WO2023243204A1 - Aromatic thioether sulfone polymer, composition, and molded article, and methods for producing same - Google Patents

Aromatic thioether sulfone polymer, composition, and molded article, and methods for producing same Download PDF

Info

Publication number
WO2023243204A1
WO2023243204A1 PCT/JP2023/014953 JP2023014953W WO2023243204A1 WO 2023243204 A1 WO2023243204 A1 WO 2023243204A1 JP 2023014953 W JP2023014953 W JP 2023014953W WO 2023243204 A1 WO2023243204 A1 WO 2023243204A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic
alkali metal
polymer
thioether sulfone
sulfone polymer
Prior art date
Application number
PCT/JP2023/014953
Other languages
French (fr)
Japanese (ja)
Inventor
智理 鶴岡
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2024502520A priority Critical patent/JPWO2023243204A1/ja
Publication of WO2023243204A1 publication Critical patent/WO2023243204A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to aromatic thioether sulfone polymers, compositions, molded articles, and methods for producing them.
  • resin materials have been widely used for optical materials such as optical lenses, prism sheets, and parts for organic light emitting diode devices (OLED) due to their excellent processability and productivity. Furthermore, due to the trend toward smaller and lighter optical members, resin materials with a high refractive index are required. Conventional resins generally have a refractive index of 1.30 to 1.70, and there are almost no general-purpose materials with a refractive index exceeding 1.70.
  • a common approach to increasing the refractive index of resins is to introduce substituents with high molar refraction, small molar volume, and high specific gravity into molecules according to the Lorentz-Lorentz equation. That is, introduction of halogen atoms and sulfur atoms is said to be effective. Since sulfur atoms have high polarizability, stability, and ease of introduction into polymers, sulfur-containing resins for various optical materials have been reported. For example, a compound having a thiourethane skeleton is disclosed as a sulfur-containing resin. However, this compound has low heat resistance and has problems in use under high temperature conditions (Patent Document 1, Patent Document 2, Patent Document 3).
  • aromatic polythioethers have a high sulfur content in the resin skeleton and a very high density, so they are promising high refractive materials.
  • aromatic thioether sulfone polymers are highly transparent because they are amorphous resins, and they also have excellent heat resistance due to their high glass transition temperature of about 220°C, making them optical materials that can be used even under high-temperature conditions. It is expected that However, in the conventionally reported production methods of aromatic thioether sulfone polymers, the resulting resins are colored and lack transparency, so their use as optical materials has been avoided (Patent Document 4, Patent Document 5).
  • the problem to be solved by the present invention is to provide an aromatic thioether sulfone polymer, a composition, a molded article, and a method for producing the same, which has a high refractive index, little coloring, and high transparency. .
  • the present inventors conducted intensive studies and found that in the presence of a carbamide solvent, a dihaloaromatic compound and (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and It has been found that by polymerizing with an alkali metal hydroxide, it is possible to provide an aromatic thioether sulfone polymer that has a high refractive index, little coloration, and high transparency. It has also been found that an aromatic thioether sulfone polymer with excellent thermal stability can be provided when the oligomer content is within a specific value range.
  • the present disclosure provides an aromatic thioether sulfone polymer having a refractive index of 1.65 or more, a brightness of 85 or more, a transmittance of 70% or more, and an oligomer content of 3.5 parts by mass or less. Regarding.
  • the present disclosure also provides a method for polymerizing a dihaloaromatic compound and (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide in a water-containing organic carbamide solvent.
  • the present invention relates to a method for producing an aromatic thioether sulfone polymer.
  • oligomer a polymer having 2 to 40 repeating units (a mixture of dimers to 40-mers) may be referred to as an "oligomer.”
  • an aromatic thioether sulfone polymer that has a high refractive index, little coloring, and high transparency, and a method for producing the same.
  • this embodiment an embodiment of the present invention (hereinafter referred to as “this embodiment”) will be described in detail, but the present invention is not limited to the following description, and can be modified in various ways within the scope of the gist. It can be implemented by
  • the aromatic thioether sulfone polymer has the following general formula (1) (wherein R 1 to R 4 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, It represents a phenyl group, a methoxy group, an ethoxy group, and X represents -O-, -SO 2 -, -SO- or -CO-) as a repeating unit.
  • R 1 to R 4 in the formula are preferably hydrogen atoms from the viewpoint of mechanical strength of the aromatic thioethersulfone polymer.
  • the aromatic thioether sulfone polymer has not only a structural moiety represented by the general formula (1) but also a substituted phenyl group, a ketone group, an aliphatic group, etc., represented by the general formula (1). It may be contained in an amount of 30 mol% or less of the total amount of structural moieties. Regarding their bonding mode, either a random copolymer or a block copolymer may be used. Further, it may contain a trifunctional structural moiety represented by the following general formula (2). In that case, the amount is preferably in the range of 0.001 to 10 mol%, particularly preferably in the range of 0.01 to 1 mol%, based on the total number of moles with other structural parts.
  • the aromatic thioether sulfone polymer has the following general formula (3) (wherein, ring Z is an aromatic hydrocarbon ring, and R 5 and R 6 may be any substituent, for example, an alkyl group, a cycloalkyl group, aryl group, aralkyl group, or alkoxy group.
  • Y is -O-, -S-, -SO 2 -, -SO- or -CO-
  • k is an integer from 0 to 4
  • m is 0 or more.
  • p is an integer of 1 or more).
  • ring Z may be a benzene ring or a naphthalene ring.
  • the amount is preferably in the range of 0.001 to 10 mol%, particularly preferably in the range of 0.01 to 1 mol%, based on the total number of moles with other structural parts.
  • ring Z may be an aromatic hydrocarbon ring, and R 5 to R 7 may be any substituent
  • examples include alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, and alkoxy groups.
  • Y is -O-, -S-, -SO 2 -, -SO- or -CO-, and k is an integer of 0 to 4.
  • m is an integer of 0 or more
  • p is an integer of 1 or more
  • ring Z may be a benzene ring or a naphthalene ring.
  • the amount is preferably in the range of 0.001 to 10 mol%, particularly preferably in the range of 0.01 to 1 mol%, based on the total number of moles with other structural parts.
  • the aromatic thioether sulfone polymer according to this embodiment has an excellent refractive index.
  • the refractive index is preferably 1.65 or more, more preferably 1.70 or more.
  • the refractive index is a value measured at room temperature (23° C.) and 589 nm using a test piece of an aromatic thioether sulfone polymer molded to a thickness of 40 ⁇ m using a method based on JIS K 7142.
  • the aromatic thioether sulfone polymer according to this embodiment has excellent transparency.
  • the brightness is preferably 85 or more, more preferably 90 or more
  • the transmittance is preferably 70% or more, more preferably 80% or more.
  • brightness is obtained by reflection measurement using a colorimetric colorimeter using an aromatic thioether sulfone polymer molded to a thickness of 40 ⁇ m as a test piece and using a white plate as a background in accordance with JIS Z 8781-4.
  • the transmittance is the transmittance of the same test piece measured at a wavelength of 450 nm using an ultraviolet-visible spectrophotometer.
  • the aromatic thioether sulfone polymer according to this embodiment has an oligomer content of 3.5 parts by mass or less per 100 parts by mass. In this range, the amount of gas generated when the polymer is heated and melted can be reduced, resulting in a polymer with excellent thermal stability. Note that the oligomer content of the polymer in the present disclosure can be measured by the method described in the Examples.
  • the rate of viscosity change during retention is small.
  • the viscosity change rate is preferably 10% or less, more preferably 8% or less. Note that the viscosity change rate in the present disclosure can be measured by the method described in Examples.
  • the method for producing the aromatic thioether sulfone polymer is not particularly limited, but examples include the method for producing the aromatic thioether sulfone polymer described below.
  • the method for producing an aromatic thioether sulfone polymer according to the first embodiment of the present disclosure includes combining a dihaloaromatic compound and (i) an alkali metal sulfide, or (ii) an alkali metal sulfide in a water-containing organic carbamide solvent. It is characterized by polymerizing a metal hydrosulfide and an alkali metal hydroxide.
  • the method for producing an aromatic thioether sulfone polymer according to the second embodiment of the present disclosure includes: A step of polymerizing a dihaloaromatic compound and (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide in a water-containing organic carbamide solvent to obtain a crude reaction mixture.
  • the solid phase component (A) is brought into contact with an organic solvent and then subjected to solid-liquid separation to obtain a solid phase component (B) (4).
  • the water-containing organic carbamide solvent used in this embodiment is a mixture of water and an organic carbamide solvent.
  • the organic carbamide solvent is not particularly limited as long as it is a compound having one or more carbamide groups, and any known organic solvent can be used. Examples include dimethylimidazolidinone (DMI), dimethylpropylene urea (DMPU), hexamethylphosphate triamide (HMPA), and tetramethylurea (TMU).
  • DMI dimethylimidazolidinone
  • DMPU dimethylpropylene urea
  • HMPA hexamethylphosphate triamide
  • TNU tetramethylurea
  • DMI is preferred from the viewpoints of thermal stability, smoothness of polymerization reaction, economic efficiency, and the like.
  • the water content of the water-containing organic carbamide solvent is preferably 1 mol/kg or more, more preferably 5 mol/kg or more, even more preferably 7 mol/kg or more, and preferably 30 mol/kg or less, based on the organic carbamide solvent. More preferably, it is 20 mol/kg or less. If it is below this range, there is a high possibility that a decomposition reaction will occur, and if it is above this range, there is a high possibility that the polymerization reaction will be significantly delayed or the granulation rate of the produced copolymer will be significantly reduced.
  • the dihaloaromatic compound used in this embodiment is, for example, a halogenated aromatic compound having two halogen atoms directly bonded to an aromatic ring, and specifically, p-dichlorodiphenylsulfone, o- Dichlordiphenylsulfone, m-dichlordiphenylsulfone, p-dibromodiphenylsulfone, o-dibromodiphenylsulfone, m-dibromodiphenylsulfone, p-diiododiphenylsulfone, o-diiododiphenylsulfone, m-diiododiphenylsulfone , p-dichlorobenzene, o-dichlorobenzene, m-dichlorobenzene, dibromobenzene, diiodobenzene, tribromobenzene, dibrom
  • dihaloaromatic compounds having functional groups with active hydrogen such as amino groups, thiol groups, and hydroxyl groups
  • functional groups with active hydrogen such as amino groups, thiol groups, and hydroxyl groups
  • specific examples include 2,6-dichloroaniline and 2,5-dichloroaniline.
  • 2,2'-diamino-4,4'-dichlorodiphenyl ether 2,4'-diamino-2',4-di
  • dihaloaminodiphenyl ethers such as chlordiphenyl ether, and compounds in which the amino group is replaced with a thiol group or a hydroxyl group in a mixture thereof.
  • active hydrogen-containing dihaloaromatic compounds in which the hydrogen atom bonded to the carbon atom forming the aromatic ring in these active hydrogen-containing dihaloaromatic compounds are substituted with other inert groups, such as hydrocarbon groups such as alkyl groups.
  • Aromatic compounds can also be used.
  • active hydrogen-containing dihaloaromatic compounds are preferred, and dichloroaniline is particularly preferred.
  • dihaloaromatic compounds having a nitro group examples include dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene; Halonitro diphenyl ethers; Dihalonitro diphenyl sulfones such as 3,3'-dinitro-4,4'-dichloro diphenyl sulfone; 2,5-dichloro-3-nitropyridine, 2-chloro-3,5-dinitro Mono- or dihalonitropyridines such as pyridine; or various dihalonitronaphthalenes; 9,9-bis(4-chlorophenyl)fluorene, 9,9-bis(4-bromophenyl)fluorene, 9,9-bis( 4-iodophenyl)fluorene, 9,9-bis(4-chloro-3-methylphenyl)fluorene, 9,9-bis(4-bromo-3-methylphenyl)fluoren
  • an alkali metal sulfide, or an alkali hydrosulfide and an alkali metal hydroxide (hereinafter sometimes referred to as a sulfidating agent) are used as raw materials.
  • the alkali metal sulfide includes lithium sulfide, sodium sulfide, rubidium sulfide, cesium sulfide, and mixtures thereof.
  • Such alkali metal sulfides can be used as hydrates or aqueous mixtures or as anhydrides.
  • an alkali metal sulfide can also be derived by a reaction between an alkali metal hydrosulfide and an alkali metal hydroxide. Note that a small amount of alkali metal hydroxide may be added in order to react with alkali metal hydrosulfide and alkali metal thiosulfate, which are usually present in a small amount in the alkali metal sulfide.
  • the alkali metal hydrosulfide includes lithium hydrogen sulfide, sodium hydrogen sulfide, rubidium hydrogen sulfide, cesium hydrogen sulfide, and mixtures thereof.
  • Such alkali metal hydrosulfides can be used as hydrates or aqueous mixtures or as anhydrides.
  • the alkali metal hydrosulfide is used together with an alkali metal hydroxide.
  • the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, etc. Each of these may be used alone, or two or more types may be used in combination. It may also be used as Among these, lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferred because they are easily available, and sodium hydroxide is particularly preferred.
  • the amount of the sulfidating agent used in this step is preferably 0.1 mol/kg, more preferably 0.3 mol/kg, preferably 20 mol/kg or less, and 10 mol/kg based on the organic carbamide solvent.
  • the following are more preferable.
  • it is less than 0.1 mol/kg, the productivity of the polymer decreases, which is disadvantageous from an economical point of view.
  • it is greater than 20 mol/kg, the viscosity of the system during the reaction will become high, making stirring difficult and potentially reducing the yield.
  • the molar ratio of the dihaloaromatic compound to the sulfidating agent is preferably in the range of 0.95 to 1.2 (mol/mol), more preferably 1.00 to 1.10 (mol/mol). ) is within the range. If it is smaller than 0.95 (mol/mol), a decomposition reaction may occur or the resulting aromatic copolymer may have poor thermal stability; if it is larger than 1.2 (mol/mol), polymerization may The reaction may be difficult to proceed and it may be difficult to increase the molecular weight.
  • the polymerization conditions for the above sulfidating agent and the dihaloaromatic compound in the presence of the above organic carbamide solvent are generally at a temperature of 150 to 330°C, and a pressure that substantially eliminates the polymerization solvent and the dihaloaromatic compound as the polymerization monomer.
  • the pressure should be within a range such that the pressure is maintained in the liquid phase, and is generally selected from the range of 0.1 to 20 MPa, preferably 0.1 to 2 MPa.
  • the reaction time varies depending on temperature and pressure, but is generally in the range of 10 minutes to 72 hours, preferably in the range of 1 hour to 10 hours.
  • reaction temperature profile of two or more stages.
  • the residual rate of the dihaloaromatic compound in the polymerization reaction system is preferably 1 mol% or more because it is easy to finally obtain a high molecular weight aromatic thioether sulfone polymer, and the residual rate of the dihaloaromatic compound in the polymerization reaction system is preferably 1 mol% or more.
  • the content is preferably 40 mol% or less since side reactions such as the like are less likely to occur. It is preferable that the temperature is then raised and the final stage reaction is carried out at 180 to 300°C for 1 to 50 hours.
  • the above temperature range is preferably a reaction temperature of 180°C or higher because it is easy to obtain an aromatic thioether sulfone polymer with a sufficiently high molecular weight, and side reactions such as depolymerization are difficult to occur, and a high molecular weight product can be stably produced. It is preferable to carry out the reaction at 300° C. or lower because it is easy to obtain.
  • an aromatic thioether sulfone polymer is obtained as a product, but in addition to that, oligomers are also produced as a secondary product. be born.
  • Substances contained in the crude reaction mixture after the reaction may also include, for example, by-products such as an alkali metal-containing inorganic salt and a terminal SH group-containing compound, and unreacted raw materials.
  • Step (2) is a step of washing the crude reaction mixture obtained in step (1).
  • the solvent used for washing the crude reaction mixture in this step is not particularly limited as long as it is compatible with the organic carbamide solvent and the unreacted monomer below the boiling point, but the organic carbamide solvent used in step (1) It is preferable to use a similar solvent from the viewpoint of affinity.
  • preferable solvents other than organic carbamide-based solvents include amide-based, ester-based, and ether-based solvents, and specifically, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), and dimethylacetamide. (DMAc) and the like.
  • the temperature at which the washing solvent is added is not particularly limited, but is preferably in the range of 10°C or higher, more preferably 20°C or higher, and preferably 200°C or lower, more preferably 150°C or lower.
  • the amount of the solvent used for one washing is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, even more preferably
  • the content ranges from 100 parts by weight or more, preferably 5000 parts by weight or less, more preferably 1800 parts by weight or less, even more preferably 600 parts by weight or less.
  • Step (3) is a step of subjecting the crude reaction mixture that has passed through step (2) to solid-liquid separation to obtain a solid phase component (A) containing at least an aromatic thioether sulfone polymer.
  • the method for solid-liquid separation is not particularly limited, and known devices and methods can be used.
  • an appropriate method can be selected, such as a vacuum distillation method, a centrifugation method, a screw decanter method, a vacuum filtration method, and a pressure filtration method.
  • these methods can be combined or repeated.
  • step (2) and step (3) can be repeated.
  • the degree of separation and removal of the liquid phase component containing the organic carbamide solvent is not particularly limited, but if the proportion of solid content (solid content concentration) in the solid phase component (A) is 100 parts by mass of the solid phase component (A).
  • the amount is preferably 40 parts by mass or more, more preferably 50 parts by mass or more, still more preferably 55 parts by mass or more.
  • the upper limit is not limited, it is preferably 100 parts by mass or less, more preferably less than 100 parts by mass, and even more preferably 99 parts by mass or less.
  • Step (4) is a step of contacting the solid phase component (A) obtained in step (3) with an organic solvent and then performing solid-liquid separation to obtain the solid phase component (B).
  • the organic solvent that can be used in this step is not particularly limited, and any known organic solvent can be used.
  • any known organic solvent can be used.
  • Amides, ureas and lactams such as amides, N-dimethylpropylene urea and 1,3-dimethyl-2-imidazolidinonic acid; Sulfolanes such as sulfolane and dimethylsulfolane; Nitriles such as benzonitrile; Methyl alcohol, ethyl alcohol , n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol, ethylene glycol, propylene glycol, trimethylolpropane, benzyl alcohol, and other alcohols with 10 or less carbon atoms; 2-methoxyethyl alcohol , 2-ethoxyethyl alcohol, 1-methoxy-2-propyl alcohol, 1-ethoxy-2-propyl alcohol, 3-methoxy-1-butyl alcohol, 2-isopropoxyethyl alcohol, etc.
  • ketones such as ketones and mixtures thereof, and among these, alcohols and ketones are preferred.
  • a mixture of two or more of the above organic solvents may be used.
  • the organic solvent may contain water.
  • the polar organic solvent it is preferable to use an organic solvent such as an alcohol or a ketone, since impurities such as residual oligomers can be efficiently removed.
  • a hydrous alcohol is more preferable because the salt generated during polymerization can be efficiently removed.
  • the concentration of the alcohol solvent in the aqueous solution is not particularly limited, but the amount of the alcohol solvent is preferably in the range of 1000 parts by mass or less, more preferably 500 parts by mass or less, relative to 100 parts by mass of water. The amount is preferably 25 parts by mass or more, more preferably 45 parts by mass or more.
  • the conditions for bringing the solid phase component (A) into contact with the organic solvent in this step range from preferably 10°C or higher, more preferably 20°C or higher, to preferably 100°C or lower, more preferably 70°C or lower. and the pressure (gauge pressure) is less than 0.1 MPa, preferably in the range of 0.05 MPa or less, and more preferably under atmospheric pressure.
  • the amount of organic solvent used in this step is preferably 50 parts by mass or more, more preferably 100 parts by mass, based on 100 parts by mass of the aromatic thioethersulfone polymer.
  • the amount ranges from 10000 parts or more, more preferably 2000 parts or more, more preferably 10000 parts or less, even more preferably 2000 parts or less.
  • step (3) After washing, the same method as step (3) can be used to obtain the solid phase component (B) through solid-liquid separation.
  • the filtered aromatic thioethersulfone polymer may be dried as it is and used as an aromatic thioethersulfone polymer powder, or it may be further washed with warm water or hot water, separated into solid and liquid, and dried. It is also possible to prepare a powdery or granular aromatic thioether sulfone polymer by performing this step. Furthermore, the obtained powdery or granular aromatic thioethersulfone polymer can be heat-treated to form a crosslinked aromatic thioethersulfone polymer.
  • the aromatic thioether sulfone polymer obtained by the above production method has an excellent refractive index.
  • the refractive index is preferably 1.65 or more, more preferably 1.7 or more, and preferably 1.8 or less.
  • the refractive index is a value measured at room temperature (23° C.) and 589 nm using a test piece of an aromatic thioether sulfone polymer melt-molded to a thickness of 40 ⁇ m using a method based on JIS K 7142.
  • the aromatic thioether sulfone polymer obtained by the above production method has excellent transparency.
  • the brightness is preferably in the range of 85 or higher, more preferably 90 or higher, and preferably 99.9 or lower.
  • the transmittance is preferably in the range of 70% or more, more preferably 80% or more, and preferably 99.9% or less.
  • brightness is obtained by reflection measurement using a colorimeter with a test piece of an aromatic thioethersulfone polymer melt-molded to a thickness of 40 ⁇ m using a white plate as a background in accordance with JIS Z 8781-4.
  • the transmittance is the transmittance of the same test piece measured at a wavelength of 450 nm using an ultraviolet-visible spectrophotometer.
  • the aromatic thioether sulfone polymer obtained by the above production method has a low oligomer content.
  • the oligomer content per 100 parts by mass is preferably 3.5 parts by mass or less, more preferably 2 parts by mass or less, and even more preferably 1.8 parts by mass or less. preferable. Within this range, the amount of gas generated when the polymer is heated and melted can be reduced. Note that the oligomer content of the polymer in the present disclosure can be measured by the method described in the Examples.
  • the aromatic thioether sulfone polymer obtained by the above production method has excellent melt stability, so the rate of viscosity change during retention is small.
  • the viscosity change rate is preferably 10% or less, more preferably 8% or less. Note that the viscosity change rate in the present disclosure can be measured by the method described in Examples.
  • the aromatic thioethersulfone polymer composition according to this embodiment is formed by blending the aromatic thioethersulfone polymer according to this embodiment described above and other substances. Further, the method for producing a composition according to the present embodiment includes a step of blending the aromatic thioether sulfone polymer produced by the above method with another substance and melt-kneading the mixture.
  • the aromatic thioether sulfone polymer according to this embodiment may contain other substances such as a mold release agent, a coloring agent, a heat stabilizer, an ultraviolet stabilizer, a foaming agent, a rust preventive agent, as long as the effects of the present invention are not impaired. It can be used as a composition by containing additives such as flame retardants, lubricants, coupling agents, and fillers. As the filler, known and commonly used materials can be used as long as they do not impair the effects of the present invention. Examples include inorganic fillers.
  • fibrous fillers such as glass fiber, carbon fiber, silane glass fiber, ceramic fiber, aramid fiber, metal fiber, potassium titanate, silicon carbide, calcium silicate, wollastonite, natural fiber, etc. It can also be used for glass beads, glass flakes, barium sulfate, clay, pyrophyllite, bentonite, sericite, mica, talc, attapulgite, ferrite, calcium silicate, calcium carbonate, glass beads, zeolite, milled fiber, calcium sulfate, etc.
  • Non-fibrous fillers can also be used.
  • the aromatic thioether sulfone polymer according to the present embodiment may be used as a composition by mixing the following synthetic resins and elastomers as other substances within the range that does not impair the effects of the present invention.
  • synthetic resins include polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulfone, polyether sulfone, polyether ether ketone, polyether ketone, polyarylene, polyarylene sulfide, polyethylene, polypropylene, polytetra
  • Examples include fluorinated ethylene, polydifluoroethylene, polystyrene, ABS resin, epoxy resin, silicone resin, phenol resin, urethane resin, liquid crystal polymer, etc.
  • elastomers include polyolefin rubber, fluororubber, silicone rubber, etc. It will be done.
  • the method of blending and kneading the above-mentioned components with the aromatic thioethersulfone polymer according to the present embodiment is not particularly limited, but the aromatic thioethersulfone polymer and optional components as needed are blended and melted.
  • the kneading method more specifically, includes a method of uniformly dry-mixing the mixture using a tumbler or a Henschel mixer as necessary, and then charging the mixture into a twin-screw extruder and melt-kneading it.
  • the melt-kneading machine is preferably a twin-screw kneading extruder from the viewpoint of dispersibility and productivity, for example, a discharge rate of the resin component in the range of 5 to 500 (kg/hr) and a screw rotation speed of 50 to 500 (rpm). It is preferable to melt and knead while appropriately adjusting the range, and melt and knead under conditions such that the ratio (discharge amount/screw rotation speed) is in the range of 0.02 to 5 (kg/hr/rpm). is even more preferable. Further, the addition and mixing of each component to the melt-kneading machine may be performed simultaneously or may be performed separately.
  • the position of the side feeder is preferably such that the ratio of the distance from the extruder resin input part (top feeder) to the side feeder to the total screw length of the twin-screw kneading extruder is 0.1 or more, and 0. More preferably, it is .3 or more. Moreover, it is preferable that this ratio is 0.9 or less, and it is more preferable that it is 0.7 or less.
  • the aromatic thioethersulfone polymer composition according to the present embodiment obtained by melt-kneading as described above has a morphology in which the aromatic thioethersulfone polymer forms a continuous phase and other essential components and optional components are dispersed.
  • the aromatic thioethersulfone polymer composition according to the present embodiment can be produced by a known method, for example, by extruding the molten polymer composition into a strand shape, and then forming the composition into pellets, chips, granules, powder, etc. After processing into the form, it is preferable to perform preliminary drying at a temperature range of 100 to 150°C as necessary.
  • the molded article according to this embodiment is obtained by melt-molding the aromatic thioether sulfone polymer composition according to this embodiment described above.
  • the method for producing a molded article according to the present embodiment includes a step of melt-molding the aromatic thioethersulfone polymer composition obtained by the method for producing an aromatic thioethersulfone polymer composition according to the present embodiment described above. It is characterized by having the following.
  • the aromatic thioether sulfone polymer composition can be molded by various molding methods such as injection molding, compression molding, extrusion molding of composites, sheets, pipes, etc., pultrusion molding, blow molding, and transfer molding.
  • various molding conditions are not particularly limited, and molding can be performed by a general method.
  • aromatic thioether sulfone polymer and polymer composition is not particularly limited, and can be used as various products.
  • electrical/electronic parts such as connectors, printed circuit boards, and molded seals
  • automotive parts such as lamp reflectors and various electrical components, interior materials for various buildings, aircraft, automobiles, etc., OA equipment parts, camera parts, etc.
  • precision parts such as watch parts.
  • optical materials such as plastic lenses such as eyeglass lenses, camera lenses, and prism lenses, hard coating agents, antireflection films, prism lenses, and LED sealing materials.
  • Tg glass transition point
  • Example 1-Step (1) In a 1L autoclave made of titanium, 4,4-dichlorodiphenylsulfone (0.52 mol, 147.88 g), sodium acetate (0.50 mol, 41.02 g), dimethylimidazolidinone (hereinafter referred to as DMI) (3.82 mol, 436 .54g), deionized water (2.22mol, 39.96g), sodium sulfide (47.6%, 0.50mol, 59.34g), sodium hydroxide (48.8%, 0.50mol, 41.08g) ), heated to 200°C, and heated under seal at 200°C for 3 hours.
  • DMI dimethylimidazolidinone
  • Example 1-Step (2) After the polymerization was completed, the crude reaction mixture slurry was collected in a container and DMI (300 mL) was added. This slurry was filtered using a 200 mesh wire gauze to obtain a solid phase component. DMI (300 mL) was further added to the obtained solid phase component, and the mixture was heated and stirred at 120° C. for 30 minutes. Thereafter, the slurry was cooled to 60°C.
  • Example 1-Step (3) The cooled slurry was filtered through a 200 mesh wire gauze to remove liquid phase components.
  • Example 1-Step (4) After cooling the obtained solid phase component to room temperature, an aqueous methanol solution was added, decantation was performed, and the liquid phase component was removed by filtration. The solid phase component was further washed with warm water (70° C.), decanted, and filtered to remove the liquid phase component. This process was repeated three times. The obtained solid phase component was dried at 120° C. for 2 hours under normal pressure, and then further dried under reduced pressure at 150° C. for 5 hours to obtain a polymer (1). Table 1 shows the properties of the obtained polymer (1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

