WO2023243445A1 - Filtration device - Google Patents

Filtration device Download PDF

Info

Publication number
WO2023243445A1
WO2023243445A1 PCT/JP2023/020673 JP2023020673W WO2023243445A1 WO 2023243445 A1 WO2023243445 A1 WO 2023243445A1 JP 2023020673 W JP2023020673 W JP 2023020673W WO 2023243445 A1 WO2023243445 A1 WO 2023243445A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration device
membrane
separation membrane
frame
filtration
Prior art date
Application number
PCT/JP2023/020673
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 高山
高志 宮本
泰 高原
Original Assignee
阿波製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿波製紙株式会社 filed Critical 阿波製紙株式会社
Publication of WO2023243445A1 publication Critical patent/WO2023243445A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration

Definitions

  • the present disclosure relates to a filtration device that is immersed in a processing tank to filter and purify a processing liquid.
  • a filtration device As a method for purifying organic pollutants contained in wastewater, a filtration device is used that combines activated sludge and a separation membrane to filter and purify wastewater using the Membrane Bio Reactor (MBR) method.
  • MLR Membrane Bio Reactor
  • Such separation membranes are generally used as a separation membrane unit in which a plurality of membranes are stacked in parallel and spaced apart.
  • an aeration device for aeration operation is arranged below the membrane surface of the separation membrane. Diffusion operation is a means of simultaneously cleaning the separation membrane with a gas-liquid multiphase flow and supplying oxygen consumed by microorganisms in activated sludge.
  • the air diffuser includes an air diffuser pipe, and the air diffuser pipe has an air diffuser hole.
  • the diffuser pipe is connected to a gas supply device such as a blower pump.
  • gas is supplied from the gas supply device to the aeration device via the aeration pipe, and the gas is ejected into the processing tank from the aeration hole of the aeration device, and the air lift effect of the ejected gas causes the air to be removed.
  • the upward flow of the gas-liquid multiphase flow is caused to act as a sweeping flow on the membrane surface of the separation membrane.
  • Such aeration operation suppresses the adhesion of a concentrated substance of suspended matter, that is, a cake layer, to the membrane surface, thereby achieving stable filtration of the filtration device.
  • the amount of air required to clean the separation membrane is significantly greater than the amount of oxygen consumed by microorganisms. If the amount of air supplied to the diffuser was simply reduced, the adhesion of the cake layer to the membrane surface and the rise in the pressure difference between the membranes would proceed at an accelerated pace, so it was necessary to continue feeding a large amount of air. For this reason, operating power for the blower accounts for most of the operating cost of MBR equipment, and there has been a demand for cost reduction in this area.
  • One object of the present disclosure is to provide a filtration device that enables stable filtration operation even when the amount of gas supplied to the aeration device is reduced, and that reduces the operating cost of the separation membrane.
  • the filtration device is immersed in a treatment liquid stored in a treatment tank to filter the treatment liquid, the filtration device having one or more membrane elements.
  • the filtration device is configured to be immersed in the processing liquid in the processing tank, and air is diffused from the aeration pipe to clean the membrane surface of the one or more separation membrane units
  • the filtration device further comprises: , comprising horizontal turbulence generation means for increasing a horizontal turbulence component with respect to each membrane surface of the one or more membrane elements with respect to the air diffused from the aeration pipe and rising from the lower part of the frame body.
  • the one or more membrane elements have a rectangular shape extending in one direction
  • the frame body has a rectangular shape extending in one direction.
  • the one or more separation membrane units are held such that the longitudinal direction of the membrane element is the vertical direction, and the horizontal turbulence generating means is configured to generate turbulence components along the transverse direction of the one or more membrane elements. can be configured to increase
  • the horizontal turbulence generation means is an open surface formed on a side surface of the frame body.
  • a filtration device that is immersed in a treatment liquid stored in a treatment tank and filters the treatment liquid, the filtration device having a membrane element.
  • the filtration device is configured to be immersed in the processing liquid of the processing tank, and the membrane surface of the one or more separation membrane units is cleaned by being diffused from the aeration tube, and the frame has an open side surface. It is a face.
  • the one or more separation membrane units hold a plurality of membrane elements in a stacked manner
  • the filtration device may further include a plurality of holding plates spaced apart from each other and covering a portion of the surface of the membrane element located at an end surface of the plurality of membrane elements.
  • the filtration device further includes a suction pipe that penetrates the plurality of membrane elements, and further includes a suction pipe that penetrates the plurality of membrane elements.
  • the element connects the outer peripheral edges of two stacked filter media to form a hollow space between the two filter media, and the suction pipe that penetrates the plurality of membrane elements connects the outer peripheral edges of the two stacked filter media.
  • the membrane element is connected to the hollow part of the element, and is configured to allow the processing liquid in the processing tank to permeate from the outside of the membrane element to the hollow part inside the membrane element, and to further transfer the processing liquid from the hollow part to the suction pipe to filter the processing liquid.
  • the suction pipe passes through the holding plate.
  • one of the above-mentioned side surfaces of the air diffuser is exposed from the frame.
  • the membrane element has a rectangular shape in plan view, and the one or more separation membrane units have a plurality of
  • the frame body holds the plurality of separation membrane units stacked in multiple stages in the longitudinal direction of the membrane element so as not to be lined up in the lateral direction of the membrane element.
  • the one or more separation membrane units are of a flat membrane type.
  • a plurality of filtration devices according to any one of the above aspects are arranged at a distance.
  • FIG. 1 is a perspective view showing a filtration device according to an embodiment of the present invention.
  • 2A is a plan view of the filtration device according to Embodiment 1
  • FIG. 2B is a front view
  • FIG. 2C is a side view
  • FIG. 2D is a bottom view of the filtration device according to Embodiment 1.
  • 3A is a plan view of the membrane unit of the filtration device of FIG. 2
  • FIG. 3B is a front view
  • FIG. 3C is a side view.
  • FIG. 3C is an enlarged cross-sectional view of the main part of FIG. 3C.
  • FIG. 2 is a plan view of five filtration devices arranged according to the first embodiment.
  • 3 is a perspective view showing a filtration device according to Comparative Example 1.
  • FIG. 7A is a plan view of a filtration device according to Comparative Embodiment 1
  • FIG. 7B is a front view
  • FIG. 7C is a side view.
  • FIG. 2 is a perspective view showing simulation results of the filtration device according to the first embodiment.
  • FIG. 3 is a perspective view showing simulation results of a filtration device according to Comparative Form 1;
  • FIG. 3 is a side view showing a simulation result of a fluid velocity vector of the filtration device according to the first embodiment.
  • FIG. 3 is a side view showing a simulation result of a fluid velocity vector of a filtration device according to Comparative Form 1;
  • FIG. 3 is a side view showing a simulation result of the velocity distribution of the filtration device according to the first embodiment.
  • FIG. 3 is a side view showing a simulation result of the velocity distribution of the filtration device according to Comparative Embodiment 1;
  • FIG. 3 is a perspective view showing simulation results of particle trajectories of the first filtration unit of the filtration device according to the first embodiment.
  • FIG. 3 is a perspective view showing simulation results of particle trajectories of the second filtration unit of the filtration device according to the first embodiment.
  • FIG. 3 is a perspective view showing simulation results of particle trajectories of the third filtration unit of the filtration device according to the first embodiment.
  • FIG. 7 is a perspective view showing simulation results of particle trajectories of the fourth filtration unit of the filtration device according to the first embodiment.
  • FIG. 6 is a perspective view showing simulation results of particle trajectories of the fifth filtration unit of the filtration device according to the first embodiment.
  • FIG. 7 is a perspective view showing simulation results of particle trajectories of the first filtration unit of the filtration device according to Comparative Form 1;
  • FIG. 3 is a perspective view showing simulation results of particle trajectories of a second filtration unit of a filtration device according to Comparative Form 1;
  • FIG. 3 is a perspective view showing simulation results of particle trajectories of a third filtration unit of a filtration device according to Comparative Form 1;
  • FIG. 7 is a perspective view showing simulation results of particle trajectories of the fourth filtration unit of the filtration device according to Comparative Form 1;
  • FIG. 7 is a perspective view showing simulation results of particle trajectories of the fifth filtration unit of the filtration device according to Comparative Form 1;
  • 2 is a graph showing the operating status of the filter devices according to Example 1 and Comparative Example 1.
  • each element constituting the present invention may be configured so that a plurality of elements are made of the same member so that one member serves as a plurality of elements, or conversely, the function of one member may be performed by a plurality of members. It can also be accomplished by sharing.
  • FIG. 1 is a perspective view showing a filtration device 100 according to an embodiment of the present invention
  • FIG. 2A is a top view of the filtration device 100 according to Example 1
  • FIG. 2B is a front view
  • FIG. 2C is a side view.
  • FIG. 2D is a bottom view
  • FIG. 3A is a plan view of the membrane unit 10 of the filtration device 100 of FIG. 2
  • FIG. 3B is a front view
  • FIG. 3C is a side view
  • FIG. 4 is an enlarged sectional view of the main part of FIG. It shows.
  • Such a filtration device 100 is immersed in a treatment liquid to be treated, such as purified water, sewage, human waste, industrial wastewater, etc. stored in a treatment tank such as a septic tank or a cleaning tank, and filters and cleans this treatment liquid. It is for.
  • the filtration device 100 shown in FIGS. 1 and 2 includes one or more separation membrane units 10, a suction pipe 40, a frame 20, and an air diffuser 30. (Separation membrane unit 10)
  • Each separation membrane unit 10 has one or more membrane elements 1.
  • the filtration device 100 includes six separation membrane units 10.
  • Each separation membrane unit 10 holds a plurality of membrane elements 1 in a stacked manner, as shown in FIGS. 3A and 3C. (Membrane element 1)
  • Each membrane element 1 has a rectangular shape extending in one direction. Further, each membrane element 1 connects the outer peripheral edges of two stacked filter media to form a hollow portion between the two filter media. Further, a spacer may be provided between the filter media to prevent the hollow portion from being blocked. Nonwoven fabric, tricot, etc. can be used for such a spacer.
  • the membrane element 1 can preferably be of a flat membrane type. However, in the present invention, a hollow fiber membrane may be used instead of a flat membrane. If the membrane element 1 is too thin to stand on its own, a membrane unit 10 having a structure in which a suction pipe 40 (described later) passes through the membrane element 1 and the filtrate flow path also serves as a support for the membrane element 1 can be suitably used.
  • a membrane is laminated on both ends of a flat plate made of thermoplastic synthetic resin such as ABS resin or polypropylene resin, with a nonwoven fabric mainly made of polyester resin being included as a spacer.
  • a membrane element formed by welding or gluing the peripheral edge of the membrane can also be used.
  • a hollow portion serving as a flow path for the filtrate may be arranged in the flat plate, and the hollow portion may be opened at the peripheral portion outside the bonded portion of the membrane to serve as a suction port.
  • the membrane element 1 in this form has sufficient rigidity to stand on its own, and can be placed alone in a frame 20, which will be described later. (Suction pipe 40)
  • the suction pipe 40 passes through the membrane element 1 and is connected to the hollow part of each membrane element 1, as shown in FIG.
  • the processing liquid in the processing tank is permeated from the outside of the membrane element 1 to the inner hollow part, and further transferred from the hollow part to the suction pipe 40 to filter the processing liquid.
  • a suction pipe 40 can be made of vinyl chloride or the like. (Holding plate 50)
  • the filtration device 100 may include a holding plate 50 that holds each element.
  • the example in FIG. 1 shows an example of the filtration device 100 that does not use the holding plate 50, and FIGS. 2A to 3C show examples in which the holding plate 50 is used.
  • Each membrane element 1 is held by a plurality of holding plates 50, as shown in FIG. 3B.
  • Each holding plate 50 is spaced apart from each other so as to cover a part of the surface of the membrane element 1 located at the end face of the plurality of membrane elements 1.
  • the rectangular membrane element 1 is held at three locations, namely the upper end, the center, and the lower end, by the holding plate 50.
  • each holding plate 50 forms a through hole through which the suction pipe 40 passes.
  • the suction pipe 40 penetrating each membrane element 1 can be fixed with the holding plate 50 while holding the plurality of membrane elements 1, and the strength of the connection can be stabilized.
  • a holding plate 50 a metal plate or the like can be used.
  • the frame body 20 is a member for holding the separation membrane unit 10.
  • the frame body 20 is configured in a frame shape and allows the separation membrane unit 10 to be placed in a shelf shape. Further, the upper surface, lower surface, and side surfaces of the frame body 20 are open. Furthermore, an air diffuser 30 is arranged at the lower part of the frame 20.
  • the frame 20 is divided into three stages, with the separation membrane unit 10 disposed in the upper two stages and the air diffuser 30 disposed in the lower stage.
  • the frame body 20 is divided into two stages, with the separation membrane unit 10 disposed in the upper stage and the air diffuser 30 in the lower stage.
  • FIGS. 1 the example shown in FIGS.
