JP2020059668A - Manufacturing method of formic acid production device, formic acid production device, and formic acid producer - Google Patents

Manufacturing method of formic acid production device, formic acid production device, and formic acid producer Download PDF

Info

Publication number
JP2020059668A
JP2020059668A JP2018191267A JP2018191267A JP2020059668A JP 2020059668 A JP2020059668 A JP 2020059668A JP 2018191267 A JP2018191267 A JP 2018191267A JP 2018191267 A JP2018191267 A JP 2018191267A JP 2020059668 A JP2020059668 A JP 2020059668A
Authority
JP
Japan
Prior art keywords
formic acid
generation device
dye
producing
production device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018191267A
Other languages
Japanese (ja)
Inventor
森 和彦
Kazuhiko Mori
和彦 森
洋一 西河
Yoichi Nishikawa
洋一 西河
寛 富島
Hiroshi Tomishima
寛 富島
歩 渡部
Ayumi Watabe
歩 渡部
豊 天尾
Yutaka Amao
豊 天尾
恵典 川上
Keisuke Kawakami
恵典 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka City University PUC
Iida Group Holdings Co Ltd
Original Assignee
Osaka University NUC
Osaka City University PUC
Iida Group Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka City University PUC, Iida Group Holdings Co Ltd filed Critical Osaka University NUC
Priority to JP2018191267A priority Critical patent/JP2020059668A/en
Publication of JP2020059668A publication Critical patent/JP2020059668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a manufacturing method of a formic acid production device capable of converting a hydrogen source to formic acid more effectively than conventional ones and storing the same, not always requiring oxygen, a formic acid production device, and a formic acid producer.SOLUTION: There is provided a manufacturing method of a formic acid production device for producing formic acid by artificial photosynthesis not always requiring oxygen, including a weighting process S1 for weighting at least a dye and a viologen compound, a mixing process S2 for adding a titanium oxide fine particle to the dye and the viologen compound and mixing them, and an application process S3 for applying a mixed solution onto a substrate.SELECTED DRAWING: Figure 2

Description

本発明は、水素イオン、電子、及び二酸化炭素から人工光合成により蟻酸を生成するための蟻酸生成デバイスの作製方法、蟻酸生成デバイス及び蟻酸生成装置に関する。   The present invention relates to a method for producing a formic acid generating device for generating formic acid from hydrogen ions, electrons, and carbon dioxide by artificial photosynthesis, a formic acid generating device, and a formic acid generating apparatus.

水素を燃料として利用する「水素社会」のアイデアは以前から提案されているが、水素を貯蔵・運搬することの難しさやエネルギー変換効率の点から現在でも普及するに至っているとは言い難い。例えば、エネルギー密度の低い水素を自動車の燃料として持ち運ぶには、数百気圧もの高圧をかけなければならない。液体水素にする方法もあるが、超低温にする必要があるため、一般的ではない。そこで、蟻酸(HCOOH)を水素源として生成し、貯蔵する技術が研究されている。蟻酸は常温で液体であり、エネルギー密度も高いため、貯蔵物質として優れている。   The idea of a "hydrogen society" that uses hydrogen as fuel has been proposed for some time, but it is hard to say that it has become widespread due to the difficulty of storing and transporting hydrogen and the energy conversion efficiency. For example, in order to carry hydrogen, which has a low energy density, as a fuel for automobiles, it is necessary to apply high pressure of several hundred atmospheres. There is also a method of using liquid hydrogen, but it is not common because it requires ultra-low temperature. Therefore, a technique of generating and storing formic acid (HCOOH) as a hydrogen source has been studied. Since formic acid is a liquid at room temperature and has a high energy density, it is an excellent storage material.

出願人らは過去に特許文献1において、人工光合成において色素分子の励起エネルギーを奪うことなく、メチルビオローゲンへの電子移動を達成することができ、効率的に水素源を蟻酸に変換して貯蔵することができる蟻酸生成デバイスを提案してきた。   Applicants have previously been able to achieve electron transfer to methylviologen in artificial photosynthesis without depriving the dye molecule of excitation energy in Patent Document 1, and efficiently convert a hydrogen source into formic acid for storage. We have proposed a formic acid generation device that can do this.

すなわち、特許文献1に係る発明は、基板の表面に形成した酸化アルミニウム微粒子による多孔質層に色素、メチルビオローゲン、及び蟻酸脱水素酵素を担持させてなる蟻酸生成デバイスである。酸化アルミニウム微粒子は色素分子の励起エネルギーを奪うことがないため、効率的にメチルビオローゲンへの電子移動を達成することができ、水素源を蟻酸に変換して貯蔵することができる。   That is, the invention according to Patent Document 1 is a formic acid production device in which a dye, methyl viologen, and formate dehydrogenase are supported on a porous layer of aluminum oxide fine particles formed on the surface of a substrate. Since the aluminum oxide fine particles do not rob the excitation energy of the dye molecule, electron transfer to methylviologen can be efficiently achieved, and the hydrogen source can be converted to formic acid for storage.