Provided are an aromatic thioether sulfone polymer, an aromatic thioether sulfone polymer composition, and an aromatic thioether sulfone polymer molded article that have a high refractive index, have less coloring, and have high transparency, and methods for producing the same. In detail, this aromatic thioether sulfone polymer is characterized by having a refractive index of 1.65 or more, a brightness of 85 or more, a transmission rate of 70% or more, and an oligomer content of 3.5 parts by mass or less. This method is for producing the aromatic thioether sulfone polymer.

Description

芳香族チオエーテルスルホン重合体、組成物及び成形品並びにそれらの製造方法Aromatic thioether sulfone polymers, compositions, molded articles, and methods for producing them
 本発明は、芳香族チオエーテルスルホン重合体、組成物及び成形品並びにそれらの製造方法に関する。 The present invention relates to aromatic thioether sulfone polymers, compositions, molded articles, and methods for producing them.
 近年、光学レンズやプリズムシート、有機発光ダイオード装置(OLED)用部品等の光学材料は、加工性・生産性に優れる点から樹脂材料が多く用いられている。また、光学部材の小型化・軽量化の傾向から、高屈折率を有する樹脂材料が要求されている。従来の樹脂の一般的な屈折率は1.30~1.70であり、屈折率が1.70を超える汎用材料はほとんどない。 In recent years, resin materials have been widely used for optical materials such as optical lenses, prism sheets, and parts for organic light emitting diode devices (OLED) due to their excellent processability and productivity. Furthermore, due to the trend toward smaller and lighter optical members, resin materials with a high refractive index are required. Conventional resins generally have a refractive index of 1.30 to 1.70, and there are almost no general-purpose materials with a refractive index exceeding 1.70.
 樹脂の屈折率を上げるため一般的なアプローチは、ローレンツ-ローレンツ式に従い、モル屈折が高く、モル容積が小さく、比重が大きい置換基を分子に導入する方法である。すなわち、ハロゲン原子や硫黄原子の導入が効果的とされる。硫黄原子は、高い分極率、安定性、及びポリマーへの導入し易さから、これまでにも各種光学材料向け硫黄含有樹脂が報告されている。例えば、硫黄含有樹脂として、チオウレタン骨格を有する化合物が開示されている。しかしながら、該化合物は耐熱性が低く、高温条件下での使用に課題があった(特許文献1、特許文献2、特許文献3)。 A common approach to increasing the refractive index of resins is to introduce substituents with high molar refraction, small molar volume, and high specific gravity into molecules according to the Lorentz-Lorentz equation. That is, introduction of halogen atoms and sulfur atoms is said to be effective. Since sulfur atoms have high polarizability, stability, and ease of introduction into polymers, sulfur-containing resins for various optical materials have been reported. For example, a compound having a thiourethane skeleton is disclosed as a sulfur-containing resin. However, this compound has low heat resistance and has problems in use under high temperature conditions (Patent Document 1, Patent Document 2, Patent Document 3).
 一方で、芳香族ポリチオエーテル類は樹脂骨格中の硫黄含有量が多く、密度が非常に大きいことから、有望な高屈折材料である。特に、芳香族チオエーテルスルホン重合体は、非晶性樹脂であるため透明性が高く、さらに約220℃と高いガラス転移温度を有するため耐熱性に優れることから、高温条件下でも使用可能な光学材料として期待されている。しかしながら、従来報告されている芳香族チオエーテルスルホン重合体の製造方法では、得られる樹脂に着色がみられ、透明性に欠けることから光学材料としての利用は避けられてきた(特許文献4、特許文献5)。 On the other hand, aromatic polythioethers have a high sulfur content in the resin skeleton and a very high density, so they are promising high refractive materials. In particular, aromatic thioether sulfone polymers are highly transparent because they are amorphous resins, and they also have excellent heat resistance due to their high glass transition temperature of about 220°C, making them optical materials that can be used even under high-temperature conditions. It is expected that However, in the conventionally reported production methods of aromatic thioether sulfone polymers, the resulting resins are colored and lack transparency, so their use as optical materials has been avoided (Patent Document 4, Patent Document 5).
特開平09-324023号公報Japanese Patent Application Publication No. 09-324023 特開2006-003624号公報Japanese Patent Application Publication No. 2006-003624 特開2009-256692公報Japanese Patent Application Publication No. 2009-256692 特開平4-275335号公報Japanese Unexamined Patent Publication No. 4-275335 国際公開90/03210号パンフレットInternational Publication No. 90/03210 pamphlet
 そこで本発明が解決しようとする課題は、高屈折率を有し、かつ、着色が少なく透明性が高い芳香族チオエーテルスルホン重合体、組成物及び成形品並びにそれらの製造方法を提供することである。 Therefore, the problem to be solved by the present invention is to provide an aromatic thioether sulfone polymer, a composition, a molded article, and a method for producing the same, which has a high refractive index, little coloring, and high transparency. .
 本発明者らは、上記課題を解決するため、鋭意検討した結果、カルバミド系溶媒存在下、ジハロ芳香族化合物と(i)アルカリ金属硫化物とを、又は、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを重合することで、高屈折率を有し、かつ、着色が少なく透明性が高い芳香族チオエーテルスルホン重合体を提供できることを見出した。また、オリゴマー含有量が特定の値の範囲である場合、熱安定性に優れる芳香族チオエーテルスルホン重合体を提供できることを見出した。 In order to solve the above-mentioned problems, the present inventors conducted intensive studies and found that in the presence of a carbamide solvent, a dihaloaromatic compound and (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and It has been found that by polymerizing with an alkali metal hydroxide, it is possible to provide an aromatic thioether sulfone polymer that has a high refractive index, little coloration, and high transparency. It has also been found that an aromatic thioether sulfone polymer with excellent thermal stability can be provided when the oligomer content is within a specific value range.
 すなわち、本開示は、屈折率が1.65以上、明度が85以上、透過率が70%以上及び、オリゴマー含有量が3.5質量部以下であることを特徴とする芳香族チオエーテルスルホン重合体に関する。 That is, the present disclosure provides an aromatic thioether sulfone polymer having a refractive index of 1.65 or more, a brightness of 85 or more, a transmittance of 70% or more, and an oligomer content of 3.5 parts by mass or less. Regarding.
 また、本開示は、含水有機カルバミド系溶媒中で、ジハロ芳香族化合物と(i)アルカリ金属硫化物とを、又は、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを重合させることを特徴とする芳香族チオエーテルスルホン重合体の製造方法に関する。 The present disclosure also provides a method for polymerizing a dihaloaromatic compound and (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide in a water-containing organic carbamide solvent. The present invention relates to a method for producing an aromatic thioether sulfone polymer.
 なお、本開示において、繰り返し単位2~40(2量体~40量体の混合物)を有する重合体を「オリゴマー」と称することがある。 Note that in the present disclosure, a polymer having 2 to 40 repeating units (a mixture of dimers to 40-mers) may be referred to as an "oligomer."
 本発明によれば、高屈折率を有し、かつ、着色が少なく透明性が高い芳香族チオエーテルスルホン重合体およびその製造方法を提供することができる。 According to the present invention, it is possible to provide an aromatic thioether sulfone polymer that has a high refractive index, little coloring, and high transparency, and a method for producing the same.
 以下、本発明の実施の形態(以下、「本実施形態」と言う。)について詳細に説明するが、本発明は以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, an embodiment of the present invention (hereinafter referred to as "this embodiment") will be described in detail, but the present invention is not limited to the following description, and can be modified in various ways within the scope of the gist. It can be implemented by
<芳香族チオエーテルスルホン重合体> <Aromatic thioether sulfone polymer>
 芳香族チオエーテルスルホン重合体は、下記一般式(1)(式中、R~Rは、それぞれ独立して水素原子、炭素原子数1~4の範囲のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表し、Xは-O-、-SO-、-SO-又は-CO-を表す。)で表される構造部位を繰り返し単位として有する重合体である。 The aromatic thioether sulfone polymer has the following general formula (1) (wherein R 1 to R 4 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, It represents a phenyl group, a methoxy group, an ethoxy group, and X represents -O-, -SO 2 -, -SO- or -CO-) as a repeating unit.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ここで、前記一般式(1)で表される構造部位は、特に該式中のR~Rが、芳香族チオエーテルスルホン重合体の機械的強度の点から水素原子であることが好ましい。 Here, in the structural moiety represented by the general formula (1), particularly R 1 to R 4 in the formula are preferably hydrogen atoms from the viewpoint of mechanical strength of the aromatic thioethersulfone polymer.
 また、前記芳香族チオエーテルスルホン重合体は、前記一般式(1)で表される構造部位のみならず、置換フェニル基、ケトン基、脂肪族等の構造部位を、前記一般式(1)で表される構造部位との合計の30モル%以下で含んでいてもよい。それらの結合様式については、ランダム共重合体、ブロック共重合体のいずれであってもよい。また、下記一般式(2)で表される3官能性の構造部位を含んでいても良い。その場合、他の構造部位との合計モル数に対して0.001~10モル%の範囲が好ましく、特に0.01~1モル%の範囲であることが好ましい。 In addition, the aromatic thioether sulfone polymer has not only a structural moiety represented by the general formula (1) but also a substituted phenyl group, a ketone group, an aliphatic group, etc., represented by the general formula (1). It may be contained in an amount of 30 mol% or less of the total amount of structural moieties. Regarding their bonding mode, either a random copolymer or a block copolymer may be used. Further, it may contain a trifunctional structural moiety represented by the following general formula (2). In that case, the amount is preferably in the range of 0.001 to 10 mol%, particularly preferably in the range of 0.01 to 1 mol%, based on the total number of moles with other structural parts.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 また、前記芳香族チオエーテルスルホン重合体は、下記一般式(3)(式中、環Zは芳香族炭化水素環、RおよびRは任意の置換基でよく、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルコキシ基などが挙げられる。Yは-O-、-S-、-SO-、-SO-又は-CO-、kは0~4の整数、mは0以上の整数、pは1以上の整数を示す。)で表される9,9-ビスアリールフルオレン骨格の構造部位を含んでいても良い。下記一般式(3)において、環Zは、ベンゼン環又はナフタレン環であってもよい。その場合、他の構造部位との合計モル数に対して0.001~10モル%の範囲が好ましく、特に0.01~1モル%の範囲であることが好ましい。 Further, the aromatic thioether sulfone polymer has the following general formula (3) (wherein, ring Z is an aromatic hydrocarbon ring, and R 5 and R 6 may be any substituent, for example, an alkyl group, a cycloalkyl group, aryl group, aralkyl group, or alkoxy group. Y is -O-, -S-, -SO 2 -, -SO- or -CO-, k is an integer from 0 to 4, and m is 0 or more. p is an integer of 1 or more). In the following general formula (3), ring Z may be a benzene ring or a naphthalene ring. In that case, the amount is preferably in the range of 0.001 to 10 mol%, particularly preferably in the range of 0.01 to 1 mol%, based on the total number of moles with other structural parts.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 また、前記9,9-ビスアリールフルオレン骨格部位を共重合する場合は、下記式(4)(式中、環Zは芳香族炭化水素環、R~Rは任意の置換基でよく、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルコキシ基などが挙げられる。Yは-O-、-S-、-SO-、-SO-又は-CO-、kは0~4の整数、mは0以上の整数、pは1以上の整数を示す。)で表される化合物を用いることもできる。下記一般式(4)において、環Zは、ベンゼン環又はナフタレン環であってもよい。その場合、他の構造部位との合計モル数に対して0.001~10モル%の範囲が好ましく、特に0.01~1モル%の範囲であることが好ましい。 In addition, when copolymerizing the 9,9-bisarylfluorene skeleton moiety, the following formula (4) (wherein, ring Z may be an aromatic hydrocarbon ring, and R 5 to R 7 may be any substituent, Examples include alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, and alkoxy groups. Y is -O-, -S-, -SO 2 -, -SO- or -CO-, and k is an integer of 0 to 4. , m is an integer of 0 or more, p is an integer of 1 or more) can also be used. In the following general formula (4), ring Z may be a benzene ring or a naphthalene ring. In that case, the amount is preferably in the range of 0.001 to 10 mol%, particularly preferably in the range of 0.01 to 1 mol%, based on the total number of moles with other structural parts.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 本実施形態に係る芳香族チオエーテルスルホン重合体は、屈折率に優れる。具体的には、屈折率が好ましくは1.65以上、より好ましくは1.70以上である。なお、本開示明において屈折率は、厚さ40μmに成形した芳香族チオエーテルスルホン重合体を試験片としてJIS K 7142に準拠した方法で室温(23℃)、589nmにて測定した値である。 The aromatic thioether sulfone polymer according to this embodiment has an excellent refractive index. Specifically, the refractive index is preferably 1.65 or more, more preferably 1.70 or more. In addition, in the present disclosure, the refractive index is a value measured at room temperature (23° C.) and 589 nm using a test piece of an aromatic thioether sulfone polymer molded to a thickness of 40 μm using a method based on JIS K 7142.
 本実施形態に係る芳香族チオエーテルスルホン重合体は、透明性に優れる。具体的には、明度が好ましくは85以上、より好ましくは90以上であり、透過率が好ましくは70%以上、より好ましくは80%以上である。なお、本開示において明度は厚さ40μmに成形した芳香族チオエーテルスルホン重合体を試験片として測色色差計を用いてJIS Z 8781-4に準拠して白色板を背景に用いた反射測定で得たL値であり、透過率は同試験片を紫外可視分光光度計を用いて波長450nmで測定した透過率である。 The aromatic thioether sulfone polymer according to this embodiment has excellent transparency. Specifically, the brightness is preferably 85 or more, more preferably 90 or more, and the transmittance is preferably 70% or more, more preferably 80% or more. In addition, in this disclosure, brightness is obtained by reflection measurement using a colorimetric colorimeter using an aromatic thioether sulfone polymer molded to a thickness of 40 μm as a test piece and using a white plate as a background in accordance with JIS Z 8781-4. The transmittance is the transmittance of the same test piece measured at a wavelength of 450 nm using an ultraviolet-visible spectrophotometer.