  • the separation membrane units 10 are arranged in two stages, upper and lower. Further, six separation membrane units 10 are arranged in each stage. However, the number of stages of the frame 20 and the number of separation membrane units 10 that can be held are not limited to these, and may be five or less, or seven or more.
  • the frame body 20 has open upper and lower surfaces as well as side surfaces without being blocked by walls or the like. By having such an open surface, a horizontal turbulence generating means 60, which will be described later, is configured.
  • Such a frame 20 can be constructed of a metal prism, angle iron, pipe, or the like. Note that in this specification, the "side surface" of the frame 20 or the air diffuser 30 described later refers to the surface shown in FIG. Refers to the exposed surface.
  • FIG. 2B is a front view of the filter device and FIG. 2C is a side view is merely a convenient name in consideration of ease of illustration, and the surface shown in FIG. 2C is a side view. It's not for calling. (Diffusion section 30)
  • the air diffuser 30 is provided at the bottom of the frame 20.
  • the air diffuser 30 includes an air diffuser pipe 32 connectable to an external blower pump. With the filtration device 100 immersed in the treatment liquid in the treatment tank, air is diffused from the aeration tube 32 to clean the membrane surface of the separation membrane unit 10. As shown in the bottom view of FIG. 2D, the air diffuser 30 has an air diffuser hole 34 for diffusing air at the bottom of the air diffuser pipe 32, but is not limited to this configuration. Alternatively, it may be opened into a branch pipe as shown in FIG.
  • the frame body 20 in which the air diffuser 30 is arranged does not have its side surfaces or upper and lower surfaces blocked by walls or the like. That is, the side surface of the air diffuser 30 is also exposed from the frame 20.
  • the side surface of the air diffuser 30 refers to the area indicated by A in FIG. 1 from the lower part of the area where the separation membrane unit 10 is placed to the area where the air diffuser pipe 32 is placed.
  • FIGS. 1, 2B, and 2C show a configuration in which the air diffuser 30 is arranged at the lower part of the frame 20, the structure is not limited to this, and the part where the air diffuser 30 is arranged is shown in the frame. It may be provided separately from the body 20. (Horizontal turbulence generating means 60)
  • the filtration device 100 further includes horizontal turbulence generation means for increasing horizontal turbulence components with respect to each membrane surface of the membrane element 1 with respect to the air diffused from the aeration pipe 32 and rising from the lower part of the frame 20. It is equipped with 60. With this configuration, the turbulence near the membrane during the aeration operation is increased, the cleaning effect on the membrane surface is improved, and the amount of aeration is reduced.
  • the separation membrane unit 10 is surrounded by a cylindrical or frame-shaped case with an open top and bottom so that all of the air sent in can be used efficiently for cleaning. This was common.
  • the filtration device 100 by including the horizontal turbulence generating means 60 as described above, in addition to the upward flow of the air diffused from the aeration section 30, the filtration device 100 also allows the air to flow in the horizontal direction.
  • a moving component can also be added to diffuse the turbulent flow, thereby increasing the cleaning effect on the membrane surface of the membrane element 1.
  • the same cleaning effect as before can be maintained, and the effect of reducing operating costs can also be obtained.
  • material costs and installation costs can be reduced, and the weight is reduced, making transportation and maintenance easier.
  • the frame 20 holds the separation membrane unit 10 in a position where the longitudinal direction of the membrane element 1 is in the vertical direction.
  • the horizontal turbulence generating means 60 increases the turbulence component along the transverse direction of the membrane element 1, so that an efficient membrane surface cleaning effect can be expected.
  • air bubbles and gas-liquid multiphase flow move along the longitudinal direction of the rectangular membrane element, resulting in a relatively long trajectory of movement on the membrane surface, resulting in separation.
  • the cleaning effect gradually decreases, and there is a concern that the cleaning of the upper part of the membrane element 1 in particular may become insufficient.
  • the cleaning effect of the separation membrane unit on the upper stage side becomes relatively weaker, making it difficult to obtain a uniform cleaning effect.
  • the separation membrane units 10 are stacked in multiple stages only in the longitudinal direction of the membrane element 1, and are held by the frame 20 so as not to be lined up in the transverse direction.
  • the cleaning effect can be enhanced by increasing the velocity component flowing along the direction. That is, as shown in FIG.
  • a specific example of the horizontal turbulence generating means 60 is an open surface formed on the side surface of the frame 20. That is, like the filtration device 900 according to Comparative Example 1 shown in FIG. 6, by not forming a wall surrounding the separation membrane unit 10 and opening the side surface of the frame 20, turbulence can be generated near the membrane surface. The inventors of the present invention have found that this can be easily caused (details will be described later).
  • the filtration device 100 is installed within the processing tank. At this time, the configuration is not limited to using only one filtration device 100, and a plurality of filtration devices 100 may be arranged apart from each other. As an example, in the example shown in FIG. 5, five filtration devices 100A, 100B, 100C, 100D, and 100E are spaced apart from each other and arranged side by side in the processing tank WT.
  • the average value of the horizontal component of the fluid velocity in the membrane surface area of the membrane element 1 is preferably 0.4 m/s or more.
  • the upper limit is not particularly limited, the realistically possible range is approximately 0.6 m/s or less.
  • a fluid analysis simulation test was conducted.
  • the filtration device according to Embodiment 1 the filtration device 100 shown in FIGS. 2A to 2C was used.
  • Comparative Embodiment 1 a filtration device 900 surrounded by an outer peripheral case 922 shown in FIGS. 7A to 7C was used.
  • the separation membrane unit 10 used in each filtration device consists of two sets of 15 membrane elements 1 with a thickness of 0.82 mm stacked with a gap of 7.08 mm, as shown in FIGS. 3A and 3C. .
  • a filtration device was constructed by stacking six layers of such separation membrane units 10 in two stages, as in FIG. 2B and the like.
  • a fluid analysis simulation was performed in which five of such filtration devices were arranged in a processing tank in both the first embodiment and the first comparative embodiment, as shown in FIG. 5.
  • the spacing between the filtration devices 100A, 100B, 100C, 100D, and 100E in FIG. 5 does not necessarily match the spacing during the simulation.
  • the five filtration devices are, in order from the left in FIG. 8 etc. described later, a first filtration unit 100A, a second filtration unit 100B, a third filtration unit 100C, a fourth filtration unit 100D, and a fifth filtration unit 100E.
  • the calculation conditions for the simulation are as follows.
  • a three-dimensional 1/2 model was used as the calculation model.
  • ANSYS FLUENT2020 R1 was used as the analysis code.
  • Time progression was STEADY.
  • the basic equations used were the continuity equation and the Navier-Stokes equation.
  • the k- ⁇ SST two-equation model was used as the turbulence model.
  • the mesh type was a mixed tetra and hexa mesh.
  • the number of meshes used in the analysis was 32,798,215 in Embodiment 1, 31,095,785 in Comparison Form 1, and the number of nodes was 72,777,660 in Embodiment 1 and 62,144,045 in Comparison Form 1. And so.
  • the blowing from the diffuser pipe was simulated using DPM.
  • the density of water was 1040 [kg/m 3 ], and the viscosity was 3.00 ⁇ 10 ⁇ 2 [Pa ⁇ s].
  • the density of the bubbles was set to 1.0596 [kg/m 3 ], and the particle diameter was set to 6 [mm].
  • all wall boundaries were non-slip walls. Bubbles that reached the top surface disappeared, and bubbles that reached other than the top surface were considered to be reflected. The reflective boundary of the bubble was made the default in Fluent.
  • the bubble flow rate was 945 [L/min] in Embodiment 1 and 1500 [L/min] in Comparative Embodiment 1. The reason why the amount of diffused air was reduced by 37% in advance was because it was intended to reduce the operating cost by reducing the amount of diffused air.
  • FIG. 8 is a perspective view showing the simulation results of the filtration device according to Embodiment 1
  • FIG. 9 is a perspective view showing the simulation results of the filtration device according to Comparative Embodiment 1
  • FIG. 10 is the filtration device according to Embodiment 1.
  • 11 is a side view showing the simulation results of the fluid velocity vector of the filtration device according to the first comparative embodiment
  • FIG. 12 is a side view showing the simulation results of the fluid velocity vector of the filtration device according to the first embodiment
  • FIG. 12 is a side view showing the simulation results of the fluid velocity vector of the filtration device according to the first embodiment
  • FIG. 13 is a side view showing the results
  • FIG. 13 is a side view showing the simulation results of the velocity distribution of the filtration device according to Comparative Embodiment 1.
  • FIGS. 10 to 13 show the innermost layer (the position of cross section x in FIG. 5).
  • FIGS. 14 to 23 are shown in FIGS. 14 to 23.
  • FIG. 14 is a perspective view showing a simulation result of the particle trajectory of the first filtration unit of the filtration device according to Embodiment 1
  • FIG. 15 is a perspective view showing the particle trajectory of the second filtration unit of the filtration device according to Embodiment 1.
  • FIG. 16 is a perspective view showing simulation results of particle trajectories of the third filtration unit of the filtration device according to Embodiment 1
  • FIG. 17 shows particles of the fourth filtration unit of the filtration device according to Embodiment 1.
  • FIG. 14 is a perspective view showing a simulation result of the particle trajectory of the first filtration unit of the filtration device according to Embodiment 1
  • FIG. 15 is a perspective view showing the particle trajectory of the second filtration unit of the filtration device according to Embodiment 1.
  • FIG. 16 is a perspective view showing simulation results of particle trajectories of the third filtration unit of the filtration device according to Embodiment
  • FIG. 18 is a perspective view showing simulation results of particle trajectories of the fifth filtration unit of the filtration device according to Embodiment 1
  • FIG. 19 is a perspective view of the first filtration unit of the filtration device according to Comparative Embodiment 1.
  • FIG. 20 is a perspective view showing simulation results of particle trajectories of the second filtration unit of the filtration device according to Comparative Form 1
  • FIG. 22 is a perspective view showing simulation results of particle trajectories of the filtration unit
  • FIG. 22 is a perspective view showing simulation results of particle trajectories of the fourth filtration unit of the filtration device according to comparative form 1
  • FIG. 23 is a perspective view of the filtration device according to comparative form 1.
  • Example 1 we prototyped the filtration devices according to Example 1 and Comparative Example 1 and actually operated them using activated sludge acclimated with organic wastewater as the treatment liquid. , and confirmed changes in its characteristics.
  • the amount of diffused air was set to 310 [L/min], which was 100% from 940 [L/min] in Comparative Example 1, and was reduced by 68% in Example 1.
  • the permeation flux (Flux) 0.27 [m 3 /m 2 /day] in Comparative Example 1 is taken as 100%, and in Example 1 it is 0.4 [m 3 /m 2 /day], which is increased by 48 % . day].
  • the activated sludge concentration (MLSS) in the treatment tank was measured according to JIS K0102.14.1 (2016).
  • a filter paper filtration test was conducted as an index of the ease of filtering (filtration properties) of the treatment liquid. Specifically, a circular filter paper (No. 5C manufactured by Advantech Toyo) was folded into pleats, moistened with distilled water, 50 ml of the treatment liquid was poured into it, and the amount of water permeated in 5 minutes was recorded. Table 1 shows the results of using the filtration devices according to Example 1 and Comparative Example 1.
  • Example 1 and Comparative Example 1 the operating conditions of the filtration devices according to Example 1 and Comparative Example 1 are shown in FIG. As shown in Table 1 and Figure 24, in a comparison of operation for 90 days and 180 days between Example 1 and Comparative Example 1, the degree of increase in differential pressure was almost the same, and the filterability of the treated liquid was also higher than that of Comparative Example 1. It was confirmed that even if the amount of air diffused was reduced to about 1/3 in bad conditions, a sufficient cleaning effect could be achieved. (physical properties)
  • Table 2 also shows the measurement results regarding the rigidity of the membrane element.
  • the handle-o-meter method and the Gurley method were measured according to JIS L1096 (2010), and the flexural modulus and tensile modulus were measured according to JIS K7171 (2016).
  • the filtration device according to the present invention is immersed in a treatment liquid to be treated, such as purified water, sewage, human waste, industrial wastewater, etc. stored in a treatment tank such as a septic tank or a cleaning tank, and filters and cleans this treatment liquid. It can be suitably used as a filtration device.
  • a treatment liquid to be treated such as purified water, sewage, human waste, industrial wastewater, etc. stored in a treatment tank such as a septic tank or a cleaning tank, and filters and cleans this treatment liquid. It can be suitably used as a filtration device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided is a filtration device capable of reducing the operating costs of a separation membrane. A filtration device 100 comprises: one or more separation membrane units 10 having one or membrane elements 1; a frame 20 that holds the one or more separation membrane units 10; and an air diffusion unit 30 that is provided to a lower portion of the frame 20 and comprises an air diffusion pipe 32 that can connect to an external blower pump. With the filtration device 100 submerged in a treatment solution in a treatment tank, air is diffused from the air diffusion pipe 32 to wash membrane surfaces in the one or more separation membrane units 10. The filtration device 100 further comprises a horizontal turbulence generation means 60 for increasing a horizontal turbulence component against the membrane surfaces in the one or more separation membrane elements 1 with respect to the air diffused from the air diffusion pipe 32 and rising from the lower portion of the frame 20. This configuration can enhance washing effectiveness by increasing a horizontal movement component in addition to the upward movement of air flowing over the membrane surfaces.