特開2018−117576号公報JP, 2018-117576, A

酵素は一般的に高価であり、基体に色素、人工補酵素及び酵素を最適な配置を取るように担持させるのも技巧を要するものであった。そのため、酵素の存在は蟻酸生成を実用化、大規模化していく上での難点ともなっていた。また、蟻酸生成デバイスを実用化していくためには、更なる蟻酸生成効率の向上が望まれていた。   Enzymes are generally expensive, and it has also been a skill to support the dye, the artificial coenzyme and the enzyme on the substrate so as to have an optimum arrangement. For this reason, the presence of the enzyme has been a difficulty in putting formic acid production into practical use and increasing its scale. Further, in order to put the formic acid production device into practical use, it has been desired to further improve the formic acid production efficiency.

本発明は、このような状況を鑑みてなされたものであり、酵素を必ずしも必要とすることなく、従来よりもさらに効率的に水素源を蟻酸に変換して生成することができる蟻酸生成デバイスの作製方法、蟻酸生成デバイス及び蟻酸生成装置を提供することを目的とする。   The present invention has been made in view of such a situation, and a formic acid generation device that can generate a hydrogen source by converting a hydrogen source into formic acid more efficiently than in the past without necessarily requiring an enzyme. An object of the present invention is to provide a manufacturing method, a formic acid generation device, and a formic acid generation device.

本発明者らは、鋭意検討した結果、従来の金属酸化物の多孔質層に色素、ビオローゲン、酵素を担持させる従来の方法を改め、酸化チタン微粒子と色素とビオローゲン化合物を予め混合させたのちに基板上に塗布することにより、蟻酸生成効率が向上することを見出し、本発明を完成させた。   As a result of intensive studies, the inventors of the present invention revise the conventional method of supporting a dye, viologen, and an enzyme on a porous layer of a conventional metal oxide, and after premixing titanium oxide fine particles, a dye, and a viologen compound. We have found that the efficiency of producing formic acid is improved by applying it on a substrate, and have completed the present invention.

すなわち、本発明の一態様は、必ずしも酵素を必要とすることなく人工光合成により蟻酸を生成するための蟻酸生成デバイスの作製方法であって、少なくとも色素とビオローゲン化合物を秤量する秤量工程と、色素とビオローゲン化合物に酸化チタン微粒子分散液を添加して混合する混合工程と、混合した混合溶液を基板上に塗布する塗布工程とを有する。   That is, one embodiment of the present invention is a method for producing a formic acid production device for producing formic acid by artificial photosynthesis without necessarily requiring an enzyme, and a weighing step of weighing at least a dye and a viologen compound, and a dye. The method includes a mixing step of adding a titanium oxide fine particle dispersion liquid to a viologen compound and mixing them, and a coating step of applying the mixed solution mixture onto a substrate.

以上説明したように本発明によれば、酵素を必ずしも必要とすることなく、従来よりもさらに効率的に水素源を蟻酸に変換して生成することができる。   As described above, according to the present invention, a hydrogen source can be converted into formic acid and produced more efficiently than ever before, without necessarily requiring an enzyme.

(A)は、本発明の一実施形態に係る蟻酸生成デバイスの一例を示す模式図であり、(B)は、従来の蟻酸生成デバイスの一例を示す模式図である。(A) is a schematic diagram showing an example of a formic acid production device according to one embodiment of the present invention, and (B) is a schematic diagram showing an example of a conventional formic acid production device. 本発明の一実施形態に係る蟻酸生成デバイスの作製方法の概略を示すフロー図である。It is a flow figure showing an outline of a manufacturing method of a formic acid generation device concerning one embodiment of the present invention. 本発明の一実施形態に係る蟻酸生成装置の一例を表す模式図である。It is a schematic diagram showing an example of the formic acid generator which concerns on one Embodiment of this invention. 実施例1と比較例1の光照射時間と蟻酸生成量の関係を示すグラフである。5 is a graph showing the relationship between the light irradiation time and the amount of formic acid produced in Example 1 and Comparative Example 1.

以下、本発明の好適な実施の形態について図面を参照しながら詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings. Note that the present embodiment described below does not unreasonably limit the content of the present invention described in the claims, and all the configurations described in the present embodiment are essential as a solution means of the present invention. Not necessarily.

<1.蟻酸生成デバイス>
まず、本発明の一実施形態に係る蟻酸生成デバイスについて説明する。図1(A)は、本発明の一実施形態に係る蟻酸生成デバイスの一例を示す模式図であり、図1(B)は、従来の蟻酸生成デバイスの一例を示す模式図である。図1(A)に示すように、本発明の一実施形態に係る蟻酸生成デバイス10は、少なくとも基板11、酸化チタン微粒子12、色素13及びビオローゲン化合物14から構成される。また、蟻酸脱水素酵素は必須ではないが、このような酵素が含まれていても良い。
<1. Formic acid generation device>
First, a formic acid generation device according to an embodiment of the present invention will be described. FIG. 1A is a schematic view showing an example of a formic acid generation device according to an embodiment of the present invention, and FIG. 1B is a schematic view showing an example of a conventional formic acid generation device. As shown in FIG. 1 (A), a formic acid generation device 10 according to an embodiment of the present invention includes at least a substrate 11, titanium oxide fine particles 12, a pigment 13, and a viologen compound 14. Further, formate dehydrogenase is not essential, but such enzyme may be contained.

