WO2023243328A1 - Carbon dioxide recovering method and carbon dioxide recovering system - Google Patents

Carbon dioxide recovering method and carbon dioxide recovering system Download PDF

Info

Publication number
WO2023243328A1
WO2023243328A1 PCT/JP2023/019110 JP2023019110W WO2023243328A1 WO 2023243328 A1 WO2023243328 A1 WO 2023243328A1 JP 2023019110 W JP2023019110 W JP 2023019110W WO 2023243328 A1 WO2023243328 A1 WO 2023243328A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
reaction tank
heat
absorption liquid
absorber
Prior art date
Application number
PCT/JP2023/019110
Other languages
French (fr)
Japanese (ja)
Inventor
貴紀 鮫島
正人 大岩
優一 大塚
知典 原田
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022123555A external-priority patent/JP2023184381A/en
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2023243328A1 publication Critical patent/WO2023243328A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide

Definitions

  • the present invention relates to a method for desorbing and recovering carbon dioxide that has been absorbed (already absorbed) in an absorption liquid, and a system suitable for using the method.
  • the present invention also relates to a method of recovering carbon dioxide via an absorber exhibiting carbon dioxide absorbability, and a system suitable for using the method.
  • Patent Document 1 describes a method of separating carbon dioxide from combustion exhaust gas using a solution containing amine as an absorbent, and then heating the solution to desorb and recover carbon dioxide. is listed.
  • the carbon dioxide recovery method includes: a step (a) of irradiating light onto the absorption liquid in which carbon dioxide has been absorbed; (b) supplying heat to the absorption liquid; The method is characterized by including a step (c) of recovering carbon dioxide desorbed from the absorption liquid through the step (a) and the step (b).
  • recovery means to transfer the carbon dioxide desorbed from the absorbent liquid or absorber from the area where the absorbent liquid or absorber is placed to another area.
  • carbon dioxide may be stored in a storage tank such as a cylinder, or may be sent to a carbon dioxide utilization facility via piping. Examples of the utilization facility include a plant factory and the like.
  • the step (a) is a step of irradiating the absorption liquid with the light from a light source
  • the step (b) may be a step of supplying the heat generated by the light source to the absorption liquid.
  • the light source emits heat when emitting light
  • energy can be used efficiently by supplying the heat emitted by the light source to the absorbing liquid when irradiating the absorbing liquid with light. Therefore, absorbed carbon dioxide can be desorbed from the absorption liquid with even less energy.
  • the step (a) and the step (b) may be performed simultaneously.
  • the step (a) includes a step of irradiating the absorption liquid with the light from a light source
  • a solar heat collecting member is placed in a state where sunlight can be irradiated, and the solar heat collecting member is placed in contact with the reaction tank in which the absorption liquid is located, either directly or through another member.
  • the method may include a step of converting the sunlight into the heat and supplying the heat to the absorption liquid.
  • the absorbed carbon dioxide can be desorbed from the absorption liquid with less energy.
  • the absorption liquid may include a carbon dioxide absorbent made of a basic material and a solvent.
  • the carbon dioxide absorbing material may be an amine-based material.
  • the amine material refers to an amine compound having one or more primary or secondary amino groups.
  • the amine compound is not particularly limited as long as it has carbon dioxide absorption performance, and it can be used alone or as a mixture.
  • Examples of amine compounds that can be included in the amine-based material include primary amines such as monoethanolamine, 2-amino-2-methyl-1-propanol, and phenylethylamine, diethanolamine, 2-methylaminoethanol, and 2-methylaminoethanol. Secondary amines such as ethylaminoethanol, diamines such as ethylenediamine, N,N-dimethylethylenediamine, ortho-xylylenediamine, meta-xylylenediamine, para-xylylenediamine, triamines such as diethylenetriamine, benzylamine, Examples include benzylamines such as para-methoxybenzylamine and para-trifluoromethylbenzylamine.
  • primary amines such as monoethanolamine, 2-amino-2-methyl-1-propanol, and phenylethylamine, diethanolamine, 2-methylaminoethanol, and 2-methylaminoethanol.
  • Secondary amines such as ethyla
  • a carbon dioxide absorption liquid can be prepared by dispersing a carbon dioxide absorbent in a solvent such as water or dimethyl sulfoxide (DMSO). Furthermore, alcohol such as ethanol may be used as the solvent. A plurality of these solvents may be used in combination.
  • a solvent such as water or dimethyl sulfoxide (DMSO).
  • DMSO dimethyl sulfoxide
  • alcohol such as ethanol may be used as the solvent.
  • a plurality of these solvents may be used in combination.
  • R 1 represents an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group.
  • R 2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group. These functional groups may have a substituent.
  • the solution when the solution absorbs carbon dioxide, the area where the gas phase containing carbon dioxide and the liquid phase of the solution come into contact (also referred to as "gas-liquid contact") is large. is preferred.
  • the solution is preferably a strong alkali.
  • the solution is strongly alkaline” means that the pH of the solution is 10 or more.
  • carbon dioxide exists in the absorption liquid in the form of bicarbonate ions (HCO 3 - ), carbamate ions (R 1 R 2 NCOO - ), or carbamate ions (R 1 R 2 NCOOH), and these are mixed. ing.
  • carbon dioxide absorbing materials such as basic imines containing amines, oxides containing alkali metals, and oxides containing niobium or tantalum.
  • the carbon dioxide absorbent material absorbs carbon dioxide and then causes a carbon dioxide desorption reaction by absorbing light.
  • the carbon dioxide absorbent is not limited to amine-based materials.
  • the carbon dioxide recovery system includes: a reaction tank in which an absorption liquid in which carbon dioxide has been absorbed is located; a light source that is fixed to the reaction tank directly or via another member and irradiates the absorption liquid in the reaction tank with light; It is characterized by comprising a recovery port for recovering carbon dioxide desorbed from the absorption liquid.
  • a light source that emits light for desorbing absorbed carbon dioxide is fixed to the reaction tank directly or through another member, so that the heat emitted by the light source is transferred to the absorption liquid in the reaction tank. can be supplied.
  • the energy for desorption can be used efficiently, the absorbed carbon dioxide can be desorbed from the absorption liquid with less energy.
  • the light source may be placed inside the reaction tank.
  • the heat generated by the light source can be efficiently supplied to the absorption liquid in the reaction tank. Therefore, it becomes possible to desorb the absorbed carbon dioxide from the absorption liquid with less energy.
  • the carbon dioxide recovery system includes: an inlet for introducing the absorption liquid into the reaction tank; and a discharge port for discharging the absorption liquid after being irradiated with the light from the light source,
  • the absorption liquid flowing from the introduction port toward the discharge port may be located in the reaction tank.
  • Desorption of absorbed carbon dioxide may be performed while flowing the absorption liquid.
  • By desorbing the absorbed carbon dioxide while flowing the absorbing liquid it becomes possible, for example, to send the desorbed absorbing liquid as it is to the carbon dioxide absorption system (absorption tank).
  • the absorption liquid from which carbon dioxide has been desorbed can be used continuously for carbon dioxide absorption.
  • the recovery port may be located closer to the outlet than the inlet with respect to the flow direction of the absorption liquid.
  • the absorption liquid When desorbing carbon dioxide while flowing the absorption liquid, the absorption liquid is introduced into the reaction tank, and then light irradiation is started. Thereafter, the absorption liquid is continuously irradiated with light while flowing toward the discharge port.
  • the absorbent liquid in order to focus on the absorbent liquid at a specific location, we assume that the absorbent liquid is surrounded by a virtual container that has zero resistance to flow, resistance to heat, and shielding effect against light, and absorbs the entire virtual container. Assume a situation where the liquid flows along the flow. The absorption liquid in this virtual container is irradiated with light while flowing toward the discharge port. In other words, the amount of light irradiated (irradiation dose) increases as the absorption liquid in this virtual container approaches the discharge port from the inlet.
  • the absorbent liquid is heated by the heat emitted by the light source, and the temperature of the absorbent liquid increases as it approaches the outlet from the inlet.
  • the equilibrium conditions shift in a direction in which the amount of carbon dioxide desorbed increases, and the amount of desorbed carbon dioxide also increases as it approaches the outlet.
  • the reaction tank has a bottom wall portion and an upper wall portion vertically spaced apart from the bottom wall portion,
  • the reaction tank may have a structure in which the distance between the bottom wall portion and the top wall portion in the vertical direction increases as the distance from the inlet port approaches the discharge port.
  • the light source is fixedly arranged with respect to the bottom wall
  • the top wall part is inclined with respect to the bottom wall part
  • the recovery port may be provided in the upper wall portion closer to the outlet than the inlet.
  • the carbon dioxide desorbed from the absorption liquid is guided to the side closer to the discharge port by the slope of the upper wall. Furthermore, by arranging the recovery port on the side closer to the exhaust port, carbon dioxide can be efficiently recovered.
  • the absorption liquid may include a carbon dioxide absorbent made of a basic material and a solvent.
  • the carbon dioxide absorbing material may be an amine-based material.
  • the carbon dioxide recovery system includes: a reaction tank in which an absorption liquid in which carbon dioxide has been absorbed is located; a light source that irradiates light to the absorption liquid in the reaction tank; a heat source that supplies heat to the absorption liquid in the reaction tank; Another feature is that it includes a recovery port that recovers carbon dioxide desorbed from the absorption liquid.
  • the heat source may be arranged as a separate device from the light source, or the light source may also serve as the heat source.
  • the heat source may include a solar heat collecting member that is fixed to the reaction tank directly or via another member in such a manner that sunlight can be irradiated thereon.
  • the solar heat collecting member that supplies heat to the absorption liquid is heated by sunlight. Since sunlight is used, heat can be supplied to the absorption liquid with less energy, and absorbed carbon dioxide can be desorbed suitably.
  • the carbon dioxide recovery method includes: a step (d) of preparing a first absorber which is an absorber that has already absorbed carbon dioxide; a step (e) of converting sunlight received by the solar heat collecting member into heat; a step (f) of supplying thermal energy derived from the heat obtained in the step (e) to the first absorber; Another feature is that the method further comprises a step (g) of recovering the carbon dioxide desorbed from the first absorber through the step (f).
  • first absorber refers to a state in which an absorber exhibiting carbon dioxide absorbing properties has absorbed carbon dioxide.
  • second absorber refers to the state before the absorber exhibiting carbon dioxide absorbability absorbs carbon dioxide. Note that the second absorber also includes a state in which the absorber absorbs carbon dioxide and becomes the first absorber, and then receives supply of thermal energy and desorbs the carbon dioxide.
  • thermal energy derived from the heat is supplied to the first absorber using a solar heat collecting member that converts received sunlight into heat. By using heat derived from sunlight for supplying thermal energy, it is possible to reduce the energy consumed in supplying the thermal energy. Note that specific embodiments will be described later in "Detailed Description of the Invention".
  • infrared rays in particular can be effectively used, so the usable wavelength range of light is wide-ranging, and compared to, for example, a solar power generation system, it is possible to use sunlight more efficiently. Available.
  • the step (f) may be a step of supplying the thermal energy to the first absorber via a heat transfer medium heated by the heat obtained in the step (e).
  • the heat converted from sunlight by the solar heat collecting member is transferred to the first absorber. can be efficiently supplied.
  • the heat transfer medium made of the atmosphere heated by the thermal energy obtained in the step (e) is added to the internal space of the reaction tank in which the first absorber is disposed. It may also include a step of introducing.
  • thermal energy can be supplied to the first absorber.
  • the first absorber receives heat from the atmosphere and desorbs the absorbed carbon dioxide.
  • the carbon dioxide concentration locally increases.
  • the carbon dioxide concentration in the atmosphere is about 400 ppm, which is lower than the space near the first absorber where the carbon dioxide desorption reaction progresses. Therefore, by introducing the atmosphere into the internal space of the reaction tank as a heat transfer medium, it is possible to simultaneously supply heat and lower the carbon dioxide concentration in the vicinity of the first absorber. It is possible to eliminate carbon.
  • the heated atmosphere not only functions as a heat transfer medium but also as a desorption-promoting gas that promotes desorption of carbon dioxide.
  • the step (f) is a step of exchanging heat between the first absorber and the heat transfer medium flowing through the outside of the reaction tank in which the first absorber is disposed, During execution of the step (f), a desorption-promoting gas consisting of a gas having a lower carbon dioxide concentration than the interior space may be introduced into the interior space of the reaction tank.
  • the heat transfer medium may exchange heat with the first absorber by flowing through the outside of the reaction tank. Through the heat exchange, heat is supplied to the first absorber, and absorbed carbon dioxide is desorbed from the first absorber.
  • a fluid such as air or water can be used as the heat transfer medium.
  • a desorption-promoting gas with a low carbon dioxide concentration into the internal space of the reaction tank.
  • Nitrogen gas or the atmosphere can be used as the desorption promoting gas.
  • Atmospheric air is preferable from the viewpoint of energy and cost required for procurement.
  • the temperature of the internal space of the reaction tank is measured, and if the temperature is equal to or higher than a predetermined value, an atmosphere that is lower temperature than the heat transfer medium is applied to the internal space. It is also possible to introduce a cooling gas consisting of:
  • absorbed carbon dioxide can be recovered by supplying heat to the first absorber.
  • the temperature of the internal space of the reaction tank where the first absorber is placed is measured, and if this temperature is above a predetermined value, the first absorber is Preferably, the body is cooled.
  • the predetermined value is a value determined in consideration of heat resistance such as the boiling point of the carbon dioxide absorbent that constitutes the first absorber. According to the above method, even when the first absorber reaches a high temperature, the thermal influence on the carbon dioxide absorbing material constituting the first absorber can be reduced.
  • the step (d) includes: a step (d1) of preparing a second absorber, which is an absorber before absorbing carbon dioxide; After arranging the second absorber inside the reaction tank, a step (d2) of introducing a gas to be treated containing carbon dioxide into the internal space of the reaction tank and causing the second absorber to absorb carbon dioxide. It may also include.
  • the second absorber absorbs carbon dioxide contained in the gas to be treated in the reaction tank and becomes the first absorber (absorption step).
  • the process of desorbing the absorbed carbon dioxide from the first absorber is performed in a place different from the reaction tank where the absorption process was performed, the energy required to transport the first absorber is Is required.
  • the absorption step and the desorption step are performed in the same reaction tank, the energy required for transporting the first absorber, etc. is suppressed, which is preferable.
  • step (d1) the pores of a solid material made of a porous material having pores on its surface are supported with a carbon dioxide absorbing liquid made of a basic material and exhibiting carbon dioxide absorption properties.
  • the method may include a step of obtaining the second absorbent body.
  • pore refers to a fine pore with a diameter of several nanometers to several tens of micrometers
  • porous material refers to a material that has countless pores on its surface.
  • the specific surface area of the porous substance is preferably 10 m 2 /g or more, more preferably 50 m 2 /g or more. Note that the specific surface area of the porous substance can be measured, for example, by a method according to JIS Z 8830 (method for measuring the specific surface area of powder (solid) by gas adsorption).
  • porous substances Materials that can be used as porous substances include ceramic materials such as silica, alumina, and zirconia, engineering plastic materials such as polypropylene, polyacetal, polyamide, and polycarbonate, and carbon materials such as activated carbon.
  • ceramic materials such as silica, alumina, and zirconia
  • engineering plastic materials such as polypropylene, polyacetal, polyamide, and polycarbonate
  • carbon materials such as activated carbon.
  • shape of the porous substance is not particularly limited. Examples of the shape of the porous material include granules, plates, tubes, honeycombs, and pellets.
  • the carbon dioxide absorbing liquid is prepared by dispersing a carbon dioxide absorbing material such as an amine-based material exhibiting carbon dioxide absorbing property in a solvent such as water, polyethylene glycol (PEG), or dimethyl sulfoxide (DMSO). A plurality of these solvents may be used in combination.
  • a solvent such as water, polyethylene glycol (PEG), or dimethyl sulfoxide (DMSO).
  • PEG polyethylene glycol
  • DMSO dimethyl sulfoxide
  • alcohol such as methanol is added to the carbon dioxide absorption liquid and impregnated into the porous substance. The alcohol may be evaporated later.
  • the concentration of the carbon dioxide absorption liquid is high from the viewpoint of reducing the energy consumed to raise the temperature of the solvent and increasing the utilization efficiency of thermal energy.
  • a carbon dioxide absorption liquid as it is as an absorber
  • increasing the concentration of the carbon dioxide absorption liquid increases the viscosity and makes handling difficult.
  • the concentration of the carbon dioxide absorption liquid will be approximately 1% to 10%.
  • by supporting the carbon dioxide absorption liquid on a solid material even when the concentration of the carbon dioxide absorption liquid is high (for example, several tens of percent), it can be easily handled.
  • the concentration of the carbon dioxide absorption liquid can be increased, and as a result, the efficiency of thermal energy utilization can be increased. Preparation of the absorbent body is detailed in the "Detailed Description" section.
  • the above-mentioned amine-based materials can be used as the carbon dioxide absorbent.
  • the reaction of the above formula (3) becomes the main reaction.
  • the carbon dioxide absorbent absorbs carbon dioxide and then causes a carbon dioxide desorption reaction by supplying heat.
  • the carbon dioxide absorbent is not limited to amine-based materials.
  • Other carbon dioxide absorbers include, for example, oxides exhibiting basicity, typically containing alkali metals, niobium or tantalum.
  • the step (d1) may include a step of spraying plasma gas or irradiating ultraviolet rays onto the pores before the carbon dioxide absorption liquid is supported in the pores of the solid material. do not have.
  • the wettability of the pore surface to the carbon dioxide absorbing liquid is improved, and the carbon dioxide absorbing liquid can be more suitably supported on the pores. More specifically, when plasma gas is sprayed onto the pores, nitrogen molecules or oxygen molecules in the atmosphere are turned into plasma, and the activated species turned into plasma form hydrophilic functional groups (hydroxyl groups) on the surface of the pores. , carbonyl group or carboxy group). When irradiated with ultraviolet rays, radicals (mainly oxygen radicals in the atmosphere) are generated in the atmosphere. Furthermore, at the same time, the bonds between molecules constituting the pore surface are cut by ultraviolet irradiation, and as a result of radicals reacting with the cut portions, hydrophilic functional groups are formed on the pore surface.
  • radicals mainly oxygen radicals in the atmosphere
  • the carbon dioxide recovery system includes: a first absorber which is an absorber that has already absorbed carbon dioxide; a reaction tank in which the first absorber is located; an introduction port for introducing a heat transfer medium that supplies thermal energy to the first absorber into the reaction tank; a heat source that heats the heat transfer medium, including a solar heat collecting member that converts received sunlight into heat, and is disposed before the first absorber with respect to the flow direction of the heat transfer medium; Another feature is that it includes a recovery port for recovering carbon dioxide desorbed from the first absorber.
  • the same discussion as the above-mentioned recovery method can be made. That is, the heat transfer medium heated by sunlight-derived heat in the heat source is introduced into the reaction tank from the introduction port and comes into contact with the first absorber, thereby supplying thermal energy to the first absorber. Ru.
  • a third flow path through which recovered gas containing carbon dioxide recovered from the recovery port flows;
  • a heat exchanger that is disposed upstream of the first absorber with respect to the flow direction of the heat transfer medium and performs heat exchange between the heat transfer medium and the recovered gas flowing through the third flow path. It's okay to be prepared.
  • the first absorber desorbs carbon dioxide by supplying heat. Therefore, the recovered gas containing desorbed carbon dioxide has a relatively high temperature. Therefore, by performing heat exchange between the recovered gas and the heat transfer medium and using the thermal energy of the recovered gas for desorption of carbon dioxide, energy utilization efficiency is improved.
  • the carbon dioxide recovery system includes: comprising a first flow path communicating the heat source and the introduction port,
  • the heat source may be configured to heat the heat transfer medium flowing through the first channel at a position outside the reaction tank.
  • the carbon dioxide recovery system includes: a second flow path that guides the atmosphere as a gas to be treated containing carbon dioxide into the reaction tank; A first valve that can control the flow rate of the atmosphere flowing through the second flow path by adjusting the opening degree of the second flow path may be provided.
  • a heat transfer medium heated by a heat source is introduced into the reaction tank via the first flow path.
  • the atmosphere as a gas to be treated is introduced into the reaction tank via the second flow path. That is, according to the above configuration, the carbon dioxide absorption process and desorption process can be performed in the same reaction tank, so the energy required for transferring the absorber, etc. is suppressed, and as a result, carbon dioxide can be produced with less energy. can be collected.
  • thermometer that measures the temperature of the internal space of the reaction tank
  • the opening degree of the second flow path in the first valve may be adjusted based on the measured value of the thermometer.
  • the thermal influence on the carbon dioxide absorbing material that constitutes the first absorber it is preferable to reduce the thermal influence on the carbon dioxide absorbing material that constitutes the first absorber. According to the above configuration, even if the first absorber becomes high in temperature due to the supply of heat for desorption, the atmosphere as a gas to be treated that is lower in temperature than the heat transfer medium can be introduced from the second flow path. With this, the first absorber can be cooled.
  • the carbon dioxide recovery system includes: A second valve may be provided that can control the flow rate of the air as the heat transfer medium flowing through the first flow path by adjusting the opening degree of the first flow path.
  • the absorber may be in a solid state.
  • the structure of the absorber is the same as discussed above.
  • a carbon dioxide recovery method and system are provided that can desorb absorbed carbon dioxide from an absorbent material with less energy.
  • FIG. 1 is a conceptual diagram showing an example of an embodiment of a carbon dioxide recovery system according to the present invention.
  • 2 is an enlarged view of a reaction tank portion in FIG. 1.
  • FIG. It is an enlarged view when a light source is fixed to a reaction tank via another member.
  • 2 is a conceptual diagram of an experimental system used in verification of Example 1.
  • FIG. 3 is a conceptual diagram of an experimental system used in the verification of Comparative Example 1.
  • FIG. It is a graph plotting the temperature of the reaction tank against the elapsed time during verification.
  • FIG. 2 is a schematic diagram showing reaction energy levels when an amine-based material exhibits a reaction in which carbon dioxide is absorbed or desorbed.
  • FIG. 5A is a schematic diagram showing energy supplied to the absorption liquid, similar to FIG. 5A.
  • FIG. 7 is a conceptual diagram of a reaction tank according to a second modification.
  • 7A is a conceptual diagram when the reaction tank according to FIG. 7A is viewed from the +Z direction.
  • FIG. 7 is a conceptual diagram of a reaction tank according to a third modification. It is a conceptual diagram in which a plurality of reaction vessels according to a third modification are stacked in the Z direction.
  • FIG. 7 is a conceptual diagram of a reaction tank according to a fourth modification.
  • FIG. 7 is a conceptual diagram of a reaction tank according to a fifth modification.
  • FIG. 7 is a perspective view of a reaction tank according to a sixth modification.
  • FIG. 7 is a conceptual diagram of a reaction tank according to a second modification.
  • 7A is a conceptual diagram when the reaction tank according to FIG. 7A is viewed from the +Z direction.
  • FIG. 7 is a conceptual diagram of a reaction tank according to a third modification. It is a conceptual diagram in which a plurality of reaction vessels according to
  • FIG. 12B is a schematic diagram of the reaction tank in FIG. 12A viewed from the +Y direction.
  • FIG. 7 is a perspective view of a reaction tank according to a seventh modification.
  • FIG. 13A is a schematic diagram of the reaction tank shown in FIG. 13A when viewed from the +X direction.
  • FIG. 13B is a schematic diagram of the reaction tank in FIG. 13A viewed from the +Y direction.
  • FIG. 14A is a perspective view of a reaction tank according to an eighth modification.
  • FIG. 14 is a schematic diagram of the reaction tank in FIG. 14A viewed from the +X direction.
  • FIG. 14B is a schematic diagram of the reaction tank of FIG. 14A when viewed in the normal direction of the inclined surface on which the reaction tank is installed.
  • FIG. 1 is a cross-sectional view schematically showing an example of a carbon dioxide recovery system.
  • 17A is a drawing showing a different scene from FIG. 17A in the collection system according to FIG. 17A.
  • 17A is a different view of the retrieval system of FIG. 17A;
  • FIG. 3 is a flow diagram showing an example of a collection method according to the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the structure of a base material supporting a carbon dioxide absorption liquid.
  • FIG. 3 is a cross-sectional view schematically showing the structure of the second absorbent body.
  • FIG. 7 is a cross-sectional view schematically showing another example of the structure of the second absorbent body.
  • It is a conceptual diagram of the experimental system used in verification. This is the spectrum of the halogen lamp used in the verification. It is a graph showing the desorption results of carbon dioxide in verification.
  • 1 is a diagram schematically showing a configuration example of a collection system.
  • FIG. 3 is a cross-sectional view schematically showing the structure of a heat source.
  • 28 is a drawing when the heat source according to FIG. 27 is viewed from the Z direction.
  • 7 is a drawing schematically showing the configuration of another embodiment of the collection system.
  • 29 is a drawing showing a different scene from FIG. 29 in the collection system according to FIG. 29. It is a drawing which shows typically another example of composition of a collection system.
  • 32 is a perspective view schematically showing the configuration of a heat source in FIG. 31.
  • FIG. FIG. 32A is a cross-sectional view of the heat source in FIG. 32A when viewed from the X direction.
  • It is a drawing which shows the structure of another embodiment of a collection system following FIG. 17B.
  • FIG. 1 is a conceptual diagram showing an example of an embodiment of a carbon dioxide recovery system (hereinafter simply referred to as "recovery system”) according to the present invention. After describing the configuration of the recovery system 1 with reference to FIG. 1, a method for recovering absorbed carbon dioxide executed by the recovery system 1 will be explained.
  • recovery system a carbon dioxide recovery system
  • an XYZ coordinate system consisting of an X direction, a Y direction, and a Z direction that are perpendicular to each other is also shown as appropriate.
  • the Z direction is a vertical direction.
  • the recovery system 1 includes an absorption tank 2 that causes an absorption liquid 10 to absorb carbon dioxide contained in a gas 20 to be treated, and a reaction system that desorbs absorbed carbon dioxide from the absorption liquid 10 that has absorbed carbon dioxide. It has a tank 3 and a light source 6 that irradiates the absorption liquid 10 with light L1 in the reaction tank 3.
  • the gas to be treated 20 is a gas to be separated and recovered from carbon dioxide-containing gas.
  • the gas to be processed 20 includes exhaust gas, the atmosphere, and the like.
  • the absorption liquid 10 for example, an aqueous solution in which an amine material as a carbon dioxide absorbent is dispersed in water can be used.
  • This absorption liquid 10 absorbs carbon dioxide contained in the gas 20 to be treated.
  • the gas after the carbon dioxide contained in the gas to be treated 20 has been absorbed (hereinafter referred to as “treated gas 21”) is discharged from the absorption tank 2.
  • the post-processing gas 21 is indicated by a dashed line.
  • the absorption liquid 10 that has absorbed carbon dioxide in the absorption tank 2 is sent to the reaction tank 3 through the channel 4 using, for example, a liquid pump (not shown). Then, as described later, the absorption liquid 10 is irradiated with light L1 and heat H1 is supplied, and the absorbed carbon dioxide is desorbed from the absorption liquid 10.
  • the gas containing absorbed carbon dioxide desorbed from the absorption liquid 10 (hereinafter referred to as "desorption gas 22") is recovered from the recovery port 7 provided in the reaction tank 3.
  • the desorption gas 22 is indicated by a chain double-dashed line.
  • the absorption liquid 10 from which the absorbed carbon dioxide has been desorbed is sent to the absorption tank 2 through the flow path 5 by a liquid pump or the like (not shown). Then, the carbon dioxide contained in the gas 20 to be treated is again absorbed.
  • heat exchange may be performed in the absorption liquid 10 flowing through the channels 4 and 5 using, for example, a heat exchanger (not shown). This heat exchange makes it possible to increase the temperature of the absorption liquid 10 flowing into the reaction tank 3, which is preferable.
  • the flow direction of the absorption liquid 10 is indicated by a double arrow in FIG. 1, and the same is true in the following drawings.
  • the configuration of a conventionally known recovery system can be used.
  • recovery method a method for recovering absorbed carbon dioxide (hereinafter simply referred to as a "recovery method”) that can be executed by the recovery system 1 will be described.
  • This recovery method includes a pre-step S100 of absorbing carbon dioxide from the gas 20 to be treated, a step S101 of irradiating light onto the absorption liquid 10 that has absorbed carbon dioxide, and a step S101 of irradiating light onto the absorption liquid 10 that has absorbed carbon dioxide. It includes a step S102 of supplying heat and a step S103 of recovering carbon dioxide desorbed from the absorption liquid 10.
  • Pre-process S100 In the absorption tank 2 , typically the gas to be treated 20 and the absorption liquid 10 are brought into gas-liquid contact, so that the carbon dioxide contained in the gas to be treated 20 is absorbed into the absorption liquid 10 . Note that, in a further preceding stage of the pre-process, pre-treatment such as cooling the gas to be treated 20 or screening for substances contained in the gas to be treated 20 that inhibit carbon dioxide absorption may be performed.
  • FIG. 2A is an enlarged view of the reaction tank 3 portion in FIG. 1 for ease of understanding.
  • FIG. 2A shows an example in which the light source 6 is directly fixed to the surface of the reaction tank 3 in the ⁇ Z direction. Further, in FIG. 2A, a case is illustrated in which the light source 6 is composed of a plurality of LED elements 8 mounted on the substrate 9, but it is also possible to employ a lamp as the light source 6.
  • the wavelength of the light L1 emitted from the light source 6 is not limited, but as an example, the light source 6 may emit light within a wavelength range of 250 nm to 600 nm.
  • the wavelength of the light L1 emitted by the light source 6 is preferably selected according to the absorption spectrum of the carbon dioxide absorbing material such as an amine material. From the viewpoint of efficiently imparting energy by irradiation of the light L1 to the carbon dioxide absorbing material included in the absorption liquid 10, a wavelength that is easily absorbed by the carbon dioxide absorbing material and difficult to be absorbed by the solvent is more preferable.
  • the inside of the reaction tank 3 can be configured by configuring the reaction tank 3 with a member that transmits the light L1 emitted from the light source 6.
  • the light L1 can be irradiated onto the absorbing liquid 10 located at.
  • the light L1 is indicated by a solid arrow, and the same applies to the following drawings.
  • glass can be used as the member that transmits the light L1.
  • a reflective film 11 may be formed on a part of the outer surface of the reaction tank 3, as shown in FIG. 2A.
  • a part of the light L1 irradiated onto the absorbing liquid 10 is not absorbed by the absorbing liquid 10 but passes through the absorbing liquid 10. Therefore, by forming the reflective film 11, the light that has once passed through the absorbing liquid 10 can be directed toward the absorbing liquid 10 again, and the absorbing liquid 10 can be efficiently irradiated with the light L1.
  • a reflective film 11 an aluminum coating or the like can be used.
  • the light source 6 is installed on the surface of the reaction tank 3 in the -Z direction, and the light L1 emitted in the +Z direction is irradiated with the light source 6.
  • the light source 6 can be installed at any location in the reaction tank 3 as long as it can irradiate the absorption liquid 10 with light. That is, for example, the light source 6 may be installed so as to irradiate the absorption liquid 10 with the light L1 from the X direction and the Y direction. In this case, the formation range of the reflective film 11 is adjusted as appropriate.
  • the reflective film 11 is formed on the outer surface of the reaction tank 3, but if the reflective film 11 is made of a material that does not deteriorate even if it comes into contact with the absorption liquid 10, the reflective film 11 can be
  • the membrane 11 may be formed on the inner surface of the reaction tank 3.
  • This light irradiation step S101 corresponds to step (a).
  • Heat supply step S102 Furthermore, in order to desorb the absorbed carbon dioxide from the absorption liquid 10, heat H1 is supplied to the absorption liquid 10 (see FIG. 2A).
  • the light source 6 is fixed directly to the reaction tank 3. Therefore, the heat H1 released when the light source 6 emits light is supplied to the absorption liquid 10 located inside the reaction tank 3. That is, in this example, the light irradiation step S101 and the heat supply step S102 are executed simultaneously.
  • the heat H1 is indicated by a broken arrow, and the same applies to the following drawings.
  • FIG. 2B is an enlarged view of the case where the light source 6 is fixed to the reaction tank 3 via another member (hereinafter referred to as a "heat transfer member"), similar to FIG. 2A.
  • the light source 6 may be fixed to the reaction tank 3 via the heat transfer member 13.
  • the heat transfer member 13 is provided for the purpose of supplying the heat H1 generated by the light source 6 to the absorption liquid 10.
  • the heat transfer member 13 is preferably a metal member with high thermal conductivity.
  • the heat transfer member 13 can be made of copper, aluminum, or the like.
  • the heat supply step S102 is performed for the purpose of making the temperature of the absorption liquid 10 higher than the surrounding environmental temperature.
  • the temperature of the absorption liquid 10 is raised to a temperature of 35° C. to 120° C. in the heat supply step S102.
  • the temperature after raising the temperature of the absorption liquid 10 is preferably 60°C or lower, more preferably 50°C or lower, and particularly 40°C or lower. preferable.
  • This heat supply step S102 corresponds to step (b).
  • the desorption gas 22 containing the desorbed and absorbed carbon dioxide is typically stored in a storage tank (not shown) such as a cylinder. Alternatively, for example, it may be sent to a carbon dioxide utilization facility such as a plant factory via piping.
  • This recovery step S103 corresponds to step (c).
  • FIG. 3A is a conceptual diagram of the experimental system used in this verification.
  • an absorption liquid 30 was placed inside a reaction tank 33.
  • the reaction tank 33 is made of glass.
  • the absorption liquid 30 is a secondary amine aqueous solution having a concentration of 20% by mass.
  • This absorption liquid 30 was made to absorb carbon dioxide in advance using experimental carbon dioxide gas. More specifically, the absorption liquid 30 was adjusted by allowing it to absorb carbon dioxide until no additional carbon dioxide was absorbed, and then allowing it to stand still in the air for about one hour to reach an equilibrium state.
  • This absorption liquid 30 was irradiated with light L1 using a light source 36, as shown in FIG. 3A.
  • the light source 36 is equipped with an LED element 38 having a peak wavelength of 365 nm.
  • the light source 36 was placed close to the reaction tank 33 in order to supply the heat H1 emitted by the light source 36 to the absorption liquid 30. That is, by the light source 36 emitting the light L1, the absorption liquid 30 inside the reaction tank 33 was irradiated with the light L1 and supplied with the heat H1 at the same time.
  • the lighting time of the light source 36 was 50 minutes, and during that time, the temperature of the reaction tank 33 was measured by a thermocouple 39 attached to the reaction tank 33.
  • Example 1 and Comparative Example 1 to be described later the experiment was conducted while manually adjusting the output of the power source 37 connected to the light source 36 in order to make the temperatures of the reaction vessels 33 of both the same.
  • nitrogen gas was supplied to the reaction tank 33 by pushing a syringe 35a filled with nitrogen gas in order to collect the desorbed and absorbed carbon dioxide (see FIG. 3A). . Since the reaction tank 33 is sealed by the stopper 34, by supplying air with the syringe 35a, the piston of the gas collecting syringe 35b is pulled out, and the gas in the reaction tank 33 can be collected. By measuring the carbon dioxide concentration of the gas collected in the reaction tank 33, the amount of carbon dioxide desorbed from the absorption liquid 30 was measured.
  • FIG. 3B is a conceptual diagram showing an experimental system used in the verification of Comparative Example 1, similar to FIG. 3A.
  • a copper light shielding plate 40 was placed between the light source 36 and the reaction tank 33 so as to block the light L1 emitted from the light source 36.
  • the heat H1 emitted by the light source 36 is supplied to the reaction tank 33 via the light shielding plate 40. Furthermore, although the light L1 emitted by the light source 36 is blocked by the light shielding plate 40, a part of the light L1 is absorbed by the light shielding plate 40 and contributes to the temperature rise of the light shielding plate 40, and is supplied to the reaction tank 33 as heat H1. be done. That is, in Comparative Example 1, only the heat H1 was supplied to the absorption liquid 30 inside the reaction tank 33. Other configurations and operating procedures are the same as in the first embodiment.
  • FIG. 4 is a graph in which the horizontal axis is the time elapsed since the light source 36 was turned on, and the vertical axis is the temperature measured by the thermocouple 39.
  • the results of Example 1 are shown by a solid line
  • the results of Comparative Example 1 are shown by a broken line.
  • the experiment was conducted while adjusting the output of the power source 37 in order to keep the temperatures of the reaction vessels 33 in Example 1 and Comparative Example 1 at the same level.
  • the temperature of the reaction tank 33 was 1 to 2° C. higher in Comparative Example 1 than in Example 1 after about 20 minutes had passed. This is considered to be an error caused by manually controlling the output of the power source 37, and it can be said that the temperatures of the reaction tank 33 were approximately the same in Example 1 and Comparative Example 1.
  • Example 1 the amount of gas collected by the syringe 35b was 118 mL.
  • the carbon dioxide concentration of this gas was 16%. That is, 18.9 mL of carbon dioxide was desorbed from the absorption liquid 30 by the irradiation of light from the light source 36 and the supply of heat.
  • Comparative Example 1 the amount of gas collected by the syringe 35b was 110 mL.
  • the carbon dioxide concentration of this gas was 14%. That is, 15.4 mL of carbon dioxide was desorbed from the absorption liquid 30 by the supply of heat from the light source 36.
  • Example 1 As mentioned above, although the temperature of the reaction tank 33 in Comparative Example 1 was about the same as that in Example 1, or more specifically, 1°C to 2°C higher, the temperature in Example 1 was higher. This resulted in desorption of carbon dioxide. This indicates that by irradiating the absorption liquid 30 with light and supplying heat, more carbon dioxide can be desorbed than simply supplying heat.
  • the inventor speculates as follows about the reason why more carbon dioxide was desorbed by irradiating the absorption liquid 30 with light in addition to supplying heat.
  • FIG. 5A is a schematic diagram showing energy levels when an amine-based material exhibits a reaction of absorbing or desorbing carbon dioxide. As mentioned above, when an amine-based material absorbs carbon dioxide, bicarbonate ions, carbamate ions, or carbamic acid are generated. In FIG. 5A, lines representing the energy levels of bicarbonate ions are shown as broken lines, and lines representing the energy levels of carbamate ions and carbamic acid are shown as solid lines.
  • the energy level at which the amine material, carbon dioxide, and solvent each exist independently in other words, the state in which carbon dioxide is desorbed, the amine material must be active to absorb carbon dioxide and convert it to bicarbonate ions.
  • ization energy E 1 is required.
  • activation energy E 2 is required for an amine-based material to absorb carbon dioxide and convert it into carbamate ions or carbamic acid.
  • FIG. 5B is a schematic diagram illustrating energy supplied to the absorption liquid, similar to FIG. 5A.
  • the energy E H is indicated by a dashed line
  • the energy E L is indicated by a dashed double dotted line.
  • the thermal energy E H can cause a reaction to desorb carbon dioxide from bicarbonate ions, it cannot cause a reaction to desorb carbon dioxide from carbamate ions and carbamic acid. It is assumed that this is not possible.
  • the energy E L due to light irradiation the energy is greater than the sum of energy E 4 and activation energy E 2 necessary for desorption, and carbon dioxide can be desorbed from carbamate ions and carbamic acid. Can be done.
  • bicarbonate ions have a small light absorption effect
  • carbamate ions and carbamic acid have a large light absorption effect.
  • thermal energy is dominant in the desorption of carbon dioxide from bicarbonate ions, and the energy contribution from light irradiation is small.
  • supply of energy through light irradiation is effective for desorption of carbon dioxide from carbamate ions and carbamic acid.
  • the mechanism of action is different between molecular dissociation using thermal energy and molecular dissociation using light energy. Immediately after molecules dissociate due to light energy, intermediates exhibiting a radical state tend to exist. This intermediate induces the next reaction, making it easier for the dissociation reaction to proceed.
  • the above-mentioned recovery method uses both thermal energy and light energy to cause the dissociation of molecules originating from different mechanisms, thereby reducing the amount of energy input compared to conventional methods. It becomes possible to increase the desorption efficiency of carbon dioxide while decreasing the carbon dioxide. Furthermore, it becomes possible to desorb carbon dioxide in a lower temperature environment than before, greatly contributing to the introduction and spread of carbon dioxide recovery systems. This will greatly contribute to Goal 13 of the Sustainable Development Goals (SDGs) led by the United Nations, ⁇ Take urgent measures to reduce climate change and its impacts.''
  • the irradiance of the light source 36 is 150 mW/cm 2 and that the light emitting surface of the light source 36 is uniformly 100 cm 2 .
  • the energy emitted from the light source 36 per unit time is 15W.
  • the above is just an example of the design standard when calculating the standard irradiation time ⁇ .
  • the reference irradiation calculated by the above method is used. Based on the time ⁇ , the time during which the light L1 is actually irradiated can be set.
  • the flow rate of the absorbing liquid 10 is determined based on the reference irradiation time ⁇ calculated by the above method. can be adjusted.
  • FIG. 6 is an enlarged view of a part where a light source is installed in a reaction tank according to a first modification.
  • the light irradiation window 12 can be made of, for example, glass.
  • FIG. 7A is a conceptual diagram of a reaction tank according to a second modification.
  • FIG. 7B is a conceptual diagram when FIG. 7A is viewed from the +Z direction.
  • FIG. 7B shows an example in which two light sources 46 are installed, two or more light sources 46 may be installed. Further, the location and range where the light source 46 is installed can be adjusted as appropriate.
  • the light source 46 is placed inside the reaction tank 43 and comes into contact with the flowing absorption liquid 10.
  • the heat H1 emitted by the light source 46 when emitting light can be efficiently supplied to the absorption liquid 10.
  • a power source for driving the light source 46 and the light source 46 inside the reaction tank 43 can be energized.
  • the reaction tank 43 includes an inlet 44 for introducing the absorption liquid 10, and an outlet 45 for discharging the absorption liquid 10 after desorbing carbon dioxide.
  • absorbed carbon dioxide can be desorbed while flowing the absorption liquid 10. That is, in this example, the absorption liquid 10 is passed through in the X direction.
  • the recovery port 47 for recovering the desorbed gas 22 is preferably arranged closer to the outlet 45 than the inlet 44.
  • FIG. 8 is a conceptual diagram of a reaction tank according to a third modification.
  • FIG. 8 an example is shown in which the light source 56 is directly fixed to the reaction tank 53.
  • the light L1 emitted by the light source 56 is irradiated onto the absorption liquid 10 through the window 12 provided on the surface of the reaction tank 53 in the ⁇ Z direction. Further, the heat H1 emitted by the light source 56 is supplied to the absorption liquid 10 via the reaction tank 53 including the window 12.
  • the top wall 58 of the reaction tank 53 be inclined with respect to the bottom wall 59. That is, the reaction tank 53 has a structure in which the distance D1 between the bottom wall portion 59 and the top wall portion 58 in the Z direction increases as the distance from the inlet port 54 approaches the outlet port 55 in the X direction. .
  • desorption space 60 a space (hereinafter referred to as "desorption space 60") is created in the reaction tank 53 in which the desorption gas 22 containing carbon dioxide desorbed from the absorption liquid 10 is temporarily located. ) can be secured sufficiently. Further, the slope of the upper wall portion 58 allows the desorption gas 22 present in the desorption space 60 to be guided to the recovery port 57.
  • FIG. 9 is a conceptual diagram when a plurality of reaction vessels according to the third modification are stacked in the Z direction.
  • the internal space in which the absorption liquid 10 is located has a flat shape when viewed from the front (see FIG. 8). In this case, it is assumed that the installation area of the reaction tank 53 on the XY plane will be relatively large.
  • FIG. 9 describes the case where two reaction vessels (53a, 53b) are connected in parallel, the reaction vessels (53a, 53b) may be connected in series. Moreover, two or more reaction vessels may be stacked.
  • FIG. 10 is a conceptual diagram of a reaction tank according to a fourth modification.
  • the absorption tank is omitted.
  • the reaction tank 63 may include a heat source 68 that supplies heat to the absorption liquid 10.
  • the heat source 68 for example, a heater, a boiler, or the like can be used.
  • the light source 6 was described as being fixed to the reaction tank 3 directly or via another member.
  • the light source 66 and the reaction tank 63 may be placed apart from each other as shown in FIG. 10. Note that even when the reaction tank 63 includes the heat source 68, the light source 66 can be fixed to the reaction tank 63 directly or via another member, and the heat generated by the light source 66 can be supplied to the absorption liquid 10.
  • FIG. 11 is a conceptual diagram of a reaction tank according to a fifth modification.
  • the reaction tank 73 has an inlet 74 through which the gas to be treated 20 flows, and a recovery port 77 through which the treated gas 21 and the desorbed gas 22 can be recovered.
  • the valve 79a provided in the flow path leading to the inlet 74 and the valve 79b downstream of the recovery port 77 are opened, and the other valve 79c downstream of the recovery port 77 is closed. Ru.
  • the absorption liquid 10 is pumped up from the flow path 78 using, for example, a liquid pump, and the absorption liquid 10 and the gas to be treated 20 are brought into gas-liquid contact.
  • the processed gas 21 is discharged from the flow path provided with the valve 79b of the recovery port 77.
  • the valves 79a and 79b are closed, and the valve 79c is opened. Then, using, for example, the light source 76, the absorption liquid 10 is irradiated with light and heat is supplied, and the absorbed carbon dioxide is desorbed. At this time, the desorbed gas 22 is recovered from the flow path provided with the valve 79c of the recovery port 77. Note that in addition to the light source 76, a heat source that supplies heat to the absorption liquid 10 may be further provided.
  • This configuration has the advantage that the installation area required for the system configuration is small.
  • this modification may be adopted depending on the amount of generated gas 20 to be treated and the concentration of carbon dioxide contained in the gas 20 to be treated.
  • the reaction tank 63 includes a heat source 68 that supplies heat to the absorption liquid 10.
  • a heat source 68 a member that absorbs sunlight and converts it into heat (hereinafter, for convenience, referred to as a "solar heat collecting member” or simply a “heat collecting member”) may be used. This modification will be described with reference to FIGS. 12A and 12B.
  • FIG. 12A corresponds to a perspective view of the reaction tank.
  • FIG. 12B is a drawing when the reaction tank 83 in FIG. 12A is viewed from the +Y side, and for convenience of explanation, the inside of the reaction tank 83 is shown transparently.
  • the +Z direction corresponds to vertically upward.
  • the reaction tank 83 of this modification has a cylindrical shape that is circular when viewed from the +Z direction, for example.
  • the light sources 86 are arranged so as to be spaced apart from each other in the circumferential direction of the reaction tank 83.
  • Light L1 emitted by the light source 86 is irradiated onto the absorption liquid 10 through the light irradiation window 12 (see FIG. 12B). Further, the light source 86 is directly fixed to the reaction tank 83. That is, the heat H1 emitted by the light source 86 is supplied to the absorption liquid 10.
  • the reaction tank 83 has a window 14 on the +Z side surface. Since the reaction tank 83 of this modification is placed outdoors, the absorption liquid 10 in the reaction tank 83 is irradiated with sunlight C2 emitted by the sun C1 through the window 14.
  • the window 14 is made of quartz glass, for example.
  • the breakdown of the light contained in sunlight C2 is generally 7% ultraviolet light, 43% visible light, and 50% infrared light.
  • a part of the light (typically ultraviolet light) contained in the sunlight C2 is absorbed by the carbon dioxide absorbing material contained in the absorption liquid 10, and contributes to desorption of carbon dioxide.
  • the solvent contained in the absorption liquid 10 absorbs a part of the light (typically infrared light) contained in the sunlight C2, and the temperature of the absorption liquid 10 increases, promoting desorption of carbon dioxide.
  • amine-based materials typically used as carbon dioxide absorbers exhibit absorption of ultraviolet light, the usable wavelength range of light is wide, and sunlight C2 can be effectively utilized.
  • the reaction tank 83 includes a heat collecting member 15 inside (see FIG. 12B).
  • a heat collecting member 15 is arranged on the bottom wall portion 59 of the reaction tank 83. That is, the heat collecting member 15 is directly fixed to the reaction tank 83.
  • the heat collecting member 15 can be made of metal such as stainless steel. Further, from the viewpoint of efficiently absorbing sunlight C2, it is typically preferable to apply a black coating.
  • part of the sunlight C2 passes through the absorption liquid 10 and reaches the bottom wall portion 59 of the reaction tank 83.
  • the heat collecting member 15 is heated by absorbing sunlight C2 (typically infrared light), and supplies heat H1 to the absorption liquid 10.
  • sunlight C2 typically infrared light
  • the energy required for heating is reduced compared to a heater, a boiler, etc., and the heat H1 is supplied to the absorption liquid 10. be able to.
  • the heater etc. be driven by a so-called solar power generation system.
  • a solar power generation system there is a problem in the wavelength range of light that can be used by a solar panel that absorbs sunlight C2.
  • infrared light in particular can be used effectively, so the wavelength range of usable light is wide, and compared to solar power generation systems, sunlight C2 can be used more efficiently. It has characteristics.
  • FIG. 13A corresponds to a perspective view of the reaction vessel.
  • FIG. 13B is a drawing when the reaction tank 83 in FIG. 13A is viewed from the +X side, and for convenience of explanation, the inside of the reaction tank 83 is shown transparently.
  • FIG. 13C is a drawing when the reaction tank 83 in FIG. 13A is viewed from the +Y side, and similarly to FIG. 13B, the inside of the reaction tank 83 is shown transparently. Furthermore, in FIG. 13C, illustration of the heat transfer member 13 is omitted.
  • the reaction tank 83 of this modification includes a heat collecting member 16 in the shape of a round bar. More specifically, the heat collecting member 16 is composed of a plurality of round rod-shaped members, and is arranged at a position spaced apart from the reaction tank 83 in the +Z direction. As shown in FIG. 13A, the heat collecting member 16 is fixed to the reaction tank 83 via the heat transfer member 13.
  • the heat collecting member 16 arranged at the +Z side position of the reaction tank 83 was composed of a plurality of round bar-shaped members.
  • a flat heat collecting member 15 is arranged in place of the heat collecting member 16
  • heat will be collected when the sun C1 is at a relatively low position, such as in the morning hours or evening hours. It is assumed that the angle of incidence of the sunlight C2 on the surface of the member 15 increases, and the reflectance of the sunlight C2 on the surface of the heat collecting member 15 increases.
  • the heat collecting member 16 made up of a plurality of round bar-shaped members as shown in FIG. 13C, the absorption efficiency of sunlight C2 can be increased regardless of the height position of the sun C1.
  • a flat heat collecting member 15 may be additionally provided inside the reaction tank 83.
  • a flat heat collecting member 15 is additionally disposed on the bottom wall portion 59 of the reaction tank 83, as in the sixth modification.
  • the point in which the heat from the heat collecting member 15 is supplied to the absorbing liquid 10 is the same as in the sixth modification, so a description thereof will be omitted.
  • the heat collecting member 16 disposed on the +Z side of the reaction tank 83 is described as being a round bar-shaped member, but this is just an example. Even if the heat collecting member 16 has a shape other than a round bar shape such as a rectangular column shape, it is within the scope of the present invention.
  • FIG. 14A corresponds to a perspective view of the reaction vessel.
  • FIG. 14B is a drawing when the reaction tank 83 of FIG. 14A is viewed in the +X direction, and for convenience of explanation, the inside of the reaction tank 83 is shown transparently.
  • FIG. 14C is a drawing when the reaction tank 83 of FIG. 14A is viewed in the normal direction of an inclined surface provided on a pedestal 87, which will be described later.
  • the inside of the reaction tank 83 is shown transparently. ing. Note that illustration of the pedestal 87 is omitted in FIG. 14C.
  • the +Z direction corresponds to vertically upward.
  • the heat collecting member 16 is fixed to the reaction tank 83 via the heat transfer member 13.
  • the heat collecting member 16 is directly fixed to the reaction tank 83.
  • the reaction tank 83 is installed on a pedestal 87 having an inclined surface 87a.
  • the heat collecting member 16 fixed to the reaction tank 83 is also arranged along the inclined surface 87a.
  • a recess 84 may be provided in a part of the outer wall of the reaction tank 83, as shown in FIGS. 14B and 14C.
  • the recess 84 has a shape corresponding to the shape of the end 16 a of the heat collecting member 16 , and the end 16 a is placed in contact with the recess 84 .
  • the contact area between the heat collecting member 16 and the reaction tank 83 increases, so that the heat H1 from the heat collecting member 16 can be efficiently supplied to the absorption liquid 10.
  • FIG. 15 is a schematic diagram showing an example of the internal structure of the heat collecting member.
  • one end of each of the outer tube 161 and the inner tube 162 included in the heat collecting member 16 is sealed by a sealing part 163, and a space (hereinafter referred to as "sealed space 164" for convenience) .) to form.
  • the sealed space 164 is in a vacuum state, it is preferable that the heat H1 generated by the heat collecting section 165, which will be described later, is unlikely to leak to the outside.
  • the outer tube 161 and the inner tube 162 can be made of a glass material such as quartz glass.
  • a heat collecting part 165 for example, a heat collecting part 165, heat transfer fins 166, and a heat pipe 167 with one end 167a exposed to the outside are arranged.
  • the inside of the heat pipe 167 is in a vacuum state, and a working fluid 168 such as pure water is placed therein.
  • the heat collecting portion 165 is made of metal such as stainless steel, and the heat transfer fins 166 are made of metal such as aluminum.
  • the heat collecting member 16 can be installed in the reaction tank 83, for example, in the manner described using FIGS. 14A to 14C. That is, the end 16a of the heat collecting member 16 in FIG. 14C corresponds to the end 167a of the heat pipe 167.
  • the heat collecting part 165 is heated, and heat H1 is supplied to the working fluid 168 via the heat transfer fins 166.
  • the heated and evaporated working fluid 168 moves toward one end 167a of the heat pipe 167.
  • heat H1 is supplied from the vapor of the high-temperature working fluid 168 to the absorption liquid 10 via the reaction tank 83 (see FIG. 14C).
  • the vapor of the working fluid 168 which has become low temperature by supplying the heat H1 to the absorption fluid 10, is liquefied and moves to the other end 167b of the heat pipe 167.
  • the absorption liquid 10 is heated using sunlight C2 as an energy source.
  • a heat medium heated to a high temperature may be used as one aspect of the heat source 68 (see FIG. 10) that supplies heat to the absorption liquid 10. That is, heat H1 is supplied to the absorption liquid 10 by heat exchange performed between the high temperature heat medium and the absorption liquid 10. From the viewpoint of reducing the energy required to supply this heat H1, the heat medium is preferably heated using sunlight C2. This point will be explained with reference to FIGS. 16A to 16C.
  • FIG. 16A is a conceptual diagram showing an example of an installation mode of a reaction tank 89 according to a ninth modification, and as described later, hot water is supplied to a heat exchanger 91 from a hot water generator 90 installed on a roof 94.
  • the absorption liquid 10 in the reaction tank 89 is heated in the heat exchanger 91.
  • FIG. 16B is a schematic drawing when the hot water generator 90 installed on the roof 94 is viewed in the +X direction, and for convenience of explanation, the inside of the hot water generator 90 is shown transparently.
  • FIG. 16C is a conceptual diagram showing a mode of heat exchange performed in the heat exchanger 91. In FIGS. 16A to 16C, the +Z direction corresponds to vertically upward direction.
  • the reaction tank 89 is connected to a heat exchanger 91 via a flow path 92. Further, the heat exchanger 91 is connected to the hot water generator 90 via a flow path 93.
  • FIG. 16A shows a reaction tank 89 whose sides in the X direction are designed to be relatively short and where a plurality of light sources 86 are directly fixed on the -X side.
  • a flow path 92 connected to a heat exchanger 91 is provided in the reaction tank 89, and the absorption liquid 10 is guided to the heat exchanger 91 via the flow path 92.
  • the hot water generator 90 has an L-shaped cross-section, for example, as shown in FIG. 16B, and contains water 95 as a heat medium therein.
  • the hot water generator 90 has a flat heat collecting member 15 on a part of the outer wall surface.
  • the heat collecting member 15 is heated by absorbing sunlight C2, and the temperature of the water 95 becomes high (hereinafter referred to as "hot water 95").
  • This hot water 95 is guided to a heat exchanger 91 via a flow path 93.
  • heat exchanger 91 heat exchange occurs between the absorption liquid 10 flowing through the flow path 92 and the hot water 95 flowing through the flow path 93. It will be done. Thereby, heat H1 is supplied from the hot water 95 to the absorption liquid 10.
  • heat exchange by the heat exchanger 91 is preferably performed when the temperature of the hot water 95 is higher than that of the absorption liquid 10.
  • FIG. 16A shows an example in which the hot water generator 90 is installed on the roof 94 of a building from the viewpoint of efficiently irradiating the heat collecting member 15 with sunlight C2.
  • the reaction tank 89 and the heat exchanger 91 at a location other than the roof 94 (such as the ground), as shown in FIG. 16A. Since the absorption liquid 10 containing, for example, an amine-based material is located inside the reaction tank 89, from the viewpoint of safety, it is particularly preferable that the reaction tank 89 be installed on the ground.
  • the hot water generator 90 is installed on the roof 94 of a building, but the present invention is not limited to this. Since the hot water generator 90 can adopt a structure substantially similar to the reaction tank 83 described above in the seventh modification and the eighth modification, its installation mode is also the same as in the seventh modification and the eighth modification. Reference may be made to what has been described above in the examples as appropriate.
  • the medium supplied to the heat exchanger 91 via the flow path 93 is "hot water 95", but if it is a fluid (heating medium) whose temperature is relatively easy to rise, , but not limited to water.
  • hot water generator 90 can be read as "fluid warmer”.
  • FIG. 17A and 17B are cross-sectional views schematically showing an example of a carbon dioxide recovery system (hereinafter simply referred to as "recovery system").
  • 17A corresponds to a scene in which a step of absorbing carbon dioxide contained in the gas G1 to be processed such as the atmosphere (step S2 described later) is executed
  • FIG. 17B corresponds to a scene in which a step of desorbing carbon dioxide that has been absorbed (described later) This corresponds to a scene where step S4) is executed.
  • FIG. 18 is a drawing of the collection system of FIG. 17A viewed from a different direction.
  • FIG. 18 corresponds to a drawing of the collection system shown in FIG. 17A viewed from the Z direction. Note that, as described later, in FIG. 18, illustration of a part of the configuration of the reaction tank 102 is omitted.
  • the recovery system 101 includes a reaction tank 102, an absorber 103 that is located inside the reaction tank 102 and exhibits carbon dioxide absorption, and a heat source 104 that supplies thermal energy to the absorber 103. Be prepared.
  • the absorber 103 is configured to include a carbon dioxide absorbing material that has the property of absorbing carbon dioxide and the property of desorbing the absorbed carbon dioxide by supplying heat H1.
  • the absorber 103 is made of, for example, a granular porous material having pores on its surface, and a carbon dioxide absorbing material is supported in the pores.
  • the reaction tank 102 includes an absorber 103, a solar heat collecting member 115 (hereinafter simply referred to as "heat collecting member 115") as a heat source 104, and efficiently transfers heat H1 of the heat collecting member 115 to the absorber 103.
  • a heat transfer member 119 for transmitting heat is housed inside.
  • the reaction tank 102 has a light-transmitting part 120 made of a glass material such as quartz glass on the +Z side so that the heat collecting member 115 can receive sunlight C2 (see also FIG. 17B).
  • a plurality of plate-shaped heat transfer members 119 are arranged in the X direction. Further, from the viewpoint of efficiently transmitting the heat of the heat collecting member 115 to the absorber 103, the heat transfer member 119 is connected on the +Z side and is arranged directly with respect to the heat collecting member 115 (Fig. 17B reference). Note that in FIG. 18, for convenience of illustration, the connection portion between the light transmitting part 120, the heat collecting member 115, and the heat transfer member 119 is not shown.
  • this embodiment shows an example in which the heat source 104 is arranged inside the reaction tank 102, the arrangement of the heat source 104 is not limited to this example, as will be described later in the section of the second embodiment.
  • recovery method a method for recovering absorbed carbon dioxide (hereinafter simply referred to as a "recovery method") that can be executed by the recovery system 101 will be described.
  • FIG. 19 is a flow diagram showing an example of the collection method according to the present invention.
  • This recovery method 101a includes a step S1 of preparing an absorber (hereinafter referred to as "second absorber 103a" for convenience) in a state before absorbing carbon dioxide, and absorbing carbon dioxide into the second absorber 103a.
  • second absorber 103a an absorber
  • Step S2 of preparing an absorber (hereinafter referred to as "first absorber 103b" for convenience) that has already absorbed carbon dioxide;
  • a step S4 of supplying the heat obtained in S3 to the first absorber 103b, and a gas containing carbon dioxide desorbed from the first absorber 103b by performing S4 (hereinafter referred to as "recovered gas G2" for convenience). It includes a step S5 of collecting.
  • the first absorber 103b desorbs the absorbed carbon dioxide and then becomes the second absorber 103a. That is, the recovery method 101a can repeat the steps after step S2 after performing step S5.
  • Step S1 Preparation of second absorbent body
  • an absorber (second absorber 103a) in a state before absorbing carbon dioxide is prepared.
  • the second absorbent body 103a is prepared by supporting a carbon dioxide absorption liquid containing an amine-based material on a base material made of a porous material having pores on the surface.
  • the carbon dioxide absorption liquid is prepared by dispersing an amine-based material in a solvent such as PEG.
  • a solvent such as PEG
  • the ratio of the solvent to the amine material is 1:1.
  • alcohol such as methanol may be added to the carbon dioxide absorption liquid depending on the viscosity of the amine material. For example, by mixing methanol, the viscosity of the carbon dioxide absorption liquid containing PEG and amine-based material can be lowered.
  • FIG. 20A is a cross-sectional view schematically showing the structure of the base material 110.
  • the base material 110 is a solid material having countless pores 111 on its surface. Then, a carbon dioxide absorbing liquid in which an amine-based material is dispersed is brought into contact with this base material 110, and the carbon dioxide absorbing liquid is supported in the pores 111.
  • FIG. 20B is a cross-sectional view schematically showing the structure of the second absorbent body 103a prepared through the above operation.
  • the diameter D12 of the pore 111 is set to 15 nm or less. Note that in FIGS. 20A and 20B, for convenience of illustration, the diameter D12 is exaggerated with respect to the particle diameter D11 of the base material 110.
  • FIG. 20C is a cross-sectional view schematically showing the structure of the second absorbent body 103a when the diameter D12 is relatively large (for example, about several ⁇ m), following FIG. 20B.
  • the diameter D12 is appropriately designed depending on, for example, the surface tension of the carbon dioxide absorption liquid 112 supported in the pores 111 and the carbon dioxide absorption capacity.
  • the diameter D12 is preferably 0.1 ⁇ m or less.
  • the base material 110 support the carbon dioxide absorption liquid 112 and then heat the base material 110 to evaporate the alcohol.
  • the heating condition when methanol is used is about 60°C.
  • the base material 110 is preferably placed in a reduced pressure atmosphere of, for example, about 60 kPa.
  • the base material 110 may be sprayed with plasma gas or irradiated with ultraviolet rays.
  • the hydrophilicity of the surface of the pores 111 included in the base material 110 can be improved, and the carbon dioxide absorption liquid 112 can be suitably supported. Note that the hydrophilic treatment of the surfaces of these pores will be described in detail in the [Verification] section below.
  • the second absorbent body 103a obtained through the above operation is placed inside the reaction tank 102 (see FIG. 17A).
  • step S1 of preparing the second absorbent body 103a corresponds to the step (d1).
  • Step S2 carbon dioxide absorption step
  • the gas G1 to be treated containing carbon dioxide is introduced from the inlet 105 into the reaction tank 102 in which the second absorber 103a is located, and brought into contact with the second absorber 103a.
  • FIG. 18 schematically shows how the gas to be treated G1 flows within the reaction tank 102.
  • the second absorber 103a absorbs carbon dioxide in the gas G1 to be treated, and the first absorber 103b that has already absorbed carbon dioxide is obtained.
  • the first absorber 103b that has already absorbed carbon dioxide is hatched (see FIG. 17B, etc.).
  • the target gas G1 whose carbon dioxide concentration has decreased due to absorption of carbon dioxide is discharged to, for example, outside space via the discharge port 106.
  • step S3 it is assumed that the reaction tank 102 is irradiated with sunlight C2 (step S3).
  • the atmosphere in the reaction tank 102 it is preferable that the atmosphere in the reaction tank 102 be kept at a low temperature. Therefore, in step S2, the sunlight C2 irradiated onto the reaction tank 102 may be shielded by an arbitrary shielding member (not shown). Further, the step S2 may be executed during a time period such as nighttime when there is no or little irradiation of sunlight C2.
  • Examples of the gas to be processed G1 include the atmosphere and exhaust gas from factories.
  • the gas to be treated G1 is exhaust gas
  • the gas to be treated G1 is cooled or screened for substances that inhibit absorption of carbon dioxide contained in the gas to be treated G1 before introducing it into the reaction tank 102.
  • Pre-processing such as
  • step S2 of preparing the first absorber 103b by causing the second absorber 103a to absorb carbon dioxide corresponds to step (d).
  • Step S3 convert sunlight into heat
  • energy is required to desorb the absorbed carbon dioxide from the first absorber 103b. Therefore, heat H1 is supplied to the first absorber 103b.
  • the recovery method according to the present embodiment converts sunlight C2 to obtain heat H1 in order to reduce the energy consumed in supplying heat H1.
  • the heat source 104 is composed of a heat collecting member 115 arranged vertically above the reaction tank 102 (on the +Z side).
  • the heat collecting member 115 absorbs the sunlight C2 taken in from the transparent part 120 and is heated.
  • the heat collecting member 115 is typically made of a metal such as aluminum or copper coated with a black color.
  • the heat collecting member 115 may be coated with a black body material such as graphite, which exhibits a high absorption rate for light.
  • the light-transmitting part 120 is composed of a plurality of transparent members 121 made of a glass material such as quartz glass. Furthermore, a reduced pressure space 122 is formed between these transparent members 121 .
  • the pressure in the low pressure space 122 is, for example, 10 kPa or less, and is typically around 0 atmospheres.
  • the low-pressure space 122 is provided in order to make it difficult for the heat H1 converted by the heat collecting member 115 to be transmitted to the +Z side, the present invention is not limited to whether or not the low-pressure space 122 is formed.
  • step S3 of converting this sunlight C2 into heat H1 corresponds to step (e).
  • Step S4 Supplying heat to the first absorber
  • the heat H1 obtained in the above step S3 is supplied to the first absorber 103b.
  • the reaction tank 102 includes a heat transfer member 119 for efficiently supplying the heat H1 of the heat collecting member 115 to the first absorber 103b.
  • the heat transfer member 119 is placed directly against the heat collecting member 115 and is heated by the heat of the heat collecting member 115.
  • a material having a high heat transfer coefficient such as aluminum, copper, or ceramics can be used.
  • the heat transfer member 119 may be integrally made of the same material as the heat collecting member 115.
  • step S3 of converting sunlight C2 into heat H1 and step S4 of supplying heat H1 to the first absorber 103b are automatically executed.
  • a desorption-promoting gas B1 such as air or nitrogen gas may be introduced into the reaction tank 102 from the inlet 105 at the same time as the heat H1 is supplied.
  • step S4 a heat transfer medium made of fluid may be used to supply the heat H1 to the first absorber 103b, and this configuration will be detailed in the second embodiment later.
  • step S4 of supplying the heat H1 to the first absorber 103b corresponds to step (f).
  • Step S5 Recovering the desorbed carbon dioxide
  • the recovered gas G2 containing carbon dioxide desorbed in step S4 is sent, for example, to a carbon dioxide utilization facility such as a plant factory via an outlet 106 and a pipe (not shown).
  • the discharge port 106 corresponds to a "recovery port".
  • the destination of the recovered gas G2 is not limited.
  • step S5 of recovering carbon dioxide corresponds to step (g).
  • FIG. 21 is a cross-sectional view schematically showing the experimental system used in this verification, similar to FIG. 17B.
  • the execution scene of steps S3 to S5 is illustrated. Since the reaction tank 102 according to this experimental system has the same configuration as that described with reference to FIG. 17A and the like, the above description will be omitted as appropriate.
  • the internal dimensions of the reaction tank 102 used in this verification were 5 cm in length (X direction), 2 cm in width (Y direction), and 0.7 cm in height (Z direction).
  • heat collecting member 115 an aluminum plate member coated with a black body material and having dimensions of 5 cm in length, 2 cm in width, and 0.2 cm in height was installed at a position of 0.5 cm in height.
  • the carbon dioxide absorbent an amine material classified as diamines was used as the carbon dioxide absorbent, and PEG was used as the solvent. That is, the carbon dioxide absorption liquid 112 is a diamine solution adjusted to have a volume ratio of 1:1 with PEG as a solvent.
  • Granular silica manufactured by Fuji Silysia was used as the solid material supporting the diamine solution. This silica has an average particle size of 1 to 5 mm and a specific surface area of 100 to 200 m 2 /g.
  • the weight of the diamine solution was weighed to be several tens of wt% per 1 g of the solid material, and methanol was added to the diamine solution at a constant ratio to prepare a mixed solution. Then, 1 g of solid material was added to this mixed solution and stirred. Stirring was performed in a reduced pressure atmosphere of 50 kPa while heating at about 50°C. In this way, the second absorbent body 103a was obtained by impregnating the solid material with the diamine solution and then heating it under a reduced pressure atmosphere to evaporate methanol.
  • Step S2 Several grams of the second absorber 103a obtained through the above operations were placed inside the reaction tank 102. Then, the atmosphere (carbon dioxide concentration is approximately 400 pm) was introduced into the reaction tank 102 at a flow rate of 7.5 mL/min for several tens of hours as the gas G1 to be treated, thereby obtaining the first absorber 103b that had already absorbed carbon dioxide. (Step S2).
  • the carbon dioxide concentration of the gas G1 to be treated after contacting the second absorber 103a decreases. Thereafter, when the absorption of carbon dioxide by the second absorber 103a is completed (first absorber 103b), the carbon dioxide concentration of the target gas G1 that has passed through the reaction tank 102 is the same as the state before being introduced into the reaction tank 102. It will be about the same level. Therefore, in this verification, it was determined that the second absorber 103a had sufficiently absorbed carbon dioxide when the carbon dioxide concentration of the gas to be treated G1 measured at the latter stage of the exhaust port 106 reached 400 ppm.
  • FIG. 22 shows the spectrum of the halogen lamp 130 used in this verification.
  • the halogen lamp 130 used in this verification has a peak intensity near 1000 nm, and has a light intensity of 40% or more of the peak intensity in the range of 500 nm to 2000 nm. shows. Note that in this verification, the power input to the halogen lamp 130 was 50W.
  • FIG. 23 is a graph showing the carbon dioxide desorption results of this verification.
  • the horizontal axis shows the elapsed time since the halogen lamp 130 was turned on, and the vertical axis shows the carbon dioxide concentration measured at the position of the exhaust port 106.
  • the carbon dioxide concentration of the recovered gas G2 exceeded the typical atmospheric carbon dioxide concentration of 400 ppm (0.04%). This is because the first absorber 103b desorbs carbon dioxide in response to the supply of heat H1 from the heat collecting member 115 heated by the irradiation of the light L1. Further, the carbon dioxide concentration of the recovered gas G2 reached a maximum of about 9600 ppm (0.96%). This is 24 times the carbon dioxide concentration compared to the atmosphere. From this point of view, it can be said that in this verification, carbon dioxide was desorbed suitably from the first absorber 103b.
  • an amine-based material such as diamines was used as the carbon dioxide absorbing material, but the same argument as above can be made if the material is a carbon dioxide absorbing material that causes a carbon dioxide desorption reaction when thermal energy is supplied. is possible.
  • step S1 of preparing the second absorber 103a before the base material 110 is made to support the carbon dioxide absorbing liquid 112, plasma gas may be sprayed onto the base material 110 or ultraviolet rays may be irradiated on the base material 110. good. The effect of irradiating the base material 110 with ultraviolet rays was verified and will be described below.
  • a Xe excimer lamp is used to treat the solid material at a wavelength near 172 nm. Irradiated with ultraviolet light. The ultraviolet irradiation was performed for several seconds at an irradiance of several tens of mW/cm 2 .
  • the second absorber 103a was subjected to treatments such as evaporation of methanol and heating, and the weight of the second absorber 103a was measured to estimate the amount of the amine-based material supported on the solid material.
  • Table 1 below shows the results of comparison with the supported amount obtained in Verification 2, which was not irradiated with ultraviolet rays.
  • the amount of amine-based material supported on the solid material was approximately 1.2 times that in the case without ultraviolet irradiation (verification 2). This is thought to be because hydrophilic functional groups were formed on the pore surfaces of the solid material by ultraviolet irradiation, resulting in improved wettability of the pore surfaces with respect to the carbon dioxide absorption liquid containing the amine-based material.
  • the carbon dioxide absorption capacity of the absorber can be increased.
  • the carbon dioxide absorption capacity of the absorber can be increased.
  • the carbon dioxide absorption from the pore surface is reduced. It is presumed that peeling of the liquid is suppressed.
  • deterioration of the absorber due to peeling off of the carbon dioxide absorbing liquid can be suppressed even if carbon dioxide is repeatedly recovered. Ru.
  • the carbon dioxide recovery capacity will be maintained when looking at the recovery system as a whole.
  • Hydrophilic functional groups can also be formed on the pore surfaces by spraying plasma gas onto the pores of a solid material.
  • spraying plasma gas can also make the pore surface hydrophilic and increase the amount of carbon dioxide absorbent supported in the solid material.
  • the heat source 104 is placed inside the reaction tank 102, but the heat source 104 can also be placed outside the reaction tank 102 at a position independent of the reaction tank 102. That is, in this embodiment, the heat transfer medium heated by the heat source 104 is introduced into the reaction tank 102, and supplies heat H1 to the first absorber 103b inside the reaction tank 102.
  • FIG. 24 is a drawing schematically showing the configuration of the second embodiment of the collection system 101, and some components are shown in a block diagram.
  • the recovery system 101 includes a reaction tank 102, a heat source 104, a first flow path 131 that connects the heat source 104 and the reaction tank 102, and a gas G1 to be processed into the reaction tank 102.
  • a second flow path 132 for introducing gas G1 and the like, and a third flow path 133 located downstream of the reaction tank 102 with respect to the flow direction of the gas to be treated G1 and the like are provided.
  • FIG. 24 illustrates a scene in step S4 (see FIG. 19), in which the atmosphere as the heat transfer medium A1 is introduced into the reaction tank 102 from the first flow path 131.
  • the recovery system 101 includes a first valve V1 that can control the flow rate of atmospheric air flowing through the second flow path 132, and a second valve V2 that can control the flow rate of atmospheric air that flows through the first flow path 131. , a control unit 108 that controls the opening and closing states of each valve (V1, V2).
  • V1, V2 the first valve V1 is in the closed state and the second valve V2 is in the open state.
  • the positions of each valve with respect to the piping are drawn differently. It is.
  • the reaction tank 102 has a thermometer 109 that measures the temperature of the internal space of the reaction tank 102.
  • the control unit 108 sends signals (d1, d2) to each valve (V1, V2) to adjust the opening degree of the valve, based on temperature information d0 in the reaction tank 102 from the thermometer 109. ) can be sent.
  • FIGS. 25 to 28 are cross-sectional views schematically showing the structure of the reaction tank 102, with FIG. 25 corresponding to step S2 and FIG. 26 corresponding to step S4 (see FIG. 19).
  • 27 and 28 are cross-sectional views schematically showing the structure of the heat source 104, and FIG. 28 is a drawing when the heat source 104 according to FIG. 27 is viewed from the Z direction, following FIG. 18.
  • the second absorbent body 103a prepared through the above-described step S1 is placed inside the reaction tank 102. Then, the second valve V2 is closed and the first valve V1 is opened, and the atmosphere as the gas to be treated G1 is introduced into the reaction tank 102 through the inlet 105b.
  • the first absorber 103b is obtained by the second absorber 103a absorbing carbon dioxide contained in the gas G1 to be treated (step S2).
  • step S3 is performed by the heat source 104.
  • the heat source 104 includes a heating tank 104a, a heat collecting member 115 arranged vertically above (+Z side) of the heating tank 104a, and a heat transfer member arranged directly on the heat collecting member 115. 119, and a transparent part 120 for taking in sunlight C2 inside. Note that, in FIG. 28, for convenience of illustration, some of the light-transmitting part 120, the heat collecting member 115, and the heat transfer member 119 are omitted. Since the heat source 104 has the same structure as the reaction tank 102 according to the first embodiment, the description of the common parts will be simplified.
  • the heat transfer member 119 is made of, for example, a plate-shaped member, as shown in FIG. They may be arranged substantially perpendicular to the flow direction. From a similar point of view, the flow section 125, which is located between the inner wall of the heating tank 104a and the heat transfer member 119 in the Y direction and through which the heat transfer medium A1 passes, is It may be configured to overlap the main surface of the heat transfer member 119 located at the rear stage with respect to the flow direction of the heat medium A1. Note that the "principal surface” herein refers to a surface that is much larger in area than other surfaces among the surfaces that the plate-shaped heat transfer member 119 has.
  • the recovered gas G2 containing carbon dioxide desorbed from the first absorber 103b by the supply of the heat H1 is recovered through the exhaust port 106a (step S5).
  • this discharge port 106a corresponds to a "recovery port”.
  • the atmosphere is used as the heat transfer medium A1
  • the carbon dioxide concentration near the first absorber 103b can be lowered.
  • the atmosphere as the heat transfer medium A1 also functions as a desorption-promoting gas B1 that promotes the desorption of carbon dioxide.
  • the absorbed carbon dioxide is desorbed by heating the first absorber 103b by the atmosphere as the heat transfer medium A1.
  • the first absorber Preferably, thermal effects on 103b are reduced. Therefore, the control unit 108 receives the temperature information d0 from the thermometer 109, and when the temperature inside the reaction tank 102 is equal to or higher than a predetermined value, the control unit 108 sends a signal to the first valve V1 to adjust the opening degree. Send d1.
  • the opening degree of the first valve V1 By adjusting the opening degree of the first valve V1, it is possible to introduce atmospheric air that is lower temperature than the heat transfer medium A1, so that the temperature inside the reaction tank 102 can be lowered and the thermal influence on the first absorber 103b can be reduced.
  • the atmosphere in this case corresponds to "cooling gas.”
  • the opening degree of the second valve V2 may be adjusted by transmitting the signal d2 to the second valve V2.
  • the predetermined value may be, for example, 100°C or less, preferably 80°C or less, and more preferably 60°C or less.
  • control unit 108 adjusts the opening degree of each valve (V1, V2) based on the temperature information d0 from the thermometer 109, and lowers the temperature inside the reaction tank 102 in step S4. explained.
  • the control unit 108 opens the first valve V1 and closes the second valve V2 for a predetermined period of time, for example, when the cumulative time during which V2 is in the open state reaches a preset time. It does not matter if it is something that performs control.
  • FIGS. 29 and 30 are drawings schematically showing the configuration of another embodiment of the collection system 101, and a part of the configuration is shown in a block diagram.
  • FIG. 29 corresponds to a scene where step S2 is executed
  • FIG. 30 corresponds to a scene where steps S4 and S5 are executed.
  • This embodiment includes a heat exchanger 136 that performs heat exchange between the atmosphere as the heat transfer medium A1 and the recovered gas G2 containing carbon dioxide recovered from the reaction tank 102 (see FIG. 30).
  • the recovery system 101 also includes a fourth flow path 134 that is branched from the third flow path 133 and through which the gas G1 to be treated after passing through the reaction tank 102 flows (see FIG. 29); It has a fourth valve V4 located at. Note that the same discussion as described with reference to FIGS. 25 to 28 can be made regarding the configurations of the reaction tank 102 and the heat source 104.
  • step S2 when step S2 is executed, the first valve V1 and the fourth valve V4 arranged in the second flow path 132 are opened, and the reaction tank is opened by a flow mechanism such as a fan (not shown).
  • a gas to be treated G1 is introduced into the chamber 102 .
  • the gas G1 to be treated in which carbon dioxide has been absorbed by the second absorber 103a in the reaction tank 102 is discharged, for example, to the outside space via the fourth flow path 134.
  • the third valve V3 arranged in the third flow path 133 is opened.
  • the atmosphere in the space where plants are grown in the plant factory 135 (hereinafter referred to as "growth space 135a" for convenience) is used as the heat transfer medium A1.
  • the recovered gas G2 containing carbon dioxide desorbed from the first absorber 103b in the reaction tank 102 can be used in the growth space 135a.
  • the recovered gas G2 contains carbon dioxide desorbed by heating the first absorber 103b, it has a higher temperature than the atmosphere as the heat transfer medium A1. Therefore, it is preferable to perform heat exchange between the recovered gas G2 and the atmosphere as the heat transfer medium A1.
  • the lighting for growth is turned on or off in accordance with the circadian rhythm unique to the plant. That is, while the lighting is turned on, the carbon dioxide concentration in the growth space 135a decreases due to photosynthesis of the plants. Therefore, from the viewpoint of enhancing the effect as the desorption-promoting gas B1 described above, it is preferable to use the atmosphere in the growth space 135a as the heat transfer medium A1.
  • the atmosphere in another space such as the outside space may be used as a heat transfer medium. It may be used as A1.
  • FIG. 31 is a diagram schematically showing a part of another configuration example of the collection system 101.
  • 32A is a perspective view schematically showing the configuration of the heat source 104 in FIG. 31, and
  • FIG. 32B is a cross-sectional view of the heat source 104 in FIG. 32A when viewed from the X direction. Note that in FIGS. 32A and 32B, the flow direction of the heat transfer medium A1 is the X direction.
  • the heat source 104 according to FIG. 32A has an L-shaped cross-sectional shape, for example, as shown in FIG. 32B, and water as the heat transfer medium A1 is accommodated therein.
  • the heat source 104 has a flat heat collecting member 115 on a part of the outer wall surface, and the heat collecting member 115 is heated by absorbing sunlight C2, and high temperature water (hereinafter referred to as "hot water") is heated. generate.
  • hot water high temperature water
  • the hot water is configured to flow through the flow path 140, and by performing heat exchange between the hot water as the heat transfer medium A1 and the reaction tank 102, it is heated to the first absorber 103b in the reaction tank 102. can supply heat H1.
  • the atmosphere may be introduced into the reaction tank 102 (see FIG. 31).
  • heat exchange is performed between hot water as the heat transfer medium A1 flowing through the flow path 140 and the reaction tank 102.
  • heat exchange may be performed between the hot water and the atmosphere as the heat transfer medium A1 flowing through the first flow path 131 described with reference to FIGS. 24 and 26. That is, by introducing the atmosphere that has become high temperature through the heat exchange into the reaction tank 102, heat H1 is supplied to the first absorber 103b (see FIG. 26), and absorbed carbon dioxide is desorbed.
  • a heat source 104 may be additionally placed inside the reaction tank 102 shown in FIG. 24 or 31.
  • the configuration of the reaction tank 102 for example, the configuration described with reference to FIG. 17 can be used.
  • the absorber 103 is described as having a granular shape, but as described above, the shape of the absorber 103 is not limited to this, and may be, for example, plate-shaped.
  • FIG. 33 is a drawing schematically showing another embodiment of the recovery system 101, similar to FIG. 17B.
  • the heat transfer member 119 that becomes hot due to the heat H1 of the heat collecting member 115 to the absorber 103 which is in a liquid state, the supply of the heat H1 to the absorber 103 is reduced. It is possible.
  • the gas G1 to be treated such as the atmosphere, may be introduced from the inlet 105 and bubbled into the absorber 103.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Provided are: a method for recovering absorbed carbon dioxide, whereby it becomes possible to detach absorbed carbon dioxide from an absorbent material with a smaller energy; and a system suitable for the employment of the method. The method for recovering absorbed carbon dioxide comprises: a step (a) for irradiating an absorption solution in which carbon dioxide has been absorbed with light; a step (b) for supplying heat to the absorption solution; and a step (c) for recovering carbon dioxide detached from the absorption solution through the steps (a) and (b).