 本実施形態に係る芳香族チオエーテルスルホン重合体は、100質量部あたりのオリゴマー含有量が3.5質量部以下である。かかる範囲において、重合体を加熱溶融した際に発生するガス量を低減することができ、熱安定性に優れた重合体となる。なお、本開示における重合体のオリゴマー含有量は、実施例に記載の方法によって測定することができる。 The aromatic thioether sulfone polymer according to this embodiment has an oligomer content of 3.5 parts by mass or less per 100 parts by mass. In this range, the amount of gas generated when the polymer is heated and melted can be reduced, resulting in a polymer with excellent thermal stability. Note that the oligomer content of the polymer in the present disclosure can be measured by the method described in the Examples.
 本実施形態に係る芳香族チオエーテルスルホン重合体は、溶融安定性に優れるため、滞留した際の粘度変化率が小さい。具体的には、粘度変化率が好ましくは10%以下、より好ましくは8%以下である。なお、本開示における粘度変化率は、実施例に記載の方法によって測定することができる。 Since the aromatic thioether sulfone polymer according to the present embodiment has excellent melt stability, the rate of viscosity change during retention is small. Specifically, the viscosity change rate is preferably 10% or less, more preferably 8% or less. Note that the viscosity change rate in the present disclosure can be measured by the method described in Examples.
 前記芳香族チオエーテルスルホン重合体の製造方法としては特に限定されないが、後述の芳香族チオエーテルスルホン重合体の製造方法等が挙げられる。 The method for producing the aromatic thioether sulfone polymer is not particularly limited, but examples include the method for producing the aromatic thioether sulfone polymer described below.
<芳香族チオエーテルスルホン重合体の製造方法>
 本開示の第一の実施形態に係る芳香族チオエーテルスルホン重合体の製造方法は、含水有機カルバミド系溶媒中で、ジハロ芳香族化合物と(i)アルカリ金属硫化物とを、又は、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを重合させることを特徴とする。
<Method for producing aromatic thioether sulfone polymer>
The method for producing an aromatic thioether sulfone polymer according to the first embodiment of the present disclosure includes combining a dihaloaromatic compound and (i) an alkali metal sulfide, or (ii) an alkali metal sulfide in a water-containing organic carbamide solvent. It is characterized by polymerizing a metal hydrosulfide and an alkali metal hydroxide.
 また、本開示の第二の実施形態に係る芳香族チオエーテルスルホン重合体の製造方法は、
 含水有機カルバミド系溶媒中で、ジハロ芳香族化合物と(i)アルカリ金属硫化物とを、又は、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを重合させて粗反応混合物を得る工程(1)
 該粗反応混合物を洗浄する工程(2)、
 該粗反応混合物を固液分離して固相成分(A)を得る工程(3)、
 前記固相成分(A)を有機溶媒と接触させてから固液分離し、固相成分(B)を得る工程(4)を有する。以下、詳述する。
Furthermore, the method for producing an aromatic thioether sulfone polymer according to the second embodiment of the present disclosure includes:
A step of polymerizing a dihaloaromatic compound and (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide in a water-containing organic carbamide solvent to obtain a crude reaction mixture. (1)
step (2) of washing the crude reaction mixture;
step (3) of solid-liquid separation of the crude reaction mixture to obtain solid phase component (A);
The solid phase component (A) is brought into contact with an organic solvent and then subjected to solid-liquid separation to obtain a solid phase component (B) (4). The details will be explained below.
工程(1)
 本実施形態で用いられる含水有機カルバミド系溶媒は、水と有機カルバミド系溶媒の混合物である。有機カルバミド系溶媒としては、カルバミド基を1つ以上有する化合物であれば特に限定されず、公知のものを用いることができる。例えば、ジメチルイミダゾリジノン(DMI)、ジメチルプロピレンウレア(DMPU)、ヘキサメチルリン酸トリアミド(HMPA)、テトラメチルウレア(TMU)等が挙げられる。特に、熱安定性、重合反応の円滑性、経済性等の観点からDMIが好ましい。含水有機カルバミド系溶媒の含水量は、有機カルバミド溶媒に対して1モル/kg以上が好ましく、5モル/kg以上がより好ましく、7モル/kg以上がさらに好ましく、30モル/kg以下が好ましく、20モル/kg以下がより好ましい。かかる範囲を下回る場合、分解反応が起こる可能性が大きくなり、上回る場合、重合反応の大幅な遅延や、生成コポリマーの粒状化率の大幅低下が生じる可能性が大きくなる。
Process (1)
The water-containing organic carbamide solvent used in this embodiment is a mixture of water and an organic carbamide solvent. The organic carbamide solvent is not particularly limited as long as it is a compound having one or more carbamide groups, and any known organic solvent can be used. Examples include dimethylimidazolidinone (DMI), dimethylpropylene urea (DMPU), hexamethylphosphate triamide (HMPA), and tetramethylurea (TMU). In particular, DMI is preferred from the viewpoints of thermal stability, smoothness of polymerization reaction, economic efficiency, and the like. The water content of the water-containing organic carbamide solvent is preferably 1 mol/kg or more, more preferably 5 mol/kg or more, even more preferably 7 mol/kg or more, and preferably 30 mol/kg or less, based on the organic carbamide solvent. More preferably, it is 20 mol/kg or less. If it is below this range, there is a high possibility that a decomposition reaction will occur, and if it is above this range, there is a high possibility that the polymerization reaction will be significantly delayed or the granulation rate of the produced copolymer will be significantly reduced.
 本実施形態で用いられるジハロ芳香族化合物は、例えば、芳香族環に直接結合した2個のハロゲン原子を有するハロゲン化芳香族化合物であり、具体的には、p-ジクロルジフェニルスルホン、o-ジクロルジフェニルスルホン、m-ジクロルジフェニルスルホン、p-ジブロモジフェニルスルホン、o-ジブロモジフェニルスルホン、m-ジブロモジフェニルスルホン、p-ジヨードジフェニルスルホン、o-ジヨードジフェニルスルホン、m-ジヨードジフェニルスルホン、p-ジクロルベンゼン、o-ジクロルベンゼン、m-ジクロルベンゼン、ジブロムベンゼン、ジヨードベンゼン、トリブロムベンゼン、ジブロムナフタレン、ジクロルジフェニルベンゼン、ジブロムジフェニルベンゼン、ジクロルベンゾフェノン、ジブロムベンゾフェノン、ジクロルジフェニルエーテル、ジブロムジフェニルエーテル、ジクロルジフェニルスルフィド、ジブロムジフェニルスルフィド、ジクロルビフェニル、ジブロムビフェニル等のジハロ芳香族化合物及びこれらの混合物が挙げられ、これらの化合物をブロック共重合してもよい。これらの中でも好ましいのはジハロゲン化ベンゼン類であり、特に好ましいのはp-ジクロルジフェニルスルホンを80モル%以上含むものである。 The dihaloaromatic compound used in this embodiment is, for example, a halogenated aromatic compound having two halogen atoms directly bonded to an aromatic ring, and specifically, p-dichlorodiphenylsulfone, o- Dichlordiphenylsulfone, m-dichlordiphenylsulfone, p-dibromodiphenylsulfone, o-dibromodiphenylsulfone, m-dibromodiphenylsulfone, p-diiododiphenylsulfone, o-diiododiphenylsulfone, m-diiododiphenylsulfone , p-dichlorobenzene, o-dichlorobenzene, m-dichlorobenzene, dibromobenzene, diiodobenzene, tribromobenzene, dibromnaphthalene, dichlorodiphenylbenzene, dibromodiphenylbenzene, dichlorobenzophenone, Examples include dihaloaromatic compounds such as bromobenzophenone, dichlorodiphenyl ether, dibromodiphenyl ether, dichlordiphenyl sulfide, dibromodiphenylsulfide, dichlorbiphenyl, dibrombiphenyl, and mixtures thereof, and these compounds can be block copolymerized. It's okay. Among these, preferred are dihalogenated benzenes, and particularly preferred are those containing 80 mol% or more of p-dichlorodiphenylsulfone.
 更に、アミノ基、チオール基、ヒドロキシル基等の活性水素を持つ官能基を有するジハロ芳香族化合物を挙げることが出来、具体的には、2、6-ジクロルアニリン、2、5-ジクロルアニリン、2、4-ジクロルアニリン、2、3-ジクロルアニリン等のジハロアニリン類;2、2’-ジアミノ-4、4’-ジクロルジフェニルエーテル、2、4’-ジアミノ-2’、4-ジクロルジフェニルエーテル等のジハロアミノジフェニルエーテル類およびこれらの混合物においてアミノ基がチオール基やヒドロキシル基に置き換えられた化合物などが例示される。 Furthermore, dihaloaromatic compounds having functional groups with active hydrogen such as amino groups, thiol groups, and hydroxyl groups can be mentioned, and specific examples include 2,6-dichloroaniline and 2,5-dichloroaniline. , 2,4-dichloroaniline, 2,3-dichloroaniline and other dihaloanilines; 2,2'-diamino-4,4'-dichlorodiphenyl ether, 2,4'-diamino-2',4-di Examples include dihaloaminodiphenyl ethers such as chlordiphenyl ether, and compounds in which the amino group is replaced with a thiol group or a hydroxyl group in a mixture thereof.
 また、これらの活性水素含有ジハロ芳香族化合物中の芳香族環を形成する炭素原子に結合した水素原子が他の不活性基、例えばアルキル基などの炭化水素基に置換している活性水素含有ジハロ芳香族化合物も使用出来る。 In addition, active hydrogen-containing dihaloaromatic compounds in which the hydrogen atom bonded to the carbon atom forming the aromatic ring in these active hydrogen-containing dihaloaromatic compounds are substituted with other inert groups, such as hydrocarbon groups such as alkyl groups. Aromatic compounds can also be used.
 これらの各種活性水素含有ジハロ芳香族化合物の中でも、好ましいのは活性水素含有ジハロ芳香族化合物であり、特に好ましいのはジクロルアニリンである。 Among these various active hydrogen-containing dihaloaromatic compounds, active hydrogen-containing dihaloaromatic compounds are preferred, and dichloroaniline is particularly preferred.
 ニトロ基を有するジハロ芳香族化合物としては、例えば、2、4-ジニトロクロルベンゼン、2、5-ジクロルニトロベンゼン等のジハロニトロベンゼン類;2-ニトロ-4、4’-ジクロルジフェニルエーテル等のジハロニトロジフェニルエーテル類;3、3’-ジニトロ-4、4’-ジクロルジフェニルスルホン等のジハロニトロジフェニルスルホン類;2、5-ジクロル-3-ニトロピリジン、2-クロル-3、5-ジニトロピリジン等のモノまたはジハロニトロピリジン類;あるいは各種ジハロニトロナフタレン類;9,9-ビス(4-クロロフェニル)フルオレン、9,9-ビス(4-ブロモフェニル)フルオレン、9,9-ビス(4-ヨードフェニル)フルオレン、9,9-ビス(4-クロロ-3-メチルフェニル)フルオレン、9,9-ビス(4-ブロモ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヨード-3-メチルフェニル)フルオレン、9,9-ビス(4-クロロ-3-エチルフェニル)フルオレン、9,9-ビス(4-ブロモ-3-エチルフェニル)フルオレン、9,9-ビス(4-ヨード-3-エチルフェニル)フルオレン、9,9-ビス(4-クロロ-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-ブロモ-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-ヨード-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-クロロ-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-ブロモ-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-ヨード-3,5-ジメチルフェニル)フルオレン等のジハロフルオレン類などが挙げられる。 Examples of dihaloaromatic compounds having a nitro group include dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene; Halonitro diphenyl ethers; Dihalonitro diphenyl sulfones such as 3,3'-dinitro-4,4'-dichloro diphenyl sulfone; 2,5-dichloro-3-nitropyridine, 2-chloro-3,5-dinitro Mono- or dihalonitropyridines such as pyridine; or various dihalonitronaphthalenes; 9,9-bis(4-chlorophenyl)fluorene, 9,9-bis(4-bromophenyl)fluorene, 9,9-bis( 4-iodophenyl)fluorene, 9,9-bis(4-chloro-3-methylphenyl)fluorene, 9,9-bis(4-bromo-3-methylphenyl)fluorene, 9,9-bis(4-iodo -3-methylphenyl)fluorene, 9,9-bis(4-chloro-3-ethylphenyl)fluorene, 9,9-bis(4-bromo-3-ethylphenyl)fluorene, 9,9-bis(4- iodo-3-ethylphenyl)fluorene, 9,9-bis(4-chloro-3-isopropylphenyl)fluorene, 9,9-bis(4-bromo-3-isopropylphenyl)fluorene, 9,9-bis(4 -iodo-3-isopropylphenyl)fluorene, 9,9-bis(4-chloro-3,5-dimethylphenyl)fluorene, 9,9-bis(4-bromo-3,5-dimethylphenyl)fluorene, 9, Examples include dihalofluorenes such as 9-bis(4-iodo-3,5-dimethylphenyl)fluorene.
 また、本実施形態においては、アルカリ金属硫化物、又は、アルカリ水硫化物及びアルカリ金属水酸化物(以下、スルフィド化剤ということがある)を原料として用いる。 Furthermore, in this embodiment, an alkali metal sulfide, or an alkali hydrosulfide and an alkali metal hydroxide (hereinafter sometimes referred to as a sulfidating agent) are used as raw materials.
 本実施形態において、前記アルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化ルビジウム、硫化セシウム及びこれらの混合物が含まれる。かかるアルカリ金属硫化物は、水和物あるいは水性混合物あるいは無水物として使用することができる。また、アルカリ金属硫化物はアルカリ金属水硫化物とアルカリ金属水酸化物との反応によっても導くことができる。尚、通常、アルカリ金属硫化物中に微量存在するアルカリ金属水硫化物、チオ硫酸アルカリ金属と反応させるために、少量のアルカリ金属水酸化物を加えても差し支えない。 In this embodiment, the alkali metal sulfide includes lithium sulfide, sodium sulfide, rubidium sulfide, cesium sulfide, and mixtures thereof. Such alkali metal sulfides can be used as hydrates or aqueous mixtures or as anhydrides. Moreover, an alkali metal sulfide can also be derived by a reaction between an alkali metal hydrosulfide and an alkali metal hydroxide. Note that a small amount of alkali metal hydroxide may be added in order to react with alkali metal hydrosulfide and alkali metal thiosulfate, which are usually present in a small amount in the alkali metal sulfide.
 また、前記アルカリ金属水硫化物としては、硫化水素リチウム、硫化水素ナトリウム、硫化水素ルビジウム、硫化水素セシウム及びこれらの混合物が含まれる。かかるアルカリ金属水硫化物は、水和物あるいは水性混合物あるいは無水物として使用することができる。 Further, the alkali metal hydrosulfide includes lithium hydrogen sulfide, sodium hydrogen sulfide, rubidium hydrogen sulfide, cesium hydrogen sulfide, and mixtures thereof. Such alkali metal hydrosulfides can be used as hydrates or aqueous mixtures or as anhydrides.
 また、前記アルカリ金属水硫化物はアルカリ金属水酸化物と伴に用いる。当該アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等が挙げられるが、これらはそれぞれ単独で用いても良いし、2種以上を混合して用いても良い。これらの中でも、入手が容易なことから水酸化リチウムと水酸化ナトリウム及び水酸化カリウムが好ましく、特に水酸化ナトリウムが好ましい。 Furthermore, the alkali metal hydrosulfide is used together with an alkali metal hydroxide. Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, etc. Each of these may be used alone, or two or more types may be used in combination. It may also be used as Among these, lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferred because they are easily available, and sodium hydroxide is particularly preferred.
 本工程に用いるスルフィド化剤の量は、有機カルバミド系溶媒に対して、0.1モル/kgが好ましく、0.3モル/kgがより好ましく、20モル/kg以下が好ましく、10モル/kg以下がより好ましい。0.1モル/kgより小さい場合、重合体の生産性が低くなり、経済性の観点から不利である。一方、20モル/kgより大きい場合、反応中における系の粘度が高くなるため攪拌が困難となり、収率が低くなる可能性がある。 The amount of the sulfidating agent used in this step is preferably 0.1 mol/kg, more preferably 0.3 mol/kg, preferably 20 mol/kg or less, and 10 mol/kg based on the organic carbamide solvent. The following are more preferable. When it is less than 0.1 mol/kg, the productivity of the polymer decreases, which is disadvantageous from an economical point of view. On the other hand, if it is greater than 20 mol/kg, the viscosity of the system during the reaction will become high, making stirring difficult and potentially reducing the yield.