従来の蟻酸生成デバイスでは、先に酸化金属粉末を用いて層構造の基盤を形成したのちに色素やビオローゲン化合物を担持させていた。このため、図1(B)に示すように、従来の蟻酸生成デバイス10bでは、酸化チタン微粒子2と色素3及びビオローゲン化合物4の接触箇所は酸化チタン微粒子層の表面付近に限られてしまい、十分な反応効率を得ることができなかった。本発明の一実施形態に係る蟻酸生成デバイスでは、酸化チタン微粒子12と色素13とビオローゲン化合物14を予め混合させたのちに基板11上に塗布することにより、酸化チタン微粒子12と色素13及びビオローゲン化合物14との接触箇所を増加させ、従来よりもさらに効率的に水素源を蟻酸に変換して生成することができるようにしたものである。以下、蟻酸生成デバイス10の各構成について説明する。   In a conventional formic acid generation device, a dye or a viologen compound is supported after forming a layer structure base using a metal oxide powder. Therefore, as shown in FIG. 1 (B), in the conventional formic acid generation device 10b, the contact points of the titanium oxide fine particles 2 with the dye 3 and the viologen compound 4 are limited to the vicinity of the surface of the titanium oxide fine particle layer. It was not possible to obtain a high reaction efficiency. In the formic acid generation device according to the embodiment of the present invention, the titanium oxide fine particles 12, the dye 13 and the viologen compound 14 are mixed in advance and then applied on the substrate 11, whereby the titanium oxide fine particles 12 and the dye 13 and the viologen compound are applied. The number of contact points with 14 is increased so that the hydrogen source can be converted into formic acid and generated more efficiently than in the conventional case. Hereinafter, each component of the formic acid generation device 10 will be described.

基板11は、その表面に酸化チタン微粒子12、色素13、ビオローゲン化合物14の混合物が塗布される。本出願人による先の特許文献1に係る蟻酸生成デバイスの製造方法(以下「先願発明」と称する)においては、多孔質層を形成するために加熱処理工程が必要であったため、主にアルミニウム等の金属基板や、無蛍光ガラス等のガラス基板などが用いられていたが、本発明の一実施形態に係る蟻酸生成デバイスの製造方法では、加熱処理工程が不要となったため、さらにPETシートのような樹脂シートを用いることも可能となった。   The surface of the substrate 11 is coated with a mixture of titanium oxide fine particles 12, a dye 13, and a viologen compound 14. In the method for producing a formic acid generation device according to the above-mentioned Patent Document 1 by the present applicant (hereinafter referred to as “prior invention”), since a heat treatment step was required to form a porous layer, aluminum is mainly used. Although a metal substrate such as, or a glass substrate such as a non-fluorescent glass has been used, in the method for manufacturing a formic acid generation device according to an embodiment of the present invention, since the heat treatment step is unnecessary, further PET sheet It has become possible to use such a resin sheet.

先願発明では、主に基板11上に多孔質層を形成する役割を果たしていた酸化チタン微粒子12は、蟻酸生成反応において、光(主に紫外線)によって色素13やビオローゲン化合物14に電子を供与する役割を果たす。この点に関しても本発明においては、多孔質層を形成せずに、酸化チタン微粒子12を色素13やビオローゲン化合物14と予め混合することにより、酸化チタン微粒子12と色素13やビオローゲン化合物14との接触箇所を増加させ、従来よりもさらに効率的に水素源を蟻酸に変換して生成することができるようになった。   In the invention of the prior application, the titanium oxide fine particles 12, which mainly play a role of forming a porous layer on the substrate 11, donate electrons to the dye 13 and the viologen compound 14 by light (mainly ultraviolet rays) in the formic acid formation reaction. Play a role. Also in this regard, in the present invention, the titanium oxide fine particles 12 are preliminarily mixed with the dye 13 or the viologen compound 14 without forming a porous layer so that the titanium oxide fine particles 12 come into contact with the dye 13 or the viologen compound 14. By increasing the number of locations, it has become possible to more efficiently convert the hydrogen source into formic acid and generate it.