Description

二酸化炭素の回収方法及び二酸化炭素の回収システムCarbon dioxide recovery method and carbon dioxide recovery system
 本発明は、吸収液に吸収された状態(吸収済)の二酸化炭素を脱離して回収する方法及びその方法の利用に適したシステムに関する。また、本発明は、二酸化炭素吸収性を示す吸収体を介して二酸化炭素を回収する方法及びその方法の利用に適したシステムに関する。 The present invention relates to a method for desorbing and recovering carbon dioxide that has been absorbed (already absorbed) in an absorption liquid, and a system suitable for using the method. The present invention also relates to a method of recovering carbon dioxide via an absorber exhibiting carbon dioxide absorbability, and a system suitable for using the method.
 近年、大気中の二酸化炭素濃度を低下させるために、大気中の二酸化炭素を直接吸収したり、化石燃料の燃焼排ガス等に含有される二酸化炭素を分離して回収する技術が検討されている。 In recent years, in order to reduce the concentration of carbon dioxide in the atmosphere, technologies that directly absorb carbon dioxide from the atmosphere or separate and recover carbon dioxide contained in fossil fuel combustion exhaust gas, etc., have been studied.
 二酸化炭素の回収においては、二酸化炭素を吸収材に吸収させ、吸収済の二酸化炭素を当該吸収材から脱離させる方法が提案されている。例えば、下記、特許文献1には、アミンを吸収材として含む溶液を用いて、燃焼排ガスから二酸化炭素を分離し、その後、当該溶液を加熱することで、二酸化炭素を脱離させて回収する方法が記載されている。 In the recovery of carbon dioxide, a method has been proposed in which carbon dioxide is absorbed into an absorbent material and the absorbed carbon dioxide is desorbed from the absorbent material. For example, Patent Document 1 below describes a method of separating carbon dioxide from combustion exhaust gas using a solution containing amine as an absorbent, and then heating the solution to desorb and recover carbon dioxide. is listed.
特開平5-245339号公報Japanese Patent Application Publication No. 5-245339
 このように、二酸化炭素の吸収材から、吸収済の二酸化炭素を脱離させるには、加熱などのエネルギーの投入が必要とされている。この脱離のためのエネルギーが大きいと、二酸化炭素回収のコストが大きくなる。吸収材で二酸化炭素を吸収した後、当該吸収材で吸収された二酸化炭素を低エネルギーで脱離することができなければ、二酸化炭素の排出量を総合的に削減することが困難となる。例えば、二酸化炭素の脱離に多大な電力を消費すると、この電力を生成するために二酸化炭素を放出することになるためである。また、二酸化炭素が吸収された後の吸収材の取扱いの問題も生じ得る。 In this way, input of energy such as heating is required to desorb absorbed carbon dioxide from the carbon dioxide absorbing material. The greater the energy for this desorption, the greater the cost of carbon dioxide capture. After absorbing carbon dioxide with an absorbent material, unless the carbon dioxide absorbed by the absorbent material can be desorbed with low energy, it will be difficult to comprehensively reduce the amount of carbon dioxide emissions. For example, if a large amount of power is consumed to desorb carbon dioxide, carbon dioxide must be released in order to generate this power. Problems may also arise in handling the absorbent material after the carbon dioxide has been absorbed.
 一方で、上述したように、二酸化炭素を吸収済の吸収材から二酸化炭素を脱離回収する際に高いエネルギーが必要である場合には、システムの運転に伴うランニングコストが懸念となる。この点は、二酸化炭素を回収するシステムの導入及び普及にとって足かせとなる。現時点において、地球温暖化問題は世界的に解決すべき問題の一つとされている。地球温暖化の主要因の一つとされている二酸化炭素の排出量を低下させ、ひいては大気中の二酸化炭素濃度を低下させることは、喫緊の課題といえる。 On the other hand, as mentioned above, if high energy is required to desorb and recover carbon dioxide from an absorbent material that has already absorbed carbon dioxide, there is a concern about running costs associated with operating the system. This point is an impediment to the introduction and widespread use of carbon dioxide capture systems. At present, the problem of global warming is considered to be one of the problems that must be solved worldwide. It is an urgent issue to reduce emissions of carbon dioxide, which is considered one of the main causes of global warming, and to reduce the concentration of carbon dioxide in the atmosphere.
 以上を踏まえると、二酸化炭素を吸収材で吸収した後に、低コスト、低エネルギーの下で吸収材から二酸化炭素を脱離・回収させることのできるシステムを実現することは、大気中の二酸化炭素濃度を低下させる動きを促進する上で、重要であると考えられる。 Based on the above, it is important to realize a system that can desorb and recover carbon dioxide from the absorbent material at low cost and with low energy after absorbing it with the absorbent material. This is thought to be important in promoting movements that reduce
 本発明は、上記事情に鑑み、より少ないエネルギーで吸収済の二酸化炭素を吸収材から脱離できる、二酸化炭素の回収方法及びシステムを提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide a carbon dioxide recovery method and system that can desorb absorbed carbon dioxide from an absorbent material with less energy.
 本発明に係る、二酸化炭素の回収方法は、
 二酸化炭素が吸収された吸収液に対して光を照射する工程(a)と、
 前記吸収液に対して熱を供給する工程(b)と、
 前記工程(a)及び前記工程(b)を経て前記吸収液から脱離した二酸化炭素を回収する工程(c)とを含むことを特徴とする。
The carbon dioxide recovery method according to the present invention includes:
a step (a) of irradiating light onto the absorption liquid in which carbon dioxide has been absorbed;
(b) supplying heat to the absorption liquid;
The method is characterized by including a step (c) of recovering carbon dioxide desorbed from the absorption liquid through the step (a) and the step (b).
 詳細は後述するが、本発明者らは、鋭意研究の結果、二酸化炭素が吸収された吸収液に対して光を照射することで、当該吸収液からの吸収済二酸化炭素の脱離が増大することを見出した。すなわち、当該吸収液に対して熱を供給すると共に光を照射することで、単に熱を加える場合と比較して、加える熱エネルギーを従来よりも低下させながら、吸収済の二酸化炭素を脱離させることができる。また、加える熱エネルギーが低下することで、従来、二酸化炭素の脱離に必要とされていた吸収液の温度より、低い温度で二酸化炭素の脱離が可能となる。さらに、当該吸収液に対して加えられる熱エネルギーを従来と同一とすると、光の照射を行うことでより多くの二酸化炭素を脱離させることもできる。 Details will be described later, but as a result of extensive research, the present inventors have found that by irradiating light onto an absorption liquid in which carbon dioxide has been absorbed, the desorption of absorbed carbon dioxide from the absorption liquid increases. I discovered that. In other words, by supplying heat to the absorption liquid and irradiating it with light, the absorbed carbon dioxide is desorbed while reducing the amount of thermal energy applied compared to the case of simply applying heat. be able to. Furthermore, by reducing the applied thermal energy, carbon dioxide can be desorbed at a lower temperature than the temperature of the absorption liquid conventionally required for desorption of carbon dioxide. Furthermore, if the thermal energy applied to the absorption liquid is the same as in the past, more carbon dioxide can be desorbed by irradiation with light.
 吸収済二酸化炭素を脱離すべく、熱を供給して吸収液の温度を上昇させる場合は、二酸化炭素吸収材を含む溶液全体を加熱することを要する。一方で、吸収液に光を照射する場合は、二酸化炭素吸収材に吸収されやすい波長を選択することができる。すなわち、光の照射によれば、二酸化炭素吸収材に対して選択的にエネルギーを与えることができる。したがって、二酸化炭素を脱離するためのエネルギーを熱と光照射によって供給することで、単に熱を加える場合と比較して、より少ないエネルギーで吸収済の二酸化炭素を吸収液から脱離することができる。 When supplying heat to raise the temperature of the absorption liquid in order to desorb absorbed carbon dioxide, it is necessary to heat the entire solution containing the carbon dioxide absorbing material. On the other hand, when irradiating the absorption liquid with light, a wavelength that is easily absorbed by the carbon dioxide absorbing material can be selected. That is, by irradiating light, energy can be selectively given to the carbon dioxide absorbing material. Therefore, by supplying the energy to desorb carbon dioxide through heat and light irradiation, it is possible to desorb carbon dioxide that has already been absorbed from the absorption liquid with less energy than when simply applying heat. can.
 本明細書において「回収」とは、吸収液又は吸収体から脱離した二酸化炭素を、吸収液又は吸収体が配置されている領域から他の領域に移送することを意味する。例えば、ボンベ等の貯留槽に二酸化炭素を貯留しても構わないし、配管を介して二酸化炭素の利用施設に送り込むものとしても構わない。前記利用施設としては、例えば植物工場等が挙げられる。 In this specification, "recovery" means to transfer the carbon dioxide desorbed from the absorbent liquid or absorber from the area where the absorbent liquid or absorber is placed to another area. For example, carbon dioxide may be stored in a storage tank such as a cylinder, or may be sent to a carbon dioxide utilization facility via piping. Examples of the utilization facility include a plant factory and the like.
 前記工程(a)は、光源から前記吸収液に対して前記光を照射する工程であり、
 前記工程(b)は、前記光源が発する前記熱を前記吸収液に供給する工程であっても構わない。
The step (a) is a step of irradiating the absorption liquid with the light from a light source,
The step (b) may be a step of supplying the heat generated by the light source to the absorption liquid.
 光源は、発光時に熱を発するため、吸収液に対して光を照射するに際し、前記光源が発する熱を吸収液に供給すれば、エネルギーを効率的に利用できる。したがって、さらに少ないエネルギーで吸収済の二酸化炭素を吸収液から脱離することができる。 Since the light source emits heat when emitting light, energy can be used efficiently by supplying the heat emitted by the light source to the absorbing liquid when irradiating the absorbing liquid with light. Therefore, absorbed carbon dioxide can be desorbed from the absorption liquid with even less energy.
 前記工程(a)及び前記工程(b)は、同時に実行されても構わない。 The step (a) and the step (b) may be performed simultaneously.
 また、前記工程(a)は、光源から前記吸収液に対して前記光を照射する工程を含み、
 前記工程(b)は、太陽光が照射可能な態様で、前記吸収液が内部に位置する反応槽に対して直接又は他の部材を介して接触する状態で配置された太陽光集熱部材が、前記太陽光を前記熱に変換し、前記熱を前記吸収液に供給する工程を含んでも構わない。
Further, the step (a) includes a step of irradiating the absorption liquid with the light from a light source,
In the step (b), a solar heat collecting member is placed in a state where sunlight can be irradiated, and the solar heat collecting member is placed in contact with the reaction tank in which the absorption liquid is located, either directly or through another member. , the method may include a step of converting the sunlight into the heat and supplying the heat to the absorption liquid.
 詳細は後述するが、太陽光のエネルギーを利用して、吸収液に対して熱を供給することにより、より少ないエネルギーで吸収済の二酸化炭素を吸収液から脱離することができる。 Although the details will be described later, by using the energy of sunlight to supply heat to the absorption liquid, the absorbed carbon dioxide can be desorbed from the absorption liquid with less energy.
 前記吸収液は、塩基性材料からなる二酸化炭素吸収材と溶媒とを含んでもよい。 The absorption liquid may include a carbon dioxide absorbent made of a basic material and a solvent.
 前記二酸化炭素吸収材は、アミン系材料であってもよい。アミン系材料とは、一級又は二級のアミノ基を1つ以上有するアミン化合物をいう。アミン化合物は、二酸化炭素吸収性能を有するものであれば特に制限はなく、一種又は混合物として使用することが可能である。 The carbon dioxide absorbing material may be an amine-based material. The amine material refers to an amine compound having one or more primary or secondary amino groups. The amine compound is not particularly limited as long as it has carbon dioxide absorption performance, and it can be used alone or as a mixture.
 アミン系材料に含有させることが可能なアミン化合物として、例えば、モノエタノールアミン、2-アミノ-2-メチル-1-プロパノール、フェニルエチルアミン等の一級アミン類、ジエタノールアミン、2-メチルアミノエタノール、2-エチルアミノエタノール等の二級アミン類、エチレンジアミン、N,N-ジメチルエチレンジアミン、オルト-キシリレンジアミン、メタ-キシリレンジアミン、パラ-キシリレンジアミン等のジアミン類、ジエチレントリアミン等のトリアミン類、ベンジルアミン、パラ-メトキシベンジルアミン、パラ-トリフルオロメチルベンジルアミン等のベンジルアミン類が挙げられる。 Examples of amine compounds that can be included in the amine-based material include primary amines such as monoethanolamine, 2-amino-2-methyl-1-propanol, and phenylethylamine, diethanolamine, 2-methylaminoethanol, and 2-methylaminoethanol. Secondary amines such as ethylaminoethanol, diamines such as ethylenediamine, N,N-dimethylethylenediamine, ortho-xylylenediamine, meta-xylylenediamine, para-xylylenediamine, triamines such as diethylenetriamine, benzylamine, Examples include benzylamines such as para-methoxybenzylamine and para-trifluoromethylbenzylamine.
 二酸化炭素吸収材を、水又はジメチルスルホキシド(DMSO)等の溶媒に分散させることで、二酸化炭素の吸収液を調整することができる。また、溶媒として例えばエタノール等のアルコールを用いてもよい。これらの溶媒は複数種類を組み合わせても構わない。 A carbon dioxide absorption liquid can be prepared by dispersing a carbon dioxide absorbent in a solvent such as water or dimethyl sulfoxide (DMSO). Furthermore, alcohol such as ethanol may be used as the solvent. A plurality of these solvents may be used in combination.
 以下、アミン系材料(R12NH)の水溶液を例にとり、二酸化炭素の吸収及び脱離について説明する。ここで、R1はアルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。また、R2は水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。これらの官能基は置換基を有していてもよい。 Hereinafter, absorption and desorption of carbon dioxide will be explained using an aqueous solution of an amine material (R 1 R 2 NH) as an example. Here, R 1 represents an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group. Further, R 2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group. These functional groups may have a substituent.
 アミン系材料が二酸化炭素を吸収する反応として、主に下記(1)~(3)式が存在する。
 R12NH + CO2 + H2O → R12NH2 + + HCO3 - ・・・・(1)
 2(R12NH)aq + CO2 → R12NH2 + + R12NCOO- ・・・・(2)
 R12NH + CO2 → R12NCOOH ・・・・(3)
The following formulas (1) to (3) mainly exist as reactions in which an amine-based material absorbs carbon dioxide.
R 1 R 2 NH + CO 2 + H 2 O → R 1 R 2 NH 2 + + HCO 3 -・・・・・・(1)
2(R 1 R 2 NH) aq + CO 2 → R 1 R 2 NH 2 + + R 1 R 2 NCOO -・・・(2)
R 1 R 2 NH + CO 2 → R 1 R 2 NCOOH (3)
 さらに、溶媒が水である場合、液相の表面に水酸化物イオン(OH- )が存在することが想定されるため、下記(4)式の吸収反応も想定される。
 CO2 + OH- → HCO3 - ・・・・(4)
Furthermore, when the solvent is water, it is assumed that hydroxide ions (OH - ) are present on the surface of the liquid phase, so the absorption reaction of the following formula (4) is also assumed.
CO 2 + OH - → HCO 3 -... (4)
 なお、上記(4)式に限られないが、二酸化炭素を溶液が吸収する際、二酸化炭素を含む気相と溶液の液相が接触(「気液接触」ともいわれる。)する面積が大きいことが好ましい。気液接触する面積が大きいと、例えば、(4)式においては、液相の表面近傍の水酸化物イオンが反応に寄与しやすくなり好適である。また、水酸化物イオンを増加させる観点から、溶液は強アルカリであることが好ましい。ここで、「溶液が強アルカリである」とは、溶液のpHが10以上であることを意味する。 Note that, although not limited to the above formula (4), when the solution absorbs carbon dioxide, the area where the gas phase containing carbon dioxide and the liquid phase of the solution come into contact (also referred to as "gas-liquid contact") is large. is preferred. For example, in equation (4), if the area of gas-liquid contact is large, hydroxide ions near the surface of the liquid phase can easily contribute to the reaction, which is preferable. Further, from the viewpoint of increasing hydroxide ions, the solution is preferably a strong alkali. Here, "the solution is strongly alkaline" means that the pH of the solution is 10 or more.
 つまり二酸化炭素は、吸収液中にバイカーボネートイオン(HCO3 - )、カルバメートイオン(R12NCOO- )又はカルバミン酸(R12NCOOH)の態様で存在しており、これらが混在している。 In other words, carbon dioxide exists in the absorption liquid in the form of bicarbonate ions (HCO 3 - ), carbamate ions (R 1 R 2 NCOO - ), or carbamate ions (R 1 R 2 NCOOH), and these are mixed. ing.
 このように二酸化炭素を吸収した吸収液に対し、熱供給及び光照射によってエネルギーを与え、(1)~(4)式の逆反応を起こすことによって、吸収済の二酸化炭素を脱離することができる。 Energy is applied to the absorption liquid that has absorbed carbon dioxide in this way by heat supply and light irradiation, and by causing the reverse reactions of equations (1) to (4), the absorbed carbon dioxide can be desorbed. can.
 二酸化炭素の吸収及び脱離についてアミン系材料を例に説明した。一方で、他の二酸化炭素吸収材として、例えば、塩基性を示す、アミンを含むイミン、アルカリ金属を含む酸化物及びニオブ又はタンタルを含む酸化物等も知られている。 The absorption and desorption of carbon dioxide was explained using amine-based materials as an example. On the other hand, other carbon dioxide absorbing materials are also known, such as basic imines containing amines, oxides containing alkali metals, and oxides containing niobium or tantalum.
 二酸化炭素を吸収した後、光の吸収によって二酸化炭素の脱離反応を起こす二酸化炭素吸収材であれば、上記と同様の議論が可能である。つまり、二酸化炭素吸収材はアミン系材料に限定されるものではない。 The same argument as above can be made as long as the carbon dioxide absorbent material absorbs carbon dioxide and then causes a carbon dioxide desorption reaction by absorbing light. In other words, the carbon dioxide absorbent is not limited to amine-based materials.
 本発明に係る、二酸化炭素の回収システムは、
 二酸化炭素が吸収された吸収液が内部に位置する反応槽と、
 前記反応槽に対して直接又は他の部材を介して固定された状態で配置され、前記反応槽内の前記吸収液に対して光を照射する光源と、
 前記吸収液から脱離した二酸化炭素を回収する回収ポートとを備えたことを特徴とする。
The carbon dioxide recovery system according to the present invention includes:
a reaction tank in which an absorption liquid in which carbon dioxide has been absorbed is located;
a light source that is fixed to the reaction tank directly or via another member and irradiates the absorption liquid in the reaction tank with light;
It is characterized by comprising a recovery port for recovering carbon dioxide desorbed from the absorption liquid.
 吸収済二酸化炭素を吸収液から脱離する点については、上述した回収方法と同様の議論が可能である。ここで、吸収済二酸化炭素を脱離させるための光を出射する光源が、反応槽に直接又は他の部材を介して固定されることで、当該光源が発する熱を反応槽内の吸収液に供給することができる。この場合、脱離のためのエネルギーを効率良く利用できるため、少ないエネルギーで吸収済の二酸化炭素を吸収液から脱離することが可能となる。 Regarding the point of desorbing absorbed carbon dioxide from the absorption liquid, the same discussion as the above-mentioned recovery method can be made. Here, a light source that emits light for desorbing absorbed carbon dioxide is fixed to the reaction tank directly or through another member, so that the heat emitted by the light source is transferred to the absorption liquid in the reaction tank. can be supplied. In this case, since the energy for desorption can be used efficiently, the absorbed carbon dioxide can be desorbed from the absorption liquid with less energy.
 前記光源は、前記反応槽の内部に配置されても構わない。 The light source may be placed inside the reaction tank.
 光源が反応槽の内部に配置されることにより、当該光源が発する熱を効率良く反応槽内の吸収液に供給できる。したがって、より少ないエネルギーで吸収済の二酸化炭素を吸収液から脱離することが可能となる。 By disposing the light source inside the reaction tank, the heat generated by the light source can be efficiently supplied to the absorption liquid in the reaction tank. Therefore, it becomes possible to desorb the absorbed carbon dioxide from the absorption liquid with less energy.
 前記二酸化炭素の回収システムは、
 前記反応槽内に前記吸収液を導入する導入口と、
 前記光源からの前記光が照射された後の前記吸収液を排出する排出口とを備え、
 前記反応槽には、前記導入口から前記排出口に向かって通流中の前記吸収液が位置しても構わない。
The carbon dioxide recovery system includes:
an inlet for introducing the absorption liquid into the reaction tank;
and a discharge port for discharging the absorption liquid after being irradiated with the light from the light source,
The absorption liquid flowing from the introduction port toward the discharge port may be located in the reaction tank.
 吸収済二酸化炭素の脱離は、吸収液を通流させながら行ってもよい。吸収液を通流させながら吸収済二酸化炭素を脱離することで、例えば、脱離後の吸収液をそのまま二酸化炭素の吸収システム(吸収槽)に送出することが可能となる。この場合、二酸化炭素が脱離した吸収液を連続的に二酸化炭素の吸収に使用することができる。 Desorption of absorbed carbon dioxide may be performed while flowing the absorption liquid. By desorbing the absorbed carbon dioxide while flowing the absorbing liquid, it becomes possible, for example, to send the desorbed absorbing liquid as it is to the carbon dioxide absorption system (absorption tank). In this case, the absorption liquid from which carbon dioxide has been desorbed can be used continuously for carbon dioxide absorption.
 前記回収ポートは、前記吸収液の通流方向に関して、前記導入口よりも前記排出口に近い側に位置しても構わない。 The recovery port may be located closer to the outlet than the inlet with respect to the flow direction of the absorption liquid.
 吸収液を通流させながら二酸化炭素の脱離を行う場合、吸収液は反応槽に導入された後、光の照射が開始される。その後、吸収液は、排出口に向かって通流中に、引き続き光が照射される。ここで、特定箇所の吸収液に着目するために、流れに対する抵抗、熱に対する抵抗、及び光に対する遮蔽効果がいずれもゼロの仮想容器内に囲まれた吸収液を想定し、この仮想容器ごと吸収液の流れに沿って流れる場面を想定する。この仮想容器内の吸収液は、排出口に向かって流れている間にわたって光の照射が行われることになる。つまり、この仮想容器内の吸収液は、導入口から排出口に近づくに連れて、照射された光の量(照射線量)が増大する。同様に、光源が発する熱によって吸収液が加熱され、導入口から排出口に近づくに連れて、吸収液の温度が上昇する。この結果、二酸化炭素の脱離が増加する方向に平衡条件が移動するため、脱離する二酸化炭素の量も排出口に近づくに連れて増加する。 When desorbing carbon dioxide while flowing the absorption liquid, the absorption liquid is introduced into the reaction tank, and then light irradiation is started. Thereafter, the absorption liquid is continuously irradiated with light while flowing toward the discharge port. Here, in order to focus on the absorbent liquid at a specific location, we assume that the absorbent liquid is surrounded by a virtual container that has zero resistance to flow, resistance to heat, and shielding effect against light, and absorbs the entire virtual container. Assume a situation where the liquid flows along the flow. The absorption liquid in this virtual container is irradiated with light while flowing toward the discharge port. In other words, the amount of light irradiated (irradiation dose) increases as the absorption liquid in this virtual container approaches the discharge port from the inlet. Similarly, the absorbent liquid is heated by the heat emitted by the light source, and the temperature of the absorbent liquid increases as it approaches the outlet from the inlet. As a result, the equilibrium conditions shift in a direction in which the amount of carbon dioxide desorbed increases, and the amount of desorbed carbon dioxide also increases as it approaches the outlet.
 以上を踏まえると、反応槽内に流入される吸収液の全体を見た場合においても、導入口に近い側よりも排出口に近い側の方が、二酸化炭素の脱離が大きいと想定される。したがって、二酸化炭素の回収ポートが排出口に近い側に配置されることで、効率的に二酸化炭素を回収することができる。 Based on the above, even when looking at the entire absorption liquid flowing into the reaction tank, it is assumed that the desorption of carbon dioxide is greater on the side closer to the outlet than on the side closer to the inlet. . Therefore, by arranging the carbon dioxide recovery port on the side closer to the exhaust port, carbon dioxide can be efficiently recovered.
 前記二酸化炭素の回収システムにおいて、
 前記反応槽は、底壁部と、前記底壁部に対して鉛直上方に離間した上壁部とを有し、
 前記反応槽は、前記導入口から前記排出口に近づくに連れて、前記底壁部と前記上壁部との間の鉛直方向に係る離間距離が上昇する構造であっても構わない。
In the carbon dioxide recovery system,
The reaction tank has a bottom wall portion and an upper wall portion vertically spaced apart from the bottom wall portion,
The reaction tank may have a structure in which the distance between the bottom wall portion and the top wall portion in the vertical direction increases as the distance from the inlet port approaches the discharge port.
 前述した通り、導入口に近い側よりも排出口に近い側の方が、二酸化炭素の脱離が大きいと想定される。上記構成によれば、排出口に近づく程、底壁部と上壁部との離間距離が増大するため、反応槽内において吸収液から脱離した二酸化炭素を一時的に位置させるための空間を十分に確保できる。よって、この構成の下で、例えば排出口に近い側の上壁部を貫通するように回収ポートを設けることで、多くの二酸化炭素を効率的に回収できる。 As mentioned above, it is assumed that the desorption of carbon dioxide is greater on the side closer to the outlet than on the side closer to the inlet. According to the above configuration, the distance between the bottom wall and the top wall increases as you get closer to the discharge port, so there is a space in the reaction tank in which the carbon dioxide desorbed from the absorption liquid is temporarily located. We can secure enough. Therefore, with this configuration, a large amount of carbon dioxide can be efficiently recovered by providing a recovery port so as to penetrate, for example, the upper wall portion on the side closer to the exhaust port.
 また、前記光源は、前記底壁部に対して固定して配置され、
 前記上壁部は、前記底壁部に対して傾斜しており、
 前記回収ポートは、前記導入口よりも前記排出口に近い側の前記上壁部に設けられても構わない。
Further, the light source is fixedly arranged with respect to the bottom wall,
The top wall part is inclined with respect to the bottom wall part,
The recovery port may be provided in the upper wall portion closer to the outlet than the inlet.
 上記構成によれば、吸収液から脱離した二酸化炭素は、上壁部の傾斜によって排出口に近い側へと導かれる。さらに、回収ポートが排出口に近い側に配置されることで、二酸化炭素を効率良く回収することができる。 According to the above configuration, the carbon dioxide desorbed from the absorption liquid is guided to the side closer to the discharge port by the slope of the upper wall. Furthermore, by arranging the recovery port on the side closer to the exhaust port, carbon dioxide can be efficiently recovered.
 前記吸収液は、塩基性材料からなる二酸化炭素吸収材と溶媒とを含んでもよい。 The absorption liquid may include a carbon dioxide absorbent made of a basic material and a solvent.
 前記二酸化炭素吸収材は、アミン系材料であってもよい。 The carbon dioxide absorbing material may be an amine-based material.
 二酸化炭素吸収材及び溶媒については、前述した議論と同様である。 Regarding the carbon dioxide absorbent and solvent, the discussion is the same as above.
 また、本発明に係る二酸化炭素の回収システムは、
 二酸化炭素が吸収された吸収液が内部に位置する反応槽と、
 前記反応槽内の前記吸収液に対して光を照射する光源と、
 前記反応槽内の前記吸収液に対して熱を供給する熱源と、
 前記吸収液から脱離した二酸化炭素を回収する回収ポートとを備えることを別の特徴とする。
Furthermore, the carbon dioxide recovery system according to the present invention includes:
a reaction tank in which an absorption liquid in which carbon dioxide has been absorbed is located;
a light source that irradiates light to the absorption liquid in the reaction tank;
a heat source that supplies heat to the absorption liquid in the reaction tank;
Another feature is that it includes a recovery port that recovers carbon dioxide desorbed from the absorption liquid.
 吸収液に対して熱源からの熱を供給すると共に、光源からの光を照射することで、上記と同様に、加える熱エネルギーを従来よりも低下させながらも、吸収液から二酸化炭素を効率的に脱離させることができる。 By supplying heat from a heat source to the absorption liquid and irradiating it with light from a light source, carbon dioxide can be efficiently removed from the absorption liquid while reducing the amount of heat energy applied compared to conventional methods. It can be detached.
 なお、前記熱源は、前記光源とは別のデバイスとして配置されていても構わないし、前記光源が前記熱源を兼ねても構わない。 Note that the heat source may be arranged as a separate device from the light source, or the light source may also serve as the heat source.
 前記熱源は、太陽光が照射可能な態様で、前記反応槽に対して直接又は他の部材を介して固定された状態で配置された、太陽光集熱部材を含んでもよい。 The heat source may include a solar heat collecting member that is fixed to the reaction tank directly or via another member in such a manner that sunlight can be irradiated thereon.
 上記構成によれば、吸収液に対して熱を供給する太陽光集熱部材は、太陽光によって加熱される。太陽光を利用するため、より少ないエネルギーで吸収液に対して熱を供給することができ、好適に吸収済の二酸化炭素を脱離できる。 According to the above configuration, the solar heat collecting member that supplies heat to the absorption liquid is heated by sunlight. Since sunlight is used, heat can be supplied to the absorption liquid with less energy, and absorbed carbon dioxide can be desorbed suitably.
 本発明に係る、二酸化炭素の回収方法は、
 二酸化炭素を吸収済の吸収体である第一吸収体を準備する工程(d)と、
 太陽光集熱部材が受光した太陽光を熱に変換する工程(e)と、
 前記工程(e)で得られた熱に由来する熱エネルギーを、前記第一吸収体に対して供給する工程(f)と、
 前記工程(f)を経て前記第一吸収体から脱離した二酸化炭素を回収する工程(g)と、を有することを別の特徴とする。
The carbon dioxide recovery method according to the present invention includes:
a step (d) of preparing a first absorber which is an absorber that has already absorbed carbon dioxide;
a step (e) of converting sunlight received by the solar heat collecting member into heat;
a step (f) of supplying thermal energy derived from the heat obtained in the step (e) to the first absorber;
Another feature is that the method further comprises a step (g) of recovering the carbon dioxide desorbed from the first absorber through the step (f).
 本明細書において、「第一吸収体」とは、二酸化炭素吸収性を示す吸収体が二酸化炭素を吸収した状態を指す。加えて、後述する「第二吸収体」とは、二酸化炭素吸収性を示す吸収体が、二酸化炭素を吸収する前の状態を指す。なお、当該第二吸収体には、吸収体が二酸化炭素を吸収して第一吸収体となった後に、熱エネルギーの供給を受けて当該二酸化炭素を脱離した状態も含まれる。 As used herein, the term "first absorber" refers to a state in which an absorber exhibiting carbon dioxide absorbing properties has absorbed carbon dioxide. In addition, the "second absorber" described below refers to the state before the absorber exhibiting carbon dioxide absorbability absorbs carbon dioxide. Note that the second absorber also includes a state in which the absorber absorbs carbon dioxide and becomes the first absorber, and then receives supply of thermal energy and desorbs the carbon dioxide.
 前述の通り、二酸化炭素を吸収済の第一吸収体から、当該二酸化炭素を脱離させるには、第一吸収体に対する熱エネルギーの供給が必要である。つまり、二酸化炭素の回収に要するエネルギーを低減するには、この熱エネルギーの供給で消費されるエネルギーを低減することが肝要である。これに鑑みて、上記回収方法では、受光した太陽光を熱に変換する太陽光集熱部材を利用して、当該熱由来の熱エネルギーを第一吸収体に対して供給する。熱エネルギーの供給に太陽光由来の熱を利用することで、当該熱エネルギーの供給で消費されるエネルギーを低減することができる。なお、具体的な実施態様については、「発明を実施するための形態」で後述される。 As mentioned above, in order to desorb carbon dioxide from the first absorber that has already absorbed the carbon dioxide, it is necessary to supply thermal energy to the first absorber. In other words, in order to reduce the energy required to recover carbon dioxide, it is important to reduce the energy consumed in supplying this thermal energy. In view of this, in the above-mentioned recovery method, thermal energy derived from the heat is supplied to the first absorber using a solar heat collecting member that converts received sunlight into heat. By using heat derived from sunlight for supplying thermal energy, it is possible to reduce the energy consumed in supplying the thermal energy. Note that specific embodiments will be described later in "Detailed Description of the Invention".
 なお、加熱に必要なエネルギーを低減するという観点から、加熱用のヒータ等をいわゆる太陽光発電システムによって駆動する方法も想定される。しかし、現状、太陽光発電システムにおいて、太陽光を吸収する太陽光パネルが利用可能な光の波長範囲には課題がある。特に、太陽光における赤外線の割合は半分以上を占めるが、太陽光パネルは、可視光と一部の紫外線を利用するにとどまる。加えて、太陽光パネルの変換効率、及びヒータ等の投入電力に対する熱効率の影響もあるため、当該方法は、太陽光を有効に利用できるとはいえない。一方で、上記回収方法では、後述するように、特に赤外線を有効に利用できるため、利用可能な光の波長範囲は広域にわたり、例えば太陽光発電システムと比較して、より効率的に太陽光を利用できる。 Note that from the viewpoint of reducing the energy required for heating, a method in which a heater for heating and the like is driven by a so-called solar power generation system is also envisaged. However, currently, in solar power generation systems, there is a problem with the wavelength range of light that can be used by solar panels that absorb sunlight. In particular, infrared rays account for more than half of sunlight, but solar panels only use visible light and some ultraviolet rays. In addition, this method cannot be said to be able to effectively utilize sunlight because of the influence of the conversion efficiency of solar panels and the thermal efficiency of input power of heaters and the like. On the other hand, as will be explained later, in the above collection method, infrared rays in particular can be effectively used, so the usable wavelength range of light is wide-ranging, and compared to, for example, a solar power generation system, it is possible to use sunlight more efficiently. Available.
 前記工程(f)は、前記工程(e)で得られた熱によって加熱された伝熱媒体を介して前記熱エネルギーを前記第一吸収体に供給する工程であっても構わない。 The step (f) may be a step of supplying the thermal energy to the first absorber via a heat transfer medium heated by the heat obtained in the step (e).
 上記方法によれば、伝熱媒体を利用することで、例えば太陽光集熱部材に対する第一吸収体の位置に関わらず、太陽光集熱部材が太陽光から変換した熱を第一吸収体に対して効率的に供給することができる。 According to the above method, by using a heat transfer medium, regardless of the position of the first absorber with respect to the solar heat collecting member, for example, the heat converted from sunlight by the solar heat collecting member is transferred to the first absorber. can be efficiently supplied.
 また、前記工程(f)は、前記第一吸収体が内部に配置された反応槽の内部空間に、前記工程(e)によって得られた前記熱エネルギーで加熱された大気からなる前記伝熱媒体を導入する工程を含んでも構わない。 Further, in the step (f), the heat transfer medium made of the atmosphere heated by the thermal energy obtained in the step (e) is added to the internal space of the reaction tank in which the first absorber is disposed. It may also include a step of introducing.
 太陽光由来の熱で加熱された大気が第一吸収体に接触させることで、第一吸収体に対して熱エネルギーを供給できる。第一吸収体は、当該大気から熱の供給を受けて、吸収済の二酸化炭素を脱離する。 By bringing the atmosphere heated by heat derived from sunlight into contact with the first absorber, thermal energy can be supplied to the first absorber. The first absorber receives heat from the atmosphere and desorbs the absorbed carbon dioxide.
 ところで、二酸化炭素の脱離反応が進む第一吸収体の近傍では、二酸化炭素濃度が局所的に高くなる。二酸化炭素の脱離反応を効率的に進めるには、第一吸収体の近傍の二酸化炭素濃度を低くすることが好ましい。これは、二酸化炭素の脱離反応において、生成(脱離)側の系の二酸化炭素濃度を低くすることで、反応系を生成側に進みやすくするためである。大気中の二酸化炭素濃度は400ppm程度であり、二酸化炭素の脱離反応が進む第一吸収体近傍の空間よりも低濃度である。したがって、伝熱媒体として大気を反応槽の内部空間に導入することによって、熱の供給と同時に第一吸収体の近傍の二酸化炭素濃度を低くすることができ、効率的に第一吸収体から二酸化炭素を脱離することが可能である。つまり、加熱された大気は、伝熱媒体の機能だけでなく、二酸化炭素の脱離を促進する脱離促進ガスとしても機能する。 Incidentally, near the first absorber where the carbon dioxide desorption reaction progresses, the carbon dioxide concentration locally increases. In order to efficiently advance the carbon dioxide desorption reaction, it is preferable to lower the carbon dioxide concentration near the first absorber. This is to make it easier for the reaction system to proceed to the production side by lowering the carbon dioxide concentration in the production (desorption) side system in the carbon dioxide desorption reaction. The carbon dioxide concentration in the atmosphere is about 400 ppm, which is lower than the space near the first absorber where the carbon dioxide desorption reaction progresses. Therefore, by introducing the atmosphere into the internal space of the reaction tank as a heat transfer medium, it is possible to simultaneously supply heat and lower the carbon dioxide concentration in the vicinity of the first absorber. It is possible to eliminate carbon. In other words, the heated atmosphere not only functions as a heat transfer medium but also as a desorption-promoting gas that promotes desorption of carbon dioxide.
 前記工程(f)は、前記第一吸収体が内部に配置された反応槽の外側を通流する前記伝熱媒体と、前記第一吸収体との間で熱交換を行う工程であって、
 前記工程(f)の実行中に、前記反応槽の内部空間に対して、前記内部空間よりも二酸化炭素濃度が低い気体からなる脱離促進ガスを導入しても構わない。
The step (f) is a step of exchanging heat between the first absorber and the heat transfer medium flowing through the outside of the reaction tank in which the first absorber is disposed,
During execution of the step (f), a desorption-promoting gas consisting of a gas having a lower carbon dioxide concentration than the interior space may be introduced into the interior space of the reaction tank.
 伝熱媒体は、反応槽の外側を通流することで、第一吸収体と熱交換を行っても構わない。当該熱交換によって、第一吸収体に対して熱が供給され、第一吸収体から吸収済の二酸化炭素が脱離される。この場合、伝熱媒体としては大気、水などの流体が利用できる。 The heat transfer medium may exchange heat with the first absorber by flowing through the outside of the reaction tank. Through the heat exchange, heat is supplied to the first absorber, and absorbed carbon dioxide is desorbed from the first absorber. In this case, a fluid such as air or water can be used as the heat transfer medium.
 なお、この際、前述したように二酸化炭素の脱離反応を効率的に進める観点から、二酸化炭素濃度が低い脱離促進ガスを反応槽の内部空間に導入することが好適である。脱離促進ガスとしては窒素ガス、又は大気が利用できる。なお。調達に要するエネルギー及びコストの観点からは大気が好ましい。 Note that at this time, as mentioned above, from the viewpoint of efficiently proceeding with the carbon dioxide desorption reaction, it is preferable to introduce a desorption-promoting gas with a low carbon dioxide concentration into the internal space of the reaction tank. Nitrogen gas or the atmosphere can be used as the desorption promoting gas. In addition. Atmospheric air is preferable from the viewpoint of energy and cost required for procurement.
 前記工程(f)の実行中に、前記反応槽の前記内部空間の温度を計測して、前記温度が所定値以上である場合に、前記内部空間に対して前記伝熱媒体よりも低温の大気からなる冷却ガスを導入しても構わない。 During execution of the step (f), the temperature of the internal space of the reaction tank is measured, and if the temperature is equal to or higher than a predetermined value, an atmosphere that is lower temperature than the heat transfer medium is applied to the internal space. It is also possible to introduce a cooling gas consisting of:
 前述の通り、第一吸収体に対して熱を供給することで、吸収済の二酸化炭素を回収できる。この際、第一吸収体が配置された反応槽の内部空間の温度を計測して、この温度が所定値以上である場合には、伝熱媒体より低温の大気を導入することで第一吸収体を冷却することが好ましい。ここで、所定値とは、第一吸収体を構成する二酸化炭素吸収材の沸点などの熱耐性を考慮して決定される値である。上記方法によれば、第一吸収体が高温となった場合でも、第一吸収体を構成する二酸化炭素吸収材に対する熱影響を低減できる。 As mentioned above, absorbed carbon dioxide can be recovered by supplying heat to the first absorber. At this time, the temperature of the internal space of the reaction tank where the first absorber is placed is measured, and if this temperature is above a predetermined value, the first absorber is Preferably, the body is cooled. Here, the predetermined value is a value determined in consideration of heat resistance such as the boiling point of the carbon dioxide absorbent that constitutes the first absorber. According to the above method, even when the first absorber reaches a high temperature, the thermal influence on the carbon dioxide absorbing material constituting the first absorber can be reduced.
 前記工程(d)は、
  二酸化炭素を吸収する前の吸収体である第二吸収体を準備する工程(d1)と、
  前記第二吸収体を前記反応槽の内部に配置した後に、前記反応槽の前記内部空間に二酸化炭素を含む処理対象ガスを導入して前記第二吸収体に二酸化炭素を吸収させる工程(d2)とを含んでも構わない。
The step (d) includes:
a step (d1) of preparing a second absorber, which is an absorber before absorbing carbon dioxide;
After arranging the second absorber inside the reaction tank, a step (d2) of introducing a gas to be treated containing carbon dioxide into the internal space of the reaction tank and causing the second absorber to absorb carbon dioxide. It may also include.
 第二吸収体は、反応槽内で処理対象ガスが含む二酸化炭素を吸収し、第一吸収体となる(吸収工程)。ここで、吸収済の二酸化炭素を第一吸収体から脱離する工程が、吸収工程が行われた反応槽とは別の場所で行われる場合には、第一吸収体を移送するためのエネルギーが必要となる。これに対し、上記方法によれば、吸収工程と脱離工程が、同一の反応槽で行われるため、第一吸収体の移送等に要するエネルギーが抑制され、好適である。 The second absorber absorbs carbon dioxide contained in the gas to be treated in the reaction tank and becomes the first absorber (absorption step). Here, if the process of desorbing the absorbed carbon dioxide from the first absorber is performed in a place different from the reaction tank where the absorption process was performed, the energy required to transport the first absorber is Is required. On the other hand, according to the above method, since the absorption step and the desorption step are performed in the same reaction tank, the energy required for transporting the first absorber, etc. is suppressed, which is preferable.
 また、前記工程(d1)は、表面に細孔を有する多孔性物質からなる固体材料の前記細孔に対して、塩基性材料からなり二酸化炭素吸収性を示す二酸化炭素吸収液を担持させることで、前記第二吸収体を得る工程を含んでも構わない。 Further, in step (d1), the pores of a solid material made of a porous material having pores on its surface are supported with a carbon dioxide absorbing liquid made of a basic material and exhibiting carbon dioxide absorption properties. , the method may include a step of obtaining the second absorbent body.
 本明細書において、「細孔」とは口径が数nm~数十μm程度の微細な孔を意味し、「多孔性物質」とは表面上に無数の細孔を有する物質を指す。 In this specification, "pore" refers to a fine pore with a diameter of several nanometers to several tens of micrometers, and "porous material" refers to a material that has countless pores on its surface.
 多孔性物質が有する細孔に二酸化炭素吸収液を担持させることにより、二酸化炭素の吸収体として利用できる。また、当該細孔に二酸化炭素吸収液を担持させることで、処理対象ガスに含まれた二酸化炭素と当該二酸化炭素吸収液が接触する面積を大きくすることができ、効率的に二酸化炭素の吸収が行われる。多孔性物質の比表面積は、10m2/g以上であることが好ましく、50m2/g以上であることがより好ましい。なお、多孔性物質の比表面積は、例えばJIS Z 8830(ガス吸着による粉体(固体)の比表面積測定方法)に準じた方法で測定することができる。 By supporting a carbon dioxide absorption liquid in the pores of a porous substance, it can be used as a carbon dioxide absorber. In addition, by supporting the carbon dioxide absorption liquid in the pores, it is possible to increase the area in which the carbon dioxide contained in the gas to be treated and the carbon dioxide absorption liquid come in contact with each other, allowing efficient absorption of carbon dioxide. It will be done. The specific surface area of the porous substance is preferably 10 m 2 /g or more, more preferably 50 m 2 /g or more. Note that the specific surface area of the porous substance can be measured, for example, by a method according to JIS Z 8830 (method for measuring the specific surface area of powder (solid) by gas adsorption).