 本工程において、ジハロ芳香族化合物とスルフィド化剤のモル比は、好ましくは0.95~1.2(モル/モル)の範囲であり、より好ましくは1.00~1.10(モル/モル)の範囲である。0.95(モル/モル)よりも小さい場合、分解反応を起こしたり、得られる芳香族コポリマーの熱安定性が乏しくなる可能性があり、1.2(モル/モル)よりも大きい場合、重合反応が進行しづらく高分子量化が困難になる可能性がある。 In this step, the molar ratio of the dihaloaromatic compound to the sulfidating agent is preferably in the range of 0.95 to 1.2 (mol/mol), more preferably 1.00 to 1.10 (mol/mol). ) is within the range. If it is smaller than 0.95 (mol/mol), a decomposition reaction may occur or the resulting aromatic copolymer may have poor thermal stability; if it is larger than 1.2 (mol/mol), polymerization may The reaction may be difficult to proceed and it may be difficult to increase the molecular weight.
 上記の有機カルバミド系溶媒の存在下、上記のスルフィド化剤とジハロ芳香族化合物との重合条件は一般に、温度150~330℃であり、圧力は重合溶媒及び重合モノマーであるジハロ芳香族化合物を実質的に液層に保持するような範囲であるべきであり、一般には0.1~20MPa、好ましくは0.1~2MPaの範囲より選択される。反応時間は温度と圧力により異なるが、一般に10分~72時間の範囲であり、望ましくは1時間~10時間の範囲である。より高い分子量の芳香族チオエーテルスルホン重合体を得るには、2段階以上の反応温度プロフィールを用いることが好ましい。この2段階操作を行う場合、第1段階は90℃以上で行うことが、反応速度が小さすぎず、実用的ことから好ましく、充分に高分子量な芳香族チオエーテルスルホン重合体が得られ、副反応速度が増大しないことから180℃以下の温度で行うことが好ましい。更に、120~160℃が特に好ましい。第1段階の終了は、重合反応系内ジハロ芳香族化合物残存率は、最終的に高分子量芳香族チオエーテルスルホン重合体が得やすいことから1モル%以上が好ましく、第2段階の反応で解重合など副反応が生じにくいことから、40モル%以下が好ましい。その後昇温して、最終段階の反応を180~300℃で、1~50時間行うことが好ましい。前記温度範囲は、反応温度180℃以上であることが、充分に高分子量化した芳香族チオエーテルスルホン重合体を得やすいことから好ましく、解重合等の副反応が生じにくく、安定的に高分子量物を得やすいことから300℃以下で反応することが好ましい。 The polymerization conditions for the above sulfidating agent and the dihaloaromatic compound in the presence of the above organic carbamide solvent are generally at a temperature of 150 to 330°C, and a pressure that substantially eliminates the polymerization solvent and the dihaloaromatic compound as the polymerization monomer. The pressure should be within a range such that the pressure is maintained in the liquid phase, and is generally selected from the range of 0.1 to 20 MPa, preferably 0.1 to 2 MPa. The reaction time varies depending on temperature and pressure, but is generally in the range of 10 minutes to 72 hours, preferably in the range of 1 hour to 10 hours. In order to obtain a higher molecular weight aromatic thioether sulfone polymer, it is preferable to use a reaction temperature profile of two or more stages. When carrying out this two-step operation, it is preferable to carry out the first step at a temperature of 90°C or higher because the reaction rate is not too low and is practical, and an aromatic thioether sulfone polymer with a sufficiently high molecular weight can be obtained, and side reactions can occur. It is preferable to carry out the process at a temperature of 180° C. or lower since the speed does not increase. Further, a temperature of 120 to 160°C is particularly preferable. At the end of the first stage, the residual rate of the dihaloaromatic compound in the polymerization reaction system is preferably 1 mol% or more because it is easy to finally obtain a high molecular weight aromatic thioether sulfone polymer, and the residual rate of the dihaloaromatic compound in the polymerization reaction system is preferably 1 mol% or more. The content is preferably 40 mol% or less since side reactions such as the like are less likely to occur. It is preferable that the temperature is then raised and the final stage reaction is carried out at 180 to 300°C for 1 to 50 hours. The above temperature range is preferably a reaction temperature of 180°C or higher because it is easy to obtain an aromatic thioether sulfone polymer with a sufficiently high molecular weight, and side reactions such as depolymerization are difficult to occur, and a high molecular weight product can be stably produced. It is preferable to carry out the reaction at 300° C. or lower because it is easy to obtain.
 本実施形態においては、粗反応生成物がスルフィド化剤及び有機カルバミド系溶媒の存在下に、ジハロ芳香族化合物及び有機カルバミド系溶媒を連続的又は断続的に加えながら反応させることにより得られる形態も包含する。 In this embodiment, there is also a form obtained by reacting the crude reaction product in the presence of a sulfidating agent and an organic carbamide solvent while continuously or intermittently adding a dihalo aromatic compound and an organic carbamide solvent. include.
 このように、有機カルバミド系溶媒中で、ジハロ芳香族化合物と、スルフィド化剤とを重合反応させることにより、生成物として、芳香族チオエーテルスルホン重合体が得られるが、それ以外に、オリゴマーも副生される。反応後の粗反応混合物に含まれる物質としては、その他に、例えば、アルカリ金属含有無機塩、末端SH基含有化合物などの副生成物や未反応原料が含まれていても良い。 As described above, by polymerizing a dihaloaromatic compound and a sulfidating agent in an organic carbamide solvent, an aromatic thioether sulfone polymer is obtained as a product, but in addition to that, oligomers are also produced as a secondary product. be born. Substances contained in the crude reaction mixture after the reaction may also include, for example, by-products such as an alkali metal-containing inorganic salt and a terminal SH group-containing compound, and unreacted raw materials.
工程(2)
 工程(2)は、工程(1)で得られた粗反応混合物を洗浄する工程である。
Process (2)
Step (2) is a step of washing the crude reaction mixture obtained in step (1).
 本工程で粗反応混合物を洗浄するために用いる溶媒は、有機カルバミド系溶媒及び未反応モノマーと沸点以下で相溶するものであれば特に限定されないが、工程(1)で用いた有機カルバミド系溶媒と同様の溶媒を用いることが、親和性の観点から好ましい。また、有機カルバミド系溶媒以外の好ましい溶媒としては、アミド系、エステル系、エーテル系溶媒が挙げられ、具体的には、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)等が挙げられる。 The solvent used for washing the crude reaction mixture in this step is not particularly limited as long as it is compatible with the organic carbamide solvent and the unreacted monomer below the boiling point, but the organic carbamide solvent used in step (1) It is preferable to use a similar solvent from the viewpoint of affinity. Further, preferable solvents other than organic carbamide-based solvents include amide-based, ester-based, and ether-based solvents, and specifically, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), and dimethylacetamide. (DMAc) and the like.
 洗浄する溶媒を加える際の温度としては特に限定されないが、好ましくは10℃以上、より好ましくは20℃以上から、好ましくは200℃以下、より好ましくは150℃以下の範囲である。一回の洗浄に使用する該溶媒の量には特に制限は無いが、芳香族チオエーテルスルホン重合体100質量部に対して、好ましくは20質量部以上、より好ましくは50質量部以上、さらに好ましくは100質量部以上から、好ましくは5000質量部以下、より好ましくは1800質量部以下、さらに好ましくは600質量部以下である。 The temperature at which the washing solvent is added is not particularly limited, but is preferably in the range of 10°C or higher, more preferably 20°C or higher, and preferably 200°C or lower, more preferably 150°C or lower. There is no particular restriction on the amount of the solvent used for one washing, but it is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, even more preferably The content ranges from 100 parts by weight or more, preferably 5000 parts by weight or less, more preferably 1800 parts by weight or less, even more preferably 600 parts by weight or less.
工程(3)
 工程(3)は工程(2)を経た前記粗反応混合物を固液分離して、少なくとも芳香族チオエーテルスルホン重合体を含む固相成分(A)を得る工程である。
Process (3)
Step (3) is a step of subjecting the crude reaction mixture that has passed through step (2) to solid-liquid separation to obtain a solid phase component (A) containing at least an aromatic thioether sulfone polymer.
 固液分離する方法としては特に限定されず、公知の装置や方法を用いることができる。例えば、減圧留去法、遠心分離法、スクリューデカンター法、減圧濾過法、加圧濾過法など適当な方法が選択可能である。また、これらの方法を組み合わることや、繰り返し行うこともできる。さらに、工程(2)と工程(3)を繰り返し行うこともできる。 The method for solid-liquid separation is not particularly limited, and known devices and methods can be used. For example, an appropriate method can be selected, such as a vacuum distillation method, a centrifugation method, a screw decanter method, a vacuum filtration method, and a pressure filtration method. Moreover, these methods can be combined or repeated. Furthermore, step (2) and step (3) can be repeated.
 有機カルバミド系溶媒を含む液相成分の分離除去の程度は特に限定されないが、該固相成分(A)中の固形分の割合(固形分濃度)が、該固相成分(A)100質量部に対して、好ましくは40質量部以上、より好ましくは50質量部以上、更に好ましくは55質量部以上である。上限値は限定されないが、好ましくは100質量部以下であり、より好ましくは100質量部未満、さらに好ましくは99質量部以下である。 The degree of separation and removal of the liquid phase component containing the organic carbamide solvent is not particularly limited, but if the proportion of solid content (solid content concentration) in the solid phase component (A) is 100 parts by mass of the solid phase component (A). The amount is preferably 40 parts by mass or more, more preferably 50 parts by mass or more, still more preferably 55 parts by mass or more. Although the upper limit is not limited, it is preferably 100 parts by mass or less, more preferably less than 100 parts by mass, and even more preferably 99 parts by mass or less.
工程(4)
 工程(4)は、工程(3)で得られた固相成分(A)を有機溶媒と接触させてから固液分離し、固相成分(B)を得る工程である。
Process (4)
Step (4) is a step of contacting the solid phase component (A) obtained in step (3) with an organic solvent and then performing solid-liquid separation to obtain the solid phase component (B).
 本工程で用いることのできる有機溶媒は、特に限定されず、公知のものを用いることができる。例えば、ホルムアミド、アセトアミド、N-メチルホルムアミド、N、N-ジメチルアセトアミド、テトラメチル尿素、N-メチル-2-ピロリドン、2-ピロリドン、N-メチル-ε-カプロラクタム、ε-カプロラクタム、ヘキサメチルホスホルアミド、N-ジメチルプロピレン尿素、1、3-ジメチル-2-イミダゾリジノン酸などのアミド、尿素及びラクタム類;スルホラン、ジメチルスルホラン等のスルホラン類;ベンゾニトリル等のニトリル類;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、t-ブチルアルコール、エチレングリコール、プロピレングリコール、トリメチロールプロパン、ベンジルアルコール等の炭素原子数が10以下のアルコール;2-メトキシエチルアルコール、2-エトキシエチルアルコール、1-メトキシ-2-プロピルアルコール、1-エトキシ-2-プロピルアルコール、3-メトキシ-1-ブチルアルコール、2-イソプロポキシエチルアルコール等のエーテル結合を含む炭素原子数が10以下のアルコール;3-ヒドロキシ-2-ブタノン等のケトン基を含む炭素原子数が10以下のアルコール;ヒドロキシイソ酪酸メチル等のようなエステル基を含む炭素原子数が10以下のアルコール;メチルフェニルケトン等のケトン類及びこれらの混合物を挙げることができ、これらの中でもアルコール類やケトン類が好ましい。また、上記の2つ以上の有機溶媒の混合物を用いても良い。さらに、有機溶媒は含水していてもよい。 The organic solvent that can be used in this step is not particularly limited, and any known organic solvent can be used. For example, formamide, acetamide, N-methylformamide, N,N-dimethylacetamide, tetramethylurea, N-methyl-2-pyrrolidone, 2-pyrrolidone, N-methyl-ε-caprolactam, ε-caprolactam, hexamethylphosphorol. Amides, ureas and lactams such as amides, N-dimethylpropylene urea and 1,3-dimethyl-2-imidazolidinonic acid; Sulfolanes such as sulfolane and dimethylsulfolane; Nitriles such as benzonitrile; Methyl alcohol, ethyl alcohol , n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol, ethylene glycol, propylene glycol, trimethylolpropane, benzyl alcohol, and other alcohols with 10 or less carbon atoms; 2-methoxyethyl alcohol , 2-ethoxyethyl alcohol, 1-methoxy-2-propyl alcohol, 1-ethoxy-2-propyl alcohol, 3-methoxy-1-butyl alcohol, 2-isopropoxyethyl alcohol, etc. Alcohols with 10 or less carbon atoms; alcohols with 10 or less carbon atoms containing a ketone group such as 3-hydroxy-2-butanone; alcohols with 10 or less carbon atoms containing an ester group such as methyl hydroxyisobutyrate; methylphenyl Examples include ketones such as ketones and mixtures thereof, and among these, alcohols and ketones are preferred. Furthermore, a mixture of two or more of the above organic solvents may be used. Furthermore, the organic solvent may contain water.
 本実施形態において、前記極性有機溶媒としては、アルコール類やケトン類の有機溶媒を用いることが、残留するオリゴマー等の不純物を効率的に除去可能なため好ましく、さらに、含水アルコ-ルを用いることが、重合中に生成した塩を効率よく除去できるためより好ましい。含水アルコールを用いる場合、水溶液中のアルコール溶媒の濃度は特に限定されないが、水100質量部に対して、アルコール溶媒の量が好ましくは1000質量部以下の範囲であり、より好ましくは500質量部以下の範囲から、好ましくは25質量部以上、より好ましくは45質量部以上の範囲である。 In this embodiment, as the polar organic solvent, it is preferable to use an organic solvent such as an alcohol or a ketone, since impurities such as residual oligomers can be efficiently removed. Furthermore, it is preferable to use a hydrous alcohol. is more preferable because the salt generated during polymerization can be efficiently removed. When using a hydrous alcohol, the concentration of the alcohol solvent in the aqueous solution is not particularly limited, but the amount of the alcohol solvent is preferably in the range of 1000 parts by mass or less, more preferably 500 parts by mass or less, relative to 100 parts by mass of water. The amount is preferably 25 parts by mass or more, more preferably 45 parts by mass or more.
 本工程で固相成分(A)と有機溶媒とを接触させる際の条件は、好ましくは10℃以上、より好ましくは20℃以上から、好ましくは100℃以下、より好ましくは70℃以下までの範囲であり、かつ、圧力(ゲージ圧)が0.1MPaより小さく、好ましくは0.05MPa以下の範囲、さらに好ましくは大気圧下である。 The conditions for bringing the solid phase component (A) into contact with the organic solvent in this step range from preferably 10°C or higher, more preferably 20°C or higher, to preferably 100°C or lower, more preferably 70°C or lower. and the pressure (gauge pressure) is less than 0.1 MPa, preferably in the range of 0.05 MPa or less, and more preferably under atmospheric pressure.