Description

濾過装置filtration device
 本開示は、処理槽に浸漬されて処理液を濾過して浄化する濾過装置に関する。 The present disclosure relates to a filtration device that is immersed in a processing tank to filter and purify a processing liquid.
 排水中に含まれる有機性の汚濁物質を浄化処理する方法として、活性汚泥と分離膜を組合わせて膜分離活性汚泥法(Membrane Bio Reactor:MBR)により廃水を濾過して浄化する濾過装置が利用されている(例えば特許文献1)。このような分離膜は、一般に複数枚を平行姿勢で離間させた状態に積層した分離膜ユニットとして利用される。また分離膜の膜面の下方には散気運転のための散気装置が配置される。散気運転は、気液混相流で分離膜を洗浄する動作と、活性汚泥中の微生物が消費する酸素の供給を同時に行う手段である。散気装置は散気管を備え、散気管は散気孔を開口している。また散気管はブロワポンプ等の気体供給装置に接続している。このような濾過装置においては、気体供給装置から散気管を介して散気装置に気体を供給し、散気装置の散気孔から処理槽内に気体を噴出させ、噴出する気体のエアリフト作用によって生起される気液混相流の上向流を、分離膜の膜面に掃流として作用させる。このような散気運転によって、膜面に対する懸濁物質の濃縮物、すなわちケーキ層の付着を抑制して、濾過装置の安定した濾過が図られる。 As a method for purifying organic pollutants contained in wastewater, a filtration device is used that combines activated sludge and a separation membrane to filter and purify wastewater using the Membrane Bio Reactor (MBR) method. (For example, Patent Document 1). Such separation membranes are generally used as a separation membrane unit in which a plurality of membranes are stacked in parallel and spaced apart. Further, an aeration device for aeration operation is arranged below the membrane surface of the separation membrane. Diffusion operation is a means of simultaneously cleaning the separation membrane with a gas-liquid multiphase flow and supplying oxygen consumed by microorganisms in activated sludge. The air diffuser includes an air diffuser pipe, and the air diffuser pipe has an air diffuser hole. Further, the diffuser pipe is connected to a gas supply device such as a blower pump. In such a filtration device, gas is supplied from the gas supply device to the aeration device via the aeration pipe, and the gas is ejected into the processing tank from the aeration hole of the aeration device, and the air lift effect of the ejected gas causes the air to be removed. The upward flow of the gas-liquid multiphase flow is caused to act as a sweeping flow on the membrane surface of the separation membrane. Such aeration operation suppresses the adhesion of a concentrated substance of suspended matter, that is, a cake layer, to the membrane surface, thereby achieving stable filtration of the filtration device.
 このような濾過装置においては、微生物が消費する酸素量よりも、分離膜の洗浄に必要となるエアーの量の方が大幅に多い。単純に散気装置に供給するエアー量を減らすと、膜面へのケーキ層の付着と膜間差圧の上昇が加速度的に進行するため、大量のエアーを絶え間なく送り続ける必要があった。このためMBR設備の運転費用は、ブロワの運転動力が大部分を占めており、この部分のコスト削減が求められていた。 In such a filtration device, the amount of air required to clean the separation membrane is significantly greater than the amount of oxygen consumed by microorganisms. If the amount of air supplied to the diffuser was simply reduced, the adhesion of the cake layer to the membrane surface and the rise in the pressure difference between the membranes would proceed at an accelerated pace, so it was necessary to continue feeding a large amount of air. For this reason, operating power for the blower accounts for most of the operating cost of MBR equipment, and there has been a demand for cost reduction in this area.
特開2008-246357号公報Japanese Patent Application Publication No. 2008-246357
 本開示の目的の一は、散気装置へ供給する気体の量を少なくしても安定した濾過運転を可能として、分離膜の運用コストの削減が可能な濾過装置を提供することにある。 One object of the present disclosure is to provide a filtration device that enables stable filtration operation even when the amount of gas supplied to the aeration device is reduced, and that reduces the operating cost of the separation membrane.
課題を解決するための手段及び発明の効果Means for solving the problem and effects of the invention
 本発明の第1の側面に係る濾過装置によれば、処理槽に蓄えられた処理液に浸漬されて、該処理液を濾過するための濾過装置であって、一以上の膜エレメントを有する一以上の分離膜ユニットと、前記一以上の分離膜ユニットを保持する枠体と、前記枠体の下部に設けられ、外部のブロワポンプに接続可能な散気管を備える散気部と、を備え、前記濾過装置を処理槽の処理液に浸漬した状態で、前記散気管からエアーが散気されて前記一以上の分離膜ユニットの膜面を洗浄するよう構成されており、前記濾過装置は、さらに、前記散気管から散気され前記枠体の下部から上昇するエアーに対し、前記一以上の膜エレメントの各膜面に対して水平方向の乱流成分を増加させる水平方向乱流生成手段を備えることができる。上記構成により、膜面を流れるエアーの上昇方向に加えて水平方法への移動成分を増加させて洗浄効果を高めることができる。 According to the first aspect of the present invention, the filtration device is immersed in a treatment liquid stored in a treatment tank to filter the treatment liquid, the filtration device having one or more membrane elements. The above separation membrane unit, a frame holding the one or more separation membrane units, and an aeration section provided at the lower part of the frame and equipped with an aeration pipe connectable to an external blower pump, The filtration device is configured to be immersed in the processing liquid in the processing tank, and air is diffused from the aeration pipe to clean the membrane surface of the one or more separation membrane units, and the filtration device further comprises: , comprising horizontal turbulence generation means for increasing a horizontal turbulence component with respect to each membrane surface of the one or more membrane elements with respect to the air diffused from the aeration pipe and rising from the lower part of the frame body. be able to. With the above configuration, the cleaning effect can be enhanced by increasing the moving component of the air flowing on the membrane surface in the horizontal direction in addition to the upward direction.
 また、本発明の第2の側面に係る濾過装置によれば、上記側面であって、前記一以上の膜エレメントが、一方向に延長された矩形状であり、前記枠体は、前記一以上の膜エレメントの長手方向が鉛直方向となるように前記一以上の分離膜ユニットを保持しており、前記水平方向乱流生成手段は、前記一以上の膜エレメントの短手方向に沿う乱流成分を増加させるよう構成できる。 Further, according to the filtration device according to the second aspect of the present invention, in the aspect, the one or more membrane elements have a rectangular shape extending in one direction, and the frame body has a rectangular shape extending in one direction. The one or more separation membrane units are held such that the longitudinal direction of the membrane element is the vertical direction, and the horizontal turbulence generating means is configured to generate turbulence components along the transverse direction of the one or more membrane elements. can be configured to increase
 さらに、本発明の第3の側面に係る濾過装置によれば、上記いずれかの側面であって、前記水平方向乱流生成手段が、前記枠体の側面に形成された開放面である。上記構成により、従来必要とされてきた濾過装置ケースの側板を除去することで、散気運転中の膜近傍の乱流を増加させ、膜面の洗浄効果を向上させ、散気量の低減を実現している。 Furthermore, according to the filtration device according to the third aspect of the present invention, in any one of the above-mentioned side surfaces, the horizontal turbulence generation means is an open surface formed on a side surface of the frame body. With the above configuration, by removing the side plate of the filtration device case that was previously required, turbulence near the membrane during aeration operation is increased, the cleaning effect on the membrane surface is improved, and the amount of aeration is reduced. It has been realized.
 さらにまた、本発明の第4の側面に係る濾過装置によれば、処理槽に蓄えられた処理液に浸漬されて、該処理液を濾過するための濾過装置であって、膜エレメントを有する一以上の分離膜ユニットと、前記一以上の分離膜ユニットを保持する枠体と、前記枠体の下部に設けられ、外部のブロワポンプに接続可能な散気管を備える散気部と、を備え、前記濾過装置を処理槽の処理液に浸漬した状態で、前記散気管から散気されて前記一以上の分離膜ユニットの膜面を洗浄するよう構成されており、前記枠体は、側面を開放面としている。上記構成により、従来必要とされてきた濾過装置ケースの側板を除去することで、散気運転中の膜近傍の乱流を増加させ、膜面の洗浄効果を向上させ、散気量の低減を実現している。 Furthermore, according to a fourth aspect of the present invention, there is provided a filtration device that is immersed in a treatment liquid stored in a treatment tank and filters the treatment liquid, the filtration device having a membrane element. The above separation membrane unit, a frame holding the one or more separation membrane units, and an aeration section provided at the lower part of the frame and equipped with an aeration pipe connectable to an external blower pump, The filtration device is configured to be immersed in the processing liquid of the processing tank, and the membrane surface of the one or more separation membrane units is cleaned by being diffused from the aeration tube, and the frame has an open side surface. It is a face. With the above configuration, by removing the side plate of the filtration device case that was previously required, turbulence near the membrane during aeration operation is increased, the cleaning effect on the membrane surface is improved, and the amount of aeration is reduced. It has been realized.
 さらにまた、本発明の第5の側面に係る濾過装置によれば、上記いずれかの側面であって、前記一以上の分離膜ユニットは、複数枚の膜エレメントを積層して保持しており、前記濾過装置は、さらに、前記複数枚の膜エレメントの端面に位置する膜エレメントの表面の一部を覆う、互いに離間された複数の保持プレートを備えることができる。 Furthermore, according to the filtration device according to the fifth aspect of the present invention, in any one of the above aspects, the one or more separation membrane units hold a plurality of membrane elements in a stacked manner, The filtration device may further include a plurality of holding plates spaced apart from each other and covering a portion of the surface of the membrane element located at an end surface of the plurality of membrane elements.
 さらにまた、本発明の第6の側面に係る濾過装置によれば、上記いずれかの側面であって、さらに、前記複数枚の膜エレメントを貫通する吸引パイプを備えており、前記複数枚の膜エレメントは、積層された2枚の濾材の外周縁部を連結し、前記2枚の濾材の間に中空部を形成しており、前記複数枚の膜エレメントを貫通する前記吸引パイプは、各膜エレメントの中空部に連結されており、処理槽の処理液を、前記膜エレメントの外側から内側の前記中空部に透過させ、さらに前記中空部から前記吸引パイプに移送して処理液を濾過するよう構成されており、前記吸引パイプは、前記保持プレートを貫通している。 Furthermore, according to the filtration device according to the sixth aspect of the present invention, the filtration device according to any one of the above aspects further includes a suction pipe that penetrates the plurality of membrane elements, and further includes a suction pipe that penetrates the plurality of membrane elements. The element connects the outer peripheral edges of two stacked filter media to form a hollow space between the two filter media, and the suction pipe that penetrates the plurality of membrane elements connects the outer peripheral edges of the two stacked filter media. The membrane element is connected to the hollow part of the element, and is configured to allow the processing liquid in the processing tank to permeate from the outside of the membrane element to the hollow part inside the membrane element, and to further transfer the processing liquid from the hollow part to the suction pipe to filter the processing liquid. The suction pipe passes through the holding plate.
 さらにまた、本発明の第7の側面に係る濾過装置によれば、上記いずれかの側面であって、前記散気部の側面が、前記枠体から表出されている。 Furthermore, according to the filtration device according to the seventh aspect of the present invention, one of the above-mentioned side surfaces of the air diffuser is exposed from the frame.
 さらにまた、本発明の第8の側面に係る濾過装置によれば、上記いずれかの側面であって、前記膜エレメントが、平面視において長方形状であり、前記一以上の分離膜ユニットが、複数の分離膜ユニットを備えており、前記枠体が、前記複数の分離膜ユニットを、前記膜エレメントの長手方向に多段に積層し、前記膜エレメントの短手方向には並べないように保持している。上記構成により、膜面の短手方向に沿って流れるエアーの成分を増加させて洗浄効果を高めることができる。 Furthermore, according to the filtration device according to the eighth aspect of the present invention, in any one of the above aspects, the membrane element has a rectangular shape in plan view, and the one or more separation membrane units have a plurality of The frame body holds the plurality of separation membrane units stacked in multiple stages in the longitudinal direction of the membrane element so as not to be lined up in the lateral direction of the membrane element. There is. With the above configuration, the cleaning effect can be enhanced by increasing the components of the air flowing along the width direction of the membrane surface.
 さらにまた、本発明の第9の側面に係る濾過装置によれば、上記いずれかの側面であって、前記一以上の分離膜ユニットが、平膜型である。 Furthermore, according to the filtration device according to the ninth aspect of the present invention, in any one of the above aspects, the one or more separation membrane units are of a flat membrane type.
 さらにまた、本発明の第10の側面に係る濾過装置集合体によれば、上記いずれかの側面に係る濾過装置を複数台、離間して配置している。 Furthermore, according to the filtration device assembly according to the tenth aspect of the present invention, a plurality of filtration devices according to any one of the above aspects are arranged at a distance.