 多孔性物質として利用可能な材料としては、シリカ、アルミナ、ジルコニア等のセラミックス材料、ポリプロピレン、ポリアセタール、ポリアミド、ポリカーボネートなどのエンジニアリングプラスチック材料、活性炭などの炭素材料が挙げられる。なお、多孔性物質の形状は特に限定されない。多孔性物質の形状の例としては、粒状、板状、管状、ハニカム状、ペレット状などが挙げられる。 Materials that can be used as porous substances include ceramic materials such as silica, alumina, and zirconia, engineering plastic materials such as polypropylene, polyacetal, polyamide, and polycarbonate, and carbon materials such as activated carbon. Note that the shape of the porous substance is not particularly limited. Examples of the shape of the porous material include granules, plates, tubes, honeycombs, and pellets.
 二酸化炭素吸収液は、例えば二酸化炭素吸収性を示すアミン系材料などの二酸化炭素吸収材を、水、ポリエチレングリコール(PEG)、又はジメチルスルホキシド(DMSO)等の溶媒に分散させて調整される。これらの溶媒は複数種類を組み合わせても構わない。また、二酸化炭素吸収液の粘度を低下させて、前記細孔に二酸化炭素吸収液が入り込みやすくするために、例えばメタノール等のアルコールを二酸化炭素吸収液に追加し、前記多孔性物質に含浸させた後に当該アルコールを蒸発させても構わない。 The carbon dioxide absorbing liquid is prepared by dispersing a carbon dioxide absorbing material such as an amine-based material exhibiting carbon dioxide absorbing property in a solvent such as water, polyethylene glycol (PEG), or dimethyl sulfoxide (DMSO). A plurality of these solvents may be used in combination. In addition, in order to reduce the viscosity of the carbon dioxide absorption liquid and make it easier for the carbon dioxide absorption liquid to enter the pores, alcohol such as methanol is added to the carbon dioxide absorption liquid and impregnated into the porous substance. The alcohol may be evaporated later.
 二酸化炭素の脱離時に供給される熱エネルギーにおいて、溶媒の温度上昇に消費されるエネルギーを低減し、熱エネルギーの利用効率を高める観点から、二酸化炭素吸収液の濃度が高いことが好ましい。一方で、例えば、吸収体として二酸化炭素吸収液をそのまま用いる場合には、二酸化炭素吸収液の濃度を高めると、粘度が高くなって取り扱いが困難になるという事情があり、当該濃度を高めるには一定の制約がある。特に、粘性が高い材料では、二酸化炭素吸収液の濃度は1%~10%程度となる。これに対し、二酸化炭素吸収液を固体材料に担持させることで、二酸化炭素吸収液の濃度が高い場合でも(例えば数十%)、容易に取り扱いが可能である。つまり、固体状の吸収体を用いることで、二酸化炭素吸収液の濃度を高められる結果、熱エネルギーの利用効率を高められる。吸収体の準備については、「発明を実施するための形態」の項で詳述される。 In terms of thermal energy supplied during desorption of carbon dioxide, it is preferable that the concentration of the carbon dioxide absorption liquid is high from the viewpoint of reducing the energy consumed to raise the temperature of the solvent and increasing the utilization efficiency of thermal energy. On the other hand, for example, when using a carbon dioxide absorption liquid as it is as an absorber, increasing the concentration of the carbon dioxide absorption liquid increases the viscosity and makes handling difficult. There are certain restrictions. In particular, in the case of highly viscous materials, the concentration of the carbon dioxide absorption liquid will be approximately 1% to 10%. On the other hand, by supporting the carbon dioxide absorption liquid on a solid material, even when the concentration of the carbon dioxide absorption liquid is high (for example, several tens of percent), it can be easily handled. In other words, by using a solid absorber, the concentration of the carbon dioxide absorption liquid can be increased, and as a result, the efficiency of thermal energy utilization can be increased. Preparation of the absorbent body is detailed in the "Detailed Description" section.
 二酸化炭素吸収材としては、前述のアミン系材料が利用できる。なお、二酸化炭素吸収材の溶媒に水を選択しない場合においては、上記(3)式の反応が主たる反応となる。 The above-mentioned amine-based materials can be used as the carbon dioxide absorbent. In addition, when water is not selected as the solvent of the carbon dioxide absorbent, the reaction of the above formula (3) becomes the main reaction.
 二酸化炭素を吸収した後、熱の供給によって二酸化炭素の脱離反応を起こす二酸化炭素吸収材であれば、上記と同様の議論が可能である。つまり、二酸化炭素吸収材はアミン系材料に限定されるものではない。他の二酸化炭素吸収材として、例えば、塩基性を示す酸化物、典型的にはアルカリ金属、ニオブ又はタンタルを含む酸化物が挙げられる。 The same argument as above can be made as long as the carbon dioxide absorbent absorbs carbon dioxide and then causes a carbon dioxide desorption reaction by supplying heat. In other words, the carbon dioxide absorbent is not limited to amine-based materials. Other carbon dioxide absorbers include, for example, oxides exhibiting basicity, typically containing alkali metals, niobium or tantalum.
 また、前記工程(d1)は、前記固体材料の前記細孔に前記二酸化炭素吸収液を担持させる前に、前記細孔に対して、プラズマガスを吹き付けるか又は紫外線を照射する工程を含んでも構わない。 Further, the step (d1) may include a step of spraying plasma gas or irradiating ultraviolet rays onto the pores before the carbon dioxide absorption liquid is supported in the pores of the solid material. do not have.
 上記方法によれば、二酸化炭素吸収液に対する細孔表面のぬれ性が向上し、当該細孔に対してより好適に二酸化炭素吸収液を担持させることができる。より詳細には、細孔に対してプラズマガスを吹き付けた場合には、雰囲気中の窒素分子又は酸素分子がプラズマ化され、プラズマ化した活性種が細孔の表面に親水性の官能基(水酸基、カルボニル基又はカルボキシ基等)を形成する。紫外線の照射による場合には、紫外線によって雰囲気中にラジカル(大気中の場合は主に酸素ラジカル)が生成される。また、同時に紫外線の照射によって細孔表面を構成する分子間の結合が切断され、当該切断箇所に対してラジカルが反応する結果、細孔表面に親水性の官能基が形成される。 According to the above method, the wettability of the pore surface to the carbon dioxide absorbing liquid is improved, and the carbon dioxide absorbing liquid can be more suitably supported on the pores. More specifically, when plasma gas is sprayed onto the pores, nitrogen molecules or oxygen molecules in the atmosphere are turned into plasma, and the activated species turned into plasma form hydrophilic functional groups (hydroxyl groups) on the surface of the pores. , carbonyl group or carboxy group). When irradiated with ultraviolet rays, radicals (mainly oxygen radicals in the atmosphere) are generated in the atmosphere. Furthermore, at the same time, the bonds between molecules constituting the pore surface are cut by ultraviolet irradiation, and as a result of radicals reacting with the cut portions, hydrophilic functional groups are formed on the pore surface.
 本発明に係る二酸化炭素の回収システムは、
 二酸化炭素を吸収済の吸収体である第一吸収体と、
 前記第一吸収体が内部に位置する反応槽と、
 前記第一吸収体に対して熱エネルギーを供給する伝熱媒体を前記反応槽の内部に導入する導入ポートと、
 受光した太陽光を熱に変換する太陽光集熱部材を含み、前記伝熱媒体の通流方向に関して前記第一吸収体よりも前段に配置されて、前記伝熱媒体を加熱する熱源と、
 前記第一吸収体から脱離した二酸化炭素を回収する回収ポートとを備えることを別の特徴とする。
The carbon dioxide recovery system according to the present invention includes:
a first absorber which is an absorber that has already absorbed carbon dioxide;
a reaction tank in which the first absorber is located;
an introduction port for introducing a heat transfer medium that supplies thermal energy to the first absorber into the reaction tank;
a heat source that heats the heat transfer medium, including a solar heat collecting member that converts received sunlight into heat, and is disposed before the first absorber with respect to the flow direction of the heat transfer medium;
Another feature is that it includes a recovery port for recovering carbon dioxide desorbed from the first absorber.
 吸収済二酸化炭素を第一吸収体から脱離する点については、上述した回収方法と同様の議論が可能である。すなわち、熱源において太陽光由来の熱で加熱された伝熱媒体が導入ポートから反応槽内に導入されて、第一吸収体に接触することで、第一吸収体に対して熱エネルギーが供給される。 Regarding the point of desorbing absorbed carbon dioxide from the first absorber, the same discussion as the above-mentioned recovery method can be made. That is, the heat transfer medium heated by sunlight-derived heat in the heat source is introduced into the reaction tank from the introduction port and comes into contact with the first absorber, thereby supplying thermal energy to the first absorber. Ru.
 また、前記二酸化炭素の回収システムにおいて、
 前記回収ポートから回収された二酸化炭素を含む回収ガスが通流する第三流路と、
 前記伝熱媒体の通流方向に関して前記第一吸収体よりも前段に配置されて、前記伝熱媒体と前記第三流路を通流する前記回収ガスとの間で熱交換を行う熱交換機を備えても構わない。
Further, in the carbon dioxide recovery system,
a third flow path through which recovered gas containing carbon dioxide recovered from the recovery port flows;
A heat exchanger that is disposed upstream of the first absorber with respect to the flow direction of the heat transfer medium and performs heat exchange between the heat transfer medium and the recovered gas flowing through the third flow path. It's okay to be prepared.
 第一吸収体は、熱の供給によって二酸化炭素を脱離する。このため、脱離された二酸化炭素を含む回収ガスは、比較的高温となっている。したがって、この回収ガスと伝熱媒体との間で熱交換を行って、回収ガスが有する熱エネルギーを二酸化炭素の脱離に利用することで、エネルギーの利用効率が向上する。 The first absorber desorbs carbon dioxide by supplying heat. Therefore, the recovered gas containing desorbed carbon dioxide has a relatively high temperature. Therefore, by performing heat exchange between the recovered gas and the heat transfer medium and using the thermal energy of the recovered gas for desorption of carbon dioxide, energy utilization efficiency is improved.
 前記二酸化炭素の回収システムは、
 前記熱源と前記導入ポートとを連絡する第一流路を備え、
 前記熱源は、前記反応槽の外側の位置において、前記第一流路を通流する前記伝熱媒体を加熱する構成とされても構わない。
The carbon dioxide recovery system includes:
comprising a first flow path communicating the heat source and the introduction port,
The heat source may be configured to heat the heat transfer medium flowing through the first channel at a position outside the reaction tank.
 また、前記二酸化炭素の回収システムは、
 二酸化炭素を含む処理対象ガスとしての大気を前記反応槽の内部に導く第二流路と、
 前記第二流路の開度を調整して前記第二流路を通流する大気の流量を制御可能な第一バルブとを備えても構わない。
Furthermore, the carbon dioxide recovery system includes:
a second flow path that guides the atmosphere as a gas to be treated containing carbon dioxide into the reaction tank;
A first valve that can control the flow rate of the atmosphere flowing through the second flow path by adjusting the opening degree of the second flow path may be provided.
 吸収済の二酸化炭素を脱離する脱離工程においては、熱源によって加熱された伝熱媒体が、第一流路を介して反応槽に導入される。また、二酸化炭素を脱離した状態の第二吸収体に二酸化炭素を吸収させる吸収工程においては、処理対象ガスとしての大気が第二流路を介して反応槽に対して導入される。すなわち、上記構成によれば、二酸化炭素の吸収工程と脱離工程が、同一の反応槽で行うことができるため、吸収体の移送等に要するエネルギーが抑制される結果、より少ないエネルギーで二酸化炭素の回収を行うことができる。 In the desorption step of desorbing absorbed carbon dioxide, a heat transfer medium heated by a heat source is introduced into the reaction tank via the first flow path. In addition, in the absorption step of absorbing carbon dioxide into the second absorber from which carbon dioxide has been desorbed, the atmosphere as a gas to be treated is introduced into the reaction tank via the second flow path. That is, according to the above configuration, the carbon dioxide absorption process and desorption process can be performed in the same reaction tank, so the energy required for transferring the absorber, etc. is suppressed, and as a result, carbon dioxide can be produced with less energy. can be collected.
 前記二酸化炭素の回収システムにおいて、
 前記反応槽の内部空間の温度を計測する温度計を備え、
 前記第一バルブは、前記温度計の計測値に基づいて前記第二流路の開度が調整されても構わない。
In the carbon dioxide recovery system,
comprising a thermometer that measures the temperature of the internal space of the reaction tank,
The opening degree of the second flow path in the first valve may be adjusted based on the measured value of the thermometer.
 前述の通り、第一吸収体を構成する二酸化炭素吸収材に対する熱影響を低減することが好ましい。上記構成によれば、脱離のための熱の供給によって、第一吸収体が高温となった場合でも、第二流路から伝熱媒体よりも低温の処理対象ガスとしての大気を導入することで、第一吸収体を冷却することができる。 As mentioned above, it is preferable to reduce the thermal influence on the carbon dioxide absorbing material that constitutes the first absorber. According to the above configuration, even if the first absorber becomes high in temperature due to the supply of heat for desorption, the atmosphere as a gas to be treated that is lower in temperature than the heat transfer medium can be introduced from the second flow path. With this, the first absorber can be cooled.
 なお、前記二酸化炭素の回収システムは、
 前記第一流路の開度を調整して前記第一流路を通流する前記伝熱媒体としての大気の流量を制御可能な第二バルブを備えても構わない。
Note that the carbon dioxide recovery system includes:
A second valve may be provided that can control the flow rate of the air as the heat transfer medium flowing through the first flow path by adjusting the opening degree of the first flow path.
 また、前記二酸化炭素の回収システムにおいて、前記吸収体は固体状を呈しても構わない。吸収体の構成については前述した議論と同様である。 Furthermore, in the carbon dioxide recovery system, the absorber may be in a solid state. The structure of the absorber is the same as discussed above.
 本発明によれば、より少ないエネルギーで吸収済の二酸化炭素を吸収材から脱離できる、二酸化炭素の回収方法及びシステムが提供される。 According to the present invention, a carbon dioxide recovery method and system are provided that can desorb absorbed carbon dioxide from an absorbent material with less energy.
本発明に係る二酸化炭素の回収システムの実施形態の一例を示す概念図である。1 is a conceptual diagram showing an example of an embodiment of a carbon dioxide recovery system according to the present invention. 図1における反応槽部分を拡大した図である。2 is an enlarged view of a reaction tank portion in FIG. 1. FIG. 反応槽に光源が他の部材を介して固定された場合の拡大図である。It is an enlarged view when a light source is fixed to a reaction tank via another member. 実施例1の検証で用いた実験系の概念図である。2 is a conceptual diagram of an experimental system used in verification of Example 1. FIG. 比較例1の検証で用いた実験系の概念図である。3 is a conceptual diagram of an experimental system used in the verification of Comparative Example 1. FIG. 検証時における、経過時間に対する反応槽の温度をプロットしたグラフである。It is a graph plotting the temperature of the reaction tank against the elapsed time during verification. アミン系材料が二酸化炭素を吸収又は脱離する反応を示す際の反応エネルギー準位を示す模式図である。FIG. 2 is a schematic diagram showing reaction energy levels when an amine-based material exhibits a reaction in which carbon dioxide is absorbed or desorbed. 図5Aに倣って、吸収液に対して供給されるエネルギーを示した模式図である。FIG. 5A is a schematic diagram showing energy supplied to the absorption liquid, similar to FIG. 5A. 第一変形例に係る反応槽における、光源の設置部分の拡大図である。It is an enlarged view of the installation part of the light source in the reaction tank based on a 1st modification. 第二変形例に係る反応槽の概念図である。FIG. 7 is a conceptual diagram of a reaction tank according to a second modification. 図7Aに係る反応槽を+Z方向から見た時の概念図である。7A is a conceptual diagram when the reaction tank according to FIG. 7A is viewed from the +Z direction. FIG. 第三変形例に係る反応槽の概念図である。FIG. 7 is a conceptual diagram of a reaction tank according to a third modification. 第三変形例に係る反応槽をZ方向に複数積み重ねた概念図である。It is a conceptual diagram in which a plurality of reaction vessels according to a third modification are stacked in the Z direction. 第四変形例に係る反応槽の概念図である。FIG. 7 is a conceptual diagram of a reaction tank according to a fourth modification. 第五変形例に係る反応槽の概念図である。FIG. 7 is a conceptual diagram of a reaction tank according to a fifth modification. 第六変形例に係る反応槽の斜視図である。FIG. 7 is a perspective view of a reaction tank according to a sixth modification. 図12Aの反応槽を+Y方向から見た時の模式図である。FIG. 12B is a schematic diagram of the reaction tank in FIG. 12A viewed from the +Y direction. 第七変形例に係る反応槽の斜視図である。FIG. 7 is a perspective view of a reaction tank according to a seventh modification. 図13Aの反応槽を+X方向から見た時の模式図である。FIG. 13A is a schematic diagram of the reaction tank shown in FIG. 13A when viewed from the +X direction. 図13Aの反応槽を+Y方向から見た時の模式図である。FIG. 13B is a schematic diagram of the reaction tank in FIG. 13A viewed from the +Y direction. 図14Aは、第八変形例に係る反応槽の斜視図である。FIG. 14A is a perspective view of a reaction tank according to an eighth modification. 図14Aの反応槽を+X方向から見た時の模式図である。FIG. 14 is a schematic diagram of the reaction tank in FIG. 14A viewed from the +X direction. 図14Aの反応槽を、反応槽が設置された傾斜面の法線方向に見たときの模式図である。FIG. 14B is a schematic diagram of the reaction tank of FIG. 14A when viewed in the normal direction of the inclined surface on which the reaction tank is installed. 集熱部材の内部構造の一例を示す模式図である。It is a schematic diagram showing an example of the internal structure of a heat collecting member. 第九変形例に係る反応槽の設置態様の一例を示す概念図である。It is a conceptual diagram which shows an example of the installation aspect of the reaction tank based on a ninth modification. 温水生成器を+X方向に見たときの模式図である。It is a schematic diagram when a hot water generator is seen in the +X direction. 熱交換器において行われる熱交換の態様を示す概念図である。It is a conceptual diagram showing the aspect of heat exchange performed in a heat exchanger. 二酸化炭素の回収システムの一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of a carbon dioxide recovery system. 図17Aに係る回収システムにおいて、図17Aとは別の場面を示す図面である。17A is a drawing showing a different scene from FIG. 17A in the collection system according to FIG. 17A. 図17Aの回収システムを異なる方向に見た図面である。17A is a different view of the retrieval system of FIG. 17A; FIG. 本発明に係る回収方法の一例を示すフロー図である。FIG. 3 is a flow diagram showing an example of a collection method according to the present invention. 二酸化炭素吸収液を担持する基材の構造を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the structure of a base material supporting a carbon dioxide absorption liquid. 第二吸収体の構造を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the structure of the second absorbent body. 第二吸収体の構造の別の例を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing another example of the structure of the second absorbent body. 検証で用いた実験系の概念図である。It is a conceptual diagram of the experimental system used in verification. 検証で用いたハロゲンランプのスペクトルである。This is the spectrum of the halogen lamp used in the verification. 検証での二酸化炭素の脱離結果を示すグラフである。It is a graph showing the desorption results of carbon dioxide in verification. 回収システムの構成例を模式的に示す図面である。1 is a diagram schematically showing a configuration example of a collection system. 反応槽の構造を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the structure of a reaction tank. 図25に係る反応槽において、図25とは別の場面を示す図面である。26 is a drawing showing a different scene from FIG. 25 in the reaction tank according to FIG. 25. FIG. 熱源の構造を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the structure of a heat source. 図27に係る熱源をZ方向から見た際の図面である。28 is a drawing when the heat source according to FIG. 27 is viewed from the Z direction. 回収システムの別実施形態の構成を模式的に示す図面である。7 is a drawing schematically showing the configuration of another embodiment of the collection system. 図29に係る回収システムにおいて、図29とは別の場面を示す図面である。29 is a drawing showing a different scene from FIG. 29 in the collection system according to FIG. 29. 回収システムの別構成例を模式的に示す図面である。It is a drawing which shows typically another example of composition of a collection system. 図31における熱源の構成を模式的に示す斜視図である。32 is a perspective view schematically showing the configuration of a heat source in FIG. 31. FIG. 図32Aの熱源をX方向から見た際の断面図である。FIG. 32A is a cross-sectional view of the heat source in FIG. 32A when viewed from the X direction. 図17Bに倣って回収システムの別実施形態の構成を示す図面である。It is a drawing which shows the structure of another embodiment of a collection system following FIG. 17B.
 [第一構成例]
 本発明に係る吸収済二酸化炭素の回収方法及び回収システムの第一構成例について、以下において図面を参照して説明する。なお、以下の各図面は、いずれも模式的に図示されたものであり、図面上の寸法比や個数は、実際の寸法比や個数と必ずしも一致していない。
[First configuration example]
A first configuration example of the absorbed carbon dioxide recovery method and recovery system according to the present invention will be described below with reference to the drawings. It should be noted that the following drawings are all schematically illustrated, and the dimensional ratios and numbers on the drawings do not necessarily match the actual dimensional ratios and numbers.
 図1は本発明に係る二酸化炭素の回収システム(以下、単に「回収システム」という。)の実施形態の一例を示す概念図である。図1を参照して、回収システム1の構成について説明した後、回収システム1によって実行される吸収済二酸化炭素の回収方法について説明する。 FIG. 1 is a conceptual diagram showing an example of an embodiment of a carbon dioxide recovery system (hereinafter simply referred to as "recovery system") according to the present invention. After describing the configuration of the recovery system 1 with reference to FIG. 1, a method for recovering absorbed carbon dioxide executed by the recovery system 1 will be explained.
 以下の各図では、互いに直交するX方向、Y方向及びZ方向からなる、X-Y-Z座標系が適宜併記されている。典型的には、Z方向は鉛直方向である。 In each of the following figures, an XYZ coordinate system consisting of an X direction, a Y direction, and a Z direction that are perpendicular to each other is also shown as appropriate. Typically, the Z direction is a vertical direction.
 なお、以下の説明では、方向を表現する際に正負の向きを区別する場合には、「+X方向」、「-X方向」のように、正負の符号を付して記載される。また、正負の向きを区別せずに方向を表現する場合には、単に「X方向」と記載される。すなわち、本明細書において、単に「X方向」と記載されている場合には、「+X方向」と「-X方向」の双方が含まれる。Y方向及びZ方向についても同様である。 Note that in the following description, when expressing directions to distinguish between positive and negative directions, they will be described with positive and negative signs, such as "+X direction" and "-X direction." Furthermore, when expressing a direction without distinguishing between positive and negative directions, it is simply written as "X direction." That is, in this specification, when the term "X direction" is simply used, it includes both the "+X direction" and the "-X direction." The same applies to the Y direction and the Z direction.
 図1に示すように、回収システム1は、処理対象ガス20が含む二酸化炭素を吸収液10に吸収させる吸収槽2と、二酸化炭素を吸収した吸収液10から吸収済二酸化炭素を脱離する反応槽3と、反応槽3において吸収液10に対して光L1を照射する光源6を有する。処理対象ガス20とは、二酸化炭素を含むガスから二酸化炭素を分離回収させる対象となるガスである。一例として、処理対象ガス20は、排ガス、大気等が挙げられる。吸収液10としては、例えば、水に二酸化炭素吸収材としてアミン系材料を分散させた水溶液が使用できる。 As shown in FIG. 1, the recovery system 1 includes an absorption tank 2 that causes an absorption liquid 10 to absorb carbon dioxide contained in a gas 20 to be treated, and a reaction system that desorbs absorbed carbon dioxide from the absorption liquid 10 that has absorbed carbon dioxide. It has a tank 3 and a light source 6 that irradiates the absorption liquid 10 with light L1 in the reaction tank 3. The gas to be treated 20 is a gas to be separated and recovered from carbon dioxide-containing gas. As an example, the gas to be processed 20 includes exhaust gas, the atmosphere, and the like. As the absorption liquid 10, for example, an aqueous solution in which an amine material as a carbon dioxide absorbent is dispersed in water can be used.
 この吸収液10によって、処理対象ガス20に含まれる二酸化炭素が吸収される。処理対象ガス20に含まれる二酸化炭素が吸収された後のガス(以下、「処理後ガス21」という。)は、吸収槽2から排出される。図1において、処理後ガス21は一点鎖線で示されている。 This absorption liquid 10 absorbs carbon dioxide contained in the gas 20 to be treated. The gas after the carbon dioxide contained in the gas to be treated 20 has been absorbed (hereinafter referred to as “treated gas 21”) is discharged from the absorption tank 2. In FIG. 1, the post-processing gas 21 is indicated by a dashed line.
 吸収槽2において二酸化炭素を吸収した吸収液10は、例えば送液ポンプ(不図示)を用いて流路4を通じて反応槽3に送り込まれる。そして、後述するように、吸収液10に対する光L1の照射及び熱H1の供給が行われ、吸収液10から吸収済二酸化炭素が脱離される。反応槽3において、吸収液10から脱離された吸収済二酸化炭素を含むガス(以下、「脱離ガス22」という。)は、反応槽3が備える回収ポート7から回収される。図1において、脱離ガス22は二点鎖線で示されている。 The absorption liquid 10 that has absorbed carbon dioxide in the absorption tank 2 is sent to the reaction tank 3 through the channel 4 using, for example, a liquid pump (not shown). Then, as described later, the absorption liquid 10 is irradiated with light L1 and heat H1 is supplied, and the absorbed carbon dioxide is desorbed from the absorption liquid 10. In the reaction tank 3, the gas containing absorbed carbon dioxide desorbed from the absorption liquid 10 (hereinafter referred to as "desorption gas 22") is recovered from the recovery port 7 provided in the reaction tank 3. In FIG. 1, the desorption gas 22 is indicated by a chain double-dashed line.
 また、反応槽3において、吸収済二酸化炭素が脱離された吸収液10は、送液ポンプ等(不図示)によって流路5を通じて吸収槽2に送り込まれる。そして、再び処理対象ガス20が含む二酸化炭素の吸収に供される。なお、例えば熱交換器(不図示)によって、流路4及び流路5を通流する吸収液10において熱交換がされても構わない。この熱交換によって、反応槽3に流入する吸収液10の温度を上げることができ、好適である。吸収液10の通流方向は、図1において、二重矢印で示されており、以下の図面でも同様である。吸収槽2、流路4及び流路5については、従来公知の回収システムの構成が利用できる。 Further, in the reaction tank 3, the absorption liquid 10 from which the absorbed carbon dioxide has been desorbed is sent to the absorption tank 2 through the flow path 5 by a liquid pump or the like (not shown). Then, the carbon dioxide contained in the gas 20 to be treated is again absorbed. Note that heat exchange may be performed in the absorption liquid 10 flowing through the channels 4 and 5 using, for example, a heat exchanger (not shown). This heat exchange makes it possible to increase the temperature of the absorption liquid 10 flowing into the reaction tank 3, which is preferable. The flow direction of the absorption liquid 10 is indicated by a double arrow in FIG. 1, and the same is true in the following drawings. Regarding the absorption tank 2, the flow path 4, and the flow path 5, the configuration of a conventionally known recovery system can be used.
 次に、図1を参照しつつ、回収システム1によって実行可能な、吸収済二酸化炭素の回収方法(以下、単に「回収方法」という。)の一例について説明する。 Next, with reference to FIG. 1, an example of a method for recovering absorbed carbon dioxide (hereinafter simply referred to as a "recovery method") that can be executed by the recovery system 1 will be described.
 この回収方法は、処理対象ガス20から二酸化炭素を吸収する前工程S100と、二酸化炭素を吸収した吸収液10に対して光を照射する工程S101と、二酸化炭素を吸収した吸収液10に対して熱を供給する工程S102と、吸収液10から脱離した二酸化炭素を回収する工程S103を含む。 This recovery method includes a pre-step S100 of absorbing carbon dioxide from the gas 20 to be treated, a step S101 of irradiating light onto the absorption liquid 10 that has absorbed carbon dioxide, and a step S101 of irradiating light onto the absorption liquid 10 that has absorbed carbon dioxide. It includes a step S102 of supplying heat and a step S103 of recovering carbon dioxide desorbed from the absorption liquid 10.
 (前工程S100)
 吸収槽2において、典型的には処理対象ガス20と吸収液10とを気液接触させることにより、処理対象ガス20が含む二酸化炭素を吸収液10に吸収させる。なお、前工程のさらに前段において、例えば処理対象ガス20を冷却したり、処理対象ガス20に含まれる、二酸化炭素の吸収を阻害する物質をスクリーニングする等の前処理が行われても構わない。
(Pre-process S100)
In the absorption tank 2 , typically the gas to be treated 20 and the absorption liquid 10 are brought into gas-liquid contact, so that the carbon dioxide contained in the gas to be treated 20 is absorbed into the absorption liquid 10 . Note that, in a further preceding stage of the pre-process, pre-treatment such as cooling the gas to be treated 20 or screening for substances contained in the gas to be treated 20 that inhibit carbon dioxide absorption may be performed.
 (光照射工程S101)
 前述した通り、吸収済二酸化炭素を吸収液10から脱離させるためにはエネルギーが必要である。したがって、この回収方法では、二酸化炭素を吸収した吸収液10に対し、光源6を用いた光L1の照射と、熱H1の供給が行われる。まず、吸収液10に対する光L1の照射について説明する。
(Light irradiation step S101)
As mentioned above, energy is required to remove absorbed carbon dioxide from the absorption liquid 10. Therefore, in this recovery method, the absorption liquid 10 that has absorbed carbon dioxide is irradiated with light L1 using the light source 6 and supplied with heat H1. First, irradiation of the light L1 onto the absorption liquid 10 will be explained.
 図2Aは、理解を容易にするために、図1における反応槽3部分を拡大した図である。図2Aでは、光源6が反応槽3の-Z方向に係る面に直接固定される例が示されている。また、図2Aでは、光源6は基板9に実装された複数のLED素子8で構成される場合が例示されているが、光源6としてランプを採用することも可能である。 FIG. 2A is an enlarged view of the reaction tank 3 portion in FIG. 1 for ease of understanding. FIG. 2A shows an example in which the light source 6 is directly fixed to the surface of the reaction tank 3 in the −Z direction. Further, in FIG. 2A, a case is illustrated in which the light source 6 is composed of a plurality of LED elements 8 mounted on the substrate 9, but it is also possible to employ a lamp as the light source 6.
 本発明において、光源6から出射される光L1の波長は限定されないが、一例として、光源6からは波長250nm~600nmの範囲に含まれる光が出射される。光源6が出射する光L1の波長は、好ましくは、アミン系材料等の二酸化炭素吸収材の吸収スペクトルに応じて選択される。光L1の照射によるエネルギーを吸収液10が含む二酸化炭素吸収材に効率的に与える観点から、二酸化炭素吸収材に吸収されやすく、溶媒に吸収されにくい波長がより好ましい。 In the present invention, the wavelength of the light L1 emitted from the light source 6 is not limited, but as an example, the light source 6 may emit light within a wavelength range of 250 nm to 600 nm. The wavelength of the light L1 emitted by the light source 6 is preferably selected according to the absorption spectrum of the carbon dioxide absorbing material such as an amine material. From the viewpoint of efficiently imparting energy by irradiation of the light L1 to the carbon dioxide absorbing material included in the absorption liquid 10, a wavelength that is easily absorbed by the carbon dioxide absorbing material and difficult to be absorbed by the solvent is more preferable.
 図2Aに示すように、光源6が反応槽3の外側に配置される場合には、反応槽3を、光源6が出射する光L1を透過する部材で構成することで、反応槽3の内部に位置する吸収液10に対して光L1を照射することができる。図2Aでは、光L1が実線の矢印で示されており、以下の図面でも同様である。光L1を透過する部材としては、例えば、ガラスが採用できる。このような構成を採用することで、特に反応槽3を屋外又は非暗室に設置する場合には、昼間時間帯であれば太陽光を反応槽3内の吸収液10に対して照射させる作用も得られる。 As shown in FIG. 2A, when the light source 6 is placed outside the reaction tank 3, the inside of the reaction tank 3 can be configured by configuring the reaction tank 3 with a member that transmits the light L1 emitted from the light source 6. The light L1 can be irradiated onto the absorbing liquid 10 located at. In FIG. 2A, the light L1 is indicated by a solid arrow, and the same applies to the following drawings. For example, glass can be used as the member that transmits the light L1. By adopting such a configuration, especially when the reaction tank 3 is installed outdoors or in a non-dark room, sunlight can also be used to irradiate the absorption liquid 10 in the reaction tank 3 during the daytime. can get.
 なお、図2Aに示すように、光源6が反応槽3の底部側にのみ配置される場合には、反応槽3のうち、底部の材料のみを光L1を透過する部材で構成してもよい。この態様については、図6を参照して後述される。 Note that, as shown in FIG. 2A, when the light source 6 is disposed only on the bottom side of the reaction tank 3, only the material at the bottom of the reaction tank 3 may be made of a member that transmits the light L1. . This aspect will be discussed later with reference to FIG.
 また、反応槽3が光L1を透過する部材で構成される場合、図2Aに示すように、反応槽3の外表面の一部に反射膜11を形成しても構わない。光L1の波長によっては、吸収液10に照射された光L1の一部は、吸収液10に吸収されずに吸収液10を透過することが想定される。よって、反射膜11を形成することで、吸収液10を一旦透過した光を再度吸収液10に向かわせることができ、効率的に吸収液10に対して光L1を照射することができる。このような反射膜11としては、アルミニウムのコーティング等が利用できる。 Furthermore, when the reaction tank 3 is made of a member that transmits the light L1, a reflective film 11 may be formed on a part of the outer surface of the reaction tank 3, as shown in FIG. 2A. Depending on the wavelength of the light L1, it is assumed that a part of the light L1 irradiated onto the absorbing liquid 10 is not absorbed by the absorbing liquid 10 but passes through the absorbing liquid 10. Therefore, by forming the reflective film 11, the light that has once passed through the absorbing liquid 10 can be directed toward the absorbing liquid 10 again, and the absorbing liquid 10 can be efficiently irradiated with the light L1. As such a reflective film 11, an aluminum coating or the like can be used.
 なお、図2Aでは、光源6が反応槽3の-Z方向に係る面に設置され、+Z方向に出射された光L1が照射されるものとして説明した。しかし、光源6は吸収液10に対して光を照射できる範囲で、反応槽3の任意の場所に設置が可能である。すなわち、例えば、X方向及びY方向から、吸収液10に対して光L1を照射するように光源6を設置しても構わない。この場合、反射膜11の形成範囲は適宜調整される。 Note that in FIG. 2A, the light source 6 is installed on the surface of the reaction tank 3 in the -Z direction, and the light L1 emitted in the +Z direction is irradiated with the light source 6. However, the light source 6 can be installed at any location in the reaction tank 3 as long as it can irradiate the absorption liquid 10 with light. That is, for example, the light source 6 may be installed so as to irradiate the absorption liquid 10 with the light L1 from the X direction and the Y direction. In this case, the formation range of the reflective film 11 is adjusted as appropriate.
 また、上記においては、反応槽3の外表面に反射膜11が形成されるものとして説明したが、反射膜11が吸収液10と接触しても劣化しない材料で構成される場合には、反射膜11を反応槽3の内表面に形成しても構わない。 Further, in the above explanation, it is assumed that the reflective film 11 is formed on the outer surface of the reaction tank 3, but if the reflective film 11 is made of a material that does not deteriorate even if it comes into contact with the absorption liquid 10, the reflective film 11 can be The membrane 11 may be formed on the inner surface of the reaction tank 3.
 この光照射工程S101が、工程(a)に対応する。 This light irradiation step S101 corresponds to step (a).
 (熱供給工程S102)
 また、吸収済二酸化炭素を吸収液10から脱離させるために、吸収液10に対して熱H1が供給される(図2A参照)。図1及び図2Aに示す例では、光源6は反応槽3に対して直接固定される。したがって、光源6の発光時に放出される熱H1が、反応槽3の内部に位置する吸収液10に供給される。すなわち、この例では、光照射工程S101及び熱供給工程S102は同時に実行される。なお、図2Aでは、熱H1が破線の矢印で示されており、以下の図面でも同様である。
(Heat supply step S102)
Furthermore, in order to desorb the absorbed carbon dioxide from the absorption liquid 10, heat H1 is supplied to the absorption liquid 10 (see FIG. 2A). In the example shown in FIGS. 1 and 2A, the light source 6 is fixed directly to the reaction tank 3. Therefore, the heat H1 released when the light source 6 emits light is supplied to the absorption liquid 10 located inside the reaction tank 3. That is, in this example, the light irradiation step S101 and the heat supply step S102 are executed simultaneously. Note that in FIG. 2A, the heat H1 is indicated by a broken arrow, and the same applies to the following drawings.
 なお、一般的に熱は、鉛直上方に伝わりやすい。したがって、図2Aを例にとると、+Z方向が鉛直上向き方向に対応するように、言い換えれば光源6を反応槽3の底部側に配置するのが好ましい。これによって、光源6が発する熱H1を、効率的に吸収液10に供給することができる。 Note that heat generally tends to be transmitted vertically upward. Therefore, taking FIG. 2A as an example, it is preferable to arrange the light source 6 on the bottom side of the reaction tank 3 so that the +Z direction corresponds to the vertically upward direction, in other words. Thereby, the heat H1 emitted by the light source 6 can be efficiently supplied to the absorption liquid 10.
 また、図2Bは、図2Aに倣って、反応槽3に光源6が他の部材(以下、「伝熱部材」という。)を介して固定された場合の拡大図である。図2Bに示すように、伝熱部材13を介して、反応槽3に光源6を固定してもよい。伝熱部材13は、光源6が発する熱H1を吸収液10に供給する目的で設けられる。熱H1を吸収液10に効率的に供給する観点から、伝熱部材13は熱伝導率が高い金属部材であることが好ましい。例えば、伝熱部材13として、銅又はアルミニウム等が利用できる。 Further, FIG. 2B is an enlarged view of the case where the light source 6 is fixed to the reaction tank 3 via another member (hereinafter referred to as a "heat transfer member"), similar to FIG. 2A. As shown in FIG. 2B, the light source 6 may be fixed to the reaction tank 3 via the heat transfer member 13. The heat transfer member 13 is provided for the purpose of supplying the heat H1 generated by the light source 6 to the absorption liquid 10. From the viewpoint of efficiently supplying the heat H1 to the absorption liquid 10, the heat transfer member 13 is preferably a metal member with high thermal conductivity. For example, the heat transfer member 13 can be made of copper, aluminum, or the like.
 念のため付言すると、熱供給工程S102は、吸収液10の温度を周囲の環境温度より高くする目的で行われる。典型的には、熱供給工程S102によって、吸収液10は35℃~120℃の温度に昇温される。なお、二酸化炭素の脱離に使われる熱エネルギーを低くする観点からは、吸収液10の昇温後の温度は60℃以下であることが好ましく、50℃以下がより好ましく、40℃以下が特に好ましい。50℃以下程度の温度に加熱する態様とすることで、火傷の懸念が抑制されるため、本システムの一般家庭への設置が可能となる。この結果、大気中の二酸化炭素濃度を大きく低下させる効果が期待される。 To be sure, the heat supply step S102 is performed for the purpose of making the temperature of the absorption liquid 10 higher than the surrounding environmental temperature. Typically, the temperature of the absorption liquid 10 is raised to a temperature of 35° C. to 120° C. in the heat supply step S102. In addition, from the viewpoint of lowering the thermal energy used for desorption of carbon dioxide, the temperature after raising the temperature of the absorption liquid 10 is preferably 60°C or lower, more preferably 50°C or lower, and particularly 40°C or lower. preferable. By heating to a temperature of about 50° C. or lower, concerns about burns are suppressed, so this system can be installed in general households. As a result, the effect of greatly reducing the carbon dioxide concentration in the atmosphere is expected.
 この熱供給工程S102が、工程(b)に対応する。 This heat supply step S102 corresponds to step (b).
 (回収工程S103)
 脱離された吸収済二酸化炭素を含む脱離ガス22は、典型的にはボンベ等の貯留槽(図示せず)に貯留される。また、例えば、配管を介して植物工場等の二酸化炭素利用施設に送り込んでもよい。
(Collection step S103)
The desorption gas 22 containing the desorbed and absorbed carbon dioxide is typically stored in a storage tank (not shown) such as a cylinder. Alternatively, for example, it may be sent to a carbon dioxide utilization facility such as a plant factory via piping.
 この回収工程S103が、工程(c)に対応する。 This recovery step S103 corresponds to step (c).
 [検証1]
 二酸化炭素を吸収した吸収液に対して光を照射する効果について、以下、より詳細に説明する。
[Verification 1]
The effect of irradiating the absorption liquid that has absorbed carbon dioxide with light will be explained in more detail below.
 (実施例1)
 図3Aは、本検証で用いた実験系の概念図である。本実験系では、図3Aに示すように、反応槽33の内部に吸収液30が配置された。反応槽33はガラス製である。また、吸収液30は、20質量%濃度の二級アミン水溶液である。この吸収液30には、予め実験用の二酸化炭素ガスを用いて、二酸化炭素を吸収させた。より詳細には、吸収液30は、追加の二酸化炭素の吸収を示さなくなるまで二酸化炭素を吸収させた後、平衡状態とするために、大気雰囲気で1時間程度静置することで調整された。
(Example 1)
FIG. 3A is a conceptual diagram of the experimental system used in this verification. In this experimental system, as shown in FIG. 3A, an absorption liquid 30 was placed inside a reaction tank 33. The reaction tank 33 is made of glass. Further, the absorption liquid 30 is a secondary amine aqueous solution having a concentration of 20% by mass. This absorption liquid 30 was made to absorb carbon dioxide in advance using experimental carbon dioxide gas. More specifically, the absorption liquid 30 was adjusted by allowing it to absorb carbon dioxide until no additional carbon dioxide was absorbed, and then allowing it to stand still in the air for about one hour to reach an equilibrium state.
 この吸収液30に対し、図3Aに示すように、光源36を用いて光L1を照射した。光源36には、ピーク波長が365nmのLED素子38が実装されている。 This absorption liquid 30 was irradiated with light L1 using a light source 36, as shown in FIG. 3A. The light source 36 is equipped with an LED element 38 having a peak wavelength of 365 nm.
