vacuum chamber from which the welded tube is sent out,
    In the step of feeding the band-shaped metal plate into the first vacuum chamber, feeding the band-shaped metal plate into the first vacuum chamber via the second vacuum chamber,
    In the step of sending the welded tube out of the first vacuum chamber, the welded tube is sent out from the first vacuum chamber via the third vacuum chamber.
    The method for manufacturing a welded pipe according to claim 3 or 5.
  7.  前記溶接管を作製する工程では、前記溶接管の一端が封止され、前記溶接管の内部空間が前記第一真空室の内部と同じ真空である、
     請求項3、5、6のいずれ1項に記載の溶接管の製造方法。
    In the step of producing the welded pipe, one end of the welded pipe is sealed, and the internal space of the welded pipe is at the same vacuum as the inside of the first vacuum chamber.
    The method for manufacturing a welded pipe according to any one of claims 3, 5, and 6.
  8.  前記溶接管を作製する工程は、真空ゲージにより、前記第一端面と前記第二端面とに前記電子ビームを衝突させる空間の真空度を測定し、該真空度の測定値に基づいて溶接欠陥の有無を判定する工程を含む、
     請求項1から7のいずれか1項に記載の溶接管の製造方法。
    In the step of producing the welded pipe, the degree of vacuum in the space in which the electron beam collides with the first end face and the second end face is measured using a vacuum gauge, and weld defects are detected based on the measured value of the degree of vacuum. including the step of determining the presence or absence of the
    The method for manufacturing a welded pipe according to any one of claims 1 to 7.
  9.  前記溶接管を作製する工程は、前記第一端面と前記第二端面とに前記電子ビームを衝突させる空間と連通するもう一つの空間にある気体に電子を衝突させて発光させ、その光のスペクトルを測定して気体の圧力を求めることにより、前記電子ビームを衝突させる前記空間の真空度を求め、求めた真空度に基づいて溶接欠陥の有無を判定する工程を含む、
     請求項1から7のいずれか1項に記載の溶接管の製造方法。
    The step of producing the welded pipe includes causing electrons to collide with a gas in another space communicating with the space in which the electron beam collides with the first end face and the second end face, causing the gas to emit light, and adjusting the spectrum of the light. by measuring the pressure of the gas to determine the degree of vacuum of the space in which the electron beam collides, and determining the presence or absence of a welding defect based on the determined degree of vacuum.
    The method for manufacturing a welded pipe according to any one of claims 1 to 7.
  10.  帯状金属板が幅方向へ管状に湾曲されることにより形成され、前記帯状金属板の前記幅方向にある第一端面と前記第一端面の反対側にある第二端面とが向かい合わせられた管状体を収容する第一真空室と、
     前記第一真空室の内部で前記管状体が有する前記第一端面と前記第二端面とに電子ビームを衝突させて前記第一端面と前記第二端面を互いに溶接することにより、溶接管を作製する電子ビーム溶接機と、
     を備える溶接管の製造装置。
    A tubular shape formed by curving a band-shaped metal plate into a tubular shape in the width direction, and in which a first end face in the width direction of the band-shaped metal plate and a second end face opposite to the first end face face each other. a first vacuum chamber that accommodates the body;
    A welded tube is produced by colliding an electron beam with the first end surface and the second end surface of the tubular body inside the first vacuum chamber to weld the first end surface and the second end surface to each other. An electron beam welding machine that
    A welded pipe manufacturing device comprising:
  11.  前記帯状金属板を、帯が延在する方向にある一端側から前記第一真空室に送り込んでいく送り機構をさらに備え、
     前記第一真空室は、
     前記帯状金属板が前記一端側から送り込まれていく第一入口と、
     前記送り機構によって前記帯状金属板が前記一端側から前記第一入口に送り込まれていくことにより、前記管状体の前記第一端面に前記第二端面が前記電子ビーム溶接機によって溶接されることにより形成された、前記一端側にある第一部分に作製された前記溶接管が送り出されていく第一出口と、
     を有し、