本発明の一実施形態に係る濾過装置を示す斜視図である。1 is a perspective view showing a filtration device according to an embodiment of the present invention. 図2Aは実施形態1に係る濾過装置の平面図、図2Bは正面図、図2Cは側面図である。2A is a plan view of the filtration device according to Embodiment 1, FIG. 2B is a front view, and FIG. 2C is a side view. 図2Dは実施形態1に係る濾過装置の底面図である。FIG. 2D is a bottom view of the filtration device according to Embodiment 1. 図3Aは図2の濾過装置の膜ユニットの平面図、図3Bは正面図、図3Cは側面図である。3A is a plan view of the membrane unit of the filtration device of FIG. 2, FIG. 3B is a front view, and FIG. 3C is a side view. 図3Cの要部拡大断面図である。FIG. 3C is an enlarged cross-sectional view of the main part of FIG. 3C. 実施形態1に係る濾過装置を5台並べた平面図である。FIG. 2 is a plan view of five filtration devices arranged according to the first embodiment. 比較例1に係る濾過装置を示す斜視図である。3 is a perspective view showing a filtration device according to Comparative Example 1. FIG. 図7Aは比較形態1に係る濾過装置の平面図、図7Bは正面図、図7Cは側面図である。7A is a plan view of a filtration device according to Comparative Embodiment 1, FIG. 7B is a front view, and FIG. 7C is a side view. 実施形態1に係る濾過装置のシミュレーション結果を示す斜視図である。FIG. 2 is a perspective view showing simulation results of the filtration device according to the first embodiment. 比較形態1に係る濾過装置のシミュレーション結果を示す斜視図である。FIG. 3 is a perspective view showing simulation results of a filtration device according to Comparative Form 1; 実施形態1に係る濾過装置の流体速度ベクトルのシミュレーション結果を示す側面図である。FIG. 3 is a side view showing a simulation result of a fluid velocity vector of the filtration device according to the first embodiment. 比較形態1に係る濾過装置の流体速度ベクトルのシミュレーション結果を示す側面図である。FIG. 3 is a side view showing a simulation result of a fluid velocity vector of a filtration device according to Comparative Form 1; 実施形態1に係る濾過装置の速度分布のシミュレーション結果を示す側面図である。FIG. 3 is a side view showing a simulation result of the velocity distribution of the filtration device according to the first embodiment. 比較形態1に係る濾過装置の速度分布のシミュレーション結果を示す側面図である。FIG. 3 is a side view showing a simulation result of the velocity distribution of the filtration device according to Comparative Embodiment 1; 実施形態1に係る濾過装置の第一濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図である。FIG. 3 is a perspective view showing simulation results of particle trajectories of the first filtration unit of the filtration device according to the first embodiment. 実施形態1に係る濾過装置の第二濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図である。FIG. 3 is a perspective view showing simulation results of particle trajectories of the second filtration unit of the filtration device according to the first embodiment. 実施形態1に係る濾過装置の第三濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図である。FIG. 3 is a perspective view showing simulation results of particle trajectories of the third filtration unit of the filtration device according to the first embodiment. 実施形態1に係る濾過装置の第四濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図である。FIG. 7 is a perspective view showing simulation results of particle trajectories of the fourth filtration unit of the filtration device according to the first embodiment. 実施形態1に係る濾過装置の第五濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図である。FIG. 6 is a perspective view showing simulation results of particle trajectories of the fifth filtration unit of the filtration device according to the first embodiment. 比較形態1に係る濾過装置の第一濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図である。FIG. 7 is a perspective view showing simulation results of particle trajectories of the first filtration unit of the filtration device according to Comparative Form 1; 比較形態1に係る濾過装置の第二濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図である。FIG. 3 is a perspective view showing simulation results of particle trajectories of a second filtration unit of a filtration device according to Comparative Form 1; 比較形態1に係る濾過装置の第三濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図である。FIG. 3 is a perspective view showing simulation results of particle trajectories of a third filtration unit of a filtration device according to Comparative Form 1; 比較形態1に係る濾過装置の第四濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図である。FIG. 7 is a perspective view showing simulation results of particle trajectories of the fourth filtration unit of the filtration device according to Comparative Form 1; 比較形態1に係る濾過装置の第五濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図である。FIG. 7 is a perspective view showing simulation results of particle trajectories of the fifth filtration unit of the filtration device according to Comparative Form 1; 実施例1、比較例1に係る濾過装置の運転状況を示すグラフである。2 is a graph showing the operating status of the filter devices according to Example 1 and Comparative Example 1.
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための例示であって、本発明は以下のものに限定されない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
[実施形態]
Embodiments of the present invention will be described below based on the drawings. However, the embodiment shown below is an illustration for embodying the technical idea of the present invention, and the present invention is not limited to the following. Moreover, this specification does not in any way specify the members shown in the claims to the members of the embodiments. In particular, the dimensions, materials, shapes, relative positions, etc. of the components described in the embodiments are not intended to limit the scope of the present invention, unless specifically stated, and are merely illustrative examples. It's nothing more than that. Note that the sizes, positional relationships, etc. of members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same names and symbols indicate the same or homogeneous members, and detailed descriptions will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured so that a plurality of elements are made of the same member so that one member serves as a plurality of elements, or conversely, the function of one member may be performed by a plurality of members. It can also be accomplished by sharing.
[Embodiment]
 本発明の一実施形態に係る濾過装置を図1~図4に示す。これらの図において、図1は本発明の一実施形態に係る濾過装置100を示す斜視図、図2Aは実施例1に係る濾過装置100の平面図、図2Bは正面図、図2Cは側面図、図2Dは底面図、図3Aは図2の濾過装置100の膜ユニット10の平面図、図3Bは正面図、図3Cは側面図、図4は図3cの要部拡大断面図を、それぞれ示している。このような濾過装置100は、浄化槽や洗浄槽等の処理槽に蓄えられた浄水、下水、し尿、産業廃水等の、処理対象の処理液に浸漬されて、この処理液を濾過して洗浄するためのものである。図1、図2に示す濾過装置100は、一以上の分離膜ユニット10と、吸引パイプ40と、枠体20と、散気部30を備える。
(分離膜ユニット10)
A filtration device according to an embodiment of the present invention is shown in FIGS. 1 to 4. In these figures, FIG. 1 is a perspective view showing a filtration device 100 according to an embodiment of the present invention, FIG. 2A is a top view of the filtration device 100 according to Example 1, FIG. 2B is a front view, and FIG. 2C is a side view. , FIG. 2D is a bottom view, FIG. 3A is a plan view of the membrane unit 10 of the filtration device 100 of FIG. 2, FIG. 3B is a front view, FIG. 3C is a side view, and FIG. 4 is an enlarged sectional view of the main part of FIG. It shows. Such a filtration device 100 is immersed in a treatment liquid to be treated, such as purified water, sewage, human waste, industrial wastewater, etc. stored in a treatment tank such as a septic tank or a cleaning tank, and filters and cleans this treatment liquid. It is for. The filtration device 100 shown in FIGS. 1 and 2 includes one or more separation membrane units 10, a suction pipe 40, a frame 20, and an air diffuser 30.
(Separation membrane unit 10)
 各分離膜ユニット10は、一以上の膜エレメント1を有する。図1、図2の例では、濾過装置100は6つの分離膜ユニット10を備えている。各分離膜ユニット10は、図3A、図3Cに示すように複数枚の膜エレメント1を積層して保持している。
(膜エレメント1)
Each separation membrane unit 10 has one or more membrane elements 1. In the example shown in FIGS. 1 and 2, the filtration device 100 includes six separation membrane units 10. Each separation membrane unit 10 holds a plurality of membrane elements 1 in a stacked manner, as shown in FIGS. 3A and 3C.
(Membrane element 1)
 各膜エレメント1は、一方向に延長された矩形状としている。また各膜エレメント1は、積層された2枚の濾材の外周縁部を連結し、2枚の濾材の間に中空部を形成している。また、中空部が閉塞することを防止するため、濾材の間にスペーサーを備えてもよい。このようなスペーサーには、不織布、トリコット等が利用できる。膜エレメント1は、平膜型が好適に利用できる。ただ本発明は、平膜に代えて中空糸膜を用いてもよい。膜エレメント1が薄く、自立できない場合は、後述する吸引パイプ40が膜エレメント1を貫通して、濾過液の流路が膜エレメント1の保持を兼ねる構造とした膜ユニット10が好適に利用できる。また、別の形態の膜エレメントとして、ABS樹脂、ポリプロピレン樹脂などの熱可塑性合成樹脂を用いた平板の両端に、主にポリエステル樹脂からなる不織布をスペーサーとして内包されたまま、膜を積層後、膜の周縁部を溶着または接着してなる膜エレメントも使用できる。この場合、平板に濾過液の流路となる中空部を配置して、膜の接着部の外側となる周縁部に開口して吸引口とすることができる。この形態の膜エレメント1は自立するのに十分な剛性があり、後述する枠体20にエレメント単体で配置できる。
(吸引パイプ40)
Each membrane element 1 has a rectangular shape extending in one direction. Further, each membrane element 1 connects the outer peripheral edges of two stacked filter media to form a hollow portion between the two filter media. Further, a spacer may be provided between the filter media to prevent the hollow portion from being blocked. Nonwoven fabric, tricot, etc. can be used for such a spacer. The membrane element 1 can preferably be of a flat membrane type. However, in the present invention, a hollow fiber membrane may be used instead of a flat membrane. If the membrane element 1 is too thin to stand on its own, a membrane unit 10 having a structure in which a suction pipe 40 (described later) passes through the membrane element 1 and the filtrate flow path also serves as a support for the membrane element 1 can be suitably used. In addition, as another type of membrane element, a membrane is laminated on both ends of a flat plate made of thermoplastic synthetic resin such as ABS resin or polypropylene resin, with a nonwoven fabric mainly made of polyester resin being included as a spacer. A membrane element formed by welding or gluing the peripheral edge of the membrane can also be used. In this case, a hollow portion serving as a flow path for the filtrate may be arranged in the flat plate, and the hollow portion may be opened at the peripheral portion outside the bonded portion of the membrane to serve as a suction port. The membrane element 1 in this form has sufficient rigidity to stand on its own, and can be placed alone in a frame 20, which will be described later.
(Suction pipe 40)
 吸引パイプ40は、図4に示すように、膜エレメント1を貫通して、各膜エレメント1の中空部に連結される。処理槽の処理液は、膜エレメント1の外側から内側の中空部に透過され、さらに中空部から吸引パイプ40に移送されて処理液を濾過する。このような吸引パイプ40は、塩化ビニール製等とできる。
(保持プレート50)
The suction pipe 40 passes through the membrane element 1 and is connected to the hollow part of each membrane element 1, as shown in FIG. The processing liquid in the processing tank is permeated from the outside of the membrane element 1 to the inner hollow part, and further transferred from the hollow part to the suction pipe 40 to filter the processing liquid. Such a suction pipe 40 can be made of vinyl chloride or the like.
(Holding plate 50)
 また濾過装置100は、各エレメントを保持する保持プレート50を備えてもよい。図1の例では保持プレート50を使用しない濾過装置100の例を、図2A~図3Cは保持プレート50を使用する例を、それぞれ示している。 Additionally, the filtration device 100 may include a holding plate 50 that holds each element. The example in FIG. 1 shows an example of the filtration device 100 that does not use the holding plate 50, and FIGS. 2A to 3C show examples in which the holding plate 50 is used.
 各膜エレメント1は、図3Bに示すように、複数の保持プレート50で保持される。各保持プレート50は、複数枚の膜エレメント1の端面に位置する膜エレメント1の表面の一部を覆うよう、互いに離間されている。図3B、図3Cの例では、長方形状の膜エレメント1の上端と中央と下端の3箇所を、保持プレート50で保持している。また各保持プレート50は、吸引パイプ40を貫通する貫通孔を形成している。これにより、図4に示すように複数枚の膜エレメント1を挟持しつつ、各膜エレメント1を貫通する吸引パイプ40を保持プレート50で固定し、接続の強度を安定させることができる。このような保持プレート50は、金属板等が利用できる。
(枠体20)
Each membrane element 1 is held by a plurality of holding plates 50, as shown in FIG. 3B. Each holding plate 50 is spaced apart from each other so as to cover a part of the surface of the membrane element 1 located at the end face of the plurality of membrane elements 1. In the examples shown in FIGS. 3B and 3C, the rectangular membrane element 1 is held at three locations, namely the upper end, the center, and the lower end, by the holding plate 50. Further, each holding plate 50 forms a through hole through which the suction pipe 40 passes. Thereby, as shown in FIG. 4, the suction pipe 40 penetrating each membrane element 1 can be fixed with the holding plate 50 while holding the plurality of membrane elements 1, and the strength of the connection can be stabilized. As such a holding plate 50, a metal plate or the like can be used.
(frame body 20)
 枠体20は、分離膜ユニット10を保持するための部材である。枠体20は、フレーム状に構成されて棚状に分離膜ユニット10を載置可能としている。また枠体20の上面や下面、側面を開放している。さらに枠体20の下部には、散気部30が配置される。図2A~図2Cに示す例では、枠体20は三段に分けられ、上二段に分離膜ユニット10が、下段に散気部30が、それぞれ配置される。また、図1に示す例では枠体20は二段に分けられ、上一段に分離膜ユニット10が、下段に散気部30が配置される。一方、図2A~図2Cに示す例では、分離膜ユニット10を上下2段に配置している。さらに分離膜ユニット10は、各段に6つ配置されている。ただ、枠体20の段数や保持可能な分離膜ユニット10の数はこれに制限されず、5つ以下、あるいは7つ以上としてもよい。枠体20は、上下面の他、側面も壁などで閉塞せず、開放している。このような開放面とすることで、後述する水平方向乱流生成手段60を構成している。このような枠体20は、金属製の角柱や山形鋼、パイプ等で構成できる。なお本明細書において枠体20や後述する散気部30の「側面」とは、図2Bに示す面、すなわち膜エレメント1を複数枚積層した分離膜ユニット10の、膜エレメント1同士の隙間が露出している面を指す。ここで、上述した図2Bを濾過装置の正面図、図2Cを側面図としたのは、図示する上での見易さを考慮した便宜上の名称に過ぎず、図2Cで示す面を側面と呼ぶためではない。
(散気部30)
The frame body 20 is a member for holding the separation membrane unit 10. The frame body 20 is configured in a frame shape and allows the separation membrane unit 10 to be placed in a shelf shape. Further, the upper surface, lower surface, and side surfaces of the frame body 20 are open. Furthermore, an air diffuser 30 is arranged at the lower part of the frame 20. In the example shown in FIGS. 2A to 2C, the frame 20 is divided into three stages, with the separation membrane unit 10 disposed in the upper two stages and the air diffuser 30 disposed in the lower stage. In the example shown in FIG. 1, the frame body 20 is divided into two stages, with the separation membrane unit 10 disposed in the upper stage and the air diffuser 30 in the lower stage. On the other hand, in the example shown in FIGS. 2A to 2C, the separation membrane units 10 are arranged in two stages, upper and lower. Further, six separation membrane units 10 are arranged in each stage. However, the number of stages of the frame 20 and the number of separation membrane units 10 that can be held are not limited to these, and may be five or less, or seven or more. The frame body 20 has open upper and lower surfaces as well as side surfaces without being blocked by walls or the like. By having such an open surface, a horizontal turbulence generating means 60, which will be described later, is configured. Such a frame 20 can be constructed of a metal prism, angle iron, pipe, or the like. Note that in this specification, the "side surface" of the frame 20 or the air diffuser 30 described later refers to the surface shown in FIG. Refers to the exposed surface. Here, the above-mentioned designation that FIG. 2B is a front view of the filter device and FIG. 2C is a side view is merely a convenient name in consideration of ease of illustration, and the surface shown in FIG. 2C is a side view. It's not for calling.