 本工程に用いる有機溶媒の量については特に制限は無いが、洗浄効率が好適となることから、芳香族チオエーテルスルホン重合体100質量部に対して、好ましくは50質量部以上、より好ましくは100質量部以上、さらに好ましくは200質量部以上から、好ましくは10000質量部以下、より好ましくは5000質量部以下、さらに好ましくは2000質量部以下の範囲である。 There is no particular restriction on the amount of organic solvent used in this step, but in order to improve the cleaning efficiency, it is preferably 50 parts by mass or more, more preferably 100 parts by mass, based on 100 parts by mass of the aromatic thioethersulfone polymer. The amount ranges from 10000 parts or more, more preferably 2000 parts or more, more preferably 10000 parts or less, even more preferably 2000 parts or less.
 洗浄後、固液分離して固相成分(B)を得る方法としては、工程(3)と同様の方法を行うことができる。その後、濾別された芳香族チオエーテルスルホン重合体は、そのまま乾燥して芳香族チオエーテルスルホン重合体粉末として用いても良いし、更に温水や熱水等で洗浄処理した後、固液分離し、乾燥を行って粉末状ないし顆粒状の芳香族チオエーテルスルホン重合体として調製することもできる。さらに、得られた粉末状ないし顆粒状の芳香族チオエーテルスルホン重合体に熱処理を行い、架橋芳香族チオエーテルスルホン重合体とすることもできる。 After washing, the same method as step (3) can be used to obtain the solid phase component (B) through solid-liquid separation. After that, the filtered aromatic thioethersulfone polymer may be dried as it is and used as an aromatic thioethersulfone polymer powder, or it may be further washed with warm water or hot water, separated into solid and liquid, and dried. It is also possible to prepare a powdery or granular aromatic thioether sulfone polymer by performing this step. Furthermore, the obtained powdery or granular aromatic thioethersulfone polymer can be heat-treated to form a crosslinked aromatic thioethersulfone polymer.
 上記の製造方法により得られた芳香族チオエーテルスルホン重合体は、屈折率に優れる。具体的には、屈折率が好ましくは1.65以上、より好ましくは1.7以上から、好ましくは1.8以下の範囲である。なお、本開示において屈折率は、厚さ40μmに溶融成形した芳香族チオエーテルスルホン重合体を試験片としてJIS K 7142に準拠した方法で室温(23℃)、589nmにて測定した値である。 The aromatic thioether sulfone polymer obtained by the above production method has an excellent refractive index. Specifically, the refractive index is preferably 1.65 or more, more preferably 1.7 or more, and preferably 1.8 or less. Note that in the present disclosure, the refractive index is a value measured at room temperature (23° C.) and 589 nm using a test piece of an aromatic thioether sulfone polymer melt-molded to a thickness of 40 μm using a method based on JIS K 7142.
 また、上記の製造方法により得られた芳香族チオエーテルスルホン重合体は、透明性に優れる。具体的には、明度が好ましくは85以上、より好ましくは90以上から、好ましくは99.9以下の範囲である。また、透過率が好ましくは70%以上、より好ましくは80%以上から、好ましくは99.9%以下の範囲である。なお本開示において明度は厚さ40μmに溶融成形した芳香族チオエーテルスルホン重合体を試験片として測色色差計を用いてJIS Z 8781-4に準拠して白色板を背景に用いた反射測定で得たL値であり、透過率は同試験片を紫外可視分光光度計を用いて波長450nmで測定した透過率である。 Further, the aromatic thioether sulfone polymer obtained by the above production method has excellent transparency. Specifically, the brightness is preferably in the range of 85 or higher, more preferably 90 or higher, and preferably 99.9 or lower. Further, the transmittance is preferably in the range of 70% or more, more preferably 80% or more, and preferably 99.9% or less. In the present disclosure, brightness is obtained by reflection measurement using a colorimeter with a test piece of an aromatic thioethersulfone polymer melt-molded to a thickness of 40 μm using a white plate as a background in accordance with JIS Z 8781-4. The transmittance is the transmittance of the same test piece measured at a wavelength of 450 nm using an ultraviolet-visible spectrophotometer.
 また、上記の製造方法により得られた芳香族チオエーテルスルホン重合体は、オリゴマー含有量が少ない。具体的には、100質量部あたりのオリゴマー含有量が好ましくは3.5質量部以下であることが好ましく、2質量部以下であることがより好ましく、1.8質量部以下であることがさらに好ましい。かかる範囲において、重合体を加熱溶融した際に発生するガス量を低減することができる。なお、本開示における重合体のオリゴマー含有量は、実施例に記載の方法によって測定することができる。 Furthermore, the aromatic thioether sulfone polymer obtained by the above production method has a low oligomer content. Specifically, the oligomer content per 100 parts by mass is preferably 3.5 parts by mass or less, more preferably 2 parts by mass or less, and even more preferably 1.8 parts by mass or less. preferable. Within this range, the amount of gas generated when the polymer is heated and melted can be reduced. Note that the oligomer content of the polymer in the present disclosure can be measured by the method described in the Examples.
 また、上記の製造方法により得られた芳香族チオエーテルスルホン重合体は、溶融安定性に優れるため、滞留した際の粘度変化率が小さい。具体的には、粘度変化率が好ましくは10%以下、より好ましくは8%以下である。なお、本開示における粘度変化率は、実施例に記載の方法によって測定することができる。 Furthermore, the aromatic thioether sulfone polymer obtained by the above production method has excellent melt stability, so the rate of viscosity change during retention is small. Specifically, the viscosity change rate is preferably 10% or less, more preferably 8% or less. Note that the viscosity change rate in the present disclosure can be measured by the method described in Examples.
<組成物、組成物の製造方法>
 本実施形態に係る芳香族チオエーテルスルホン重合体組成物は、上述した本実施形態に係る芳香族チオエーテルスルホン重合体と、他の物質とを配合してなる。また、本実施形態に係る組成物の製造方法は、上記の方法で製造された芳香族チオエーテルスルホン重合体と、他の物質とを配合し、溶融混練する工程を有する。
<Composition, method for producing the composition>
The aromatic thioethersulfone polymer composition according to this embodiment is formed by blending the aromatic thioethersulfone polymer according to this embodiment described above and other substances. Further, the method for producing a composition according to the present embodiment includes a step of blending the aromatic thioether sulfone polymer produced by the above method with another substance and melt-kneading the mixture.
 本実施形態に係る芳香族チオエーテルスルホン重合体は、本発明の効果を損ねない範囲で、他の物質として、離型剤、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤、滑剤、カップリング剤、充填材などの添加剤を含有せしめ、組成物として用いることができる。充填剤としては、本発明の効果を損なうものでなければ公知慣用の材料を用いることもでき、例えば、繊維状のものや、粒状や板状などの非繊維状のものなど、さまざまな形状の無機充填剤等が挙げられる。具体的には、ガラス繊維、炭素繊維、シランガラス繊維、セラミック繊維、アラミド繊維、金属繊維、チタン酸カリウム、炭化珪素、珪酸カルシウム、ワラストナイト等の繊維、天然繊維等の繊維状充填剤が使用でき、またガラスビーズ、ガラスフレーク、硫酸バリウム、クレー、パイロフィライト、ベントナイト、セリサイト、マイカ、タルク、アタパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、ガラスビーズ、ゼオライト、ミルドファイバー、硫酸カルシウム等の非繊維状充填剤も使用できる。 The aromatic thioether sulfone polymer according to this embodiment may contain other substances such as a mold release agent, a coloring agent, a heat stabilizer, an ultraviolet stabilizer, a foaming agent, a rust preventive agent, as long as the effects of the present invention are not impaired. It can be used as a composition by containing additives such as flame retardants, lubricants, coupling agents, and fillers. As the filler, known and commonly used materials can be used as long as they do not impair the effects of the present invention. Examples include inorganic fillers. Specifically, fibrous fillers such as glass fiber, carbon fiber, silane glass fiber, ceramic fiber, aramid fiber, metal fiber, potassium titanate, silicon carbide, calcium silicate, wollastonite, natural fiber, etc. It can also be used for glass beads, glass flakes, barium sulfate, clay, pyrophyllite, bentonite, sericite, mica, talc, attapulgite, ferrite, calcium silicate, calcium carbonate, glass beads, zeolite, milled fiber, calcium sulfate, etc. Non-fibrous fillers can also be used.
 本実施形態に係る芳香族チオエーテルスルホン重合体は、本発明の効果を損ねない範囲で、更に、他の物質として、同様に下記のごとき合成樹脂及びエラストマーを混合して組成物として使用することもできる。これら合成樹脂としては、ポリエステル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリフェニレンエーテル、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリアリーレン、ポリアリーレンスルフィド、ポリエチレン、ポリプロピレン、ポリ四弗化エチレン、ポリ二弗化エチレン、ポリスチレン、ABS樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等が挙げられ、エラストマーとしては、ポリオレフィン系ゴム、フッ素ゴム、シリコーンゴム等が挙げられる。 The aromatic thioether sulfone polymer according to the present embodiment may be used as a composition by mixing the following synthetic resins and elastomers as other substances within the range that does not impair the effects of the present invention. can. These synthetic resins include polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulfone, polyether sulfone, polyether ether ketone, polyether ketone, polyarylene, polyarylene sulfide, polyethylene, polypropylene, polytetra Examples include fluorinated ethylene, polydifluoroethylene, polystyrene, ABS resin, epoxy resin, silicone resin, phenol resin, urethane resin, liquid crystal polymer, etc. Examples of elastomers include polyolefin rubber, fluororubber, silicone rubber, etc. It will be done.
 本実施形態に係る芳香族チオエーテルスルホン重合体に、前記成分を、配合及び混練する方法としては、特に限定されないが、芳香族チオエーテルスルホン重合体と必要に応じて任意成分とを配合して、溶融混錬する方法、より詳しくは、必要に応じてタンブラー又はヘンシェルミキサー等で均一に乾式混合し、次いで、二軸押出機に投入して溶融混練する方法が挙げられる。 The method of blending and kneading the above-mentioned components with the aromatic thioethersulfone polymer according to the present embodiment is not particularly limited, but the aromatic thioethersulfone polymer and optional components as needed are blended and melted. The kneading method, more specifically, includes a method of uniformly dry-mixing the mixture using a tumbler or a Henschel mixer as necessary, and then charging the mixture into a twin-screw extruder and melt-kneading it.
 前記溶融混練機としては分散性や生産性の観点から二軸混練押出機が好ましく、例えば、樹脂成分の吐出量5~500(kg/hr)の範囲と、スクリュー回転数50~500(rpm)の範囲とを適宜調整しながら溶融混練することが好ましく、それらの比率(吐出量/スクリュー回転数)が0.02~5(kg/hr/rpm)の範囲となる条件下に溶融混練することがさらに好ましい。また、溶融混練機への各成分の添加、混合は同時に行ってもよいし、分割して行っても良い。例えば、前記成分のうち、添加剤を添加する場合は、前記二軸混練押出機のサイドフィーダーから該押出機内に投入することが分散性の観点から好ましい。かかるサイドフィーダーの位置は、前記二軸混練押出機のスクリュー全長に対する、該押出機樹脂投入部(トップフィーダー)から該サイドフィーダーまでの距離の比率が、0.1以上であることが好ましく、0.3以上であることがより好ましい。また、かかる比率は0.9以下であることが好ましく、0.7以下であることがより好ましい。 The melt-kneading machine is preferably a twin-screw kneading extruder from the viewpoint of dispersibility and productivity, for example, a discharge rate of the resin component in the range of 5 to 500 (kg/hr) and a screw rotation speed of 50 to 500 (rpm). It is preferable to melt and knead while appropriately adjusting the range, and melt and knead under conditions such that the ratio (discharge amount/screw rotation speed) is in the range of 0.02 to 5 (kg/hr/rpm). is even more preferable. Further, the addition and mixing of each component to the melt-kneading machine may be performed simultaneously or may be performed separately. For example, when adding additives among the components, it is preferable from the viewpoint of dispersibility to introduce them into the twin-screw kneading extruder from a side feeder. The position of the side feeder is preferably such that the ratio of the distance from the extruder resin input part (top feeder) to the side feeder to the total screw length of the twin-screw kneading extruder is 0.1 or more, and 0. More preferably, it is .3 or more. Moreover, it is preferable that this ratio is 0.9 or less, and it is more preferable that it is 0.7 or less.
 このように溶融混練して得られる本実施形態に係る芳香族チオエーテルスルホン重合体組成物は、芳香族チオエーテルスルホン重合体が連続相を形成し、他の必須成分や任意成分が分散されたモルフォロジーを有する。本実施形態に係る芳香族チオエーテルスルホン重合体組成物は、該溶融混練後に、公知の方法、例えば、溶融状態の重合体組成物をストランド状に押出成形した後、ペレット、チップ、顆粒、粉末などの形態に加工してから、必要に応じて100~150℃の温度範囲で予備乾燥を施すことが好ましい。 The aromatic thioethersulfone polymer composition according to the present embodiment obtained by melt-kneading as described above has a morphology in which the aromatic thioethersulfone polymer forms a continuous phase and other essential components and optional components are dispersed. have After the melt-kneading, the aromatic thioethersulfone polymer composition according to the present embodiment can be produced by a known method, for example, by extruding the molten polymer composition into a strand shape, and then forming the composition into pellets, chips, granules, powder, etc. After processing into the form, it is preferable to perform preliminary drying at a temperature range of 100 to 150°C as necessary.
<成形品、成形品の製造方法>
 本実施形態に係る成形品は、上述した本実施形態に係る芳香族チオエーテルスルホン重合体組成物を溶融成形してなる。また、本実施形態に係る成形品の製造方法は、上述した本実施形態に係る芳香族チオエーテルスルホン重合体組成物の製造方法により得られた芳香族チオエーテルスルホン重合体組成物を、溶融成形する工程を有することを特徴とする。
<Molded products and molded product manufacturing methods>
The molded article according to this embodiment is obtained by melt-molding the aromatic thioether sulfone polymer composition according to this embodiment described above. Further, the method for producing a molded article according to the present embodiment includes a step of melt-molding the aromatic thioethersulfone polymer composition obtained by the method for producing an aromatic thioethersulfone polymer composition according to the present embodiment described above. It is characterized by having the following.
 前記芳香族チオエーテルスルホン重合体組成物の成形は、射出成形、圧縮成形、コンポジット、シート、パイプなどの押出成形、引抜成形、ブロー成形、トランスファー成形等、各種成形に供することが可能である。射出成形にて成形する場合、各種成形条件は特に限定されず、通常一般的な方法にて成形することができる。 The aromatic thioether sulfone polymer composition can be molded by various molding methods such as injection molding, compression molding, extrusion molding of composites, sheets, pipes, etc., pultrusion molding, blow molding, and transfer molding. When molding is performed by injection molding, various molding conditions are not particularly limited, and molding can be performed by a general method.