色素13は、自らが吸収した光エネルギー(主に可視光)を他の物質へ渡し、蟻酸生成反応を担う光増感剤である。すなわち、色素13は、光照射された反応系内において、光エネルギーを吸収してそのエネルギーを化学エネルギーに変換し、電子輸送体(補酵素)へ電子を渡す機能(光電変換能)を有するものである。色素13としては、ポルフィリン誘導体、ルテリウム錯体、ルテニウムビピリジン錯体誘導体、ピレン誘導体などを挙げることができ、例えば、N719色素、テトラキス(4-メチルピリジル)ポルフィリン亜鉛(ZnTMPyP)、テトラフェニルポルフィリンテトラスルフォネート亜鉛(ZnTPPS)、ルテニウムトリスビピリジン、クロロフィルなどを用いることができる。   The dye 13 is a photosensitizer that transfers the light energy (mainly visible light) absorbed by itself to another substance and is responsible for the formic acid formation reaction. That is, the dye 13 has a function (photoelectric conversion ability) of absorbing light energy, converting the energy into chemical energy, and passing the electron to the electron transporter (coenzyme) in the reaction system irradiated with light. Is. Examples of the dye 13 include porphyrin derivatives, ruthenium complexes, ruthenium bipyridine complex derivatives, and pyrene derivatives. Examples thereof include N719 dye, tetrakis (4-methylpyridyl) porphyrin zinc (ZnTMPyP), and tetraphenylporphyrin tetrasulfonate. Zinc (ZnTPPS), ruthenium trisbipyridine, chlorophyll, etc. can be used.

ビオローゲン化合物14は、色素から電子を受け取って他の物質へ電子を渡す電子輸送機能を有する人工補酵素(助触媒)である。すなわち、ビオローゲン化合物14は、光照射により光励起された酸化チタン微粒子や色素から電子を受け取り、酵素へ電子を渡す還元機能を有するものである。酵素がない場合でも、水素イオンと二酸化炭素から蟻酸が生成する反応に電子を供給する。ビオローゲン化合物14は、4,4’−ビピリジニウム塩や2,2’−ビピリジニウム塩などの総称である。ビオローゲン化合物14としてはメチルビオローゲンが好ましく用いられる。もちろん同等又はそれ以上の還元能力を持つ化合物であれば、メチルビオローゲンに必ずしも限定されるわけではない。   The viologen compound 14 is an artificial coenzyme (cocatalyst) having an electron transport function of receiving an electron from a dye and transferring the electron to another substance. That is, the viologen compound 14 has a reducing function of receiving electrons from the titanium oxide fine particles or dye photoexcited by light irradiation and passing the electrons to the enzyme. Even in the absence of an enzyme, it supplies electrons to the reaction that produces formic acid from hydrogen ions and carbon dioxide. The viologen compound 14 is a general term for 4,4'-bipyridinium salt, 2,2'-bipyridinium salt and the like. Methyl viologen is preferably used as the viologen compound 14. Of course, it is not necessarily limited to methyl viologen as long as it is a compound having an equivalent or higher reducing ability.

また、本発明の一実施形態に係る蟻酸生成デバイスは、電子供与体を含有していてもよい。電子供与体としては、トリエタノールアミン(TEOA)、エチレンジアミン、エチレンジアミン四酢酸塩、エチレンジアミン塩酸塩、トリエチルアミン、メルカプトエタノール等を挙げることができる。電子供与体は蟻酸生成デバイスに担持させてもよいし、後述する蟻酸生成装置の反応溶液内に含有させておいてもよい。   Further, the formic acid generation device according to the embodiment of the present invention may contain an electron donor. Examples of the electron donor include triethanolamine (TEOA), ethylenediamine, ethylenediaminetetraacetate, ethylenediamine hydrochloride, triethylamine, mercaptoethanol and the like. The electron donor may be supported on the formic acid generating device, or may be contained in the reaction solution of the formic acid generating device described later.

<2.蟻酸生成デバイスの作製方法>
次に、本発明の一実施形態に係る蟻酸生成デバイスの作製方法について説明する。図2は、本発明の一実施形態に係る蟻酸生成デバイスの作製方法の概略を示すフロー図である。図2に示すように、本発明の一実施形態に係る蟻酸生成デバイスは、秤量工程S1、混合工程S2、塗布工程S3を経て作製される。以下、各工程について説明する。
<2. Manufacturing method of formic acid generation device>
Next, a method for manufacturing the formic acid generation device according to the embodiment of the present invention will be described. FIG. 2 is a flowchart showing an outline of a method for producing a formic acid production device according to an embodiment of the present invention. As shown in FIG. 2, the formic acid generation device according to one embodiment of the present invention is manufactured through a weighing step S1, a mixing step S2, and a coating step S3. Hereinafter, each step will be described.