(Diffusion section 30)
 散気部30は、枠体20の下部に設けられる。散気部30は、外部のブロワポンプに接続可能な散気管32を備える。濾過装置100を処理槽の処理液に浸漬した状態で、散気管32からエアーが散気されて分離膜ユニット10の膜面を洗浄する。散気部30は、図2Dの底面図に示すように、散気管32の底面にエアーを散気するための散気孔34を開口しているが、この構成に限られず、側面又は天面、もしくは図1に示すように分岐管に開口してもよい。 The air diffuser 30 is provided at the bottom of the frame 20. The air diffuser 30 includes an air diffuser pipe 32 connectable to an external blower pump. With the filtration device 100 immersed in the treatment liquid in the treatment tank, air is diffused from the aeration tube 32 to clean the membrane surface of the separation membrane unit 10. As shown in the bottom view of FIG. 2D, the air diffuser 30 has an air diffuser hole 34 for diffusing air at the bottom of the air diffuser pipe 32, but is not limited to this configuration. Alternatively, it may be opened into a branch pipe as shown in FIG.
 散気部30を配置した枠体20は、側面や上下面を壁などで閉塞しない。すなわち散気部30の側面も、枠体20から表出されている。ここで散気部30の側面とは、分離膜ユニット10を配置した領域の下部から、散気管32を配置した領域まで、図1においてAで示す領域を指す。なお図1、図2B、図2C等の例では、枠体20の下部に散気部30を配置した構成を示しているが、この構成に限られず、散気部30を配置する部位を枠体20と別に設けてもよい。
(水平方向乱流生成手段60)
The frame body 20 in which the air diffuser 30 is arranged does not have its side surfaces or upper and lower surfaces blocked by walls or the like. That is, the side surface of the air diffuser 30 is also exposed from the frame 20. Here, the side surface of the air diffuser 30 refers to the area indicated by A in FIG. 1 from the lower part of the area where the separation membrane unit 10 is placed to the area where the air diffuser pipe 32 is placed. Note that although the examples in FIGS. 1, 2B, and 2C show a configuration in which the air diffuser 30 is arranged at the lower part of the frame 20, the structure is not limited to this, and the part where the air diffuser 30 is arranged is shown in the frame. It may be provided separately from the body 20.
(Horizontal turbulence generating means 60)
 濾過装置100はさらに、散気管32から散気され枠体20の下部から上昇するエアーに対し、膜エレメント1の各膜面に対して水平方向の乱流成分を増加させる水平方向乱流生成手段60を備えている。このような構成により、散気運転中の膜近傍の乱流を増加させ、膜面の洗浄効果を向上させて、散気量の低減を実現している。 The filtration device 100 further includes horizontal turbulence generation means for increasing horizontal turbulence components with respect to each membrane surface of the membrane element 1 with respect to the air diffused from the aeration pipe 32 and rising from the lower part of the frame 20. It is equipped with 60. With this configuration, the turbulence near the membrane during the aeration operation is increased, the cleaning effect on the membrane surface is improved, and the amount of aeration is reduced.
 従来のMBR設備の運転費用はブロワの運転動力が大部分を占めており、その削減が求められていた。このため従来の分離膜ユニット10においては、送り込んだエアーのすべてを効率良く洗浄に利用できるように、分離膜ユニットの周囲を、上下が開口した筒形や枠型のケースで囲うように構成することが一般的であった。 The operating cost of conventional MBR equipment is largely accounted for by the operating power of the blower, and there has been a need to reduce this cost. For this reason, in the conventional separation membrane unit 10, the separation membrane unit is surrounded by a cylindrical or frame-shaped case with an open top and bottom so that all of the air sent in can be used efficiently for cleaning. This was common.
 しかしながら、このような構成では分離膜ユニットの重量が増し、設置作業や洗浄、交換作業に必要な重機も大型化するという問題があった。また単純に散気量を減らすと、膜の細孔の閉塞(つまり)が急激に進行するという問題もあった。 However, such a configuration has the problem that the weight of the separation membrane unit increases and the size of the heavy machinery required for installation, cleaning, and replacement operations also increases. There is also the problem that simply reducing the amount of air diffused causes the pores of the membrane to become clogged rapidly.
 これに対し本実施形態に係る濾過装置100では、上述の通り水平方向乱流生成手段60を備えることで、散気部30から散気されるエアーの上向流に加えて、水平方向にも移動する成分も付加して乱流を拡散させ、膜エレメント1の膜面の洗浄効果を高めることができる。この結果、散気部30の散気量を低減しても従前と同様の洗浄効果を維持でき、運用コストの削減効果も得られる。また従来必要とされてきた分離膜ユニット10を囲む壁やケースを不要とすることで、材料コストや設置コストを低減でき、軽量化して運搬や維持管理も容易となる。 On the other hand, in the filtration device 100 according to the present embodiment, by including the horizontal turbulence generating means 60 as described above, in addition to the upward flow of the air diffused from the aeration section 30, the filtration device 100 also allows the air to flow in the horizontal direction. A moving component can also be added to diffuse the turbulent flow, thereby increasing the cleaning effect on the membrane surface of the membrane element 1. As a result, even if the amount of air diffused by the air diffuser 30 is reduced, the same cleaning effect as before can be maintained, and the effect of reducing operating costs can also be obtained. Furthermore, by eliminating the need for walls and cases surrounding the separation membrane unit 10, which were conventionally required, material costs and installation costs can be reduced, and the weight is reduced, making transportation and maintenance easier.
 図2Cの例では、枠体20は、膜エレメント1の長手方向が鉛直方向となる姿勢に分離膜ユニット10を保持している。このような濾過装置100において、水平方向乱流生成手段60が膜エレメント1の短手方向に沿う乱流成分を増加させることで、効率のよい膜面の洗浄効果が期待できる。すなわち従来の濾過装置の上昇流では、矩形状の膜エレメントの長手方向に沿ってエアーの気泡や気液混相流が移動することとなり、相対的に膜表面を移動する軌跡が長くなって、分離膜で濾過された固形分が濃縮して、処理液の濃度、粘度が上昇するため、洗浄効果が徐々に低下し、特に膜エレメント1の上方部分の洗浄が不十分となる懸念があった。特に分離膜ユニットを上下2段に重ねる構成においては、さらに上段側の分離膜ユニットの洗浄効果が相対的に弱くなり、均一な洗浄効果が得られ難くなる。またこれを防止するには洗浄効果を高めるため、散気量をさらに増す必要があって、消費電力やエアー量をさらに消耗することとなっていた。これに対し、水平方向乱流生成手段60でもって水平方向に移動する気泡や気液混相流の成分を増やすことで、矩形状の膜エレメント1の短手方向に横切るように移動する成分を増やし、相対的に低濃度の処理液が膜面に供給されることで、洗浄効果を高める効果が得られる。特に膜エレメント1の平面視において、膜エレメント1の長手方向にのみ分離膜ユニット10を多段に積層し、短手方向には並べないように枠体20で保持することで、膜面の短手方向に沿って流れる速度成分を増加させて洗浄効果を高めることができる。すなわち図2Cに示すように、縦置きの分離膜ユニット10を2行1列に配置することで、膜エレメント1の長手方向の側面には他の膜エレメント1が存在せず、処理液のみが存在するため、新鮮な処理液が散気部30で生成された気泡や気液混相流となって水平方向から膜表面に流れ込み、効率良く洗浄が行われる。 In the example of FIG. 2C, the frame 20 holds the separation membrane unit 10 in a position where the longitudinal direction of the membrane element 1 is in the vertical direction. In such a filtration device 100, the horizontal turbulence generating means 60 increases the turbulence component along the transverse direction of the membrane element 1, so that an efficient membrane surface cleaning effect can be expected. In other words, in the upward flow of conventional filtration devices, air bubbles and gas-liquid multiphase flow move along the longitudinal direction of the rectangular membrane element, resulting in a relatively long trajectory of movement on the membrane surface, resulting in separation. Since the solid content filtered through the membrane is concentrated and the concentration and viscosity of the treatment liquid are increased, the cleaning effect gradually decreases, and there is a concern that the cleaning of the upper part of the membrane element 1 in particular may become insufficient. In particular, in a configuration in which separation membrane units are stacked in two stages, upper and lower, the cleaning effect of the separation membrane unit on the upper stage side becomes relatively weaker, making it difficult to obtain a uniform cleaning effect. Furthermore, in order to prevent this, it is necessary to further increase the amount of air diffused in order to enhance the cleaning effect, resulting in further consumption of power and air. On the other hand, by increasing the components of bubbles and gas-liquid multiphase flow that move horizontally using the horizontal turbulence generating means 60, the components that move horizontally across the rectangular membrane element 1 are increased. By supplying a relatively low concentration treatment liquid to the membrane surface, the cleaning effect can be improved. In particular, in a plan view of the membrane element 1, the separation membrane units 10 are stacked in multiple stages only in the longitudinal direction of the membrane element 1, and are held by the frame 20 so as not to be lined up in the transverse direction. The cleaning effect can be enhanced by increasing the velocity component flowing along the direction. That is, as shown in FIG. 2C, by arranging the vertical separation membrane units 10 in two rows and one column, there are no other membrane elements 1 on the longitudinal side of the membrane element 1, and only the processing liquid is present. Because of this presence, fresh processing liquid becomes bubbles generated in the air diffuser 30 and gas-liquid multiphase flow and flows horizontally onto the membrane surface, thereby efficiently cleaning the membrane.
 水平方向乱流生成手段60の具体例としては、枠体20の側面に形成された開放面とできる。すなわち図6に示す比較例1に係る濾過装置900のように、分離膜ユニット10を囲むような壁を形成せず、枠体20の側面を開放することで、膜面の近傍に乱流を発生させ易くなることを、本願発明者らは見出した(詳細は後述)。 A specific example of the horizontal turbulence generating means 60 is an open surface formed on the side surface of the frame 20. That is, like the filtration device 900 according to Comparative Example 1 shown in FIG. 6, by not forming a wall surrounding the separation membrane unit 10 and opening the side surface of the frame 20, turbulence can be generated near the membrane surface. The inventors of the present invention have found that this can be easily caused (details will be described later).
 濾過装置100は、処理槽内に設置される。この際、濾過装置100を1台のみ使用する構成に限られず、複数台を離間して配置してもよい。一例として図5に示す例では、5台の濾過装置100A、100B、100C、100D、100Eを互いに離間させて処理槽WT内に並べて配置している。 The filtration device 100 is installed within the processing tank. At this time, the configuration is not limited to using only one filtration device 100, and a plurality of filtration devices 100 may be arranged apart from each other. As an example, in the example shown in FIG. 5, five filtration devices 100A, 100B, 100C, 100D, and 100E are spaced apart from each other and arranged side by side in the processing tank WT.
 一方で流体のシミュレーション解析において、膜エレメント1の膜面領域における流体速度の水平方向成分の平均値は、0.4m/s以上であることが好ましい。上限は特に制限されないが、現実的に可能な範囲は概ね0.6m/s以下である。
[シミュレーション試験]
On the other hand, in fluid simulation analysis, the average value of the horizontal component of the fluid velocity in the membrane surface area of the membrane element 1 is preferably 0.4 m/s or more. Although the upper limit is not particularly limited, the realistically possible range is approximately 0.6 m/s or less.
[Simulation test]
 ここで本実施形態に係る濾過装置100の有用性を確認するため、流体解析のシミュレーション試験を行った。ここでは実施形態1に係る濾過装置として、図2A~図2Cに示す濾過装置100を用いた。また比較形態1として、図7A~図7Cに示す外周ケース922で囲んだ濾過装置900を用いた。各濾過装置で用いた分離膜ユニット10は、厚さ0.82mmの膜エレメント1を隙間7.08mmで15枚積層したものを、図3A、図3C等に示すように2セット積層している。このような分離膜ユニット10を図2B等と同様、6層で2段に積層して濾過装置を構成した。さらにこのような濾過装置を、実施形態1、比較形態1共、図5に示すようにそれぞれ処理槽内に5台並べた状態での流体解析シミュレーションを行った。ただし図5における各濾過装置100A、100B、100C、100D、100E同士の間の配置間隔は、シミュレーション時の間隔と必ずしも一致しない。なお、5台の濾過装置は、後述する図8等において、左から順に第一濾過ユニット100A、第二濾過ユニット100B、第三濾過ユニット100C、第四濾過ユニット100D、第五濾過ユニット100Eとする。シミュレーションの計算条件は、以下の通りである。 Here, in order to confirm the usefulness of the filtration device 100 according to this embodiment, a fluid analysis simulation test was conducted. Here, as the filtration device according to Embodiment 1, the filtration device 100 shown in FIGS. 2A to 2C was used. Further, as Comparative Embodiment 1, a filtration device 900 surrounded by an outer peripheral case 922 shown in FIGS. 7A to 7C was used. The separation membrane unit 10 used in each filtration device consists of two sets of 15 membrane elements 1 with a thickness of 0.82 mm stacked with a gap of 7.08 mm, as shown in FIGS. 3A and 3C. . A filtration device was constructed by stacking six layers of such separation membrane units 10 in two stages, as in FIG. 2B and the like. Further, a fluid analysis simulation was performed in which five of such filtration devices were arranged in a processing tank in both the first embodiment and the first comparative embodiment, as shown in FIG. 5. However, the spacing between the filtration devices 100A, 100B, 100C, 100D, and 100E in FIG. 5 does not necessarily match the spacing during the simulation. In addition, the five filtration devices are, in order from the left in FIG. 8 etc. described later, a first filtration unit 100A, a second filtration unit 100B, a third filtration unit 100C, a fourth filtration unit 100D, and a fifth filtration unit 100E. . The calculation conditions for the simulation are as follows.