 また、光源36が放出する熱H1を吸収液30に供給するために、光源36を反応槽33に近接するように配置した。すなわち、光源36が光L1を出射することにより、反応槽33内部の吸収液30に対して、光L1の照射及び熱H1の供給が同時に行われた。光源36の点灯時間は50分間とし、その間、反応槽33の温度を、反応槽33に装着された熱電対39によって測定した。なお、実施例1と後述する比較例1において、両者の反応槽33の温度を同程度とするために、光源36に接続された電源37の出力を手動で調整しながら、実験を行った。 Furthermore, the light source 36 was placed close to the reaction tank 33 in order to supply the heat H1 emitted by the light source 36 to the absorption liquid 30. That is, by the light source 36 emitting the light L1, the absorption liquid 30 inside the reaction tank 33 was irradiated with the light L1 and supplied with the heat H1 at the same time. The lighting time of the light source 36 was 50 minutes, and during that time, the temperature of the reaction tank 33 was measured by a thermocouple 39 attached to the reaction tank 33. In addition, in Example 1 and Comparative Example 1 to be described later, the experiment was conducted while manually adjusting the output of the power source 37 connected to the light source 36 in order to make the temperatures of the reaction vessels 33 of both the same.
 光源36を点灯させた後、脱離した吸収済二酸化炭素を捕集するために、窒素ガスが充填されたシリンジ35aを押し込むことで、反応槽33に窒素ガスを送気した(図3A参照)。反応槽33は栓34によって密封されているため、シリンジ35aで送気を行うことにより、気体捕集用のシリンジ35bのピストンが引き出され、反応槽33内の気体を捕集することができる。このように捕集した反応槽33内の気体の二酸化炭素濃度を測定することで、吸収液30から脱離した二酸化炭素のガス量を測定した。 After turning on the light source 36, nitrogen gas was supplied to the reaction tank 33 by pushing a syringe 35a filled with nitrogen gas in order to collect the desorbed and absorbed carbon dioxide (see FIG. 3A). . Since the reaction tank 33 is sealed by the stopper 34, by supplying air with the syringe 35a, the piston of the gas collecting syringe 35b is pulled out, and the gas in the reaction tank 33 can be collected. By measuring the carbon dioxide concentration of the gas collected in the reaction tank 33, the amount of carbon dioxide desorbed from the absorption liquid 30 was measured.
 (比較例1)
 図3Bは、図3Aに倣って、比較例1の検証で用いた実験系を示した概念図である。比較例1の検証では、図3Bに示すように、光源36と反応槽33の間に、光源36が出射する光L1を遮るように、銅製の遮光板40を配置した。
(Comparative example 1)
FIG. 3B is a conceptual diagram showing an experimental system used in the verification of Comparative Example 1, similar to FIG. 3A. In the verification of Comparative Example 1, as shown in FIG. 3B, a copper light shielding plate 40 was placed between the light source 36 and the reaction tank 33 so as to block the light L1 emitted from the light source 36.
 この時、光源36が放出する熱H1は遮光板40を介して反応槽33に供給される。また、光源36が出射する光L1は遮光板40に遮られるが、光L1の一部は、遮光板40に吸収されて遮光板40の温度上昇に寄与し、熱H1として反応槽33に供給される。すなわち、この比較例1では、反応槽33内部の吸収液30に対して、熱H1の供給のみが行われた。その他の構成及び操作手順は実施例1と同様である。 At this time, the heat H1 emitted by the light source 36 is supplied to the reaction tank 33 via the light shielding plate 40. Furthermore, although the light L1 emitted by the light source 36 is blocked by the light shielding plate 40, a part of the light L1 is absorbed by the light shielding plate 40 and contributes to the temperature rise of the light shielding plate 40, and is supplied to the reaction tank 33 as heat H1. be done. That is, in Comparative Example 1, only the heat H1 was supplied to the absorption liquid 30 inside the reaction tank 33. Other configurations and operating procedures are the same as in the first embodiment.
 (結果の検証)
 図4は、横軸を光源36の点灯時から経過した時間とし、縦軸に熱電対39が計測した温度をプロットしたグラフである。図4においては、実施例1の結果が実線で、比較例1の結果が破線で示されている。前述した通り、実施例1及び比較例1における反応槽33の温度を同程度とするために、電源37の出力を調整しながら実験を行った。結果として、図4に示すように、反応槽33の温度は、20分程経過した時点から、実施例1よりも比較例1の方が1℃~2℃高くなっている。これは、電源37の出力を手動で操作したことによる誤差と考えられ、実施例1と比較例1において、反応槽33の温度は同程度であったといえる。
(Verification of results)
FIG. 4 is a graph in which the horizontal axis is the time elapsed since the light source 36 was turned on, and the vertical axis is the temperature measured by the thermocouple 39. In FIG. 4, the results of Example 1 are shown by a solid line, and the results of Comparative Example 1 are shown by a broken line. As described above, the experiment was conducted while adjusting the output of the power source 37 in order to keep the temperatures of the reaction vessels 33 in Example 1 and Comparative Example 1 at the same level. As a result, as shown in FIG. 4, the temperature of the reaction tank 33 was 1 to 2° C. higher in Comparative Example 1 than in Example 1 after about 20 minutes had passed. This is considered to be an error caused by manually controlling the output of the power source 37, and it can be said that the temperatures of the reaction tank 33 were approximately the same in Example 1 and Comparative Example 1.
 実施例1において、シリンジ35bによって捕集されたガスは118mLであった。そして、このガスの二酸化炭素濃度は16%であった。つまり、光源36からの光の照射及び熱の供給によって、吸収液30から18.9mLの二酸化炭素が脱離した。 In Example 1, the amount of gas collected by the syringe 35b was 118 mL. The carbon dioxide concentration of this gas was 16%. That is, 18.9 mL of carbon dioxide was desorbed from the absorption liquid 30 by the irradiation of light from the light source 36 and the supply of heat.
 一方で、比較例1では、シリンジ35bによって捕集されたガスは110mLであった。そして、このガスの二酸化炭素濃度は14%であった。つまり、光源36からの熱の供給によって、吸収液30から15.4mLの二酸化炭素が脱離した。 On the other hand, in Comparative Example 1, the amount of gas collected by the syringe 35b was 110 mL. The carbon dioxide concentration of this gas was 14%. That is, 15.4 mL of carbon dioxide was desorbed from the absorption liquid 30 by the supply of heat from the light source 36.
 前述したように、比較例1の反応槽33の温度は、実施例1の場合と同程度か、詳細には1℃~2℃高かったにもかかわらず、実施例1の場合の方が多くの二酸化炭素が脱離する結果となった。このことから、吸収液30に対して光の照射及び熱の供給を行うことによって、単に熱を供給するよりも多くの二酸化炭素を脱離できることが示された。 As mentioned above, although the temperature of the reaction tank 33 in Comparative Example 1 was about the same as that in Example 1, or more specifically, 1°C to 2°C higher, the temperature in Example 1 was higher. This resulted in desorption of carbon dioxide. This indicates that by irradiating the absorption liquid 30 with light and supplying heat, more carbon dioxide can be desorbed than simply supplying heat.
 吸収液30に対して、熱の供給に加えて光の照射を行うことで、より多くの二酸化炭素が脱離した理由について、本発明者は以下のように推察している。 The inventor speculates as follows about the reason why more carbon dioxide was desorbed by irradiating the absorption liquid 30 with light in addition to supplying heat.
 図5Aは、アミン系材料が二酸化炭素を吸収又は脱離する反応を示す際のエネルギー準位を示す模式図である。前述した通り、アミン系材料が二酸化炭素を吸収すると、バイカーボネートイオン、カルバメートイオン又はカルバミン酸が生成される。図5Aでは、バイカーボネートイオンのエネルギー準位を示すラインが破線で示され、カルバメートイオン及びカルバミン酸のエネルギー準位を示すラインが実線で示されている。 FIG. 5A is a schematic diagram showing energy levels when an amine-based material exhibits a reaction of absorbing or desorbing carbon dioxide. As mentioned above, when an amine-based material absorbs carbon dioxide, bicarbonate ions, carbamate ions, or carbamic acid are generated. In FIG. 5A, lines representing the energy levels of bicarbonate ions are shown as broken lines, and lines representing the energy levels of carbamate ions and carbamic acid are shown as solid lines.
 アミン系材料と二酸化炭素と溶媒がそれぞれ独立で存在するエネルギー準位、言い換えれば二酸化炭素が脱離している状態から、アミン系材料が二酸化炭素を吸収して、バイカーボネートイオンに移行するには活性化エネルギーE1が必要である。同様に、アミン系材料が二酸化炭素を吸収して、カルバメートイオン又はカルバミン酸に移行するには活性化エネルギーE2が必要である。 The energy level at which the amine material, carbon dioxide, and solvent each exist independently, in other words, the state in which carbon dioxide is desorbed, the amine material must be active to absorb carbon dioxide and convert it to bicarbonate ions. ization energy E 1 is required. Similarly, activation energy E 2 is required for an amine-based material to absorb carbon dioxide and convert it into carbamate ions or carbamic acid.
 また、これらの逆反応では、それぞれの活性化エネルギー(E1,E2)以上のエネルギーが必要である。これは、アミン系材料が二酸化炭素を吸収して、バイカーボネートイオン、カルバメートイオン又はカルバミン酸を生成する反応は発熱反応であり、吸収時にエネルギーが放出されることに起因する。このとき、カルバメートイオン又はカルバミン酸を生成する際に放出されるエネルギーE4は、バイカーボネートイオンを生成する際に放出されるエネルギーE3より大きいことが知られている。これは、カルバメートイオン及びカルバミン酸が、バイカーボネートイオンよりもエネルギー的に安定であることを意味しており、図5Aにおいて、カルバメートイオン及びカルバミン酸のエネルギー準位がバイカーボネートイオンのそれよりも低く示されていることに対応する。 Furthermore, these reverse reactions require energy greater than their respective activation energies (E 1 , E 2 ). This is because the reaction in which the amine-based material absorbs carbon dioxide to produce bicarbonate ions, carbamate ions, or carbamic acid is an exothermic reaction, and energy is released during absorption. At this time, it is known that the energy E 4 released when producing carbamate ions or carbamic acid is greater than the energy E 3 released when producing bicarbonate ions. This means that carbamate ions and carbamate ions are more energetically stable than bicarbonate ions, and in Figure 5A, the energy levels of carbamate ions and carbamate are lower than that of bicarbonate ions. Correspond to what is shown.
 二酸化炭素の脱離に注目すると、バイカーボネートイオンから二酸化炭素を脱離するためには、エネルギーE3に加えて活性化エネルギーE1に相当するエネルギーが必要である。また、カルバメートイオン及びカルバミン酸から二酸化炭素を脱離するためには、エネルギーE4に加えて活性化エネルギーE2に相当するエネルギーが必要である。 Focusing on the desorption of carbon dioxide, in order to desorb carbon dioxide from bicarbonate ions, energy equivalent to the activation energy E 1 is required in addition to the energy E 3 . Moreover, in order to desorb carbon dioxide from carbamate ions and carbamic acid, energy corresponding to activation energy E 2 is required in addition to energy E 4 .
 ここで、二酸化炭素を脱離するために、吸収液に対して供給された熱によるエネルギーEHと、光の照射によるエネルギーELを想定する(図5B参照)。図5Bは、図5Aに倣って、吸収液に対して供給されるエネルギーを示した模式図である。図5Bにおいて、エネルギーEHは一点鎖線で、エネルギーELは二点鎖線で示されている。図5Bに示すように、熱によるエネルギーEHによって、バイカーボネートイオンから二酸化炭素を脱離する反応を起こすことができても、カルバメートイオン及びカルバミン酸から二酸化炭素を脱離する反応を起こすことができない場合が想定される。一方で、光の照射によるエネルギーELを考慮すると、脱離に必要な、エネルギーE4と活性化エネルギーE2との和以上のエネルギーとなり、カルバメートイオン及びカルバミン酸から二酸化炭素を脱離することができる。 Here, in order to desorb carbon dioxide, energy E H due to heat supplied to the absorption liquid and energy E L due to light irradiation are assumed (see FIG. 5B). FIG. 5B is a schematic diagram illustrating energy supplied to the absorption liquid, similar to FIG. 5A. In FIG. 5B, the energy E H is indicated by a dashed line, and the energy E L is indicated by a dashed double dotted line. As shown in FIG. 5B, even if the thermal energy E H can cause a reaction to desorb carbon dioxide from bicarbonate ions, it cannot cause a reaction to desorb carbon dioxide from carbamate ions and carbamic acid. It is assumed that this is not possible. On the other hand, considering the energy E L due to light irradiation, the energy is greater than the sum of energy E 4 and activation energy E 2 necessary for desorption, and carbon dioxide can be desorbed from carbamate ions and carbamic acid. Can be done.
 上記議論は、バイカーボネートイオンは光の吸収作用が小さく、カルバメートイオン及びカルバミン酸は光の吸収作用が大きいこととも整合する。言い換えれば、バイカーボネートイオンからの二酸化炭素の脱離においては熱エネルギーが支配的であり、光照射によるエネルギーの貢献は少ない。一方で、カルバメートイオン及びカルバミン酸からの二酸化炭素の脱離に対しては、光照射によるエネルギーの供給が効果的である。 The above discussion is also consistent with the fact that bicarbonate ions have a small light absorption effect, and carbamate ions and carbamic acid have a large light absorption effect. In other words, thermal energy is dominant in the desorption of carbon dioxide from bicarbonate ions, and the energy contribution from light irradiation is small. On the other hand, supply of energy through light irradiation is effective for desorption of carbon dioxide from carbamate ions and carbamic acid.
 このように、二酸化炭素を吸収した吸収液に対して、熱の供給のみでなく、光を照射することによって、より多くの二酸化炭素を脱離させることができると考えられる。また、吸収液に供給される熱エネルギーが少ない低温での脱離条件であっても、吸収液に光を照射することによって、多くの二酸化炭素を脱離させることができるともいえる。 In this way, it is thought that more carbon dioxide can be desorbed by not only supplying heat but also irradiating light to the absorption liquid that has absorbed carbon dioxide. It can also be said that even under desorption conditions at low temperatures where little thermal energy is supplied to the absorption liquid, a large amount of carbon dioxide can be desorbed by irradiating the absorption liquid with light.
 物質に対して、原子が分離できる程度の熱エネルギーが供給されると、分子の乖離が発生する。二酸化炭素を脱離するために、二酸化炭素を吸収済の吸収液に対して熱エネルギーを供給する従来の方法は、上記の現象を利用したものである。 When heat energy sufficient to separate atoms is supplied to a substance, molecular dissociation occurs. The conventional method of supplying thermal energy to an absorption liquid that has already absorbed carbon dioxide in order to desorb carbon dioxide utilizes the above phenomenon.
 一方で、多くの物質は、近紫外から可視域の範囲内において、光の吸収帯域を有している。物質に対して光が照射されると、物質を構成する分子が、光エネルギーによって励起された後、基底状態に移行する。また、光エネルギーの大きさによっては、物質を構成する原子核の位置が変化して化学結合が変化する場合がある。光励起により高いエネルギーを示す電子軌道に移ることで、共有結合が不安定になり、原子核どうしの反発が大きくなり、励起された状態で結合が乖離する。 On the other hand, many substances have light absorption bands in the range from near ultraviolet to visible regions. When a substance is irradiated with light, molecules constituting the substance are excited by the light energy and then transition to a ground state. Furthermore, depending on the magnitude of light energy, the positions of atomic nuclei constituting a substance may change, resulting in changes in chemical bonds. When the electrons move to higher energy orbits due to photoexcitation, the covalent bonds become unstable, the repulsion between the atomic nuclei increases, and the bonds dissociate in the excited state.
 以上のように、熱エネルギーを利用した分子の乖離と、光エネルギーを利用した分子の乖離とでは、作用メカニズムが相違している。光エネルギーを起因として分子が乖離した直後は、ラジカル状態を示す中間体が存在しやすくなる。この中間体が次の反応を誘発することで、乖離反応が進みやすい方向に働く。 As described above, the mechanism of action is different between molecular dissociation using thermal energy and molecular dissociation using light energy. Immediately after molecules dissociate due to light energy, intermediates exhibiting a radical state tend to exist. This intermediate induces the next reaction, making it easier for the dissociation reaction to proceed.
 つまり、上記回収方法は、熱エネルギーと光エネルギーの双方を利用することで、異なるメカニズムに由来する分子の乖離現象を生じさせるものであり、これによって、従来の方法と比較して、投入エネルギー量を低下させながらも二酸化炭素の脱離効率を高めることが可能となる。また、従来より低温環境での二酸化炭素の脱離も可能となり、二酸化炭素を回収するシステムの導入及び普及に大きく貢献する。このことは、国連が主導する持続可能な開発目標(SDGs)の目標13「気候変動及びその影響を軽減するための緊急対策を講じる」にも大きく貢献するものである。 In other words, the above-mentioned recovery method uses both thermal energy and light energy to cause the dissociation of molecules originating from different mechanisms, thereby reducing the amount of energy input compared to conventional methods. It becomes possible to increase the desorption efficiency of carbon dioxide while decreasing the carbon dioxide. Furthermore, it becomes possible to desorb carbon dioxide in a lower temperature environment than before, greatly contributing to the introduction and spread of carbon dioxide recovery systems. This will greatly contribute to Goal 13 of the Sustainable Development Goals (SDGs) led by the United Nations, ``Take urgent measures to reduce climate change and its impacts.''
 一例として、光源36の放射照度を150mW/cm2とし、光源36の発光面が均一に100cm2であるとする。この場合、光源36から放射される単位時間あたりのエネルギーは、15Wである。光子(フォトン)1個あたりのエネルギーEは、プランク定数h、光速c、波長λを用いて、E=(h・c)/λで規定される。 As an example, assume that the irradiance of the light source 36 is 150 mW/cm 2 and that the light emitting surface of the light source 36 is uniformly 100 cm 2 . In this case, the energy emitted from the light source 36 per unit time is 15W. The energy E per photon is defined by E=(h·c)/λ using Planck's constant h, the speed of light c, and the wavelength λ.
 光源36から出射される光L1のピーク波長を365nmとすると、光源36から出射される光L1に含まれる光子1個あたりのエネルギーEは、
 E = (6.626 × 10-34) × (2.998 × 108) / (365 × 10-9) = 5.442 × 10-19 [J]
 と算定される。
When the peak wavelength of the light L1 emitted from the light source 36 is 365 nm, the energy E per photon included in the light L1 emitted from the light source 36 is:
E = (6.626 × 10 -34 ) × (2.998 × 10 8 ) / (365 × 10 -9 ) = 5.442 × 10 -19 [J]
It is calculated that
 よって、この光源36から出射される光L1の光子数Nは、
 N = 15 / (5.442 × 10-19) = 2.756 × 1019
 と算定される。
Therefore, the number N of photons of the light L1 emitted from this light source 36 is:
N = 15 / (5.442 × 10 -19 ) = 2.756 × 10 19
It is calculated that
 吸収液30内に含まれる、光吸収性を示すカルバメートイオン及びカルバミン酸の合計が0.1モルと仮定した場合、アボガドロ定数をNAとすると、カルバメートイオン及びカルバミン酸の分子数Kは、K=0.1×NAと算定される。よって、これらの分子を全て乖離させるのに必要な、光L1の基準照射時間τは、
 τ = K / N = 0.1 × (6.022 × 1023) / (2.756 × 1019) = 2185(秒)
 と算定される。
Assuming that the total amount of light-absorbing carbamate ions and carbamic acid contained in the absorption liquid 30 is 0.1 mol, and if Avogadro's constant is NA, then the number of molecules of carbamate ions and carbamic acid, K= It is calculated as 0.1×NA. Therefore, the standard irradiation time τ of the light L1 required to separate all these molecules is:
τ = K / N = 0.1 × (6.022 × 10 23 ) / (2.756 × 10 19 ) = 2185 (seconds)
It is calculated that
 上記はあくまで基準照射時間τを算出する際の設計基準の一例である。例えば、図1に示すシステム1のように、反応槽3内で吸収液10を一時的に貯留した状態で光源6から光L1を照射する場合には、例えば上記の方法で算出された基準照射時間τに基づいて、実際に光L1を照射させる時間を設定することができる。また、図7Aを参照して後述するように、吸収液10を通流させながら光L1を照射する場合においては、上記の方法で算出された基準照射時間τに基づいて、吸収液10の流速を調整することができる。 The above is just an example of the design standard when calculating the standard irradiation time τ. For example, as in the system 1 shown in FIG. 1, when the light L1 is irradiated from the light source 6 while the absorption liquid 10 is temporarily stored in the reaction tank 3, the reference irradiation calculated by the above method is used. Based on the time τ, the time during which the light L1 is actually irradiated can be set. In addition, as will be described later with reference to FIG. 7A, in the case of irradiating the light L1 while flowing the absorbing liquid 10, the flow rate of the absorbing liquid 10 is determined based on the reference irradiation time τ calculated by the above method. can be adjusted.
 [変形例]
 以下、二酸化炭素の回収システムの変形例について、上記実施形態と異なる部分を中心に説明する。
[Modified example]
Hereinafter, a modified example of the carbon dioxide recovery system will be described, focusing on the differences from the above embodiment.
 (第一変形例)
 上記実施形態においては、反応槽3が光L1を透過する部材で構成される例を説明した。しかし、反応槽3がこのような部材で構成されない場合でも、図6に示すように、例えば、反応槽3において、光源6が設置される部分に光照射用の窓12を構成することで、反応槽3の内部に位置する吸収液10に対して光L1を照射することもできる。図6は、第一変形例に係る反応槽における、光源の設置部分の拡大図である。光照射用の窓12は、例えばガラス等で構成することができる。
(First variation)
In the embodiment described above, an example has been described in which the reaction tank 3 is made of a member that transmits the light L1. However, even if the reaction tank 3 is not composed of such members, as shown in FIG. It is also possible to irradiate the absorption liquid 10 located inside the reaction tank 3 with the light L1. FIG. 6 is an enlarged view of a part where a light source is installed in a reaction tank according to a first modification. The light irradiation window 12 can be made of, for example, glass.
 (第二変形例)
 上記実施形態においては、反応槽3の外部に光源6が配置される例を示したが(図1等参照)、光源6は反応槽3の内部に配置されてもよい。図7Aは、第二変形例に係る反応槽の概念図である。また、図7Bは、図7Aを+Z方向から見た際の概念図である。なお、図7Bでは、光源46が二体設置される例が示されているが、二体以上設置しても構わない。また、光源46が設置される場所及び範囲は適宜調整が可能である。
(Second modification)
In the embodiment described above, an example was shown in which the light source 6 is arranged outside the reaction tank 3 (see FIG. 1, etc.), but the light source 6 may be arranged inside the reaction tank 3. FIG. 7A is a conceptual diagram of a reaction tank according to a second modification. Moreover, FIG. 7B is a conceptual diagram when FIG. 7A is viewed from the +Z direction. Although FIG. 7B shows an example in which two light sources 46 are installed, two or more light sources 46 may be installed. Further, the location and range where the light source 46 is installed can be adjusted as appropriate.
 図7A及び図7Bに示すように、光源46は反応槽43の内部に配置され、通流する吸収液10と接触する。このように、光源46が反応槽43の内部に配置されることにより、光源46が発光時に発する熱H1を効率良く吸収液10に供給できる。例えば、光源46と電気的に接触される通電部材41を反応槽43の外部に設けることで、光源46を駆動するための電源と、反応槽43内部の光源46を通電できる。 As shown in FIGS. 7A and 7B, the light source 46 is placed inside the reaction tank 43 and comes into contact with the flowing absorption liquid 10. By arranging the light source 46 inside the reaction tank 43 in this way, the heat H1 emitted by the light source 46 when emitting light can be efficiently supplied to the absorption liquid 10. For example, by providing a current-carrying member 41 that is in electrical contact with the light source 46 outside the reaction tank 43, a power source for driving the light source 46 and the light source 46 inside the reaction tank 43 can be energized.
 また、上記実施形態においては、吸収済二酸化炭素を脱離する際、吸収液10が反応槽3に留まるものとして説明したが(図1参照)、吸収液10を通流させながら二酸化炭素の脱離を行ってもよい。図7Aに示すように、反応槽43は吸収液10を導入する導入口44と、二酸化炭素を脱離した後の吸収液10を排出する排出口45を備える。この構成によれば、吸収液10を通流させながら吸収済二酸化炭素を脱離することができる。つまり、この例では、吸収液10はX方向に通流される。 Furthermore, in the above embodiment, when desorbing the absorbed carbon dioxide, the absorbing liquid 10 was described as remaining in the reaction tank 3 (see FIG. 1), but while the absorbing liquid 10 is flowing through it, carbon dioxide is desorbed. You may leave. As shown in FIG. 7A, the reaction tank 43 includes an inlet 44 for introducing the absorption liquid 10, and an outlet 45 for discharging the absorption liquid 10 after desorbing carbon dioxide. According to this configuration, absorbed carbon dioxide can be desorbed while flowing the absorption liquid 10. That is, in this example, the absorption liquid 10 is passed through in the X direction.
 前述した通り、導入口44に近い側よりも排出口45に近い側の方が、二酸化炭素の脱離が大きいと想定される。このため、図7A及び図7Bに示すように、脱離ガス22を回収する回収ポート47は、導入口44よりも排出口45に近い側に配置するのが好ましい。 As mentioned above, it is assumed that the desorption of carbon dioxide is greater on the side closer to the outlet 45 than on the side closer to the inlet 44. Therefore, as shown in FIGS. 7A and 7B, the recovery port 47 for recovering the desorbed gas 22 is preferably arranged closer to the outlet 45 than the inlet 44.
 (第三変形例)
 吸収液10に対してなるべく効率的に光を吸収させる観点からは、光の進行方向に関して、吸収液10の幅が狭い方が好ましい。かかる観点から、図8に示すように、反応槽53内において、吸収液10が位置する内部空間を、正面視において扁平形状とするのが効果的である。図8は、第三変形例に係る反応槽の概念図である。
(Third variation)
From the viewpoint of making the absorption liquid 10 absorb light as efficiently as possible, it is preferable that the width of the absorption liquid 10 is narrow with respect to the direction in which the light travels. From this point of view, as shown in FIG. 8, it is effective to make the internal space in the reaction tank 53 in which the absorbing liquid 10 is located have a flat shape when viewed from the front. FIG. 8 is a conceptual diagram of a reaction tank according to a third modification.
 図8では、光源56は反応槽53に直接固定される例が示されている。光源56が発する光L1は、反応槽53の-Z方向に係る面に設けられた窓12を介して吸収液10に照射される。また、光源56が発する熱H1は、窓12を含む反応槽53を介して吸収液10に供給される。 In FIG. 8, an example is shown in which the light source 56 is directly fixed to the reaction tank 53. The light L1 emitted by the light source 56 is irradiated onto the absorption liquid 10 through the window 12 provided on the surface of the reaction tank 53 in the −Z direction. Further, the heat H1 emitted by the light source 56 is supplied to the absorption liquid 10 via the reaction tank 53 including the window 12.
 このとき、図8に示すように、反応槽53の上壁部58を底壁部59に対して傾斜させるのが好適である。すなわち、反応槽53は、X方向に関して、導入口54から排出口55に近づくに連れて、底壁部59と上壁部58との間のZ方向に係る離間距離D1が増大する構造である。 At this time, as shown in FIG. 8, it is preferable that the top wall 58 of the reaction tank 53 be inclined with respect to the bottom wall 59. That is, the reaction tank 53 has a structure in which the distance D1 between the bottom wall portion 59 and the top wall portion 58 in the Z direction increases as the distance from the inlet port 54 approaches the outlet port 55 in the X direction. .
 このように構成されることで、反応槽53内において、吸収液10から脱離した二酸化炭素を含む脱離ガス22を一時的に位置させるための空間(以下、「脱離空間60」という。)を十分に確保できる。また、上壁部58の傾斜によって、脱離空間60に存在する脱離ガス22を回収ポート57へと導くことができる。 With this configuration, a space (hereinafter referred to as "desorption space 60") is created in the reaction tank 53 in which the desorption gas 22 containing carbon dioxide desorbed from the absorption liquid 10 is temporarily located. ) can be secured sufficiently. Further, the slope of the upper wall portion 58 allows the desorption gas 22 present in the desorption space 60 to be guided to the recovery port 57.
 また、反応槽は複数設置されても構わない。図9は、第三変形例に係る反応槽を、Z方向に複数積み重ねた際の概念図である。前述した通り、反応槽53内において、吸収液10が位置する内部空間を、正面視において扁平形状とするのが好ましい(図8参照)。この場合、X-Y平面に係る反応槽53の設置面積が比較的大きくなることが想定される。 Additionally, multiple reaction tanks may be installed. FIG. 9 is a conceptual diagram when a plurality of reaction vessels according to the third modification are stacked in the Z direction. As described above, in the reaction tank 53, it is preferable that the internal space in which the absorption liquid 10 is located has a flat shape when viewed from the front (see FIG. 8). In this case, it is assumed that the installation area of the reaction tank 53 on the XY plane will be relatively large.
 また、処理対象ガス20に含まれる二酸化炭素ガスの量によっては、吸収液10の体積を大きくする必要があり、回収システムの設置面積が大きくなることも想定される。したがって、図9を例にとると、+Z方向が鉛直上向き方向に対応するように、言い換えれば反応槽53bを反応槽53aの頂部側に配置するのが好ましい。このように配置することで、反応槽(53a,53b)の設置面積を有効に活用できる。 Furthermore, depending on the amount of carbon dioxide gas contained in the gas to be treated 20, it is necessary to increase the volume of the absorption liquid 10, and it is also assumed that the installation area of the recovery system will increase. Therefore, taking FIG. 9 as an example, it is preferable to arrange the reaction tank 53b on the top side of the reaction tank 53a so that the +Z direction corresponds to the vertically upward direction. With this arrangement, the installation area of the reaction vessels (53a, 53b) can be effectively utilized.
 なお、図9では、二基の反応槽(53a,53b)が並列に接続される場合について説明したが、反応槽(53a,53b)が直列に接続されても構わない。また、反応槽は二基以上積み重ねられても構わない。 Although FIG. 9 describes the case where two reaction vessels (53a, 53b) are connected in parallel, the reaction vessels (53a, 53b) may be connected in series. Moreover, two or more reaction vessels may be stacked.
 (第四変形例)
 また、上記実施形態においては、吸収液10に対して、光源6が発する熱を供給する例を説明した。しかし、本発明は、吸収液10に対して光を照射する光源とは別の熱源を備える構成を排除しない。図10は、第四変形例に係る反応槽の概念図である。図10においては、吸収槽は省略されて示されている。図10に示すように、反応槽63は、吸収液10に対して熱供給する熱源68を備えてもよい。熱源68としては、例えば、ヒータやボイラー等を採用することができる。
(Fourth variation)
Further, in the embodiment described above, an example has been described in which heat generated by the light source 6 is supplied to the absorbing liquid 10. However, the present invention does not exclude a configuration that includes a heat source different from the light source that irradiates the absorption liquid 10 with light. FIG. 10 is a conceptual diagram of a reaction tank according to a fourth modification. In FIG. 10, the absorption tank is omitted. As shown in FIG. 10, the reaction tank 63 may include a heat source 68 that supplies heat to the absorption liquid 10. As the heat source 68, for example, a heater, a boiler, or the like can be used.
 また、上記実施形態において、光源6は反応槽3に直接又は他の部材を介して固定されるものとして説明した。しかし、吸収液10に対する熱供給が可能であれば、図10に示すように、光源66は、反応槽63と互いに離間して配置されても構わない。なお、反応槽63が熱源68を備える場合でも、光源66を反応槽63に直接又は他の部材を介して固定して、光源66が発する熱を吸収液10に供給することもできる。 Furthermore, in the above embodiment, the light source 6 was described as being fixed to the reaction tank 3 directly or via another member. However, as long as heat can be supplied to the absorption liquid 10, the light source 66 and the reaction tank 63 may be placed apart from each other as shown in FIG. 10. Note that even when the reaction tank 63 includes the heat source 68, the light source 66 can be fixed to the reaction tank 63 directly or via another member, and the heat generated by the light source 66 can be supplied to the absorption liquid 10.
 (第五変形例)
 また、いわゆるバッチ式の形態をとれば、例えば図1で示した吸収槽2を必要とせず、反応槽のみで二酸化炭素の吸収及び脱離が可能である。図11は、第五変形例に係る反応槽の概念図である。
(Fifth modification)
Moreover, if a so-called batch type method is adopted, the absorption tank 2 shown in FIG. 1, for example, is not required, and carbon dioxide can be absorbed and desorbed using only the reaction tank. FIG. 11 is a conceptual diagram of a reaction tank according to a fifth modification.
 この構成による、二酸化炭素の吸収及び脱離の流れについて説明する。図11に示すように、反応槽73は、処理対象ガス20を流入させる流入口74と、処理後ガス21及び脱離ガス22を回収できる回収ポート77を有する。二酸化炭素の吸収においては、流入口74につながる流路に備えられたバルブ79a及び回収ポート77の後段のバルブ79bを開状態とし、回収ポート77の後段のもう一方のバルブ79cは閉状態とされる。そして、例えば送液ポンプ等で流路78から吸収液10をポンプアップし、吸収液10と処理対象ガス20とを気液接触させる。その際、処理後ガス21は回収ポート77のバルブ79bが備えられた流路から排出される。 The flow of absorption and desorption of carbon dioxide with this configuration will be explained. As shown in FIG. 11, the reaction tank 73 has an inlet 74 through which the gas to be treated 20 flows, and a recovery port 77 through which the treated gas 21 and the desorbed gas 22 can be recovered. In absorbing carbon dioxide, the valve 79a provided in the flow path leading to the inlet 74 and the valve 79b downstream of the recovery port 77 are opened, and the other valve 79c downstream of the recovery port 77 is closed. Ru. Then, the absorption liquid 10 is pumped up from the flow path 78 using, for example, a liquid pump, and the absorption liquid 10 and the gas to be treated 20 are brought into gas-liquid contact. At this time, the processed gas 21 is discharged from the flow path provided with the valve 79b of the recovery port 77.
 二酸化炭素の脱離においては、バルブ79a及びバルブ79bは閉状態とされ、バルブ79cは開状態とされる。そして、例えば光源76を用いて、吸収液10に対して光の照射及び熱の供給を行い、吸収済二酸化炭素の脱離が行われる。その際、脱離ガス22は回収ポート77のバルブ79cが備えられた流路から回収される。なお、光源76に加えて、吸収液10に対して熱を供給する熱源をさらに備えてもよい。 In the desorption of carbon dioxide, the valves 79a and 79b are closed, and the valve 79c is opened. Then, using, for example, the light source 76, the absorption liquid 10 is irradiated with light and heat is supplied, and the absorbed carbon dioxide is desorbed. At this time, the desorbed gas 22 is recovered from the flow path provided with the valve 79c of the recovery port 77. Note that in addition to the light source 76, a heat source that supplies heat to the absorption liquid 10 may be further provided.
 この構成によれば、システムの構成に要する設置面積が少ないという利点がある。例えば、処理対象ガス20の発生量及び処理対象ガス20が含む二酸化炭素濃度に応じて、本変形例を採用してもよい。 This configuration has the advantage that the installation area required for the system configuration is small. For example, this modification may be adopted depending on the amount of generated gas 20 to be treated and the concentration of carbon dioxide contained in the gas 20 to be treated.
 (第六変形例)
 上記第四変形例において、反応槽63が、吸収液10に対して熱供給する熱源68を備える例について説明した。この熱源68の一態様として、太陽光を吸収して熱に変換する部材(以下、便宜上「太陽光集熱部材」、又は単に「集熱部材」という。)を利用してもよい。本変形例について、図12A及び図12Bを参照して説明する。
(Sixth variation)
In the fourth modification described above, an example has been described in which the reaction tank 63 includes a heat source 68 that supplies heat to the absorption liquid 10. As one aspect of the heat source 68, a member that absorbs sunlight and converts it into heat (hereinafter, for convenience, referred to as a "solar heat collecting member" or simply a "heat collecting member") may be used. This modification will be described with reference to FIGS. 12A and 12B.
 図12Aは反応槽の斜視図に対応する。図12Bは、図12Aの反応槽83を+Y側から見たときの図面であり、説明の都合上、反応槽83の内部については透過して図示されている。図12A及び図12Bにおいて、+Z方向が鉛直上向きに対応する。 FIG. 12A corresponds to a perspective view of the reaction tank. FIG. 12B is a drawing when the reaction tank 83 in FIG. 12A is viewed from the +Y side, and for convenience of explanation, the inside of the reaction tank 83 is shown transparently. In FIGS. 12A and 12B, the +Z direction corresponds to vertically upward.
 本変形例の反応槽83は、例えば+Z方向から見た際に円形を呈する円柱形状である。図12Aに示すように、反応槽83の周方向に関して、互いに離間するように光源86が配置される。光源86が発する光L1が、光照射用の窓12を介して吸収液10に対して照射される(図12B参照)。また、光源86は反応槽83に対して直接固定されている。つまり、光源86が発する熱H1が吸収液10に対して供給される。 The reaction tank 83 of this modification has a cylindrical shape that is circular when viewed from the +Z direction, for example. As shown in FIG. 12A, the light sources 86 are arranged so as to be spaced apart from each other in the circumferential direction of the reaction tank 83. Light L1 emitted by the light source 86 is irradiated onto the absorption liquid 10 through the light irradiation window 12 (see FIG. 12B). Further, the light source 86 is directly fixed to the reaction tank 83. That is, the heat H1 emitted by the light source 86 is supplied to the absorption liquid 10.
 さらに、反応槽83は、+Z側の面に窓14を有する。本変形例の反応槽83が屋外に配置されることで、窓14を介して太陽C1が発する太陽光C2が、反応槽83内の吸収液10に照射される。窓14は例えば石英ガラスで構成される。 Further, the reaction tank 83 has a window 14 on the +Z side surface. Since the reaction tank 83 of this modification is placed outdoors, the absorption liquid 10 in the reaction tank 83 is irradiated with sunlight C2 emitted by the sun C1 through the window 14. The window 14 is made of quartz glass, for example.
 太陽光C2に含まれる光の内訳は、概して、紫外光が7%、可視光が43%、赤外光が50%といわれている。太陽光C2に含まれる光の一部(典型的には紫外光)は、吸収液10が含む二酸化炭素吸収材に吸収され、二酸化炭素の脱離に寄与する。この点については、上述した議論と同様である。また、吸収液10が含む溶媒が太陽光C2に含まれる光の一部(典型的には赤外光)を吸収して、吸収液10が昇温することで、二酸化炭素の脱離が促進される効果も期待できる。この点に関し、二酸化炭素吸収材として典型的に用いられるアミン系材料は紫外光の吸収を示すため、利用可能な光の波長範囲は広域にわたり、太陽光C2を有効に利用することができる。 It is said that the breakdown of the light contained in sunlight C2 is generally 7% ultraviolet light, 43% visible light, and 50% infrared light. A part of the light (typically ultraviolet light) contained in the sunlight C2 is absorbed by the carbon dioxide absorbing material contained in the absorption liquid 10, and contributes to desorption of carbon dioxide. This point is similar to the discussion above. In addition, the solvent contained in the absorption liquid 10 absorbs a part of the light (typically infrared light) contained in the sunlight C2, and the temperature of the absorption liquid 10 increases, promoting desorption of carbon dioxide. We can also expect the effect of In this regard, since amine-based materials typically used as carbon dioxide absorbers exhibit absorption of ultraviolet light, the usable wavelength range of light is wide, and sunlight C2 can be effectively utilized.
 また、反応槽83は、内部に集熱部材15を備える(図12B参照)。本変形例においては、集熱部材15が反応槽83の底壁部59に配置される例が示されている。つまり、集熱部材15は、反応槽83に対して直接固定される。なお、集熱部材15は、ステンレス等の金属で構成できる。また、太陽光C2を効率的に吸収する観点から、典型的には黒色のコーティングが施されることが好ましい。 Furthermore, the reaction tank 83 includes a heat collecting member 15 inside (see FIG. 12B). In this modification, an example is shown in which the heat collecting member 15 is arranged on the bottom wall portion 59 of the reaction tank 83. That is, the heat collecting member 15 is directly fixed to the reaction tank 83. Note that the heat collecting member 15 can be made of metal such as stainless steel. Further, from the viewpoint of efficiently absorbing sunlight C2, it is typically preferable to apply a black coating.
 太陽光C2の一部の光は、吸収液10を透過して、反応槽83の底壁部59に到達することも考えられる。図12Bに示すように、集熱部材15を底壁部59に配置することで、この光のエネルギーを好適に利用できる。集熱部材15は、太陽光C2(典型的には赤外光)を吸収して加熱され、吸収液10に対して熱H1を供給する。このように、太陽光C2で加熱される集熱部材15を利用することで、ヒータやボイラー等と比べて、加熱に必要なエネルギーを低減しつつ、吸収液10に対して熱H1を供給することができる。 It is also conceivable that part of the sunlight C2 passes through the absorption liquid 10 and reaches the bottom wall portion 59 of the reaction tank 83. As shown in FIG. 12B, by arranging the heat collecting member 15 on the bottom wall portion 59, the energy of this light can be suitably utilized. The heat collecting member 15 is heated by absorbing sunlight C2 (typically infrared light), and supplies heat H1 to the absorption liquid 10. In this way, by using the heat collecting member 15 that is heated by sunlight C2, the energy required for heating is reduced compared to a heater, a boiler, etc., and the heat H1 is supplied to the absorption liquid 10. be able to.
 加熱に必要なエネルギーを低減するという観点から、当該ヒータ等をいわゆる太陽光発電システムによって駆動することも想定される。しかし、太陽光発電システムにおいて、太陽光C2を吸収する太陽光パネルが利用可能な光の波長範囲には課題がある。一方で、本変形例においては、特に赤外光を有効に利用できるため、利用可能な光の波長範囲は広域にわたり、太陽光発電システムと比較して、効率的に太陽光C2を利用できるという特徴がある。 From the perspective of reducing the energy required for heating, it is also envisaged that the heater etc. be driven by a so-called solar power generation system. However, in a solar power generation system, there is a problem in the wavelength range of light that can be used by a solar panel that absorbs sunlight C2. On the other hand, in this modified example, infrared light in particular can be used effectively, so the wavelength range of usable light is wide, and compared to solar power generation systems, sunlight C2 can be used more efficiently. It has characteristics.
 (第七変形例)
 図13A~図13Cを参照して、第七変形例の反応槽について説明する。図13Aは、反応槽の斜視図に対応する。図13Bは、図13Aの反応槽83を+X側から見たときの図面であり、説明の都合上、反応槽83の内部については透過して図示されている。図13Cは、図13Aの反応槽83を+Y側から見たときの図面であり、図13Bと同様に、反応槽83の内部については透過して図示されている。更に、図13Cでは、伝熱部材13の図示が省略されている。
(Seventh variation)
The reaction tank of the seventh modification will be described with reference to FIGS. 13A to 13C. FIG. 13A corresponds to a perspective view of the reaction vessel. FIG. 13B is a drawing when the reaction tank 83 in FIG. 13A is viewed from the +X side, and for convenience of explanation, the inside of the reaction tank 83 is shown transparently. FIG. 13C is a drawing when the reaction tank 83 in FIG. 13A is viewed from the +Y side, and similarly to FIG. 13B, the inside of the reaction tank 83 is shown transparently. Furthermore, in FIG. 13C, illustration of the heat transfer member 13 is omitted.
 本変形例の反応槽83は、丸棒形状の集熱部材16を備える。より詳細には、集熱部材16は複数本からなる丸棒形状の部材で構成されており、反応槽83に対して+Z方向に離間した位置に配置されている。図13Aに示すように、この集熱部材16は、伝熱部材13を介して反応槽83に固定されている。 The reaction tank 83 of this modification includes a heat collecting member 16 in the shape of a round bar. More specifically, the heat collecting member 16 is composed of a plurality of round rod-shaped members, and is arranged at a position spaced apart from the reaction tank 83 in the +Z direction. As shown in FIG. 13A, the heat collecting member 16 is fixed to the reaction tank 83 via the heat transfer member 13.