秤量工程S1では、少なくとも色素とビオローゲン化合物の秤量を行う。そして、混合工程S2では、秤量工程S1で秤量した色素とビオローゲン化合物に対して酸化チタン微粒子分散液を添加して混合を行う。酸化チタン微粒子分散液は、例えば酸化チタン微粒子をエタノール溶液中に分散させたものを用いる。混合工程S2は、例えば、秤量した色素とビオローゲン化合物に対してエタノールに分散させた酸化チタン微粒子分散液を添加し、超音波処理を行うことにより混合する。酸化チタン微粒子分散液添加前にあらかじめ色素とビオローゲン化合物とを有機溶媒等で混合しておいても良い。   In the weighing step S1, at least the dye and the viologen compound are weighed. Then, in the mixing step S2, the titanium oxide fine particle dispersion liquid is added to and mixed with the dye and the viologen compound weighed in the weighing step S1. As the titanium oxide fine particle dispersion, for example, titanium oxide fine particles dispersed in an ethanol solution is used. In the mixing step S2, for example, a dispersion of titanium oxide fine particles dispersed in ethanol is added to the weighed dye and viologen compound, and ultrasonic treatment is performed to mix them. The dye and the viologen compound may be mixed in advance with an organic solvent or the like before adding the titanium oxide fine particle dispersion.

混合工程S2では、酸化チタン微粒子と色素の混合割合は質量比で10000:1〜20000:1とすることが好ましい。このような混合割合で混合することにより、効率よく蟻酸生成反応を促すことができる。またこの混合割合は、使用する酸化チタン微粒子と色素の組成によって最適化する必要がある。色素とビオローゲン化合物の混合比率は、例えばメチルビオローゲンであれば、質量比で色素:メチルビオローゲン=1:15〜1:25とすることが好ましい。   In the mixing step S2, the mixing ratio of the titanium oxide fine particles and the pigment is preferably 10,000: 1 to 20,000: 1 in terms of mass ratio. By mixing in such a mixing ratio, the formic acid production reaction can be efficiently promoted. Further, this mixing ratio needs to be optimized depending on the composition of the titanium oxide fine particles and the dye used. For example, in the case of methyl viologen, the mixing ratio of the dye and the viologen compound is preferably dye: methyl viologen = 1: 15 to 1:25 by mass ratio.

塗布工程S3では、上記混合した混合物を基板上に塗布する。先願発明では、基板を300〜500℃で熱処理する熱処理工程を有していたため、アルミニウム等の金属基板や、無蛍光ガラス等のガラス基板等しか用いることができなかった。これに対して本発明の一実施形態に係る蟻酸生成デバイスの作製方法では、熱処理を行う必要がなくなったため、例えばPETシートなどの樹脂シートを基板として採用できるようになった。これにより、蟻酸生成デバイスの素材の選択肢も増えるため、より幅広い設計が可能となる。   In the coating step S3, the mixed mixture is coated on the substrate. Since the prior invention has a heat treatment step of heat treating the substrate at 300 to 500 ° C., only a metal substrate such as aluminum or a glass substrate such as non-fluorescent glass can be used. On the other hand, in the method for manufacturing a formic acid generation device according to the embodiment of the present invention, since it is not necessary to perform heat treatment, a resin sheet such as a PET sheet can be used as a substrate. As a result, the choice of materials for the formic acid generation device is increased, and a wider design is possible.

その後、混合液を塗布した基板を乾燥させる。これにより、混合液中の溶媒であるエタノール等が蒸発し、基板上には、酸化チタン微粒子と色素とビオローゲン化合物の混合物が残る。なお、乾燥させず、水または水と混合可能な有機溶媒との混合媒体中で保存、使用してもよい。なお、本発明の一実施形態に係る蟻酸生成デバイスの作製方法は必ずしも上記工程に限定されるわけではなく、例えば、蒸着など別の塗布・吸着方法によって蟻酸生成デバイスを作製してもよい。   Then, the substrate coated with the mixed liquid is dried. As a result, the solvent, such as ethanol, in the mixed solution is evaporated, and the titanium oxide fine particles, the dye, and the viologen compound remain on the substrate. It may be stored and used in a mixed medium of water or an organic solvent miscible with water without being dried. The method for producing the formic acid generation device according to the embodiment of the present invention is not necessarily limited to the above steps, and the formic acid generation device may be produced by another coating / adsorption method such as vapor deposition.

また、酸化チタン微粒子の平均粒径は、特に限定されないが、例えば、20〜50nmである。酸化チタン微粒子の平均粒径が50nmを超えて大きくなると、蟻酸生成のための性能が低下してしまうことがある。   The average particle size of the titanium oxide fine particles is not particularly limited, but is, for example, 20 to 50 nm. If the average particle size of the titanium oxide fine particles exceeds 50 nm and becomes large, the performance for forming formic acid may be deteriorated.

<3.蟻酸生成装置>
次に、本発明の一実施形態に係る蟻酸生成装置について説明する。図3は、本発明の一実施形態に係る蟻酸生成装置50の一例を表す模式図である。本発明の一実施形態に係る蟻酸生成装置50は、少なくとも二酸化炭素と電子供与体を含む水溶液を有し、光を透過する反応容器51内に上述した蟻酸生成デバイス10を備え、反応容器51内の蟻酸生成デバイス10に光を照射することで人工光合成により蟻酸を生成する。
<3. Formic acid generator>
Next, a formic acid generator according to an embodiment of the present invention will be described. FIG. 3 is a schematic diagram showing an example of a formic acid generator 50 according to an embodiment of the present invention. A formic acid generator 50 according to an embodiment of the present invention has an aqueous solution containing at least carbon dioxide and an electron donor, and includes the formic acid generator 10 described above in a reaction container 51 that transmits light. The formic acid generation device 10 is irradiated with light to generate formic acid by artificial photosynthesis.