 まず計算モデルは、3次元1/2モデルを使用した。解析コードは、ANSYS FLUENT2020 R1を用いた。時間進行はSTEADYとした。また基礎方程式は、連続の式とナビエ・ストークス方程式を用いた。さらに乱流モデルはk-ωSST2方程式モデルを用いた。メッシュタイプはテトラ、ヘキサ混合メッシュとした。また解析に用いたメッシュ数は実施形態1が32,798,215、比較形態1が31,095,785、ノード数が実施形態1で72,777,660、比較形態1で62,144,045とした。また散気管からの吹込みはDPMで模擬した。なお物性値として、水の密度を1040[kg/m3]、粘度を3.00×10-2[Pa・s]とした。一方で、気泡の密度を1.0596[kg/m3]、粒子径を6[mm]とした。さらに壁面境界条件として、壁面境界は全て非滑り壁とした。上面に到達した気泡は消失、上面以外に到達した気泡は反射とした。気泡の反射境界をFluentのデフォルトとした。気泡流量は、実施形態1が945[L/min]、比較形態1が1500[L/min]とした。このように予め散気量を37%削減したのは、散気量低減による運転コスト削減を企図したが故である。 First, a three-dimensional 1/2 model was used as the calculation model. ANSYS FLUENT2020 R1 was used as the analysis code. Time progression was STEADY. The basic equations used were the continuity equation and the Navier-Stokes equation. Furthermore, the k-ωSST two-equation model was used as the turbulence model. The mesh type was a mixed tetra and hexa mesh. The number of meshes used in the analysis was 32,798,215 in Embodiment 1, 31,095,785 in Comparison Form 1, and the number of nodes was 72,777,660 in Embodiment 1 and 62,144,045 in Comparison Form 1. And so. In addition, the blowing from the diffuser pipe was simulated using DPM. As physical property values, the density of water was 1040 [kg/m 3 ], and the viscosity was 3.00×10 −2 [Pa·s]. On the other hand, the density of the bubbles was set to 1.0596 [kg/m 3 ], and the particle diameter was set to 6 [mm]. Furthermore, as a wall boundary condition, all wall boundaries were non-slip walls. Bubbles that reached the top surface disappeared, and bubbles that reached other than the top surface were considered to be reflected. The reflective boundary of the bubble was made the default in Fluent. The bubble flow rate was 945 [L/min] in Embodiment 1 and 1500 [L/min] in Comparative Embodiment 1. The reason why the amount of diffused air was reduced by 37% in advance was because it was intended to reduce the operating cost by reducing the amount of diffused air.
 この結果を図8~図13に示す。これらの図において、図8は実施形態1に係る濾過装置のシミュレーション結果を示す斜視図、図9は比較形態1に係る濾過装置のシミュレーション結果を示す斜視図、図10は実施形態1に係る濾過装置の流体速度ベクトルのシミュレーション結果を示す側面図、図11は比較形態1に係る濾過装置の流体速度ベクトルのシミュレーション結果を示す側面図、図12は実施形態1に係る濾過装置の速度分布のシミュレーション結果を示す側面図、図13は比較形態1に係る濾過装置の速度分布のシミュレーション結果を示す側面図を、それぞれ示している。なお図10~図13は、最奥レイヤー(図5における断面xの位置)を示している。 The results are shown in FIGS. 8 to 13. In these figures, FIG. 8 is a perspective view showing the simulation results of the filtration device according to Embodiment 1, FIG. 9 is a perspective view showing the simulation results of the filtration device according to Comparative Embodiment 1, and FIG. 10 is the filtration device according to Embodiment 1. 11 is a side view showing the simulation results of the fluid velocity vector of the filtration device according to the first comparative embodiment; FIG. 12 is a side view showing the simulation results of the fluid velocity vector of the filtration device according to the first embodiment; FIG. 12 is a side view showing the simulation results of the fluid velocity vector of the filtration device according to the first embodiment FIG. 13 is a side view showing the results, and FIG. 13 is a side view showing the simulation results of the velocity distribution of the filtration device according to Comparative Embodiment 1. Note that FIGS. 10 to 13 show the innermost layer (the position of cross section x in FIG. 5).
 これらの図に示すように、実施形態1に係る濾過装置では散気量が比較形態1よりも約37%減少しているにも拘わらず、各ユニット内部の流速には大きな差が見られない。その一方で実施形態1に係る濾過装置では、各ユニット内部で水平方向のベクトル成分が増加しており、低速領域(濃い青色)が減少していることが確認できた。 As shown in these figures, although the amount of air diffused in the filtration device according to Embodiment 1 is reduced by about 37% compared to Comparative Embodiment 1, there is no significant difference in the flow velocity inside each unit. . On the other hand, in the filtration device according to Embodiment 1, it was confirmed that the vector component in the horizontal direction was increasing inside each unit, and the low-speed region (dark blue) was decreasing.
 感覚的には、図7に示すように分離膜ユニット10の周囲を外周ケース922で囲んだ方が、散気部30からのエアーを集中して膜面に取り込むことができ、洗浄効果が高いかのように思われる。逆に外周ケース922をなくしてしまうと、散気部30からのエアーの一部は膜面に供給されずに分散されてしまい、洗浄性能が低下するようにも思われる。しかしながらシミュレーション結果によれば、分離膜ユニット10の周囲を外周ケース922で囲んだ濾過装置では、図11に示すように膜ユニットの表面を上昇した気泡や気液混相流が、濾過装置同士の間を降下するような縦方向の循環経路が形成されている様子が確認できる。その一方で分離膜ユニット10の周囲を囲まない開放面とした濾過装置では、図10において破線で囲んだ領域に示すように、膜面において水平方向(図において左右方向)の流体速度ベクトルが多く生成されていることが確認できる。この結果として、実施形態1では散気量を35%低減しているにも拘わらず、比較形態1と同様の洗浄効果が得られており、本実施形態に係る濾過装置の有用性が確認された。
(粒子軌跡のシミュレーション結果)
Intuitively, if the separation membrane unit 10 is surrounded by an outer case 922 as shown in FIG. 7, the air from the air diffuser 30 can be concentrated and taken into the membrane surface, resulting in a higher cleaning effect. It seems as if. On the other hand, if the outer peripheral case 922 is eliminated, part of the air from the air diffuser 30 will be dispersed without being supplied to the membrane surface, and it seems that the cleaning performance will be reduced. However, according to the simulation results, in a filtration device in which the separation membrane unit 10 is surrounded by an outer peripheral case 922, air bubbles and gas-liquid multiphase flow rising on the surface of the membrane unit can occur between the filtration devices, as shown in FIG. It can be seen that a vertical circulation path is formed that descends from the ground. On the other hand, in a filtration device with an open surface that does not surround the separation membrane unit 10, there are many fluid velocity vectors in the horizontal direction (horizontal direction in the figure) on the membrane surface, as shown in the area surrounded by the broken line in FIG. You can confirm that it is generated. As a result, although the amount of air diffused was reduced by 35% in Embodiment 1, the same cleaning effect as Comparative Embodiment 1 was obtained, and the usefulness of the filtration device according to this embodiment was confirmed. Ta.
(Particle trajectory simulation results)
 さらに、実施形態1、比較形態1に係る濾過装置を5台並べた各ユニットについて粒子軌跡をシミュレーションした結果を、図14~図23に示す。これらの図において、図14は実施形態1に係る濾過装置の第一濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図、図15は実施形態1に係る濾過装置の第二濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図、図16は実施形態1に係る濾過装置の第三濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図、図17は実施形態1に係る濾過装置の第四濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図、図18は実施形態1に係る濾過装置の第五濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図、図19は比較形態1に係る濾過装置の第一濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図、図20は比較形態1に係る濾過装置の第二濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図、図21は比較形態1に係る濾過装置の第三濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図、図22は比較形態1に係る濾過装置の第四濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図、図23は比較形態1に係る濾過装置の第五濾過ユニットの粒子軌跡のシミュレーション結果を示す斜視図を、それぞれ示している。これらの図に示すように、実施形態1に係る濾過装置では、比較形態1に比べて各濾過ユニットの側面方向に粒子軌跡が拡がっていること、すなわち乱流が水平方向に拡大されていることが確認できた。さらに言えば、濾過装置上部に達した気泡が、水面で消失することなく、濾過装置の周縁部及び濾過装置同士の間を通り再び底部へ下降する軌跡が確認でき、処理槽内の循環流が強くなっていることが示唆されている。
[実施例1、比較例1]
Furthermore, the results of simulating particle trajectories for each unit in which five filtration devices according to the first embodiment and the first comparative embodiment are arranged are shown in FIGS. 14 to 23. In these figures, FIG. 14 is a perspective view showing a simulation result of the particle trajectory of the first filtration unit of the filtration device according to Embodiment 1, and FIG. 15 is a perspective view showing the particle trajectory of the second filtration unit of the filtration device according to Embodiment 1. FIG. 16 is a perspective view showing simulation results of particle trajectories of the third filtration unit of the filtration device according to Embodiment 1, and FIG. 17 shows particles of the fourth filtration unit of the filtration device according to Embodiment 1. FIG. 18 is a perspective view showing simulation results of particle trajectories of the fifth filtration unit of the filtration device according to Embodiment 1, and FIG. 19 is a perspective view of the first filtration unit of the filtration device according to Comparative Embodiment 1. FIG. 20 is a perspective view showing simulation results of particle trajectories of the second filtration unit of the filtration device according to Comparative Form 1, and FIG. 22 is a perspective view showing simulation results of particle trajectories of the filtration unit, FIG. 22 is a perspective view showing simulation results of particle trajectories of the fourth filtration unit of the filtration device according to comparative form 1, and FIG. 23 is a perspective view of the filtration device according to comparative form 1. Perspective views showing simulation results of particle trajectories of the fifth filtration unit are each shown. As shown in these figures, in the filtration device according to Embodiment 1, compared to Comparative Embodiment 1, the particle trajectory spreads in the side direction of each filtration unit, that is, the turbulence is expanded in the horizontal direction. was confirmed. Furthermore, it can be seen that the air bubbles that reached the top of the filtration device did not disappear on the water surface, but instead passed through the periphery of the filtration device and between the filtration devices and descended to the bottom again, indicating that the circulating flow inside the treatment tank was It is suggested that it is getting stronger.
[Example 1, Comparative Example 1]
 さらに本実施形態の有用性を確認するため、実施例1及び比較例1に係る濾過装置を試作して、処理液として有機性排水を用いて馴養された活性汚泥を利用して実際に運用し、その特性変化を確認した。ここでは散気量を比較例1の940[L/min]を100%として、実施例1では68%減少させた310[L/min]とした。一方で透過流束(Flux)については比較例1の0.27[m3/m2/日]を100%として、実施例1では48%増加させた0.4[m3/m2/日]とした。処理槽内の活性汚泥濃度(MLSS)は、JIS K0102.14.1(2016)に従い測定した。また、処理液の濾過しやすさ(濾過性)の指標として、濾紙濾過試験を行った。具体的には、円形の濾紙(アドバンテック東洋製No.5C)をひだ状に折って蒸留水で湿らせ、処理液50mlを注ぎ5分間に透過した水量を記録した。これら実施例1及び比較例1に係る濾過装置を使用した結果を、表1に示す。 Furthermore, in order to confirm the usefulness of this embodiment, we prototyped the filtration devices according to Example 1 and Comparative Example 1 and actually operated them using activated sludge acclimated with organic wastewater as the treatment liquid. , and confirmed changes in its characteristics. Here, the amount of diffused air was set to 310 [L/min], which was 100% from 940 [L/min] in Comparative Example 1, and was reduced by 68% in Example 1. On the other hand, regarding the permeation flux (Flux), 0.27 [m 3 /m 2 /day] in Comparative Example 1 is taken as 100%, and in Example 1 it is 0.4 [m 3 /m 2 /day], which is increased by 48 % . day]. The activated sludge concentration (MLSS) in the treatment tank was measured according to JIS K0102.14.1 (2016). In addition, a filter paper filtration test was conducted as an index of the ease of filtering (filtration properties) of the treatment liquid. Specifically, a circular filter paper (No. 5C manufactured by Advantech Toyo) was folded into pleats, moistened with distilled water, 50 ml of the treatment liquid was poured into it, and the amount of water permeated in 5 minutes was recorded. Table 1 shows the results of using the filtration devices according to Example 1 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また実施例1と比較例1に係る濾過装置の運転状況を図24に示す。これら表1及び図24に示すように、実施例1と比較例1の90日間及び180日間の運転比較において、差圧上昇の程度はほぼ同等であり、処理液の濾過性も比較例1より悪い状況で散気量を約1/3に低減しても、十分な洗浄効果を発揮できることが確認された。
(物性)
Further, the operating conditions of the filtration devices according to Example 1 and Comparative Example 1 are shown in FIG. As shown in Table 1 and Figure 24, in a comparison of operation for 90 days and 180 days between Example 1 and Comparative Example 1, the degree of increase in differential pressure was almost the same, and the filterability of the treated liquid was also higher than that of Comparative Example 1. It was confirmed that even if the amount of air diffused was reduced to about 1/3 in bad conditions, a sufficient cleaning effect could be achieved.
(physical properties)
 また膜エレメントの剛性に関する測定結果を表2に示す。ハンドルオメータ法及びガーレ法はJIS L1096(2010)に、曲げ弾性率及び引張弾性率はJIS K7171(2016)に従い測定した。 Table 2 also shows the measurement results regarding the rigidity of the membrane element. The handle-o-meter method and the Gurley method were measured according to JIS L1096 (2010), and the flexural modulus and tensile modulus were measured according to JIS K7171 (2016).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明に係る濾過装置は、浄化槽や洗浄槽等の処理槽に蓄えられた浄水、下水、し尿、産業廃水等の、処理対象の処理液に浸漬されて、この処理液を濾過して洗浄する濾過装置として好適に利用できる。 The filtration device according to the present invention is immersed in a treatment liquid to be treated, such as purified water, sewage, human waste, industrial wastewater, etc. stored in a treatment tank such as a septic tank or a cleaning tank, and filters and cleans this treatment liquid. It can be suitably used as a filtration device.
100…濾過装置
100A…第一濾過ユニット;100B…第二濾過ユニット;100C…第三濾過ユニット;100D…第四濾過ユニット;100E…第五濾過ユニット
1…膜エレメント
10…分離膜ユニット
20…枠体
30…散気部
32…散気管
34…散気孔
40…吸引パイプ
50…保持プレート
60…水平方向乱流生成手段
900…濾過装置
922…外周ケース
WT…処理槽
100...Filtration device 100A...First filtration unit; 100B...Second filtration unit; 100C...Third filtration unit; 100D...Fourth filtration unit; 100E...Fifth filtration unit 1...Membrane element 10...Separation membrane unit 20...Frame Body 30...Aeration section 32...Aeration pipe 34...Aeration hole 40...Suction pipe 50...Holding plate 60...Horizontal turbulence generating means 900...Filtering device 922...Outer periphery case WT...Processing tank