     前記第一真空室には、その内部空間に、前記送り機構によって前記第一入口から前記第一真空室の内部に送り込まれた前記帯状金属板の前記第一部分を幅方向へ管状に湾曲させ、前記第一部分に前記第一端面と前記第二端面とが向かい合わされた形状の管状体を成形する成形ロールが収容されている、
     請求項10に記載の溶接管の製造装置。
    further comprising a feeding mechanism that feeds the band-shaped metal plate into the first vacuum chamber from one end in the direction in which the band extends,
    The first vacuum chamber is
    a first entrance into which the band-shaped metal plate is fed from the one end side;
    By feeding the band-shaped metal plate from the one end side into the first inlet by the feeding mechanism, the second end surface is welded to the first end surface of the tubular body by the electron beam welding machine. a first outlet formed in the first portion on the one end side through which the welded pipe is sent out;
    has
    In the first vacuum chamber, the first portion of the band-shaped metal plate fed into the first vacuum chamber from the first inlet by the feeding mechanism is bent into a tubular shape in the width direction, into the internal space thereof, A forming roll for forming a tubular body having a shape in which the first end face and the second end face face each other is housed in the first part.
    The welded pipe manufacturing apparatus according to claim 10.
  12.  前記第一真空室には、その内部空間に、前記送り機構によって前記第一入口から前記第一真空室の内部に送り込まれた前記帯状金属板の板面に溝を形成する溝形成ロールが収容され、
     前記成形ロールは、前記溝が形成された板面を内側に向けた状態で、前記帯状金属板が有する前記第一部分を湾曲させることにより前記管状体を成形する、
     請求項11に記載の溶接管の製造装置。
    The first vacuum chamber accommodates in its internal space a groove forming roll that forms grooves on the plate surface of the strip-shaped metal plate fed into the first vacuum chamber from the first inlet by the feeding mechanism. is,
    The forming roll forms the tubular body by curving the first portion of the band-shaped metal plate with the plate surface on which the grooves are formed facing inward.
    The welded pipe manufacturing apparatus according to claim 11.
  13.  前記第一真空室の前記第一入口がある側で前記第一真空室と隣接し、前記第一真空室よりも真空度が低い第二真空室と、
     前記第一真空室の前記第一出口がある側で前記第一真空室と隣接し、前記第一真空室よりも真空度が低い第三真空室と、
     をさらに備え、
     前記第二真空室は、前記送り機構によって、前記帯状金属板が前記一端側から送り込まれていく第二入口と、前記送り機構によって前記帯状金属板が前記一端側から前記第二入口に送り込まれていくことにより、前記帯状金属板が前記一端側から送り出されていく第二出口と、を有し、前記第二出口が前記第一入口とつながることにより、前記第一真空室と連通し、
     前記第三真空室は、前記送り機構によって前記第一出口から送り出される、前記帯状金属板の前記第一部分に作製された前記溶接管が送り込まれていく第三入口と、前記送り機構によって前記帯状金属板の前記第一部分に作製された前記溶接管が前記第三入口に送り込まれていくことにより、前記溶接管が送り出されていく第三出口と、を有し、前記第三入口が前記第一出口とつながることにより、前記第一真空室と連通する、
     請求項11または12に記載の溶接管の製造装置。
    a second vacuum chamber adjacent to the first vacuum chamber on the side where the first inlet of the first vacuum chamber is located and having a lower degree of vacuum than the first vacuum chamber;
    a third vacuum chamber adjacent to the first vacuum chamber on the side where the first outlet of the first vacuum chamber is located and having a lower degree of vacuum than the first vacuum chamber;
    Furthermore,
    The second vacuum chamber includes a second inlet into which the band-shaped metal plate is fed from the one end side by the feeding mechanism, and a second inlet into which the band-shaped metal plate is fed from the one end side by the feeding mechanism. a second outlet through which the band-shaped metal plate is sent out from the one end side, and the second outlet is connected to the first inlet, thereby communicating with the first vacuum chamber;