 本変形例の反応槽83が屋外に配置されることで、太陽C1からの太陽光C2が集熱部材16に照射され、集熱部材16において太陽光C2が吸収されて加熱される。集熱部材16で発生した熱は、集熱部材16に連結された伝熱部材13を介して、吸収液10に対して熱H1として供給される。 By arranging the reaction tank 83 of this modification outdoors, sunlight C2 from the sun C1 is irradiated onto the heat collecting member 16, and the heat collecting member 16 absorbs the sunlight C2 and is heated. The heat generated by the heat collecting member 16 is supplied to the absorption liquid 10 as heat H1 via the heat transfer member 13 connected to the heat collecting member 16.
 本変形例では、反応槽83の+Z側の位置に配置された集熱部材16が、複数の丸棒形状の部材で構成されていた。これに対し、集熱部材16に代えて、平板状の集熱部材15を配置すると、例えば朝方時間帯や夕方時間帯のように、太陽C1が比較的低い位置にある場合には、集熱部材15の面に対する太陽光C2の入射角が大きくなり、集熱部材15の面における太陽光C2の反射率が高まることが想定される。図13Cに示すような複数本の丸棒形状の部材で構成された集熱部材16とすることで、太陽C1の高さ位置にかかわらず、太陽光C2の吸収効率を高めることができる。 In this modification, the heat collecting member 16 arranged at the +Z side position of the reaction tank 83 was composed of a plurality of round bar-shaped members. On the other hand, if a flat heat collecting member 15 is arranged in place of the heat collecting member 16, heat will be collected when the sun C1 is at a relatively low position, such as in the morning hours or evening hours. It is assumed that the angle of incidence of the sunlight C2 on the surface of the member 15 increases, and the reflectance of the sunlight C2 on the surface of the heat collecting member 15 increases. By using the heat collecting member 16 made up of a plurality of round bar-shaped members as shown in FIG. 13C, the absorption efficiency of sunlight C2 can be increased regardless of the height position of the sun C1.
 なお、反応槽83内部に、平板状の集熱部材15が追加的に備えられても構わない。図13B~図13Cに示す例では、第六変形例と同様に、反応槽83の底壁部59に平板状の集熱部材15が追加的に配置されている。集熱部材15からの熱が吸収液10に供給される点については、第六変形例の箇所と共通するため、説明を割愛する。 Note that a flat heat collecting member 15 may be additionally provided inside the reaction tank 83. In the example shown in FIGS. 13B to 13C, a flat heat collecting member 15 is additionally disposed on the bottom wall portion 59 of the reaction tank 83, as in the sixth modification. The point in which the heat from the heat collecting member 15 is supplied to the absorbing liquid 10 is the same as in the sixth modification, so a description thereof will be omitted.
 なお、この変形例では、反応槽83の+Z側に配置された集熱部材16が、丸棒状の部材であるものとして説明したが、あくまで一例である。集熱部材16の形状が、矩形柱状等の丸棒状以外である場合にも、本発明の射程範囲に含まれる。 Note that in this modification, the heat collecting member 16 disposed on the +Z side of the reaction tank 83 is described as being a round bar-shaped member, but this is just an example. Even if the heat collecting member 16 has a shape other than a round bar shape such as a rectangular column shape, it is within the scope of the present invention.
 (第八変形例)
 図14A~図14Cを参照して、第八変形例の反応槽について説明する。図14Aは、反応槽の斜視図に対応する。図14Bは、図14Aの反応槽83を+X方向に見たときの図面であり、説明の都合上、反応槽83の内部については透過して図示されている。
(Eighth variation)
The reaction tank of the eighth modification will be described with reference to FIGS. 14A to 14C. FIG. 14A corresponds to a perspective view of the reaction vessel. FIG. 14B is a drawing when the reaction tank 83 of FIG. 14A is viewed in the +X direction, and for convenience of explanation, the inside of the reaction tank 83 is shown transparently.
 図14Cは、図14Aの反応槽83を、後述する架台87が備える傾斜面の法線方向に見たときの図面であり、説明の都合上、反応槽83の内部については透過して図示されている。なお、図14Cでは、架台87の図示が省略されている。 FIG. 14C is a drawing when the reaction tank 83 of FIG. 14A is viewed in the normal direction of an inclined surface provided on a pedestal 87, which will be described later. For convenience of explanation, the inside of the reaction tank 83 is shown transparently. ing. Note that illustration of the pedestal 87 is omitted in FIG. 14C.
 図14A~図14Cにおいて、+Z方向が鉛直上向きに対応する。 In FIGS. 14A to 14C, the +Z direction corresponds to vertically upward.
 第七変形例では、集熱部材16が、伝熱部材13を介して反応槽83に固定される例を示した。これに対し、本変形例では、集熱部材16が反応槽83に直接固定されている。 In the seventh modification, an example is shown in which the heat collecting member 16 is fixed to the reaction tank 83 via the heat transfer member 13. In contrast, in this modification, the heat collecting member 16 is directly fixed to the reaction tank 83.
 本変形例では、反応槽83は、傾斜面87aを有する架台87に設置されている。反応槽83を傾斜面87aに設置することで、反応槽83に固定されていた集熱部材16も、傾斜面87aに沿って配置される。このような配置態様とすることで、太陽C1からの太陽光C2を効率的に集熱部材16に取り込むことが可能となる。 In this modification, the reaction tank 83 is installed on a pedestal 87 having an inclined surface 87a. By installing the reaction tank 83 on the inclined surface 87a, the heat collecting member 16 fixed to the reaction tank 83 is also arranged along the inclined surface 87a. By adopting such an arrangement mode, it becomes possible to efficiently capture sunlight C2 from the sun C1 into the heat collecting member 16.
 なお、本変形例においては、図14B及び図14Cに示すように、反応槽83の外壁の一部に、凹部84が設けられていても構わない。この凹部84は、集熱部材16の端部16aの形状に対応した形状を呈し、端部16aが凹部84の箇所に当接して配置される。この結果、集熱部材16と反応槽83が接触する面積が増大するため、吸収液10に対して集熱部材16からの熱H1を、効率的に供給できる。 Note that in this modification, a recess 84 may be provided in a part of the outer wall of the reaction tank 83, as shown in FIGS. 14B and 14C. The recess 84 has a shape corresponding to the shape of the end 16 a of the heat collecting member 16 , and the end 16 a is placed in contact with the recess 84 . As a result, the contact area between the heat collecting member 16 and the reaction tank 83 increases, so that the heat H1 from the heat collecting member 16 can be efficiently supplied to the absorption liquid 10.
 また、集熱部材16の一例として、図15に示すような構造も利用できる。図15は、集熱部材の内部構造の一例を示す模式図である。図15に示すように、集熱部材16が備える外側管161及び内側管162は、それぞれの一方の端部が封止部163によって封止され、空間(以下、便宜上「封止空間164」という。)を形成する。封止空間164は真空状態とされるため、後述する集熱部165が発する熱H1が外部に漏れにくく、好適である。例えば、外側管161と内側管162は石英ガラス等のガラス材料で構成できる。 Furthermore, as an example of the heat collecting member 16, a structure as shown in FIG. 15 can also be used. FIG. 15 is a schematic diagram showing an example of the internal structure of the heat collecting member. As shown in FIG. 15, one end of each of the outer tube 161 and the inner tube 162 included in the heat collecting member 16 is sealed by a sealing part 163, and a space (hereinafter referred to as "sealed space 164" for convenience) .) to form. Since the sealed space 164 is in a vacuum state, it is preferable that the heat H1 generated by the heat collecting section 165, which will be described later, is unlikely to leak to the outside. For example, the outer tube 161 and the inner tube 162 can be made of a glass material such as quartz glass.
 また、例えばシリコーンで構成された密閉部169で密閉される内側管162の内部には、集熱部165、伝熱フィン166、及び、一方の端部167aが外部に露出するヒートパイプ167が配置される。ヒートパイプ167の内部は真空状態であり、純水等の作動液168が配置される。典型的には、集熱部165はステンレス等の金属からなり、伝熱フィン166はアルミニウム等の金属からなる。 Further, inside the inner tube 162 that is sealed with a sealing part 169 made of silicone, for example, a heat collecting part 165, heat transfer fins 166, and a heat pipe 167 with one end 167a exposed to the outside are arranged. be done. The inside of the heat pipe 167 is in a vacuum state, and a working fluid 168 such as pure water is placed therein. Typically, the heat collecting portion 165 is made of metal such as stainless steel, and the heat transfer fins 166 are made of metal such as aluminum.
 集熱部材16は、例えば図14A~図14Cを用いて説明した態様で、反応槽83に設置できる。つまり、図14Cにおける集熱部材16の端部16aが、ヒートパイプ167の端部167aに対応する。集熱部材16に対して太陽光C2が照射されることで、集熱部165が加熱され、伝熱フィン166を介して作動液168に熱H1が供給される。加熱されて蒸発した作動液168は、ヒートパイプ167の一方の端部167aに向かって移動する。端部167aにおいて、高温の作動液168の蒸気から、反応槽83を介して、吸収液10に熱H1が供給される(図14C参照)。吸収液10に熱H1を供給して低温となった作動液168の蒸気は液化し、ヒートパイプ167のもう一方の端部167bに移動する。この一連の動作が繰り返されることで、太陽光C2をエネルギー源とする吸収液10の加熱が行われる。 The heat collecting member 16 can be installed in the reaction tank 83, for example, in the manner described using FIGS. 14A to 14C. That is, the end 16a of the heat collecting member 16 in FIG. 14C corresponds to the end 167a of the heat pipe 167. By irradiating the heat collecting member 16 with sunlight C2, the heat collecting part 165 is heated, and heat H1 is supplied to the working fluid 168 via the heat transfer fins 166. The heated and evaporated working fluid 168 moves toward one end 167a of the heat pipe 167. At the end 167a, heat H1 is supplied from the vapor of the high-temperature working fluid 168 to the absorption liquid 10 via the reaction tank 83 (see FIG. 14C). The vapor of the working fluid 168, which has become low temperature by supplying the heat H1 to the absorption fluid 10, is liquefied and moves to the other end 167b of the heat pipe 167. By repeating this series of operations, the absorption liquid 10 is heated using sunlight C2 as an energy source.
 (第九変形例)
 吸収液10に対して熱供給する熱源68(図10参照)の一態様として、加熱されて高温となった熱媒体を用いても構わない。つまり、高温の熱媒体と吸収液10との間で行われる熱交換によって、吸収液10に熱H1が供給される。この熱H1の供給に要するエネルギーを低減する観点から、熱媒体は太陽光C2を用いて加熱されることが好ましい。この点について、図16A~図16Cを参照して説明する。
(Ninth modification)
As one aspect of the heat source 68 (see FIG. 10) that supplies heat to the absorption liquid 10, a heat medium heated to a high temperature may be used. That is, heat H1 is supplied to the absorption liquid 10 by heat exchange performed between the high temperature heat medium and the absorption liquid 10. From the viewpoint of reducing the energy required to supply this heat H1, the heat medium is preferably heated using sunlight C2. This point will be explained with reference to FIGS. 16A to 16C.
 図16Aは、第九変形例に係る反応槽89の設置態様の一例を示す概念図であり、後述するように、屋根94に設置された温水生成器90から熱交換器91に対して温水が供給され、熱交換器91内において反応槽89内の吸収液10が加熱される。図16Bは、屋根94に設置された温水生成器90を+X方向に見たときの模式的な図面であり、説明の都合上、温水生成器90の内部が透過して図示されている。図16Cは、熱交換器91において行われる熱交換の態様を示す概念図である。図16A~図16Cにおいて、+Z方向が鉛直上向きに対応する。 FIG. 16A is a conceptual diagram showing an example of an installation mode of a reaction tank 89 according to a ninth modification, and as described later, hot water is supplied to a heat exchanger 91 from a hot water generator 90 installed on a roof 94. The absorption liquid 10 in the reaction tank 89 is heated in the heat exchanger 91. FIG. 16B is a schematic drawing when the hot water generator 90 installed on the roof 94 is viewed in the +X direction, and for convenience of explanation, the inside of the hot water generator 90 is shown transparently. FIG. 16C is a conceptual diagram showing a mode of heat exchange performed in the heat exchanger 91. In FIGS. 16A to 16C, the +Z direction corresponds to vertically upward direction.
 図16Aに示すように、反応槽89は、流路92を介して熱交換器91と接続される。また、熱交換器91は、流路93を介して温水生成器90と接続される。 As shown in FIG. 16A, the reaction tank 89 is connected to a heat exchanger 91 via a flow path 92. Further, the heat exchanger 91 is connected to the hot water generator 90 via a flow path 93.
 反応槽89については、上記した実施形態及び各変形例に係る反応槽の構成が利用できる。また、反応槽の形状は、設置環境に合わせた設計が可能である。その一例として、図16Aでは、X方向に係る辺が比較的短く設計され、-X側に複数の光源86が直接固定された反応槽89が図示されている。反応槽89には、熱交換器91に接続される流路92が設けられ、吸収液10は流路92を介して熱交換器91に導かれる。 Regarding the reaction tank 89, the configurations of the reaction tank according to the above-described embodiment and each modification can be used. Furthermore, the shape of the reaction tank can be designed to suit the installation environment. As an example, FIG. 16A shows a reaction tank 89 whose sides in the X direction are designed to be relatively short and where a plurality of light sources 86 are directly fixed on the -X side. A flow path 92 connected to a heat exchanger 91 is provided in the reaction tank 89, and the absorption liquid 10 is guided to the heat exchanger 91 via the flow path 92.
 温水生成器90は、例えば図16Bに示すようにL字型の断面形状を有し、その内部に熱媒体としての水95が収容されている。温水生成器90は、外壁面の一部に平板状の集熱部材15を有する。集熱部材15が太陽光C2を吸収することで加熱され、水95の温度が高温となる(以下、「温水95」と記載する)。この温水95は、流路93を介して熱交換器91に導かれる。 The hot water generator 90 has an L-shaped cross-section, for example, as shown in FIG. 16B, and contains water 95 as a heat medium therein. The hot water generator 90 has a flat heat collecting member 15 on a part of the outer wall surface. The heat collecting member 15 is heated by absorbing sunlight C2, and the temperature of the water 95 becomes high (hereinafter referred to as "hot water 95"). This hot water 95 is guided to a heat exchanger 91 via a flow path 93.
 図16Cに模式的に示すように、熱交換器91内において、流路92を介して流れてきた吸収液10と、流路93を介して流れてきた温水95との間で、熱交換が行われる。これにより、温水95から吸収液10に対する熱H1の供給が行われる。 As schematically shown in FIG. 16C, in the heat exchanger 91, heat exchange occurs between the absorption liquid 10 flowing through the flow path 92 and the hot water 95 flowing through the flow path 93. It will be done. Thereby, heat H1 is supplied from the hot water 95 to the absorption liquid 10.
 なお、太陽C1の日射条件や時間帯によっては、温水95の温度が比較的低温であることも想定される。このため、熱交換器91による熱交換は、温水95の温度が吸収液10よりも高温である場合に行われることが好適である。 Note that depending on the solar radiation conditions and time of day of the sun C1, it is also assumed that the temperature of the hot water 95 is relatively low. Therefore, heat exchange by the heat exchanger 91 is preferably performed when the temperature of the hot water 95 is higher than that of the absorption liquid 10.
 また、図16Aでは、集熱部材15に対して太陽光C2を効率的に照射する観点から、温水生成器90を建造物の屋根94に設置する例が示されている。このとき、当該建造物に対する荷重を軽減する観点から、図16Aに示すように、反応槽89及び熱交換器91を屋根94以外の場所(地面等)に設置することが好ましい。反応槽89の内部には、例えばアミン系材料を含む吸収液10が位置するため、安全上の観点から、反応槽89は地面に設置されることが特に好ましい。 Further, FIG. 16A shows an example in which the hot water generator 90 is installed on the roof 94 of a building from the viewpoint of efficiently irradiating the heat collecting member 15 with sunlight C2. At this time, from the viewpoint of reducing the load on the building, it is preferable to install the reaction tank 89 and the heat exchanger 91 at a location other than the roof 94 (such as the ground), as shown in FIG. 16A. Since the absorption liquid 10 containing, for example, an amine-based material is located inside the reaction tank 89, from the viewpoint of safety, it is particularly preferable that the reaction tank 89 be installed on the ground.
 なお、本変形例では、温水生成器90が建造物の屋根94に設置される例について説明したが、これに限定されない。温水生成器90は、第七変形例及び第八変形例で上述した反応槽83と、実質的に近似した構造を採用することができるため、その設置態様も、第七変形例及び第八変形例で上述した内容が適宜参照され得る。 Note that in this modification, an example in which the hot water generator 90 is installed on the roof 94 of a building has been described, but the present invention is not limited to this. Since the hot water generator 90 can adopt a structure substantially similar to the reaction tank 83 described above in the seventh modification and the eighth modification, its installation mode is also the same as in the seventh modification and the eighth modification. Reference may be made to what has been described above in the examples as appropriate.
 また、本変形例では、熱交換器91に対して流路93を介して供給される媒体が「温水95」であるものとしたが、比較的昇温しやすい流体(熱媒体)であれば、水には限定されない。この場合、「温水生成器90」は、「流体昇温器」と読み替えることができる。 In addition, in this modification, the medium supplied to the heat exchanger 91 via the flow path 93 is "hot water 95", but if it is a fluid (heating medium) whose temperature is relatively easy to rise, , but not limited to water. In this case, "hot water generator 90" can be read as "fluid warmer".
 上記実施形態、及び各変形例は、適宜組み合わせて実現することが可能である。 The above embodiment and each modification can be realized by appropriately combining them.
 冒頭の課題において前述した通り、二酸化炭素の回収システムにおいては、二酸化炭素の脱離に必要なエネルギーを低減させることはもちろん、システムの運転を低コストで行うことが求められる場合が多い。上記の変形例で例示した通り、太陽光を利用することによって、二酸化炭素の脱離に係るコストを更に低減することができる。 As mentioned above in the topic at the beginning, in carbon dioxide recovery systems, it is often required not only to reduce the energy required to desorb carbon dioxide, but also to operate the system at low cost. As exemplified in the above modification, by using sunlight, the cost associated with desorption of carbon dioxide can be further reduced.
 [第二構成例]
 本発明に係る二酸化炭素の回収方法及び回収システムの第二構成例について、以下において図面を参照して説明する。
[Second configuration example]
A second configuration example of the carbon dioxide recovery method and recovery system according to the present invention will be described below with reference to the drawings.
 (第一実施形態)
 図17A及び図17Bは二酸化炭素の回収システム(以下、単に「回収システム」という。)の一例を模式的に示す断面図である。図17Aは、大気などの処理対象ガスG1が含む二酸化炭素を吸収する工程(後述する工程S2)が実行される場面に対応し、図17Bは、吸収済の二酸化炭素を脱離する工程(後述する工程S4)が実行される場面に対応する。
(First embodiment)
17A and 17B are cross-sectional views schematically showing an example of a carbon dioxide recovery system (hereinafter simply referred to as "recovery system"). 17A corresponds to a scene in which a step of absorbing carbon dioxide contained in the gas G1 to be processed such as the atmosphere (step S2 described later) is executed, and FIG. 17B corresponds to a scene in which a step of desorbing carbon dioxide that has been absorbed (described later) This corresponds to a scene where step S4) is executed.
 また、図18は、図17Aの回収システムを異なる方向に見た図面である。図17A、図17B及び図18を参照して、回収システム101の構成について説明した後、回収システム101によって実行される二酸化炭素の回収方法について説明する。 Moreover, FIG. 18 is a drawing of the collection system of FIG. 17A viewed from a different direction. After describing the configuration of the recovery system 101 with reference to FIGS. 17A, 17B, and 18, a carbon dioxide recovery method executed by the recovery system 101 will be described.
 以下の各図では、互いに直交するX方向、Y方向及びZ方向からなる、X-Y-Z座標系が適宜併記されている。典型的には、Z方向は鉛直方向である。この定義を基に説明すると、図18は、図17Aに係る回収システムをZ方向から見た図面に対応する。なお、後述するように、図18では、反応槽102の構成の一部の図示が省略されている。 In each of the following figures, an XYZ coordinate system consisting of an X direction, a Y direction, and a Z direction that are perpendicular to each other is also shown as appropriate. Typically, the Z direction is a vertical direction. Based on this definition, FIG. 18 corresponds to a drawing of the collection system shown in FIG. 17A viewed from the Z direction. Note that, as described later, in FIG. 18, illustration of a part of the configuration of the reaction tank 102 is omitted.
 図17Aに示すように、回収システム101は、反応槽102と、反応槽102の内部に位置し、二酸化炭素吸収性を示す吸収体103と、吸収体103に熱エネルギーを供給する熱源104とを備える。 As shown in FIG. 17A, the recovery system 101 includes a reaction tank 102, an absorber 103 that is located inside the reaction tank 102 and exhibits carbon dioxide absorption, and a heat source 104 that supplies thermal energy to the absorber 103. Be prepared.
 吸収体103は、前述したように、二酸化炭素を吸収する性質と、熱H1の供給によって吸収済の二酸化炭素を脱離する性質とを有する二酸化炭素吸収材を含んで構成される。吸収体103は、例えば表面に細孔を有する粒状の多孔性物質からなり、当該細孔に二酸化炭素吸収材が担持されてなる。 As described above, the absorber 103 is configured to include a carbon dioxide absorbing material that has the property of absorbing carbon dioxide and the property of desorbing the absorbed carbon dioxide by supplying heat H1. The absorber 103 is made of, for example, a granular porous material having pores on its surface, and a carbon dioxide absorbing material is supported in the pores.
 反応槽102は、吸収体103と、熱源104としての太陽光集熱部材115(以下、単に「集熱部材115」という。)と、集熱部材115の熱H1を効率的に吸収体103に伝達するための伝熱部材119を内部に収容する。また、反応槽102は、集熱部材115が太陽光C2を受光可能な様に+Z側に石英ガラスなどのガラス材料で構成された透光部120を有する(図17Bも参照)。 The reaction tank 102 includes an absorber 103, a solar heat collecting member 115 (hereinafter simply referred to as "heat collecting member 115") as a heat source 104, and efficiently transfers heat H1 of the heat collecting member 115 to the absorber 103. A heat transfer member 119 for transmitting heat is housed inside. Further, the reaction tank 102 has a light-transmitting part 120 made of a glass material such as quartz glass on the +Z side so that the heat collecting member 115 can receive sunlight C2 (see also FIG. 17B).
 本実施形態では、図18に示すように、板状を呈する伝熱部材119が、X方向に関して複数配置される。また、伝熱部材119は、集熱部材115の熱を吸収体103に効率的に伝達する観点から、+Z側において連結され、集熱部材115に対して直接的に配置されている(図17B参照)。なお、図18では、図示の便宜上、透光部120と、集熱部材115と、伝熱部材119の連結部分の図示が省略されている。 In this embodiment, as shown in FIG. 18, a plurality of plate-shaped heat transfer members 119 are arranged in the X direction. Further, from the viewpoint of efficiently transmitting the heat of the heat collecting member 115 to the absorber 103, the heat transfer member 119 is connected on the +Z side and is arranged directly with respect to the heat collecting member 115 (Fig. 17B reference). Note that in FIG. 18, for convenience of illustration, the connection portion between the light transmitting part 120, the heat collecting member 115, and the heat transfer member 119 is not shown.
 本実施形態では、熱源104が反応槽102の内部に配置された例が示されているが、第二実施形態の項で後述するように、熱源104の配置はこの例に限られない。 Although this embodiment shows an example in which the heat source 104 is arranged inside the reaction tank 102, the arrangement of the heat source 104 is not limited to this example, as will be described later in the section of the second embodiment.
 次に、回収システム101によって実行可能な、吸収済二酸化炭素の回収方法(以下、単に「回収方法」という。)の一例について説明する。 Next, an example of a method for recovering absorbed carbon dioxide (hereinafter simply referred to as a "recovery method") that can be executed by the recovery system 101 will be described.
 図19は、本発明に係る回収方法の一例を示すフロー図である。この回収方法101aは、二酸化炭素を吸収する前の状態である吸収体(以下、便宜上「第二吸収体103a」と称する。)を準備する工程S1と、第二吸収体103aに二酸化炭素を吸収させて、二酸化炭素を吸収済の状態である吸収体(以下、便宜上「第一吸収体103b」と称する。)を準備する工程S2と、太陽光C2を熱H1に変換する工程S3と、工程S3で得た熱を第一吸収体103bに供給する工程S4と、S4の実行によって第一吸収体103bから脱離した二酸化炭素を含むガス(以下、便宜上、「回収ガスG2」という。)を回収する工程S5を含む。 FIG. 19 is a flow diagram showing an example of the collection method according to the present invention. This recovery method 101a includes a step S1 of preparing an absorber (hereinafter referred to as "second absorber 103a" for convenience) in a state before absorbing carbon dioxide, and absorbing carbon dioxide into the second absorber 103a. Step S2 of preparing an absorber (hereinafter referred to as "first absorber 103b" for convenience) that has already absorbed carbon dioxide; Step S3 of converting sunlight C2 into heat H1; A step S4 of supplying the heat obtained in S3 to the first absorber 103b, and a gas containing carbon dioxide desorbed from the first absorber 103b by performing S4 (hereinafter referred to as "recovered gas G2" for convenience). It includes a step S5 of collecting.
 なお、工程S4及び工程S5の実行によって、第一吸収体103bは吸収済の二酸化炭素を脱離した後、第二吸収体103aとなる。つまり、回収方法101aは、工程S5の実行後に工程S2以降の工程を繰り返すことができる。 Note that by performing steps S4 and S5, the first absorber 103b desorbs the absorbed carbon dioxide and then becomes the second absorber 103a. That is, the recovery method 101a can repeat the steps after step S2 after performing step S5.
 (工程S1:第二吸収体の準備)
 まず、二酸化炭素を吸収する前の状態である吸収体(第二吸収体103a)が準備される。例えば第二吸収体103aは、表面に細孔を有する多孔性物質からなる基材に対し、アミン系材料を含む二酸化炭素吸収液が担持されて準備される。
(Step S1: Preparation of second absorbent body)
First, an absorber (second absorber 103a) in a state before absorbing carbon dioxide is prepared. For example, the second absorbent body 103a is prepared by supporting a carbon dioxide absorption liquid containing an amine-based material on a base material made of a porous material having pores on the surface.
 二酸化炭素吸収液は、アミン系材料をPEG等の溶媒に分散させて調整される。一例として、溶媒をPEGとした際の、溶媒とアミン系材料の比率は1:1である。なお、アミン系材料の粘度等に応じて、二酸化炭素吸収液に対して、メタノールなどのアルコールを添加しても構わない。例えばメタノールを混合することにより、PEGとアミン系材料が混合された二酸化炭素吸収液の粘度を低下させることができる。 The carbon dioxide absorption liquid is prepared by dispersing an amine-based material in a solvent such as PEG. As an example, when the solvent is PEG, the ratio of the solvent to the amine material is 1:1. Note that alcohol such as methanol may be added to the carbon dioxide absorption liquid depending on the viscosity of the amine material. For example, by mixing methanol, the viscosity of the carbon dioxide absorption liquid containing PEG and amine-based material can be lowered.
 図20Aは、基材110の構造を模式的に示す断面図である。図20Aに示すように、基材110は、表面に無数の細孔111を有する固体材料である。そして、この基材110に対して、アミン系材料が分散された二酸化炭素吸収液が接触されて、細孔111に二酸化炭素吸収液が担持される。図20Bは、上記操作を経て準備された第二吸収体103aの構造を模式的に示す断面図である。例えば、細孔111の口径D12は15nm以下とされる。なお、図20A及び図20Bでは、図示の便宜上、基材110の粒子径D11に対して、口径D12が誇張されている。 FIG. 20A is a cross-sectional view schematically showing the structure of the base material 110. As shown in FIG. 20A, the base material 110 is a solid material having countless pores 111 on its surface. Then, a carbon dioxide absorbing liquid in which an amine-based material is dispersed is brought into contact with this base material 110, and the carbon dioxide absorbing liquid is supported in the pores 111. FIG. 20B is a cross-sectional view schematically showing the structure of the second absorbent body 103a prepared through the above operation. For example, the diameter D12 of the pore 111 is set to 15 nm or less. Note that in FIGS. 20A and 20B, for convenience of illustration, the diameter D12 is exaggerated with respect to the particle diameter D11 of the base material 110.
 また、図20Cは、図20Bに倣って、口径D12が比較的大きい場合(例えば数μm程度)の第二吸収体103aの構造を模式的に示す断面図である。口径D12は、例えば、細孔111に担持される二酸化炭素吸収液112の表面張力や、二酸化炭素の吸収能力に応じて適宜設計される。なお。担持された二酸化炭素吸収液112が、細孔111から剥がれ落ちることを抑制する観点から、口径D12は、0.1μm以下であることが好ましい。 Further, FIG. 20C is a cross-sectional view schematically showing the structure of the second absorbent body 103a when the diameter D12 is relatively large (for example, about several μm), following FIG. 20B. The diameter D12 is appropriately designed depending on, for example, the surface tension of the carbon dioxide absorption liquid 112 supported in the pores 111 and the carbon dioxide absorption capacity. In addition. From the viewpoint of suppressing the supported carbon dioxide absorption liquid 112 from peeling off from the pores 111, the diameter D12 is preferably 0.1 μm or less.
 また、二酸化炭素吸収液112にメタノールなどのアルコールを加えることで、二酸化炭素吸収液112の粘度が下げられる結果、二酸化炭素吸収液112を細孔111に好適に入り込ませることができる。この場合には、基材110に二酸化炭素吸収液112を担持させた後、基材110を加熱して、アルコールを蒸発させることが好ましい。例えば、メタノールが用いられた際の加熱条件は、60℃程度である。なお、アルコールを蒸発させる際は、基材110は、例えば60kPa程度の減圧雰囲気に置かれることが好ましい。 Furthermore, by adding alcohol such as methanol to the carbon dioxide absorption liquid 112, the viscosity of the carbon dioxide absorption liquid 112 is lowered, so that the carbon dioxide absorption liquid 112 can suitably enter the pores 111. In this case, it is preferable to make the base material 110 support the carbon dioxide absorption liquid 112 and then heat the base material 110 to evaporate the alcohol. For example, the heating condition when methanol is used is about 60°C. Note that when evaporating the alcohol, the base material 110 is preferably placed in a reduced pressure atmosphere of, for example, about 60 kPa.
 また、基材110に二酸化炭素吸収液112を担持させる前に、基材110に対して、プラズマガスを吹き付けるか又は紫外線を照射してもよい。これにより、基材110に含まれる細孔111の表面の親水性を向上させることができ、二酸化炭素吸収液112を好適に担持させることができる。なお、これらの細孔表面の親水化処理に関しては、後段の[検証]の項で詳述される。 Furthermore, before the carbon dioxide absorption liquid 112 is supported on the base material 110, the base material 110 may be sprayed with plasma gas or irradiated with ultraviolet rays. Thereby, the hydrophilicity of the surface of the pores 111 included in the base material 110 can be improved, and the carbon dioxide absorption liquid 112 can be suitably supported. Note that the hydrophilic treatment of the surfaces of these pores will be described in detail in the [Verification] section below.
 上記の操作を経て得られた第二吸収体103aは、反応槽102の内部に投入される(図17A参照)。 The second absorbent body 103a obtained through the above operation is placed inside the reaction tank 102 (see FIG. 17A).
 このように、第二吸収体103aを準備する工程S1が、工程(d1)に対応する。 In this way, the step S1 of preparing the second absorbent body 103a corresponds to the step (d1).
 (工程S2:二酸化炭素の吸収工程)
 図17Aに示すように、第二吸収体103aが内部に位置する反応槽102に対して、導入口105から二酸化炭素を含む処理対象ガスG1を導入し、第二吸収体103aに接触させる。図18では、反応槽102内で処理対象ガスG1が通流する態様が模式的に示されている。これにより、第二吸収体103aは、処理対象ガスG1中の二酸化炭素を吸収し、二酸化炭素を吸収済の第一吸収体103bが得られる。なお、理解を容易にする観点から、各図面において、二酸化炭素を吸収済の第一吸収体103bに対してハッチングが施されている(図17B等参照)。二酸化炭素の吸収によって、二酸化炭素濃度が低下した処理対象ガスG1は、排出口106を介して例えば外空間に排出される。
(Step S2: carbon dioxide absorption step)
As shown in FIG. 17A, the gas G1 to be treated containing carbon dioxide is introduced from the inlet 105 into the reaction tank 102 in which the second absorber 103a is located, and brought into contact with the second absorber 103a. FIG. 18 schematically shows how the gas to be treated G1 flows within the reaction tank 102. Thereby, the second absorber 103a absorbs carbon dioxide in the gas G1 to be treated, and the first absorber 103b that has already absorbed carbon dioxide is obtained. Note that, from the viewpoint of easy understanding, in each drawing, the first absorber 103b that has already absorbed carbon dioxide is hatched (see FIG. 17B, etc.). The target gas G1 whose carbon dioxide concentration has decreased due to absorption of carbon dioxide is discharged to, for example, outside space via the discharge port 106.
 なお、後述するように、反応槽102に対しては太陽光C2の照射が想定される(工程S3)。一方で、第二吸収体103aによる二酸化炭素の吸収を効率的に行う観点からは、反応槽102内の雰囲気を低温とすることが好ましい。このため、工程S2においては、図示しない任意の遮蔽部材によって、反応槽102に照射される太陽光C2を遮蔽するものとしても構わない。また、例えば夜間などの太陽光C2の照射が無い、又は少ない時間帯に工程S2を実行するものとしても構わない。 Note that, as described later, it is assumed that the reaction tank 102 is irradiated with sunlight C2 (step S3). On the other hand, from the viewpoint of efficiently absorbing carbon dioxide by the second absorber 103a, it is preferable that the atmosphere in the reaction tank 102 be kept at a low temperature. Therefore, in step S2, the sunlight C2 irradiated onto the reaction tank 102 may be shielded by an arbitrary shielding member (not shown). Further, the step S2 may be executed during a time period such as nighttime when there is no or little irradiation of sunlight C2.
 処理対象ガスG1の例としては、大気や工場などからの排気ガスが挙げられる。特に処理対象ガスG1が排気ガスである場合には、反応槽102に導入する前に、処理対象ガスG1を冷却したり、処理対象ガスG1に含まれる、二酸化炭素の吸収を阻害する物質をスクリーニングする等の前処理が行われても構わない。 Examples of the gas to be processed G1 include the atmosphere and exhaust gas from factories. In particular, when the gas to be treated G1 is exhaust gas, the gas to be treated G1 is cooled or screened for substances that inhibit absorption of carbon dioxide contained in the gas to be treated G1 before introducing it into the reaction tank 102. Pre-processing such as
 このように、第二吸収体103aに対して二酸化炭素を吸収させて、第一吸収体103bを準備する工程S2が、工程(d)に対応する。 In this way, step S2 of preparing the first absorber 103b by causing the second absorber 103a to absorb carbon dioxide corresponds to step (d).
 (工程S3:太陽光を熱に変換する)
 前述した通り、吸収済二酸化炭素を第一吸収体103bから脱離させるためにはエネルギーが必要である。このため、第一吸収体103bに対し、熱H1の供給が行われる。本実施形態に係る回収方法は、熱H1の供給に消費されるエネルギーを低減するために、太陽光C2を変換して熱H1を得る。
(Step S3: convert sunlight into heat)
As mentioned above, energy is required to desorb the absorbed carbon dioxide from the first absorber 103b. Therefore, heat H1 is supplied to the first absorber 103b. The recovery method according to the present embodiment converts sunlight C2 to obtain heat H1 in order to reduce the energy consumed in supplying heat H1.
 図17Bに示すように、熱源104は、反応槽102の鉛直上方(+Z側)に配置された集熱部材115で構成される。集熱部材115は、透光部120から取り込まれた太陽光C2を吸収して加熱される。例えば、集熱部材115は、太陽光C2を効率的に吸収する観点から、典型的には黒色のコーティングが施された、アルミニウム、銅等の金属で構成される。また、集熱部材115は、光に対して高い吸収率を示す、グラファイトなどの黒体材料でコーティングされても構わない。 As shown in FIG. 17B, the heat source 104 is composed of a heat collecting member 115 arranged vertically above the reaction tank 102 (on the +Z side). The heat collecting member 115 absorbs the sunlight C2 taken in from the transparent part 120 and is heated. For example, from the viewpoint of efficiently absorbing sunlight C2, the heat collecting member 115 is typically made of a metal such as aluminum or copper coated with a black color. Further, the heat collecting member 115 may be coated with a black body material such as graphite, which exhibits a high absorption rate for light.
 図17Bの例では、透光部120は、石英ガラスなどのガラス材料で構成された複数の透明部材121で構成される。また、これらの透明部材121の間には、減圧された低圧空間122が形成されている。低圧空間122の圧力は、例えば10kPa以下であり、典型的にはほぼ0気圧付近である。低圧空間122は、集熱部材115が変換した熱H1が、+Z側に伝わりにくくする観点で設けられているが、本発明は、低圧空間122が形成されるか否かに限定されない。 In the example of FIG. 17B, the light-transmitting part 120 is composed of a plurality of transparent members 121 made of a glass material such as quartz glass. Furthermore, a reduced pressure space 122 is formed between these transparent members 121 . The pressure in the low pressure space 122 is, for example, 10 kPa or less, and is typically around 0 atmospheres. Although the low-pressure space 122 is provided in order to make it difficult for the heat H1 converted by the heat collecting member 115 to be transmitted to the +Z side, the present invention is not limited to whether or not the low-pressure space 122 is formed.
 この太陽光C2を熱H1に変換する工程S3が、工程(e)に対応する。 The step S3 of converting this sunlight C2 into heat H1 corresponds to step (e).
 (工程S4:第一吸収体に熱を供給する)
 上記工程S3によって得られた熱H1を、第一吸収体103bに供給する。図17Bに示すように、反応槽102は、集熱部材115の熱H1を第一吸収体103bに対して効率的に供給するための伝熱部材119を有する。典型的には、伝熱部材119は、集熱部材115に対して直接的に配置され、集熱部材115の熱によって加熱される。伝熱部材119としては例えば、アルミニウム、銅、セラミックスなどの熱伝達率が高い材料が利用できる。なお、伝熱部材119は集熱部材115と同じ材料で一体に構成されてもよい。
(Step S4: Supplying heat to the first absorber)
The heat H1 obtained in the above step S3 is supplied to the first absorber 103b. As shown in FIG. 17B, the reaction tank 102 includes a heat transfer member 119 for efficiently supplying the heat H1 of the heat collecting member 115 to the first absorber 103b. Typically, the heat transfer member 119 is placed directly against the heat collecting member 115 and is heated by the heat of the heat collecting member 115. As the heat transfer member 119, for example, a material having a high heat transfer coefficient such as aluminum, copper, or ceramics can be used. Note that the heat transfer member 119 may be integrally made of the same material as the heat collecting member 115.
 図17Bに示すように、高温となった伝熱部材119が放射する熱H1が第一吸収体103bに供給されて、第一吸収体103bが加熱される。すなわち、本実施形態では、太陽光C2を熱H1に変換する工程S3及び第一吸収体103bに熱H1を供給する工程S4は自動的に実行される。 As shown in FIG. 17B, the heat H1 radiated by the heated heat transfer member 119 is supplied to the first absorber 103b, and the first absorber 103b is heated. That is, in this embodiment, step S3 of converting sunlight C2 into heat H1 and step S4 of supplying heat H1 to the first absorber 103b are automatically executed.
 また、前述した通り、二酸化炭素の脱離反応を効率的に進めるには、第一吸収体103bの近傍の二酸化炭素濃度を低くすることが好ましい。このため、図17Bに示すように、熱H1の供給と同時に、大気や窒素ガスなどの脱離促進ガスB1を導入口105から反応槽102の内部に導入しても構わない。 Furthermore, as described above, in order to efficiently proceed with the carbon dioxide desorption reaction, it is preferable to lower the carbon dioxide concentration near the first absorber 103b. Therefore, as shown in FIG. 17B, a desorption-promoting gas B1 such as air or nitrogen gas may be introduced into the reaction tank 102 from the inlet 105 at the same time as the heat H1 is supplied.
 なお、工程S4においては、熱H1を第一吸収体103bに供給するために、流体からなる伝熱媒体を用いてもよく、この構成は後段の第二実施形態で詳述される。 Note that in step S4, a heat transfer medium made of fluid may be used to supply the heat H1 to the first absorber 103b, and this configuration will be detailed in the second embodiment later.
 このように、第一吸収体103bに熱H1を供給する工程S4が、工程(f)に対応する。 In this way, the step S4 of supplying the heat H1 to the first absorber 103b corresponds to step (f).
 (工程S5:脱離した二酸化炭素を回収する)
 工程S4によって脱離された二酸化炭素を含む回収ガスG2は、例えば、排出口106を介して図示しない配管を介して植物工場等の二酸化炭素利用施設に送られる。つまり、排出口106が「回収ポート」に対応する。ただし、本発明において、回収ガスG2の送出先は限定されない。
(Step S5: Recovering the desorbed carbon dioxide)
The recovered gas G2 containing carbon dioxide desorbed in step S4 is sent, for example, to a carbon dioxide utilization facility such as a plant factory via an outlet 106 and a pipe (not shown). In other words, the discharge port 106 corresponds to a "recovery port". However, in the present invention, the destination of the recovered gas G2 is not limited.
 このように、二酸化炭素を回収する工程S5が、工程(g)に対応する。 In this way, step S5 of recovering carbon dioxide corresponds to step (g).
 [検証2]
 上述した工程S1~S5を経て、二酸化炭素を効率的に回収できる点につき、実施例を参照して説明する。具体的には、図17A、図17B及び図18を参照して述べた構成を用いて、処理対象ガスG1としての大気から二酸化炭素を回収する検証が行われた。
[Verification 2]
The point that carbon dioxide can be efficiently recovered through the above-mentioned steps S1 to S5 will be explained with reference to Examples. Specifically, using the configuration described with reference to FIGS. 17A, 17B, and 18, a verification was performed to recover carbon dioxide from the atmosphere as the gas to be processed G1.
 図21は、図17Bに倣って、本検証で用いた実験系を模式的に示す断面図である。図21では、工程S3~工程S5の実行場面が図示されている。本実験系に係る反応槽102は、図17A等を参照して述べたのと共通の構成を有するため、既述の説明については適宜省略する。本検証で用いた反応槽102の内部の寸法は、長さ(X方向)が5cm、幅(Y方向)が2cm、高さ(Z方向)が0.7cmである。 FIG. 21 is a cross-sectional view schematically showing the experimental system used in this verification, similar to FIG. 17B. In FIG. 21, the execution scene of steps S3 to S5 is illustrated. Since the reaction tank 102 according to this experimental system has the same configuration as that described with reference to FIG. 17A and the like, the above description will be omitted as appropriate. The internal dimensions of the reaction tank 102 used in this verification were 5 cm in length (X direction), 2 cm in width (Y direction), and 0.7 cm in height (Z direction).
 集熱部材115として、寸法が長さ5cm、幅2cm、高さ0.2cmであり、黒体材料でコーティングされたアルミニウム製の板状部材が、高さ0.5cmの位置に設置された。 As the heat collecting member 115, an aluminum plate member coated with a black body material and having dimensions of 5 cm in length, 2 cm in width, and 0.2 cm in height was installed at a position of 0.5 cm in height.
 本検証では、二酸化炭素吸収材としてジアミン類に分類されるアミン系材料が用いられ、その溶媒としてPEGが用いられた。つまり、二酸化炭素吸収液112は、溶媒とするPEGとの体積比が1:1として調整されたジアミン溶液である。 In this verification, an amine material classified as diamines was used as the carbon dioxide absorbent, and PEG was used as the solvent. That is, the carbon dioxide absorption liquid 112 is a diamine solution adjusted to have a volume ratio of 1:1 with PEG as a solvent.