Claims (10)

  1.  処理槽に蓄えられた処理液に浸漬されて、該処理液を濾過するための濾過装置であって、
     一以上の膜エレメントを有する一以上の分離膜ユニットと、
     前記一以上の分離膜ユニットを保持する枠体と、
     前記枠体の下部に設けられ、外部のブロワポンプに接続可能な散気管を備える散気部と、
    を備え、
     前記濾過装置を処理槽の処理液に浸漬した状態で、前記散気管からエアーが散気されて前記一以上の分離膜ユニットの膜面を洗浄するよう構成されており、
     前記濾過装置は、さらに、前記散気管から散気され前記枠体の下部から上昇するエアーに対し、前記一以上の膜エレメントの各膜面に対して水平方向の乱流成分を増加させる水平方向乱流生成手段を備えてなる濾過装置。
    A filtration device for filtering the processing liquid by being immersed in the processing liquid stored in the processing tank,
    one or more separation membrane units having one or more membrane elements;
    a frame holding the one or more separation membrane units;
    an air diffuser provided at the lower part of the frame body and equipped with an air diffuser pipe connectable to an external blower pump;
    Equipped with
    The filtration device is configured to be immersed in the processing liquid in the processing tank, and air is diffused from the aeration tube to clean the membrane surface of the one or more separation membrane units,
    The filtration device further includes a horizontal direction that increases a turbulence component in a horizontal direction with respect to each membrane surface of the one or more membrane elements with respect to the air diffused from the aeration tube and rising from the lower part of the frame. A filtration device comprising turbulence generating means.
  2.  請求項1に記載の濾過装置であって、
     前記一以上の膜エレメントが、一方向に延長された矩形状であり、
     前記枠体は、前記一以上の膜エレメントの長手方向が鉛直方向となるように前記一以上の分離膜ユニットを保持しており、
     前記水平方向乱流生成手段は、前記一以上の膜エレメントの短手方向に沿う乱流成分を増加させるよう構成されてなる濾過装置。
    The filtration device according to claim 1,
    The one or more membrane elements have a rectangular shape extending in one direction,
    The frame holds the one or more separation membrane units such that the longitudinal direction of the one or more membrane elements is in the vertical direction,
    The horizontal turbulence generation means is a filtration device configured to increase turbulence components along the width direction of the one or more membrane elements.
  3.  請求項1に記載の濾過装置であって、
     前記水平方向乱流生成手段が、前記枠体の側面に形成された開放面である濾過装置。
    The filtration device according to claim 1,
    The filtration device, wherein the horizontal turbulence generating means is an open surface formed on a side surface of the frame.
  4.  処理槽に蓄えられた処理液に浸漬されて、該処理液を濾過するための濾過装置であって、
     膜エレメントを有する一以上の分離膜ユニットと、
     前記一以上の分離膜ユニットを保持する枠体と、
     前記枠体の下部に設けられ、外部のブロワポンプに接続可能な散気管を備える散気部と、
    を備え、
     前記濾過装置を処理槽の処理液に浸漬した状態で、前記散気管から散気されて前記一以上の分離膜ユニットの膜面を洗浄するよう構成されており、
     前記枠体は、側面を開放面としてなる濾過装置。
    A filtration device for filtering the processing liquid by being immersed in the processing liquid stored in the processing tank,
    one or more separation membrane units having membrane elements;
    a frame holding the one or more separation membrane units;
    an air diffuser provided at the lower part of the frame body and equipped with an air diffuser pipe connectable to an external blower pump;
    Equipped with
    The filtration device is configured to be immersed in the processing liquid of the processing tank, and the membrane surface of the one or more separation membrane units is cleaned by being diffused from the aeration tube,
    The frame body has an open side surface in the filtration device.
  5.  請求項1~4のいずれか一項に記載の濾過装置であって、
     前記一以上の分離膜ユニットは、複数枚の膜エレメントを積層して保持しており、
     前記濾過装置は、さらに、
     前記複数枚の膜エレメントの端面に位置する膜エレメントの表面の一部を覆う、互いに離間された複数の保持プレートを備えてなる濾過装置。
    The filtration device according to any one of claims 1 to 4,
    The one or more separation membrane units hold a plurality of membrane elements in a stacked manner,
    The filtration device further includes:
    A filtration device comprising a plurality of holding plates spaced apart from each other and covering a part of the surface of the membrane element located at the end face of the plurality of membrane elements.
  6.  請求項5に記載の濾過装置であって、さらに、
     前記複数枚の膜エレメントを貫通する吸引パイプを備えており、
     前記複数枚の膜エレメントは、積層された2枚の濾材の外周縁部を連結し、前記2枚の濾材の間に中空部を形成しており、
     前記複数枚の膜エレメントを貫通する前記吸引パイプは、各膜エレメントの中空部に連結されており、処理槽の処理液を、前記膜エレメントの外側から内側の前記中空部に透過させ、さらに前記中空部から前記吸引パイプに移送して処理液を濾過するよう構成されており、
     前記吸引パイプは、前記保持プレートを貫通してなる濾過装置。
    The filtration device according to claim 5, further comprising:
    It is equipped with a suction pipe that penetrates the plurality of membrane elements,
    The plurality of membrane elements connect the outer peripheral edges of the two stacked filter media, and form a hollow part between the two filter media,
    The suction pipe that penetrates the plurality of membrane elements is connected to the hollow part of each membrane element, and allows the processing liquid in the processing tank to permeate from the outside of the membrane element to the hollow part inside the membrane element. It is configured to filter the processing liquid by transferring it from the hollow part to the suction pipe,
    The suction pipe is a filtration device formed by penetrating the holding plate.
  7.  請求項1~4のいずれか一項に記載の濾過装置であって、
     前記散気部の側面が、前記枠体から表出されてなる濾過装置。
    The filtration device according to any one of claims 1 to 4,
    A filtration device in which a side surface of the air diffuser is exposed from the frame.
  8.  請求項1~4のいずれか一項に記載の濾過装置であって、
     前記膜エレメントが、平面視において長方形状であり、
     前記一以上の分離膜ユニットが、複数の分離膜ユニットを備えており、
     前記枠体が、前記複数の分離膜ユニットを、前記膜エレメントの長手方向に多段に積層し、前記膜エレメントの短手方向には並べないように保持してなる濾過装置。
    The filtration device according to any one of claims 1 to 4,
    The membrane element has a rectangular shape in plan view,
    The one or more separation membrane units include a plurality of separation membrane units,
    A filtration device in which the frame body holds the plurality of separation membrane units stacked in multiple stages in the longitudinal direction of the membrane element so as not to be lined up in the lateral direction of the membrane element.
  9.  請求項1~4のいずれか一項に記載の濾過装置であって、
     前記一以上の分離膜ユニットが、平膜型である濾過装置。
    The filtration device according to any one of claims 1 to 4,
    A filtration device in which the one or more separation membrane units are of a flat membrane type.
  10.  請求項1~4のいずれか一項に記載の濾過装置を複数台、離間して配置してなる濾過装置集合体。 A filtration device assembly comprising a plurality of filtration devices according to any one of claims 1 to 4 arranged at a distance.
PCT/JP2023/020673 2022-06-13 2023-06-02 Filtration device WO2023243445A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-095193 2022-06-13
JP2022095193 2022-06-13