蟻酸生成装置50は、光化学反応装置として使用される。使用時には、特に蟻酸生成デバイス10に光が十分に照射される構造とすることが好ましい。蟻酸生成デバイスに光を照射する光源としては、太陽、人工光源等を用いることができる。   The formic acid generator 50 is used as a photochemical reaction device. It is preferable that the formic acid generation device 10 has a structure in which light is sufficiently irradiated during use. As a light source for irradiating the formic acid generation device with light, the sun, an artificial light source, or the like can be used.

蟻酸生成デバイス10では、光反応(人工光合成)プロセスを経て水素イオンと電子、及び二酸化炭素から蟻酸が生成される(下記反応式(1))。二酸化炭素は、大気中及び/又は他の機関からの排ガス中に存在するものを利用しても良い。
CO+2H+2e→HCOOH ・・・(1)
In the formic acid generation device 10, formic acid is generated from hydrogen ions, electrons, and carbon dioxide through a photoreaction (artificial photosynthesis) process (reaction formula (1) below). As the carbon dioxide, one existing in the atmosphere and / or the exhaust gas from another engine may be used.
CO 2 + 2H + + 2e → HCOOH (1)

このようにして生成された蟻酸は、例えば濃縮されたのち、貯蔵設備等に貯蔵できる構成としておくことが望ましい。貯蔵された蟻酸は、日光が得られず人工光合成を行うことができない夜間等において、貯蔵された蟻酸を分解して水素を発生、利用できるような機関により消費、発電等される。   The formic acid thus produced is preferably concentrated, for example, and then stored in a storage facility or the like. The stored formic acid is consumed and generated by an engine capable of decomposing the stored formic acid to generate hydrogen and using it at night when sunlight cannot be obtained and artificial photosynthesis cannot be performed.

以下、本発明について、実施例を用いてさらに具体的に説明するが、本発明は、以下の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

(実施例1)
実施例1では、まず、N719色素を0.06mg/mlとなるように量り取り、メチルビオローゲンを1.1mg/mlとなるように量り取った(秤量工程S1)。量り取った色素N719とメチルビオローゲンに対して20%TiO分散液(エタノール1ml)(ルチル型)(CIKナノテック社製)を添加し、超音波処理で均一に分散した(混合工程S2)この混合溶液を2×2cmのPETシートに塗布し、乾燥させて蟻酸生成デバイスとした(塗布工程S3)。
(Example 1)
In Example 1, first, N719 dye was weighed out to be 0.06 mg / ml, and methylviologen was weighed out to be 1.1 mg / ml (weighing step S1). A 20% TiO 2 dispersion liquid (ethanol 1 ml) (rutile type) (manufactured by CIK Nanotech Co.) was added to the weighed dye N719 and methyl viologen and uniformly dispersed by ultrasonic treatment (mixing step S2). The solution was applied to a 2 × 2 cm PET sheet and dried to form a formic acid generation device (application step S3).

この蟻酸生成デバイスに、二酸化炭素(CO)とトリエタノールアミン(TEOA)を含む溶液中でソーラーシミュレーターを用いて約500W/mで光照射を行い、1時間後、2時間後の蟻酸生成量をイオンクロマトグラフにより定量した。結果を図4に示す。 This formic acid generation device was irradiated with light at about 500 W / m 2 using a solar simulator in a solution containing carbon dioxide (CO 2 ) and triethanolamine (TEOA), and formic acid generation was performed after 1 hour and 2 hours. The amount was quantified by ion chromatography. FIG. 4 shows the results.

(比較例1)
比較例1では、予めPETなどのシート上に酸化チタン分散液(平均粒子20nm)と塗布・乾燥させた後、その上に予め色素13とメチルビオローゲンを混合させたものを塗布・乾燥させ、蟻酸生成デバイスを作製した。先願発明では乾燥させたデバイス(基板)を約450℃で加熱焼成する作業を行っていたが、本発明では加熱焼成刷る作業は不要である。結果を図4に示す。
(Comparative Example 1)
In Comparative Example 1, a sheet of PET or the like was previously coated with a titanium oxide dispersion liquid (average particle size 20 nm) and dried, and then a mixture of dye 13 and methyl viologen was previously coated and dried to form formic acid. A production device was made. In the prior invention, the work of heating and baking the dried device (substrate) at about 450 ° C. was carried out, but in the present invention, the work of heating and printing is unnecessary. FIG. 4 shows the results.