 ジアミン溶液を担持する固体材料としては、富士シリシア製の粒状のシリカが用いられた。このシリカは、平均粒径が1~5mmであり、比表面積が100~200m2/gである。 Granular silica manufactured by Fuji Silysia was used as the solid material supporting the diamine solution. This silica has an average particle size of 1 to 5 mm and a specific surface area of 100 to 200 m 2 /g.
 まず、固体材料1gあたりに対して、ジアミン溶液の重量が数十wt%となるよう秤量し、当該ジアミン溶液にメタノールを一定の割合で添加し、混合液を調整した。そして、この混合液に固体材料1gを投入して攪拌した。攪拌は、50kPaの減圧雰囲気で、50℃程度で加熱しながら行われた。このように、ジアミン溶液を固体材料に含浸させた後、減圧雰囲気下で加熱してメタノールを蒸発させることで、第二吸収体103aを得た。 First, the weight of the diamine solution was weighed to be several tens of wt% per 1 g of the solid material, and methanol was added to the diamine solution at a constant ratio to prepare a mixed solution. Then, 1 g of solid material was added to this mixed solution and stirred. Stirring was performed in a reduced pressure atmosphere of 50 kPa while heating at about 50°C. In this way, the second absorbent body 103a was obtained by impregnating the solid material with the diamine solution and then heating it under a reduced pressure atmosphere to evaporate methanol.
 なお、本検証では、第二吸収体103aの調整中に吸収された二酸化炭素を脱離させる観点から、メタノールを蒸発させる処理を行った後、窒素ガス(純度99.9%)を0.5L/分で通流させながら、第二吸収体103aを数時間70℃で加熱した。その後、第二吸収体103aの重量を秤量することで、固体材料に対するアミン系材料の担持量を見積もったところ、18wt%であった。 In addition, in this verification, from the viewpoint of desorbing carbon dioxide absorbed during the adjustment of the second absorber 103a, 0.5 L of nitrogen gas (purity 99.9%) was evaporated after methanol was evaporated. The second absorbent body 103a was heated at 70° C. for several hours while passing the current at a rate of 1/min. Thereafter, by weighing the second absorbent body 103a, the amount of the amine material supported on the solid material was estimated to be 18 wt%.
 上記の操作を経て得られた第二吸収体103aを数g、反応槽102の内部に配置した。そして、処理対象ガスG1として、大気(二酸化炭素濃度は約400pm)を反応槽102に7.5mL/分の流量で数十時間導入し、二酸化炭素を吸収済の第一吸収体103bを得た(工程S2)。 Several grams of the second absorber 103a obtained through the above operations were placed inside the reaction tank 102. Then, the atmosphere (carbon dioxide concentration is approximately 400 pm) was introduced into the reaction tank 102 at a flow rate of 7.5 mL/min for several tens of hours as the gas G1 to be treated, thereby obtaining the first absorber 103b that had already absorbed carbon dioxide. (Step S2).
 二酸化炭素が第二吸収体103aに吸収されるため、第二吸収体103aと接触した後の処理対象ガスG1の二酸化炭素濃度は低下する。その後、第二吸収体103aによる二酸化炭素の吸収が終了すると(第一吸収体103b)、反応槽102を通過した処理対象ガスG1の二酸化炭素濃度は、反応槽102に導入される前の状態と同程度となる。したがって、本検証では、排出口106の後段で測定した処理対象ガスG1の二酸化炭素濃度が400ppmとなった時点で、第二吸収体103aが十分に二酸化炭素を吸収したと判断した。 Since carbon dioxide is absorbed by the second absorber 103a, the carbon dioxide concentration of the gas G1 to be treated after contacting the second absorber 103a decreases. Thereafter, when the absorption of carbon dioxide by the second absorber 103a is completed (first absorber 103b), the carbon dioxide concentration of the target gas G1 that has passed through the reaction tank 102 is the same as the state before being introduced into the reaction tank 102. It will be about the same level. Therefore, in this verification, it was determined that the second absorber 103a had sufficiently absorbed carbon dioxide when the carbon dioxide concentration of the gas to be treated G1 measured at the latter stage of the exhaust port 106 reached 400 ppm.
 また、本検証では、太陽光C2を模擬して、ハロゲンランプ130を用いて集熱部材115に対して光L1を照射した(図21参照)。図22に、本検証で用いたハロゲンランプ130のスペクトルを示す。図22に示すように、本検証で用いたハロゲンランプ130は、1000nm近傍に発光強度が最大となるピーク強度を有し、500nm~2000nmの範囲で、ピーク強度に対して40%以上の光強度を示す。なお、本検証では、ハロゲンランプ130に対する投入電力は50Wとされた。 In addition, in this verification, sunlight C2 was simulated and the heat collecting member 115 was irradiated with light L1 using the halogen lamp 130 (see FIG. 21). FIG. 22 shows the spectrum of the halogen lamp 130 used in this verification. As shown in FIG. 22, the halogen lamp 130 used in this verification has a peak intensity near 1000 nm, and has a light intensity of 40% or more of the peak intensity in the range of 500 nm to 2000 nm. shows. Note that in this verification, the power input to the halogen lamp 130 was 50W.
 また、ハロゲンランプ130を点灯させて、吸収済二酸化炭素の脱離を行う際、反応槽102に対して、7.5mL/分の流量で脱離促進ガスB1としての大気を通流させた。 Furthermore, when the halogen lamp 130 was turned on to desorb the absorbed carbon dioxide, air as the desorption-promoting gas B1 was passed through the reaction tank 102 at a flow rate of 7.5 mL/min.
 図23は、本検証の二酸化炭素の脱離結果を示すグラフである。図23では、横軸にハロゲンランプ130の点灯からの経過時間が示され、縦軸に排出口106の位置で測定された二酸化炭素濃度が示されている。 FIG. 23 is a graph showing the carbon dioxide desorption results of this verification. In FIG. 23, the horizontal axis shows the elapsed time since the halogen lamp 130 was turned on, and the vertical axis shows the carbon dioxide concentration measured at the position of the exhaust port 106.
 図23に示すように、回収ガスG2の二酸化炭素濃度は、典型的な大気の二酸化炭素濃度である400ppm(0.04%)を上回った。これは第一吸収体103bが、光L1の照射によって加熱された集熱部材115から、熱H1の供給を受けて二酸化炭素を脱離したことによる。また、回収ガスG2の二酸化炭素濃度は、最大で約9600ppm(0.96%)に到達した。これは、大気に比べると24倍の二酸化炭素濃度である。この点からも、本検証では、第一吸収体103bから二酸化炭素の脱離が好適に行われたといえる。 As shown in FIG. 23, the carbon dioxide concentration of the recovered gas G2 exceeded the typical atmospheric carbon dioxide concentration of 400 ppm (0.04%). This is because the first absorber 103b desorbs carbon dioxide in response to the supply of heat H1 from the heat collecting member 115 heated by the irradiation of the light L1. Further, the carbon dioxide concentration of the recovered gas G2 reached a maximum of about 9600 ppm (0.96%). This is 24 times the carbon dioxide concentration compared to the atmosphere. From this point of view, it can be said that in this verification, carbon dioxide was desorbed suitably from the first absorber 103b.
 このように、少なくとも波長500nm~2000nmの範囲の光L1が熱H1に変換され、二酸化炭素の脱離に供されたことが本検証から明らかである。一方で、太陽光C2は特に波長500nmから波長2500nmにかけての強度が大きいことが知られている。つまり、本検証では、ハロゲンランプ130からの光L1が用いられたが、光L1を太陽光C2に置き換えた場合でも、同様に二酸化炭素の脱離が好適に行えることが理解できる。 In this way, it is clear from this verification that at least the light L1 in the wavelength range of 500 nm to 2000 nm is converted into heat H1 and used for desorption of carbon dioxide. On the other hand, it is known that the intensity of sunlight C2 is particularly high in the wavelength range from 500 nm to 2500 nm. In other words, although the light L1 from the halogen lamp 130 was used in this verification, it can be understood that even when the light L1 is replaced with sunlight C2, carbon dioxide can be desorbed suitably.
 また、本検証では、二酸化炭素吸収材としてジアミン類のアミン系材料が用いられたが、熱エネルギーの供給によって、二酸化炭素の脱離反応を起こす二酸化炭素吸収材であれば、上記と同様の議論が可能である。 In addition, in this verification, an amine-based material such as diamines was used as the carbon dioxide absorbing material, but the same argument as above can be made if the material is a carbon dioxide absorbing material that causes a carbon dioxide desorption reaction when thermal energy is supplied. is possible.
 [検証3]
 上述したように、第二吸収体103aを準備する工程S1において、基材110に二酸化炭素吸収液112を担持させる前に、基材110に対してプラズマガスを吹き付けるか又は紫外線を照射してもよい。この基材110に対する紫外線の照射による効果について検証を行ったので、以下において説明する。
[Verification 3]
As described above, in step S1 of preparing the second absorber 103a, before the base material 110 is made to support the carbon dioxide absorbing liquid 112, plasma gas may be sprayed onto the base material 110 or ultraviolet rays may be irradiated on the base material 110. good. The effect of irradiating the base material 110 with ultraviolet rays was verified and will be described below.
 具体的には、検証2で上述したのと同様の方法で第二吸収体103aを調整する際、混合液に投入する前に、固体材料に対してXeエキシマランプを用いてピーク波長172nm近傍の紫外線を照射した。紫外線の照射は、放射照度が数十mW/cm2とされ、数秒間行われた。 Specifically, when preparing the second absorber 103a using the same method as described above in Verification 2, before adding it to the mixed solution, a Xe excimer lamp is used to treat the solid material at a wavelength near 172 nm. Irradiated with ultraviolet light. The ultraviolet irradiation was performed for several seconds at an irradiance of several tens of mW/cm 2 .
 その後は、再び検証2で上述したのと同様に、メタノールの蒸発、加熱等の処理を経て、第二吸収体103aの重量を秤量し、固体材料に対するアミン系材料の担持量を見積もった。紫外線を照射していない、検証2で得られた前記担持量との対比結果を下記表1に示す。 Thereafter, in the same manner as described above in Verification 2, the second absorber 103a was subjected to treatments such as evaporation of methanol and heating, and the weight of the second absorber 103a was measured to estimate the amount of the amine-based material supported on the solid material. Table 1 below shows the results of comparison with the supported amount obtained in Verification 2, which was not irradiated with ultraviolet rays.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1によれば、固体材料に対して紫外線を照射することで、固体材料におけるアミン系材料の担持量が、紫外線の照射が無い場合(検証2)の約1.2倍となった。これは、紫外線の照射によって、固体材料の細孔表面に親水性の官能基が形成された結果、アミン系材料を含む二酸化炭素吸収液に対する細孔表面のぬれ性が向上したためと考えられる。 According to Table 1, by irradiating the solid material with ultraviolet rays, the amount of amine-based material supported on the solid material was approximately 1.2 times that in the case without ultraviolet irradiation (verification 2). This is thought to be because hydrophilic functional groups were formed on the pore surfaces of the solid material by ultraviolet irradiation, resulting in improved wettability of the pore surfaces with respect to the carbon dioxide absorption liquid containing the amine-based material.
 固体材料における二酸化炭素吸収材の担持量を増加させることで、吸収体の二酸化炭素吸収能力を高められる。また、細孔表面の二酸化炭素吸収液に対するぬれ性が向上される結果、二酸化炭素の吸収工程及び脱離工程に係る操作を繰り返した際に(図19参照)、細孔表面からの二酸化炭素吸収液の剥がれ落ちが抑制されると推察される。つまり、固体材料に対する紫外線の照射を行った後に、二酸化炭素吸収液を担持させることで、二酸化炭素の回収が繰り返し行われた場合でも、二酸化炭素吸収液の剥がれ落ちによる吸収体の劣化が抑制される。これにより、回収システム全体を見た時の二酸化炭素の回収能力の維持が期待できる。 By increasing the amount of carbon dioxide absorbent supported in the solid material, the carbon dioxide absorption capacity of the absorber can be increased. In addition, as a result of the improved wettability of the pore surface to the carbon dioxide absorption liquid, when the operations related to the carbon dioxide absorption process and desorption process are repeated (see Figure 19), the carbon dioxide absorption from the pore surface is reduced. It is presumed that peeling of the liquid is suppressed. In other words, by supporting the carbon dioxide absorbing liquid after irradiating the solid material with ultraviolet rays, deterioration of the absorber due to peeling off of the carbon dioxide absorbing liquid can be suppressed even if carbon dioxide is repeatedly recovered. Ru. As a result, it is expected that the carbon dioxide recovery capacity will be maintained when looking at the recovery system as a whole.
 固体材料の細孔に対してプラズマガスを吹き付けることによっても、細孔表面に親水性の官能基を形成できる。つまり、本検証の結果に基づけば、プラズマガスの吹き付けによっても、細孔表面を親水化し、固体材料における二酸化炭素吸収材の担持量を増加できることが推察される。 Hydrophilic functional groups can also be formed on the pore surfaces by spraying plasma gas onto the pores of a solid material. In other words, based on the results of this verification, it is inferred that spraying plasma gas can also make the pore surface hydrophilic and increase the amount of carbon dioxide absorbent supported in the solid material.
 上記の通り、本発明の第二構成例によれば、太陽光C2を熱H1に変換することで、従来の方法と比較して、投入エネルギー量を低下させながらも二酸化炭素の回収効率を高めることが可能となる。このことは、国連が主導する持続可能な開発目標(SDGs)の目標13「気候変動及びその影響を軽減するための緊急対策を講じる」にも大きく貢献するものである。 As described above, according to the second configuration example of the present invention, by converting sunlight C2 into heat H1, the carbon dioxide recovery efficiency is increased while reducing the input energy amount compared to the conventional method. becomes possible. This will greatly contribute to Goal 13 of the Sustainable Development Goals (SDGs) led by the United Nations, ``Take urgent measures to reduce climate change and its impacts.''
 (第二実施形態)
 以下、本発明に係る第二構成例の第二実施形態について、第一実施形態と異なる部分を中心に説明する。
(Second embodiment)
The second embodiment of the second configuration example according to the present invention will be described below, focusing on the differences from the first embodiment.
 上記第一実施形態では、熱源104が反応槽102の内部に配置されたが、熱源104は反応槽102の外側において反応槽102とは独立した位置に配置することも可能である。つまり、本実施形態では、熱源104によって加熱された伝熱媒体が、反応槽102の内部に導入され、反応槽102内部の第一吸収体103bに対して熱H1を供給する。 In the first embodiment, the heat source 104 is placed inside the reaction tank 102, but the heat source 104 can also be placed outside the reaction tank 102 at a position independent of the reaction tank 102. That is, in this embodiment, the heat transfer medium heated by the heat source 104 is introduced into the reaction tank 102, and supplies heat H1 to the first absorber 103b inside the reaction tank 102.
 図24は、回収システム101の第二実施形態の構成を模式的に示す図面であり、一部の構成要素がブロック図にて示されている。図24に示すように、本実施形態に係る回収システム101は、反応槽102と、熱源104と、熱源104と反応槽102を連絡する第一流路131と、処理対象ガスG1を反応槽102に導入する第二流路132と、処理対象ガスG1等の通流方向に関して反応槽102の後段に位置する第三流路133を備える。なお、図24では、工程S4(図19参照)の場面が図示されており、伝熱媒体A1としての大気が第一流路131から反応槽102に導入される場面が描かれている。 FIG. 24 is a drawing schematically showing the configuration of the second embodiment of the collection system 101, and some components are shown in a block diagram. As shown in FIG. 24, the recovery system 101 according to the present embodiment includes a reaction tank 102, a heat source 104, a first flow path 131 that connects the heat source 104 and the reaction tank 102, and a gas G1 to be processed into the reaction tank 102. A second flow path 132 for introducing gas G1 and the like, and a third flow path 133 located downstream of the reaction tank 102 with respect to the flow direction of the gas to be treated G1 and the like are provided. Note that FIG. 24 illustrates a scene in step S4 (see FIG. 19), in which the atmosphere as the heat transfer medium A1 is introduced into the reaction tank 102 from the first flow path 131.
 本実施形態では、図示しない送風ファンなどの通流機構によって反応槽102に送り込まれる大気が伝熱媒体A1として利用される。また、本実施形態では、処理対象ガスG1は大気である。このため、回収システム101は、第二流路132を通流する大気の流量を制御可能な第一バルブV1と、第一流路131を通流する大気の流量を制御可能な第二バルブV2と、各バルブ(V1,V2)の開閉状態を制御する制御部108を備える。図24では、第一バルブV1が閉状態とされ、第二バルブV2が開状態とされており、バルブの開閉状態を模式的に表現するために、各バルブの配管に対する位置が異なるように描かれている。 In this embodiment, atmospheric air sent into the reaction tank 102 by a ventilation mechanism such as a blower fan (not shown) is used as the heat transfer medium A1. Moreover, in this embodiment, the gas G1 to be processed is the atmosphere. For this reason, the recovery system 101 includes a first valve V1 that can control the flow rate of atmospheric air flowing through the second flow path 132, and a second valve V2 that can control the flow rate of atmospheric air that flows through the first flow path 131. , a control unit 108 that controls the opening and closing states of each valve (V1, V2). In FIG. 24, the first valve V1 is in the closed state and the second valve V2 is in the open state. In order to schematically express the open and closed states of the valves, the positions of each valve with respect to the piping are drawn differently. It is.
 また、反応槽102は、反応槽102の内部空間の温度を計測する温度計109を有する。制御部108は、後述するように、温度計109からの反応槽102内の温度情報d0に基づいて、各バルブ(V1,V2)に対して、バルブの開度を調整する信号(d1,d2)を送信可能である。 Additionally, the reaction tank 102 has a thermometer 109 that measures the temperature of the internal space of the reaction tank 102. As described later, the control unit 108 sends signals (d1, d2) to each valve (V1, V2) to adjust the opening degree of the valve, based on temperature information d0 in the reaction tank 102 from the thermometer 109. ) can be sent.
 以下、本実施形態の構成について、図25~図28を参照しつつ説明する。図25及び図26は、反応槽102の構造を模式的に示す断面図であり、図25が工程S2の場面に対応し、図26が工程S4の場面に対応する(図19参照)。また、図27及び図28は熱源104の構造を模式的に示す断面図であり、図28は図18に倣って、図27に係る熱源104をZ方向から見た際の図面である。 The configuration of this embodiment will be described below with reference to FIGS. 25 to 28. 25 and 26 are cross-sectional views schematically showing the structure of the reaction tank 102, with FIG. 25 corresponding to step S2 and FIG. 26 corresponding to step S4 (see FIG. 19). 27 and 28 are cross-sectional views schematically showing the structure of the heat source 104, and FIG. 28 is a drawing when the heat source 104 according to FIG. 27 is viewed from the Z direction, following FIG. 18.
 図25に示すように、反応槽102の内部には、前述した工程S1を経て準備された第二吸収体103aが配置される。そして、第二バルブV2が閉状態、第一バルブV1が開状態とされて、処理対象ガスG1としての大気が導入口105bを介して反応槽102に導入される。第二吸収体103aが、処理対象ガスG1に含まれる二酸化炭素を吸収することで、第一吸収体103bが得られる(工程S2)。 As shown in FIG. 25, inside the reaction tank 102, the second absorbent body 103a prepared through the above-described step S1 is placed. Then, the second valve V2 is closed and the first valve V1 is opened, and the atmosphere as the gas to be treated G1 is introduced into the reaction tank 102 through the inlet 105b. The first absorber 103b is obtained by the second absorber 103a absorbing carbon dioxide contained in the gas G1 to be treated (step S2).
 次に、熱源104によって、工程S3が実行される。図27に示すように、熱源104は、加熱槽104aと、加熱槽104aの鉛直上方(+Z側)に配置された集熱部材115と、集熱部材115に直接的に配置された伝熱部材119と、太陽光C2を内部に取り込むための透光部120を有する。なお、図28では、図示の便宜上、透光部120、集熱部材115、及び伝熱部材119の一部が省略されて示されている。熱源104は、第一実施形態に係る反応槽102と共通の構造を有するため、共通部分についての説明は簡略化される。 Next, step S3 is performed by the heat source 104. As shown in FIG. 27, the heat source 104 includes a heating tank 104a, a heat collecting member 115 arranged vertically above (+Z side) of the heating tank 104a, and a heat transfer member arranged directly on the heat collecting member 115. 119, and a transparent part 120 for taking in sunlight C2 inside. Note that, in FIG. 28, for convenience of illustration, some of the light-transmitting part 120, the heat collecting member 115, and the heat transfer member 119 are omitted. Since the heat source 104 has the same structure as the reaction tank 102 according to the first embodiment, the description of the common parts will be simplified.
 図27に示すように、伝熱媒体A1としての大気が、導入口105を介して加熱槽104aの内部に導入される。そして、集熱部材115が太陽光C2を変換した熱H1によって高温となった伝熱部材119に、伝熱媒体A1が接触し、加熱される。その後、伝熱媒体A1は排出口106から排出され、第一流路131を介して反応槽102に送り込まれる。なお、透光部120については第一実施形態と同様の議論が可能である。 As shown in FIG. 27, air as the heat transfer medium A1 is introduced into the heating tank 104a through the inlet 105. Then, the heat transfer medium A1 comes into contact with the heat transfer member 119, which has become high in temperature due to the heat H1 converted from the sunlight C2 by the heat collecting member 115, and is heated. Thereafter, the heat transfer medium A1 is discharged from the discharge port 106 and sent into the reaction tank 102 via the first flow path 131. Note that the same discussion as in the first embodiment can be made regarding the transparent portion 120.
 伝熱部材119と伝熱媒体A1が接触する面積を増やす観点から、伝熱部材119は、図28に示すように、例えば板状の部材で構成されて、その主面が伝熱媒体A1の通流方向に関して略垂直になるように配置されても構わない。同様の観点から、Y方向に関して加熱槽104aの内壁と伝熱部材119の間に位置し、伝熱媒体A1が通過する通流部125が、X方向(通流方向)に見た際に伝熱媒体A1の通流方向に関して後段に位置する伝熱部材119の主面に重なる構成とされても構わない。なお、ここでいう「主面」とは、板状の伝熱部材119が有する面のうち、他の面よりも遥かに面積の大きい面を指す。 In order to increase the contact area between the heat transfer member 119 and the heat transfer medium A1, the heat transfer member 119 is made of, for example, a plate-shaped member, as shown in FIG. They may be arranged substantially perpendicular to the flow direction. From a similar point of view, the flow section 125, which is located between the inner wall of the heating tank 104a and the heat transfer member 119 in the Y direction and through which the heat transfer medium A1 passes, is It may be configured to overlap the main surface of the heat transfer member 119 located at the rear stage with respect to the flow direction of the heat medium A1. Note that the "principal surface" herein refers to a surface that is much larger in area than other surfaces among the surfaces that the plate-shaped heat transfer member 119 has.
 熱源104によって加熱された伝熱媒体A1としての大気が、図26に示すように、導入口105aを介して第一吸収体103bが位置する反応槽102内部に導入される。この導入口105aが「導入ポート」に対応する。この際、典型的には第二バルブV2が開状態とされ、第一バルブV1が閉状態とされる。このように、第一吸収体103bに対して高温の伝熱媒体A1が接触されて、第一吸収体103bに対して熱H1が供給される(工程S4)。 As shown in FIG. 26, atmospheric air as the heat transfer medium A1 heated by the heat source 104 is introduced into the reaction tank 102 in which the first absorber 103b is located via the inlet 105a. This introduction port 105a corresponds to an "introduction port". At this time, typically the second valve V2 is opened and the first valve V1 is closed. In this way, the first absorbent body 103b is brought into contact with the high temperature heat transfer medium A1, and the heat H1 is supplied to the first absorbent body 103b (step S4).
 熱H1の供給によって第一吸収体103bから脱離した二酸化炭素を含む回収ガスG2は、排出口106aを介して回収される(工程S5)。つまり、この排出口106aは「回収ポート」に対応する The recovered gas G2 containing carbon dioxide desorbed from the first absorber 103b by the supply of the heat H1 is recovered through the exhaust port 106a (step S5). In other words, this discharge port 106a corresponds to a "recovery port".
 なお、本実施形態では、伝熱媒体A1として大気が利用されるため、伝熱媒体A1を反応槽102内部に導入することによって、第一吸収体103b近傍の二酸化炭素濃度を低くすることができる。つまり、伝熱媒体A1としての大気は、二酸化炭素の脱離を促進する脱離促進ガスB1としての機能も奏する。 Note that in this embodiment, since the atmosphere is used as the heat transfer medium A1, by introducing the heat transfer medium A1 into the reaction tank 102, the carbon dioxide concentration near the first absorber 103b can be lowered. . That is, the atmosphere as the heat transfer medium A1 also functions as a desorption-promoting gas B1 that promotes the desorption of carbon dioxide.
 伝熱媒体A1としての大気によって、第一吸収体103bを加熱することで、吸収済の二酸化炭素が脱離されるが、吸収体103を繰り返し利用する観点から(図19参照)、第一吸収体103bに対する熱影響が低減されることが好ましい。このため、制御部108は、温度計109からの温度情報d0を受信して、反応槽102内の温度が所定値以上である場合には、第一バルブV1に対して開度を調整する信号d1を送信する。第一バルブV1の開度を調整することで、伝熱媒体A1より低温の大気が導入可能なため、反応槽102内の温度を低下させ、第一吸収体103bに対する熱影響を低減できる。つまり、この場合の大気は「冷却ガス」に対応する。また、反応槽102内の温度の冷却を促進する観点から、第二バルブV2に対して信号d2を送信して、第二バルブV2の開度を調整しても構わない。なお、所定値は、例えば、100℃以下とされてもよく、好ましくは80℃以下であり、より好ましくは60℃以下である。 The absorbed carbon dioxide is desorbed by heating the first absorber 103b by the atmosphere as the heat transfer medium A1. However, from the viewpoint of repeatedly using the absorber 103 (see FIG. 19), the first absorber Preferably, thermal effects on 103b are reduced. Therefore, the control unit 108 receives the temperature information d0 from the thermometer 109, and when the temperature inside the reaction tank 102 is equal to or higher than a predetermined value, the control unit 108 sends a signal to the first valve V1 to adjust the opening degree. Send d1. By adjusting the opening degree of the first valve V1, it is possible to introduce atmospheric air that is lower temperature than the heat transfer medium A1, so that the temperature inside the reaction tank 102 can be lowered and the thermal influence on the first absorber 103b can be reduced. In other words, the atmosphere in this case corresponds to "cooling gas." Furthermore, from the viewpoint of promoting cooling of the temperature inside the reaction tank 102, the opening degree of the second valve V2 may be adjusted by transmitting the signal d2 to the second valve V2. Note that the predetermined value may be, for example, 100°C or less, preferably 80°C or less, and more preferably 60°C or less.
 なお、本実施形態では、制御部108が温度計109からの温度情報d0に基づいて、各バルブ(V1,V2)の開度を調整し、工程S4における反応槽102内の温度を低下させる例を説明した。しかし、制御部108は、例えばV2が開状態とされた累積時間が予め設定された時間に到達した場合に、所定の時間、第一バルブV1を開状態として第二バルブV2を閉状態とする制御を行うものとしても構わない。 In addition, in this embodiment, the control unit 108 adjusts the opening degree of each valve (V1, V2) based on the temperature information d0 from the thermometer 109, and lowers the temperature inside the reaction tank 102 in step S4. explained. However, the control unit 108 opens the first valve V1 and closes the second valve V2 for a predetermined period of time, for example, when the cumulative time during which V2 is in the open state reaches a preset time. It does not matter if it is something that performs control.
 本実施形態では反応槽102に導入される伝熱媒体A1を加熱する構成を示したが、図17を参照して述べたように、反応槽102内に配置されて、伝熱媒体A1及び第一吸収体103bを加熱する熱源104の構成を併用しても構わない。 In this embodiment, a configuration is shown in which the heat transfer medium A1 introduced into the reaction tank 102 is heated, but as described with reference to FIG. The configuration of the heat source 104 that heats the absorber 103b may be used in combination.
 [別実施形態]
 〈1〉 図29及び図30は、回収システム101の別実施形態の構成を模式的に示す図面であり、構成の一部がブロック図で示されている。図29は、工程S2が実行される場面に対応し、図30は、工程S4及び工程S5が実行される場面に対応する。
[Another embodiment]
<1> FIGS. 29 and 30 are drawings schematically showing the configuration of another embodiment of the collection system 101, and a part of the configuration is shown in a block diagram. FIG. 29 corresponds to a scene where step S2 is executed, and FIG. 30 corresponds to a scene where steps S4 and S5 are executed.
 本実施形態は、伝熱媒体A1としての大気と、反応槽102から回収された二酸化炭素を含む回収ガスG2との間で熱交換を行う熱交換機136を備える(図30参照)。また、回収システム101は、第三流路133から分岐され、反応槽102を通流した後の処理対象ガスG1が通流する第四流路134と(図29参照)、第四流路134に配置された第四バルブV4を有する。なお、反応槽102及び熱源104の構成については、図25~図28を参照して述べたのと同様の議論が可能である。 This embodiment includes a heat exchanger 136 that performs heat exchange between the atmosphere as the heat transfer medium A1 and the recovered gas G2 containing carbon dioxide recovered from the reaction tank 102 (see FIG. 30). The recovery system 101 also includes a fourth flow path 134 that is branched from the third flow path 133 and through which the gas G1 to be treated after passing through the reaction tank 102 flows (see FIG. 29); It has a fourth valve V4 located at. Note that the same discussion as described with reference to FIGS. 25 to 28 can be made regarding the configurations of the reaction tank 102 and the heat source 104.
 図29に示すように、工程S2の実行場面では、第二流路132に配置された第一バルブV1及び第四バルブV4が開状態とされて、図示しないファンなどの通流機構によって反応槽102内に処理対象ガスG1が導入される。反応槽102内で、第二吸収体103aによって二酸化炭素が吸収された処理対象ガスG1は、第四流路134を介して例えば外空間に排出される。 As shown in FIG. 29, when step S2 is executed, the first valve V1 and the fourth valve V4 arranged in the second flow path 132 are opened, and the reaction tank is opened by a flow mechanism such as a fan (not shown). A gas to be treated G1 is introduced into the chamber 102 . The gas G1 to be treated in which carbon dioxide has been absorbed by the second absorber 103a in the reaction tank 102 is discharged, for example, to the outside space via the fourth flow path 134.
 図30に示すように、工程S4及び工程S5の実行場面では、伝熱媒体A1としての大気が通流する第一流路131に配置された第二バルブV2と、回収ガスG2が通流する第三流路133に配置された第三バルブV3が開状態とされる。本実施形態では、図30に示すように、伝熱媒体A1として、植物工場135で植物が生育される空間(以下、便宜上、「生育空間135a」という。)における大気を利用する。さらに、反応槽102内の第一吸収体103bから脱離された二酸化炭素を含む回収ガスG2は、生育空間135aで利用可能である。回収ガスG2は、第一吸収体103bを加熱することで脱離された二酸化炭素を含むため、伝熱媒体A1としての大気よりも高い温度を有する。したがって、回収ガスG2と伝熱媒体A1としての大気との間で熱交換を行うことが好ましい。 As shown in FIG. 30, in the execution scene of steps S4 and S5, the second valve V2 disposed in the first flow path 131 through which the atmosphere as the heat transfer medium A1 flows, and the second valve V2 through which the recovered gas G2 flows. The third valve V3 arranged in the third flow path 133 is opened. In this embodiment, as shown in FIG. 30, the atmosphere in the space where plants are grown in the plant factory 135 (hereinafter referred to as "growth space 135a" for convenience) is used as the heat transfer medium A1. Furthermore, the recovered gas G2 containing carbon dioxide desorbed from the first absorber 103b in the reaction tank 102 can be used in the growth space 135a. Since the recovered gas G2 contains carbon dioxide desorbed by heating the first absorber 103b, it has a higher temperature than the atmosphere as the heat transfer medium A1. Therefore, it is preferable to perform heat exchange between the recovered gas G2 and the atmosphere as the heat transfer medium A1.
 なお、植物工場135では、植物固有の概日リズム(サーカディアンリズム)に合わせて生育用の照明を点灯又は消灯することが想定される。つまり、当該照明が点灯される間は、植物の光合成により、生育空間135aの二酸化炭素濃度が低下する。したがって、前述した脱離促進ガスB1としての効果を高める観点から、生育空間135aにおける大気を伝熱媒体A1として利用することが好ましい。なお、植物の呼吸等によって、生育空間135aの二酸化炭素濃度が高い場合(典型的には生育用の照明が消灯される間)には、例えば外空間などの別の空間の大気を伝熱媒体A1として利用しても構わない。 In addition, in the plant factory 135, it is assumed that the lighting for growth is turned on or off in accordance with the circadian rhythm unique to the plant. That is, while the lighting is turned on, the carbon dioxide concentration in the growth space 135a decreases due to photosynthesis of the plants. Therefore, from the viewpoint of enhancing the effect as the desorption-promoting gas B1 described above, it is preferable to use the atmosphere in the growth space 135a as the heat transfer medium A1. Note that when the carbon dioxide concentration in the growth space 135a is high due to plant respiration etc. (typically while the growth lights are turned off), the atmosphere in another space such as the outside space may be used as a heat transfer medium. It may be used as A1.
 〈2〉 上記第二実施形態では、工程S4において、伝熱媒体A1としての大気が反応槽102の内部空間に導入されるものとした。しかし、図31に示すように、反応槽102の外側を通流する伝熱媒体A1と、第一吸収体103bが内部に位置する反応槽102との間で熱交換を行っても構わない。図31は、回収システム101の別構成例の一部を模式的に示す図面である。また、図32Aは、図31における熱源104の構成を模式的に示す斜視図であり、図32Bは、図32Aの熱源104をX方向から見た際の断面図である。なお、図32A及び図32Bでは、伝熱媒体A1の通流方向がX方向とされている。 <2> In the second embodiment, the atmosphere as the heat transfer medium A1 is introduced into the internal space of the reaction tank 102 in step S4. However, as shown in FIG. 31, heat exchange may be performed between the heat transfer medium A1 flowing outside the reaction tank 102 and the reaction tank 102 in which the first absorber 103b is located inside. FIG. 31 is a diagram schematically showing a part of another configuration example of the collection system 101. 32A is a perspective view schematically showing the configuration of the heat source 104 in FIG. 31, and FIG. 32B is a cross-sectional view of the heat source 104 in FIG. 32A when viewed from the X direction. Note that in FIGS. 32A and 32B, the flow direction of the heat transfer medium A1 is the X direction.
 図32Aに係る熱源104は、例えば図32Bに示すようにL字型の断面形状を有し、その内部に伝熱媒体A1としての水が収容されている。熱源104は、外壁面の一部に平板状の集熱部材115を有し、集熱部材115が太陽光C2を吸収することで加熱され、高温の水(以下、「温水」と記載する)を生成する。集熱部材115が効率的に太陽光C2を受光出来るように、熱源104は架台141等の傾斜面に配置されるのが典型的である。温水は、流路140を通流するように構成され、伝熱媒体A1としての温水と、反応槽102との間で熱交換を行うことで、反応槽102内の第一吸収体103bに対して熱H1を供給することができる。 The heat source 104 according to FIG. 32A has an L-shaped cross-sectional shape, for example, as shown in FIG. 32B, and water as the heat transfer medium A1 is accommodated therein. The heat source 104 has a flat heat collecting member 115 on a part of the outer wall surface, and the heat collecting member 115 is heated by absorbing sunlight C2, and high temperature water (hereinafter referred to as "hot water") is heated. generate. Typically, the heat source 104 is placed on an inclined surface such as the pedestal 141 so that the heat collecting member 115 can efficiently receive sunlight C2. The hot water is configured to flow through the flow path 140, and by performing heat exchange between the hot water as the heat transfer medium A1 and the reaction tank 102, it is heated to the first absorber 103b in the reaction tank 102. can supply heat H1.
 なお、この際、反応槽102内の二酸化炭素濃度を低下させ、第一吸収体103bからの吸収済二酸化炭素の脱離を促進する観点から、例えば第二流路132から脱離促進ガスB1としての大気を反応槽102内に導入しても構わない(図31参照)。 In addition, at this time, from the viewpoint of reducing the carbon dioxide concentration in the reaction tank 102 and promoting the desorption of absorbed carbon dioxide from the first absorber 103b, for example, from the second flow path 132 as a desorption-promoting gas B1. The atmosphere may be introduced into the reaction tank 102 (see FIG. 31).
 〈3〉 また、図31では、流路140を通流する伝熱媒体A1としての温水と、反応槽102との間で熱交換を行う例を説明した。しかし、当該温水と、図24及び図26を参照して述べた第一流路131を通流する伝熱媒体A1としての大気との間で熱交換を行っても構わない。つまり、当該熱交換によって高温となった大気が反応槽102に導入されることで、第一吸収体103bに熱H1が供給され(図26参照)、吸収済二酸化炭素の脱離が行われる。 <3> In addition, in FIG. 31, an example was described in which heat exchange is performed between hot water as the heat transfer medium A1 flowing through the flow path 140 and the reaction tank 102. However, heat exchange may be performed between the hot water and the atmosphere as the heat transfer medium A1 flowing through the first flow path 131 described with reference to FIGS. 24 and 26. That is, by introducing the atmosphere that has become high temperature through the heat exchange into the reaction tank 102, heat H1 is supplied to the first absorber 103b (see FIG. 26), and absorbed carbon dioxide is desorbed.
 〈4〉 上記実施形態は適宜組み合わせて実現できる。例えば、図24又は図31に係る反応槽102の内部に、追加的に熱源104が配置されても構わない。当該反応槽102の構成としては、例えば図17を参照して述べた構成が利用できる。 <4> The above embodiments can be combined as appropriate. For example, a heat source 104 may be additionally placed inside the reaction tank 102 shown in FIG. 24 or 31. As the configuration of the reaction tank 102, for example, the configuration described with reference to FIG. 17 can be used.
 〈5〉 上記においては、吸収体103が粒状であるものとして説明したが、前述したように吸収体103の形状はこれに限られず、例えば板状であっても構わない。 <5> In the above description, the absorber 103 is described as having a granular shape, but as described above, the shape of the absorber 103 is not limited to this, and may be, for example, plate-shaped.
 〈6〉 上記においては、吸収体103は、固体状を呈するものとして説明したが、液状の二酸化炭素吸収液を吸収体103として利用することもできる。図33は、図17Bに倣って回収システム101の別実施形態を模式的に示す図面である。図33に示すように、液状を呈する吸収体103に対して、集熱部材115の熱H1によって高温となる伝熱部材119を直接的に配置することで、吸収体103に対する熱H1の供給が可能である。なお、液状の吸収体103に二酸化炭素を吸収させる場合には(工程S2)、大気などの処理対象ガスG1を導入口105から導入し、吸収体103に対してバブリングさせても構わない。 <6> In the above, the absorber 103 has been described as having a solid state, but a liquid carbon dioxide absorption liquid can also be used as the absorber 103. FIG. 33 is a drawing schematically showing another embodiment of the recovery system 101, similar to FIG. 17B. As shown in FIG. 33, by directly arranging the heat transfer member 119 that becomes hot due to the heat H1 of the heat collecting member 115 to the absorber 103 which is in a liquid state, the supply of the heat H1 to the absorber 103 is reduced. It is possible. Note that when carbon dioxide is to be absorbed into the liquid absorber 103 (step S2), the gas G1 to be treated, such as the atmosphere, may be introduced from the inlet 105 and bubbled into the absorber 103.
    1   :  回収システム
    2   :  吸収槽
   3,33,43,53,63,73,83,89   :  反応槽
   4,5,52,78,92,93   :  流路
   6,36,46,56,66、76,86   :  光源
   7,47,57,77   :  回収ポート
   8,38   :  LED素子
   9   :  基板
   10,30   :  吸収液
   11   :  反射膜
   12,14   :  窓
   13   :  伝熱部材
   15,16   :  集熱部材
   16a,167a,167b  :  端部
   20   :  処理対象ガス
   21   :  処理後ガス
   22   :  脱離ガス
   34   :  栓
   35a,35b   :  シリンジ
   37   :  電源
   39   :  熱電対
   40   :  遮光板
   41   :  通電部材
   44,54   :  導入口
   45,55   :  排出口
   58   :  上壁部
   59   :  底壁部
   60   :  脱離空間
   68   :  熱源
   74   :  流入口
   79a,79b,79c   :  バルブ
   84   :  凹部
   87   :  架台
   87a  :  傾斜面
   90   :  温水生成器
   91   :  熱交換器
   94   :  屋根
   95   :  温水
   101  :  回収システム
   101a :  回収方法
   102  :  反応槽
   103  :  吸収体
   103a :  第二吸収体
   103b :  第一吸収体
   104  :  熱源
   104a :  加熱槽
   105,105a,105b   :  導入口
   106,106a   :  排出口
   108  :  制御部
   109  :  温度計
   110  :  基材
   111  :  細孔
   112  :  二酸化炭素吸収液
   115  :  太陽光集熱部材
   119  :  伝熱部材
   120  :  透光部
   121  :  透明部材
   122  :  低圧空間
   125  :  通流部
   130  :  ハロゲンランプ
   131,132,133,134,140   :  流路
   135  :  植物工場
   135a :  生育空間
   136  :  熱交換機
   141  :  架台
   161  :  外側管
   162  :  内側管
   163  :  封止部
   164  :  封止空間
   165  :  集熱部
   166  :  伝熱フィン
   167  :  ヒートパイプ
   168  :  作動液
   169  :  密閉部
   A1   :  伝熱媒体
   B1   :  脱離促進ガス
   C1   :  太陽
   C2   :  太陽光
   G1   :  処理対象ガス
   G2   :  回収ガス
1: Recovery system 2: Absorption tank 3, 33, 43, 53, 63, 73, 83, 89: Reaction tank 4, 5, 52, 78, 92, 93: Channel 6, 36, 46, 56, 66, 76, 86: Light source 7, 47, 57, 77: Recovery port 8, 38: LED element 9: Substrate 10, 30: Absorbing liquid 11: Reflective film 12, 14: Window 13: Heat transfer member 15, 16: Heat collection Members 16a, 167a, 167b: End portion 20: Processing target gas 21: Post-processing gas 22: Desorption gas 34: Stopper 35a, 35b: Syringe 37: Power source 39: Thermocouple 40: Light shielding plate 41: Current-carrying member 44, 54 : Inlet port 45, 55 : Discharge port 58 : Upper wall part 59 : Bottom wall part 60 : Desorption space 68 : Heat source 74 : Inlet port 79a, 79b, 79c : Valve 84 : Recessed part 87 : Frame 87a : Inclined surface 90 : Hot water generator 91: Heat exchanger 94: Roof 95: Hot water 101: Recovery system 101a: Recovery method 102: Reaction tank 103: Absorber 103a: Second absorber 103b: First absorber 104: Heat source 104a: Heating tank 105 , 105a, 105b: Inlet 106, 106a: Discharge port 108: Control unit 109: Thermometer 110: Base material 111: Pore 112: Carbon dioxide absorption liquid 115: Solar heat collection member 119: Heat transfer member 120: Transparent Light section 121: Transparent member 122: Low pressure space 125: Flow section 130: Halogen lamp 131, 132, 133, 134, 140: Channel 135: Plant factory 135a: Growth space 136: Heat exchanger 141: Frame 161: Outer tube 162: Inner tube 163: Sealing section 164: Sealing space 165: Heat collecting section 166: Heat transfer fins 167: Heat pipe 168: Working fluid 169: Sealing section A1: Heat transfer medium B1: Desorption promoting gas C1: Sun C2: Sunlight G1: Gas to be treated G2: Recovered gas