Publications (1)

Publication Number Publication Date
WO2023243445A1 true WO2023243445A1 (en) 2023-12-21

Family

ID=89191043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020673 WO2023243445A1 (en) 2022-06-13 2023-06-02 Filtration device

Country Status (1)

Country Link
WO (1) WO2023243445A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309380A (en) * 1995-05-17 1996-11-26 Mitsui Zosen Eng Kk Immersion film tank
JP2000271452A (en) * 1999-03-24 2000-10-03 Kubota Corp Structure of space case in multistage stack immersion type membrane separator
WO2009028435A1 (en) * 2007-08-27 2009-03-05 Toray Industries, Inc. Dipping type membrane separating device, water-purification treating device, water-purification treating method using the device
JP2010247086A (en) * 2009-04-16 2010-11-04 Unitika Ltd Flat membrane module and water treatment apparatus using the same
JP2011224452A (en) * 2010-04-19 2011-11-10 Meidensha Corp Membrane unit and membrane separation device
WO2012095992A1 (en) * 2011-01-14 2012-07-19 阿波製紙株式会社 Fitration device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309380A (en) * 1995-05-17 1996-11-26 Mitsui Zosen Eng Kk Immersion film tank
JP2000271452A (en) * 1999-03-24 2000-10-03 Kubota Corp Structure of space case in multistage stack immersion type membrane separator
WO2009028435A1 (en) * 2007-08-27 2009-03-05 Toray Industries, Inc. Dipping type membrane separating device, water-purification treating device, water-purification treating method using the device
JP2010247086A (en) * 2009-04-16 2010-11-04 Unitika Ltd Flat membrane module and water treatment apparatus using the same
JP2011224452A (en) * 2010-04-19 2011-11-10 Meidensha Corp Membrane unit and membrane separation device
WO2012095992A1 (en) * 2011-01-14 2012-07-19 阿波製紙株式会社 Fitration device

Similar Documents

Publication Publication Date Title
JP2008229628A (en) Water treatment apparatus and water treatment method
US7501060B2 (en) Wastewater treating system
JPH07155758A (en) Waste water treating device
JPWO2009028435A1 (en) Immersion type membrane separation device, water purification treatment device, and water purification treatment method using the same
JP2007061787A (en) Separation membrane module, water treatment apparatus and water treatment method using the apparatus
WO2023243445A1 (en) Filtration device
KR20170056107A (en) Aquatic plant
JP4795380B2 (en) Filter device for ornamental fish tank
KR100841428B1 (en) Foam filter for aquarium
JP2012096125A (en) Membrane-separation-type activated sludge process equipment and method for the same
CN211813829U (en) Medical sewage treatment integration equipment
JPWO2013103083A1 (en) Membrane separation method and membrane separation apparatus
JP2003112017A (en) Filtration membrane module and clean water producing method
TW202412926A (en) Filtration device
JP2000300964A (en) Hollow fiber membrane module
JP2001047046A (en) Membrane separation type water treatment apparatus
JP3979114B2 (en) Filtration membrane module and fresh water generation method
JP2022546913A (en) Systems and methods for supplying submerged membrane units
JP2001079576A (en) Private sewage treatment tank
JP2518567B2 (en) Air / water distributor for biofilm filter
JP2001259316A (en) Water tank filter
JP2002248323A (en) Filtering device
JPH06342A (en) Hollow-fiber membrane module and its assembly
JP2003071257A (en) Multi-stage superposing immersion type membrane separation apparatus
JP2003175319A (en) Membrane element, membrane module, water making apparatus and water making method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823738

Country of ref document: EP

Kind code of ref document: A1