図4の結果からも明らかなように、本発明の一実施形態に係る蟻酸生成デバイスは、酸化チタン微粒子と色素とビオローゲン化合物をあらかじめ混合させる手法をとることにより、従来の多孔質層に色素とビオローゲン化合物を担持させる方法に比べて、蟻酸生成速度が約5倍に向上していることがわかる。また、本発明に係る蟻酸生成デバイスでは酵素を必要としないため、デバイス作製の際のコストを低減できるとともに、より有効な条件の検討を行うことも容易となっており、今後さらなる蟻酸生成量の向上も可能である。   As is clear from the results of FIG. 4, the formic acid generation device according to one embodiment of the present invention employs a method in which titanium oxide fine particles, a dye, and a viologen compound are mixed in advance so that the dye is added to the conventional porous layer. It can be seen that the formation rate of formic acid is improved about 5 times as compared with the method of supporting the viologen compound. Further, since the formic acid production device according to the present invention does not require an enzyme, it is possible to reduce the cost at the time of producing the device, and it is easy to study more effective conditions, and further formic acid production amount will be improved. It can be improved.

10,10b 蟻酸生成デバイス、1,11 基板、2,12 酸化チタン微粒子、13 色素、14 ビオローゲン化合物、50 蟻酸生成装置、51 反応容器 10,10b Formic acid generator, 1,11 Substrate, 2,12 Titanium oxide fine particles, 13 Dye, 14 Viologen compound, 50 Formic acid generator, 51 Reaction vessel

Claims (8)

必ずしも酵素を必要とすることなく人工光合成により蟻酸を生成するための蟻酸生成デバイスの作製方法であって、
少なくとも色素とビオローゲン化合物を秤量する秤量工程と、
前記色素と前記ビオローゲン化合物に酸化チタン微粒子分散液を添加して混合する混合工程と、
前記混合した混合溶液を基板上に塗布する塗布工程を有することを特徴とする蟻酸生成デバイスの作製方法。
A method for producing a formic acid production device for producing formic acid by artificial photosynthesis without necessarily requiring an enzyme,
A weighing step of weighing at least the dye and the viologen compound,
A mixing step of adding and mixing the titanium oxide fine particle dispersion liquid to the dye and the viologen compound,
A method for producing a formic acid generation device, comprising a coating step of coating the mixed solution on the substrate.
前記ビオローゲン化合物はメチルビオローゲンであることを特徴とする請求項1に記載の蟻酸生成デバイスの作製方法。   The method for producing a formic acid generation device according to claim 1, wherein the viologen compound is methyl viologen. 前記酸化チタン微粒子と前記色素の混合割合は質量比で10000:1〜20000:1であることを特徴とする請求項1又は請求項2に記載の蟻酸生成デバイスの作製方法。   The method for producing a formic acid generation device according to claim 1 or 2, wherein a mixing ratio of the titanium oxide fine particles and the pigment is 10000: 1 to 20000: 1 in a mass ratio. 前記基板は樹脂シートであることを特徴とする請求項1乃至請求項3の何れか1項に記載の蟻酸生成デバイスの作製方法。   The method for producing a formic acid generation device according to claim 1, wherein the substrate is a resin sheet. 必ずしも酵素を必要とすることなく人工光合成により蟻酸を生成するための蟻酸生成デバイスであって、
基板上に少なくとも酸化チタン微粒子と色素とビオローゲン化合物の混合物が担持されてなることを特徴とする蟻酸生成デバイス。
A formic acid production device for producing formic acid by artificial photosynthesis without necessarily requiring an enzyme,
A formic acid generation device, characterized in that a mixture of at least titanium oxide fine particles, a dye and a viologen compound is supported on a substrate.
前記ビオローゲン化合物はメチルビオローゲンであることを特徴とする請求項5に記載の蟻酸生成デバイス。   The formic acid generation device according to claim 5, wherein the viologen compound is methyl viologen. 前記基板は樹脂シートであることを特徴とする請求項5又は請求項6に記載の蟻酸生成デバイス。   The formic acid production device according to claim 5 or 6, wherein the substrate is a resin sheet. 少なくとも二酸化炭素と電子供与体を含む水溶液を有し、光を透過する反応容器内に
請求項5乃至請求項7の何れか1項に記載の蟻酸生成デバイスを備え、
前記反応容器内の前記蟻酸生成デバイスに光を照射することで人工光合成により蟻酸を生成する蟻酸生成装置。
A formic acid generation device according to any one of claims 5 to 7 is provided in a reaction container which has an aqueous solution containing at least carbon dioxide and an electron donor and which transmits light.
A formic acid generator that generates formic acid by artificial photosynthesis by irradiating the formic acid generating device in the reaction container with light.
JP2018191267A 2018-10-09 2018-10-09 Manufacturing method of formic acid production device, formic acid production device, and formic acid producer Pending JP2020059668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018191267A JP2020059668A (en) 2018-10-09 2018-10-09 Manufacturing method of formic acid production device, formic acid production device, and formic acid producer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018191267A JP2020059668A (en) 2018-10-09 2018-10-09 Manufacturing method of formic acid production device, formic acid production device, and formic acid producer

Publications (1)

Publication Number Publication Date
JP2020059668A true JP2020059668A (en) 2020-04-16