Claims (31)

  1.  二酸化炭素が吸収された吸収液に対して光を照射する工程(a)と、
     前記吸収液に対して熱を供給する工程(b)と、
     前記工程(a)及び前記工程(b)を経て前記吸収液から脱離した二酸化炭素を回収する工程(c)とを含むことを特徴とする、二酸化炭素の回収方法。
    a step (a) of irradiating light onto the absorption liquid in which carbon dioxide has been absorbed;
    (b) supplying heat to the absorption liquid;
    A method for recovering carbon dioxide, comprising a step (c) of recovering carbon dioxide desorbed from the absorption liquid through the steps (a) and (b).
  2.  前記工程(a)は、光源から前記吸収液に対して前記光を照射する工程であり、
     前記工程(b)は、前記光源が発する前記熱を前記吸収液に供給する工程であることを特徴とする、請求項1に記載の二酸化炭素の回収方法。
    The step (a) is a step of irradiating the absorption liquid with the light from a light source,
    The carbon dioxide recovery method according to claim 1, wherein the step (b) is a step of supplying the heat generated by the light source to the absorption liquid.
  3.  前記工程(a)及び前記工程(b)は、同時に実行されることを特徴とする、請求項2に記載の二酸化炭素の回収方法。 The method for recovering carbon dioxide according to claim 2, wherein the step (a) and the step (b) are performed simultaneously.
  4.  前記工程(a)は、光源から前記吸収液に対して前記光を照射する工程を含み、
     前記工程(b)は、太陽光が照射可能な態様で、前記吸収液が内部に位置する反応槽に対して直接又は他の部材を介して接触する状態で配置された太陽光集熱部材が、前記太陽光を前記熱に変換し、前記熱を前記吸収液に供給する工程を含むことを特徴とする、請求項1に記載の二酸化炭素の回収方法。
    The step (a) includes a step of irradiating the absorption liquid with the light from a light source,
    In the step (b), a solar heat collecting member is placed in a state where sunlight can be irradiated, and the solar heat collecting member is placed in contact with the reaction tank in which the absorption liquid is located, either directly or through another member. 2. The carbon dioxide recovery method according to claim 1, further comprising the steps of converting the sunlight into the heat and supplying the heat to the absorption liquid.
  5.  前記吸収液は、塩基性材料からなる二酸化炭素吸収材と溶媒とを含むことを特徴とする、請求項1又は2に記載の二酸化炭素の回収方法。 The method for recovering carbon dioxide according to claim 1 or 2, wherein the absorption liquid contains a carbon dioxide absorbent made of a basic material and a solvent.
  6.  前記二酸化炭素吸収材は、アミン系材料からなることを特徴とする、請求項5に記載の二酸化炭素の回収方法。 The carbon dioxide recovery method according to claim 5, wherein the carbon dioxide absorbent is made of an amine-based material.
  7.  二酸化炭素が吸収された吸収液が内部に位置する反応槽と、
     前記反応槽に対して直接又は他の部材を介して固定された状態で配置され、前記反応槽内の前記吸収液に対して光を照射する光源と、
     前記吸収液から脱離した二酸化炭素を回収する回収ポートとを備えたことを特徴とする、二酸化炭素の回収システム。
    a reaction tank in which an absorption liquid in which carbon dioxide has been absorbed is located;
    a light source that is fixed to the reaction tank directly or via another member and irradiates the absorption liquid in the reaction tank with light;
    A carbon dioxide recovery system comprising: a recovery port for recovering carbon dioxide desorbed from the absorption liquid.
  8.  前記光源は、前記反応槽の内部に配置されていることを特徴とする、請求項7に記載の二酸化炭素の回収システム。 8. The carbon dioxide recovery system according to claim 7, wherein the light source is located inside the reaction tank.
  9.  前記反応槽内に前記吸収液を導入する導入口と、
     前記光源からの前記光が照射された後の前記吸収液を排出する排出口とを備え、
     前記反応槽には、前記導入口から前記排出口に向かって通流中の前記吸収液が位置することを特徴とする、請求項7又は8に記載の二酸化炭素の回収システム。
    an inlet for introducing the absorption liquid into the reaction tank;
    and a discharge port for discharging the absorption liquid after being irradiated with the light from the light source,
    9. The carbon dioxide recovery system according to claim 7, wherein the absorption liquid is located in the reaction tank and is flowing from the inlet toward the outlet.
  10.  前記回収ポートは、前記吸収液の通流方向に関して、前記導入口よりも前記排出口に近い側に位置していることを特徴とする、請求項9に記載の二酸化炭素の回収システム。 The carbon dioxide recovery system according to claim 9, wherein the recovery port is located closer to the outlet than the inlet with respect to the flow direction of the absorption liquid.
  11.  前記反応槽は、底壁部と、前記底壁部に対して鉛直上方に離間した上壁部とを有し、
     前記反応槽は、前記導入口から前記排出口に近づくに連れて、前記底壁部と前記上壁部との間の鉛直方向に係る離間距離が上昇する構造であることを特徴とする、請求項9に記載の二酸化炭素の回収システム。
    The reaction tank has a bottom wall portion and an upper wall portion vertically spaced apart from the bottom wall portion,
    The reaction tank is characterized in that the distance between the bottom wall portion and the top wall portion in the vertical direction increases as the inlet approaches the discharge port. Item 9. The carbon dioxide recovery system according to item 9.
  12.  前記光源は、前記底壁部に対して固定して配置され、
     前記上壁部は、前記底壁部に対して傾斜しており、
     前記回収ポートは、前記導入口よりも前記排出口に近い側の前記上壁部に設けられていることを特徴とする、請求項11に記載の二酸化炭素の回収システム。
    The light source is fixedly arranged with respect to the bottom wall,
    The top wall part is inclined with respect to the bottom wall part,
    12. The carbon dioxide recovery system according to claim 11, wherein the recovery port is provided in the upper wall portion closer to the outlet than the inlet.
  13.  前記吸収液は、塩基性材料からなる二酸化炭素吸収材と溶媒とを含むことを特徴とする、請求項7又は8に記載の二酸化炭素の回収システム。 The carbon dioxide recovery system according to claim 7 or 8, wherein the absorption liquid includes a carbon dioxide absorbent made of a basic material and a solvent.
  14.  前記二酸化炭素吸収材は、アミン系材料からなることを特徴とする、請求項13に記載の二酸化炭素の回収システム。 The carbon dioxide recovery system according to claim 13, wherein the carbon dioxide absorbent is made of an amine-based material.
  15.  二酸化炭素が吸収された吸収液が内部に位置する反応槽と、
     前記反応槽内の前記吸収液に対して光を照射する光源と、
     前記反応槽内の前記吸収液に対して熱を供給する熱源と、
     前記吸収液から脱離した二酸化炭素を回収する回収ポートとを備えたことを特徴とする、二酸化炭素の回収システム。
    a reaction tank in which an absorption liquid in which carbon dioxide has been absorbed is located;
    a light source that irradiates light to the absorption liquid in the reaction tank;
    a heat source that supplies heat to the absorption liquid in the reaction tank;
    A carbon dioxide recovery system comprising: a recovery port for recovering carbon dioxide desorbed from the absorption liquid.
  16.  前記熱源は、太陽光が照射可能な態様で、前記反応槽に対して直接又は他の部材を介して固定された状態で配置された、受光した太陽光を熱に変換する太陽光集熱部材を含むことを特徴とする、請求項15に記載の二酸化炭素の回収システム。 The heat source is a solar heat collection member that converts received sunlight into heat, and is fixed to the reaction tank directly or through another member in a manner that allows sunlight to irradiate. The carbon dioxide recovery system according to claim 15, comprising:
  17.  二酸化炭素を吸収済の吸収体である第一吸収体を準備する工程(d)と、
     太陽光集熱部材が受光した太陽光を熱に変換する工程(e)と、
     前記工程(e)で得られた熱に由来する熱エネルギーを、前記第一吸収体に対して供給する工程(f)と、
     前記工程(f)を経て前記第一吸収体から脱離した二酸化炭素を回収する工程(g)と、を有することを特徴とする、二酸化炭素の回収方法。
    a step (d) of preparing a first absorber which is an absorber that has already absorbed carbon dioxide;
    a step (e) of converting sunlight received by the solar heat collecting member into heat;
    a step (f) of supplying thermal energy derived from the heat obtained in the step (e) to the first absorber;
    A method for recovering carbon dioxide, comprising a step (g) of recovering carbon dioxide desorbed from the first absorber through the step (f).
  18.  前記工程(f)は、前記工程(e)で得られた熱によって加熱された伝熱媒体を介して前記熱エネルギーを前記第一吸収体に供給する工程であることを特徴とする、請求項17に記載の二酸化炭素の回収方法。 The step (f) is a step of supplying the thermal energy to the first absorber through a heat transfer medium heated by the heat obtained in the step (e). 18. The carbon dioxide recovery method according to 17.
  19.  前記工程(f)は、前記第一吸収体が内部に配置された反応槽の内部空間に、前記工程(e)によって得られた前記熱エネルギーで加熱された大気からなる前記伝熱媒体を導入する工程を含むことを特徴とする、請求項18に記載の二酸化炭素の回収方法。 In the step (f), the heat transfer medium made of air heated by the thermal energy obtained in the step (e) is introduced into the internal space of the reaction tank in which the first absorber is disposed. The method for recovering carbon dioxide according to claim 18, comprising the step of:
  20.  前記工程(f)の実行中に、前記反応槽の前記内部空間の温度を計測して、前記温度が所定値以上である場合に、前記内部空間に対して前記伝熱媒体よりも低温の大気からなる冷却ガスを導入することを特徴とする、請求項19に記載の二酸化炭素の回収方法。 During execution of the step (f), the temperature of the internal space of the reaction tank is measured, and if the temperature is equal to or higher than a predetermined value, an atmosphere that is lower temperature than the heat transfer medium is applied to the internal space. The carbon dioxide recovery method according to claim 19, characterized in that a cooling gas consisting of: is introduced.
  21.  前記工程(d)は、
      二酸化炭素を吸収する前の吸収体である第二吸収体を準備する工程(d1)と、
      前記第二吸収体を前記反応槽の内部に配置した後に、前記反応槽の前記内部空間に二酸化炭素を含む処理対象ガスを導入して前記第二吸収体に二酸化炭素を吸収させる工程(d2)とを含むことを特徴とする、請求項19又は20に記載の二酸化炭素の回収方法。
    The step (d) includes:
    a step (d1) of preparing a second absorber, which is an absorber before absorbing carbon dioxide;
    After arranging the second absorber inside the reaction tank, a step (d2) of introducing a gas to be treated containing carbon dioxide into the internal space of the reaction tank and causing the second absorber to absorb carbon dioxide. 21. The method for recovering carbon dioxide according to claim 19 or 20, comprising:
  22.  前記工程(d1)は、表面に細孔を有する多孔性物質からなる固体材料の前記細孔に対して、塩基性材料からなり二酸化炭素吸収性を示す二酸化炭素吸収液を担持させることで、前記第二吸収体を得る工程を含むことを特徴とする、請求項21に記載の二酸化炭素の回収方法。 In the step (d1), a carbon dioxide absorption liquid made of a basic material and exhibiting carbon dioxide absorption property is supported on the pores of a solid material made of a porous material having pores on its surface. 22. The method for recovering carbon dioxide according to claim 21, comprising the step of obtaining a second absorber.
  23.  前記工程(d1)は、前記固体材料の前記細孔に前記二酸化炭素吸収液を担持させる前に、前記細孔に対して、プラズマガスを吹き付けるか又は紫外線を照射する工程を含むことを特徴とする、請求項22に記載の二酸化炭素の回収方法。 The step (d1) is characterized by including a step of spraying plasma gas or irradiating the pores with ultraviolet rays, before making the pores of the solid material carry the carbon dioxide absorption liquid. The carbon dioxide recovery method according to claim 22.
  24.  前記工程(f)は、前記第一吸収体が内部に配置された反応槽の外側を通流する前記伝熱媒体と、前記第一吸収体との間で熱交換を行う工程であって、
     前記工程(f)の実行中に、前記反応槽の内部空間に対して、前記内部空間よりも二酸化炭素濃度が低い気体からなる脱離促進ガスを導入することを特徴とする、請求項18に記載の二酸化炭素の回収方法。
    The step (f) is a step of exchanging heat between the first absorber and the heat transfer medium flowing through the outside of the reaction tank in which the first absorber is disposed,
    19. The method according to claim 18, wherein during execution of the step (f), a desorption-promoting gas consisting of a gas having a lower carbon dioxide concentration than the internal space is introduced into the internal space of the reaction tank. The carbon dioxide recovery method described.
  25.  二酸化炭素を吸収済の吸収体である第一吸収体と、
     前記第一吸収体が内部に位置する反応槽と、
     前記第一吸収体に対して熱エネルギーを供給する伝熱媒体を前記反応槽の内部に導入する導入ポートと、
     受光した太陽光を熱に変換する太陽光集熱部材を含み、前記伝熱媒体の通流方向に関して前記第一吸収体よりも前段に配置されて、前記伝熱媒体を加熱する熱源と、
     前記第一吸収体から脱離した二酸化炭素を回収する回収ポートとを備えることを特徴とする、二酸化炭素の回収システム。
    a first absorber which is an absorber that has already absorbed carbon dioxide;
    a reaction tank in which the first absorber is located;
    an introduction port for introducing a heat transfer medium that supplies thermal energy to the first absorber into the reaction tank;
    a heat source that heats the heat transfer medium, including a solar heat collecting member that converts received sunlight into heat, and is disposed before the first absorber with respect to the flow direction of the heat transfer medium;
    A carbon dioxide recovery system comprising: a recovery port for recovering carbon dioxide desorbed from the first absorber.
  26.  前記熱源と前記導入ポートとを連絡する第一流路を備え、
     前記熱源は、前記反応槽の外側の位置において、前記第一流路を通流する前記伝熱媒体を加熱する構成であることを特徴とする、請求項25に記載の二酸化炭素の回収システム。
    comprising a first flow path communicating the heat source and the introduction port,
    26. The carbon dioxide recovery system according to claim 25, wherein the heat source is configured to heat the heat transfer medium flowing through the first flow path at a position outside the reaction tank.
  27.  二酸化炭素を含む処理対象ガスとしての大気を前記反応槽の内部に導く第二流路と、
     前記第二流路の開度を調整して前記第二流路を通流する大気の流量を制御可能な第一バルブとを備えることを特徴とする、請求項26に記載の二酸化炭素の回収システム。
    a second flow path that guides the atmosphere as a gas to be treated containing carbon dioxide into the reaction tank;
    27. The carbon dioxide recovery method according to claim 26, further comprising a first valve capable of controlling the flow rate of atmospheric air flowing through the second flow path by adjusting the opening degree of the second flow path. system.
  28.  前記反応槽の内部空間の温度を計測する温度計を備え、
     前記第一バルブは、前記温度計の計測値に基づいて前記第二流路の開度が調整されることを特徴とする、請求項27に記載の二酸化炭素の回収システム。
    comprising a thermometer that measures the temperature of the internal space of the reaction tank,
    28. The carbon dioxide recovery system according to claim 27, wherein the opening degree of the second flow path in the first valve is adjusted based on the measured value of the thermometer.
  29.  前記第一流路の開度を調整して前記第一流路を通流する前記伝熱媒体の流量を制御可能な第二バルブを備えることを特徴とする、請求項27に記載の二酸化炭素の回収システム。 28. The carbon dioxide recovery according to claim 27, further comprising a second valve capable of controlling the flow rate of the heat transfer medium flowing through the first flow path by adjusting the opening degree of the first flow path. system.
  30.  前記回収ポートから回収された二酸化炭素を含む回収ガスが通流する第三流路と、
     前記伝熱媒体の通流方向に関して前記第一吸収体よりも前段に配置されて、前記伝熱媒体と前記第三流路を通流する前記回収ガスとの間で熱交換を行う熱交換機を備えることを特徴とする、請求項25~29のいずれか一項に記載の二酸化炭素の回収システム。
    a third flow path through which recovered gas containing carbon dioxide recovered from the recovery port flows;
    A heat exchanger that is disposed upstream of the first absorber with respect to the flow direction of the heat transfer medium and performs heat exchange between the heat transfer medium and the recovered gas flowing through the third flow path. The carbon dioxide recovery system according to any one of claims 25 to 29, characterized in that it comprises:
  31.  前記吸収体は固体状を呈することを特徴とする、請求項25~29のいずれか一項に記載の二酸化炭素の回収システム。 The carbon dioxide recovery system according to any one of claims 25 to 29, wherein the absorber has a solid state.
PCT/JP2023/019110 2022-06-17 2023-05-23 Carbon dioxide recovering method and carbon dioxide recovering system WO2023243328A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022097744 2022-06-17
JP2022-097744 2022-06-17
JP2022-123555 2022-08-02
JP2022123555A JP2023184381A (en) 2022-06-17 2022-08-02 Absorbed carbon dioxide desorption and recovery method and absorbed carbon dioxide desorption and recovery system
JP2023036820A JP2023184424A (en) 2022-06-17 2023-03-09 Carbon dioxide recovery method and carbon dioxide recovery system
JP2023-036820 2023-03-09