 本実施形態に係る芳香族チオエーテルスルホン重合体及び重合体組成物の用途としては、特に限定されるものではなく各種製品として用いることが可能である。例えば、コネクタ・プリント基板・封止成形品などの電気・電子部品、ランプリフレクター・各種電装部品などの自動車部品、各種建築物や航空機・自動車などの内装用材料、あるいはOA機器部品・カメラ部品・時計部品などの精密部品等として幅広く利用可能である。特に、屈折率と透明性に優れることから、メガネレンズ、カメラ用レンズ、プリズムレンズ等のプラスチックレンズ、ハードコート剤、反射防止膜、プリズムレンズ、LED封止材料の各種光学材料に好適である。 The use of the aromatic thioether sulfone polymer and polymer composition according to the present embodiment is not particularly limited, and can be used as various products. For example, electrical/electronic parts such as connectors, printed circuit boards, and molded seals, automotive parts such as lamp reflectors and various electrical components, interior materials for various buildings, aircraft, automobiles, etc., OA equipment parts, camera parts, etc. It can be widely used as precision parts such as watch parts. In particular, since it has excellent refractive index and transparency, it is suitable for various optical materials such as plastic lenses such as eyeglass lenses, camera lenses, and prism lenses, hard coating agents, antireflection films, prism lenses, and LED sealing materials.
 以下に実施例を挙げて本発明を具体的に説明する。これら例は例示的なものであって限定的なものではない。 The present invention will be specifically described below with reference to Examples. These examples are illustrative and not limiting.
<評価> <Evaluation>
(1)オリゴマー含有量の測定
 各実施例及び比較例で得られた重合体を精密天秤にて10.0000gフラスコに秤量した。ソックスレー抽出器を用いて、アセトンにより1時間抽出後、アセトン溶液を50℃のオーブン内で乾燥させた残渣量から次式より各試料のオリゴマー含有量を算出した。測定結果を表1に示す。
(乾燥後残座の秤量値)÷(抽出に使用した重合体の秤量値)×100
(1) Measurement of oligomer content The polymers obtained in each example and comparative example were weighed into a 10.0000 g flask using a precision balance. After extraction with acetone for 1 hour using a Soxhlet extractor, the acetone solution was dried in an oven at 50° C. From the amount of residue, the oligomer content of each sample was calculated from the following formula. The measurement results are shown in Table 1.
(Weighed value of residue after drying) ÷ (Weighed value of polymer used for extraction) x 100
(2)屈折率の測定
 各実施例及び比較例で得られた重合体を、厚さ40μmのフィルムに溶融成形したものを試験片として用いた。JIS K 7142に準拠した方法で、メトリコン社製「プリズムカプラー」によりの波長が589nmでの屈折率を測定した。測定結果を表1に示す。
(2) Measurement of refractive index The polymers obtained in each example and comparative example were melt-molded into a 40 μm thick film and used as a test piece. The refractive index at a wavelength of 589 nm was measured using "Prism Coupler" manufactured by Metricon in accordance with JIS K 7142. The measurement results are shown in Table 1.
(3)明度(L値)の測定
 各実施例及び比較例で得られた重合体を、厚さ40μmのフィルムに溶融成形したものを試験片として用いた。日本電色工業株式会社製測色色差計「ZE 6000」により明度を測定した。測定はJIS Z 8781-4に準拠して行い、白色板を背景として用いた反射測定により明度(L値)を測定した。値が大きいほど、より重合体に着色が少ないことを示す。測定結果を表1に示す。
(3) Measurement of lightness (L * value) The polymers obtained in each example and comparative example were melt-molded into a film with a thickness of 40 μm and used as a test piece. The brightness was measured using a colorimeter "ZE 6000" manufactured by Nippon Denshoku Kogyo Co., Ltd. The measurement was performed in accordance with JIS Z 8781-4, and the lightness (L * value) was measured by reflection measurement using a white plate as a background. The larger the value, the less the polymer is colored. The measurement results are shown in Table 1.
(4)透過率の測定
 各実施例及び比較例で得られた重合体を、厚さ40μmのフィルムに溶融成形したものを試験片として用いた。株式会社島津製作所製紫外可視分光光度計「UV-3150」を用いて、450nmにおける透過率を測定した。測定結果を表1に示す。
(4) Measurement of transmittance The polymers obtained in each example and comparative example were melt-molded into a film with a thickness of 40 μm and used as a test piece. Transmittance at 450 nm was measured using a UV-visible spectrophotometer "UV-3150" manufactured by Shimadzu Corporation. The measurement results are shown in Table 1.
(5)発生ガス量の測定
 各実施例及び比較例で得られた重合体を精密天秤にて4.0000gアルミ製シャーレに秤量した。150℃に設定された乾燥機内に試料を1時間静置した後、シャーレを取出して、室温まで放冷してから秤量した。次いで、同シャーレを、370℃に設定された乾燥機内に1時間静置した後、シャーレを取出して、室温まで放冷してから秤量した。次式より各試料のウェイトロスを算出した。測定結果を表1に示す。
{(150℃加熱後の秤量値)-(370℃加熱後の秤量値)}÷(150℃加熱後の秤量値)×100
(5) Measurement of amount of gas generated 4.0000 g of the polymer obtained in each Example and Comparative Example was weighed into an aluminum petri dish using a precision balance. After leaving the sample in a dryer set at 150° C. for 1 hour, the Petri dish was taken out, allowed to cool to room temperature, and then weighed. Next, the petri dish was left to stand in a dryer set at 370° C. for 1 hour, then taken out, allowed to cool to room temperature, and then weighed. The weight loss of each sample was calculated using the following formula. The measurement results are shown in Table 1.
{(Weighing value after heating at 150°C) - (Weighing value after heating at 370°C)} ÷ (Weighing value after heating at 150°C) x 100
(6)溶融粘度及び溶融安定性の評価
 各実施例及び比較例で得られた重合体の粘度変化率について、島津製作所製フローテスター「CFT-500D」を用い、温度300℃、荷重1.96MPa、オリフィス長とオリフィス径との比が10/1であるオリフィスを使用して測定した値から、次式より算出した。粘度変化率は絶対値である。測定結果を表1に示す。
粘度変化率(%)=|(30分保持してから測定した溶融粘度Pa・s/6分保持してから測定した溶融粘度Pa・s)|×100
(6) Evaluation of melt viscosity and melt stability The viscosity change rate of the polymers obtained in each example and comparative example was evaluated using a Shimadzu flow tester "CFT-500D" at a temperature of 300°C and a load of 1.96 MPa. , was calculated from the following equation from the value measured using an orifice with a ratio of orifice length to orifice diameter of 10/1. The viscosity change rate is an absolute value. The measurement results are shown in Table 1.
Viscosity change rate (%) = | (Melt viscosity Pa・s measured after holding for 30 minutes/Melt viscosity Pa・s measured after holding for 6 minutes) | × 100
(7)DSC測定
 各実施例及び比較例で得られた重合体について、示差走査熱量計(Perkin Elmer社製『DSC8500』)を用いて、ガラス転移点(Tg)を測定した。
(7) DSC Measurement The glass transition point (Tg) of the polymers obtained in each Example and Comparative Example was measured using a differential scanning calorimeter ("DSC8500" manufactured by Perkin Elmer).
<実施例1、比較例1~3> <Example 1, Comparative Examples 1 to 3>
・実施例1-工程(1)
 チタン製の1Lオートクレーブに4、4-ジクロロジフェニルスルホン(0.52mol、147.88g)、酢酸ナトリウム(0.50mol、41.02g)、ジメチルイミダゾリジノン(以下、DMI)(3.82mol、436.54g)、脱イオン水(2.22mol、39.96g)、硫化ナトリウム(47.6%、0.50mol、59.34g)、水酸化ナトリウム(48.8%、0.50mol、41.08g)を装填し、200℃まで加熱し、200℃にて3時間密封下で加熱した。
・Example 1-Step (1)
In a 1L autoclave made of titanium, 4,4-dichlorodiphenylsulfone (0.52 mol, 147.88 g), sodium acetate (0.50 mol, 41.02 g), dimethylimidazolidinone (hereinafter referred to as DMI) (3.82 mol, 436 .54g), deionized water (2.22mol, 39.96g), sodium sulfide (47.6%, 0.50mol, 59.34g), sodium hydroxide (48.8%, 0.50mol, 41.08g) ), heated to 200°C, and heated under seal at 200°C for 3 hours.
・実施例1-工程(2)
 重合終了後、粗反応混合物のスラリーを容器に回収し、DMI(300mL)を添加した。このスラリーを、200メッシュの金網を用いてろ過し、固相成分を得た。得られた固相成分にDMI(300mL)をさらに添加し、120℃で30分加熱攪拌した。その後、スラリーを60℃まで冷却した。
・Example 1-Step (2)
After the polymerization was completed, the crude reaction mixture slurry was collected in a container and DMI (300 mL) was added. This slurry was filtered using a 200 mesh wire gauze to obtain a solid phase component. DMI (300 mL) was further added to the obtained solid phase component, and the mixture was heated and stirred at 120° C. for 30 minutes. Thereafter, the slurry was cooled to 60°C.
・実施例1-工程(3)
 冷却したスラリーを200メッシュの金網でろ過し、液相成分を除去した。
・Example 1-Step (3)
The cooled slurry was filtered through a 200 mesh wire gauze to remove liquid phase components.
・実施例1-工程(4)
 得られた固相成分を室温まで冷却後、メタノール水溶液を添加してデカンテーションを行い、ろ過して液相成分を除去した。固相成分をさらに温水(70℃)で洗浄してデカンテーションを行い、ろ過して液相成分を除去した。この工程を3回繰り返した。得られた固相成分を120℃で2時間常圧乾燥した後、さらに150℃で5時間減圧乾燥して、重合体(1)を得た。得られた重合体(1)の性状を表1に示す。
・Example 1-Step (4)
After cooling the obtained solid phase component to room temperature, an aqueous methanol solution was added, decantation was performed, and the liquid phase component was removed by filtration. The solid phase component was further washed with warm water (70° C.), decanted, and filtered to remove the liquid phase component. This process was repeated three times. The obtained solid phase component was dried at 120° C. for 2 hours under normal pressure, and then further dried under reduced pressure at 150° C. for 5 hours to obtain a polymer (1). Table 1 shows the properties of the obtained polymer (1).
・比較例1
 実施例1の工程(1)、(2)において、DMIの代わりにNMPを用いた以外は同様の操作によって重合体(2)を得た。得られた重合体の性状を表1に示す。
・Comparative example 1
Polymer (2) was obtained in the same manner as in steps (1) and (2) of Example 1, except that NMP was used instead of DMI. Table 1 shows the properties of the obtained polymer.
・比較例2
 1Lのオートクレーブに4、4-ジクロロジフェニルスルホン(0.54mol、154.70g)、炭酸ナトリウム(0.53mol、56.60g)、酢酸ナトリウム(0.53mol、43.70g)、水酸化ナトリウム(0.53mol、62.82g)、硫化ナトリウム(47.6%、0.53mol、62.82g)、NMP(2.13mol、221.70g)、脱イオン水(0.13mol、2.27g)を装填し、200℃まで加熱し、そのまま200℃にて密封下で3時間保持した。次いで、NMP160mL、および脱イオン水26.7mLの混合溶媒を添加し、150℃になるまで攪拌した。反応混合物を固体の粒状物質として反応容器から取り出し、液体を吸引ろ過した。得られた固相成分を脱イオン水(90℃、600mL)で洗浄し、ろ過した。この工程を2回繰り返し、室温の脱イオン水で最後に洗浄した。
 1Lのオートクレーブに上記の通り精製回収した重合体40g、脱イオン水400g、および酢酸亜鉛4.0gを添加し、185℃まで加熱して1時間加熱攪拌した。その後室温(23℃)まで冷却した。得られたスラリーを熱湯(90℃、400mL)で攪拌しながら洗浄した。次いで、スラリーを160℃の温度で減圧乾燥して、重合体(3)を得た。得られた重合体の性状を表1に示す。
・Comparative example 2
In a 1 L autoclave, 4,4-dichlorodiphenylsulfone (0.54 mol, 154.70 g), sodium carbonate (0.53 mol, 56.60 g), sodium acetate (0.53 mol, 43.70 g), sodium hydroxide (0 .53 mol, 62.82 g), sodium sulfide (47.6%, 0.53 mol, 62.82 g), NMP (2.13 mol, 221.70 g), deionized water (0.13 mol, 2.27 g). The mixture was heated to 200°C, and kept at 200°C for 3 hours under sealed conditions. Next, a mixed solvent of 160 mL of NMP and 26.7 mL of deionized water was added, and the mixture was stirred until the temperature reached 150°C. The reaction mixture was removed from the reaction vessel as a solid particulate material and the liquid was filtered with suction. The obtained solid phase component was washed with deionized water (90°C, 600 mL) and filtered. This step was repeated twice with a final wash with deionized water at room temperature.
40 g of the polymer purified and recovered as described above, 400 g of deionized water, and 4.0 g of zinc acetate were added to a 1 L autoclave, heated to 185° C., and stirred for 1 hour. Thereafter, it was cooled to room temperature (23°C). The resulting slurry was washed with hot water (90° C., 400 mL) while stirring. Next, the slurry was dried under reduced pressure at a temperature of 160°C to obtain a polymer (3). Table 1 shows the properties of the obtained polymer.
・比較例3
 1Lのオートクレーブに水硫化ソーダ(47.6%、0.50mol、58.87g)、水酸化ナトリウム(48.8%、0.45mol、36.89g)、無水酢酸ナトリウム(0.25mol、20.51g)、炭酸ナトリウム(0.06mol、6.36g)、NMP(4.00mol、396.72g)を添加し、130℃にて3時間密封下で加熱した。この系を70℃まで冷却し、NMP(0.50mol、49.59g)と共に4、4-ジクロロジフェニルスルホン(0.51mol、146.45g)を加え、260℃にて2時間加熱後、1℃/分の速度で120℃まで冷却した。この系をNMP(1.5mol、148.77g)中へ抜き出し、70℃にて200メッシュの金網でろ過して液相成分を除去した。得られた固相成分を70℃の温水250mLで5回洗浄し、最後に5mLの酢酸を添加して、重合体(4)を得た。得られた重合体の性状を表1に示す。
・Comparative example 3
In a 1 L autoclave, sodium hydrogen sulfide (47.6%, 0.50 mol, 58.87 g), sodium hydroxide (48.8%, 0.45 mol, 36.89 g), and anhydrous sodium acetate (0.25 mol, 20. 51 g), sodium carbonate (0.06 mol, 6.36 g), and NMP (4.00 mol, 396.72 g) were added, and the mixture was heated at 130° C. for 3 hours under sealed conditions. This system was cooled to 70°C, 4,4-dichlorodiphenylsulfone (0.51 mol, 146.45 g) was added together with NMP (0.50 mol, 49.59 g), and after heating at 260°C for 2 hours, 1°C The mixture was cooled to 120°C at a rate of 1/min. This system was extracted into NMP (1.5 mol, 148.77 g) and filtered through a 200 mesh wire gauze at 70°C to remove liquid phase components. The obtained solid phase component was washed five times with 250 mL of 70°C warm water, and finally 5 mL of acetic acid was added to obtain a polymer (4). Table 1 shows the properties of the obtained polymer.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1から、実施例の芳香族チオエーテルスルホン重合体はオリゴマー含有量が少なく、かつ、明度と透過率に優れることが認められる。さらに、発生ガス量と粘度変化率が小さいことから、熱安定性に優れることが示された。 From Table 1, it is recognized that the aromatic thioether sulfone polymers of Examples have a low oligomer content and are excellent in brightness and transmittance. Furthermore, the amount of gas generated and the rate of change in viscosity were small, indicating excellent thermal stability.