    The third vacuum chamber includes a third inlet into which the welded pipe produced in the first portion of the band-shaped metal plate is sent out from the first outlet by the feeding mechanism, and a third inlet into which the welded pipe produced in the first portion of the band-shaped metal plate is fed by the feeding mechanism, and a third outlet through which the welded pipe made on the first portion of the metal plate is fed into the third inlet, and the third inlet is connected to the third inlet. communicating with the first vacuum chamber by connecting with one outlet;
    The welded pipe manufacturing apparatus according to claim 11 or 12.
  14.  前記第一入口、前記第二入口および前記第二出口は、前記帯状金属板が挿通された状態で、平板状の前記帯状金属板との間に前記帯状金属板が摺動可能な第一隙間を有し、
     前記第一出口、前記第三入口および前記第三出口は、前記帯状金属板の前記第一部分に作製された前記溶接管が挿通された状態で、前記溶接管との間に前記溶接管が摺動可能な第二隙間を有する、
     請求項13に記載の溶接管の製造装置。
    The first inlet, the second inlet, and the second outlet are a first gap in which the band-shaped metal plate can slide between the flat metal plate and the band-shaped metal plate with the band-shaped metal plate inserted therethrough. has
    The first outlet, the third inlet, and the third outlet are arranged so that the welded pipe is inserted between the welded pipe and the first portion of the band-shaped metal plate. having a movable second gap;
    The welded pipe manufacturing apparatus according to claim 13.
  15.  前記溶接管の前記第一真空室の外側にある一端が封止され、前記溶接管の内部空間が前記第一真空室の内部と同じ真空である、
     請求項10から14のいずれか1項に記載の溶接管の製造装置。
    one end of the welded tube outside the first vacuum chamber is sealed, and the internal space of the welded tube is at the same vacuum as the inside of the first vacuum chamber;
    The welded pipe manufacturing apparatus according to any one of claims 10 to 14.
  16.  前記第一真空室の内部空間の真空度を測定する真空ゲージと、
     前記真空ゲージの測定値に基づいて、前記電子ビーム溶接機が作製した前記溶接管の溶接欠陥の有無を判定する制御装置と、
     をさらに備える、
     請求項10から15のいずれか1項に記載の溶接管の製造装置。
    a vacuum gauge that measures the degree of vacuum in the internal space of the first vacuum chamber;
    a control device that determines the presence or absence of a welding defect in the welded pipe produced by the electron beam welding machine based on the measured value of the vacuum gauge;
    further comprising,
    The welded pipe manufacturing apparatus according to any one of claims 10 to 15.
  17.  前記第一真空室と連通する空間にある気体に電子が衝突することにより発せられる光のスペクトルを測定して気体の圧力を求めることにより、前記第一真空室の内部空間の真空度を求める光学式リークディテクタと、
     前記光学式リークディテクタが求めた前記内部空間の真空度に基づいて、前記電子ビーム溶接機が作製した前記溶接管の溶接欠陥の有無を判定する制御装置と、
     をさらに備える、
     請求項10から15のいずれか1項に記載の溶接管の製造装置。
    Optics for determining the degree of vacuum in the internal space of the first vacuum chamber by measuring the spectrum of light emitted when electrons collide with the gas in the space communicating with the first vacuum chamber to determine the pressure of the gas. formula leak detector,
    a control device that determines whether there is a welding defect in the welded pipe produced by the electron beam welding machine based on the degree of vacuum in the internal space determined by the optical leak detector;
    further comprising,
    The welded pipe manufacturing apparatus according to any one of claims 10 to 15.
PCT/JP2023/020822 2022-06-13 2023-06-05 Welded tube manufacturing method and welded tube manufacturing apparatus WO2023243462A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022095328 2022-06-13
JP2022-095328 2022-06-13