Publications (1)

Publication Number Publication Date
WO2023243328A1 true WO2023243328A1 (en) 2023-12-21

Family

ID=89191042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019110 WO2023243328A1 (en) 2022-06-17 2023-05-23 Carbon dioxide recovering method and carbon dioxide recovering system

Country Status (1)

Country Link
WO (1) WO2023243328A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177581A (en) * 1974-12-28 1976-07-05 Tokyo Gas Co Ltd KITAICHUNOHIKYUCHAKUBUTSUSHITSUNOKYUCHAKUHOSHIKI
JPS5539199U (en) * 1979-01-05 1980-03-13
JPS58173323A (en) * 1982-03-31 1983-10-12 Sanyo Electric Co Ltd Air conditioner
JP2001317307A (en) * 2000-03-31 2001-11-16 Alstom Power Nv Method of removing carbon dioxide from exhaust gas of gas turbine plant and device for carrying out the method
US20160325225A1 (en) * 2015-05-06 2016-11-10 Aaron Esser-Kahn Methods and apparatuses for recovering co2
CN210385412U (en) * 2019-04-22 2020-04-24 天津大学 Carbon capture system based on photo-thermal steam generation and molecular photo-thermal energy storage auxiliary desorption

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177581A (en) * 1974-12-28 1976-07-05 Tokyo Gas Co Ltd KITAICHUNOHIKYUCHAKUBUTSUSHITSUNOKYUCHAKUHOSHIKI
JPS5539199U (en) * 1979-01-05 1980-03-13
JPS58173323A (en) * 1982-03-31 1983-10-12 Sanyo Electric Co Ltd Air conditioner
JP2001317307A (en) * 2000-03-31 2001-11-16 Alstom Power Nv Method of removing carbon dioxide from exhaust gas of gas turbine plant and device for carrying out the method
US20160325225A1 (en) * 2015-05-06 2016-11-10 Aaron Esser-Kahn Methods and apparatuses for recovering co2
CN210385412U (en) * 2019-04-22 2020-04-24 天津大学 Carbon capture system based on photo-thermal steam generation and molecular photo-thermal energy storage auxiliary desorption

Similar Documents

Publication Publication Date Title
Al-Ekabi et al. Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix
Dillert et al. Large scale studies in solar catalytic wastewater treatment
EP1896173B1 (en) Method for photocatalvtic oxidation of organic substances in air
KR102163296B1 (en) Photocatalytic panel and system for recovering output products thereof
WO2017141880A1 (en) Air conditioning method and air conditioning system
JP6150142B2 (en) Energy storage and transport method and energy carrier system
WO2009158385A2 (en) Improved process for producing hydrogen
US7527770B2 (en) Photolytic oxygenator with carbon dioxide fixation and separation
EP2878775A1 (en) Power generating apparatus, power generating method, decomposition-gas boiler, and decomposition-gas turbine
ES2932843B2 (en) Method for producing hydrogen by dissociation of water by thermochemical reactions and device to carry it out
WO2023243328A1 (en) Carbon dioxide recovering method and carbon dioxide recovering system
MXPA06014285A (en) Integrated device for the decontamination of water and production of electrical power.
JP2012101947A (en) Hydrogen production apparatus and hydrogen production method
WO2010086891A1 (en) Photocatalytic treatment system and plant for reducing the nitrogen content in livestock waste
JP2009131751A (en) Photocatalytic activation device and its usage
US9739473B2 (en) Electricity generation using electromagnetic radiation
JP2023184424A (en) Carbon dioxide recovery method and carbon dioxide recovery system
KR20140047111A (en) Photocatalytic panel and system for recovering output products thereof
JP2021130633A (en) Methane manufacturing method, methanol manufacturing method, methane manufacturing facility and methanol manufacturing facility
Mortadi et al. Solar thermal systems: applications, techno-economic assessment, and challenges
US20130306463A1 (en) Purifying a fluid using a heat carrier comprising an electromagnetic radiation-absorbing complex
JP2013167421A (en) Heat transport apparatus and heat transport method
JP2020059668A (en) Manufacturing method of formic acid production device, formic acid production device, and formic acid producer
WO2022119463A1 (en) Method and device for the photoinduced conversion of co2 to methanol
JP2004351249A (en) Atmosphere cleaning method utilizing sunlight and its apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823628

Country of ref document: EP

Kind code of ref document: A1