Family

ID=70219993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018191267A Pending JP2020059668A (en) 2018-10-09 2018-10-09 Manufacturing method of formic acid production device, formic acid production device, and formic acid producer

Country Status (1)

Country Link
JP (1) JP2020059668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145267A1 (en) * 2020-01-14 2021-07-22 飯田グループホールディングス株式会社 Formic acid production method and formic acid production system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018117576A (en) * 2017-01-25 2018-08-02 飯田グループホールディングス株式会社 Formic acid generation device creation method, formic acid generation device, and formic acid generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018117576A (en) * 2017-01-25 2018-08-02 飯田グループホールディングス株式会社 Formic acid generation device creation method, formic acid generation device, and formic acid generator

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"「世界初!人工光合成技術による"IGパーフェクトエコハウス"開発に着手」 宮古島に"人工光合成ハウス"", PR TIMES(プレスリリース・ニュースリリース配信サービスのPR TIMES), JPN6022015246, 10 July 2017 (2017-07-10), ISSN: 0004759814 *
"IGHD×ReCAP 宮古島に"人工光合成ハウス"を建設", 大阪市立大学 新着情報 2017年度, JPN6022015243, 18 July 2017 (2017-07-18), ISSN: 0004759817 *
"飯田GHD、宮古島に"人工光合成ハウス"を建設 - 二酸化炭素を利用して発電", TECH+, JPN6022015244, 11 July 2017 (2017-07-11), ISSN: 0004759816 *
"飯田グループHD、宮古島に「人工光合成ハウス」を建設", 日経クロステック(XTECH), JPN6022015245, 11 July 2017 (2017-07-11), ISSN: 0004759815 *
高分子論文集, vol. 68, no. 5, JPN6022015241, 22 June 2011 (2011-06-22), pages 307 - 314, ISSN: 0004759818 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145267A1 (en) * 2020-01-14 2021-07-22 飯田グループホールディングス株式会社 Formic acid production method and formic acid production system

Similar Documents

Publication Publication Date Title
Wu et al. Encapsulating perovskite quantum dots in iron‐based metal–organic frameworks (MOFs) for efficient photocatalytic CO2 reduction
Zhang et al. Artificial thylakoid for the coordinated photoenzymatic reduction of carbon dioxide
Zeng et al. Carbon nitride with electron storage property: Enhanced exciton dissociation for high-efficient photocatalysis
Ding et al. Hydrophilic bi-functional B-doped g-C3N4 hierarchical architecture for excellent photocatalytic H2O2 production and photoelectrochemical water splitting
Pan et al. Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating
Zhang et al. High-efficiency broadband C3N4 photocatalysts: synergistic effects from upconversion and plasmons
Shi et al. Electrostatic self‐assembly of nanosized carbon nitride nanosheet onto a zirconium metal–organic framework for enhanced photocatalytic CO2 reduction
CN110947376B (en) Monoatomic noble metal anchoring defect type WO3/TiO2Nanotubes, their preparation and use
Xing et al. Fluorine modified boron carbon nitride semiconductors for improved photocatalytic CO2 reduction under visible light
Yang et al. Coordination between electron transfer and molecule diffusion through a bioinspired amorphous titania nanoshell for photocatalytic nicotinamide cofactor regeneration
Yan et al. Photocatalytic H2O2 Generation Reaction with a Benchmark Rate at Air‐Liquid‐Solid Joint Interfaces
Harriman Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry
Liu et al. Primitive photosynthetic architectures based on self‐organization and chemical evolution of amino acids and metal ions
CN112439416A (en) Preparation method and application of high-dispersion copper-loaded titanium dioxide nanosheet
US20160121294A1 (en) Microwave synthesis of cobalt tungstate for use as stable oxygen evolution catalyst
He et al. Green chemistry and sustainable technology
Chu et al. Anti‐Stoke effect induced enhanced photocatalytic hydrogen production
Oh et al. Photoelectrochemical CO2 reduction via Cu2O/CuFeO2 hierarchical nanorods photocatalyst
Kumar et al. Epigrammatic status and perspective of sequestration of carbon dioxide: Role of TiO2 as photocatalyst
Irikura et al. Direct synthesis of Ru3 (BTC) 2 metal-organic framework on a Ti/TiO2NT platform for improved performance in the photoelectroreduction of CO2
Han et al. Hydrothermal preparation of C3N4 on carbonized wood for photothermal-photocatalytic water splitting to efficiently evolve hydrogen
Yüzer et al. Imidazole substituted Zinc (ii) phthalocyanines for co-catalyst-free photoelectrochemical and photocatalytic hydrogen evolution: influence of the anchoring group
Zhou et al. Novelty All‐Inorganic Titanium‐Based Halide Perovskite for Highly Efficient Photocatalytic CO2 Conversion
JP2020059668A (en) Manufacturing method of formic acid production device, formic acid production device, and formic acid producer
JP6861038B2 (en) Hydrogen supply system and hydrogen supply method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221025