Publications (1)

Publication Number Publication Date
WO2023243462A1 true WO2023243462A1 (en) 2023-12-21

Family

ID=89191134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020822 WO2023243462A1 (en) 2022-06-13 2023-06-05 Welded tube manufacturing method and welded tube manufacturing apparatus

Country Status (1)

Country Link
WO (1) WO2023243462A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836049A (en) * 1971-09-07 1973-05-28
JPS53115126U (en) * 1977-02-23 1978-09-13
JPS55122986U (en) * 1979-02-21 1980-09-01
JPS6060584A (en) * 1983-09-14 1985-04-08 株式会社日立製作所 Composite type coated pipe and manufacture thereof
JPH0455071A (en) * 1990-06-26 1992-02-21 Nec Corp Partial vacuum type fully automatic electron beam welding device and method therefor
JPH06269956A (en) * 1993-03-18 1994-09-27 Hitachi Ltd Partial vacuum electron beam welding equipment and method thereof
JP2002126846A (en) * 2000-10-25 2002-05-08 Mitsubishi Shindoh Co Ltd Manufacturing device for roll for form rolling for form rolling work and heat transfer tube with groove on internal face

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836049A (en) * 1971-09-07 1973-05-28
JPS53115126U (en) * 1977-02-23 1978-09-13
JPS55122986U (en) * 1979-02-21 1980-09-01
JPS6060584A (en) * 1983-09-14 1985-04-08 株式会社日立製作所 Composite type coated pipe and manufacture thereof
JPH0455071A (en) * 1990-06-26 1992-02-21 Nec Corp Partial vacuum type fully automatic electron beam welding device and method therefor
JPH06269956A (en) * 1993-03-18 1994-09-27 Hitachi Ltd Partial vacuum electron beam welding equipment and method thereof
JP2002126846A (en) * 2000-10-25 2002-05-08 Mitsubishi Shindoh Co Ltd Manufacturing device for roll for form rolling for form rolling work and heat transfer tube with groove on internal face

Similar Documents

Publication Publication Date Title
RU2564534C2 (en) Plasma torch
CN102066040B (en) The manufacture method of laser welding steel pipe
WO2023243462A1 (en) Welded tube manufacturing method and welded tube manufacturing apparatus
EP3269489B1 (en) Electric resistance welded stainless clad steel pipe and method of manufacturing same
JP5633311B2 (en) Metal circular pipe manufacturing apparatus and manufacturing method
US6787735B1 (en) Welding solid wire with high feeding performance
TWI497851B (en) Gas laser device and laser processing device
JP6103758B2 (en) Welding method of ERW steel pipe using seal box
US5939026A (en) Apparatus for processing gas by electron beam
JP2004535937A (en) Method for laser plasma hybrid welding
US20160288240A1 (en) Welding method for shell and tube
CN116372405A (en) Ultrasonic-assisted plasma arc-plug-in type CMT high-speed welding device and process
JP2008221335A (en) Method for manufacturing seam-welded steel pipe with good tenacity of weld
JP6060816B2 (en) ERW steel pipe welded shield system
KR101395793B1 (en) Device and method for manufacturing thin metal pipe
CN210322097U (en) Air guide gasket
Hamatani et al. Development of Laminar Plasma Shielded HF-ERW Process: Advanced Welding Process of HF-ERW 3
JP7154389B2 (en) Compressor manufacturing method
CN111934172A (en) Lath type carbon dioxide glass tube laser
JP2009280868A (en) Film deposition apparatus and film deposition method
KR102301512B1 (en) refrigerant pipe structure
JPH0857671A (en) Apparatus for producing laser welded pipe
KR102594269B1 (en) Plasma Torch
JP2015222616A (en) Electron beam device, and device and method for manufacturing filament for electron beam
JP2005340964A (en) Microwave supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823755

Country of ref document: EP

Kind code of ref document: A1