Claims (11)

  1.  屈折率が1.65以上、明度が85以上、透過率が70%以上、及び、オリゴマー含有量が3.5質量部以下であることを特徴とする芳香族チオエーテルスルホン重合体。(ただし、明度と透過率は、厚さ40μmのフィルム状試験片を測定した値とする。また、明度はJIS Z 8781-4に準拠して白色板を背景に用いた反射測定の値とし、透過率は波長450nmで測定した値とする。) An aromatic thioether sulfone polymer having a refractive index of 1.65 or more, a brightness of 85 or more, a transmittance of 70% or more, and an oligomer content of 3.5 parts by mass or less. (However, the brightness and transmittance are the values measured on a film-like test piece with a thickness of 40 μm.In addition, the brightness is the value measured by reflection using a white plate as a background in accordance with JIS Z 8781-4. Transmittance is the value measured at a wavelength of 450 nm.)
  2.  粘度変化率が0~10%である請求項1記載の芳香族チオエーテルスルホン重合体。(ただし、粘度変化率は、フローテスターにより、温度300℃、荷重1.96MPa、オリフィス長とオリフィス径との比が10/1であるオリフィスを使用して測定した値から、次式より算出したものであること。)
    粘度変化率〔%〕=|(30分保持してから測定した溶融粘度〔Pa・s〕/6分保持してから測定した溶溶融粘度〔Pa・s〕)|×100
    The aromatic thioether sulfone polymer according to claim 1, which has a viscosity change rate of 0 to 10%. (However, the viscosity change rate was calculated from the following formula from the value measured by a flow tester using an orifice with a temperature of 300°C, a load of 1.96 MPa, and a ratio of orifice length to orifice diameter of 10/1. (It must be something.)
    Viscosity change rate [%] = | (melt viscosity measured after holding for 30 minutes [Pa・s]/melt viscosity measured after holding for 6 minutes [Pa・s]) | × 100
  3.  請求項1又は2記載の芳香族チオエーテルスルホン重合体と、他の物質とを配合してなることを特徴とする、芳香族チオエーテルスルホン重合体組成物。 An aromatic thioethersulfone polymer composition comprising the aromatic thioethersulfone polymer according to claim 1 or 2 and another substance.
  4.  請求項3記載の芳香族チオエーテルスルホン重合体組成物を溶融成形してなる成形品。 A molded article obtained by melt-molding the aromatic thioethersulfone polymer composition according to claim 3.
  5.  含水有機カルバミド系溶媒中で、ジハロ芳香族化合物と(i)アルカリ金属硫化物とを、又は、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを、重合させることを特徴とする芳香族チオエーテルスルホン重合体の製造方法。 An aromatic product characterized by polymerizing a dihaloaromatic compound and (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide in a water-containing organic carbamide solvent. A method for producing a group thioether sulfone polymer.
  6.  含水有機カルバミド系溶媒中で、アルカリ金属硫化物と、(i)アルカリ金属硫化物とを、又は、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを重合させて粗反応混合物を得る工程(1)、
     粗反応混合物を洗浄する工程(2)、
     該粗反応混合物を固液分離して固相成分(A)を得る工程(3)、
     前記固相成分(A)を有機溶媒と接触させてから固液分離し、固相成分(B)を得る工程(4)を有し、かつ、
     工程(1)のジハロ芳香族化合物と(i)アルカリ金属硫化物、又は、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物のモル比率が0.95~1.2であること、を特徴とする請求項5記載の芳香族チオエーテルスルホン重合体の製造方法。
    A crude reaction mixture is obtained by polymerizing an alkali metal sulfide and (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide in a water-containing organic carbamide solvent. Process (1),
    step (2) of washing the crude reaction mixture;
    step (3) of solid-liquid separation of the crude reaction mixture to obtain solid phase component (A);
    a step (4) of contacting the solid phase component (A) with an organic solvent and then performing solid-liquid separation to obtain the solid phase component (B), and
    The molar ratio of the dihaloaromatic compound in step (1) and (i) alkali metal sulfide, or (ii) alkali metal hydrosulfide and alkali metal hydroxide is 0.95 to 1.2. The method for producing an aromatic thioether sulfone polymer according to claim 5.
  7.  得られる重合体の屈折率が1.65以上、明度が85以上、透過率が70%以上である、請求項5又は6記載の芳香族チオエーテルスルホン重合体の製造方法。(ただし、明度と透過率は、厚さ40μmのフィルム状試験片を測定した値とする。また、明度はJIS Z 8781-4に準拠して白色板を背景に用いた反射測定の値とし、透過率は波長450nmで測定した値とする。) The method for producing an aromatic thioether sulfone polymer according to claim 5 or 6, wherein the obtained polymer has a refractive index of 1.65 or more, a brightness of 85 or more, and a transmittance of 70% or more. (However, the brightness and transmittance are the values measured on a film-like test piece with a thickness of 40 μm.In addition, the brightness is the value measured by reflection using a white plate as a background in accordance with JIS Z 8781-4. Transmittance is the value measured at a wavelength of 450 nm.)
  8.  さらに、オリゴマー含有量が3.5質量部以下である、請求項7記載の芳香族チオエーテルスルホン重合体の製造方法。 The method for producing an aromatic thioether sulfone polymer according to claim 7, further comprising an oligomer content of 3.5 parts by mass or less.
  9.  得られる重合体の粘度変化率が0~10%である、請求項5又は6記載の芳香族チオエーテルスルホン重合体の製造方法。(ただし、粘度変化率は、フローテスターにより、温度300℃、荷重1.96MPa、オリフィス長とオリフィス径との比が10/1であるオリフィスを使用して測定した値から、次式より算出したものであること。)
    粘度変化率〔%〕=|(30分保持してから測定した溶融粘度〔Pa・s〕/6分保持してから測定した溶溶融粘度〔Pa・s〕)|×100
    The method for producing an aromatic thioether sulfone polymer according to claim 5 or 6, wherein the viscosity change rate of the obtained polymer is 0 to 10%. (However, the viscosity change rate was calculated from the following formula from the value measured by a flow tester using an orifice with a temperature of 300°C, a load of 1.96 MPa, and a ratio of orifice length to orifice diameter of 10/1. (It must be something.)
    Viscosity change rate [%] = | (melt viscosity measured after holding for 30 minutes [Pa・s]/melt viscosity measured after holding for 6 minutes [Pa・s]) | × 100
  10.  請求項5又は6記載の方法で製造された芳香族チオエーテルスルホン重合体と、他の物質とを配合して、溶融混練する工程を有する、芳香族チオエーテルスルホン重合体組成物の製造方法。 A method for producing an aromatic thioethersulfone polymer composition, comprising the step of blending the aromatic thioethersulfone polymer produced by the method according to claim 5 or 6 with another substance and melt-kneading the mixture.
  11.  請求項10記載の方法で製造された芳香族チオエーテルスルホン重合体組成物を溶融成形する工程を有する、成形品の製造方法。 A method for producing a molded article, comprising the step of melt-molding the aromatic thioethersulfone polymer composition produced by the method according to claim 10.
PCT/JP2023/014953 2022-06-14 2023-04-13 Aromatic thioether sulfone polymer, composition, and molded article, and methods for producing same WO2023243204A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024502520A JPWO2023243204A1 (en) 2022-06-14 2023-04-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-095614 2022-06-14
JP2022095614 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023243204A1 true WO2023243204A1 (en) 2023-12-21

Family

ID=89190929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014953 WO2023243204A1 (en) 2022-06-14 2023-04-13 Aromatic thioether sulfone polymer, composition, and molded article, and methods for producing same

Country Status (2)

Country Link
JP (1) JPWO2023243204A1 (en)
WO (1) WO2023243204A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981334A (en) * 1982-11-02 1984-05-11 Asahi Glass Co Ltd Production of polyarylene sulfide
WO1990003210A1 (en) * 1988-09-29 1990-04-05 Toray Industries, Inc. Porous membrane and process for its manufacture
JPH05320345A (en) * 1992-01-23 1993-12-03 Kureha Chem Ind Co Ltd Aromatic thio ether ketone/thio ethersulfone copolymer and its production
JPH06182168A (en) * 1992-12-17 1994-07-05 Toray Ind Inc Microporous memberane and method for manufacturing the same
JPH06182166A (en) * 1992-12-22 1994-07-05 Toray Ind Inc Composite reverse osmosis membrane and manufacture thereof
JPH07252359A (en) * 1994-03-16 1995-10-03 Sekisui Chem Co Ltd Aromatic polysulfide sulfone resin
JP2017114923A (en) * 2015-12-21 2017-06-29 Dic株式会社 Manufacturing method of polyarylene sulfide resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981334A (en) * 1982-11-02 1984-05-11 Asahi Glass Co Ltd Production of polyarylene sulfide
WO1990003210A1 (en) * 1988-09-29 1990-04-05 Toray Industries, Inc. Porous membrane and process for its manufacture
JPH05320345A (en) * 1992-01-23 1993-12-03 Kureha Chem Ind Co Ltd Aromatic thio ether ketone/thio ethersulfone copolymer and its production
JPH06182168A (en) * 1992-12-17 1994-07-05 Toray Ind Inc Microporous memberane and method for manufacturing the same
JPH06182166A (en) * 1992-12-22 1994-07-05 Toray Ind Inc Composite reverse osmosis membrane and manufacture thereof
JPH07252359A (en) * 1994-03-16 1995-10-03 Sekisui Chem Co Ltd Aromatic polysulfide sulfone resin
JP2017114923A (en) * 2015-12-21 2017-06-29 Dic株式会社 Manufacturing method of polyarylene sulfide resin

Also Published As

Publication number Publication date
JPWO2023243204A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
JP3868011B2 (en) Method for producing polyarylene sulfide polymer
JP5012131B2 (en) Method for producing polyarylene sulfide resin
JP4635344B2 (en) Method for producing polyarylene sulfide resin
TWI301495B (en) Process for continuously producing polyarylene sulfide
JP2001181394A (en) Method of manufacturing polyarylene sulfide
WO2011125480A1 (en) Branched polyarylene sulfide resin and method for producing same
JP2004107567A (en) Method for manufacturing polyarylene sulfide
JP4340960B2 (en) Method for producing polyarylene sulfide resin
JPH08269200A (en) Production of polyarylene sulfide excellent in adhesivity
JP2004352923A (en) Method for producing polyarylene sulfide resin
JP2005047953A (en) Production method for branched polyarylene sulfide
CN111670209A (en) Polyarylene sulfide copolymer and method for producing same
JP3618018B2 (en) Polyphenylene sulfide resin composition
CA1223690A (en) Process for the production of optionally branched polyarylene sulfides
TWI299337B (en)
WO2023243204A1 (en) Aromatic thioether sulfone polymer, composition, and molded article, and methods for producing same
JP2923649B2 (en) Polyarylene sulfide injection molded products
WO2023243205A1 (en) Methods for producing aromatic thioether sulfone polymer, composition, and molded article
KR930010565B1 (en) Polyarilene sulfides, a process for preparing the same and a resin composition containing the same
JP3023924B2 (en) Method for producing carboxyl group-containing arylene sulfide copolymer
JP3568049B2 (en) Polyarylene thioether and method for producing the same
JP7214997B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP4090880B2 (en) Polyarylene sulfide resin
JPH0826149B2 (en) Method for producing polyarylene sulfide
JPH02107666A (en) Polyarylene sulfide resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2024502520

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823507

Country of ref document: EP

Kind code of ref document: A1